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ABSTRACT

Multicollinearity arises in econometrics when the regressor is linearly related to other
regressors in a Normal Linear Regression Model (NLRM). A major drawback of the
classical approach to the estimation of NLRM is that it is indeterminate in the presence
of extreme perfect multicollinearity. The use of out-of-sample information by the
Bayesian approach to resolve this problem has not been fully explored in existing
literature on the subject. Therefore, the Bayesian technique was employed to derive
estimators for a NLRM and investigate the sensitivity of the estimators to various

degrees of collinearity among the regressors.

The NLRM y =X60 + ¢, wherey is (N x 1) vector of the response variable, X is a (N x
k) matrix of regressors, 8 is (k x 1) vector of parameters and € is a (N x 1) vector of
normally distributed random error with zero mean and variance o2 was specified. Six
cases of collinearity: case I- High Positive Collinearity (HPC) (0.50< HPC <0.99); case
II- Moderate Positive Collinearity (MPC) (0.30< MPC <0.49); case III- Low Positive
Collinearity (LPC) (0.01< LPC <0.29); case IV- High Negative Collinearity (HNC) (-
0.99< HNC <-0.50); case V- Moderate Negative Collinearity (MNC) (-0.49< MNC <-
0.30); case VI- Low Negative Collinearity (LNC) (-0.29< LNC <-0.01) and No
Collinearity (NC) were investigated. Two Bayesian out-of-sample priors: Bayesian
Informative Prior (BIP) with Normal-Gamma prior and Bayesian Non-informative Prior
(BNIP) with a local uniform prior were derived and their estimates compared with
classical method, namely, Likelihood Based (LB) method for all the cases of
collinearity considered. Data were simulated for all the cases of collinearity for sample
sizes 10, 30, 70, 100, 200 and 300. The performances were judged using Standard Error
(SE) and Confidence Interval (CI). Therefore, the estimator with the minimum SE and

compact CI were considered the most efficient estimator.

The derived Bayesian estimators were P(8|y) « t(8,h~1Q,v) for BIP and P(6|h)
o N(0,h1Q) for BNIP, where h, Q and v are precision, un-scaled variance-covariance
matrix and degree of freedom, respectively. The SE and CI of BIP, BNIP and LB for
HPC were [0.3843, (4.4636< CI < 5.9949)] [2.1099, (-0.490< CI <£7.9250)] and
[2.1729, (-0.6213< CI < 8.0553)]; for MPC were [0.3870, (4.3608< CI < 5.8822)],
[I.1111, (2.0341< CI <6.4023)] and [1.1278, (1.9665< CI <6.4700)]; LPC were
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[0.3963, (4.4893< CI < 6.0686)], [0.9032, (2.8449< CI <6.4475)] and [0.9301,
(2.7892< CI £6.5033)]; HNC were [0.008, (9.9985< CI <10.0015)], [1.6369,
(7.1784< CI £13.7071)] and [1.6856, (7.0774< CI <13.8081)]; MNC were [0.0009,
(9.9983< CI £10.0017)], [0.4748, (7.5869< CI <9.4810)] and [0.4890, (7.5576<
CI £9.5103)]; LNC were [0.6201, (1.3167< CI <3.7879)], [0.7658, (0.4447<
CI <3.4995)] and [0.7887, (0.3974< CI <3.5468)] and NC were [0.5350, (0.9025<
CI <3.0345)], [0.6958, (-0.0468< CI <2.7286)] and 0.7166, (-0.0897< CI <2.7716)],
respectively. Thus, Bayesian estimators BIP and BNIP were less sensitive with
minimum values of SE and narrower CI of parameter estimates for all the cases of
collinearity considered compared to LB estimator. The Bayesian estimators
outperformed the LB for all the cases of collinearity considered, while BIP

outperformed BNIP.

The derived Bayesian estimators for normal linear regression model provided better

estimates than the classical method at various degrees of multicollinearity. They are also

less sensitive to the problem of collinearity and capable of handling perfect correlation.

Keywords: Likelihood based method, Informative prior, Confidence interval,
Collinearity.

Word count: 488
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CHAPTER ONE
INTRODUCTION

1.1 General Background of the Study

Regression model is one of the most important models used in econometric modelling. It is
also termed as the most important component of other econometric models, including the
Seemingly Unrelated Regression (SUR) model, Simultaneous equation model, Vector
Autoregressive (VAR) model (Hill et al (1997)). Regression models describe the relationship
(linear or non-linear) between a dependent variable called Y and other variable called
independent variable X which is used to predict the values of dependent variable, if the case
is a simple regression model; but a relationship between a dependent variable Y and two or

more independent variables X's, if the case is a multiple regression model.

Estimation of regression models with collinear regressors will have effect on calculations
regarding the individual parameters which may not give valid results about any individual
predictor and will make it very difficult to separate the effect of individual independent
variables on dependent variable. For the case of perfect multicollinearity, it becomes a more
serious problem in the sense that, the design matrix X will have less than a full rank while the
moment matrix X X cannot be inverted which in turn will make the popular method of

estimation, Ordinary Least Squares (OLS) estimator not to exist.

Basic assumptions of Classical linear regression model require among others (latter discussed
in chapter three) that the regressors (explanatory variables) be not highly correlated among
themselves, i.e. they should be orthogonal. The violation of this assumption is referred to as
Multicollinearity. The cause, effect, diagnostics and possible remedies are discussed in

chapter two.

Various estimation methods are employed in literature for estimating parameters of linear
regression models such as the Ordinary Least Squares (OLS), Generalized Least Squares
(GLS), Maximum Likelihood Method (MLM), Method of Moments (MM) etc which are
referred to as the Classical estimators and the Bayesian approach. Dreze (1962) argued that
classical inferences have shortcomings in that; the available information on parameters is

ignored. The classical estimation methods have gained a lot of attention in literature and have



been so much applied in research activities; while research on the Bayesian method and its

applications has only of recent been on the increase.

Most statistical works are done using the classical approach, and it entails a random sampling
of observations drawn from a distribution with an unknown parameter. The parameter is
assumed to be fixed but unknown. It does not allow any probability distribution to be
associated with it. The only probability that can be considered is the probability distribution
of the random sample of size n given the parameter. This explains how the random sample

varies over all possible random samples, given the fixed but unknown parameter value.

However, Bayesian inference entails the rules of probability and probabilities of events are

numbers between 0 and 1; where 0 means impossibility or failure while 1 means certainty.

Given two events, M and N, defined on a sample space, the conditional probability that M

occurs given N has occurred is defined as:

P(M N N)

P (MIN) =

(1.1)

In equation (1.1), P(M N N) is the probability that both M and N occur while P (M|N) is
the probability that M occurs given N has occurred.

