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ABSTRACT 

The Lee-Carter (LC) model was primarily designed for modelling the mortality pattern 

with Gaussian error structure in most developed countries. Attempts at using LC for 

describing the pattern of mortality in developing countries have resulted in the violation 

of the normality assumption, due to its inability to accommodate variability across age-

groups. Therefore, this study was aimed at developing a modified LC model to 

accommodate variability across all ages. 

 

The LC model, ln 𝑚௫௧ = 𝑎௫ + 𝑏௫𝑘௧ + 𝜀௫௧was modified using a gamma generator given 

as: 𝐺𝑎𝑚(𝑦) =  
൛ି௟௡ [ଵିி(௬)] ൟ

ഀషభ

୻஑
𝑓(𝑦); where 𝑚௫௧is a random variable, ln 𝑚௫௧ = 𝑦, 𝑎௫ ,

𝑏௫and𝑘௧are location parameters, 𝜀௫௧is an error term, 𝛼is a shape parameter, Γα is  

(𝛼 − 1)!, 𝑓(𝑦)and 𝐹(𝑦)are the density and distribution functions of the normal random 

variable, respectively. The Kolmogorov Smirnov (KS) and Shapiro Wilks’ (SW) 

procedures were used to test for normality. The Gamma-Normal Lee-Carter (GNLC) 

model, the LC model with normal error structure and the Brouhns’ (BR) model with 

poisson error structure were fitted to Nigeria male and female all-cause mortality datasets 

obtained from the Global Health Observatory for age-groups < 1, 1-4, 5-9, 10-14, 15-19, 

20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-

84 and 85+ for the period 2000-2015. Forecast of the mortality Index 𝑘௧was done in an 

Auto-regressive Integrated Moving Average (ARIMA) framework for a 20 year-period. 

Simulation study using data of sizes 𝑛; 𝑡 = (15; 5), (20; 20) and (20; 30) was set up, 

where 𝑛 and 𝑡 are the sizes of the age-groups and periods, respectively. Model 

performance was evaluated using Bayesian Information Criterion (BIC) and the 

Corrected Akaike Information Criterion (CAIC). Significance was determined at 0.01 

level. 

 

The Probability Density Function (PDF), Cummulative Distribution Function (CDF) and 

Hazard Function (HF) of the GNLC model were derived. The PDF, CDF and HF of the 

GNLC were of the forms: 
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𝑔(𝑦) =
ଵ

௰ఈ

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
൜

[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ൠ
ቀ−ln ቄ1 − Φ ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃቅቁ

ఈିଵ

 , 

𝐺(𝑦) =
ଵ

୻஑
𝛾 ቀ𝛼, − ln ቄ1 − Φ ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃቅቁand 

ℎ(𝑦)= 
భ

഑√మഏ
௘

ష
భ
మ

ቊ
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ቋ
ቀି ୪୬ቄଵି஍ቂ

೤ష(ೌೣశ್ೣೖ೟)

഑
ቃቅቁ

ഀషభ

୻ቀఈ,   ି୪୬ቄଵି஍ቂ
೤ష(ೌೣశ್ೣೖ೟)

഑
ቃቅቁ

,respectively. The KS and SW 

procedures were significant at 0.01, confirming non-normality with P-values less than or 

equal to (4.35 × 10ିଵଷ, 2.22 × 10ିହ) and (4.18 × 10ିଵଷ, 1.58 × 10ିଵଷ) for males and 

females, respectively. The BIC and CAIC for the forecast period were: -0.14, -0.55 (LC), 

-17.19, -17.60 (BR) and -40.99, -41.40 (GNLC) for the male and -7.05, -7.39 (LC), -

14.74, -15.04 (BR) and -56.76, -57.06 (GNLC) for the female. For the simulated data, the 

obtained BIC and CAIC for the LC and GNLC models were for sample size 𝑛; 𝑡 = (15; 

5): 285.6405, 263.8951; 281.3217, 257.4478, 𝑛; 𝑡 = (20; 20): 744.1807, 532.7462; 

738.1579, 529.9777 and 𝑛; 𝑡 = (20; 30): 997.1916, 726.5509; 990.7245, 713.258, 

respectively.  

 

The modified Lee-Carter model was able to accommodate variability across all age-

groups better than the referenced classical Lee-Carter. Therefore, the modified Lee-Carter 

model is recommended for modelling mortality data from developing countries. 

 

Keywords: Lee-Carter model, Mortality pattern, Non-Gaussian error, Gamma 

generator. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of the Study 

Whether in developed or developing countries, mortality models play a very significant 

role in demographic projections as they help to provide a sufficient understanding of 

mortality trends and the uncertainty of future mortality rates. 

Mortality data remain a great challenge for observing, evaluating and projecting the 

health condition of a large part of the world’s population. Due to scarcely available 

resources, many developing countries especially in Sub-Saharan Africa lack vital 

registration systems that could consistently and continuously collect information on 

mortality. Hence the need for mortality models which are of utmost importance in 

population studies.   

 

Many industrialized countries experienced an upward surge in expected life expectancy 

during the past century. Improvements in medicine, hygiene, sanitary conditions and 

living standard led to rapidly decreasing infant mortality rates in the early part of the 

century and afterwards to first increasing and then decreasing mortality in adults in the 

concluding part of the twentieth century. In Africa, however, the level of mortality varies 

distinctly across countries. In contrast to other major parts of the world, mortality is 

higher in the African continent. 

According to Keyfitz and Caswell (2005), “to represent a population as a number 

changing in time, and ignoring its age composition, is comparable to treating the earth as 

a point in space”. In the same vein, the mortality pattern of an area cannot be studied 

without considering the peculiarity in different age-groups that makes up its population.  

Unlike their counterparts in the developed World who enjoy the priviledge of being a 

‘She’, from infanthood to adulthood, the female gender in many developing countries is 



 

2 
 

faced with challenges: from low-socio cultural values to poor socio-economic growth and 

a frail health care system.  

Maternal mortality affects the female gender, specifically, women in the child-bearing 

age-group (15-49 years) and it has been a serious concern in many developing countries. 

About a decade ago, the world Health survey reported that the risk of a woman in a 

developing country dying from a pregnancy-related cause during her lifetime was about 

thirty-six times higher compared to a woman living in a developed country. Nigeria for 

instance has been confirmed as having the second highest number of maternal mortality 

rate in the world after India in a recent United Nations report.  

With respect to infants and children, mortality still remains high in many developing 

countries. Compared to other parts of the world, the rate of mortality drop has been slow 

in Africa. According to Timeous (1999), an increase in the number of mothers who went 

to school in the 90’s slackened in many African countries and this had a direct negative 

impact on infant and childhood mortality. 

Adult mortality (15-60 years) rate has risen sharply since HIV became prevalent. ‘HIV 

and AIDS’ have become one of the most devastating epidemics in the world. Its impact is 

concentrated among adults in the age range that usually forms new sexual partnerships. 

Thus, the HIV epidemic is likely to have a dramatic effect on the age pattern of mortality 

in Africa as well as on its overall level. 

 

Recent changes in infectious disease have also had a negative influence on mortality in 

sub-Saharan Africa. In Africa, the impact of malaria on the population of both young and 

old is quiet overwhelming. Before the 1980s, malaria fever was majorly treated with 

chloroquine and this was thought to have had a significant impact on mortality. However, 

between the early 1980’s and early 1990’s, malaria resistant to chloroquine spread across 

the continent. As a consequence, according to Bradley (1991) and Ewbank and Gribble 

(1993), chloroquine- resistant malaria exerted a significant upward influence on mortality 

during that time period. Furthermore, about three to four decades ago, non-communicable 

diseases like hypertension, diabetes and cancer was nothing to worry about since they 
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were extremely rare occurrences. But recent figures show an upward trend in the 

prevalence of these diseases for some specific age-groups. 

 

Since the 1970s, economic difficulties have distressed many African countries. This is 

another major determinant which suggests that mortality decline in Africa may have 

decelerated further in recent times. In many developing countries, Government’s budget 

on health services is usually too meager and in many instances insufficient to cater for the 

people’s health needs. 

 

Furthermore, a long history of military conflict has left countries and areas such as 

southern Somalia, Sudan and Ethiopia among the most deprived parts of Africa.  Just as 

what obtains in other regions, warfare and political crisis in developing countries often 

bring with it substantial mortality from famine and disease. 

 

Difference of opinion in Religion is also a major determinant in the level of mortality in 

Africa. In Nigeria for instance, clashes between Muslims and Christians usually occur in 

the North. Islamic Jihadist group like the Boko Haram have not made matters any better. 

The United Nations and some other humanitarian agencies have had to intervene to aid an 

extremely awful aftermath.  

 

1.2    Statement of Problem 

Many developed countries experienced an appreciable reduction in mortality rates during 

the past century. However, in many developing countries, the story is not the same as 

mortality levels varies markedly across age groups and between regions within particular 

countries. The Lee and Carter (1992) model was mainly designed for the United States 

mortality and it has been used by many industrialized countries as a reference point to 

model their mortality pattern. Hanna (2007), Chukwu and Oladipupo (2012) and 

Taruvinga et al. (2017) used the Lee and Carter (1992) model for describing the pattern 

of mortality for some developing countries with defective data situation. These attempts 

have resulted in the violation of the normality assumption. This is due to the model’s 
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inability to accommodate variability across age-groups. The model and some of its 

variants assume a normal distribution for its error term and this is not the situation for 

many developing countries.  

Therefore, this study was aimed at developing a modified Lee and Carter model under a 

non-Gaussian error innovation to accommodate variability across all ages. 

 

1.3    Objectives of the Study 

The main focus of this research work is to develop a modified Lee-Carter approach with 

improved modelling properties with the aim of capturing variability across all ages 

The specific objectives are: 

i. to derive some statistical properties of the proposed model such as its probability 

density function, its cumulative distribution function, its hazard function, its 

asymptotic behaviour and the verification of proper probability density function. 

ii. to use the maximum likelihood estimation procedure in estimating the model’s 

parameters in order to achieve better results. 

iii. to determine future mortality trend using the proposed model. 

iv. to make a statistical comparison of the proposed model and other Lee and Carter 

variants using the Akaike information criterion, the Bayesian information 

criterion, the Corrected Akaike information criterion and the Hannan-Quinn 

information criterion. 

 
1.4    Motivation 

The Lee-Carter model is the most popular approach to mortality modelling Reese (2015). 

It has been applied by many developed countries to model their mortality pattern with 

satisfactory results. “Surprisingly, however, the basic theoretical properties of the Lee-

Carter model have never been thoroughly investigated” (Reese 2015).  

Attempts in using the model for describing the pattern of mortality in developing 

Countries have led to the violation of the normality assumption, due to its inability to 
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accommodate variability across all age-groups. The consequence of this is mortality 

curves crossing each other at different ages. Hence, because of our own peculiar 

exigencies, assumptions underlining the classical Lee and Carter (1992) model and its 

variants should be modified when it comes to applying them to developing Countries.  

 

1.5    Thesis Layout    

In addition to this introductory chapter, which contains the background of the study, 

statement of problem, objectives and motivation for the study, this research work 

contains four other chapters stated as follows; 

In chapter two, existing works on mortality models, the development and application of 

the Lee-Carter model and a brief overview on the Zografos–Balakrishnan-GFamily of 

distributions were reviewed. The methodology of Zografos and Balakrishnan (2009) and 

Lima et al (2015) framework were looked into. 

In chapter three, the methodology of the proposed Gamma-Normal Lee-Carter 

distribution was discussed. The empirical derivations of the parameters of the proposed 

distribution and its statistical properties were considered. 

In chapter four, the proposed model was applied to a combination of all- cause mortality 

data. The results obtained were compared to some Lee-Carter variants. 

In chapter five, summary and conclusion were drawn while contribution to knowledge 

and suggestions for further research were also given. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0   Introduction 

This chapter begins with a review of existing mortality models followed by a review of 

research works on the Lee and Carter (1992) model which will be in two sections; works 

on the development of the Lee and Carter model followed by related works based on its 

application. Finally a review of methods which includes works based on the Zografos–

Balakrishnan-GFamily of distributions and some other relevant statistical tools. 

2.1   Mortality Projections 

The theory and practice of modelling mortality have evolved rapidly in recent decades 

and there are many ways to mortality forecast (Bongaarts 2004). However, deMoivre 

(1725), Gompertz (1825) and Makeham (1860) are the most famous in the history of 

mortality modelling (Wang 2007). In recent times, quiet a number of new methods have 

been established for forecasting mortality using stochastic models, such as, Pollard 

(1987), Olshansky (1988), Alho and Spencer (1985), Keyfitz (1991), Alho (1990) and 

Lee and Carter (1992).  

2.2   The Lee and Carter (1992) Model and its Development 

In 1992, Ronald Lee and Lawrence Carter published a stochastic model for the forecasts 

of the level and age pattern of mortality. The method was based on a blend of statistical 

time series techniques and a simple approach to dealing with the age distribution of 

mortality. The methodology defines the logarithm of a time series of age-specific death 

rates as the addition of an age-specific component that is time independent and another 

component which is the product of a time-varying parameter and an age-specific 

component that represents how rapidly or slowly mortality at each age varies when the 

general level of mortality changes. The resulting estimate of the time-varying parameter 

is then modeled and forecast as a stochastic time series using standard methods. Suffice 

to say that although the Lee and Carter model was specially proposed for the United 
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States mortality pattern, it has been modified and applied beyond the scope of its original 

creation.  

Instead of the singular value decomposition procedure used by Lee and Carter (1992), 

Wilmoth (1993) proposed two alternatives in estimating the Lee-Carter model’s 

parameters; the weighted least squares and the maximum likelihood approaches. 

Wilmoth’s intuition was that the reason the observed number differs from the fitted 

number of deaths is that the estimates of the mortality time trend tkare computed by 

minimizing the least square error over log-mortality, rather than mortality. As a result, 

age groups with small numbers of deaths receive the same weight as age groups with 

large numbers, even though they contribute very little to the totals.  Both techniques have 

the significant advantage over the original Lee-Carter formulation in that they deal 

naturally with the case in which the observed number of deaths is zero, which occurs 

when analyzing cause-specific data or when dealing with small Countries.  

Lee and Miller (2001) found that a major problem with the Lee-Carter model is the 

assumption that the age component is invariant over time. They proposed a simple and 

satisfactory solution to this problem by stating that the mortality experience of the 

world’s leading industrial nations suggests the substantial age-time interaction. As a 

result, they assumed that the age component which applies to only half the century is 

invariant. They stated three modifications. First, the fitting period commences in 1970. 

Second, the adjustmentinvolves fitting to error term in year t; third, the jump-off rates are 

taken to be the actual rates in the jump-off year. In Lee and Miller model, the parameter 

𝑘௧is adjusted by fitting a Poisson regression model as follows:ln D(x, t) = ln 𝑁(𝑥, 𝑡) +

ln 𝑚ᇱ(𝑥, 𝑡) + 𝜀'(x,t) , where D(x, t) denotes the annual number of deaths for aged x at 

time t; N(x,t) denotes the population aged x at time t; [ln 𝑚′(𝑥, 𝑡)] = 𝑎(𝑥) + 𝑏(𝑥) +

𝑘′(𝑡);  𝑘′(𝑡) refers to an adjusted parameter for 𝑘௧; 𝜀'(x,t) refers to the residuals after 

adjustment of 𝑘௧. 

Booth et al. (2002) observed that the original Lee-Carter method makes use of only the 

first term of the singular value decomposition, but in principle the second and higher 

order terms could be incorporated in the base model. Their work was later corroborated 



 

8 
 

by Girosi and King (2007) who stated that there is an information loss with only one 

principal component. The full expanded model is of the form:ln [𝑚(𝑥, 𝑡)] = 𝑎(𝑥) +

𝑏ଵ(𝑥)𝑘ଵ(𝑡) + 𝑏ଶ(𝑥)𝑘ଶ(𝑡) + ⋯ + 𝑏௡(𝑥)𝑘௡(𝑡)where 𝑏௜(𝑥)𝑘௜(𝑡)  is referred to as the 

ithterm of the rank n approximation. Their work helped to gain a better understanding of 

age-time interactions hence contributing to the validity and reliability of the Lee-Carter 

model.  

In the spirit of Wilmoth (1993), Brouhns et al. (2002) implemented an alternative 

procedure for a log-bilinear formulation of the Lee–Carter model based on Poisson error 

structures. Specifically, they switched from a classical linear model to a generalized 

linear model, substituting Poisson random variation for the number of deaths for an 

additive error term on the logarithm of mortality rates. Furthermore, as pointed out by the 

researchers, the main drawback of the OLS estimation through the Singular Value 

Decomposition (SVD) procedure is that the errors are assumed to be homoscedastic. 

Instead of resorting to SVD for estimating 𝑎௫ ,𝛽௫ and 𝑘௧they determined these parameters 

by maximizing the log-likelihood based on model 𝐷௫௧~ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝐸௫௧𝜇௫(𝑡)) with 

𝜇௫(𝑡) = exp (𝑎௫+ 𝛽௫𝑘௧). It was discovered that the Poisson model was able to account 

for slightly more variability than its SVD counterpart when applied on Belgian mortality 

data. 

A major challenge with the Lee and Carter (1992) model framework is the long-time span 

data requirement.  Li et al. (2002) tried to overcome this challenge by extending the Lee-

Carter approach to situations in which mortality data are available at only a few points in 

time or at unevenly spaced intervals; situations often encountered in statistics for Third 

World Countries. They proposed that the improved Lee-Carter method can provide 

accurate mean mortality forecasts for Countries with historical data at only a few time 

points, if the earliest and latest points are sufficiently far apart in time. The model;  

ln 𝑚௫௨(௧) = 𝑎௫ + 𝑏௫𝑘௨(௧) + 𝜀௫௨(௧) with 𝑘෠௨(୲)= 𝑘෠௨(௧ିଵ)+ 𝜃෠[𝑢(𝑡) − 𝑢(𝑡 − 1)]  + [(𝜀௨(௧ିଵ) + 

1) + ...+ 𝜀௨(௧)] was used on China’s sex- combined mortality data for the years 1974, 

1981 and 1990. It is important to state here that Li et al.’s major contribution is on the 

mortality time trend (parameter𝑘௧) built in the model. Their method was able to account 



 

9 
 

for extra variability arising from fewer time points when forecasting the 𝑘௧parameter. 

However, their method does not account for the extra variability which will also be 

present in the age-specific (𝛼௫and 𝛽௫)parameters. 

 

Renshaw and Haberman (2006) extension of the Lee-carter (LC) method bears some 

resemblance with that of Booth et al. (2002). However, the former proposed the 

incorporation of a cohort effect in their model. This was motivated by the lack of 

goodness of fit of the LC model to the death rates of England and Wales and the fact that 

its application led to a cohort effect of decreasing death rates. Furthermore the duo 

investigated the feasibility of constructing mortality forecasts on the basis of the first two 

sets of Singular Value Decomposition vectors, rather than just on the first set of such 

vectors, as obtained in the Lee–Carter approach. Their model is stated as: ln [𝑚(𝑥, 𝑡)] =

𝑎(𝑥) + 𝑏ଵ(𝑥)𝑘ଵ(𝑡) + 𝑏ଶ(𝑥)𝑙௧ି௫ + 𝜀௫௧under the Gaussian framework or equivalently 

ln [𝑚(𝑥, 𝑡)] = 𝑎(𝑥) + 𝑏ଵ(𝑥)𝑘ଵ(𝑡) + 𝑏ଶ(𝑥)𝑙௧ି௫ + 𝑙𝑜𝑔𝑒௫௧ under the Poisson setting. 

 

Pedroza (2006) faulted the assumption made by Lee and Carter (1992) and several of its 

variants that the main source of error in the Lee-Carter model comes from the forecasting 

error of the mortality index 𝑘௧. Hence, he proposed a Bayesian approach to the Lee-

Carter model which incorporates all sources of variation in the model when forming 

forecasts. When applied on U.S. male mortality data, the resulting prediction intervals 

from the Bayesian approach were much wider than those obtained by the original Lee-

Carter method with prediction intervals which were too narrow for short-term forecasts, 

especially for young adults and older age group. Also, the forecast error associated with 

the model reflected more accurately under their approach. Moreover, their work shows 

how multiple imputations can be readily incorporated into the model to handle missing 

data. 

Delwarde et al. (2007) pointed out the fact that the Poisson version of the Lee- Carter 

model with the assumption; 𝐷௫௧~ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛 (𝐸௫௧𝜇௫(𝑡)) as proposed by Brouhns et al. 

(2002)induces equi-dispersion with the mean and variance of 

𝐷௫௧equal to each other i. e .  𝐸[𝐷௫௧] = 𝑉[𝐷௫௧].With reference to the documentation of 
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Brown (2003) on the US population, which states that aside gender, age and time, 

mortality rates are also  influenced by other exogenous factors such as race, ethnicity, 

income, wealth, marital status and educational attainment and  the correlations work in 

the direction that individuals with higher socio-economic status live longer than those in 

lower socio-economic groups; Delwarde et al. (2007) felt that this heterogeneity tends to 

increase the variance compared to the mean (a phenomenon termed as over-dispersion), 

ruling out the Poisson specification in favor of a mixed Poisson model. He therefore 

proposed a negative binomial regression model for estimating the parameters  𝑎௫ ,𝑏௫and 

𝑘௧ . 

Hyndman and Ullah (2007) proposed a robust version of the Lee-Carter model to avoid 

difficulties with outlying years and to avoid problems associated with data grouped into 

age intervals. His methodology can be considered a successor to Lee and Carter because 

it involves the use of non-parametric smoothing and principal component analysis to 

estimate the model’s parameters. However, it differs from the Lee-Carter model in some 

important respects. First, it uses the functional data paradigm which immediately leads to 

the use of non-parametric smoothing to reduce some of the inherent randomness in the 

observed data. Second, it proposes a robust version of principal components to avoid 

difficulties with outlying years. They first define the problem as a function𝑦௧(𝑥), which 

denotes the log of the observed mortality or fertility rate for age x in year t. Then suppose 

there is an underlying smooth function 𝑓௧(𝑥), which implies observing with error at 

discrete points of x. The observations are {𝑥௜ , 𝑦௧, (𝑥௜) }, t = 1,…,n, i = 1, …, p which 

satisfy 𝑦௧(𝑥)= 𝑓௜(𝑥௜) + 𝜎௧(𝑥௜) 𝜀௧,௜ , where 𝜀௧,௜ is an independent and identically 

distributed standard normal random variable and 𝜎௧(𝑥௜)  denotes the amount of noise 

varying with x. Typically,൛𝑥ଵ, … , 𝑥௣ൟ are single years of age (𝑥ଵ = 0, 𝑥ଶ = 1, …) or 

denote 5-year age groups.  Their approach is aimed in forecasting 𝑦௧(𝑥) for x belonging 

to ൣ𝑥ଵ, 𝑥௣൧and 𝑡 = 𝑛 + 1, … , 𝑛 + ℎ. 

Li and Chan (2007) developed an outlier-adjusted version of the Lee-Carter model after 

performing a systematic outlier analysis of the mortality index built in the Lee-Carter 

model. Through outlier detection, they found out that mortality levels in the United States 



 

11 
 

and Canada were vulnerable to events like pandemics and wars; for instance, World War 

I in 1916, “Spanish flu” pandemic in 1918, Korean War in 1950, improved social 

condition in 1975 and so on. By incorporating the effect of outliers, an outlier-adjusted 

Lee-Carter model was created. They concluded that the outlier-adjusted version seemed 

to be an attractive alternative to the original model in predicting the long-term trend of 

mortality rates because of the better fit and the enhancement in forecast efficiency. 

Girosi and King (2007) observed that the Lee-Carter model is a special case of the 

random walk with drift model. They proved that the age profile forecast from the model 

will always become less smooth and unrealistic after a point (when forecasting forward 

or backwards in time) and will eventually deviate from any given baseline. Furthermore, 

the researchers pointed out the fact that parameters 𝛽௫ and 𝑘௧ in the Lee-Carter model can 

be estimated through maximum likelihood estimation. However the multiple maxima or 

constraints will make standard optimization program work poorly. They concluded that 

whether one uses the singular value decomposition or eigen values, the theoretical 

justification of the procedure remains maximum likelihood and that there is information 

loss with one principal component. 

Inspired by a linear re-parameterisation of Kannisto (1992) model, Doray (2008) 

proposed a new model for the old-age population, where the logit of 𝜇௫is modeled as a 

function analogous to the one in the Lee-Carter model, that is,𝑙ogit ఓೣ,೟ = log ൬
ఓೣ,೟

ଵିఓೣ,೟
൰ =

𝑎௫ + 𝑏௫𝑘௧ + 𝜀௫௧.In a comparative bloke study of the two variants of the Lee-carter model 

and Doray (2008), Doray and Tang (2011) discovered that the latter yielded the smallest 

mean relative absolute errors and also had the best fit when applied to Canadian mortality 

data from 1976 to 2005 for ages 80 to 105 for women and 70 to 99 for men. 

Koissi and Shapiro (2008) proposed a modification of the Lee-Carter model which 

incorporates variations in the age-specific parameters without violating the normality 

assumption made by Lee and Carter (1992). The parameters were computed for different 

periods. The time series obtained from the process were modeled using polynomial 

interpolation. Such model was said to be a realistic alternative to the standard Lee-Carter 

assumption of constant age parameters, although it is less simple than the original model.  
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In a comparative study of the simulation strategies applied under the log-bilinear Poisson 

setting, Renshaw and Haberman (2008) highlighted that Monte Carlo simulation 

approach should not be used for risk measurement in the Lee-Carter modelling, since 

different choices of constraints result in widely differing simulated confidence and 

prediction interval widths. On the basis of these findings, D’Amato et al. (2009) worked 

out a two-stage procedure combining the stratified sampling technique together with the 

Bootstrap procedure on the Poisson Lee-Carter model. The bootstrap simulation 

procedure was implemented using stratified sampling technique. The efficiency indicator 

showed that the method is more robust for obtaining forecasts.  

 

Wang and Preston (2009) discovered that apart from age and time, smoking histories also 

influenced adult mortality in the United States. This they achieved by incorporating a 

variable representing the intensity of smoking within a cohort into the original Lee-Carter 

projection model. The introductionof this variable accounted for important anomalies in 

the age-sex pattern of mortality change and enabled the use of a common temporal trend 

of mortality change for the two sexes. They projected the age-specific mortality rates for 

men and women at ages50–84 between 2004 and 2034 in the United States. From their 

findings, mortality was projected to decline much faster when smoking was introduced 

into the model 

 

In the light of Li et al. (2002) and Doray (2008), Zhao (2012) introduced a modified Lee-

Carter model for analysing short-base-period mortality data, for which the original Lee-

Carter model produces severely fluctuating predicted age-specific mortality. 

Approximating the unknown parameters (𝑎௫ 𝑎𝑛𝑑 𝑏௫) in the modified model by linearized 

cubic splines and other additive functions, the researcher pointed out that the model can 

be simplified into a logistic regression when fitted to binomial data. The proposed model 

is of the form: 𝑙𝑛 ቀ
௣(௫,௧)

ଵି௣(௫,௧)
ቁ = 𝑎(𝑥) + 𝑏(𝑥)𝑘(𝑡)where the expected death rate 𝑝(𝑥, 𝑡) and 

the functions of age 𝑥 𝑎𝑛𝑑 time 𝑡; 𝑎(𝑥), 𝑏(𝑥)and 𝑘(𝑡) are all unknown. The method 

assumes a binomial distribution for the number of deaths; 𝑑(𝑥, 𝑡)~𝐵𝑖𝑛[𝑛(𝑥, 𝑡), 𝑝(𝑥, 𝑡)], 

the relation𝑝(𝑥, 𝑡) =  
ୣ୶୮ (௔ೣାఉೣ௞೟)

ଵାୣ୶୮ (௔ೣାఉೣ௞೟)
 is assumed. The expected death rate estimated from 
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the modified model is smooth, not only over ages but also over years. The analysis of 

mortality data in China (2000-2008) demonstrates the advantages of the new model over 

some existing models. 

Previous studies had suggested the possibility of cohort effect in Japanese death rate. 

Taking this into account, Igawa (2013) analysed the residual structure involved in the 

application of the Lee-Carter model to Japanese death rates. After observing a time series 

correlation and undulation in the residual phase on the age and year axes, He went ahead 

to propose the LC-VAR (Lee-Carter Vector Autoregressive) model to address the 

problem. The application of Lee-Carter Vector Autoregressive on Japanese mortality data 

improved the fit of the model. Keeping in mind the condition that a cohort effect may 

vary over time, they submitted that the LC-VAR model is useful not only for short- to 

middle-term mortality projections and the evaluation of uncertainties but also for the 

description of cohort and period effects. 

According to Reese (2015), the superficial design of the Lee-Carter framework, leads to 

inconsistencies that impair the usefulness of the estimated parameters. He observed that 

the trend estimate obtained from the Singular Value Decomposition used in the Lee- 

Carter model and some of its variants was not consistent, implying that, in contrast to 

common practice, estimation uncertainty should not be disregarded. He proposed that 

taking an asymptotic perspective allows one to avoid a number of restrictive assumptions. 

From his contribution, asymptotic distributions were derived and variance estimators 

were provided for the parameter estimators of the model.   

 

2.3   Application of the Lee-Carter Model  

Lee and Carter (1992) applied their model on sex-combined United States age-specific 

population data from 1933-1987 and projections were made up to the year 2065. The 

authors were concerned that extrapolating sex differentials in mortality would produce 

implausible differentials in the future. Results obtained from their work confirm that the 

method did well over the period of data availability: age patterns were quite stable andthe 

trend in the fundamental time-varying parameter was surprisingly linear. They however 
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stated that if one were to goback much before 1900, the linearity of change would be 

violated because sustained mortality decline is chiefly atwentieth century phenomenon in 

the developedcountries. 