Interchanging the roles of M and N yields;
P(M n N)=P (N|M)P(M) (1.2)
Substituting equation (1.2) into (1.1) gives;

_ PWIM)PM)
P (M|N) = ) (1.3)
In the field of Econometrics, data is used to learn about economic phenomenon through the

econometrics models containing parameters.

Suppose we want to make inference on a parameter, say 8 of a particular model and also
learn about the data say, y. In Bayesian point of view, we replace M by 8 and N by y and
write equation (1.3) as:

P (y|0)P(6
P (8ly) = =522 (1.4)



P(8|y) is the basic interest in Econometrics which means that if given the data, what do you

know about the parameter.

The denominator on the right hand side, P(y) is the marginal distribution of the data which
does not involve the parameter 8 and the fact that the purpose of inference is about the 9, it is

necessary to ignore the term P(y) and write equation (1.4) as:

P (6ly) «< P (y|60)P(6) (1.5)

P(0]y) is called the Posterior distribution, P (y|0) is the likelihood function while P(8) is
the prior density.

Thus, equation (1.5) can simply be interpreted as “Posterior distribution is proportionally

related to the likelihood function times the prior density function”.

Posterior distribution is an important concept in the study of Bayesian econometrics. It
contains all the necessary and up-to-date information needed for Bayesian inference. It also
provides a complete picture of current state of knowledge arising from both the data and prior

information.

So many methods have been proposed to overcome the problem of multicollinearity in
classical approach. These include the use of ridge estimator by Hoerl and Kennard (1970),
Ordinary Ridge estimators (ORE) by Judge et al (1978), Judge et al (1989) and principal
component, but all the aforementioned methods have shortcomings in that they do not make

use of prior information on the parameters on interest.

In this study, Bayesian estimators were provided to handle the problem of multicollinearity in
regression model. The Bayesian estimators are: Bayesian Non-informative Prior (BNIP) and
Bayesian Informative Prior (BIP), while their estimates were then compared with the
estimates of Classical method, namely, Likelihood Based (LB) method in order to investigate
the sensitivity of these estimators under six degrees of collinearity; High Positive Collinearity
(HPC), Moderate Positive Collinearity (MPC), Low Positive Collinearity (LPC), High
Negative Collinearity (HNC), Moderate Negative Collinearity (MNC) and Low Negative
Collinearity (LNC).



1.2 Statement of the Problem

Multicollinearity in a normal linear regression model is a serious problem in applied
econometrics. A major drawback of the classical approach to the estimation of normal linear
regression model is that it is indeterminate in the presence of extreme perfect multicollinearity.
The use of out-of-sample information by the Bayesian approach to resolve this problem has
not been fully explored in existing literature on the subject. It is therefore of interest to employ
a Bayesian technique to derive estimators for normal linear regression model and investigate
the sensitivity of the estimators to degree of collinearity among the regressors. It will enable

future researchers to identify appropriate estimation method under different scenarios.

1.3 Justification

Regression models are the workhorse of econometrics that have a wide range of applications
in various fields and are used in prediction of one variable from the other. One of the
assumptions of classical linear regression model is, there is no multicollinearity among
regressors. If this assumption is violated, the popular OLS estimator could become unstable
due to large standard error and wider confidence interval. It can also lead to the difficulty in
assessing individual effects of the correlated regressors on the dependent variable, and in

turn, lead to wrong inferences on the model.

In literature, there are so many existing methods to solve the problem of multicollinearity
using some classical approaches such as stepwise regression that entails adding and dropping
of variables in a regression model but Leamer (1983) observed that dropping of variables in a
regression model might lead to loss of vital information on the parameters of interest; Lee et
al (2015) also observed that the use of principal component in multicollinearity may be
inappropriate in the sense that, in principal component analysis, only major principal
components in the regressors are retained while minor components are thrown out; the
regression model that includes all major principal components might not have enough

explanatory power on the dependent variable.

Classical methods can also be very sensitive to the slightest change in data and they do not
make use of prior information on the parameters of interest while Bayesian method combines

prior information with the likelihood function in providing its estimates.



1.4 Aim and Objectives of the Research

The aim of the work is to employ the Bayesian technique to derive estimators for Normal
Linear Regression Model and investigate the sensitivity of the estimators to degree of

collinearity among regressors.
The specific objectives of the research are outlined as follow to:

(1) Compare the derived Bayesian estimators with Likelihood Based (LB) method in the
presence of multicollinearity.

(2) Compare the Bayesian posterior simulation method with analytical method in the
presence of multicollinearity.

(3) Examine the sensitivity of Bayesian posterior simulation method on multicollinearity

to replication.
1.5 Scope of the Study

This study focused on six degrees of collinearity; High Positive Collinearity (HPC),
Moderate Positive Collinearity (MPC), Low Positive Collinearity (LPC), High Negative
Collinearity (HNC), Moderate Negative Collinearity (MNC) and Low Negative Collinearity
(LNC) in regression analysis using the Bayesian approach. Two out-of-sample priors namely,

informative and non-informative priors were considered.
1.6 Organization of the Thesis

This thesis is organised as follows: Chapter one gives the introduction to the work; Chapter
two reviews literature on Regression Model, concept of multicollinearity, multicollinearity
with different classical approach and concept of Bayesian estimation methods; Chapter three
discusses the theoretical framework for the research which involves the specification of the
model, assumptions of the model, Bayesian estimator and statistical theories of various

concepts.

Chapter four is the methodology which contains the step by step analysis of the experiments
carried out and tools used for analysis. Chapter five presents the results of the analysis and
discussion of the results while Chapter six concludes the work and appropriate

recommendations based on the findings were made.



CHAPTER TWO
REVIEW OF LITERATURE

2.1 Introduction

This chapter reviews past and recent developments of central tool in applied econometrics,
regression model; concept of multicollinearity; its causes, effect, and remedial measures;
developments in the application of Classical and Bayesian estimators to handle the problem
of multicollinearity in linear regression model and the concept of posterior simulation

techniques in Bayesian approach.
2.2 Regression Model

The concept of regression which dates back to 1886 was introduced by Galton Francis and
supported by his friend called Karl Pearson. It was used to explain the tendency for tall
parents to have tall children, and short parents to have short children. The average height of
children born of parents of a given height tends to move or “regress” toward the average

height in the population as a whole.

Regression analysis is a statistical method used in investigating the relationship of variables,
in order to estimate or predict the average value of one variable on the basisof the fixed
values of other variables. One variable is called the dependent variable Y which is known to
be statistical, random, or stochastic, that is, to have a probability distribution while the other
variable is known as explanatory variable X that has fixed values. Regression can be either
linear or non-linear. They are said to be linear; when the models are linear in the parameters

while they are said to be non-linear when they are nonlinear in the parameters.

However, some regression models can look nonlinear in the parameters but are inherently or
intrinsically linear because with suitable transformation, they can be made linear-in-

parameters.



2.3 Collinearity

Collinearity often arises in many real-world applications and it refers to a situation in which
there is an exact (or nearly exact) linear relationship between regressors, when there is more
than one exact linear relationship, it is called multicollinearity (Hawking, 1983). When
collinearity is exact, the regression coefficients using the Ordinary Least Squares (OLS)
method will be indeterminate and their standard errors are infinite, when it is nearly exact, the
regression coefficients are determinate but possess large standard errors. Thus, the parameters

cannot be estimated with great accuracy Farrar and Glauber (1967) and Gujarati (1995).

Ballentine View of Collinearity
Collinearity can be visually represented with Venn diagrams called Ballentine diagram by
Kennedy (1981). Figures 2.1, 2.2 and 2.3 represent different degrees of collinearity with the
regression model given by:

Yy = BotB1X1 +B2X; tu (2.1)
Where y is the dependent variable, B, [, B, are the parameters to be estimated, X; and X,

are the regressors and u is the error term.

The light blue colours represent regressors X; and X, while the deep blue colour represents
the collinearity. The sizes of the circles and the manner in which they overlap illustrate

various aspects of collinearity.



Figure 2.1: Diagram Showing High Collinearity

Figure 2.2: Diagram Showing Moderate Collinearity



Figure 2.3: Diagram showing Low Collinearity



Causes of Collinearity
Several researchers like Mason et al (1975), Gunst and Mason (1977), Belsley (1980) and
Montgomery and Peck (1982) carried out researches on the causes of collineairty; some of

the causes are discussed below:

Belsley (1980) noted that method of data collection employed by a researcher can cause
collinearity; it is expected that the data are collected over the whole cross-section of
variables, but it may erroneously happen that such data might have been collected over a
subspace of the explanatory variables where the variables are linearly dependent. Thus, the

problem of collinearity arises.

An over determined model due to over zealousness of a researcher by including large number
of regressors in the model in order to make it more realistic can also cause collinearity or an
under-determined model, when a relevant explanatory variable is omitted in a model, for
example, if we have a true model as:

Vi =P1+ B2Xo t BsXs T uy (2.2)
Where y; is the dependent variable, 1, ., 3 are the parameters to be estimated, X, and X;
are the regressors and u; is the error term. But because of some reasons we fit the model in
(2.2) by omitting X5 and now have:

yi=ait aX; tv; (2.3)

where a;and a, are parameters and v; is the error term.
If the omitted variable, X5 is correlated with variable, X, , the correlation between the two
variables is non-zero while the estimators @; and @, will be biased, the confidence interval

and hypothesis testing procedures may give misleading conclusions.

Collinearity can also arise as a result of addition of polynomial terms to the regression model,
especially when the range of the regressors is small or when some constraints on the model or
on the population where the sample was drawn. The sample may be generated from the

population having linear combinations which could not be so.
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Consequences of Collinearity
One of the consequences of collinearity when there is exact linear relationship among the
regressors, the least-squares estimator is not defined. This means that moment matrix X X

will be singular and estimation of coefficients and standard errors will not be possible.

In the case of when regressors are highly related to one another, the OLS estimators tend to
have large variances and standard errors, making precise estimation difficult, because of this
consequence, confidence intervals also tend to be wider which can lead to the acceptance of

the null hypothesis.

Collinearity can also results to large variances and standard errors of OLS estimator, while
the t-ratio of one or more of the parameters of the regression model may likely also be

insignificant and also the R?value for the model may still be relatively high.

Detection for Collinearity

There are several methods to detect collinearity and they are highlighted as follows:

Variance Inflation factor (VIF) which measures the combined outcome of the dependences
among the regressors on the variance can be used. The terminology, VIF, is due to Marquardt

(1970) and can be computed as:

VIF= —, (2.4)
]

Where Rjz is the coefficient of determination in the regression of regressor X; on the
remaining regressors in the model. If VIF > 10, it is assumed that there exists a high
collinearity.

Eigen values of X'X , say, A4;, 45, ..., 4, , can also be used to measure the extent of
collinearity in the data. One or more small eigen values imply that there are near-linear
dependences among the columns of X variable (Wetherill et al (1986), Greene (2000) and
Draper and Smith (2003)). If the correlation exists between two regressors, it implies that
there is presence of collinearity. If the correlation is high, say, 0.8, then, collinearity is a

serious problem.
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Farrar-Glauber Test

Another test for detecting collinearity apart from the ones mentioned above is called Farrar-
Glauber test by Farrar and Glauber (1967). This involves the use of three test statistics (chi-
square, t and F tests), but was criticised by Kumar (1975) and O’Hagan and Mcbabe (1975).

The statistics are:

(1) Chi-square test: This is a test to determine the presence as well as the degree of
collinearity in a model. A matrix of pair wise correlation coefficients (7;;) is

formed from the regressor variables, following the matrix obtained for k regressor.

1 1, T3 - Tk
T2 1 T23 o gk
Tk1 Tk2 Tks 1

Then the determinant D of the matrix is computed. It is evident that if all the regressors are
perfectly correlated, many r will be unity and the determinant of the matrix will be zero. At
the other extreme, if all regressors are orthogonal, the elements will be zero. The determinant
will be unity. It is intuitively clear that, the determinant of this type of matrix will be between
zero and unity (0 < D <1); depending on the degree of collinearity. The closer the value of the

determinant is to zero, the more is the degree of colinearity and vice-versa.

The chi-square involving the calculated determinant can be simply carried out and the test

statistic is given by:
x? = [n-1-<(2k+5)] X In D (2.5)
Where x? is the calculated chi-square statistic

n is the sample size

k is the number of parameters in the model.
The chi-square has %k(k—l) df. The null hypotheses to be tested are:
Ho: r=0

Hi:r+0
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Decision: If the chi-square calculated is greater than chi-square tabulated, H, will be rejected

and there is significant collinearity but otherwise accept H,.

(ii) t-test: The t-test can also be used to know the variables that are actually
responsible for collinearity among the variables, in other words, it is to determine

the pattern of collinearity. The t-statistic can be computed as:

=k

teal = sz (2.6)
t-tab = t;,_p o 2.7

Where n is the sample size and k is the number of parameters, « is the level of significance.

Decision: If the t-cal > t-tab at a chosen level of significance, it means that two regressors x;
and x; are responsible for the collinearity, if otherwise the two regressors are not responsible

for collinearity.

(iii)  F-test: The F-test can be used to identify the variables that are significantly
affected by collinearity. This is done by regressing each regressor on other

variables. i.e
X1=9(X3, X3, ..., Xy)
X, =9 (X1, X3, 0, Xi)
X3 =9g(X1, Xz, .., Xi)

(2.8)

Xk = g(Xl,Xz, ""Xk—l)

R? for each of the equation can be tested for statistical significance and the test statistic is

given as:
R%?/k-1
~ (1-R?)/(n—k) (2.9)
While the
Frap = Frin—k (2.10)
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Decision: If F >F;,;, it means that the variable X; , i = 1, . . ., k, which was regressed on
others is correlated with some other regressors, if otherwise X;is not correlated with some

other regressors.