Booth et al. (2005) applied the Lee and Carter (1992) and two other variants; the Lee and 

Miller (2001) and the Booth et al. (2002) to mortality data from ten developed countries 

(both male and female populations) from the time period 1900-1985 while forecast was 

done from 1986 to 2001 depending on the country. For short-term forecast, the Booth et 

al. (2002) outperformed the other two variants with narrower prediction intervals and 

forecast errors.    

Wang (2007) focused on a long-term study of mortality rates for Swedish population data 

and how a forecaster could get a better performance of the Lee-Carter model by the 

selection of an optimal time period to fit the model. In his research work, three different 

estimation periods of 1800-1900, 1850-1900 and 1875-1900 were used to predict the 

mortality rates for 1901-2004. Four estimation periods of 1850-1950, 1900-1950, 1925-

1950 and 1940-1950 were used to predict the mortality rates for 1951-2004. The results 

showed that the long estimation periods of 1850-1900 and 1900-1950 yielded the best 

forecasting performances for prediction series of 1901-2004 and 1951-2004 respectively. 

While the prediction with short estimation period like 1875-1900 and 1940-1950 did not 

work well. The efficiency of the Lee-Carter model was studied by examining the residual 

term on a logarithmic scale. It was discovered that most of the residual terms showed a 

similar lack of systematic pattern but they could not be described as random as marked 

clusters occurred. He stated that their occurrence was probably as a result of infectious 

diseases, which were the leading cause of death during certain periods. This indicates that 

the selection of an appropriate estimation period is important for forecasting mortality 

and issues such as infectious diseases and medical factors are always very important 

contributors to the trend of mortality 

Hanna (2007) applied the Lee-Carter model to four Countries in Eastern Europe; Bulgaria 

[1947-2003], Czech Republic [1950-2004], Hungary [1950-2001], Slovakia [1950-2005] 

and five Countries in the former Soviet Union; the Baltic States, Ukraine and Russia 
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[1959-2005]. For the Countries where the model fitted very well, the estimated time trend 

tk̂was linearly decreasing with time and the xb̂ values (relative pace of change) were 

decreasing with age implying that the mortality rates at younger ages decline more 

rapidly than for older ages. The research work further showed that for Bulgaria, in 

contrary to the female data, the male data created a problem with the ages between 40 

and 60 years. When compared with the female data, the Lee-Carter model could not be 

applied to the Bulgarian male mortality data with substantial results. The study also 

showed that Hungarian data had a slightly systematic effect in the male and female 

models. For some ages the estimated trend was increasing while the actual trend was 

decreasing. Another problem with the Hungarian data pointed out by this study was the 

deviation from the age profile for the male data in the broad age span 30 to 75. The xb̂  

values were negative at the same time as the t̂  values were negative. The t̂  time trend 

after the year 1970 was negative. This means that if the xb̂ values are negative, the 

estimated mortality: txxx batm ̂ˆˆ)(ln   would increase for each year. The xb̂ t̂ term was 

positive for x greater than 35 and t greater than 1975. This may result in mortality curves 

crossing each other with higher mortality for a 60 year old male than for an 80 year old 

male in the future. However, the problem with negative xb̂  values was not found for the 

female data.  

Koissi et al. (2004) used the methods proposed by Wilmoth (1993) to study the efficiency 

of the Lee-Carter model. The model's parameters were estimated using the Singular 

Value Decomposition (SVD), the Maximum Likelihood Estimate (MLE) and the 

Weighted Least Square (WLS) methods. The computations were made using the vital 

rates (1955 to 1999) from Finland, Sweden, Denmark and Norway. The results of their 

analysis showed that under an appropriately chosen estimation period, the model fit the 

observed death rates quite well. The estimates for the parameters 𝑎ොx (general pattern of 

mortality by age) and 𝑏෠x (relative pace of change in mortality by age as t̂  varies)were 

almost alike with the SVD, the MLE or the WLS methods. The mortality index t̂ had a 
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common (almost) linear decreasing trend in the four Countries, although some variations 

existed with the three methods. A bootstrap simulation indicated that the use of the MLE 

results in smaller mean squared errors for the parameters 𝑎ොxand 𝑏෠x than the use of the 

other two methods. However, the Singular Value Decomposition method was the best 

alternative for the mortality index t̂ . 

Chukwu and Oladipupo (2012) applied the Li et al.(2002) to model adult mortality in 

Nigeria. The data set used was the age-specific mortality rates of males and females aged 

15-84 years for the time periods 1990, 2000 and 2009. The model's parameters were 

estimated using the singular value decomposition technique. They observed that the 

model follows the mortality pattern very well for most of the ages except that the fit of 

the model was better for the male data than the female data due to the latter’s 

heterogeneous nature. This result coincides with that of Hanna (2007) as obtained in the 

case of Russian male and female mortality data. 

Emilio (2012) projected the mortality pattern of Italy using the lee-carter model. They 

fitted the model to Italian mortality rates for the period 1965-1999 and generated 

forecasts for nine subsequent years. In their findings, they observed that the model 

performs very well in explaining mortality for ages 40 to 100 years. However, the power 

of the Lee-Carter model significantly drops as the observations on mortality rates become 

more volatile at very old ages. 

Eglė et al. (2012) employed the Lee-carter method by comparing the suitability of the 

model for different Countries namely France, Lithuania and Belarus for the time period 

1970-2005. By using their age specific mortality rates, they discovered that the model 

almost accurately describes and predicts mortality for France. However, only short-term 

(1–2 years) forecasts for the Belarusian and Lithuanian mortality were accurate, while the 

accuracy of longer-term (4–5 years) forecasts is lower, especially for men. From their 

results, they concluded that the Lee–Carter method is most suitable for populations with a 

clear upward or downward mortality trend over time.  

Bamidele and Adejumo (2014) tried to explain mortality improvements for males aged 

40-65 for the time period 1994-2004 using Nigerian mortality data. A combination of the 



 

17 
 

Lee Carter model and its variant (Renshaw-Haberman model) was utilized. On the 

Bayesian information ranking criterion, the Renshaw-Haberman model for the data 

dominates. However, taking into account the robustness of the parameter estimates, they 

stated that the Lee Carter model is preferred for the dataset. With respect to the age 

groups studied, they concluded that there has been approximately linear improvement 

over time in mortality rates at all ages, but that the improvements have been greater at 

lower ages than at higher ages. 

As a follow-up to their previous work in 2012, Chukwu and Adegbilero-Iwari (2015) 

desired to see the performance of the Li et al. (2002) on sex-combined adult mortality 

data. Unlike the results obtained in many developed Countries, it was discovered that the 

parameter𝑏෠x (relative pace of change in mortality by age) violated the normal descending 

trend with age. Instead, it exhibited a fluctuating increase and decrease within the age-

groups especially with respect to the middle ages. This is also similar to the results 

obtained with the female data in Chukwu and Oladipupo (2012). The reason behind this 

is not far-fetched. In Countries where the model has fitted very well, the estimated time 

trend tk̂decreased linearly with time (which indicates a decreasing mortality pattern 

overtime) while the xb̂ values (relative pace of change) were decreasing with age. 

Due to mortality data availability of 21 years, Taruvinga et al. (2017) applied the Lee-

Carter (1992) model to Zimbabwe mortality data for the age groups 0-84 years between 

the time periods 1983 to 2004. Forecast was done from 2005 to 2014. Results from their 

empirical analysis showed that the Lee- Carter model provided a better fit for thirteen age 

groups but failed to fit for four age groups namely 50-54, 55-59, 75-79 and 80-84.  

 

2.4 The Zografos–Balakrishnan-GFamily of Distributions 

Current literature has recommended some other ways of extending well-known 

distributions. The earliest are the class of distributions generated by Kumaraswamy 

(1980). The more recent ones are the class of distributions generated by a standard beta 

random variable introduced by Eugene et al.(2002); generalized gamma-generated 



 

18 
 

distributions by Zografos and Balakrishnan (2009); generalized beta random variable 

introduced by Alexander et al. (2012); the class of beta random variable introduced by 

Pescim et al. (2012). 

In distribution theory, the Gamma distribution is a two-parameter family of continuous 

probability distributions and is the most popular model for analyzing skewed data.  

Manton (2009) pointed out that the Gamma distribution is usually used in mortality 

models for heterogeneous population especially in situations where the distribution of 

risk levels is flatter and has thicker tails. 

Zografos and Balakrishnan (2009) presented two generalized gamma-generated 

distributions with an extra positive parameter for any continuous baseline cdf G(x), x∈ 𝑅. 

Their distribution springs from the generalized gamma distribution as introduced by 

Stacy (1962). The number of parameters of the Zografos-Balakrishnan and Ristic-

Balakrishnan-Gamma generated family of distributions is equal to that of the Gamma 

distribution plus an additional shape parameter 𝛼> 0. For  𝛼 = 1, the generalized gamma 

distribution is a basic exemplar of the Zografos-Balakrishnan-G and Ristic-Balakrishnan-

G distributions with a continuous crossover towards cases with different shapes. The 

Zografos–Balakrishnan-G family of distributions is particularly useful for heterogeneous 

data because it allows for greater flexibility of its tails.  

 

Nadarajah et al. (2015) presented some special cases of the Zografos–Balakrishnan-G 

family which includes the Gamma–Normal, the Gamma–Weibull, the Gamma–Gumbel, 

Gamma-log-normal and the Gamma-log-logistic distributions. 

 

Lima et al. (2015) took the work of Zografos-Balakrishnan (2009) further by considering 

a three-parameter distribution called the gamma-normal distribution. Various structural 

properties of the new distribution were derived and studied.   Based on three criteria (AIC 

CAIC and BIC), their work presented the fact that the Zografos–Balakrishnan–Normal 

distribution provided a better fit than the skew-normal (normal, beta-normal and 

Kumaraswamy normal) distributions.  
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2.5      The Lee and Carter (1992) Method 

The Lee-Carter methodology for forecasting mortality rates is a simple bi-linear model in 

the variables x (age) and t (calendar year). The model is defined as; 

ln 𝑚௫௧ = 𝑎௫ + 𝑏௫𝑘௧ + 𝜀௫௧            (2.1)                        

Where; 

𝑚௫௧ : is the matrix of the observed age-specific death rate at age x during year t. It is 

obtained from observed deaths divided by population exposed to risk. It is subject to 

random fluctuation. 

ln 𝑚௫௧: is the logarithm of the matrix of observed age-specific death rate at age x during 

year t. 

𝑎௫: is the average of ln 𝑚௫௧ over time t. It describes the (average shape of the age profile) 

general pattern of mortality by age.  

𝑘௧: is the time trend for the general mortality. It captures the main time trend on the 

logarithmic scale in mortality rates at all ages. 𝑘௧is also referred to as the mortality index. 

𝑏௫: indicates the relative pace of change in mortality by age as 𝑘௧varies. It describes the 

pattern of deviations from the age profile when the parameter 𝑘௧ varies. It modifies the 

main time trend according to whether change at a particularage is faster or slower than 

the main trend. 

𝜀௫௧: is the error term at age x and time t. It reflects the age specific influences not 

captured by the model.  

2.5.1 The Lee and Carter (1992) Model Assumptions 

1. The Lee-Carter model assumes that parameter 𝑏௫ is invariant over time for all x. 

2. It assumes that parameter  𝑘௧  is fixed over age-groups for all t. 

3. The practical application of the model assumes that the disturbances 𝜀௫௧are normally 

distributed i.e.𝜀௫௧~𝑁(0, 𝜎ଶ) 
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2.5.2 The Lee and Carter (1992) Model Parameter Estimation 

The model in (2.1) above is underdetermined (not unique). For the purpose of insuring a 

unique solution, the following constraints were used by Lee and Carter (1992): 

1
2

1




m

x
xb  0

1




n

t
t

       (2.2)
 

Where x = 1.... m age groups   and   t = 1......n calendar years. 

To estimate the parameters, the values that minimize Q are chosen; 

2

,

)( xttxx
tx

qbaQ   ,         (2.3) 

Where 𝑞௫௧ = 𝑙𝑛 𝑚௫௧, 𝑞௫௧andQ are subject to the constraints above. To find values that 

minimize Q, Lagrange’s multipliers; 𝛼and 𝛽 are introduced such that;  

 
t x

xt bR 2Q  .                  (2.4) 

Substituting equation (2.3) into (2.4) and then minimizing R; 

  
t x

xtxttxx
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bqbaR 22

,

)(   

Taking the derivative of R with respect to xa , xb and t respectively;  

)(2 xttxx
tx

qba
da

dR
    for all x                         (2.5) 
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t
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dR  2)(2    for all x                              (2.6)              




  )(2 xttxx
x

x
t

qbab
d

dR
 for all t     (2.7)              

Setting the derivatives equal to zero, the parameters of the Lee-Carter model are finally 

estimated as; 
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𝑎ො௫=
ଵ

௡
∑ ln 𝑚௫௧

௡
௧ୀଵ 𝑏෠௫ =  

∑ ௞೟௭ೣ೟೟

ඥ∑ (∑ ௞೟௭ೣ೟೟ )మ
ೣ

𝑘௧= ∑ 𝑏௫𝑧௫௧௫    (2.8) 

Where 𝑧௫௧ =  ln 𝑚𝑥𝑡 − 𝑎ො𝑥 

 

In the original paper written by Lee and Carter (1992), 𝑘௧is re-estimated by the method of 

the “second stage estimation”. They noticed that once 𝑏௫and 𝑘௧have been estimated, the 

observed total number of deaths 𝐷௧ is not guaranteed to be equal to the fitted number of 

deaths. Therefore, they made a second stage estimation of 𝑘௧ by finding a value that 

makes the observed number of deaths equal to the predicted number of deaths. That is, 

they searched for 𝑘௧such that,  

txt
x

xxt NbaD ,)exp(  
 

Where:  

tD is the total number of deaths in year t   

txN , is the population of age x in year t.  

No analytic solution is available for 𝑘௧so it can only be found by using an iterative 

numerical scheme such as the Newton Raphson method. However, this second stage of 

estimation does not have any impact on whether the Lee-Carter model could be fitted to 

the data or not.  

 

2.5.3    Forecasting the Mortality Index  

A peculiar feature of the Lee-Carter model and its variant is that once the data are fitted 

to the model and the values of the vectors 𝑎ො௫ , 𝑏෠௫and𝑘෠௧ are found, only the mortality 

index 𝑘෠௧ needs to be predicted. The mortality trend 𝑘෠௧ is modeled using standard 

univariate time series model. In most applications to date, it has been found that a random 

walk (Arima 0, 1, 0) with drift fits very well. After obtaining the predicted values of the 

mortality index𝑘෠௧, the values are then plugged back into the original Lee-Carter model to 

obtain forecast of the mortality rates. The forecast of the mortality index is modeled as; 

𝑘௧=𝑘௧ିଵ+𝜃෠ +  𝜀௧,             𝜀௧~𝑁(0,1)      (2.9)                             
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Where the drift parameter θ෠  is expressed as; 

θ෠ =
ଵ

୘ିଵ
∑ [𝑘෠୲ାଵ

୘ିଵ
୲ୀଵ − 𝑘෠୲]       (2.10) 

The standard error of the random fluctuations is estimated as: 

S.e (𝜀௧) = ට
ଵ

୘ିଵ
∑ [𝑘෠୲ାଵ − 𝑘෠୲ − 𝜃෠]ଶ୘ିଵ

୲ୀଵ                            (2.11) 

The variance of the drift parameter is given by: 

Var (θ෠) = ఙೝೢ

మ

்ିଵ
          (2.12) 

While its standard error is: 

S.e (θ෠) =  ඨ ఙೝೢ

మ

்ିଵ
 =  ට

భ

౐షభ
∑ [௞෠ ౪శభି௞෠ ౪ିఏ෡]మ౐షభ

౪సభ

்ିଵ
     (2.13) 

 

2.6   The Li et al. (2002) Method 

The model framework of the Li et al. (2002) bears essentially the same features as that of 

Lee and Carter (1992) except that the former is designed for situations where mortality 

data is available at few time points or unequally spaced interval of time. Their model is; 

l𝑛 𝑚௫௨(௧) = 𝑎௫ + 𝑏௫𝑘௨(௧) + 𝜀௫௨(௧)       (2.14)  

𝜀௫௨(௧)~𝑁(0, 𝜎ଶ) 

 

2.6.1    Forecast Based on Data at few Time Points 

Now let data be collected at times 𝑢(0), 𝑢(1), … , 𝑢(𝑇), the forecast of the mortality index 

in equation (2.9) is expressed as: 

𝑘෠௨(୲)= 𝑘෠௨(௧ିଵ)+ 𝜃෠[𝑢(𝑡) − 𝑢(𝑡 − 1)]  + [(𝜀௨(௧ିଵ) + 1) + ...+ 𝜀௨(௧)]  (2.15) 

The drift parameter 𝜃෠ is the average rate of decline in the mortality time trend  𝑘௧, both 

for forecasting and for describing history. Li et al. (2002) felt that just as the average 

speed of linear movement depends only on the initial and terminal positions and their 

times, so 𝜃෠ is determined only by the first and last values of 𝑘෠௨(୲)and u(t), and is 

independent of other values of 𝑘෠௨(୲). Thus, the mean forecasts of 𝑘෠௨(୲)depend mainly on 
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the death rates at starting and ending points of the historical period, and mortality data at 

years between the two points do not matter much. 

The unbiased estimate of 𝜃෠ is estimated as; 

𝜃෠ =
∑ [௞෠ ೠ(౪)

౐
౪సభ ି௞෠ ೠ(೟షభ)]   

∑ [௨(௧)ି௨(௧ିଵ)]౐
౪సభ

    =  
௞෠ ೠ(౪)–௞෠ ೠ(బ)

௨(୘) ି ௨(଴)
      (2.16)      

Var of𝜀௨(௧) =
∑ ቂ௞෠ ೠ(౪)–௞෠ ೠ(೟షభ)ି ఏ෡[௨(௧)ି௨(௧ିଵ)]ቃ೅

೟సభ

మ

[௨(୘) ି ௨(଴) ି 
∑ [ೠ(೟)షೠ(೟షభ)]మ౐

౪సభ
ೠ(౐)షೠ(బ)

]

     (2.17)  

Var (𝜃෠) =
௩௔௥{∑ [(ఌೠ(೟షభ)ାଵ)ା … ାఌೠ(೟)]౐

౪సభ

[௨(୘)ି௨(଴)]మ
 

 = 
ఙమ

௨(୘)ି௨(଴)
 ≈

୚ୟ୰ ൫ఌೠ(೟)൯

௨(୘)ି௨(଴)
      (2.18) 

2.7  Distribution of the Mortality Models 

2.7.1 The Lee and Carter (1992) Model  

Model Structure:  ln 𝑚௫௧ = 𝑎௫ + 𝑏௫𝑘௧ + 𝜀௫௧     (2.19) 

The Lee-Carter approach assumes that its error term follows a normal distribution. 

2.7.1.1 The Normal Distribution 

The Normal distribution is a continuous distribution and it is the most important 

distribution in statistics. Abraham De Moivre (1667-1754) was first person to publish the 

formular for this distribution. Also, another prominent contributor is Carl Friedrich Gauss 

(1777-1855). Thus the distribution is frequently called the Gaussian distribution in 

recognition of Gauss’ contribution. 

Density function of the Normal distribution 

The normal distribution has its probability density function given as: 

𝑓(𝑦) =
ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
൤

[೤షഋ]మ

഑మ ൨
  ,       𝜎 > 0,  − ∞ < 𝑦 < ∞      (2.20) 
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Where 𝜇 and  𝜎 are the two parameters of the distribution. 𝑌is a normally distributed 

random variable and is continuous taking values between −∞ and +∞. Hence the 

probability density function of the error term embedded in the Lee and Carter (1992) 

model is given as: 

Pdf: 𝑓(𝑦, 𝑎௫ , 𝑏௫ , 𝑘௧) =
ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
൤

[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ൨
  ,       𝜎 > 0,  − ∞ < 𝑦 < ∞ ∶  𝑦 = 𝑙𝑛𝑚௫௧ 

           (2.21) 

2.7.1.2   Properties of the Normal Distribution 

 The normal distribution is symmetrical about its mean. This implies that the curve on 

either side of 𝜇 is a mirror image of the other side. Its graph produces a bell-shaped 

curve. 

 The mean, median and mode are all equal 

 The total area under the curve about the X-axis is one square unit. This is based on 

the fact that the normal distribution is a probability distribution. 

 The normal distribution is completely determined by the parameters 𝜇and 𝜎. Different 

values of 𝜇 shift the graph of the distribution along the X-axis. Also, different values 

of 𝜎 determine the degree of flatness or peakedness of the graph of the distribution. 

Because of this characteristic, 𝜇  is often referred to as the location parameter while 𝜎 

is called the scale parameter. Hence the Normal distribution has no shape parameter. 

2.7.1.3 The Central Limit Theorem 

The Central limit theorem is the second fundamental theorem in probability. This 

theorem states that if 𝑆௡is the sum of n mutually independent random variables, then the 

distribution function of 𝑆௡is well-approximated by a certain type of continuous function 

known as a normal density function, which is given by equation (2.20) above. In other 

words, this theorem implies that irrespective of the underlying population distribution 

model, as the sample size increases, the sample meantends to be normally distributed 

around the population mean, and its standard deviation shrinks as the sample size 

increases. 
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2.7.2   The Brouhns et al. (2002) Model 
The structure of the Brouhns et al. (2002)model is given as: 

Model Structure:   𝐷௫௧ = 𝑒௔ೣା௕ೣ௞೟𝐸௫௧ + 𝑒ఌೣ೟     (2.22) 

The parameters 𝑎௫ , 𝑏௫ 𝑎𝑛𝑑 𝑘௧ are basically the same as in the classical Lee-Carter model. 

𝐷௫௧denotes the number of deaths at age-group x in year t.  

𝐸௫௧is the population exposed to risk atage-group x in year t. 

The Brouhns model assumes that its random component follows a Poisson distribution.  

 

2.7.2.1 The Poisson Distribution 

The Poisson distribution (a discrete distribution) is associated with counts of number of 

occurrences of a relatively rare event over a specified interval of time. In 1837, Simeon 

Poisson published the derivation of this distribution which bears his name. It was 

originally derived as an approximation to the binomial distribution.  

Definition 

Given a continuous interval and assume that discrete events occur randomly throughout 

the interval. If the interval can be partitioned into sub-intervals of small enough length 

such that; 

(i) the probability of more than one occurrence in a sub-interval is zero; 

(ii) the probability of one occurrence in a sub-interval is the same for all subintervals and 

proportional to the length of the subinterval; 

(iii) the occurrence of an event in one subinterval has no effect on the occurrence or non- 

occurrence in another non-overlapping subinterval, 

If the mean number of occurrences in the interval is 𝜆, the random variable X that equals 

the number of occurrences in the interval is said to have the Poisson distribution with 

parameter 𝜆. 

Density Function of the Poisson Distribution 

The probability density function of the Poisson distribution is stated as: 

𝑓(𝑦) =
௘షഊఒ೤

𝒚!
    ,       𝑦 = 0, 1, 2, … 𝑛        (2.23) 
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The density function of the random component in the Brouhns model is given as: 

Pdf: 𝑓(𝑦, 𝑎௫ , 𝑏௫ , 𝑘௧) =  
𝑒−𝜇𝑥𝑡𝐸𝑥𝑡 𝜇𝑥𝑡𝐸𝑥𝑡 

ವೣ೟

஽ೣ೟!
  , 𝐷௫௧ = 1, 2, 3, …    ∶ 𝜇௫௧ = 𝑒௔ೣା௕ೣ௞೟ 

          

 (2.24)2.7.2.2   Properties of the Poisson Distribution 

 The expected value (mean) of the Poisson distribution is 𝜆 

 Its variance is 𝜆 

 Its third central moment is 𝜆 

 Its Cummulative distribution function (CDF) is 𝑓(𝑥) = ∑
௘షഊఒ೤

𝒚!

௫
௬ୀ଴      

 The binomial probability density function approaches the Poisson density function 

under certain limiting conditions.         

2.7.3 Renshaw and Haberman (2006) Model 

Model Structure:  𝑚௫௧ = 𝑒௔ೣା௕ೣ௞೟ା௟೟షೣାఌೣ೟    

Pdf: 𝑓(𝑦, 𝑎௫ , 𝑏௫ , 𝑘௧, 𝑙௧ି௫) =
𝑒−[exp(ೌೣశ್ೣೖ೟శ೗೟షೣ)ಶೣ೟] [exp(௔ೣା௕ೣ௞೟ା௟೟షೣ)ாೣ೟]ವೣ೟

஽ೣ೟!
  , 𝐷௫௧ =

1,2,3, … 

           (2.25) 

In this study, the error term of the Renshaw and Haberman model is also considered 

under a Poisson distribution framework. 

 

2.8     Normality Test 

A normality test is a statistical process used to determine if a sample or any group of data 

fits a standard normal distribution. The assumption of normality is particularly common 

in classical statistical tests. Tests for normality calculate the probability that the sample 

was drawn from a normal population.A normality test can be performed statistically or 

graphically.  

According to Chambers et al. (1983) ‘Graphical methods provide powerful 

diagnostictools for confirming assumptions, or, when the assumptionsare not met, for 
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suggesting corrective actions. Without suchtools, confirmation of assumptions can be 

replaced only byhope.’Graphical methods include the use of;  

a. Histograms,  

b. Stem-and-leaf plots, 

c. Quartile-Quartile (Q-Q) probability plots,  

d. Cumulative frequency (P-P) plots.  

e. Box-and-whisker plots 

The benefit of statistical tests over the graphical test for normality is that statistical tests 

are more precise since actual probabilities are calculated.  

Statistical tests include;  

a. Anderson Darling test ( Stephens, 1974) 

b. Jarque-Bera test ( Bowman and Shenton ,1975) 

c. Shapiro-Wilks test (Shapiro and Wilk, 1965)  

d. Kolmogorov-Smirnov test (Kolmogorov and Smirnov , 1933,1948) 

e. D’Agostino test ( D’Agostino, 1986) 

It is important to state that for grouped data, each group must be tested for normality.  

The hypotheses used in normality tests are: 

Ho: The sample data are not significantly different than a normal population. 

H1: The sample data are significantly different than a normal population. 

2.8.1  The Kolmogorov-Smirnov Test (K-S) 

The Kolmogorov-Smirnov test was first derived by Kolmogorov (1933) and later 

modified and proposed as a test by Smirnov (1948). The (K-S) test is based on the 

empirical distribution function (ECDF). An attractive feature of this test is that the 

distribution of the K-S test statistic itself does not depend on the underlying cumulative 

distribution function being tested. Another advantage is that it is an exact test (the chi-

square goodness-of-fit test depends on an adequate sample size for the approximations to 

be valid). Despite these advantages, the K-S test has some important limitations: 

i. It only applies to continuous distributions. 

ii. It tends to be more sensitive near the center of the distribution than at the tails. 
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The test statistic is given as; 

𝐷 = 𝑠𝑢𝑝௫|𝐹௡(𝑋) − 𝐹(𝑋, 𝜇, 𝜎)|       (2.26) 

Where, 

𝐹(𝑋, 𝜇, 𝜎)is the theoretical cumulative distribution function of the normal distribution 

function and 𝐹௡(𝑋) is the empirical distribution function of the data. If it gives large 

values of D then it indicates the data are not normal. When population parameters 

(𝜇 𝑎𝑛𝑑 𝜎) are unknown then sample estimates are used instead of parameter values.  

 

2.8.2    The Shapiro-Wilk Test 

Given a sample 𝑋ଵ, 𝑋ଶ, … , 𝑋௡,  of n real-valued observations, the Shapiro-Wilk test 

developed by Shapiro and Wilk (1965) is a test of the composite hypothesis that the data 

are independent and identically distributed and normal, i.e. 𝑁(𝜇, 𝜎ଶ)for some unknown 

real 𝜇 and some 𝜎 > 0. It is one of the most popular tests for normality assumption 

diagnostics. Despite its popularity, the Shapiro-Wilk test has some limitations. They are 

i. It depends on availability of values of 𝑎௜, and for large sample cases their 

computation may be much more complicated. 

ii. It was designed for small sample sizes (≤ 50) 

The test statistic is of the form: 

𝑤 =
(∑ ௔೔௬(೔))మ

∑(௬ି௬ത)మ
         (2.27) 

Where, 

𝑦(௜)is the ith order statistics while 𝑎௜ is the ith expected value of normalized order 

statistics. For independently and identically distributed observations, the values of 𝑎௜can 

be obtained from the table presented by Shapiro and Wilk (1965) for sample sizes up to 

50. 𝑤can be expressed as a square of the correlation coefficient between 𝑎௜ and 𝑦(௜). So 𝑤 

is location and scale invariant and is always less than or equal to 1. In the plot of 

𝑦(௜)against 𝑎௜ , an exact straight line would lead to 𝑤 very close to 1. Hence, if 𝑤is 

significantly less than 1, the hypothesis of normality will be rejected. 

 

2.9 Information Criteria for Model Selection 
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Information criteria have found a wide range of practical applications in empirical work. 

Their use extends to choosing explanatory variables in regression models and selecting 

lag lengths in time series models. Frequently used information criteria are the Akaike 

information criterion (AIC), Bayesian information criterion (BIC) and the Hannan-Quinn 

information criterion (HQC).  

2.9.1 Akaike Information Criterion (AIC) 

The Akaike information criterion was developed by Akaike (1973) to estimate the 

expected Kullback-Leibler discrepancy between the model generating the data and a 

fitted candidate model.  It is grounded in the concept of entropy, in effect offering a 

relative measure of the information lost when a given model is used to describe reality. 

The AIC is not a test of the model in the sense of hypothesis testing; rather it is a tool for 

model selection. Given a data set, several competing models may be ranked according to 

their AIC, with the one having the lowest AIC being the best. In the general case, the 

Akaike information criterion is expressed as: 

AIC = 2𝐾 − 2log [𝐿൫𝜃෠൯]       (2.28) 

Where, 

𝐾is the number of parameters in the statistical model, 

𝐿is the maximized value of the likelihood function under the estimated model. 

2.9.2 BayesianInformation Criterion (BIC) 

The Bayesian information criterion (BIC) or Schwarz Criterion derived by Schwarz 

(1978) is a criterion for model selection among a class of parametric models with 

different numbers of parameters. BIC arises from a Bayesian viewpoint with equal prior 

probability on each model and very vague priors on the parameters, given the model. The 

assumed purpose of the BIC-selected model was often simple prediction; as opposed 

toscientific understanding of the process or system under study. The BIC is very closely 

related to AIC except that the former takes into cognizance the logarithm of the sample 

size i.e. 𝑙𝑜𝑔(𝑛). According to Burnham and Anderson (2002), 𝑙𝑜𝑔(𝑛) is needed for 
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idealized asymptotic consistency. In BIC, the penalty for additional parameters is 

stronger than that of the AIC.The formula for the BIC is given as; 

𝐵𝐼𝐶 = 𝐾𝑙𝑜𝑔𝑛 − 2log {𝐿൫𝜃෠൯}        (2.29) 

Where, 

𝑛is the sample size ; K and L are as defined earlier in the Akaike information criterion. 

2.9.3  Corrected Akaike Information Criterion (CAIC) 

Hurvich and Tsai (1989) proposed the Corrected Akaike information criterion (CAIC). 

The rationale behind their proposal is that in some settings, the AIC may be characterized 

by a large negative bias which limits its effectiveness as a model selection criterion. The 

advantage of the CAIC over the AIC is that in small-sample applications, CAIC estimates 

the expected discrepancy with less bias than the AIC. However, the benefit of the Akaike 

information criterion over the corrected Akaike information criterion is that the AIC is 

more universally applicable, since its derivation is more general while the derivation of 

the CAIC relies on the form of the candidate model. Hurvich and Tsai (1989) justified 

CAIC for linear, non-linear regression and auto-regressive modelling. Since then, it has 

been extended to a number of additional frameworks which includes auto-regressive 

moving-average modelling (Hurvich etal. 1990), vector auto-regressive modelling 

(Hurvich and Tsai, 1993) and multivariate regression modelling (Bedrick and Tsai, 

1994). In the general case the corrected Akaike information criterion is expressed as: 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
[ଶ௄(௄ାଵ)]

(௡ି௄ିଵ)
        (2.30) 

Where, K and n are as defined earlier in the Akaike information criterion. 

2.9.4 Hannan-QuinnInformation Criterion (HQC) 

Hannan and Quinn (1979) derived a criterion Hannan-Quinn information criterion (HQC) 

for model selection. The HQC is a measure of the goodness of fit of a statistical model, 

and is often used as a criterion for model selection among a finite set of models. Similar 
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to AIC, the HQC introduces a penalty term for the number of parameters in a model but 

the penalty is larger than the one in the AIC. The penalty term is: 

 𝑐 𝑙𝑜𝑔{log(𝑛)} 

Where,  

n is the sample size and  c is  a constant greater than 2. 

Burnham and Anderson (2002) point out that the HQC seems to have seen little use in 

practice. Furthermore, HQC, like BIC, but unlike AIC, is not asymptotically efficient. 

Given any two estimated models, the model with the lower value of HQC is preferred. 

The formula for the HQC is expressed as: 

HQC =  2𝐾𝑙𝑜𝑔{log(𝑛)} − 2log {𝐿൫𝜃෠൯}      (2.31) 

Where, K, L, and n are as defined earlier in the Akaike information criterion. 

2.10 Forecast 

Forecast is the estimation of the value of a variable (or set of variables) at some future 

point in time. A forecasting exercise is usually carried out in order to provide an aid to 

decision-making and in planning the future. A population forecast is a projection in 

which certain assumptions are considered to yield a realistic picture of the future 

development of a population.   

2.10.1 Formulation of the Autoregressive Moving Average Model 

Box and Jenkins (1976) developed a method for analyzing stationary univariate time 

series data. The Box–Jenkins (ARIMA) method differences a series to stationarity and 

then combines the moving average with autoregressive parameters to yield a 

comprehensive model amenable to forecasting. The model developed serves not only to 

explain the underlying process generating the series, but as a basis for forecasting. 

 

Yaffee and McGee (1999) states that the basic processes of the Box–Jenkins ARIMA 

(𝑝, 𝑑, 𝑞) model include the autoregressive process, the integrated process, and the moving 

average process. With respect to the order of integration of a model which is indicated by 

the 𝐼(𝑑) distribution designation. If a series is 𝐼(0), then it is stationary and has an 

ARIMA (𝑝, 0, 𝑞) designation. If a series requires first differencing to render it stationary, 
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then d =1 and it is distributed as 𝐼(1), and is given an ARIMA(p,1,q) designation. pis the 

order of the autoregressive process while q is the order of the moving average process. 

Once the process has been transformed into stationarity, one can proceed with the 

analysis. 

 

2.11 Proposed Method 

The distribution arising from order statistics using the gamma generator as introduced by 

Zografos and Balakrishnan (2009) and Lima et al. (2015) will be considered for this 

study. 

 

2.11.1 Reason for proposed method 

The importance and role of order statistics in real life phenomenon cannot be over-

emphasized. In recent years, there has been a deliberate focus on new techniques for 

building meaningful distributions which includes the use of the logit of beta, the gamma 

generator and so on.Manton (2009) pointed out that the gamma distribution is the most 

popular model for analyzing skewed data and is usually used in mortality models for 

heterogeneous population.The Zografos–Balakrishnan-G family of distributions is 

particularly useful for heterogeneous data because it allows for greater flexibility of its 

tails.  

Some fundamental properties of the gamma distribution useful in the empirical 

derivations will be considered briefly in the next section. 

 

2.12 The Generalized Gamma Distribution 

It is worthy to state that the parameterizations of the gamma distribution discussed in this 

section emanates from the Stacy (1962) generalized gamma density whose distribution 

function is expressed as; 

𝑓(𝑥, 𝛼, 𝛽, 𝜌) =  
ቀ

ഐ

ഀഁቁ௫ഁషభ௘
షቀ

ೣ
𝜶

ቁഐ

୻ቀ
ഁ

ഐ
ቁ

 ,                𝑥 ∈ 𝑅;   𝛼, 𝛽, 𝜌 > 0  (2.32)  
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For non-negative values of 𝑥 and positive values of 𝛼, 𝛽 𝑎𝑛𝑑 𝜌, the familiar gamma, 

exponential, chi-squared and Weibull variates are special cases. 

2.12.1 Characterisation using Shape 𝒌 and Scale 𝜽 

This is more common where for example the gamma distribution is used to model 

waiting times. For instance, in life testing, the waiting time until death is a random 

variable that is frequently modeled with a gamma distribution. A random variable X that 

is gamma-distributed with shape 𝑘  and rate 𝜃 is denoted as; 

𝑋~Γ(𝑘, 𝜃) ≡ 𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃) 

The probability density function using the shape-scale parameterisation is;  

𝑓(𝑥) =
௘

ష
ೣ
𝜽௫ೖషభ

୻௞ఏೖ
 ,       𝑥 > 0, 𝑘, 𝜃 > 0      (2.33) 

2.12.2 Characterisation using Shape 𝜶 and Rate 𝜷 

The parameterization with α and β is more common in situations where the gamma 

distribution is used as a conjugate prior distribution for various types of inverse scale 

(rate) parameters, such as the λ of an exponential distribution or a Poisson distributionor 

for that matter, the β of the gamma distribution itself. A random variable X that is 

gamma-distributed with shape α and rate β is denoted as; 

𝑋~Γ(𝛼, 𝛽) ≡ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

The corresponding probability density function using the shape-rate parameterisation is;  

𝑓(𝑥) =
௘షഁೣ௫ഀషభఉഀ

୻ఈ
 ,      𝑥 > 0, 𝛼, 𝛽 > 0      (2.34) 

2.12.3 The Gamma and Incomplete Gamma Functions 

The gamma function is defined as; 

Γ𝛼 = ∫ 𝑥ఈିଵ𝑒ି௫𝑑𝑥
ஶ 

଴
       (2.35)  

The lower incomplete gamma function is defined as; 
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𝛾(𝛼, 𝑥) = ∫ 𝑥ఈିଵ𝑒ି௫𝑑𝑥
௫ 

଴
     (2.36)  

While the upper incomplete gamma function is defined as; 

Γ(𝛼, 𝑥) = ∫ 𝑥ఈିଵ𝑒ି௫𝑑𝑥
ஶ 

௫
       (2.37)  

 

2.12.4The Zografos and Balakrishnan Gamma Generator 

Consider a continuous distribution 𝐹 with density 𝑓, and further Stacy's generalized 

gamma density; 𝑓(𝑥) =
௘షೣഁ௫ഀషభఉഀ

୻ఈ
 for 𝑥 > 0 and positive values of the parameters  𝛼 

and 𝛽 . Based on this density, by replacing 𝑥 with −𝑙𝑛 [1 − 𝐹(𝑥)],Zografos and 

Balakrishnan (2009) introduced the family with pdf; 

𝑔(𝑥, 𝛼, 𝛽) =
ఉഀ

୻ఈ
[−𝑙𝑛 [1 − 𝐹(𝑥))] 

ఈିଵ
𝑒ି[ି௟ ௡[ଵିி(௫)]] ఉ 

௙(௫)

ଵିி(௫)
,   𝑥 ∈ 𝑅, 𝛼, 𝛽 > 0 (2.38) 

This is the generalized gamma (or Stacy)-generated distribution by parent F. 

 If 𝛽 = 1 in (3.7), it corresponds to the gamma-generated distribution by parent F. This 

family of distributions has its pdf as; 

𝑔(𝑥, 𝛼) =
ଵ

୻ఈ
[−𝑙𝑛 [1 − 𝐹(𝑥))] 

ఈିଵ
𝑒ି[ି௟ ௡[ଵିி(௫)]]  

௙(௫)

ଵିி(௫)
     

𝑔(𝑥, 𝛼) =
ଵ

୻ఈ
[−𝑙𝑛 [1 − 𝐹(𝑥))] 

ఈିଵ
𝑓(𝑥)  ,   𝑥 ∈ 𝑅, 𝛼, > 0 .   (2.39) 

Remark  

Suppose 𝑋௎(ଵ), 𝑋௎(ଶ), … … , 𝑋௎(௡)are upper record values arising from a sequence of 

i.i.d.continuous random variables from a population with cdf 𝐹(𝑥)and pdf  𝑓(𝑥). Then, 

the pdf of the nth upper record value 𝑋௎(௡)  is given by; 

𝑓൫𝑥௎(௡)൯ =  
ൣି௟௡ [ଵିி(௫)] ൧

೙షభ

௡ିଵ!
𝑓(𝑥) ,          -∞ < 𝑥 < ∞ for n = 1, 2,…  (2.40) 

Converting the positive integral parameter n to a positive real parameter say; 𝛼, the 

family of densities with pdf which is precisely the class of gamma-generated densities is 

obtained.It is given by; 

𝑔(𝑥) =  
ൣି௟௡ [ଵିி(௑)] ൧

ഀషభ

୻஑
𝑓(𝑥)-∞ < 𝑥 < ∞, 𝛼 > 0.  (2.41) 
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While its Cummulative distribution function is given by; 

G(𝑥) =
ଵ

୻஑
∫ 𝑡ఈିଵ𝑒ି௧𝑑𝑡

ି୪୬ (ଵିி(௫) 

଴
  (2.42) 
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CHAPTER THREE 

 

METHODOLOGY 

In chapter two, a review of works based on the Lee-Carter model, the Zografos–

Balakrishnan-Gfamily of distributions and some other aspects was done. In this section, 

the methodology of the proposed Gamma-Normal Lee-Carter distribution is discussed. 

The empirical derivations of the parameters of the proposed distribution and its statistical 

properties are also presented.  

3.1 Developing the Gamma-Normal Lee-Carter Model 

The Lee-carter approach assumes that its error term follows a normal distribution whose 

probability density function must satisfy the condition below.  

𝑓(𝑦) =  
ଵ

ఙ
ϕ ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃ      (3.1) 

𝜙 ቂ
௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃ= 

ଵ

√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ] 

𝑓(𝑦) =
ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
  ,        𝜎 > 0,  𝑏௫ > 0, 𝑘௧ > 0    (3.2) 

 Its cumulative distribution function is given by; 

 F(𝑦) =  Φ ቀ
௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ   (3.3) 

 F(𝑦)=
ଵ

√ଶగ
∫ 𝑒

ି
భ

మ
[
[೟ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]௬

ିஶ
𝑑𝑡       (3.4) 

 

3.1.1 Probability Density Function of Gamma-Normal Lee-Carter Model 

The probability density function of the proposed model is derived by substituting 

equations (3.1) and (3.3) into (2.41)to give; 

𝑔(𝑦) =
ଵ

௰ఈ

ଵ

ఙ
𝜙 ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃ  ቂ−ln [1 − Φ ቀ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈିଵ

  (3.5)  

=
ଵ

௰ఈ

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂ−ln [1 − Φ ቀ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈିଵ

,  𝛼 > 1,  𝜎 >0     (3.6) 
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When  𝛼 = 1, equation (3.6) coincides with the normal distribution.  

 

3.2 Statistical Properties of the Proposed Model 

In this section some statistical properties of the proposed distribution will be considered. 

These include; cumulative distribution function, verification of proper probability density 

function, hazard function and asymptotic behaviour.  

 

3.2.1 Cumulative Distribution Function  

The cumulative distribution function is derived by substituting equation (3.3) into (2.42) 

to give; 

p(𝑋 ≤ 𝑥)= 
ଵ

୻஑
∫ 𝑡ఈିଵ𝑒ି௧𝑑𝑡

ି୪୬ ቄଵି஍ቂ
೤ష(ೌೣశ್ೣೖ೟)

഑
ቃቅ

଴
 

= 
ଵ

୻஑
∫ 𝑡ఈିଵ𝑒ି௧𝑑𝑡

ି୪୬ ቄଵି஍ቂ
೤ష(ೌೣశ್ೣೖ೟)

഑
ቃቅ

଴
      (3.7) 

From the definition of the lower incomplete gamma function in equation (2.36), 

∫ 𝑡ఈିଵ𝑒ି௧𝑑𝑡
ି୪୬ ቄଵି஍ቂ

೤ష(ೌೣశ್ೣೖ೟)

഑
ቃቅ

଴
reduces to; 𝛾 ቀ𝛼, −ln ቄ1 − Φ ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃቅቁ 

Hence, G(𝑦) = 
ଵ

୻஑
𝛾 ቀ𝛼, −ln ቄ1 − Φ ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃቅቁ , α > 1 , 𝜎 > 0  (3.8) 

 

3.2.2 Verification of Proper Probability Density Function  

Here we seek to verify whether the proposed distribution integrates to unity.  

We need to show that the ∫ 𝑔(𝑦) 𝑑𝑦 = 1
ஶ 

଴
     (i) 

From (3.16), 𝑔(𝑦) =  
ଵ

୻஑
ቈ

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
቉  ቂ−𝑙𝑛 [1 − Φ ቀ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈିଵ

 

Substituting equation (3.9) into equation (i), we have; 

∫
ଵ

௰ఈ
ቈ

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
቉  ቂ−𝑙𝑛 [1 − Φ ቀ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈିଵ

𝑑𝑦
ஶ

଴
  (ii)                                   
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We set  Φ ቀ
௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] = z    

ௗ௭

ௗ௬
= 

ଵ

ఙ
ϕ ቂ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቃ = ቎

௘
ష

భ
మ

[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]

ఙ√ଶగ
቏ 

dy = 
ఙ√ଶగ ௗ௭

௘
ష 

భ
మ

[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]

 

Equation (ii) becomes; 

න
1

𝛤𝛼
ቈ

1

𝜎√2𝜋
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
቉  [−ln [1 − 𝑧] ]ఈିଵ

ஶ

଴

𝜎√2𝜋  𝑑𝑧

𝑒
ି 

భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
 

  = 
ଵ

୻஑
∫  ൣ−ln [1 − z] ൧

஑ିଵஶ

଴
dz        (iii) 

Applying the log function rule to (iii), we have 

  = 
ଵ

୻஑
∫  ൣln [1 − z]ିଵ ൧

ఈିଵஶ

଴
dz 

= 
ଵ

୻஑
∫  ൣln [1 − z]ିଵ ൧

ఈିଵஶ

଴
𝑑𝑧 

 = 
ଵ

୻஑
∫  ቂln [

ଵ

ଵି௭
] ቃ

ఈିଵஶ

଴
𝑑𝑧        (iv) 

Applying Euler’s integral to equation (iv);  

∫  ቂln [
ଵ

ଵି௭
] ቃ

ఈିଵஶ

଴
𝑑𝑧 reduces to a one parameter gamma function:  ∫ z஑ିଵeି୸dz

ஶ

଴
 

Where   ∫ 𝑧ఈିଵ𝑒ି௭𝑑𝑧
ஶ

଴
 = Γα       (v) 

Equation (iv) becomes  
୻஑

୻஑
= 1.   

Hence the proposed distribution integrates to 1.  

 

 

 

3.2.3 Asymptotic Behaviour 

We seek to investigate the behaviour of the model in equation (3.6) as 𝑦 → 0 
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From (3.6), 𝑔(𝑦) =
ଵ

୻ఈೣ 

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑೔
మ ]

ቂ−ln [1 − Φ ቀ
௬ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁ] ቃ

ఈೣ ିଵ

 

i. If α୶ = 1, we have 

lim
௬→଴

 𝑔(𝑦) = lim௬→଴
ଵ

୻஑౮

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂ−𝑙𝑛 [1 − Φ ቀ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈೣିଵ

 (vi) 

  From equation (vi),  

Γ(α୶) =  Γ(1) = ∫ 𝑒ି௬ஶ

଴
𝑦ଵିଵ𝑑𝑦 = [−𝑒ି௬]଴

ஶ 

   = lim
௬→ஶ

[ −𝑒ି௬] − [ −𝑒ି଴] = 0-(-1) = 1 

  Equation (vi) becomes lim
௬→଴

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ] 

= 
ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
(ೌೣశ್ೣೖ೟)మ

഑మ ]        (vii) 

= 
ଵ

ఙ
ϕ ቂ

(௔ೣା௕ೣ௞೟
మ)

ఙ
ቃ         (viii) 

ii. If 𝛼௫ < 1,  

lim
𝑦→0

 𝑔(𝑦) = lim𝑦→∞
1

𝛤𝛼𝑥

1

𝜎√2𝜋
𝑒

−
1

2
[
[𝑦−(𝑎𝑥+𝑏𝑥𝑘𝑡)]

2

𝜎2 ]
ቂ−𝑙𝑛 [1 − Φ ቀ

𝑦−(𝑎𝑥+𝑏𝑥𝑘𝑡)

𝜎
ቁ] ቃ

𝛼𝑥−1

 (ix) 

  = 
ଵ

୻஑౮

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
[ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂ−𝑙𝑛 [1 − Φ ቀ

ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈೣିଵ
 

= 
ଵ

୻஑౮

ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
[
(ೌೣశ್ೣೖ೟)మ

഑మ ]
ቂ−𝑙𝑛 [1 − Φ ቀ

ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ቃ

ఈೣିଵ
    (x) 

This is a function of the gamma-normal distribution 

3.2.4 The Hazard Function  

The hazard function is a conditional density, given that the event in question has not yet 

occurred prior to time t. 

For the proposed distribution, the hazard rate function is obtained using; 

h(𝑦) = 
௚(௬)

ଵିீ(௬)
         (3.9) 
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𝑔(𝑦) =
1

𝛤𝛼௫

1

𝜎√2𝜋
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
൤−𝑙𝑛 [1 − Φ ൬

𝑦 − (𝑎௫ + 𝑏௫𝑘௧)

𝜎
൰] ൨

ఈೣିଵ

 

G(𝑦)= 
ଵ

௰ఈೣ
𝛾[𝛼, −ln (1 − Φ ቀ

௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ] ,      (3.10) 

h(𝑦) =
భ

೨ഀೣ
 

భ

഑√మഏ
௘

ష
భ
మ

[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂି௟௡ [ଵିఃቀ

೤ష(ೌೣశ್ೣೖ೟)

഑
ቁ] ቃ

ഀೣషభ

ଵି  
[ം[ഀ,షౢ  (భష೻൬

೤ష(ೌೣశ್ೣೖ೟)
഑

൰]]

೨ഀೣ

,     (3.11) 

h(𝑦)= 
భ

೨ಉ౮

భ

഑√మഏ
௘

ష
భ
మ

[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂି௟௡ [ଵି஍ቀ

೤ష(ೌೣశ್ೣೖ೟)

഑
ቁ] ቃ

ഀೣషభ

୻ఈೣ ି ஓ[஑,ି୪୬ (ଵି஍ቀ
౯ష(౗౮శౘ౮ౡ౪)

ಚ
ቁ

୻ఈೣ
൘

 ,           (3.12) 

This reduces to; 

h(𝑦)= 
భ

഑√మഏ
௘

ష
భ
మ

[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂି௟௡ [ଵି஍ቀ

೤ష(ೌೣశ್ೣೖ೟)

഑
ቁ] ቃ

ഀೣషభ

୻஑ ି ఊ[ఈ,ି୪  (ଵି஍ቀ
೤ష(ೌೣశ್ೣೖ೟)

഑
ቁ

 ,             (3.13) 

Recall from equations (2.35), (2.36) and (2.37), the following definitions; 

Γ𝛼 = ∫ 𝑥ఈିଵ𝑒ି௫𝑑𝑥
ஶ 

଴
 ;  

𝛾(𝛼, 𝑥) = ∫ 𝑥ఈିଵ𝑒ି௫𝑑𝑥
௫ 

଴
  ; 

Γ(𝛼, 𝑥) = ∫ 𝑥ఈିଵ𝑒ି௫𝑑𝑥
ஶ 

௫
         

Inferring from the above definitions, the denominator of equation (3.13) reduces to an 

upper incomplete gamma function given as; 

Γ(𝛼௫  , −ln [1 − Φ ቀ
௬ି(௔ೣା௕ೣ௞೟)

ఙ
ቁ]) Such that equation (3.13) becomes; 

h(𝑦) = 
భ

഑√మഏ
௘

ష
భ
మ

[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑మ ]
ቂି௟  [ଵି஍ቀ

೤ష(ೌೣశ್ೣೖ೟)

഑
ቁ] ቃ

𝛼𝑥షభ

୻ቀ𝛼𝑥 ,   ି୪୬ቂଵି஍ቀ
೤ష(ೌೣశ್ೣೖ೟)

഑
ቁቃቁ

    (3.14) 
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3.3Estimation 

In the Lee and Carter (1992) model and several of its variants, the model’s parameters 

were estimated using the singular value decomposition. We deviate from this approach by 

using the maximum likelihood estimation to estimate the parameters of the proposed 

method in order to achieve better results. 

 

3.3.1 The Likelihood and Log-likelihood Functions  

The likelihood function is defined as the density function regarded as a function of 𝜃.Let 

𝑋ଵ, 𝑋ଶ, …, 𝑋௡ be a random sample of size n distributed according to the likelihood 

function of vector of parameters, 𝜃 = (𝑎௫ , 𝑏௫ , 𝑘௧, 𝛼௫ 𝑎𝑛𝑑 𝜎௜ ) 

From equation (3.5) the probability density function of the proposed model is given by: 

𝑔(𝑦) =
1

Γ𝛼௫ 

1

𝜎√2𝜋
𝑒

ି
భ

మ
[
[೤ష(ೌೣశ್ೣೖ೟)]మ

഑೔
మ ]

൤−ln [1 − Φ ൬
𝑦 − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰] ൨

ఈೣ ିଵ

 

The likelihood function is given by: 

𝐿(𝜃) = ෑ
1

Γ𝛼௫ 

1

𝜎௜√2𝜋
𝑒

ି
భ

మ
൜

[೤೔ష(ೌೣశ್ೣೖ೟)]మ

഑೔
మ ൠ

൜−ln ൤1 − Φ ൬
𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨  ൠ

ఈೣ ିଵ௡

௜ୀଵ

 

= ∏ 𝑒
ି

భ

మ഑೔
మ[௬೔ି(௔ೣା௕ೣ௞೟)]మ

௡
௜ୀଵ ቄ− ln ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ

ఈೣ ିଵ
(𝜎௜Γ𝛼௫ )

ି௡(2𝜋)ି
೙

మ   (3.15) 

The log-likelihood function is expressed as: 

 𝑙𝑛𝐿(𝜃) = −𝑛(𝑙𝑛 𝜎௜ + 𝑙𝑛Γ𝛼௫ ) −
𝑛

2
(𝑙𝑛2𝜋) −

1

2𝜎௜
ଶ

෍[𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

௡

௜ୀଵ

]ଶ + 

(𝛼௫ − 1) ∑ 𝑙𝑛௡
௜ୀଵ ቄ− ln ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ     (3.16) 

Having obtained the log-likelihood function in (3.16) above, we proceed with the 

estimation of parameters. 
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3.3.2 Estimation of Parameters  

The following derivatives of equation (3.16) with respect to 𝛼௫ , 𝜎௜𝑎௫ , 𝑏௫ 𝑎𝑛𝑑 𝑘௧ are 

taken, respectively. 

a. Parameter 𝜶𝒙  (the shape parameter) 

𝜕lnL (𝜃)

𝜕𝛼௫
=  

−𝑛Γ𝛼௫ 
ᇱ

Γ𝛼௫ 
+ ෍ ln

௡

௜ୀଵ

൜− ln ൤1 − Φ ൬
𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨ൠ 

Since
୻ఈೣ 

ᇲ

୻ఈೣ 
is a di − gamma function, 𝜓(𝛼௫ ) 

డ୪୬୐ (ఏ)

డఈೣ
= −𝑛𝜓(𝛼௫ ) + ∑ ln௡

௜ୀଵ ቄ− ln ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ    

డ୪୬୐ (ఏ)

డఈೣ
= ∑ ln௡

௜ୀଵ ቄ− ln ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ − 𝑛𝜓(𝛼௫ ) ∀  𝑥  (3.17) 

b. Parameter 𝝈𝒊  (scale parameter) 

The next target is to obtain 
డ୪୬୐ (ఏ)

డఙ೔
 ; 

For ease of differentiation, equation (3.16) is split into smaller units; 

𝑊 = −𝑛(𝑙𝑛 𝜎௜ + 𝑙𝑛Γ𝛼௫ ) 

𝑋 = −
𝑛

2
(𝑙𝑛2𝜋) 

𝑌 = −
ଵ

ଶఙ೔
మ

∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ = −

ଵ

ଶ
𝜎௜

ିଶ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ 

𝑍 = (𝛼௫ − 1) ෍ ln

௡

௜ୀଵ

൜− ln ൤1 − Φ ൬
𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨ൠ 

డ୛

డఙ೔
= −

௡

ఙ೔
          (3.18) 

డଡ଼

డఙ೔
= 0          (3.19) 
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డଢ଼

డఙ೔
= 𝜎௜

ିଷ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶsimplifies to; 

డଢ଼

డఙ೔
= 

ଵ

ఙ೔
∑ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ

ଶ
௡
௜ୀଵ         (3.20) 

Using logarithmic rule, (−𝑏 log 𝑎 = log 𝑎ି௕), z is re-expressed as; 

𝑍 = (𝛼௫ − 1) ∑ ln௡
௜ୀଵ ቄln ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ

ିଵ

    (3.21) 

A combination of the product rule and the log of log derivative in equation (3.22) is used 

to obtain the derivative of  𝑍, 

[𝑙𝑜𝑔 (𝑙𝑜𝑔 𝑢)]ᇱ =  
௟௢௚௨ᇲ

௟௢௚ ௨
 = 

௨ᇲ

௨௟௢௚
       (3.22) 

So that  
డ୞ 

డఙ೔
= (𝛼௫ − 1) ∑

ቊ൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ቋ

ᇲ

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ
௡
௜ୀଵ   (3.23) 

We continue with the numerator of (3.23) 

Let ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ = 𝑈 

 And ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

= 𝑅 

Such that 𝑈ିଵ = 𝑅 

Now 
డୖ

డ௎
= −𝑈ିଶ , 

డ௎

డఙ೔
= − ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
మ

ቃ − ቂϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ 

𝜕𝑈

𝜕𝜎௜
= ൤

𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
ଶ

൨ ൤ϕ ൬
𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨ 

We seek 
డோ

డఙ೔
=

డୖ

డ௎
×

డ௎

డఙ೔
 

=  −𝑈ିଶ ቂ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
మ

ቃ ቂϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ 

= − ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ

ቂ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
మ

ቃ ϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁ   (3.24) 
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Substituting (3.24) back into the numerator of (3.23) leads to; 

𝜕Z 

𝜕𝜎௜
= (𝛼௫ − 1) ෍

− ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ

ቂ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
మ

ቃ  ϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁ

ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

𝑙𝑛 ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

௡

௜ୀଵ

 

= (𝛼௫ − 1) ∑
ି൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షమ

൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
మ ൨ம൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ି௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

= (𝛼௫ − 1) ∑
൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షమ

൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
మ ൨ம൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

= (𝛼௫ − 1) ∑

భ

഑೔
൤

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ம൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

This further reduces to; 

డ୞ 

డఙ೔
=

(ఈೣ ିଵ)

ఙ೔
∑

൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨ ம൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨ ௟௡൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ     (3.25) 

Bringing together the results obtained in (3.18), (3.19), (3.20) and (3.25), We have, 

𝜕lnL (𝜃)

𝜕𝜎௜
= 

−
௡

ఙ೔
+

ଵ

ఙ೔
∑ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ

ଶ
௡
௜ୀଵ +

(ఈೣ ିଵ)

ఙ೔
∑

൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨ ம൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨ ௟௡൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

  ∀  𝑥, 𝑡 

 (3.26) 

c. Parameter 𝒂𝒙 ( the general pattern of mortality by age) 

 To obtain  
డ୪୬  (ఏ)

డ௔ೣ
 , recall 𝑊, 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 as used in previous section. 