Remedial Measures for Collinearity

When faced with problem of collinearity, one of the things to do is to drop one of the
collinear variables, but dropping a variable could lead to specification error and specification
error arises from incorrect specification of the model used in the analysis. Hence, this remedy

may be worse than the problem of collinearity.

Another suggested remedy to the problem of collinearity is to do nothing; this was a school of
thought of Kennedy (1998). Sometimes the problem of collinearity may not necessarily be
bad or unavoidable. If the R?of the regression is high, there should not be much worry. Also,
if the t-statistics for all the parameters in a regression model are statistically insignificant,
there should be no cause for alarm. If the estimation equation is used for prediction and the
collinearity problem is expected to prevail in the situation to be predicted, we should not be

concerned much about collinearity.

Collinearity is known to be a sample problem. It is possible that in another sample involving
the same variables, collinearity may not be as serious as in the first sample, but increase in

sample size would help reduce the severity of collinearity problem.

Combining both time-series and cross-sectional data known as pooling the data and
transformation of variables by using suitable transformations like logarithms, forming ratios,
etc were also found to be of great help in the reduction of collinearity problem, but pooling of

data may create the problem of interpretation Stewart and Kenneth (1981).

2.4 Applications of Bayesian

Reverend Thomas Bayes in 1763 discovered the theorem called “Bayes theorem” while
Pierre Simon Laplace gave the modern mathematical form and scientific application. This
theorem is based on the method of statistical inference on how one could learn the probability
of a future event occurring and how many times such event might have occurred or not

occurred in the past.
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After the work of Bayes, the applications of Bayesian now cut across different fields. In
Biological sciences, we have the works of DeJong and Whiteman (1991), Albert and Chib
(1993a), Barberis (2000), DeJong et al(2010) in finance, Crome (1996), Dennis (1996),
Volinsky et al (1997), Anderson et al (2000), O’Hagan and Luce (2003), Wintle et al
(2003), McCarthy and Parris (2004), Fidler (2004), Clark (2005), Martin et al (2005) and
McCarthy and Masters (2005).

In social sciences, we have the works of Green (1962), Green and Frank (1966), Faigman and
Baglioni (1988), Western and Jackman (1994),Fenton et al (2003), Rossi et al (2005) and Gill
(2017) while in the field of Econometrics, we have Zellner (1976), Bauwens (1984), Geweke
(1989), Chib et al (1998), Brown et al (1999), Chib and Hamilton (2000) among others.

2.5 Bayesian in Different Econometric Models

Recently, Bayesian methods are increasingly becoming attractive to researchers and can be
applied in many models like regression, simultaneous equation model, seemingly unrelated
model, vector autoregressive model, state space model, and some other time series models.
The works using Bayesian approach for different models were accounted for in the works of
Dreze (1962), Tsurumi (1980), Dreze and Richard (1983), Tsurumi (1985), Tsurumi (1990),
Albert and Chib (1993), Chib and Greenberg (1994), Chib and Greenberg (1995), Bauwens
and Lubrano (1996), Zellner (1998), Chao and Phillips (1998), Bauwens and Lubrano (1998),
Kleibergen and Van Dijk (1998), Kleibergen and Zivot (1998), Tsurumi (2000), Gao and
Lahiri (2001), Radchenko and Tsurumi (2004), Verzilli et al (2005), Ando and Zellner
(2010), Mi et al (2012) and Choy and Charles (2017) etc.

In simultaneous equation model, Tsurumi (1985), Chao and Phillips (1998), Chao and
Phillips (2000), Gao and Lahiri (2001), Zellner (1998), Radchenko and Tsurumi (2004) all
focused on the development, derivation of the posterior distribution for the structural
parameters, development of framework for construction of prior probability density
functions, development of weak instrument in the limited information analysis, development
of algorithms to estimate the parameters in order to solve the problem of weak exogeneity of
endogenous variables, they concluded that Bayesian estimates are more highly concentrated

about the true value of the coefficient being estimated.
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Chib and Greenberg (1995), Verzilli et al (2005), Wang (2010), Ando and Zellner (2010),
Choy and Charles (2017), and Billio et al (2017) all considered the use of Bayesian approach
in SUR model. Chib and Greeberg (1995) in their studies developed efficient algorithms to
estimate Markov time-varying parameters of SUR model using Bayesian approach, their
algorithms was found to be useful for structural models with different identification
restrictions. Verzilli et al (2005) investigated the use of Bayesian approach in order to model
the statistical association between markers at multiple loci and multivariate quantitative traits
using SUR model. They concluded that the use of Bayesian approach perform excellently

well due to the use of prior distribution.

Wang (2010) considered a Sparse SUR model to generate relevant structures when there are
high-dimensional distributions of SUR model parameters. He proposed a fully Bayesian
analysis that can provide effective methods for computation using a specified graphical
model to structure of covariance matrix. Their model was applied to a macroeconomic and

finance which was shown to have practical significance.

Billio et al (2017) used a Bayesian approach in SUR models to study the interactions among
different variables. They also proposed a hierarchical Dirichlet process prior for SUR models
that allows the shrinkage of SUR parameters toward multiple locations and identification of
group of parameters. It was observed that their approach can also be applied to other complex

models.

In Vector Autoregressive (VAR) model, the works using Bayesian approach involve the
works of Brandt and Freeman (2005), Adenomon et al (2015), Carriero et al (2015),
Nicolalde (2016), Koop et al (2016), Kalli and Griffin (2018) among others.

Brandt and Freeman (2005) applied a Bayesian approach to time series model in the study of
politics to analyze political data of Israeli-Palestinian conflict of the 1980s.

A reference prior was used to forecast over the short and medium terms. They concluded that
their developed Bayesian procedure can also be used for economic data especially in

volatility clustering.

Adenomon et al (2015) explored the short term forecast when there was problem of limited

data in time series analysis. They evaluated the performances of both the classical VAR and
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Bayesian VAR (BVAR) for short term series at different levels of collinearity. Their results
showed that the BVAR models outperformed the classical VAR for time series length of 8 for
all levels of collinearity, while the classical VAR was effective for time series length of 16

for all collinearity levels.

Carriero et al (2015) examined how the forecasting performance of Bayesian VAR (BVAR)
was affected by a number of specification choices. They used a Normal-Inverted Wishart
prior combined with a pseudo-iterated approach that made the analytical computation of
multi-step forecasts feasible and simple. With the aid of empirical data, it was shown that
very small losses from the adoption of specification choices made BVAR modeling quick and

easy.