𝑊 = −𝑛(𝑙𝑛 𝜎௜ + 𝑙𝑛Γ𝛼௫ ) 
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𝑋 = −
𝑛

2
(𝑙𝑛2𝜋) 

𝑌 = −
1

2𝜎௜
ଶ

෍[𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

௡

௜ୀଵ

]ଶ 

    = −
ଵ

ଶ
𝜎௜

ିଶ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ 

We proceed as follows; 

డ୛

డ௔ೣ
= 0          (3.27) 

డଡ଼

డ௔ೣ
= 0          (3.28) 

డଢ଼

డ௔ೣ
;  we apply the product of function of a function stated below; 

 Let −
ଵ

ଶఙ೔
మ

= 𝑈    and  ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ = 𝑉 

Then, 

డଢ଼

డ௔ೣ
= 𝑈

డ୚

డ௔ೣ
+  𝑉

డ௎

డ௔ೣ
         (3.29) 

Let  𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧) = 𝑃 

It implies that  ∑ 𝑃ଶ௡
௜ୀଵ = 𝑉 

డ୚

డ௉
= 2 ∑ 𝑃௡

௜ୀଵ   ,     
డ୔

డ௔ೣ
= −1 

Now 
డ୚

డ௔ೣ
=  

డ୚

డ௉
× 

డ୔

డ௔ೣ
= −2 ∑ 𝑃௡

௜ୀଵ  

డ୚

డ௔ೣ
= −2 ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)]௡

௜ୀଵ ,     
డ௎

డ௔ೣ
= 0     

 It follows from equation (3.29) that; 

డଢ଼

డ௔ೣ
=   ቀ−

ଵ

ଶఙ೔
మ
ቁ {−2 ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)]௡

௜ୀଵ }       

డଢ଼

డ௔ೣ
=   

ଵ

ఙ೔
∑ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ௡

௜ୀଵ         (3.30) 
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 Next is   
డ୞

డ௔ೣ
; 

Recall from (3.32),  𝑍 = (𝛼௫ − 1) ∑ ln௡
௜ୀଵ ቄln ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ

ିଵ

 

Leaving (𝛼௫ − 1) constant and applying the log derivative rule in (3.33) 

డ୞

డ௔ೣ
= (𝛼௫ − 1) ∑

ቊ൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ቋ

ᇲ

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ
௡
௜ୀଵ    (3.31) 

We proceed with the numerator of (3.31), 

Recall; 

Let ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ = 𝑈 

And ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

= 𝑅 

Such that 𝑈ିଵ = 𝑅 ,   

𝜕R

𝜕𝑈
= −𝑈ିଶ 

𝜕𝑈

𝜕𝑎௫
=

1

𝜎௜
ϕ ൬

𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰ 

We seek 
డோ

డ௔ೣ
=

డୖ

డ௎
×

డ௎

డ௔ೣ
 

=  
ି௎షమ

ఙ೔
ϕ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁ 

Thus the derivative of the numerator (3.31) w. r. t 𝑎௫ yields: 

− ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ ଵ

ఙ೔
ϕ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ     (3.32)  

Substituting (3.32) into the numerator of (3.31) leads to; 
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𝜕Z

𝜕𝑎௫
= (𝛼௫ − 1) ෍

− ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ ଵ

ఙ೔
ϕ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ

ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

𝑙𝑛 ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

௡

௜ୀଵ

 

= (𝛼௫ − 1) ∑
ି൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షమ
భ

഑೔
ம൤

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ି௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

= (𝛼௫ − 1) ∑
ି 

భ

഑೔
ம൤

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ି௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

= (𝛼௫ − 1) ∑
ି 

భ

഑೔
ம൤

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨

ି௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨൤ ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

= (𝛼௫ − 1) ∑

భ

഑೔
ம൤

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨

 ௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨൤ ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

= 
(ఈೣ ିଵ)

ఙ೔
∑

ம൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨

൤ ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨ ௟௡൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ     (3.33)  

Bringing together the results obtained in (3.27), (3.28), (3.30) and (3.33), 

𝜕 lnL(𝜃)

𝜕𝑎௫
= 

ଵ

ఙ೔
∑ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ௡

௜ୀଵ +
(ఈೣ ିଵ)

ఙ೔
∑

ம൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨

൤ ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨  ௟௡൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ   ∀  𝑥   (3.34)    

d. Parameter 𝒃𝒙(the relative pace of change in mortality by age) 

 To obtain  
డ୪୬୐ (ఏ)

డ௕ೣ
 , recall 𝑊, 𝑋, 𝑌 𝑎𝑛𝑑 𝑍as used in previous sections. 

𝑊 = −𝑛(𝑙𝑛 𝜎௜ + 𝑙𝑛Γ𝛼௫ ) 

𝑋 = −
𝑛

2
(𝑙𝑛2𝜋) 

𝑌 = −
ଵ

ଶఙ೔
మ

∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ = −

ଵ

ଶ
𝜎௜

ିଶ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ 
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We proceed as follows; 

డ୛

డ௕ೣ
= 0          (3.35) 

డଡ଼

డ௕ೣ
= 0          (3.36)  

డଢ଼

డ௕ೣ
= 𝑈

డ୚

డ௕ೣ
+  𝑉

డ௎

డ௕ೣ
          

Recall equations 𝑈, 𝑉 𝑎𝑛𝑑 𝑃 used earlier in previous section. 

𝑈 = −
1

2𝜎௜
ଶ
 

𝑉 = ෍[𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

௡

௜ୀଵ

]ଶ 

𝑃 = 𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧) 

It implies that  ∑ 𝑃ଶ௡
௜ୀଵ = 𝑉 

డ୚

డ௉
= 2 ∑ 𝑃௡

௜ୀଵ   ,     
డ୔

డ௕ೣ
= −𝑘௧ 

 

Now 
డ୚

డ௕ೣ
 =  

డ୚

డ௉
× 

డ୔

డ௕ೣ
= −2𝑘௧ ∑ 𝑃௡

௜ୀଵ  

డ୚

డ௕ೣ
= −2𝑘௧ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)]௡

௜ୀଵ ,     

డ௎

డ௕ೣ
= 0     

 It follows that  
డଢ଼

డ௕ೣ
= 𝑈

డ୚

డ௕ೣ
+  𝑉

డ௎

డ௕ೣ
 

= ቀ−
ଵ

ଶఙ೔
మ
ቁ {−2𝑘௧ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)]௡

௜ୀଵ }       

డଢ଼

డ௕ೣ
=   

௞೟

ఙ೔
∑ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ௡

௜ୀଵ        (3.37) 
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Next is  
డ୞

డ௕ೣ
; 

Recall from (3.32);  𝑍 = (𝛼௫ − 1) ∑ ln௡
௜ୀଵ ቄln ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ

ିଵ

 

Leaving (𝛼௫ − 1) constant and applying the log derivative rule in (3.22) 

డ୞

డ௕ೣ
= (𝛼௫ − 1) ∑

ቊ൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ቋ

ᇲ

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ
௡
௜ୀଵ    (3.38) 

We begin with the numerator of (3.38), 

Recall equations 𝑈 and 𝑅 used previously; 

Let ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ = 𝑈 

And ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

= 𝑅 

Such that 𝑈ିଵ = 𝑅 ,   

𝜕R

𝜕𝑈
= −𝑈ିଶ 

𝜕𝑈

𝜕𝑏௫
= −

𝑘௧

𝜎௜
൤−ϕ ൬

𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨ 

𝜕𝑈

𝜕𝑏௫
=

𝑘௧

𝜎௜
൤ϕ ൬

𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨ 

We seek  
డோ

డ௕ೣ
=

డୖ

డ௎
×

డ௎

డ௕ೣ
 

డோ

డ௕ೣ
=−𝑈ିଶ ௞೟

ఙ೔
ቂϕ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ 

డோ

డ௕ೣ
= − ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ
ೖ೟

ఙ೔
ቂϕ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ    (3.39) 

Substituting (3.39) into the numerator of (3.38) gives; 
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డ୞

డ௕ೣ
= (𝛼௫ − 1) ∑

ି൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షమ
ೖ೟

഑೔
൤ம൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ
௡
௜ୀଵ   

This can be re-expressed as; 

𝜕Z

𝜕𝑏௫
=

𝑘௧(𝛼௫ − 1)

𝜎௜
෍

− ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ

ቂϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

𝑙𝑛 ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

௡

௜ୀଵ

 

=
𝑘௧(𝛼௫ − 1)

𝜎௜
෍

− ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

ቂϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

𝑙𝑛 ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

௡

௜ୀଵ

 

=
𝑘௧(𝛼௫ − 1)

𝜎௜
෍

− ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

ቂϕ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

−𝑙𝑛 ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

௡

௜ୀଵ

 

=
௞೟(ఈೣ ିଵ)

ఙ೔
∑

ம൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ  

డ୞

డ௕ೣ
=  

௞೟(ఈೣ ିଵ)

ఙ೔
∑

ம൤
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൨

ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰ ௟௡൤ଵି஍൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

௡
௜ୀଵ     (3.40) 

Finally bringing together all the results obtained in (3.35), (3.36), (3.37) and (3.40), 

𝜕 lnL(𝜃)

𝜕𝑏௫
=

𝑘௧

𝜎௜
෍ ቈ

𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
቉

௡

௜ୀଵ

+
𝑘௧(𝛼௫ − 1)

𝜎௜
෍

ϕ ቂ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ

1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁ  𝑙𝑛 ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

௡

௜ୀଵ

∀  𝑥 

           (3.41) 

e. Parameter 𝒌𝒕(mortality index) 

To obtain  
డ୪୬୐ (ఏ)

డ௞೟
 , recall 𝑊, 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 as used in previous sections. 
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𝑊 = −𝑛(𝑙𝑛 𝜎௜ + 𝑙𝑛Γ𝛼௫ ) 

𝑋 = −
𝑛

2
(𝑙𝑛2𝜋) 

𝑌 = −
ଵ

ଶఙ೔
మ

∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ = −

ଵ

ଶ
𝜎௜

ିଶ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)௡
௜ୀଵ ]ଶ 

We proceed as follows; 

డ୛

డ௞೟
= 0          (3.42) 

డଡ଼

డ௞೟
= 0          (3.43)  

డଢ଼

డ௞೟
= 𝑈

డ୚

డ௞೟
+  𝑉

డ௎

డ௞೟
          

Recall equations 𝑈, 𝑉 𝑎𝑛𝑑 𝑃 used earlier in previous section. 

𝑈 = −
1

2𝜎௜
ଶ
 

𝑉 = ෍[𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

௡

௜ୀଵ

]ଶ 

𝑃 = 𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧) 

It implies that  ∑ 𝑃ଶ௡
௜ୀଵ = 𝑉 

డ୚

డ௉
= 2 ∑ 𝑃௡

௜ୀଵ   ,     
డ୔

డ௞೟
= −𝑏௫ 

Now 
డ୚

డ௞೟
 =  

డ୚

డ௉
× 

డ୔

డ௞೟
= −2𝑏௫ ∑ 𝑃௡

௜ୀଵ  

డ୚

డ௞೟
= −2𝑏௫ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)]௡

௜ୀଵ ,     

డ௎

డ௞೟
= 0     

 It follows that  
డଢ଼

డ௞೟
= 𝑈

డ୚

డ௞೟
+  𝑉

డ௎

డ௞೟
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= ቀ−
ଵ

ଶఙ೔
మ
ቁ {−2𝑏௫ ∑ [𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)]௡

௜ୀଵ }       

డଢ଼

డ௞೟
=   

௕ೣ

ఙ೔
∑ ቂ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቃ௡

௜ୀଵ        (3.44) 

Next is  
డ୞

డ௞೟
: 

Recall from (3.21),  𝑍 = (𝛼௫ − 1) ∑ ln௡
௜ୀଵ ቄln ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃቅ

ିଵ

 

Leaving (𝛼௫ − 1) constant and applying the log derivative rule in (3.22) 

డ୞

డ௞೟
= (𝛼௫ − 1) ∑

ቊ൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

ቋ

ᇲ

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ
௡
௜ୀଵ    (3.45) 

We begin with the numerator of (3.45), 

Recall equations 𝑈 and 𝑅 used previously; 

Let ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ = 𝑈 

And ቂ1 − Φ ቀ
௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଵ

= 𝑅 

Such that;  𝑈ିଵ = 𝑅 , 

𝜕R

𝜕𝑈
= −𝑈ିଶ 

Now  
డ௎

డ௞೟
= −

௕ೣ

ఙ೔
ቂ−ϕ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ 

𝜕𝑈

𝜕𝑘௧
=

𝑏௫

𝜎௜
൤ϕ ൬

𝑦௜ − (𝑎௫ + 𝑏௫𝑘௧)

𝜎௜
൰൨ 

We seek  
డோ

డ௞೟
=

డୖ

డ௎
×

డ௎

డ௞೟
 

డோ

డ௞೟
=−𝑈ିଶ ௕ೣ

ఙ೔
ቂϕ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ 
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డோ

డ௞೟
= − ቂ1 − Φ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ

ିଶ
್ೣ

ఙ೔
ቂϕ ቀ

௬೔ି(௔ೣା௕ೣ௞೟)

ఙ೔
ቁቃ    (3.46) 

Substituting (3.46) into the numerator of (3.45) gives; 

డ୞

డ௞೟
= (𝛼௫ − 1) ∑

ି൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షమ
್ೣ

഑೔
൤ம൬

೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ

௟௡൤ଵି஍൬
೤೔ష(ೌೣశ್ೣೖ೟)

഑೔
൰൨

షభ
௡
௜ୀଵ   

This can be re-expressed as; 
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Finally bringing together all the results obtained in (3.42), (3.43), (3.44) and (3.47), 
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           (3.48) 
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3.3.3 Components of the Score Vector 

 Therefore, from section 3.3.2, the components of the score vector 𝑈(𝜃)of the Gamma-

Normal Lee-Carter are of the forms: 
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Setting these expressions to zero and solving them simultaneously yields the maximum 

likelihood estimates (MLEs) of the five parameters. The package bbmle by Bolker (2017) 

was used to solve for the parameters in equations 3.49 to 3.53 above. 

 

 

 

CHAPTER FOUR 

ANALYSIS OF DATA AND DISCUSSION 

 

4.1 Analysis of Data 

In chapter three, the Gamma-normal Lee-Carter model was presented with derivations 

made for its parameters. This chapter entails data analysis and discussion. 
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4.2      Data Choice and Source  

The data sets used for the study are the age-specific mortality data for both males and 

females in Nigeria, a developing country located in West Africa. The reason behind our 

choice of the two sexes instead of a combined sex mortality data is to avoid problems 

with implausible sex differentials raised by Li et al. (2000). The data set was previously 

studied by Chukwu and Oladipupo (2012) under the Li et al. (2002) framework. It was 

obtained from the Global Health Observatory (WHO 2017), an arm of the World Health 

Organisation Indicator and Measurement Registry (IMR). IMR is a central source of 

metadata of health-related indicators used by WHO and other organizations. The data sets 

are displayed in Tables 1.1 to 1.4 of the Appendix. 

4.3  Data Structure and Notation 

For the mortality data set, the age distribution of the population ranges between less than 

one year old to 85 yearsand above for the time period 2000 to 2015 for both males and 

females. Throughout the study, the number of deaths (𝑑௫௧), the central exposures or the 

population exposed to risk (𝐸௫௧) and the mortality rates (𝑚௫௧) are arranged in a 

rectangular array format comprising ages (on the row) 𝑥 = 𝑥ଵ, 𝑥ଶ, … , 𝑥௞  and calendar 

years (on the columns) 𝑡 = 𝑡ଵ, 𝑡ଶ, … , 𝑡௡.  

 

 

4.4 Results and Discussion  

The results in this study begin with a descriptive analysis of the dataset. Two non-

parametric procedures are employed to test for normality. They are the Kolmogorov- 

Smirnov and Shapiro-Wilks normality tests.  

Due to the inability to obtain closed-form expressions of the parameter estimates and the 

presence of the bilinear predictors present in the Lee-Carter model and its variants, the 

parameters of the models are estimated through an iterative minimization technique.  The 
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proposed Gamma-Normal Lee-Carter (GNLC) is compared with three other variants of 

the Lee-Carter model. They are; the Lee and Carter (1992) with the abbreviation (LC), 

the Brouhns (2002) model - (BR), the Renshaw Haberman (2006) - (RH). The R 

packages; BBMLE by Bolker (2017), StMoMo by Villegas et al. (2015) and ILC by 

Haberman and Butt (2010) were used in the analysis of data. 

Forecast of the mortality indexes was done under suitable Arima framework for a 20-year 

period within 80-95% confidence interval for each model. Simulation study was done 

using data of sizes 𝑛 ; 𝑡 =(15; 5), (20; 20) and (20; 30) where 𝑛 and 𝑡 are the sizes of the 

age-groups and time periods respectively. 

 To compare the proposed model with some other variants of the Lee–Carter, some 

criteria like, Akaike information criterion (AIC), Corrected Akaike information criterion 

(CAIC), Bayesian Information Criterion (BIC) and the Hannan Quinine Information 

Criterion (HQC) were considered. 

 

 

 

 

 

Table 4.1:  Descriptive Analysis for Male Mortality Data 

 
Mean 
 

Median 
 

Mode 
 

Skewness 
 

Kurtosis 
 

Minimum 
 

Maximum 
 

<1 .104250 .103000 .0800 .1500 -1.281 .0800 .1320 

1-4 .016188 .015500 .0110 .2180 -1.271 .0110 .0220 

5-9 .006125 .006000 .0060 -.192 -.821 .0050 .0070 

10-14 .003313 .003000 .0030 .8950 -1.391 .0030 .0040 
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15-19 .004250 .004000 .0040 1.278 -.440 .0040 .0050 

20-24 .006313 .006000 .0060 .8950 -1.391 .0060 .0070 

25-29 .007188 .007000 .0070 -.197 -.373 .0060 .0080 

30-34 .008438 .008500 .0090 -.653 -.321 .0070 .0090 

35-39 .010563 .011000 .0110 -.246 .249 .0090 .0120 

40-44 .012375 .012000 .0120 -.421 -.454 .0110 .0130 

45-49 .013875 .014000 .0130 -.146 -1.405 .0120 .0150 

50-54 .017750 .017500 .0170 .114 -1.336 .0160 .0190 

55-59 .022813 .023000 .0240 -.253 -1.355 .0210 .0240 

60-64 .033813 .033500 .0360 .083 -1.573 .0310 .0360 

65-69 .051250 .051000 .0540 .018 -1.657 .0480 .0540 

70-74 .083438 .082500 .0880 .196 -1.635 .0790 .0880 

75-79 .137063 .135500 .1320 .332 -1.602 .1310 .1440 

80-84 .222125 .220000 .2150 .352 -1.675 .2150 .2310 

85+ .350063 .347500 .3450 .450 -1.662 .3430 .3590 

 

 

 

 

 

Table 4.2:  Descriptive Analysis for Female Mortality Data 

 

 

Mean 

 

Median 

 

Mode 

 

Skewness 

 

Kurtosis 

 

Minimum 

 

Maximum 

<1 .086375 .085500 .0660 .183 -1.224 .0660 .1100 

1-4 .015938 .015500 .0110 .181 -1.388 .0110 .0220 

5-9 .006313 .006000 .0060 -.205 -.377 .0050 .0070 

10-14 .003438 .003000 .0030 .279 -2.219 .0030 .0040 
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15-19 .004000 .004000 .0040  -  - .0040 .0040 

20-24 .005125 .005000 .0050 .343 1.653 .0040 .0060 

25-29 .006938 .007000 .0060 .129 -1.646 .0060 .0080 

30-34 .008813 .009000 .0090 -.375 -.948 .0070 .0100 

35-39 .010938 .011000 .0110 -1.474 2.273 .0080 .0120 

40-44 .011375 .012000 .0120 -1.545 2.277 .0090 .0120 

45-49 .011875 .012000 .0120 -.627 .754 .0100 .0130 

50-54 .014313 .014500 .0150 -1.397 2.016 .0120 .0150 

55-59 .018813 .019000 .0200 -.253 -1.355 .0170 .0200 

60-64 .029563 .029500 .0310 -.075 -1.259 .0270 .0320 

65-69 .047313 .047000 .0500 -.014 -1.555 .0440 .0500 

70-74 .080063 .079500 .0840 .074 -1.608 .0750 .0850 

75-79 .133563 .132500 .1290 .160 -1.562 .1260 .1410 

80-84 .220563 .219000 .2290 .172 -1.645 .2110 .2300 

85+ .340250 .338000 .3320 .294 -1.684 .3320 .3500 

 

 

 

 

 

 

4.4.1 Descriptive Analysis for Age-specificMortality Data 

The descriptive analysis for the age-specific mortality data is shown in tables 4.1 and 4.2. 

On the average, age-group 10-14 has the lowest mortality rate for both gender with 

0.003313 for the males and 0.003438 for the females. The highest mortality rates on the 

average are found in age-group 85+ with 0.35006 for the males and 0.34025 for the 

females. Furthermore, the results show that for the male data set, 12 age-groups exhibit 
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some degree of skewness to the right while 7 age-groups are left-skewed. However, for 

the female data, the ratio of left to right skewness is 9:9 with only one age-group (15-19) 

having no skew. This implies that only age-group 15-19 exhibits a Normal distribution. 
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Figure 4.1:  Boxplots for Male Mortality Rates  
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Figure 4.2:  Boxplots for Female Mortality Rates  
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Figure 4.3:  Boxplots for Male Log Mortality Rates across Time-period 
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 Figure 4.4:  Boxplots for Female Log Mortality Rates  
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4.4.2 Boxplots for Mortality and Log Mortality Rates 

The boxplots are displayed in Figures 4.1 to 4.4. The plots in Figures 4.1 and 4.2 reflect 

the presence of outliers in the male and female mortality data. However, a close look at 

the plots in Figures 4.3 and 4.4 reflect the absence of outliers in the log mortality rates. It 

implies that the outliers disappeared after the logarithm of the mortality rates was taken. 

This transformation shows the effect of the logarithm function on the mortality rates 
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Table 4.3:  Kolmogorov Smirnov Normality Test Across Ages  

 Male Female 
Ages D P-value D P-value 
<1 0.53188 9.413e-05  0.8875   2.005e-13 
1-4 0.50439 0.0005827  0.52631    0.0001173 
5-9 0.50199   0.0006294  0.50439    0.0005827 
10-14 0.5012 0.0006457  0.50199    0.0006294 
15-19 0.5016 0.0006375  0.5012    0.0006457 
20-24 0.50239 0.0006213  0.5016    0.0006375 
25-29 0.50239 0.0006213  0.5016    0.0006375 
30-34 0.50279 0.0006134  0.50239    0.0006213 
35-39 0.50359 0.0005979  0.50279    0.0006134 
40-44 0.50439 0.0005827  0.50319    0.0006056 
45-49 0.50479 0.0005752  0.50359    0.0005979 
50-54 0.50638 0.0005463  0.50399    0.0005902 
55-59 0.50838 0.000512  0.50479    0.0005752 
60-64 0.51237 0.0004495  0.50678    0.0005392 
65-69 0.51914 0.0003594  0.51077    0.0004736 
70-74 0.53148 0.0002373  0.51755    0.0003789 
75-79 0.55211 0.0001161  0.52989    0.0002505 
80-84 0.58512 3.492e-05  0.55013    0.0001245 
85+ 0.63420 5.144e-06  0.58356    3.702e-05 
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Table 4.4: Kolmogorov Normality Test across Time Period  

 Male Female 

Year D P-value D P-value 

2000 0.87713 4.019e-13  0.87831    3.717e-13 

2001 0.87654 4.18e-13  0.87713    4.019e-13 

2002 0.87595 4.348e-13  0.87654    4.18e-13 

2003 0.87595 4.348e-13  0.87654    4.18e-13 

2004 0.87713 4.019e-13  0.87713    4.019e-13 

2005 0.87889 3.574e-13  0.87889    3.574e-13 

2006 0.88064 3.18e-13  0.88122    3.059e-13 

2007 0.88179 2.943e-13  0.88237    2.831e-13 

2008 0.88295 2.724e-13  0.88352    2.621e-13 

2009 0.88352 2.621e-13  0.88409    2.522e-13 

2010 0.88352 2.621e-13  0.88467    2.427e-13 

2011 0.88409 2.522e-13  0.88524    2.336e-13 

2012 0.88467 2.427e-13  0.8858    2.248e-13 

2013 0.88467 2.427e-13  0.88637    2.164e-13 

2014 0.88524 2.336e-13  0.88694    2.083e-13 

2015 0.88524 2.336e-13 0.8875  2.005e-13 
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Table 4.5: Shapiro Wilks Normality Test across Age-groups  

 Male Female 

 W P-value W P-value 

<1    0.95104    0.5064  0.95321  0.5422 

1-4   0.93371    0.2789  0.93208  0.2629 

5-9   0.81401    0.004205  0.75896  0.0008163 

10-14   0.59088    1.33e-05  0.63827  0.000038 

15-19     0.54643    5.272e-06 - - 

20-24   0.59088    1.33e-05  0.67592  0.0000927 

25-29    0.79358    0.002241  0.79624  0.002429 

30-34    0.7502      0.0006388  0.87207  0.02926 

35-39    0.84934    0.01332  0.78364  0.001665 

40-44    0.76031    0.0008479  0.7286  0.000355 

45-49    0.83054    0.007138  0.84624  0.01200 

50-54    0.83342    0.007842  0.75859 0.0008078  

55-59    0.84462    0.01137  0.84462  0.01137 

60-64    0.86872    0.02599  0.92434  0.19800 

65-69    0.86736    0.02479  0.87618  0.03385 

70-74   0.88328    0.04366  0.89819  0.07518 

75-79    0.88345    0.04394  0.91133  0.12220 

80-84    0.85928    0.01871  0.89424   0.06504 

85+    0.83964    0.009627  0.87264  0.02985 
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Table 4.6: Shapiro Wilks Normality Test across Time Period  

 Male Female 

Year W P-value W P-value 

2000 0.66547 2.217e-05 0.65229 1.582e-05 

2001 0.66462 2.169e-05 0.64946 1.474e-05 

2002 0.66269 2.064e-05 0.64817 1.426e-05 

2003 0.66126 1.989e-05 0.64731 1.396e-05 

2004 0.66017 1.934e-05 0.64464 1.306e-05 

2005 0.65995 1.923e-05 0.64209 1.225e-05 

2006 0.65663 1.767e-05 0.63896 1.134e-05 

2007 0.65377 1.643e-05 0.63823 1.113e-05 

2008 0.65036 1.507e-05 0.63532 1.036e-05 

2009 0.64766 1.408e-05 0.63136 9.402e-06 

2010 0.64528 1.327e-05 0.62978 9.046e-06 

2011 0.64172 1.214e-05 0.6266 8.371e-06 

2012 0.63959 1.151e-05 0.6252 8.09e-06 

2013 0.63833 1.116e-05 0.6229 7.654e-06 

2014 0.63502 1.028e-05 0.61865 6.909e-06 

2015 0.63229 9.617e-06 0.61745 6.713e-06 
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4.4.3 Test for Normality Using Kolmogorov Smirnov and Shapiro-Wilks Procedures 

Method 1: Kolmogorov Smirnov Normality Test  

Tables 4.3 and 4.4 show the tabular presentations of the Kolmogorov Smirnov normality 

test.  

 Hypothesis test:   

𝐻଴: The data set is normally distributed 

𝐻ଵ: The data set is not normally distributed 

As shown in Table 4.3, the P-values are lesser than or equal to 0.000645 across the 19 

age-groups for both male and female data. From Table 4.4, the P-values are all lesser or 

equal to 4.348 × 10ିଵଷ across the time period for the male mortality data and 4.18 

× 10ିଵଷfor the females. It is concluded that the Kolmogorov Smirnov test was significant 

at 1%, confirming non-normality for both gender across age-groups and time periods, 

respectively. 

Method 2: Shapiro-Wilks Normality Test  

The results for the Shapiro-Wilks normality are displayed in Tables 4.5 and 4.6.  

 Hypothesis test: 

𝐻଴: The data set is normally distributed 

𝐻ଵ: The data set is not normally distributed 

As shown in Table 4.5, the P-values are all lesser than or equal to 0.04394 in about 

seventeen age-groups for the male mortality data with two age-groups (0-1 and 1-4) 

having P-values greater than or equal to 0.2789. For the female mortality data, the P-

values are all lesser than or equal to 0.07518 in about fifteen age-groups with four age-

groups (0-1, 1-4, 60-64, 75-79) having P-values greater than or equal to 0.1222. From 

Table 4.6, the P-values across the time period are all lesser than or equal to 2.217 × 10ିହ 

for the male mortality data and 1.582× 10ିହfor the females. Hence, it is concluded that 

across the time periods, the Shapiro-Wilks test was significant at 1%, confirming non-
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normality for both gender. The procedure also confirmed non-normality for males in 17 

age-groups and females in 15 age-groups at 5% and 10% significance level respectively.  