Nicolalde (2016) explored Bayesian Vector Autoregression (BVAR) priors which served as
high-dimensional models. He carried out a forecasting exercise using the dummy
observations prior and Conjugate Stochastic search variable selection while five models with
different size and large number of lags were specified. Comparison based on his proposed
method and OLS estimator showed that larger models outperformed the OLS using Mean

Square Forecast Error as criterion.

Koop et al (2016) developed an alternative idea when large VAR model is involved by using
a Bayesian approach, and this method involves randomly compressing the explanatory
variables prior to analysis. Their developed Bayesian method was compared with the
classical approach in the analysis of macroeconomic data which performed very well than the

classical approach.

Kalli and Griffin (2018) proposed a nonparametric VAR model that allowed nonlinearity in
the conditional mean, heteroscedasticity in the conditional variance, and non-Gaussian
innovations while their proposed method was applied to US and UK macroeconomic time
series, and compared to other Bayesian VAR models. Their approach showed that Bayesian
nonparametric VAR was able to account for nonlinear relationships and heteroscedasticity in
the data used while the short-run out-of-sample forecasts showed that the Bayesian

nonparametric VAR predictably outperformed competing models.

2.6 Literature on Bayesian Regression Estimation
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Bayesian method is universal and used by the researcher to learn about a phenomenon using
data Koop (2003). Estimation of parameters is one of the things an econometrician would be
interested in. A lot of works have been done on the estimation of parameters in Bayesian
framework. These can be seen in the works of Poirier (1995), Zellner (1971), Zellner (1986),
Zellner et al (1988), Gunn and Misbau (1993), Geweke, and Tanizaki, (2001), Coelho et al
(2011), Handwin et al (2016), Ismail (2010), England and Gottschalk (2002), Dey (2012),
Lopez (2013), Aliyu and Yahya (2016), Leon-Novelo and Savitsky (2018).

Yahya et al (2014) also examined the performance of Bayesian conjugate normal linear
regression method with classical ordinary least squares when data satisfy all the necessary
assumptions of OLS and the prior information on functional forms of regression parameters
is available using a Monte Carlo study. Their results showed that Bayesian estimator is more
efficient and consistent, and relatively more stable than the classical least squares method

even when the sample data satisfy all the necessary assumptions of the OLS method.

Ahmad et al (2016) employed a Bayesian method of estimation to estimate the scale
parameter of Nakagami distribution by using Jeffreys’ extension and quasi priors, under three
different loss functions with three different sample sizes while their results were compared
with the classical Maximum likelihood method. They concluded that the Bayesian approach

outperformed the classical Maximum likelihood method.

Dey (2012) obtained the Bayes estimators for the unknown parameters of an inverse Rayleigh
distribution. The Bayes estimators were obtained under squared error (SE) loss and
asymmetric linear exponential loss functions using a non-informative prior. They assessed the
performance of the estimators based on the basis of their relative risk under the two loss
functions. They concluded that estimation under the LINEX loss function was superior to the

SE loss function with respect to the root mean squared error measure.

Lopez (2013) used a Bayesian technique to estimate the parameters of the simplex regression,
and compared it with Beta regression using a simulation approach. He considered both the
models with constant variance and models with variance heterogeneity while the Regressions
were exemplified with heteroscedasticity. It was shown that when the true model was

homogeneous simplex and also the estimates were closer to the true value parameters than the
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Beta model, the same conclusion was also applied to the case when the models were

heterogeneous.

Najafabadi and Najafabadi (2016) considered the problem of estimating Cronbach's alpha
using a Bayesian approach, and employed a non-informative prior distribution under squared-
error and LINEX loss functions. A simulation study was carried out and it suggested that the
Bayes estimator under LINEX loss function reduced biasedness of the ordinary maximum
likelihood estimator, and also, LINEX Bayes estimator was not sensitive with respect to

choice of hyperparameters of prior distribution.

Neon-Lovelo and Savitsky (2018) considered a Bayesian estimation using a regression model
based by incorporating the sampling weights into the estimation, to support policymaking
using informative sampling designs where subject inclusion probabilities were designed to be
correlated with the response variable of interest. It was observed that their Bayesian approach

performs credibly well.

2.7 Literature on Other Area of Interest in Bayesian Modelling
In Bayesian modelling, apart from estimation of parameters of models, some of the things an
econometrician would also wish to do is to compare different models or obtain predictions

from a model. All these can also be done under Bayesian framework.

Bayesian in Area of Model Comparison in Regression

There are wide literatures on Bayesian in the area of model comparison in Regression. These
include the works of Bos (2002), Kass and Waseerman (2010), Hagan (1995), Smith and
Spiegelhalter (1980), Zellner and Tobias (2001), Chib (1993), Rodriguez et al (2004),
Griffiths and Wan (1994), Koop and Poirier (2001), Aitkin (1991), Kass and Raftery (1995),
Carlin and Chib (1995), Verdinelli and Wasserman (1995) and Wetzels et al (2010).

Hagan (1995) proposed a fractional Bayes factor for Bayesian comparison of models. His
approach was found to be consistent, simple, robust and coherent while Chib (1993)
developed a practical framework for Bayesian analysis of Gaussian and standard-t regression

models with auto correlated errors. He made use of Gibbs sampling, an iterative Markovian
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sampling method, and showed that his proposed approach can deal with high-order

autoregressive process without requiring an important sampling.

Rodriguez et al (2004) proposed an efficient Gibbs sampler for simulations of a multivariate
normal random vector when subject to inequality linear constraints. It was observed that their
proposed approach can allow for number of constraints and also can cope with equality linear

constraints.

Koop and Poirier (2001) developed new Bayesian methods for semi-parametric inference in
the partial linear Normal Regression Model, by considering a constrained and unconstrained
methods in testing of parametric regression models against semi-parametric alternativeness
and prediction. Their developed method was able to handle both the constrained and

unconstrained methods in parametric regression models.

Verdinelli and Wasserman (1995) developed a generalized method called a Savage-Dickey
Density Ratio (SDDR) for computing a Bayes factor in regression model in the area of model
comparison. They concluded that their methods in terms of computational complexity can be
extended to other models, while Wetzls et al (2010) in their work proposed an Encompassing
Prior (EP) approach to facilitate Bayesian model selection for nested models with inequality
constraints. Their EP approach was able to generalize the Savage Dickey Density ratio

method by accommodating both inequality and exact equality constraints.

Bayesian on Area of Prediction in Regression

Bayesian reasoning says that we should summarize our uncertainty about what we do not
know, that is, y* through a conditional probability statement, which means, prediction
should be based on predictive density P(y*|y) Koop (2003). The interest of a Bayesian
econometrician can also be in the area of prediction, that is given the observed data, say v,
the econometrician may be interested in predicting some future unobserved data y*. Koop et
al (2007).