In summary, while the Kolmogorov-Smirnov procedure was significant at 1%, 

confirming non-normality with P-values lesser than or equal to 0.000645 for both gender 

across all the age-groups, the Shapiro-Wilks procedure confirmed non-normality with P-

values lesser than or equal to 0.04394 in 17 age-groups for males and with P-values lesser 

than or equal to 0.07518 in 15 age-groups for females at 5% and 10% significance level, 

respectively. However, across the time periods, the Kolmogorov-Smirnov, Shapiro-Wilks 

procedures were significant at 1%, confirming non-normality with P-values lesser than or 

equal to (4.35 × 10ିଵଷ, 2.22 × 10ିହ) and (4.18 × 10ିଵଷ, 1.58 × 10ିଵଷ) for males and 

females, respectively.  
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Figure 4.5: General Pattern of Mortality by Age (Lee-Carter) 
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4.4.4 General Pattern of Mortality by Age (𝒂ෝ𝒙) -Lee-Carter Model 

a. Within each gender  

As shown in Figure 4.5, 𝑎ො௫ values decreased with age for age-group 0-1 to age-group 10-

14 with values -2.27346 to -5.71924 for the males and -2.27346 to -5.68328 for the 

females. Mortality pattern increased with age from age-groups 10-14 to 85+ within both 

gender. The mortality curve shows a downward trend from age-group less than 1 to 14 

implying that mortality is decreasing with age for those age-groups and an upward trend 

from age-groups 10 upwards indicating an increasing mortality rate with age. In 

summary, infant mortality rate is higher than child mortality rate for both sexes while 

younger ages (from age-group 10-14) have a lower mortality rate than the older ages.  

b. Between gender 

The estimated 𝑎ො௫ are almost identical between males and females as shown in Figure 4.5 

especially in the age-groups 1-14 and 65-85+. However, a closer inspection reveals that 

parameter 𝑎ො௫ is slightly higher for males than females in about 15 out of the 19 age-

groups. Mortality seems to be higher for male infants and children in the age-groups 0-4, 

15-29, 40-85+ than their female counterparts. Moreover, 𝑎ො௫  values are higher for females 

than males in the age-groups 5-9, 10-14, 30-34, 35-39 with 𝑎ො௫  values -5.06958, -

5.68328, -4.73847 and -4.52107 respectively. 

One of the reasons behind the afore-mentioned disparity is attributable to differences in 

exposure to risk for the two sexes. Females in the age-group 5-14 and 30-39 are prone to 

the risk of sexual violations, Abortion, maternal mortality and so on. Males in the age-

group 15-29 in many developing countries are prone to social vices like crime, intensive 

labour and so on while males in the age-groups 40 and above are exposed to the risk of 

family responsibilities, stress, and several health issues like heart failure etc.  
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Figure 4.6: Relative pace of change in mortality by age (Lee-Carter) 
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4.4.5 Relative Pace of Change in Mortality by Age (𝒃෡𝒙) -Lee-Carter Model 

a. Within each gender  

Parameter 𝑏෠௫  is the relative pace of change in mortality by age. It describes the tendency 

of mortality at age x to change as the general level of mortality changes. The larger the 

values of 𝑏෠௫ at a particular age-group, the more fluctuant the mortality rate at that age-

group as compared to the general level of mortality change. For developed Countries, 

parameter 𝑏෠௫ is expected to exhibit a downward trend. A look at Figure 4.6 shows that 

the 𝑏෠௫ curve exhibits a fluctuatingincrease and decrease across the age-groups for both 

males and females. This fluctuation is more noticeable in the middle age-group 25-49 for 

both sexes and more prominent in the male population than the females’. However for 

both gender, it is observed that despite the noticeable fluctuation, 𝑏෠௫ values are generally 

decreasing with age with longer interval of decrease in the age-groups 60-85+ for the 

males and 55-85+ for the females. For both sexes, age-group 1-4 has the largest 𝑏෠௫ values 

with 0.16664 for males and 0.15759 for females implying that mortality at age 1-4 has 

the tendency to change at a faster pace relative to the general level of mortality. Negative  

𝑏෠௫ values is not present in the male estimates but observed in the females’ at age-group 

15-19. Lee and Carter (1992) states that 𝑏෠௫  values could be negative for some ages 

indicating that mortality at those ages tend to rise (especially when it comes in contact 

with negative 𝑘෠௧ ) while falling at other ages. 

b. Between gender 

As shown in Figure 4.6, visible differences are observed between males and females 

across the age-groups. Very close ties exist at the very young (0-4) and older (60-85) age-

groups. Larger discrepancies are observed in the age-groups 15-19 and 30-34. Out of the 

19 age-groups studied, it is observed that 𝑏෠௫  values are greater for males than females in 

only 6 age-groups; 0-1,1-4,5-9,15-19,45-49 and 50-54. This means that the female 

mortality pattern exhibits a greater tendency to change relative to the general mortality 

pattern compared to the males in 13 age-groups which mostly comprises the child-

bearing ages and adult. 
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Figure 4.7: Mortality Time Trend (Lee-Carter) 
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4.4.6 Mortality Time Trend (𝒌෡𝒕) - Lee-Carter Model 

a. Within each gender 

The mortality time trend or index in Figure 4.7 shows a downward trend from 2000 to 

2015 for both sexes. A closer look at the curve reveals that the pattern is not a straight 

linear trend but curve-linear in nature. Also, the rate of decline is not sporadic but 

gradual. Within the male population, 𝑘෠௧values range from 1.9968 in year 2000 to -2.1860 

in year 2015 and 1.8132 in year 2000 to -2.6268 in year 2015 for the female population. 

Moreover, negative 𝑘෠௧ values are observed for the males from 2007-2015 and 2008-2015 

for the females. 

The consequence of negative 𝑘෠௧values for the afore-mentioned years is that mortality 

trend for age-groups with negative 𝑏෠௫values will increase due to negative values for both 

𝑏෠௫and 𝑘෠௧. However, age-groups with positive 𝑘෠௧values and negative 𝑏෠௫values will have a 

decreasing mortality pattern. Negative 𝑏෠௫value is observed in age-group 15-19 for the 

females indicating that the estimated mortality for age-group 15-19 decreased from 2000-

2007 and increased from 2008-2015. 

 

b. Between gender 

A comparison between the two sexes highlights the fact that 𝑘෠௧ values are greater for 

males than females in 9 out of 16 years; 2000-2003, 2010-2012, 2014-2015 indicating a 

higher mortality index for males than females for those years. The females have higher 

𝑘෠௧values in the years 2004-2009 and 2013. The two sexes have close ties in the years 

2002, 2009 and 2013. However, larger discrepancies are observed in the year 2005, 2006 

and 2015. 
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Figure 4.8: General pattern of mortality by age (Brouhns) 
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4.4.7 General Pattern of Mortality by Age (𝒂ෝ𝒙) -Brouhns Model 

a. Within each gender  

The graphical display of parameter 𝑎ො௫ under the Brouhns model is shown in Figure 4.8. 

Just as in the Lee and Carter (1992), within each gender,  𝑎ො௫ values decreased with age 

for age-group 0-1 to age-group 10-14 with values -2.27336 to -5.72147 for the males and 

-2.46189 to -5.68328 for the females. Mortality pattern increased with age from age-

group 10-14 to 85+ with 𝑎ො௫ values moving from -5.72147 to -1.049931 for males and -

5.68328 to -1.078266 for females. As further shown in Figure 4.8, the mortality curve 

shows a downward trend from age-groups 0+ to 14 implying that mortality is decreasing 

with age for those age-groups and an upward trend from age-groups 10 to 85+ indicating 

an increasing mortality rate with age. Infant mortality rate is higher than child mortality 

rate for both sexes while younger ages (from age-group 10-14) have a lower mortality 

rate than the older ages.  

b. Between gender 

The estimated 𝑎ො௫ are almost identical between males and females especially in the age-

groups 1-14 and 65-85+.  Mortality is higher for male infants and children in the age-

groups 0-4, 15-29, 40-85+ than their female counterparts. Moreover, 𝑎ො௫  values are higher 

for females than males in the age-groups 5-9, 10-14, 30-34 and 35-39. In summary, the 

general pattern of mortality by age is slightly higher for males than females in about 15 

out of the 19 age-groups.  
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Figure 4.9: Relative pace of change in mortality by age (Brouhns) 
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4.4.8 Relative Pace of Change in Mortality by Age (𝒃෡𝒙) – Brouhns Model 

a. Within each gender  

The trend curve of  𝑏෠௫  seems not well-behaved as a fluctuatingincrease and decrease is 

observed in figure 4.9 within each gender. This fluctuation is more prominent in the 

males than the females’. A long steep slope downwards is observed between age-groups 

1-4 and 5-9 and between 10-14 and 15-19 for the females. For the males, a steep slope 

downwards exists between age-groups 1-4 and 5-9. The highest peak for males and 

females is found at age-group 1-4 with 0.168243 and 0.160198 respectively. This implies 

that age-group 1-4 will have a more fluctuant mortality pattern than any other age-group 

for both gender. The deepest depression is observed at age-group 15-19 for the females 

and 85+ for the males meaning that the aforementioned age-groups will have the least 

fluctuant mortality pattern. Negative values are not present in both gender. 

b. Between gender 

Between the two sexes, closer ties exist at ages 0-4 and 60-85 years. Larger discrepancies 

are observed at age-groups15-19 and 25-39 years. Longer intervals of decreasing trend 

are seen in the female curve compared to the males as shown in Figure 4.9. 𝑏෠௫values are 

greater for females than males in 13 age-groups. This implies that with respect to the 

Brouhns model, females generally have a more fluctuant mortality than males. 
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Figure 4.10: mortality time trend (Brouhns) 
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4.4.9 Mortality Time Trend (𝒌෡𝒕) – Brouhns Model 

a. Within each gender  

The mortality index in Figure 4.10 shows a downward trend for both sexes. 𝑘෠௧values for 

the male population ranges from 1.981958 in year 2000 to -2.236734 in year 2015. For 

the females, it ranges from 1.940734 in year 2000 to -2.559394 in year 2015. Moreover, 

negative 𝑘෠௧ values are observed for both sexes from 2008 to 2015. The implication of 

negative 𝑘෠௧ values has been discussed earlier. This implies that the estimated age-specific 

mortality will have a decreasing trend from 2008 to 2015 since the Brouhns model does 

not have negative 𝑏෠௫ values for both gender.   

b. Between gender 

A comparison between the two sexes shows that 𝑘෠௧ values are greater for males than 

females in 9 out of 16 years. Females have larger 𝑘෠௧ values in the years 2003-2008 and 

2011. The difference in 𝑘෠௧ values between year 2000 and 2015 is 4.218692 for males and 

4.500128 for females. This implies that the female folk experienced a faster decline in 

mortality compared to the males during the time period 2000-2015.  
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Figure 4.11: General pattern of mortality by age (Renshaw Haberman) 
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4.4.10 General Pattern of Mortality by Age (𝒂ෝ𝒙) - Renshaw Haberman Model 

From Figure 4.11, the general pattern of mortality decreased from ages < 1 to 10-14, with 

𝑎ො௫ values ranging from -2.62376 to -5.63828. A gradual increase is observed from ages 

10-14 to 85+. The mortality curve shown in Figure 4.11 also illustrates the fact that infant 

mortality rate is higher than child mortality rate which is in turn higher than mortality at 

ages 5-14. Younger ages (from age-group 10-14) have a lower mortality rate than the 

older ages. 

Furthermore, the Renshaw–Haberman model did not converge for the male mortality 

data. This result agrees with Currie (2016) who stated that the convergence for the 

Renshaw –Haberman model could be problematic. He however suggested the use of the 

Lee-Carter model parameters as starting values for the Renshaw–Haberman model. This 

approach was utilized in this study but it didn’t work for the male mortality data.  
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Figure 4.12: Relative pace of change in mortality by age (Renshaw Haberman) 
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4.4.11 Relative Pace of Change in Mortality by Age (𝒃෡𝒙) - Renshaw Haberman 

Model 

The graphical illustration for parameter 𝑏෠௫ is displayed in Figure 4.12. A fluctuating 

increase and decrease is seen in the 𝑏෠௫ curve. For some age-groups, 𝑏෠௫ values are actually 

decreasing with longer intervals of decrease observed between age-group 40-85+. Age-

group 5-9 has the highest fluctuant mortality while age-group 85+ has the least fluctuant 

mortality. Negative 𝑏෠௫  value is observed only at age-group 85+. 
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Figure 4.13: mortality time trend (Renshaw-Haberman) 
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4.4.12  Mortality Time Trend (𝒌෡𝒕) - Renshaw-Haberman Model 

The mortality index for the Renshaw-Haberman model as presented in Figure 4.13 is 

generally decreasing with time. A fluctuating increase and decrease is seen between year 

2000 and 2005. A close look at Figure 4.13 shows that the mortality trend is not exactly 

linear. Positive 𝑘෠௧ values range from 1.641282 in 2000 to 0.03022 in 2008. Negative 

values are observed from the year 2009-2015. Since negative 𝑏෠௫value is observed only in 

age-group 85+ for the Renshaw-Haberman model, it indicates that the estimated mortality 

for age-group 85+  will decrease from 2000-2008 and increase from 2009-2015. 
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Figure 4.14: General pattern of mortality by age (Gamma-normal Lee-Carter model) 
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4.4.13 General Pattern of Mortality by Age (𝒂ෝ𝒙) - Gamma-Normal Lee-Carter 

Model 

Within each gender  

As shown in Tables 4.7 and 4.8, 𝑎ො௫ values decreased with age for age-group 0-1 to age-

group 10-14 with values -2.27346 to -5.71924 for the males and -2.27346 to -5.68328 for 

the females. Mortality pattern increased with age from age-groups 10-14 to 85+ within 

both gender. The mortality curve in Figure 4.14 shows a downward trend from age-group 

< 1 to 14 implying that mortality is decreasing with age for those age-groups and an 

upward trend from age-groups 10 upwards indicating an increasing mortality rate with 

age. Infant mortality rate is higher than child mortality rate for both sexes while younger 

ages (from age-group 10-14) have a lower mortality rate than the older ages.  

Between gender 

From Figure 4.14, the estimated 𝑎ො௫ are almost identical between males and females 

especially in the age-groups 1-14 and 65-85+. However, taking a closer look reveals the 

fact that parameter 𝑎ො௫ is slightly higher for males than females in about 15 out of the 19 

age-groups. Mortality is higher for male infants and children in the age-groups 0-4, 15-

29, 40-85+ than their female counterparts. Moreover, 𝑎ො௫  values are higher for females 

than males in the age-groups 5-9, 10-14, 30-34, 35-39. Possible reasons that could be 

responsible for the afore-mentioned disparity has been discussed earlier. 
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Figure 4.15: Relative pace of change in mortality by age (Gamma-normal Lee-Carter 

model) 
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4.4.14 Relative Pace of Change in Mortalityby Age (𝒃෡𝒙)- Gamma-Normal Lee-

Carter Model 

Within each gender  

As stated earlier, Parameter 𝑏෠௫  describes the tendency of mortality at age x to change as 

the general level of mortality changes. From Figure 4.15, the 𝑏෠௫ curve exhibits a 

fluctuatingincrease and decrease across the age-groups for both male and female 

population. This fluctuation is more noticeable in the middle age-group 25-49 for both 

sexes and more prominent in the male population than the females’. From tables 4.9 and 

4.10, age-group 1-4 has the largest 𝑏෠௫ values for both gender, with 0.16664658 for males 

and 0.15761933 for females respectively. This means that mortality at age-group 1-4 has 

the most fluctuant mortality pattern relative to the general level of mortality. Age-group 

85+ has the least fluctuant mortality pattern for the males while for the females; it is age-

group 15-19. Negative 𝑏෠௫  value is not present in both gender.   

Between gender 

As shown in Figure 4.15, visible differences are observed between males and females 

across the age-groups. Close ties are seen at age-group 0-4 and 60-85 years. Larger 

discrepancies are observed in the age-groups 15-19 and 30-34. Out of the 19 age-groups, 

it is observed that 𝑏෠௫  values are greater for females than males in 13 age-groups which 

comprises the child-bearing ages and adult females. This implies that the female 

mortality pattern exhibits a greater tendency to fluctuate compared to the males.  
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Figure 4.16: mortality time trend (Gamma-normal Lee-Carter model) 

 

 

 

 

 

 

 

 

 

 

 

-3

-2

-1

0

1

2

3

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

male female



 

94 
 

4.4.15   Mortality Time Trend(𝒌෡𝒕)- Gamma-Normal Lee-Carter Model 

Within each gender  

𝑘෠௧values for females and males are displayed in Tables 4.11 and 4.12. The mortality 

index in Figure 4.16 shows a downward trend from 2000 to 2015 for both sexes. Within 

the male population, 𝑘෠௧values range from 1.9962 in year 2000 to -2.18536 in year 2015 

and 1.81570 in year 2000 to -2.6202 in year 2015 for the female population. Moreover, 

negative 𝑘෠௧ values are observed from 2007-2015 for the males and from 2008-2015 for 

the females. 

The implication of negative 𝑘෠௧values as discussed by Hanna (2007) is that mortality 

pattern for age-groups with negative 𝑏෠௫values will increase due to negative values for 

both 𝑏෠௫and 𝑘෠௧. However, age-groups with positive 𝑘෠௧values and negative 𝑏෠௫values will 

have a decreasing mortality pattern will increase due to negative values for both 𝑏෠௫and 

𝑘෠௧while the other age-groups are experiencing a decreasing mortality pattern. The 

consequence is having mortality curves crossing each other. A merit of the proposed 

model is that negative 𝑏෠௫value is not present in both the male and female data. 

Between gender 

A comparison between the two sexes shows that 𝑘෠௧ values are greater for males than 

females in 9 out of 16 years; 2000-2003, 2010-2012 and 2014-2015 indicating a higher 

mortality index for males than females for those years.  The two sexes have close ties in 

the years 2002, 2009 and 2013. However, larger discrepancies are observed in the year 

2005, 2006 and 2015. 

 

 

 

 



 

95 
 

Table 4.7: Comparison of the MLEs of Parameter 𝒂𝒙 under the Four Models for 

Nigeria Female Mortality Data 

 LC BR RH GNLC 

<1  -2.461892  -2.461851  -2.6237619  -2.461892  

1-4  -4.164983  -4.165188  -4.4210464  -4.164983  

5-9 -5.069584  -5.070319  -5.2007739  -5.069584  

10-14 -5.683282  -5.685167  -5.6382799  -5.683282  

15-19   -5.521461  -5.521461  -5.4084323  -5.521461  

20-24 -5.278079  -5.280118  -5.1915108  -5.278079  

25-29  -4.977923  -4.979045  -4.9542377  -4.977923  

30-34  -4.738466  -4.738359  -4.7842194  -4.738466  

35-39  -4.521071  -4.519965  -4.5915937  -4.521071  

40-44  -4.479415  -4.478644  -4.5137096  -4.479415  

45-49  -4.435550  -4.435540  -4.4027834  -4.435550  

50-54  -4.248468  -4.248570  -4.1516312  -4.248468  

55-59  -3.974881  -3.974918  -3.8380744  -3.974881  

60-64  -3.522756  -3.522780  -3.3607945  -3.522756  

65-69  -3.052064  -3.052062  -2.8875846  -3.052064  

70-74 -2.525927  -2.525934  -2.3698408  -2.525927  

75-79  -2.013919  -2.013953  -1.8768102  -2.013919  

80-84  -1.512042  -1.512117  -1.4006350  -1.512042  

85+  -1.078266  -1.078415  -0.9954274  -1.078266  
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Table 4.8: Comparison of the MLEs of Parameter 𝒂𝒙 under the Four Models for 

Nigeria Male Mortality Data  

 LC BR RH GNLC 

<1  -2.273458  -2.273360  - -2.273458  

1-4  -4.149711  -4.149656  - -4.149711  

5-9 -5.102009  -5.102974  - -5.102009  

10-14 -5.719242 -5.721468  - -5.719242  

15-19   -5.465675  -5.467189  - -5.465675  

20-24 -5.067824  -5.068268  - -5.067824  

25-29  -4.939385  -4.940139  - -4.939385  

30-34  -4.777768  -4.777951  - -4.777768  

35-39  -4.552705  -4.552664  - -4.552705  

40-44  -4.393268  -4.393211  - -4.393268  

45-49  -4.280251  -4.280244  - -4.280251  

50-54  -4.032856  -4.032906  - -4.032856  

55-59  -3.781564 -3.781608  - -3.781564  

60-64  -3.388248  -3.388273  - -3.388248  

65-69  -2.972004  -2.972015  - -2.972004  

70-74 -2.484435  -2.484459  - -2.484435  

75-79  -1.987872  -1.987935  - -1.987872  

80-84  -1.504879  -1.504973  - -1.504879  

85+  -1.049787  -1.049931  - -1.049787  
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4.4.16 Comparison of MLEs of Parameter 𝒂𝒙across all the Models  

Tables 4.7 and 4.8,respectivelyshow the maximum likelihood estimates of Parameter 𝑎ො௫ 

for female and male mortality data across the models. Parameter 𝑎ො௫represents the general 

pattern of mortality by age. A similarity is noticed in the general pattern of mortality by 

age for all the models under consideration. Generally, the results show that  𝑎ො௫ values 

decreased with age for age-groups 0-1 to age-groups 10-14, but increased with age for 

age-groups 10-14 to 85+. The younger ages (from age-group 10-14) have a lower 

mortality rate than the older ages. As expected of a developing Country, there is a clear 

indication that Infant mortality rate is higher than child mortality rate which is in turn 

greater than mortality rate at ages 5-14 years for both gender. Across the models, 

mortality is greater for males than females except for the child-bearing age-groups. 

 

 

 

 

 

 

 

 

 

 

 



 

98 
 

Table 4.9: Comparison of the MLEs of Parameter 𝒃𝒙 under the Four Models for 

Nigeria Female Mortality Data 

 LC BR RH GNLC 

<1  1.104649e-01   1.121297e-01 0.013588631 0.1105305631  

1-4  1.575868e-01   1.601981e-01 0.056164504  0.1576193323  

5-9 5.882967e-02   5.888257e-02 0.233382645 0.0587414376  

10-14 8.805851e-02 8.803642e-02 0.147707367 0.0880098908  

15-19   -1.394130e-17  1.638890e-16 0.002829039 0.0000267991  

20-24 4.742123e-02   4.790192e-02 0.025341864 0.0474709506  

25-29  7.796972e-02   7.943062e-02 0.018282374 0.0779606398  

30-34  7.702937e-02   7.574334e-02 0.030265294 0.0770945235  

35-39  5.927341e-02   5.686279e-02 0.068614830 0.0591113584  

40-44  4.805914e-02  4.730043e-02 0.092077470 0.0479492269  

45-49  3.783256e-02   3.706698e-02 0.078183912 0.0378279402  

50-54  3.807446e-02   3.802905e-02 0.069666548 0.0380193337  

55-59  3.910521e-02   3.916809e-02 0.060073108 0.0391321893  

60-64  3.730551e-02   3.732741e-02 0.042542319 0.0373319652  

65-69  3.213565e-02  3.211966e-02 0.030853607 0.0321785613  

70-74 3.041920e-02   3.031044e-02 0.021081115 0.0304437756  

75-79  2.631621e-02   2.608956e-02 0.011018519 0.0263550986  

80-84  2.089943e-02   2.060288e-02 0.003354608 0.0209355434  

85+  1.321902e-02  1.279999e-02 -0.005027751 0.0132608706  
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Table 4.10: Comparison of the MLEs of Parameter 𝒃𝒙 under the Four Models for 

Male Mortality Data  

 LC BR 

 

RH GNLC 

<1  0.11453640  0.11596226  - 0.11455018  

1-4  0.16664015  0.16824386 - 0.16664658  

5-9 0.07942992  0.07884561 - 0.07935779  

10-14 0.08506221  0.08300317 - 0.08505607  

15-19   0.05595923  0.05385829 - 0.05605301  

20-24 0.04557947  0.04417464 - 0.04557819  

25-29  0.06045002   0.05983338 - 0.06038905  

30-34  0.04671098  0.04777042 - 0.04668092  

35-39  0.04136255  0.04196989 - 0.04137113  

40-44  0.03166568  0.03211921 - 0.03165884  

45-49  0.04955134  0.05037755 - 0.04955335  

50-54  0.03834928  0.03833411 - 0.03834905  

55-59  0.03290210  0.03356607 - 0.03290987  

60-64  0.03687730  0.03720575 - 0.03688395  

65-69  0.03149564  0.03189516 - 0.03150348  

70-74 0.02833183  0.02845730 - 0.02833892  

75-79  0.02381239  0.02368113 - 0.02382046  

80-84  0.01926668  0.01903534 - 0.01927410  

85+  0.01201684  0.01166686 - 0.01202506  
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4.4.17  Comparison of MLEs of Parameter 𝒃𝒙across all the Models  

The MLEs of the Parameter 𝑏෠௫for the models are presented in Tables 4.9 and 4.10. 

Parameter 𝑏෠௫ isthe relative pace of change in mortality by age. It describes the tendency 

of mortality at age x to change as the general level of mortality changes. 𝑏෠௫values 

exhibits a fluctuatingincrease and decrease across all the models for both male and 

female population. The Renshaw-Haberman model differs a bit from other models. 

However, closer ties exist between the Lee-Carter and the proposed model due to the 

similarity in their distribution framework. Across the models, age–group 1-4 has the most 

fluctuant mortality pattern since it has the highest 𝑏෠௫ value while females have a more 

fluctuant mortality than males. Negative 𝑏෠௫ value is observed in both the Lee-carter and 

Renshaw-Haberman models but absent in the Brouhns and Gamma-normal Lee-Carter 

models. Lee and Carter (1992) states that 𝑏෠௫  values could be negative for some ages 

indicating that mortality at those ages tend to rise (especially when it comes in contact 

with negative 𝑘෠௧ ) while falling at other ages. 
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Table 4.11: Comparison of the MLEs of Parameter 𝒌𝒕 under the Four Models for 

Nigeria Female Mortality Data 

Year LC BR RH GNLC RH (𝒍𝒕ି𝒙) 

2000 1.81326912  1.940734 1.641282  1.81569534   0.40313861 

2001 1.78974088   1.817955  1.452249 1.78923244   0.37291575 

2002 1.76584276   1.702361 1.592320 1.76397174   0.32659933 

2003 1.61194797   1.590959  1.639793  1.61028575   0.29941709 

2004 1.43708036  1.353757  1.404944  1.43580639   0.27456479 

2005 1.07020184   0.9865951  1.441419  1.07014721  0.22543857 

2006 0.61382262   0.5478901  0.823625  0.61380454   0.19659732 

2007 0.02544335   0.1428722  0.117060  0.02643208  0.18240987 

2008 -0.21730417   -0.1596062  0.030222 -0.21710828  0.13673352 

2009 -0.50929413  -0.5121536 -0.555158 -0.50941185  0.10077095 

2010 -0.88255690  -0.8050801  -0.597509  -0.88339855  0.08062507 

2011 -1.07274024  -1.067653  -0.754415 -1.07429290 0.04754275 

2012 -1.28517343  -1.319157  -1.315529  -1.28576824  0.04237538 

2013 -1.47015979  -1.530603  -1.461180  -1.47183060  -0.0156427 

2014 -2.06331801  -2.129477  -2.545847  -2.06338316  -0.0298911 

2015 -2.62680223  -2.559394  -2.913276  -2.62018189  -0.0547512 
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Table 4.12: Comparison of the MLEs of Parameter 𝒌𝒕 under the Four Models for 

Nigeria Male Mortality Data  

 LC BR RH GNLC 

2000 1.99682611  1.981958 - 1.99617121   

2001  1.95916968   1.904966  
- 

1.95844299   

2002 1.81575738   1.704728 
- 

1.81515433   

2003 1.72101574  1.547027  
- 

1.72115585   

2004 1.34166655  1.239463  
- 

1.34233038   

2005 0.44377420   0.7081821  
- 

0.44616172  

2006 0.16556124     0.3634139  
- 

0.16667418  

2007 -0.07282974 0.0623292  
- 

-0.07259202  

2008 -0.39214449  -0.2969154  
- 

-0.39259812  

2009 -0.56588780  -0.5029136 
- 

-0.56643923  

2010 -0.78093251  -0.7776134  
- 

-0.78198529  

2011 -1.01470182  -1.070649  
- 

-1.01560960  

2012 -1.06997913  -1.173066  
- 

-1.07076482  

2013 -1.48331496  -1.529730 
- 

-1.48336704  

2014 -1.87795029  -1.924445  
- 

-1.87737528  

2015 -2.18603016  -2.236734  
- 

-2.18535928  
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4.4.18  Comparison of MLEs of Parameter 𝒌𝒕across all the Models  

Parameter𝒌෡𝒕 

The MLEs of the mortality trend of all the models are shown in Tables 4.11 and 4.12. 

Parameter 𝑘෠௧ is known as the mortality index. According to Lee and Carter (1992), when  

𝑘෠௧ is linear in time, mortality at each age changes at its own constant exponential rate. 

For the male population, closer ties are noticed between the Lee-Carter and the proposed. 

However for the females, all the models are closely knitted except for the Renshaw-

Haberman. Across all the models, the females have a lower mortality index compared to 

the males. 

Parameter 𝒍መ𝒕ି𝒙 

The Parameter 𝑙መ௧ି௫ is only present in the Renshaw-Haberman model. It represents the 

impact of the cohort history on mortality trend. The 𝑙መ௧ି௫ trend is smoother than the 𝑘෠௧ 

trend. From Table 4.11, the highest peak is observed at year 2000 with 0.40313861 while 

its lowest value is observed in year 2015. Negative 𝑙መ௧ି௫  are observed in from 2013-2015.  
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Table 4.13: Estimates of Parameters 𝜶 under the Gamma-Normal Lee-Carter Model 

  
     𝜶 

 
Male 

 
0.9501383 

 
Female 

 
0.9722425 
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4.4.19 Estimates of Parameters 𝜶 under the Gamma-Normal Lee-Carter Model 

Parameter 𝜶ෝ in the proposed Gamma-Normal Lee-Carter modeldenotes the shape 

parameter. It gives us an idea of the degree of asymmetry of the distribution. Its 

demographic representation implies additional effects that might exist and could act 

constantly across age and time in human mortality experience especially in developing 

Countries. 𝑎ොis 0.9501383 and 0.9722425 for the male and female population respectively. 

This means that heterogeneity is higher than and more important for the females than the 

males. This parameter is absent in the Lee-Carter model and the variants considered in 

this study. 
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Table 4.14: Measures of Goodness of Fit for Male and Female when 𝒉 = 𝟏𝟔  

 

Male 

 
log [𝐿൫𝜃෠൯] AIC BIC CAIC HQC 

GNLC 624.9016 -1147.8032 -958.23479 -1126.75558 -1071.9714 

LC 625.9756 -1147.9512 -954.66576 -1125.99104 -1070.6325 

BR -1934.92 3973.84 4167.12544 3995.80016 4051.1587 

RH -20964355 41928812 41929001.6 41928941.9 41929285.3 

 

Female 

 
log [𝐿൫𝜃෠൯] AIC BIC CAIC HQC 

GNLC 579.7472 -1057.4944 -867.92599 -1036.44678 -981.6626 

LC 580.9978 -1057.9956 -864.71016 -1036.03544 -980.6769 

BR -2142.02 4388.04 4581.32544 4410.00016 4465.3587 

RH -19407.37 39144.74 39758.0496 39274.653 39390.0782 
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Table 4.15: Measures of Goodness of Fit results for the mortality model when 

𝒉 = 𝟏𝟔  

MALE 

 MSE RMSE 
GNLC 0.0009590635 0.03096875 
LC 0.0009590584 0.03096867 
BR 0.001001066 0.03163963 
RH 0.0002772892 0.01665200 
 

FEMALE 

 MSE RMSE 
GNLC 0.001289327 0.03590719 
LC 0.001289305 0.03590689 
BR 0.001281768 0.03580179 
RH 0.0004074057 0.02018429 
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4.4.20 Measures of Goodness of Fit for Male and Female when 𝒉 = 𝟏𝟔  

An evaluation of model performance is based on the values of the Akaike 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), the 

Corrected Akaike Information Criterion (CAIC) and the Hannan Quinine information 

criterion.  

The results of the BIC, CAIC and HQC for both sexes as indicated in table 4.14 

confirm that the proposed model outperformed the Lee-Carter model while the 

Renshaw-Haberman model did better than the Brouhns with respect to information 

loss. Comparison could not be made using the information Criterion across the 

models because of the different error structures as buttressed by Burnham and 

Anderson (2002). Furthermore, Table 4.15 points out that for both sexes, the 

Renshaw-Haberman model has the lowest root mean square error compared to other 

models with very little disparity between the Lee-Carter model and the Gamma-

normal lee-Carter model.    
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Table 4.16:  Forecast Estimates for the Lee-Carter Model (Male) 

 

 
Mean Lower Upper 

  
 

80% 95% 80% 95% 

2016 -2.4649 -2.73163 -2.87283 -2.19816 -2.05695 

2017 -2.7437 -3.12097 -3.32066 -2.36653 -2.16684 

2018 -3.0226 -3.48461 -3.72917 -2.56061 -2.31604 

2019 -3.3015 -3.83493 -4.11734 -2.76799 -2.48559 

2020 -3.5803 -4.17676 -4.49249 -2.98388 -2.66815 

2021 -3.8592 -4.51254 -4.85841 -3.20581 -2.85994 

2022 -4.138 -4.84375 -5.21733 -3.43232 -3.05874 

2023 -4.4169 -5.17133 -5.57071 -3.66245 -3.26307 

2024 -4.6957 -5.49596 -5.91956 -3.89554 -3.47194 

2025 -4.9746 -5.8181 -6.26462 -4.13111 -3.6846 

2026 -5.2535 -6.13813 -6.60644 -4.3688 -3.90049 

2027 -5.5323 -6.45632 -6.94546 -4.60832 -4.11919 

2028 -5.8112 -6.77291 -7.28202 -4.8494 -4.34034 

2029 -6.0900 -7.08807 -7.61639 -5.092 -4.56368 

2030 -6.3689 -7.40195 -7.94882 -5.3358 -4.78896 

2031 -6.6477 -7.71469 -8.2795 -5.5808 -5.0160 

2032 -6.9266 -8.02639 -8.60857 -5.8268 -5.24464 

2033 -7.2055 -8.33713 -8.93619 -6.0738 -5.47474 

2034 -7.4843 -8.64699 -9.26248 -6.3216 -5.70617 

2035 -7.7632 -8.95606 -9.58753 -6.5703 -5.93883 
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Table 4.17:  Forecast Estimates for the Lee-Carter Model (Female) 

 
Mean Lower Upper 

  
80% 95% 80% 95% 

2016 -3.19019 -3.4096 -3.52576 -2.97077 -2.85462 

2017 -3.75363 -4.24426 -4.50399 -3.263 -3.00327 

2018 -4.31707 -5.13806 -5.57266 -3.49609 -3.06149 

2019 -4.88052 -6.08231 -6.7185 -3.67872 -3.04253 

2020 -5.44396 -7.0712 -7.93261 -3.81672 -2.95531 

2021 -6.0074 -8.1005 -9.20853 -3.9143 -2.80628 

2022 -6.57084 -9.16702 -10.5414 -3.97467 -2.60034 

2023 -7.13429 -10.2682 -11.9272 -4.00039 -2.341401 

2024 -7.69773 -11.4019 -13.3628 -3.99355 -2.03267 

2025 -8.26117 -12.5664 -14.8455 -3.9559 -1.67683 

2026 -8.82462 -13.7603 -16.3731 -3.88896 -1.27618 

2027 -9.38806 -14.9821 -17.9434 -3.794 -0.83269 

2028 -9.9515 -16.2308 -19.5549 -3.6722 -0.34813 

2029 -10.5149 -17.5054 -21.2059 -3.5245 0.175974 

2030 -11.0784 -18.8049 -22.895 -3.3519 0.738221 

2031 -11.6418 -20.1285 -24.621 -3.1552 1.337366 

2032 -12.2053 -21.4755 -26.3828 -2.9351 1.972274 

2033 -12.7687 -22.8452 -28.1793 -2.6922 2.64191 

2034 -13.3322 -24.237 -30.0096 -2.4273 3.345323 

2035 -13.8956 -25.6503 -31.8728 -2.1409 4.081635 
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4.4.21 Forecast Estimates for the Lee-Carter Model  

In the family of Lee-Carter models, the dynamics of mortality are driven by the period 

and cohort indexes. Lee and Carter (1992) believes that error is minimized when forecast 

is done with a scalar quantity rather than with a vector quantity. In this study, for all the 

models including the proposed, what went into forecast is the mortality index or time 

trend (parameter𝑘௧) of each model within 80-95% prediction interval for a 20-year 

period.  

The forecasts estimates for the Lee-Carter model are presented in Tables 4.16 and 4.17. 

Generally, the mean estimates are higher for males than females.  For the males, the mean 

forecast ranges from -2.464 in 2016 to -7.763 in 2035. However, for the females, the 

mean forecast ranges from -3.1902 in 2016 to -13.896 in 2035. For the prediction 

intervals, lower and upper 80 represent the lower and upper bounds of 80% prediction 

interval while lower and upper 95 represent the lower and upper bounds of 95% 

prediction interval. The 80% prediction interval implies that there is an 80% probability 

that the predicted mortality index will fall somewhere between the lower and upper 

bounds from 2016 to 2035. This is the same implication for a 95% prediction interval. 

Generally, it is observed that the forecast trend is decreasing for both gender under the 

Lee-Carter model. 
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Table 4.18:  Forecast Estimates for the Brouhns Model (Male) 

  Mean Lower Upper 

  80% 95% 80% 95% 

2016 -2.518 -2.66908 -2.74907 -2.36688 -2.28689 

2017 -2.7992 -3.01291 -3.12603 -2.58554 -2.47242 

2018 -3.0805 -3.34219 -3.48073 -2.81876 -2.68022 

2019 -3.3617 -3.66392 -3.82389 -3.05952 -2.89954 

2020 -3.643 -3.98083 -4.15969 -3.30509 -3.12624 

2021 -3.9242 -4.29433 -4.49026 -3.55409 -3.35816 

2022 -4.2055 -4.60523 -4.81686 -3.80568 -3.59406 

2023 -4.4867 -4.91408 -5.14032 -4.05933 -3.83309 

2024 -4.7679 -5.22125 -5.46121 -4.31465 -4.07469 

2025 -5.0492 -5.52701 -5.77996 -4.57138 -4.31843 

2026 -5.3304 -5.83158 -6.09687 -4.8293 -4.56401 

2027 -5.6117 -6.13511 -6.4122 -5.08826 -4.81118 

2028 -5.8929 -6.43773 -6.72613 -5.3481 -5.05974 

2029 -6.1742 -6.73954 -7.03883 -5.6088 -5.30953 

2030 -6.4554 -7.04063 -7.35042 -5.8702 -5.56043 

2031 -6.7367 -7.34107 -7.66102 -6.1323 -5.81232 

2032 -7.0179 -7.64092 -7.97072 -6.3949 -6.06512 

2033 -7.2992 -7.94023 -8.27958 -6.6581 -6.31874 

2034 -7.5804 -8.23904 -8.5877 -6.9218 -6.57312 

2035 -7.8617 -8.5374 -8.89511 -7.1859 -6.8282 
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Table 4.19:  Forecast Estimates for the Brouhns Model (Female) 

 Mean Lower Upper 

    80% 95% 80% 95% 

2016 -2.9893 -3.156 -3.2443 -2.8226 -2.73434 

2017 -3.4192 -3.792 -3.9894 -3.0464 -2.8491 

2018 -3.8491 -4.4729 -4.8031 -3.2254 -2.8951 

2019 -4.2791 -5.1922 -5.6756 -3.3659 -2.8826 

2020 -4.709 -5.9454 -6.5999 -3.4726 -2.8181 

2021 -5.1389 -6.7292 -7.5711 -3.5485 -2.7067 

2022 -5.5688 -7.5414 -8.5856 -3.5962 -2.552 

2023 -5.9987 -8.3799 -9.6404 -3.6176 -2.3571 

2024 -6.4286 -9.2431 -10.733 -3.6142 -2.1243 

2025 -6.8586 -10.13 -11.861 -3.5874 -1.8558 

2026 -7.2885 -11.039 -13.024 -3.5383 -1.5531 

2027 -7.7184 -11.969 -14.219 -3.468 -1.218 

2028 -8.1483 -12.919 -15.445 -3.3773 -0.8516 

2029 -8.5782 -13.89 -16.701 -3.2669 -0.4552 

2030 -9.0082 -14.879 -17.986 -3.1375 -0.0298 

2031 -9.4381 -15.886 -19.3 -2.9899 0.42358 

2032 -9.868 -16.912 -20.64 -2.8244 0.90418 

2033 -10.298 -17.954 -22.007 -2.6418 1.41116 

2034 -10.728 -19.013 -23.399 -2.4423 1.94381 

2035 -11.158 -20.089 -24.817 -2.2265 2.50145 
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4.4.22 Forecast Estimates for the Brouhns Model  

The forecasts estimates for the Brouhns model are presented in tables 4.18 and 4.19. Just 

as in the Lee-Carter model, it is observed that the mean estimates are higher for males 

than females. For the males, the mean forecast ranges from -2.518 in 2016 to -7.862 in 

2035. However, for the females, the mean forecast ranges from -2.989 in 2016 to -11.158 

in 2035. For the prediction intervals, lower and upper 80 represent the lower and upper 

bounds of 80% prediction interval while lower and upper 95 represent the lower and 

upper bounds of 95% prediction interval. The 80% prediction interval means that there is 

an 80% probability that the predicted mortality index will fall somewhere between the 

lower and upper bounds from 2016 to 2035. This is the same meaning for a 95% 

prediction interval. The trend estimate exhibits a decreasing trend for both gender. 
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Table 4.20:  Forecast Estimates for the Gamma-Normal  Lee-Carter model (male) 

  Mean Lower   Upper   

    80 95 80 95 

2016 -0.629 -0.6973 -0.7335 -0.5606 -0.5244 

2017 -0.7005 -0.7972 -0.8484 -0.6039 -0.5527 

2018 -0.7721 -0.8905 -0.9531 -0.6537 -0.5911 

2019 -0.8437 -0.9804 -1.0527 -0.707 -0.6346 

2020 -0.9152 -1.0681 -1.149 -0.7624 -0.6815 

2021 -0.9868 -1.1542 -1.2428 -0.8194 -0.7308 

2022 -1.0584 -1.2392 -1.3349 -0.8775 -0.7818 

2023 -1.1299 -1.3232 -1.4256 -0.9366 -0.8343 

2024 -1.2015 -1.4065 -1.5151 -0.9965 -0.8879 

2025 -1.2731 -1.4892 -1.6036 -1.0569 -0.9425 

2026 -1.3446 -1.5713 -1.6913 -1.118 -0.998 

2027 -1.4162 -1.653 -1.7783 -1.1794 -1.0541 

2028 -1.4878 -1.7342 -1.8646 -1.2413 -1.1109 

2029 -1.5593 -1.8151 -1.9504 -1.3036 -1.1682 

2030 -1.6309 -1.8956 -2.0357 -1.3662 -1.2261 

2031 -1.7025 -1.9759 -2.1206 -1.4291 -1.2844 

2032 -1.774 -2.0558 -2.205 -1.4922 -1.3431 

2033 -1.8456 -2.1356 -2.2891 -1.5556 -1.4021 

2034 -1.9172 -2.2151 -2.3728 -1.6193 -1.4615 

2035 -1.9887 -2.2944 -2.4562 -1.6831 -1.5213 
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Table 4.21:  Forecast Estimates for the Gamma-Normal Lee-Carter model (female) 

 Mean Lower upper 

    80% 95% 80% 95% 

2016 -0.5358 -0.5730 -0.5927 -0.4987 -0.479 

2017 -0.6306 -0.7138 -0.7578 -0.5475 -0.5035 

2018 -0.7254 -0.8645 -0.9382 -0.5863 -0.5127 

2019 -0.8202 -1.0238 -1.1316 -0.6166 -0.5088 

2020 -0.9150 -1.1907 -1.3367 -0.6393 -0.4934 

2021 -1.0098 -1.3644 -1.5522 -0.6552 -0.4675 

2022 -1.1046 -1.5445 -1.7773 -0.6648 -0.432 

2023 -1.1994 -1.7304 -2.0114 -0.6685 -0.3874 

2024 -1.2942 -1.9218 -2.2540 -0.6667 -0.3345 

2025 -1.389 -2.1184 -2.5045 -0.6596 -0.2735 

2026 -1.4838 -2.3200 -2.7626 -0.6476 -0.2050 

2027 -1.5786 -2.5263 -3.028 -0.6309 -0.1292 

2028 -1.6734 -2.7372 -3.3004 -0.6096 -0.0464 

2029 -1.7682 -2.9525 -3.5794 -0.5839 0.04302 

2030 -1.863 -3.172 -3.8649 -0.554 0.13894 

2031 -1.9578 -3.3956 -4.1567 -0.52 0.2411 

2032 -2.0526 -3.6231 -4.4545 -0.4821 0.34933 

2033 -2.1474 -3.8545 -4.7582 -0.4403 0.46343 

2034 -2.2422 -4.0896 -5.0676 -0.3947 0.58326 

2035 -2.337 -4.3284 -5.3826 -0.3455 0.70867 
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4.4.23 Forecast Estimates for the Gamma-Normal Lee-Carter Model  

The forecasts estimates for the Gamma-Normal Lee-Carter model are presented in tables 

4.20 and 4.21. Unlike the results obtained from the Lee-Carter and the Brouhns’ models, 

estimates of the mean forecast  for the Gamma-Normal Lee-Carter model were higher for 

females than males during the first five years of forecast (year 2016-2020) and then 

higher for males than females from 2021 to 2035. For the males, the mean forecast ranges 

from -0.629 in 2016 to -1.989 in 2035. However, for the females, the mean forecast 

ranges from -0.536 in 2016 to -2.337 in 2035. For the prediction intervals, lower and 

upper 80 represent the lower and upper bounds of 80% prediction interval while lower 

and upper 95 represent the lower and upper bounds of 95% prediction interval. As stated 

earlier, the 80% prediction interval indicates that there is an 80% probability that the 

predicted mortality index will fall somewhere between the lower and upper bounds from 

2016 to 2035. This also holds for a 95% prediction interval. Generally it is observed that 

the forecast trend is decreasing for both gender with an intersection almost occurring in 

the year 2020. 

 

4.4.24 Comparison of Mean Forecast Estimates across the Models 

The results for all the models are presented in tables 4.16 to 4.21. Across the models, for 

both male and female, the proposed Gamma-Normal Lee-Carter had higher estimates 

compared to the other two models. The Brouhns model had higher estimates than the 

Lee-Carter for the female forecast, while a very close tie existed between the two for the 

male forecast.  

 

 

 

 



 

118 
 

Table 4.22: Measures of Goodness of fit for the forecast when 𝒉 = 𝟐𝟎  

 

Male 
 

 
log [𝐿൫𝜃෠൯] AIC BIC CAIC 𝜎ଶ S.E൫𝜃෠൯ 

GNLC 23.20 -42.40 -40.99 -41.40 0.002844 0.0133 

LC 2.78 -1.55 -0.14 -0.55 0.043320 0.0519 

BR 11.30 -18.60 -17.19 -17.60 0.013900 0.0294 

 

Female 
 

 log [𝐿൫𝜃෠൯] AIC BIC CAIC 𝜎ଶ - 

GNLC 29.70 -57.40 -56.76 -57.06 0.000841 - 

LC 4.84 -7.69 -7.05 -7.39 0.02931 - 

BR 8.69 -15.38 -14.74 -15.04 0.01692 - 
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4.4.25 Measures of Goodness of Fit for the Forecast when 𝒉 = 𝟐𝟎  

Across the models, the male data set fits best under a random walk with drift model, 

Arima (0 1 0) while the female data fit best under an Arima (0 2 0). As displayed in table 

4.22, for the male data, the standard error of the drift parameter ൫𝜃෠൯ is lowest for the 

proposed model. For both the male and female dataset, the Gamma-normal Lee-Carter 

has the minimum variance with 0.002844 and 0.000841 respectively. The proposed 

model also has the lowest AIC, BIC and CAIC values which represents the distribution 

with minimum information loss. The Renshaw Haberman model did not converge.  
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Table 4.23: Measures of Goodness of fit results for the simulated data 

years = 5, ages = 15 

 log [𝐿൫𝜃෠൯] AIC BIC CAIC HQC 

GNLC -71.5810 207.162 281.3216 257.4477 236.7731 

LC -71.5817 209.1634 285.6405 263.8951 239.6998 

BR -59782.7 119631.3 119707.8 119653.3 119746.6 

RH -37822.3 75746.5 75864.69 75876.41 76219.84 

years = 20, ages = 20 

 log [𝐿൫𝜃෠൯] AIC BIC CAIC HQC 

GNLC -198.322 510.6444 738.1579 529.9777 600.7427 

LC -198.338 512.6758 744.1807 532.7462 604.3548 

BR -208805 417725.8 417957.3 417745.9 417817.5 

RH -174534 349259 349642.2 349320.5 349410.7 

years = 30, ages = 20 

 log [𝐿൫𝜃෠൯] AIC BIC CAIC HQC 

GNLC -281.065 696.1302 990.7245 715.8727 810.8098 

LC -281.100 698.2004 997.1916 726.5509 814.5917 

BR -296181 592498 592797 592515.7 592614.4 

RH -266975 534181.4 534691.4 534237.6 534379.9 

years = 40, ages = 25 

 log [𝐿൫𝜃෠൯] AIC BIC   

GNLC -556.957 1287.91 1714.889     

LC -540.4348 1256.87 1688.752     

BR -564036 1128248 1128680     

RH -530638.5 1061579 1062320     
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4.4.26 Measures of Goodness of Fit Results for the Simulated Data 

For the simulated data, the AIC, BIC and CAIC were lowest for the gamma-normal Lee-

Carter than other models. The Brouhns and the Renshaw Haberman models did not 

converge for both gender.Furthermore, the results presented in Table 4.23 show that the 

proposed Gamma-Normal Lee-Cartermodel could not work beyond 30 years. When the 

time period extended to 40 years, the Lee-Carter model outperformed the Gamma-

Normal Lee-Cartermodel. This brings to mind the central limit theorem whose attributes 

has been discussed in the previous chapter.  
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CHAPTER FIVE 

Summary, Conclusion, Contribution to Knowledge and Suggestion for Further 

Study 

5.1 Summary 

The Lee-Carter model has become a reference point for mortality modelling in most 

developed Countries. Attempts in using the model for describing the pattern of mortality 

in developing countries with defective data situation, have resulted in the violation of the 

normality assumption. This is due to its inability to accommodate variability across all 

age-groups. Therefore, in this study, a Gamma-Normal Lee-Carter model was developed 

and compared to some existing variants of the Lee-Carter model which include: Lee and 

Carter (1992), Brouhns (2002) and Renshaw and Haberman (2006) model. The proposed 

model was able to accommodate variability at different ages better than the other existing 

variants used. 

5.2 Conclusion 

When it comes to modelling heterogeneous mortality data, which is usually the situation 

in many developing countries, the Gamma-Normal Lee-Carter model should be 

considered as a better alternative to the referenced classical Lee-Carter. Hence, the 

modified Lee-Carter model is recommended for modelling mortality data from 

developing countries. 

5.3Contribution to Knowledge  

The limitation of the classical Lee-Carter model with respect to mortality data from 

developing countries has been successfully overcome as the proposed Gamma-

Normal Lee-Carter model can be effectively used when the dynamics of mortality 

change are heterogeneous within a given population. 
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5.4   Suggestion for further study 

This method can also be applied to other mortality models that assume a Poisson or 

Normal distribution framework such as the Brouhns and the Renshaw Haberman model. 
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APPENDIX A 

Table 1.1: Age-specific Mortality rates Nigeria (Males) 

2000 2001 2002 2003 2004 2005 2006 2007 

<1  0.132 0.128 0.124 0.121 0.117 0.113 0.109 0.105 

1-4 0.022 0.022 0.021 0.02 0.019 0.018 0.017 0.016 

5-9 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 

10-14 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 

15-19   0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 

20-24 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 

25-29  0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 

30-34  0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

35-39  0.011 0.011 0.011 0.012 0.011 0.011 0.011 0.011 

40-44  0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 

45-49  0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.014 

50-54  0.019 0.019 0.019 0.019 0.019 0.018 0.018 0.018 

55-59  0.024 0.024 0.024 0.024 0.024 0.024 0.023 0.023 

60-64  0.036 0.036 0.036 0.036 0.036 0.035 0.034 0.034 

65-69  0.054 0.054 0.054 0.054 0.054 0.053 0.052 0.051 

70-74 0.087 0.088 0.088 0.088 0.087 0.086 0.084 0.083 

75-79  0.142 0.143 0.144 0.144 0.142 0.14 0.138 0.136 

80-84  0.229 0.23 0.231 0.231 0.229 0.226 0.223 0.221 

85+  0.357 0.358 0.359 0.359 0.357 0.354 0.350 0.348 
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Table 1.1.1: Age-specific Mortality rates Nigeria (Males) 

2008 2009 2010 2011 2012 2013 2014 2015 

<1  0.101 0.098 0.094 0.091 0.088 0.085 0.082 0.08 

1-4 0.015 0.015 0.014 0.013 0.013 0.012 0.011 0.011 

5-9 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 

10-14 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

15-19   0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

20-24 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

25-29  0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 

30-34  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 

35-39  0.011 0.01 0.01 0.01 0.01 0.01 0.01 0.009 

40-44  0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 

45-49  0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.012 

50-54  0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 

55-59  0.023 0.022 0.022 0.022 0.022 0.022 0.021 0.021 

60-64  0.033 0.033 0.033 0.032 0.032 0.032 0.032 0.031 

65-69  0.051 0.05 0.05 0.049 0.049 0.049 0.048 0.048 

70-74 0.082 0.082 0.081 0.081 0.08 0.08 0.079 0.079 

75-79  0.135 0.134 0.134 0.133 0.133 0.132 0.132 0.131 

80-84  0.219 0.218 0.218 0.217 0.216 0.216 0.215 0.215 

85+  0.347 0.346 0.345 0.345 0.345 0.344 0.344 0.343 
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Table 1.2: Age-specific Mortality rates Nigeria (Females) 

 2000 2001 2002 2003 2004 2005 2006 

<1  0.110 0.107 0.103 0.100 0.097 0.093 0.090 

1-4 0.022 0.021 0.020 0.020 0.019 0.018 0.017 

5-9 0.007 0.007 0.007 0.007 0.007 0.007 0.006 

10-14 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

15-19   0.004 0.004 0.004 0.004 0.004 0.004 0.004 

20-24 0.006 0.006 0.006 0.005 0.005 0.005 0.005 

25-29  0.008 0.008 0.008 0.008 0.008 0.007 0.007 

30-34  0.009 0.01 0.01 0.01 0.01 0.01 0.009 

35-39  0.011 0.011 0.012 0.012 0.012 0.012 0.012 

40-44  0.012 0.012 0.012 0.012 0.012 0.012 0.012 

45-49  0.012 0.012 0.013 0.013 0.013 0.012 0.012 

50-54  0.015 0.015 0.015 0.015 0.015 0.015 0.015 

55-59  0.02 0.02 0.02 0.02 0.02 0.02 0.019 

60-64  0.031 0.031 0.032 0.032 0.031 0.031 0.03 

65-69  0.05 0.05 0.05 0.05 0.05 0.049 0.048 

70-74 0.084 0.084 0.085 0.085 0.084 0.083 0.081 

75-79  0.139 0.14 0.141 0.141 0.139 0.137 0.135 

80-84  0.227 0.229 0.23 0.23 0.229 0.226 0.222 

85+  0.347 0.349 0.35 0.35 0.348 0.345 0.342 
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Table 1.2.1: Age-specific Mortality rates Nigeria (Females) 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 
<1  0.087 0.084 0.081 0.078 0.075 0.073 0.070 0.068 0.066 

1-4 0.016 0.015 0.014 0.014 0.013 0.012 0.012 0.011 0.011 

5-9 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 

10-14 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

15-19   0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

20-24 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 

25-29  0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 

30-34  0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.007 0.007 

35-39  0.011 0.011 0.011 0.011 0.011 0.011 0.01 0.009 0.008 

40-44  0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.01 0.009 

45-49  0.012 0.012 0.012 0.011 0.012 0.012 0.011 0.011 0.01 

50-54  0.015 0.014 0.014 0.014 0.014 0.014 0.014 0.013 0.012 

55-59  0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.017 0.017 

60-64  0.03 0.029 0.029 0.029 0.028 0.028 0.028 0.027 0.027 

65-69  0.047 0.047 0.046 0.046 0.046 0.045 0.045 0.044 0.044 

70-74 0.08 0.079 0.078 0.078 0.077 0.077 0.076 0.075 0.075 

75-79  0.133 0.132 0.131 0.13 0.129 0.129 0.128 0.127 0.126 

80-84  0.22 0.218 0.217 0.216 0.215 0.214 0.213 0.212 0.211 

85+  0.339 0.337 0.336 0.335 0.335 0.334 0.333 0.332 0.332 
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Table 1.3: Number of Deaths for Nigeria (Males) 

  2000 2001 2002 2003 2004 2005 2006 2007 

<1  12090 11780 11460 11160 10840 10500 10160 9810 

 1-4 7460 7200 6940 6650 6370 6100 5830 5580 

    5-9 2816 2801 2775 2740 2680 2605 2534 2478 

10-14 1457 1453 1441 1428 1407 1374 1345 1323 

15-19   1775 1774 1761 1751 1738 1705 1681 1663 

20-24 2518 2517 2493 2477 2465 2411 2375 2345 

25-29  2803 2822 2814 2811 2799 2739 2701 2653 

30-34  3128 3174 3199 3226 3232 3189 3159 3094 

35-39  3562 3657 3733 3796 3812 3762 3748 3679 

40-44  3860 3937 4002 4059 4078 4057 4072 4025 

45-49  4145 4209 4267 4315 4331 4315 4314 4272 

50-54  4821 4877 4932 4980 4999 4995 4996 4971 

55-59  5673 5722 5775 5821 5842 5853 5852 5850 

60-64  7217 7272 7343 7412 7453 7493 7501 7530 

65-69  8758 8828 8915 8991 9056 9148 9198 9285 

70-74 10020 10092 10187 10271 10379 10550 10677 10854 

75-79  9346 9385 9455 9534 9688 9946 10169 10440 

80-84  6072 6061 6082 6135 6286 6545 6794 7069 

85+  2479 2440 2425 2444 2542 2714 2895 3080 

 

 

 

 

 

Table 1.3.1: Number of Deaths for Nigeria (Males) 
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  2008 2009 2010 2011 2012 2013 2014 2015 

<1  9490 9170 8870 8570 8300 8040 7800 7570 

 1-4 5330 5090 4860 4660 4450 4260 4090 3920 

5-9 2446 2428 2416 2404 2383 2349 2310 2243 

10-14 1313 1310 1308 1308 1304 1292 1285 1250 

15-19   1658 1656 1658 1667 1669 1670 1672 1642 

20-24 2332 2328 2324 2329 2324 2323 2332 2301 

25-29  2639 2597 2584 2592 2579 2570 2567 2486 

30-34  3090 2999 2979 3008 3000 2990 2976 2808 

35-39  3705 3583 3588 3650 3651 3647 3628 3352 

40-44  4061 3931 3918 3991 4010 4024 4022 3757 

45-49  4294 4216 4218 4297 4336 4355 4349 4137 

50-54  4986 4939 4936 4982 5011 5031 5040 4927 

55-59  5856 5862 5865 5880 5898 5911 5921 5919 

60-64  7540 7603 7623 7618 7635 7653 7673 7788 

65-69  9320 9454 9509 9504 9538 9574 9617 9849 

70-74 10941 11163 11272 11290 11363 11442 11527 11888 

75-79  10589 10875 11035 11092 11208 11333 11462 11898 

80-84  7226 7475 7628 7700 7815 7937 8061 8418 

85+  3183 3321 3408 3458 3527 3600 3669 3849 
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Table 1.4: Number of Deaths for Nigeria (Females) 