Bayesian works in the area of prediction can be found in the works of McCormic et al (2012),

Zhong et al (2013) and Gillberg et al (2013) amongst others.
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Zhong et al (2013) carried out a comparative analysis between two modelling techniques,
Bayesian network and Regression models, by employing them in the study of accident
severity analysis. Their results showed that the goodness of fit of Bayesian network is higher
than that of Regression models in accident severity modelling while the results obtained can
also be applied to the prediction of accident severity, which is one of the essential steps in

accident management process.

Gillberg et al (2013) considered Bayesian approach in the prediction of weak effects in a
multiple-output regression set-up, when the covariates were expected to explain a small
amount of less than 1% of the variance of the target variables. It was observed that their
approach outperformed other alternatives in genomic prediction of rich phenotype data,
especially the information sharing between the noise and regression models which led to

significant improvement in prediction accuracy.

2.8 Literature on use of Priors in Bayesian Inference

Development of prior distributions is undoubtedly the most controversial aspect of any
Bayesian analysis (Lindley, 1983; Walters and Ludwig, 1994). A proper Bayesian analysis
will always incorporate genuine prior information, which will help to strengthen inferences
about the true value of the parameter, and ensure that any relevant information about it is not
wasted.

However, considerable care should be taken when selecting priors, and the process by which
priors are selected must be documented carefully. This is because inappropriate choices for

priors can lead to incorrect inferences.

There are two (2) types of priors:
(1) Non-informative prior

(2) Informative prior

Non-informative prior: It is a kind of prior where little is known about the parameters. Non-
informative prior was first used by Laplace, Bayes, Jeffreys and Gauss. Jeffreys prior was
widely accepted in univariate case, but it is often criticized in multivariate settings. The

reason is, a priori parameter independence must be assumed for the prior to be found.
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After the work of Jeffrey, so many researches were carried out on the use of non-informative
prior. These include the works of Aliyu and Yahya (2016), Rodriguez et al (2004), Zhou et al
(2009), Coles and Tawn (1994), Gelman et al (2008), Banerjee and Bhattarchaya (2012),
Gelma (2006), Kass and Wasserman (1996) and Wan and Griffiths (1998) amongst others.

Aliyu and Yahya (2016) explored the use of non-informative prior in Bayesian estimation.
The estimates were obtained under the squared error, entropy and precautionary loss
functions while extensive Monte Carlo simulations were carried out to compare the
performances of the Bayes estimates with that of MLEs. Their estimates under the Entropy

loss function outperformed squared error loss function and MLEs.

Zhou et al (2009) proposed a diriclet process and a probit stick-breaking process using a non-
informative prior in Non-parametric Bayesian techniques with applications in denoising,
inpainting and Compressive Sensing (CS). Coles and Tawn (1994) developed the technique
that can make optimal use of available data. In their work, a daily rainfall series was analysed
within a Bayesian framework. They suggested that careful elicitation of prior expert

information can supplement data and lead to improved estimates of external behaviour.

Gelman et al (2008) proposed a new prior distribution by placing independent Student-¢# prior
distributions on the coefficients, which in the simplest setting is a longer-tailed version of the
distribution attained by assuming one-half additional success and one-half additional failure
in a logistic regression. It was observed that their prior outperformed existing Gaussian and

Laplace priors.

Informative prior:Most orthodox works believe that the term prior information, does
notexist at all. Jimmie Savage (1954) was believed to be the first author to incorporate prior
opinions into scientific inference. Aftermaths of the work of Jimmie Savage brought about

the use of informative prior.

Informative prior is referred to as a prior whereby information is available about the prior

distribution. It summarises the evidence about the parameters concerned from many sources.

Sasaki and Kondo (2015) studied the use of paleodemography with Bayesian informative

prior approach in order to provide an effective means by which mortality profiles of past
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populations can be adequately estimated. They also proposed an application of the Gompertz

model to avoid the problems of “age-mimicry” inherent in conventional approaches.

2.9 Bayesian Posterior Simulation Techniques

Posterior distribution is an important concept in the study of Bayesian econometrics. It
contains all the necessary and up-to-date information needed for Bayesian inference. It also
provides a complete picture of current state of knowledge arising from both the data and prior

information.

In Econometrics, there are various numeric summaries that are made e.g., mean, variance,
median etc. These numeric summaries are obtained through the Posterior distribution by
using integrations and most of these integrals have high-dimensional functions which cannot
be solved analytically. If it cannot be solved analytically, it will make the computation very

difficult. This is a major setback to the implementation of Bayesian approach.

Any Posterior features of interest in Bayesian inference meant for computation according to

Geweke (1989), Tanner (1996) has this form:

E[uw(@®ly] = [u(®)p(6ly) 06 (2.11)
Where u(8) is the function of interest.

However, there is a recent development of powerful computing methods in Bayesian
econometrics, thereby solving the difficult analytical calculations. The method is called a
Posterior Simulation. There are many posterior simulation techniques that have been
designed by many scholars for the implementation of Bayesian computation. Bayesian
Posterior simulations are divided into two: Direct simulation method and [terative simulation

method:

Direct Simulation

It is a kind of simulation whereby samples are not obtained iteratively (depend on previous
samples). Examples are: Monte Carlo Integration by Geweke (1989),importance sampling by
Kloek and van Dijk (1978), Bauwens (1984) and Richard and Zhang (2000), rejection

sampling and sequential Monte Carlo sampling.
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Monte Carlo Integration

It is the simplest posterior simulation method and can be used when exact result cannot be
obtained analytically. One of the advantages of Monte Carlo Integration is that large number
of Posterior moments can be estimated at reasonable computational efforts while estimates of

numerical accuracy of the results can also be obtained in a very simple way Kloek and Dijk
(1978).

Considerable research have been carried out on the use of Monte Carlo Integration (MCI) in
regression model and other models in literature and various issues have been the subject of
discourse. Early works on MCI are the works of Kloek and Dijk (1978),Dijk and Kloek
(1980),Bauwens (1984), Geweke (1988), Phillips and Marks (1996), Yool (1999) and recent
ones are: Hakanson (2000), Richard and Zhang (2000) and van Horssen et al (2002) among

others.

Dijk and Kloek (1980) employed a MCI for nine dimensional parameter space of Klein's
model. They also showed how Monte Carlo can be used as a tool for the elicitation of prior
information, and how the initial prior information on structural parameters can be modified

by specifying prior information on multipliers and the period of oscillation.

The application of MCI as a posterior simulator in ecological modelling was also
demonstrated in the works of Phillips and Marks (1996), Yool (1999), Hakanson (2000), van

Horssen et al (2002) for uncertainty analysis.