2000 2001 2002 2003 2004 2005 2006 2007 

<1  10260 9970 9690 9380 9080 8780 8490 8210 

1-4 7510 7270 7000 6740 6470 6200 5920 5650 

5-9 2961 2936 2903 2862 2797 2715 2637 2576 

10-14 1584 1575 1561 1546 1521 1484 1452 1428 

15-19   1725 1718 1704 1690 1669 1633 1603 1579 

20-24 2113 2110 2098 2085 2062 2022 1987 1956 

25-29  2777 2815 2840 2854 2837 2787 2748 2682 

30-34  3288 3364 3432 3493 3510 3484 3461 3372 

35-39  3683 3811 3927 4025 4057 4025 4031 3959 

40-44  3647 3736 3820 3897 3934 3934 3970 3932 

45-49  3579 3645 3707 3763 3789 3784 3796 3762 

50-54  4126 4183 4236 4283 4302 4294 4297 4268 

55-59  4997 5044 5092 5136 5153 5149 5140 5125 

60-64  6928 6989 7050 7103 7127 7136 7121 7131 

65-69  9080 9150 9217 9269 9317 9374 9392 9462 

70-74 11017 11078 11142 11197 11290 11434 11531 11699 

75-79  10644 10656 10689 10740 10885 11122 11325 11599 

80-84  7150 7098 7082 7116 7272 7532 7786 8084 

85+  2931 2852 2810 2822 2929 3113 3312 3524 
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Table 1.4.1: Number of Deaths for Nigeria (Females) 

 
2008 2009 2010 2011 2012 2013 2014 2015 

<1 7930 7650 7400 7140 6909 6690 6490 6290 

1-4 5400 5160 4910 4700 4490 4300 4110 3940 

5-9 2541 2520 2503 2489 2471 2448 2433 2397 

10-14 1416 1410 1407 1405 1401 1393 1395 1375 

15-19 1570 1563 1561 1564 1563 1556 1554 1537 

20-24 1940 1925 1915 1909 1900 1887 1878 1856 

25-29 2665 2578 2553 2553 2523 2440 2377 2250 

30-34 3376 3219 3189 3220 3190 3031 2905 2650 

35-39 4012 3847 3866 3942 3926 3711 3537 3118 

40-44 3993 3846 3847 3933 3945 3782 3654 3290 

45-49 3801 3715 3732 3822 3855 3751 3661 3429 

50-54 4292 4233 4238 4292 4318 4260 4216 4100 

55-59 5129 5123 5126 5146 5163 5161 5160 5153 

60-64 7123 7182 7191 7182 7197 7259 7308 7423 

65-69 9464 9608 9639 9613 9639 9782 9894 10149 

70-74 11746 11998 12079 12065 12129 12375 12574 12988 

75-79 11717 12051 12197 12233 12353 12675 12946 13456 

80-84 8239 8547 8710 8786 8924 9219 9475 9918 

85+ 3645 3826 3936 4006 4104 4279 4434 4679 
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Figure 1: Annotated plots of log male mortality rates 
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Figure 2: Annotated plots of log female mortality rates 
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Figure 3: Annotated plots of untransformed male mortality rates (2000-2015) 
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Figure 4: Annotated plots of untransformed female mortality rates (2000-2015) 
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Figure 5: Histogram across age-groups 0-12.5 (male mortality rates) 
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Figure 6: Histogram across age-groups 17.5-32.5 (male mortality rates) 

 

 

 

 

 

 

 

 

  



 

145 
 

 

Figure 7: Histogram across age-groups 37.5-52.5 (male mortality rates) 
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Figure 8: Histogram across age-groups 57.5-72.5 (male mortality rates) 
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Figure 9: Histogram across age-groups 77.5-87.5 (male mortality rates) 
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Figure 10: Histogram across age-groups 0-12.5 (male log mortality rates) 
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Figure 11: Histogram across age-groups 17.5-32.5 (male log mortality rates) 
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Figure 12: Histogram across age-groups 37.5-52.5 (male log mortality rates) 

 



 

151 
 

Figure 13: Histogram across age-groups 57.5-72.5 (male log mortality rates) 

 

 

Figure 14: Histogram across age-groups 77.5-87.5 (male log mortality rates) 
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Figure 15: Histogram across period 2000-2003 (male mortality rates) 
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Figure 16: Histogram across period 2004-2007 (male mortality rates) 
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Figure 17: Histogram across period 2008-2011 (male mortality rates) 

 

Figure 18: Histogram across period 2012-2015 (male mortality rates) 
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Figure 19: Histogram across period 2000-2003 (male log mortality rates) 
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Figure 20: Histogram across period 2004-2007 (male log mortality rates) 

 

Figure 21: Histogram across period 2008-2011 (male log mortality rates) 
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Figure 22: Histogram across period 2012-2015 (male log mortality rates) 
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Figure 23: Histogram across age-groups 0-12.5 (female mortality rates) 
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Figure 24: Histogram across age-groups 17.5-32.5 (female mortality rates)  

 

Figure 25: Histogram across age-groups 37.5-52.5 (female mortality rates)  
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Figure 26: Histogram across age-groups 57.5-72.5 (female mortality rates)  
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Figure 27: Histogram across age-groups 77.5-87.5 (female mortality rates)  
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Figure 28: Histogram across age-groups 0-12.5 (female log mortality rates)  
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Figure 29: Histogram across age-groups 17.5-32.5 (female log mortality rates)  

 

Figure 30: Histogram across age-groups 37.5-52.5 (female log mortality rates)  
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Figure 31: Histogram across age-groups 57.5-72.5 (female log mortality rates)  
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Figure 32: Histogram across age-groups 77.5-87.5 (female log mortality rates)  
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Figure 33: Histogram across period 2000-2003 (female mortality rates)  
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Figure 34: Histogram across period 2004-2007 (female mortality rates)  

 

Figure 35: Histogram across period 2008-2011 (female mortality rates)  



 

168 
 

 

Figure 36: Histogram across period 2012-2015 (female mortality rates)  

 



 

169 
 

 

Figure 37: Histogram across period 2000-2003 (female log mortality rates)  
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Figure 38: Histogram across period 2004-2007 (female log mortality rates)  

 

Figure 39: Histogram across period 2008-2011 (female log mortality rates)  
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Figure 40: Histogram across period 2012-2015 (female log mortality rates)  
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Figure 41: QQ plots across ages 0-12.5 (male mortality rates)  
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Figure 42: QQ plots across ages 17.5-32.5 (male mortality rates)  

 

Figure 43: QQ plots across ages 37.5-52.5 (male mortality rates)  
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Figure 44: QQ plots across ages 57.5-72.5 (male mortality rates)  
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Figure 45: QQ plots across ages 77.5-87.5 (male mortality rates)  
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Figure 46: QQ plots across ages 0-12.5 (male log mortality rates)  
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Figure 47: QQ plots across ages 17.5-32.5 (male log mortality rates)  

 

Figure 48: QQ plots across ages 37.5-52.5 (male mortality rates)  
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Figure 49: QQ plots across ages 57.5-72.5 (male log mortality rates)  
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Figure 50: QQ Plots across age-groups 77.5-87.5 (male log mortality rates) 
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Figure 51: QQ Plots across period 2000-2003 (male mortality rates) 
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Figure 52: QQ Plots across period 2004-2007 (male mortality rates) 

 

Figure 53: QQ Plots across period 2008-2011 (male mortality rates) 
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Figure 54: QQ Plots across period 2012-2015 (male mortality rates) 
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Figure 55: QQ Plots across period 2000-2003 (male log mortality rates) 
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Figure 56: QQ Plots across period 2004-2007 (male log mortality rates) 



 

185 
 

 

Figure 57: QQ Plots across period 2008-2011 (male log mortality rates) 
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Figure 58: QQ Plots across period 2012-2015 (male log mortality rates) 
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Figure 59: QQ Plots across age-groups 0-12.5 (female mortality rates) 
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Figure 60: QQ Plots across age-groups 17.5-32.5 (female mortality rates) 

 

Figure 61: QQ Plots across age-groups 37.5-52.5 (female mortality rates) 
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Figure 62: QQ Plots across age-groups 57.5-72.5 (female mortality rates) 
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Figure 63: QQ Plots across age-groups 77.5-87.5 (female mortality rates) 
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Figure 64: QQ Plots across age-groups 0-12.5 (female log mortality rates) 
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Figure 65: QQ Plots across age-groups 17.5-32.5 (female log mortality rates) 

 

Figure 66: QQ Plots across age-groups 37.5-52.5 (female log mortality rates) 
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Figure 67: QQ Plots across age-groups 57.5-72.5 (female log mortality rates) 
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Figure 68: QQ Plots across age-groups 77.5-87.5 (female log mortality rates) 
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Figure 69: QQ Plots across period 2000-2003 (female mortality rates) 
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Figure 70: QQ Plots across period 2004-2007 (female mortality rates) 
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Figure 71: QQ Plots across period 2008-2011 (female mortality rates) 

 

 

 

 

Figure 72: QQ Plots across period 2012-2015 (female mortality rates) 
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Figure 73: QQ Plots across period 2001-2003 (female log mortality rates) 
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Figure 74: QQ Plots across period 2004-2007 (female log mortality rates) 
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Figure 75: QQ Plots across period 2008-2011 (female log mortality rates) 
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Figure 76: QQ Plots across period 2012-2015 (female log mortality rates) 
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Figure 77: Parameter 𝒂𝒙 for male 
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Figure 78: Parameter 𝒂𝒙 for female 
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Figure 79: Parameter 𝒃𝒙  for male 
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Figure 80: Parameter 𝒃𝒙 for female 
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Figure 81: Parameter 𝒌𝒕 for male 
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Figure 82: Parameter 𝒌𝒕 for female 
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      Figure 83: Fanplots using Lee-Carter model for males 
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     Figure 84: Fanplots using Lee-Carter model for females 
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Figure 85: Fanplots using Brouhns model for male 
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           Figure 86: Fanplots using Brouhns model for female 
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Figure 87: Fanplots using Gamma-normal model for males 
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Figure 88: Forecast using Gamma-Normal model for female 

 

 

 

 

 

 

 

 

APPENDIX B 
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R CODES USED IN THE STUDY  

1. NORMALITY TESTS 

Tables 4.3 and 4.4 -Kolmogorov-Smirnov test 

# Kolmogorov-Smirnov Tests 

# Across Ages  

apply(Mxt_male,1,function(x) ks.test(x,'pnorm'))  

# Across the years  

apply(Mxt_male,2,function(x) ks.test(x,'pnorm'))  

# Across Ages  

apply(Mxt_female,1,function(x) ks.test(x,'pnorm'))  

# Across the years  

apply(Mxt_female,2,function(x) ks.test(x,'pnorm'))  

Tables 4.5 and 4.6 -Shapiro-Wilk test 

# Shapiro-Wilk test 

# Across Ages 

apply(Mxt_male,1,shapiro.test)  

# Across the years 

apply(Mxt_male,2,shapiro.test)  

# Across Ages 

apply(Mxt_female,2,1,shapiro.test)  
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# Across the years 

apply(Mxt_female,2,shapiro.test) 

 

2. MAXIMUM LIKELIHOOD ESTIMATE OF PARAMETERS, GOODNESS OF 

FIT AND PLOTS - Table 4.7 – Table 4.14 

 Older Variants 

# loading Libraries 

a. library(StMoMo)  

b. library(demography)  

c. library(readxl)  

d. library(ilc) 

#### Male Dataset 

nig.dd_male 

### Model 1: Lee-Carter with Gaussian Error 

LC_gausErr_Male <-  lca.rh(nig.dd_male, model = 'lc',  

error = 'gaussian',  

verbose=F) 

# Estimated Parameters 

coef(LC_gausErr_Male) 

# Model summary 

LC_gausErr_Male 

 Plot 
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plot(LC_gausErr_Male) 

###Model 2: Brouhns with Poisson Error 

nig_male = StMoMoData(nig.dd_male,series = 'male') 

nig_female = StMoMoData(nig.dd_female,series = 'female') 

nig_male 

nig_female 

### Brouhns (Using log link i.e Poisson) 

LC = lc(link = 'log') 

LCfit_male <- fit(LC, data = nig_male) 

LCfit_male 

# Estimated Parameters 

coef(LCfit_male) 

# Goodmess of fit  

AIC(LCfit_male) 

BIC(LCfit_male) 

# Plot 

plot(LCfit_male) 

###Model 3: Renshaw-Haberman model (Using log Link) 

# The model fitting didn't converge 
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RH <- rh(link = "log", cohortAgeFun = '1') 

RHfit_male <- fit(RH, data = nig_male,start.ax = LCfit_male$ax, 

start.bx = LCfit_male$bx,start.kt = LCfit_male$kt) 

# Estimated Parameters 

coef(RHfit_male) 

# Goodmess of fit  

AIC(RHfit_male) 

BIC(RHfit_male) 

# Plot 

plot(RHfit_male) 

 

#### Female Dataset 

nig.dd_female 

### Model 1b: Lee-Carter with Gaussian Error 

LC_gausErr_female <-  lca.rh(nig.dd_female, model = 'lc',  

error = 'gaussian',  

verbose=F) 

# Estimated Parameters 

coef(LC_gausErr_female) 
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# Plot 

plot(LC_gausErr_female) 

# Model summary 

LC_gausErr_female 

 

###Model 2b: Brouhns –LC with Poisson Error 

nig_female = StMoMoData(nig.dd_female,series = 'female') 

nig_female 

### Brouhns- LC (Using log link i.e Poisson) 

LC = lc(link = 'log') 

LCfit_female <- fit(LC, data = nig_female) 

LCfit_female 

# Estimated Parameters 

coef(LCfit_female) 

# Goodness of fit 

AIC(LCfit_female) 

BIC(LCfit_female) 

# Plot 

plot(LCfit_female) 
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### Model 3b: Renshaw-Haberman model  

RH <- rh(link = "log", cohortAgeFun = '1') 

RHfit_female <- fit(RH, data = nig_female,start.ax = LCfit_female$ax, 

start.bx = LCfit_female$bx,start.kt = LCfit_female$kt) 

# Estimated Parameters 

Coef(RHfit_female) 

# Goodness of fit 

AIC(RHfit_female) 

BIC(RHfit_female) 

# Plot 

plot(RHfit_female) 

# Compute Log-Likelihood Gaussian- (Lee-Carter) 

computeLogLikGaussian2 <- function(obs, fit) { 

nobs = length(obs) 

  sigma2 = sum((obs-fit)^2)/(nobs);sigma2 

res = (-0.5*log(2*pi)) - (0.5*log(sigma2)) - (((obs-fit)^2)/(2*sigma2)) 

sum(res,rm.na=T) 

} 

# Compute Log-Likelihood Poisson- (Brouhns and Renshaw-Haberman) 
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computeLogLikPoisson<- function(obs, fit) { 

res<- (obs * log(fit) - fit - lfactorial(obs)) 

sum(res, na.rm=TRUE) 

} 

### Model 4: Gamma-Normal Lee-Carter (GNLC) 

# loading Library 

library (bbmle) 

## Utility function 

# GNLC Density Function 

dgammaNorm<- function(x,a,mu,sd,log=FALSE){ 

d = dnorm(x,mu,sd) * 

  ((1/gamma(a)) *  

  (-log(1 - pnorm(x,mu,sd)))^(a-1)) 

if (log) log(d) else d 

} 

# Convert an un-named vector parameter to list 

toListGN<- function(pars,rw,cl){ 

nms =c(paste('a',1:rw,sep = ''), 

paste('b',1:rw,sep = ''), 
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paste('k',1:cl,sep = ''), 

         'alpha', 

         'sigma') 

structure(as.list(pars),names= nms) 

} 

#Compute Y predicted  

computePredicted = function(ax,bx,kt){ 

ind = gl(cl,rw) 

mat<- matrix(ax +  bx*kt[ind], nrow=rw, ncol=cl) 

  Ypred = array(mat) 

  Ypred 

} 

# Compute Log-Likelihood 

computeLogLikGN = function(Yobs,Ypred,alpha,sigma){ 

names(Yobs) = NULL 

names(Ypred) = NULL 

names(alpha) = NULL 

names(sigma) = NULL 

nobs = length(Yobs) 
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 LL = -nobs*(lgamma(alpha)) + 

sum(log(dnorm(Yobs,Ypred,sigma))) +  

        (alpha -1)*sum(log(-log(1- pnorm(Yobs,Ypred,sigma)))) 

  LL 

} 

# Imposing Constraint 

imposeConstraint=function(CoeffList){ 

tempBx = CoeffList$bx 

tempKt = CoeffList$kt 

  c1 = mean(tempKt) 

  c2 = sum(tempBx) 

    # bx 

bx = tempBx/c2 

    # kt 

kt = c2*(tempKt - c1) 

list(bx=bx,kt=kt) 

} 

# Compute MSE  

computeMSE = function(Yobs,Ypred){ 
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nobs = length(Yobs) 

rss = (Yobs - Ypred)^2 

mse = sum(rss)/nobs 

mse 

} 

### a.Male Dataset 

maleDataList = getSpecDataOnly('male') 

ages<- c(0,3,7.5,12.5,17.5,22.5, 

          27.5,32.5,37.5,42.5,47.5, 

          52.5,57.5,62.5,67.5,72.5, 

          77.5,82.5,87.5) 

years = 2000:2015 

Mxt_m = maleDataList$Mxt_m 

rownames(Mxt_m) = ages 

colnames(Mxt_m) = years 

nAges = nrow(Mxt_m) 

nYears = ncol(Mxt_m) 

 

# Data Setup 
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log_Mxt_m = log(Mxt_m) 

Data_male = log_Mxt_m 

# Parameters 

rw = nAges;rw 

cl = nYears;cl 

cat('Number of parameter needed for GN',eval(rw+rw+cl+2)) 

#### GNLC Log-likelihood #### 

LLGN <- function(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19, 

                 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19, 

                 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16, 

alpha, 

sigma){ 

  AX = c(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 

         a11,a12,a13,a14,a15,a16,a17,a18,a19) 

    BX = c(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, 

         b12,b13,b14,b15,b16,b17,b18,b19) 

  KT=  c(k1,k2,k3,k4,k5,k6,k7,k8,k9, 

         k10,k11,k12,k13,k14,k15,k16) 

ff = gl(cl,rw) #  
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mt<- matrix(AX +  BX*KT[ff], nrow=rw, ncol=cl) 

  Y.pred = array(mt) 

  Y = array(Data_male) 

  R = suppressWarnings( 

dgammaNorm(Y,a =alpha, mu = Y.pred, sd = sigma, log = TRUE)) 

  -sum(R) 

} 

# StartUp Parameters 

fixedAs = apply(Data_male,1,mean,na.rm = T) 

startPars <- c(fixedAs,rep(1/rw,rw),rep(0,cl),0.2,1) 

length(startPars) 

#### Fitting MLE 1  

mleFit_male =mle2(minuslogl = LLGN, 

fixed = toListFixed(fixedAs,rw), 

start= toListGN(startPars,rw,cl), 

control=list(maxit=3000) 

) 

mleFit_male 

## Extracting Coefficients 
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coeffs_male = extractCoeffients(mleFit_male) 

coeffs_male 

## Imposing Constraints 

cstCoef_male = imposeConstraint(coeffs_male) 

sum(cstCoef_male$bx) 

sum(cstCoef_male$kt) 

# Final Model Parameter 

## Extracting Coefficients 

FinalPars = list(ax =  

fixedAs, bx=cstCoef_male$bx,   

kt=cstCoef_male$kt,alpha=coeffs_male$alpha, 

sigma=coeffs_male$sigma) 

# Final Parameters 

Yobs = array(log_Mxt_m) 

# Recompute Likelihood 

Ypred = computePredicted(FinalPars$ax,FinalPars$bx,FinalPars$kt) 

# Log- Likelihood 

#a 

llik = computeLogLikGN(Yobs = Yobs,Ypred = Ypred, 
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alpha = FinalPars$alpha, 

sigma = FinalPars$sigma) 

# b 

llik2 = computeLogLikGN2(Yobs = Yobs, 

                         Ypred = computePredicted(coeffs_male$ax, 

                                                  coeffs_male$bx, 

                                                  coeffs_male$kt), 

alpha = coeffs_male$alpha, 

sigma = coeffs_male$sigma) 

llik 

llik2 

sum(dgammaNorm(x = array(Data_male), 

               a = FinalPars$alpha, 

mu = Ypred, 

sd = FinalPars$sigma, 

log = T)) 

# Compute MSE 

MSE_m = computeMSE(Yobs,Ypred);MSE_m 

# RMSE 
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RMSE_m = sqrt(MSE_m);RMSE_m 

# Output File 

# output.m = list(model = mleFit_male, unconstrCoeff = coeffs_male, 

#               ConstCoef = FinalPars, 

#               Yobs = Yobs,Ypred = Ypred, 

#               llik1 = llik,llik2 = llik2 

#  ) 

# save(output.m,file = 'mleFitGN_male.rda') 

 

### b.  Female Dataset 

# loading Library 

library(bbmle) 

FemaleDataList = getSpecDataOnly('female') 

ages<- c(0,3,7.5,12.5,17.5,22.5, 

          27.5,32.5,37.5,42.5,47.5, 

          52.5,57.5,62.5,67.5,72.5, 

          77.5,82.5,87.5) 

years = 2000:2015 

Mxt_f = FemaleDataList$Mxt_f 



 

229 
 

rownames(Mxt_f) = ages 

colnames(Mxt_f) = years 

nAges = nrow(Mxt_f) 

nYears = ncol(Mxt_f) 

# Data Setup 

log_Mxt_f = log(Mxt_f) 

Data_Female = log_Mxt_f 

# Parameters 

rw = nAges;rw 

cl = nYears;cl 

cat('Number of parameter needed for Norm',eval(rw+rw+cl+1)) 

cat('Number of parameter needed for GN',eval(rw+rw+cl+2)) 

#### GNLC Log-likelihood#### 

LLGN <- function(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19, 

                 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19, 

                 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16, 

alpha, 

sigma){ 

  AX = c(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 
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         a11,a12,a13,a14,a15,a16,a17,a18,a19) 

 BX = c(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, 

         b12,b13,b14,b15,b16,b17,b18,b19) 

  KT=  c(k1,k2,k3,k4,k5,k6,k7,k8,k9, 

         k10,k11,k12,k13,k14,k15,k16) 

ff = gl(cl,rw) #  

mt<- matrix(AX +  BX*KT[ff], nrow=rw, ncol=cl) 

  Y.pred = array(mt) 

  # Y = array(Data_Female) 

  Y = array(log(Mxt_f)) 

  R = suppressWarnings( 

dgammaNorm(Y,a =alpha, mu = Y.pred, sd = sigma, log = TRUE)) 

  -sum(R) 

} 

# StartUp Parameters 

fixedAs = apply(Data_Female,1,mean,na.rm = T) 

startPars <- c(fixedAs,rep(1/rw,rw),rep(0,cl),0.2,1) 

length(startPars) 

### Fitting MLE ### 
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mleFit_female =mle2(minuslogl = LLGN, 

fixed = toListFixed(fixedAs,rw), 

start= toListGN(startPars,rw,cl), 

control=list(maxit=3000) 

                 ) 

mleFit_female 

## Extracting Coefficients 

coeffs_female = extractCoeffients(mleFit_female) 

coeffs_female 

## Imposing Constraints 

cstCoef_female = imposeConstraint(coeffs_female) 

sum(cstCoef_female$bx) 

sum(cstCoef_female$kt) 

# Final Model Parameter 

## Extracting Coefficients 

FinalPars = list(ax = fixedAs, bx=cstCoef_female$bx,  

kt=cstCoef_female$kt,alpha=coeffs_female$alpha, 

sigma=coeffs_female$sigma) 

# FinalParameters 
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Yobs = array(log_Mxt_f) 

# Recompute Likelihood 

Ypred = computePredicted(FinalPars$ax,FinalPars$bx,FinalPars$kt) 

# Log Lik  

#a 

llik = computeLogLikGN(Yobs = Yobs,Ypred = Ypred, 

alpha = FinalPars$alpha, 

sigma = FinalPars$sigma) 

# b 

llik2 = computeLogLikGN2(Yobs = Yobs, 

                Ypred = computePredicted(coeffs_female$ax, 

                                        coeffs_female$bx, 

                                        coeffs_female$kt), 

alpha = coeffs_female$alpha, 

sigma = coeffs_female$sigma) 

llik 

llik2 

sum(dgammaNorm(x = array(Data_Female), 

               a = FinalPars$alpha, 
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mu = Ypred, 

sd = FinalPars$sigma, 

log = T)) 

# Compute MSE 

MSE_f = computeMSE(Yobs,Ypred); MSE_f 

# RMSE 

RMSE_f = sqrt(MSE_f);RMSE_f 

# Output File 

# output.f = list(model = mleFit_female, unconstrCoeff = coeffs_female, 

#     ConstCoef = FinalPars, 

#    Yobs = Yobs,Ypred = Ypred, 

#    llik1 = llik,llik2 = llik2 

#    ) 

# save(output.f,file = 'mleFitGN_female.rda') 

 

2b. ROOT MEAN SQUARE ERROR AND MEAN SQUARE ERROR-TABLE 4.15  

#### Male dataset 

## Lee-Carter – Gaussian 

res_gm = LC_gaus_male$residuals$y 



 

234 
 

nobs = length(as.array(LC_gaus_male$fitted$y)) 

mse_gm = sum((res_gm)^2)/nobs; mse_gm 

rmse_gm = sqrt(mse_gm); rmse_gm 

## Brouhns- LC poisson 

Ypred_pm <- LC_pois_male$fittingModel$fitted.values 

Yobs <- LC_pois_male$fittingModel$y 

# a = Ypred_pm - Yobs 

# a [1] 

res_pm <- LC_pois_male$fittingModel$residuals 

mse_pm = sum(res_pm^2)/nobs;mse_pm 

rmse_pm = sqrt(mse_pm);rmse_pm 

## Renshaw-Haberman 

res_rhm <- RHfit_male$fittingModel$residuals 

mse_rhm <- sum(res_rhm^2)/nobs; mse_rhm 

rmse_rhm <- sqrt(mse_rhm); rmse_rhm 

 

#### Female dataset 

## Lee-Carter - Gaussian 

res_gf = LC_gaus_female$residuals$y 
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nobs = length(as.array(LC_gaus_female$fitted$y)) 

mse_gf = sum((res_gf)^2)/nobs; mse_gf 

rmse_gf = sqrt(mse_gf); rmse_gf 

## Brouhns - LC poisson 

# Ypred_pf <- LC_pois_female$fittingModel$fitted.values 

# Yobs <- LC_pois_female$fittingModel$y 

# a = Ypred_pf - Yobs 

# a [1] 

res_pf <- LC_pois_female$fittingModel$residuals 

mse_pf = sum(res_pf^2)/nobs;mse_pf 

rmse_pf = sqrt(mse_pf);rmse_pf 

## Renshaw-Haberman  

res_rhf <- RHfit_female$fittingModel$residuals 

mse_rhf <- sum(res_rhf^2)/nobs; mse_rhf 

rmse_rhf <- sqrt(mse_rhf); rmse_rhf 

 

3. SIMULATION STUDY- TABLE 4.23  

# loading Libraries 

a) library(knitr) 

b) library(StMoMo) 

c) library(bbmle) 
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 ################ Simulation Study for t = 5 ################# 

## Specification 

ages = 0:14 

nAges = length(ages) 

years = 2000:2004 

nYears = length(years) 

 

## Simulate Data 

set.seed(452) 

n5_Dxt = matrix(runif(n = nAges*nYears, min = 1000, max = 10000), ncol = nYears) 

#n5_Dxt = matrix(rpois(n = nAges*nYears, lambda = 12000), ncol = nYears) 

set.seed(912) 

n5_Ext = matrix(runif(n = nAges*nYears, min = 20000, max = 300000), ncol = nYears) 

colnames(n5_Dxt) = colnames(n5_Ext) = years 

rownames(n5_Dxt) = rownames(n5_Ext) = ages 

n5_Mxt = n5_Dxt/n5_Ext 

n5_lnMxt = log(n5_Mxt) 

 

## Setup data for Modelling 

# Demogdata 

dim(n5_Dxt) 

head(n5_lnMxt) 

# Modelling  

##   Gamma Normal- Lee-Carter 

#### Data Setup 

Yobs_GN_n5 <- array(n5_lnMxt) 

#### Log Likelihood 

LLGN <- function(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,                

b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15, 

                 k1,k2,k3,k4,k5, 
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alpha, sigma){ 

  AX = c(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 

         a11,a12,a13,a14,a15) 

  BX = c(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, 

         b12,b13,b14,b15) 

  KT=  c(k1,k2,k3,k4,k5) 

ff = gl(nYears,nAges) #  

mt<- matrix(AX +  BX*KT[ff], nrow=rw, ncol=cl) 

  Y.pred = array(mt) 

  Y = array(n5_lnMxt) 

  R = suppressWarnings( 

dgammaNorm(Y,a =alpha, mu = Y.pred, sd = sigma, log = TRUE)) 

  -sum(R) 

} 

#### Setup Starting Parameters 

rw = nAges;rw 

cl = nYears;cl 

cat('Number of parameter needed for GN',eval(rw+rw+cl+2)) 

fixedAs = apply(n5_lnMxt,1,mean,na.rm = T) 

# startPars <- c(rep(0,rw),rep(0,rw),rep(0,cl),0.2,1) 

startPars <- c(fixedAs,rep(1/rw,rw),rep(0,cl),0.2,1) 

length(startPars) 