Importance Sampling:

It is an approach for approximating the integral associated with E(h(6) for some function h.
The classical approach using a Monte Carlo algorithm is known to begin by drawing N
samples, x(¥, i = 1, ..., N which is uniformly over ®and approximates the integral by the
sample mean of h (8®)f (69). Importance sampling extends this by drawing samples from
a trial distribution g. More efficient algorithm was obtained when g is close to f. Importance
sampling produces weighted samples with weights given by the ratio f/g. One can work either
directly with the weighted samples, or resample with respect to the weights for a set of un-
weighted samples.

The steps involved in Importance sampling are:
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Step 1: Draw N samples 6. .., 8™ from g((6)

F(69) o
70 for i=1,...,N

Step 2: Evaluate weights

Sequential Monte Carlo:

The sequential Monte Carlo (SMC) sampler can be viewed as an extension of importance
sampling. It allows intermediary steps and propagates moves within each distribution.
Crucially, SMC does not require an initial distribution which takes the same support as the
target distribution. This can be considered a major advantage, particularly, for high
dimensional problems. Furthermore, SMC is able to deal with far more complex problems by
allowing corrections to the initial samples iteratively.

As in importance sampling, SMC produces weighted samples. The following shows the steps

involved using SMC:

Step 1: Draw samples for 6(1), ce GéN) from initial distribution f,(6)
Step 2: Initialise weights w(i)

fori=1,...,N, Move samples Qt(f)l according to forward transition kernel

Iterative Simulation

It is a simulation technique that relies on the construction of a Markov chain unlike direct
simulation. All posterior simulation that belongs to classes of this iterative simulation is also
referred to as Markov chain Monte Carlo (MCMC) methods. According to Gelman and
Rubin (1992), Raftery and Lewis (1992), Gilks et al. (1996), Gilks and Roberts (1996), Gilks
(1996), Gelman (1996), Gelman et al (2004), before starting the Markov chain at any
(arbitrarily) starting point, the standard MCMC theory guarantees that the chain will

converge to the correct distribution.

One crucial difference between the iterative methods and the direct simulation methods is
that iterative methods produce serially correlated samples. It is also very important that the

initial portions of the MCMC sample be discarded (usually termed burn-in).

The determination of the length of burn-in and the total length of Markov chain is
collectively known as convergence diagnostics. Cowles and Carlin (1996) gave a
comparative review of the various methods available in literature for the assessment of

convergence. Examples of iterative simulation are: Gibbs sampler introduced by Gelfand and
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Smith (1990), followed by works of Carlin and Polson (1991), Casella and George (1992),
Dellaportas and Smith (1993), Chib (1993),Chib (1995), Bauwens and Lubrano (1998),
Damien et al (1999), Rodriguez et al (2004); Adaptive rejection sampling introduced by Gilks
and Wild (1992); Slice sampling, Metropolis-Hastings sampling by Hastings (1970),
followed by works of Chib and Greenberg (1995), Geweke and Tanizaki (2001), Chib and
Jeliazkov (2001).

Gibbs Sampler

The Gibbs sampler is a Markov chain sampler that starts at any arbitrary initial state. The
chain then gets iteratively updated for some specified N iterations. At every iteration, it
cycles through each of the k components of the parameter 8 = (64, . . . , ;) in turn. The
parameters are updated through the new sample according to their distributions conditioned
on current values of other parameters. Casella and George (1992) provided an easy to read
explanation of how the Gibbs sampler works.

Here is a typical example of algorithm of Gibbs sampler:

Steps for Gibbs sampler

Step 1: Choose a Starting value 8®) fors=1,...,S

Step 2: Take a random draw, 98 from P (6| y, 9((;)_1), 9((;)_1) s 9,55_1)), 9((253 from
(s-1) p(s—1) (s-1) (s) (s-1) p(s—-1) (s)

P(e(z)l y ) e(i) ) 6(5) TN} eks ), “ e ey G(Z) from P(e(k)l y ) 6(15) 1] 6(;) TN} 6(;_1))

Step 3: Discard the burn-in- period and focus on the retained one S,
Step 4: Then carry out analysis on the remaining retained.

Where, S =S, +S; , where S = replication, S, =Burn-in-period and §; =the retained one.

Adaptive Rejection Sampling (ARS)

The Adaptive Rejection Sampling (ARS) was first introduced by Gilks and Wild in 1992,
strictly for log-concave densities. The algorithm proceeds as in the Gibbs sampler, cycling
through each of the univariate parameters, in turn, sampling from the conditional densities.
Whereas the Gibbs sampler requires these conditional densities to be a standard distribution

such that sampling from it will be easy. The adaptive rejection sampling method will work
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for any logconcave conditional densities. Specifically, the difference between the Gibbs
sampler and adaptive rejection sampling is the conditional distribution.

A typical adaptive rejection sampling algorithm is given below:

Step 1: Initialise the K abscissa TK = {x; ,j =1, ... K}

Step 2: Sample y from s(6) and sample w from Unif(0,1).

Step 3: If w < exp{l(y) — u(y)}, set 80+V=1y. Otherwise go to Step 2.

Step 4: If w < exp{h(y) —u(y)}, set 8(+V=y. Otherwise go to Step 3.

Step 5: TK+1 =TK U[ {y}, K=K + 1] and go to Step 2.

2.10 Review of Some Studies on Classical Method of Estimation Using
Ridge Estimator for Collinearity

One of the suggested solutions to the problem of collinearity in regression models by
different scholars is the use of ridge estimators. The use of ridge estimator first came into
existence by Hoerl and Kennard (1970). The purpose is to handle collinearity in engineering
data. Their findings state that there is a non-zero value of ridge parameter called k for which
the Mean Squared Error (MSE) for the ridge estimator has a minimum variance than the
Ordinary Least Squares (OLS) Kibra and Banik (2016).

The ridge solution suggested by Hoerl and Kennard (1970) is given as:

BR)=X'X+EkDTX'Y, k=0 (2.12)

After the works of Hoerl and Kennard (1970a), and Hoerl and Kennard (1970b), more
research had been carried out on the use of ridge estimator since then. This can be seen in the
works of Lawless and Wang (1976), Dempster et al. (1977), Gibbons (1981), Gibbons and
McDonald (1984), Nomura (1988), Kibria (2003), Khalaf and Shukur (2005), Zhang and
Ibrahim (2005), Alkhamisi et al. (2006), and recent ones by Muniz and Kibria (2009), El-
Dereny and Rashwan (2011), Khalaf (2011), Jensen and Ramirez (2012), MacDonald and
Galameau (2012), Khalaf (2013), Duzan and Shariff (2015),Duzan and Shariff (2016),Khalaf
and Iguernane (2016), Iguernane (2016) and Shariff and Ferdaos (2017).