# startPars 

#### Fitting MLE 

n5_GNfit =mle2(minuslogl = LLGN, 

fixed = toListFixed(fixedAs,rw), 

start= toListGN(startPars,rw,cl), 

control=list(maxit=99999) 

                    # method = 'Nelder-Mead' 

) 
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n5_GNfit 

#### Make GN model Output 

n5_GNfitOutput = MakeGNoutput2(model = n5_GNfit) 

 

# Get Predictions (y_hats) 

Yhat_GN <- computeFittedY_GN(n5_GNfitOutput) 

head(Yhat_GN) 

 

#### Recompute LogLikelihood 

alp_m = n5_GNfitOutput$unconstrCoeff$alpha 

sig_m = n5_GNfitOutput$unconstrCoeff$sigma 

logLik_GNm <- computeLLGN(Yobs = Yobs_GN_n5, 

                               Ypred = Yhat_GN, 

alpha =  alp_m,sigma = sig_m) 

logLik_GNm 

 

## Lee-Carter Gaussian 

#### Sources internal functions 

loadGaussianReqSource() 

 

#### Data Setup 

# Convert to demogdata 

#Required library(StMoMo) 

S1_demogdata <- demography::demogdata(data = n5_Mxt ,pop = n5_Ext, 

ages = ages,years = years, 

type = 'mortality', 

label = 'S1', 

name = 'S1') 

S1_StMoMoData = StMoMo::StMoMoData(data = S1_demogdata) 

S1_StMoMoData 
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#### Fit Lee-Carter - Gaussian 

{r include=FALSE} 

 

#### Model P1: LC with Gaussian Error stmomo #### 

LC.g = lc2(link = 'gaussian') 

fitLCgaus<- fit.StMoMo2(LC.g, data = S1_StMoMoData) 

fitLCgaus 

Yhat_Gaus_N5 <- computeFittedY(fitLCgaus) 

head(Yhat_Gaus_N5) 

computeLogLikGaussian2(obs = Yobs_GN_n5,fit = Yhat_Gaus_N5) 

 

##  Inference 

mm<- matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S1)') 

 

## Fit Brouhns (LC Poisson) 

#### Model P1: LC poisson Error stmomo #### 

LC.p = lc(link = 'log') 

fitLCpois<- fit(LC.p, data = S1_StMoMoData) 

fitLCpois 

 

##  Inference 

mm<- matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S1)') 

 

## Fit Renshaw -Haberman (RH) 

#### Model P1: LC with Gaussian Error  

RH = rh(link = "log", cohortAgeFun = '1') 
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fitRH<- fit(RH, data = S1_StMoMoData) 

fitRH 

 

##  Inference 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'RH (S1)') 

 

## Performance of the models 

gmno = matrix(c(logLik_GNm, length(startPars)-(2+3)),nrow = 1) 

colnames(gmno) <- c('logLikelihood','Number of Parameters') 

kable(gmno,format = 'pandoc', caption = 'GN (S1)') 

 

#Lee-Carter - Gaussian 

mm<- 

matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus),fitLCgaus$npar),nrow = 

1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S1)') 

 

# Brouhns (LC – Poisson) 

mm<- 

matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois),fitLCpois$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC', 'Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S1)') 

 

# Renshaw-Haberman 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH),fitRH$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of parameters') 

kable(mm,format = 'pandoc',caption = 'RH (S1)') 
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########################################################### 

################ Simulation Study for t = 20 ################# 

## Specification 

ages = 0:19 

nAges = length(ages) 

years = 1997:2016 

nYears = length(years) 

 

## Simulate Data 

set.seed(812) 

n20_Dxt = matrix(rpois(n = nAges*nYears, lambda =7000), ncol = nYears) 

set.seed(912) 

n20_Ext = matrix(runif(n = nAges*nYears, min = 20000, max = 100000), ncol = nYears) 

n20_Mxt = n20_Dxt/n20_Ext 

n20_lnMxt = log(n20_Mxt) 

 

## Setup data for Moodelling 

# Demogdata 

dim(n20_Dxt) 

 

# Modelling  

## Gamma Normal Lee-Carter (GNLC) 

#### Data Setup 

Yobs_GN_n20 <- array(n20_lnMxt) 

 

#### Log Likelihood 

LLGN <- function(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15, 

                 a16,a17,a18,a19,a20, 

                 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15, 
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                 b16,b17,b18,b19,b20, 

                 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20, 

alpha, 

sigma){ 

  AX = c(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 

         a11,a12,a13,a14,a15 

,a16,a17,a18,a19,a20 

         ) 

 

  BX = c(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, 

         b12,b13,b14,b15 

,b16,b17,b18,b19,b20 

         ) 

 

  KT=  c(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20) 

ff = gl(nYears,nAges) #  

mt<- matrix(AX +  BX*KT[ff], nrow=rw, ncol=cl) 

  Y.pred = array(mt) 

  Y = array(n20_lnMxt) 

  R = suppressWarnings( 

dgammaNorm(Y,a =alpha, mu = Y.pred, sd = sigma, log = TRUE)) 

  -sum(R) 

} 

#### Setup Starting Parameters 

rw = nAges;rw 

cl = nYears;cl 

cat('Number of parameter needed for GN',eval(rw+rw+cl+2)) 

fixedAs = apply(n20_lnMxt,1,mean,na.rm = T) 

# startPars <- c(rep(0,rw),rep(0,rw),rep(0,cl),0.2,1) 

startPars <- c(fixedAs,rep(1/rw,rw),rep(0,cl),0.2,1) 
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length(startPars) 

startPars 

 

#### Fitting GNLC MLE 

n20_GNfit = mle2(minuslogl = LLGN, 

fixed = toListFixed(fixedAs,rw), 

start= toListGN(startPars,rw,cl), 

control=list(maxit=9999999) 

) 

n20_GNfit 

#### Make GNLC model Output 

n20_GNfitOutput = MakeGNoutput2(model = n20_GNfit) 

# Get Predictions (y_hats) 

Yhat_GN <- computeFittedY_GN(n20_GNfitOutput) 

 

#### Recompute LogLikelihood 

alp_m = n20_GNfitOutput$unconstrCoeff$alpha 

sig_m = n20_GNfitOutput$unconstrCoeff$sigma 

logLik_GNm <- computeLLGN(Yobs = Yobs_GN_n20, 

                               Ypred = Yhat_GN, 

alpha =  alp_m,sigma = sig_m) 

logLik_GNm 

 

## Lee-Carter – (LC Gaussian) 

#### Data Setup 

# Convert to demogdata 

library(StMoMo) 

S2_demogdata <- demography::demogdata(data = n20_Mxt ,pop = n20_Ext, 

ages = ages,years = years, 

type = 'mortality', 
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label = 'S2', 

name = 'S2') 

S2_StMoMoData = StMoMoData(data = S2_demogdata) 

S2_StMoMoData 

## Fit Lee-Carter - Gaussian 

#### Model P1: LC with Gaussian Error stmomo #### 

LC.g = lc2(link = 'gaussian') 

fitLCgaus<- fit.StMoMo2(LC.g, data = S2_StMoMoData) 

fitLCgaus 

Yhat_Gaus_N20 <- computeFittedY(fitLCgaus) 

head(Yhat_Gaus_N20) 

LLgaus_N20 = computeLogLikGaussian2(obs = Yobs_GN_n20,fit = Yhat_Gaus_N20) 

LLgaus_N20 

 

##  Inference 

mm<- matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S2)') 

 

## Fit Brouhns (LC – Poisson) 

#### Model P1: LC with Gaussian Error stmomo #### 

LC.p = lc(link = 'log') 

fitLCpois<- fit(LC.p, data = S2_StMoMoData) 

fitLCpois 

 

##  Inference 

mm<- matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S2)') 
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## Fit Renshaw-Haberman 

#### Model P1: LC with Gaussian Error stmomo #### 

RH = rh(link = "log", cohortAgeFun = '1') 

fitRH<- fit(RH, data = S2_StMoMoData) 

fitRH 

 

##  Inference 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'RH (S2)') 

 

## Performance 

##  Inference 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'RH (S2)') 

 

## Performance 

# Gamma Normal Lee-Carter  

gmno = matrix(c(logLik_GNm, length(startPars)-5),nrow = 1) 

colnames(gmno) <- c('logLikelihood','Number of Parameters') 

kable(gmno,format = 'pandoc', caption = 'GN (S2)') 

 

# Lee-Carter – (LC Gaussian) 

mm<- 

matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus),fitLCgaus$npar),nrow = 

1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S2)') 
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# Brouhns – (LC Poisson) 

mm<- 

matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois),fitLCpois$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC', 'Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S2)') 

 

# Renshaw-Haberman –(RH) 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH),fitRH$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of parameters') 

kable(mm,format = 'pandoc',caption = 'RH (S2)') 

 

########################################################### 

 

############## Simulation Study 3: t = 30  ################### 

## Specifications 

ages = 0:19 

nAges = length(ages) 

years = 1988:2017 

nYears = length(years) 

 

## Simulate Data 

set.seed(930) 

n30_Dxt = matrix(rpois(n = nAges*nYears, lambda = 7000), ncol = nYears) 

 

set.seed(9233) 

n30_Ext = matrix(runif(n = nAges*nYears, min = 20000, max = 100000), ncol = nYears) 

 

n30_Mxt = n30_Dxt/n30_Ext 

n30_lnMxt = log(n30_Mxt) 
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## Setup data for Moodelling 

# Demogdata 

dim(n30_Dxt) 

 

# Modelling  

## Gamma -Normal Lee-Carter 

#### Data Setup 

Yobs_GN_n30 <- array(n30_lnMxt) 

 

## Log Likelihood 

 

LLGN <- 

function(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20, 

                 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19,b20, 

                 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20, 

                 k21,k22,k23,k24,k25,k26,k27,k28,k29,k30, 

alpha, 

sigma){ 

  AX = c(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 

         a11,a12,a13,a14,a15,a16,a17,a18,a19,a20) 

 

  BX = c(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, 

         b12,b13,b14,b15,b16,b17,b18,b19,b20) 

 

  KT=  c(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20, 

         k21,k22,k23,k24,k25,k26,k27,k28,k29,k30) 

 

ff = gl(nYears,nAges) #  

mt<- matrix(AX +  BX*KT[ff], nrow=rw, ncol=cl) 

  Y.pred = array(mt) 
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  Y = array(n30_lnMxt) 

  R = suppressWarnings( 

dgammaNorm(Y,a =alpha, mu = Y.pred, sd = sigma, log = TRUE)) 

  -sum(R) 

} 

#### Setup Starting Parameters 

rw = nAges;rw 

cl = nYears;cl 

cat('Number of parameter needed for GN',eval(rw+rw+cl+2)) 

fixedAs = apply(n30_lnMxt,1,mean,na.rm = T) 

startPars <- c(fixedAs,rep(1/rw,rw),rep(0,cl),0.2,1) 

length(startPars) 

startPars 

 

#### Fitting MLE 

n30_GNfit =mle2(minuslogl = LLGN, 

fixed = toListFixed(fixedAs,rw), 

start= toListGN(startPars,rw,cl), 

control=list(maxit=69999) 

                #method = 'Nelder-Mead' 

) 

n30_GNfit 

#### Make GN model Output 

 

n30_GNfitOutput = MakeGNoutput2(model = n30_GNfit) 

 

# Get Predictions (y_hats) 

Yhat_GN <- computeFittedY_GN(n30_GNfitOutput) 

 

#### Recompute LogLikelihood 
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alp_m = n30_GNfitOutput$unconstrCoeff$alpha 

sig_m = n30_GNfitOutput$unconstrCoeff$sigma 

logLik_GNm <- computeLLGN(Yobs = Yobs_GN_n30, 

                          Ypred = Yhat_GN, 

alpha =  alp_m,sigma = sig_m) 

logLik_GNm 

 

## Lee-Carter – ( LC Gaussian) 

#### Data Setup 

# Convert to demogdata 

library(StMoMo) 

S3_demogdata <- demography::demogdata(data = n30_Mxt ,pop = n30_Ext, 

ages = ages,years = years, 

type = 'mortality', 

label = 'S3', 

name = 'S3') 

S3_StMoMoData = StMoMoData(data = S3_demogdata) 

S3_StMoMoData 

## Fit Lee-Carter -LC Gaussian 

#### Model P1: LC with Gaussian Error stmomo #### 

LC.g = lc2(link = 'gaussian') 

fitLCgaus<- fit.StMoMo2(LC.g, data = S3_StMoMoData) 

fitLCgaus 

##  Inference 

mm<- matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S3)') 

 

## Fit Brouhns -LC Poisson 

#### Model P1: LC with Gaussian Error stmomo #### 
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LC.p = lc(link = 'log') 

fitLCpois<- fit(LC.p, data = S3_StMoMoData) 

fitLCpois 

##  Inference 

mm<- matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S3)') 

 

## Fit Renshaw-Haberman -RH 

#### Model P1: LC with Gaussian Error stmomo #### 

RH = rh(link = "log", cohortAgeFun = '1') 

fitRH<- fit(RH, data = S3_StMoMoData) 

fitRH 

 

##  Inference 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'RH (S3)') 

 

## Performance 

# Gamma -Normal Lee-Carter 

gmno = matrix(c(logLik_GNm, length(startPars)),nrow = 1) 

colnames(gmno) <- c('logLikelihood','Number of Parameters') 

kable(gmno,format = 'pandoc', caption = 'GN (S3)') 

#Lee-Carter – (LC Gaussian) 

mm<- 

matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus),fitLCgaus$npar),nrow = 

1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S3)') 
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# Brouhns – (LC Poisson) 

mm<- 

matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois),fitLCpois$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC', 'Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S3)') 

 

# Renshaw-Haberman (RH) 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH),fitRH$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of parameters') 

kable(mm,format = 'pandoc',caption = 'RH (S3)') 

 

############################################################## 

######### Simulation Study 3: N = 40 ##############   

 

## Specification 

Number of Age-set : 25n 

Number of Years: 40n 

ages = 0:24 

nAges = length(ages) 

years = 1978:2017 

nYears = length(years) 

 

 

## Simulate Data 

set.seed(812) 

# n40_Dxt = matrix(runif(n = nAges*nYears, min = 1000, max = 20000), ncol = nYears) 

n40_Dxt = matrix(rpois(n = nAges*nYears, lambda = 7000), ncol = nYears) 

set.seed(912) 

n40_Ext = matrix(runif(n = nAges*nYears, min = 20000, max = 100000), ncol = nYears) 
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n40_Mxt = n40_Dxt/n40_Ext 

n40_lnMxt = log(n40_Mxt) 

## Setup data for Moodelling 

# Demogdata 

dim(n40_Dxt) 

 

# Modelling  

## Gamma Normal Lee-Carter 

#### Data Setup 

Yobs_GN_n40 <- array(n40_lnMxt) 

#### Log Likelihood 

LLGN <- 

function(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20, 

                 a21,a22,a23,a24,a25, 

                 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19,b20, 

                 b21,b22,b23,b24,b25, 

                 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20, 

                

k21,k22,k23,k24,k25,k26,k27,k28,k29,k30,k31,k32,k33,k34,k35,k36,k37,k38,k39,k40, 

alpha, 

sigma){ 

  AX = c(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 

         a11,a12,a13,a14,a15,a16,a17,a18,a19,a20, 

         a21,a22,a23,a24,a25) 

    BX = c(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, 

         b12,b13,b14,b15,b16,b17,b18,b19,b20, 

         b21,b22,b23,b24,b25) 

 

  KT=  c(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19,k20, 
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k21,k22,k23,k24,k25,k26,k27,k28,k29,k30,k31,k32,k33,k34,k35,k36,k37,k38,k39,k40) 

 

ff = gl(nYears,nAges) #  

mt<- matrix(AX +  BX*KT[ff], nrow=rw, ncol=cl) 

  Y.pred = array(mt) 

  Y = array(n40_lnMxt) 

  R = suppressWarnings( 

dgammaNorm(Y,a =alpha, mu = Y.pred, sd = sigma, log = TRUE)) 

  -sum(R) 

} 

#### Setup Starting Parameters 

rw = nAges;rw 

cl = nYears;cl 

cat('Number of parameter needed for GN',eval(rw+rw+cl+2)) 

fixedAs = apply(n40_lnMxt,1,mean,na.rm = T) 

startPars <- c(fixedAs,rep(1/rw,rw),rep(0,cl),0.2,1) 

length(startPars) 

startPars 

 

#### Fitting MLE 

n40_GNfit =mle2(minuslogl = LLGN, 

fixed = toListFixed(fixedAs,rw), 

start= toListGN(startPars,rw,cl), 

control=list(maxit=9999999), 

method = 'Nelder-Mead' 

) 

n40_GNfit 

#### Make GN model Output 

n40_GNfitOutput = MakeGNoutput2(model = n40_GNfit) 
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# Get Predictions (y_hats) 

Yhat_GN <- computeFittedY_GN(n40_GNfitOutput) 

 

#### Recompute LogLikelihood 

alp_m = n40_GNfitOutput$unconstrCoeff$alpha 

sig_m = n40_GNfitOutput$unconstrCoeff$sigma 

logLik_GNm <- computeLLGN(Yobs = Yobs_GN_n40, 

                          Ypred = Yhat_GN, 

alpha =  alp_m,sigma = sig_m) 

logLik_GNm 

 

## GN - Gaussian 

##Data Setup 

# Convert to demogdata 

library(StMoMo) 

S3_demogdata <- demography::demogdata(data = n40_Mxt ,pop = n40_Ext, 

ages = ages,years = years, 

type = 'mortality', 

label = 'S3', 

name = 'S3') 

 

S3_StMoMoData = StMoMoData(data = S3_demogdata) 

S3_StMoMoData 

## Fit Lee-Carter- (LC-Gaussian) 

{r include=FALSE} 

#### Model P1: LC with Gaussian Error stmomo #### 

LC.g = lc2(link = 'gaussian') 

fitLCgaus<- fit.StMoMo2(LC.g, data = S3_StMoMoData) 

fitLCgaus 
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##  Inference 

mm<- matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S3)') 

 

## Fit Brouhns (LC – Poisson) 

{r include=FALSE} 

#### Model P1: LC with Gaussian Error stmomo #### 

LC.p = lc(link = 'log') 

fitLCpois<- fit(LC.p, data = S3_StMoMoData) 

 

fitLCpois 

##  Inference 

mm<- matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S3)') 

 

## Fit Renshaw-Haberman (RH) 

{r include=FALSE} 

#### Model P1: LC with Gaussian Error stmomo #### 

RH = rh(link = "log", cohortAgeFun = '1') 

fitRH<- fit(RH, data = S3_StMoMoData) 

 

fitRH 

 

##  Inference 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH)),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC') 

kable(mm,format = 'pandoc',caption = 'RH (S3)') 
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## Performance 

# Gamma-Normal Lee-Carter 

gmno = matrix(c(logLik_GNm, length(startPars)),nrow = 1) 

colnames(gmno) <- c('logLikelihood','Number of Parameters') 

kable(gmno,format = 'pandoc', caption = 'GN (S3)') 

 

#Lee-Carter – (LC Gaussian) 

mm<- 

matrix(c(fitLCgaus$deviance,fitLCgaus$loglik,AIC(fitLCgaus),fitLCgaus$npar),nrow = 

1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Gaussian (S3)') 

 

# Brouhns – (LC  Poisson) 

mm<- 

matrix(c(fitLCpois$deviance,fitLCpois$loglik,AIC(fitLCpois),fitLCpois$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC', 'Number of Parameters') 

kable(mm,format = 'pandoc',caption = 'LC - Poisson (S3)') 

 

# Renshaw-Haberman (RH) 

mm<- matrix(c(fitRH$deviance,fitRH$loglik,AIC(fitRH),fitRH$npar),nrow = 1) 

colnames(mm) <- c('Deviance','Loglikelihood','AIC','Number of parameters') 

kable(mm,format = 'pandoc',caption = 'RH (S3)') 

 

 

4. CODES FOR FORECAST AND FANPLOTS 

# library (StMoMo) 

## Lee-Carter model 
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# Male – Table 4.16 

forecast_LC_gausErr_m_kt.t <- forecast.LCGN( 

object = LCgaussianStMoMo.m, 

  h = 20, 

level = c(80, 95), 

oxt = NULL, 

jumpchoice = "fit", 

  kt.method =  "iarima", 

  kt.order = NULL, 

  kt.include.constant = TRUE, 

  kt.lookback = NULL, 

  N=1) 

forecast_LC_gausErr_m_kt.t 

# Fan plot – (Appendix)  

object_male =makeForcastPlotObj(LCgaussianStMoMo.m,forecast_LC_gausErr_m_kt.t) 

plot.GNfor(x= object_male,colour = "grey60",main='forecast (Male): LC Gaussian error') 

# Female – Table 4.17 

forecast_LC_gausErr_f_kt.t <- forecast.LCGN( 

object = LCgaussianStMoMo.f, 
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  h = 20, 

level = c(80, 95), 

oxt = NULL, 

jumpchoice = "fit", 

  kt.method =  "iarima", 

  kt.order = NULL, 

  kt.include.constant = TRUE, 

  kt.lookback = NULL, 

  N=1) 

forecast_LC_gausErr_f_kt.t 

 

# Fan plot – (Appendix) 

object_female = makeForcastPlotObj(LCgaussianStMoMo.f,forecast_LC_gausErr_f_kt.t) 

plot.GNfor(x= object_female,colour = "grey60",main='forecast (Female): LC Gaussian 

error') 

## Brouhns model  

# Male – Table 4.18 

#ARIMA 

forecastArima_LC_pErr_m <- forecast(LC_pois_male,  

                                    h=20,kt.method = "iarima", 
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                                    kt.order = NULL) 

forecastArima_LC_pErr_m$kt.f 

# Forecast kt 

par(mfrow = c(1,1)) 

# Fan plot – (Appendix) 

plot(forecastRW_LC_pErr_m,only.kt = TRUE)  

# Female – Table 4.19 

#ARIMA 

forecastArima_LC_pErr_f <- forecast(LC_pois_female, 

                                   h=20,kt.method = "iarima", 

                                   kt.order = NULL) 

forecastArima_LC_pErr_f$kt.f 

# Forecast kt 

par(mfrow = c(1,1)) 

# Fan plot – (Appendix)  

plot(forecastArima_LC_pErr_f,only.kt = TRUE)  

 

## Gamma Normal Lee-Carter model 

# Male – Table 4.20 

forecastGN_m_kt.t <- forecast.LCGN( 

object = fitGN_m_Object, 

  h = 20, 

level = c(80, 95), 
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oxt = NULL, 

jumpchoice = "fit", 

  kt.method =  "iarima", 

  kt.order = NULL, 

  kt.include.constant = TRUE, 

  kt.lookback = NULL, 

  N=1) 

forecastGN_m_kt.t 

# Fan Plot – (Appendix) 

object_male = makeForcastPlotObj(fitGN_m_Object,forecastGN_m_kt.t) 

plot.GNfor(x= object_male,colour = "grey60",main='forecast (Male): LC GN error') 

# Female – Table 4.21 

forecastGN_f_kt.t <- forecast.LCGN( 

object = fitGN_f_Object, 

  h = 20, 

oxt = NULL, 

jumpchoice = "fit", 

level = c(80, 95), 

  kt.method =  "iarima", 
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  kt.order = NULL, 

  kt.include.constant = TRUE, 

  kt.lookback = NULL, 

  N=1) 

forecastGN_f_kt.t 

# Fan plot- (Appendix)  

object_female = makeForcastPlotObj(fitGN_f_Object,forecastGN_f_kt.t) 

plot.GNfor(x= object_female,colour = "grey60",main='forecast (Female): LC GN error') 

 

CODES FOR APPENDIX A 

Annotated plots of log mortality and untransformed mortality rates -Figures 1 and 2 

par(mfrow = c(1,2)) 

plot_dd(nig.dd_male, xlim=c(0, 90), lpar=list(x.int=-0.2, y.int=0.9, cex=0.85)) 

plot_dd(nig.dd_female, xlim=c(0, 90), lpar=list(x.int=-0.2, y.int=0.9, cex=0.85)) 

par(mfrow = c(1,2)) 

plot_dd(nig.dd_male,transf=F, xlim=c(0, 90), lpar=list(x.int=-0.2, y.int=0.9, cex=0.85)) 

plot_dd(nig.dd_female,transf=F, xlim=c(0, 90), lpar=list(x.int=-0.2, y.int=0.9, cex=0.85)) 

 

HISTOGRAMS AND QQ PLOTS 
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### Histograms 

## Male data  

# Histograms for mortality rates (age-groups) – Figure 3 

ages<- rownames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_male)){ 

hist(Mxt_male[,i],probability=T, 

main=paste('A',ages[i]),xlab = 'Mxt Male') 

lines(density(Mxt_male[,i]),col=2) 

} 

# Histograms for log-mortality rate (age-groups) – Figure 4 

ages<- rownames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_male)){ 

hist(log(Mxt_male[,i]),breaks = 17,probability=T, 

main=paste('A',ages[i]),xlab = 'log(Mxt) Male') 

lines(density(log(Mxt_male[,i])),col=2) 

} 

Histograms for mortality rates (time-period) –Figure 5 
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years<- colnames(Mxt_male) 

# Mxt  - mortality rates 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_male)){ 

hist(Mxt_male[,i],probability=T, 

main=paste('Y',years[i]),xlab = 'Mxt Male') 

lines(density(Mxt_male[,i]),col=2) 

} 

# Histograms for log-mortality rate (time-period) – Figure 6 

years<- colnames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_male)){ 

hist(log(Mxt_male[,i]),breaks = 17,probability=T, 

main=paste('Y',years[i]),xlab = 'log(Mxt) Male') 

lines(density(log(Mxt_male[,i])),col=2) 

} 

## Female data 

# Histograms for mortality rates (age-groups) – Figure 7 

ages<- rownames(Mxt_female) 
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par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_female)){ 

hist(Mxt_female[,i],probability=T, 

main=paste('A',ages[i]),xlab = 'Mxt female') 

lines(density(Mxt_female[,i]),col=2) 

} 

 

# Histograms for log-mortality rates (age-groups) – Figure 8 

ages<- rownames(Mxt_female) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_female)){ 

hist(log(Mxt_female[,i]),breaks = 17,probability=T, 

main=paste('A',ages[i]),xlab = 'log(Mxt) female') 

lines(density(log(Mxt_female[,i])),col=2) 

} 

# Histograms for mortality rates (time-period) – Figure 9 

years<- colnames(Mxt_female) 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_female)){ 
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hist(Mxt_female[,i],probability=T, 

main=paste('Y',years[i]),xlab = 'Mxt female') 

lines(density(Mxt_female[,i]),col=2) 

} 

# Histograms for log-mortality rates (time-period) – Figure 10 

years<- colnames(Mxt_female) 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_female)){ 

hist(log(Mxt_female[,i]),breaks = 17,probability=T, 

main=paste('Y',years[i]),xlab = 'log(Mxt) female') 

lines(density(log(Mxt_female[,i])),col=2) 

} 

### Quartile - Quartile Plot 

## Male data 

# QQ Plots for mortality rates (time-period)-Appendix A 

years<- colnames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_male)){ 

qqnorm(Mxt_male[,i],main=paste("QQ plot Y",years[i],sep = ''), 
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xlab="Mxt",pch=19) 

qqline(Mxt_male[,i],col=2) 

} 

# QQ Plots for log-mortality rates (time-period) – Appendix A 

years<- colnames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_male)){ 

qqnorm(log(Mxt_male[,i]),main=paste("QQ plot Y",years[i],sep = ''), 

xlab="log(Mxt)",pch=19) 

qqline(log(Mxt_male[,i]),col=2) 

} 

# QQ Plots for mortality rates (age-groups) – Appendix A 

ages<- rownames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_male)){ 

qqnorm(Mxt_male[,i],main=paste("QQ plot A",ages[i],sep = ''), 

xlab="Mxt",pch=19) 

qqline(Mxt_male[,i],col=2) 

} 



 

267 
 

# QQ Plots for mortality rates (age-groups) – Appendix A 

ages<- rownames(Mxt_male) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_male)){ 

qqnorm(log(Mxt_male[,i]),main=paste("QQ plot A",ages[i],sep = ''), 

xlab="log(Mxt)",pch=19) 

qqline(log(Mxt_male[,i]),col=2) 

} 

## Female data 

# QQ Plots for mortality rates (time-period) – Appendix A 

years<- colnames(Mxt_female) 

par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_female)){ 

qqnorm(Mxt_male[,i],main=paste("QQ plot Y",years[i],sep = ''), 

xlab="Mxt",pch=19) 

qqline(Mxt_female[,i],col=2) 

} 

# QQ Plots for log-mortality rates (time-period) – Appendix A 

years<- colnames(Mxt_female) 
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par(mfrow=c(4,4)) 

for(i in 1:ncol(Mxt_female)){ 

qqnorm(log(Mxt_female[,i]),main=paste("QQ plot Y",years[i],sep = ''), 

xlab="log(Mxt)",pch=19) 

qqline(log(Mxt_female[,i]),col=2) 

} 

# QQ Plots for mortality rates (age-groups) - Appendix A 

ages<- rownames(Mxt_female) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_female)){ 

qqnorm(Mxt_female[,i],main=paste("QQ plot A",ages[i],sep = ''), 

xlab="Mxt",pch=19) 

qqline(Mxt_female[,i],col=2) 

} 

# QQ Plots for log-mortality rates (age-groups)- Appendix A 

ages<- rownames(Mxt_female) 

par(mfrow=c(4,4)) 

for(i in 1:nrow(Mxt_female)){ 

qqnorm(log(Mxt_female[,i]),main=paste("QQ plot A",ages[i],sep = ''), 
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xlab="log(Mxt)",pch=19) 

qqline(log(Mxt_female[,i]),col=2) 

} 

 

 