The usage of ridge estimator in some works is highlighted:
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Muniz and Kibria (2009)

They proposed three ridge estimators called Kypy , Kiys and Kypye by applying arithmetic
mean, geometric mean and square root based on the existing proposed methods by Kibria
(2003), Khalaf and Shukur (2005) and Alkhamisi et al. (2006)for estimating the ridge
parameter k and compared their performances of the estimators to Ordinary Least Squares
(OLS) estimator by simulation study, using different degrees of correlation between the
regressors, it was observed that the proposed estimators performed more than the OLS

estimator.

El-Dereny and Rashwan (2011)

These authors considered the methods for reducing the influence of collinearity by using two
classes of regression models while a great attention was paid to the use of ridge estimators.
They proposed two alternative approaches to resolve the collinearity issue. The proposed two
methods are: an application of the known Inequality Constrained Least Squares method and

the Dual estimator method.

MacDonalad and Galameau (2012)

Their study proposed and also evaluated two analytic methods on how to specify k parameter
in ridge regression with three explanatory variables, imposing four different kinds of
correlations among the regressors. Their ridge estimators were evaluated by estimating the
squared length of the unknown parameters, and then, choose the k parameter in the class of
ridge estimators so that the corresponding ridge estimator has a squared length equal to the
estimated quantity. They concluded by using a Monte Carlo simulation and observed that the

proposed method performed well.
Duzan and Shariff (2015)

The authors reviewed the literature from years 1964 to 2014 on the proposed ridge
estimators, to evaluate the ridge parameter k in order to provide guidance to users of
regression models in handling the problems of collinearity. They concluded that the various
estimations of ridge regression parameter k had improved and the estimation methods

provided by a number of researchers were working well.
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Duzan and Shariff (2016)

Robustness of ridge estimators were investigated in order to identify the most relevant k-
value of ridge regression in four variable regression model, while the results of ridge
estimators were compared with least squares method using a simulation study. They
concluded that a ridge regression must be used when collinearity occurs in the estimation of

parameters in regression model.
Khalaf and Iguernane (2016)

Their study focused on proposing a new estimator of ridge regression parameter when there is
collinearity in a regression model. They modified the estimator of Khalaf and Shukur (2005)
known as KS by finding the square root now called KSM estimator.

Their proposed estimator is given by:

I;KSM: R / EKS (2.13)

And

Amaxo?

(n—p)gz + Amaxﬁ/m—a\x

ks is (2.14)

Where A4, is the largest eigenvalue of X'X

Results of their simulation study showed that the estimator KSM dominates Ordinary Least
Squares (OLS) estimator, Khalaf and Shukur (2005) estimator, KS and Hoerl et al (1970)

estimator with respect toMSE.
Iguername (2016)

He considered the problem of multicollinearity in the estimation of regression model when
the degree is not high. He proposed two methods of finding the ridge regression parameter k
called MI; and MI,. The results of his simulation study using MSE criteria indicated that the
proposed estimators performed better than the Ordinary Least Squares (OLS) estimator and
HK estimator by Hoerl and Kennard (1970), HKB by Hoerl et al (1970), and LW estimator by

Lawless and Wang (1976). OLS estimator got the worst in all cases using MSE criterion.
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Shariff and Ferdaos (2017)

As an application, the authors combined the Generalized-M called GM estimation technique,
the estimator proposed by Bagheri and Midi (2009), and ridge parameter in the presence of
outliers and multicollinearity inorder to find the relationship between stock market price and
some macroeconomic variables in Malaysia. They considered four macroeconomic factors
namely; Consumer Price Index (CPI), Gross Domestic Product (GDP), Base Lending Rate
and Money Supply. The GM estimator used is given as:

Brog= X'WX)“1X'WY (2.15)

By introducing the technique of Bagheri and Midi (2009) and k-parameter, their estimator

becomes:
Brosr= (X'X+ k )™ X'XBros (2.16)

Where Prop and Bropr are the Robust estimator and Robust Ridge estimator respectively.
They concluded that their proposed estimator outperformed the earlier proposed method of

Bagheri and Midi (2009).

2.11 Review of Some Studies on Classical Method of Estimation Using

Other Methods for Collinearity

Reviews of some studies of other classical methods of estimation for collinearity are:

Oduntan (2004)

He carried out a research on the performance of six estimators in the presence of
multicollinearity using a two-equation of just identified simultaneous equations model. Two
levels of positive correlation among the predetermined variables known as the low and high
multicollinearity were considered. His result shows that in the presence of multicollinearity,
whether low or high, indirect least squares and OLS had better performance while other
estimators performed poorly. It was also observed that, the estimators were not sensitive to

sample sizes.
Agunbiade (2008)

A three-equation of just identified simultaneous equation model was considered when there is

multicollineairty in order to compare the performance of six estimators using three levels of
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multicollinearity. The estimators considered are OLS, Two stage least squares (2SLS), Three
stage Least Squares (3SLS), Limited Information Maximum Likelihood (LIML), Indirect
Least Squares (ILS) and Full Information Maximum Likelihood (FIML) and the levels of
multicollineairty are; the relatively highly negative correlation, relatively highly positive
correlation and feebly negatively or positively correlation levels. He concluded that LIML,
2SLS and ILS are the best for estimating parameters of a model having the relatively highly
negative correlation level of multicollinearity while OLS performed poorly under this
scenario but performed best in the relatively highly positive correlation level of

multicollinearity.

Other suggested methods to deal with the problem of collinearity in Regression analysis that
had received a lot of attention in literature is the method of principal components. This
method was proposed by Pearson (1901) and Hotelling (1933); and their concern was to find
the best way to represent samples by using vectors with predictors, in such a manner so that
the similar samples can be represented by points as close as possible. Some other authors that
conducted research in this regard are; Jolliffe (1973), Mansfield et al. (1977), Mason and
Gunst (1985), Boneh and Mendiet (1992), Tibshirani (1996), Angelo et al. (2012), Kim and
Lee (2014) and Lee et al. (2015).

2.12 Review of Some Existing Studies on Bayesian Method of Estimation

for Collinearity

There are limited literatures on the problem of collinearity using a Bayesian approach. These
are reported in the works of Curtis and Ghosh (2011), Rajaratna et al. (2016), Ijarchelo et al.
(2016), Hassan (2016), Efendi and Effrihan (2017). Most of these listed works made use of
variable selection procedures.

Some of these existing literatures are highlighted as:

Curtis and Ghosh (2011)

They proposed a Bayesian model that accounted for correlation among the predictors by
simultaneously performing selection and clustering of the predictors. They used a Dirichlet
process prior and a variable selection prior for regression coefficient while redundant
predictors were removed from the model. They concluded that Bayes method proposed did

not outperform all other methods in all situations, but often the best in high collinearity.
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Rajaratna et al. (2015)
They developed an algorithm called deterministic Bayesian LASSO. It was mainly designed
to handle low to moderate multicollinearity settings. Their algorithm was based on
exploiting the structure of the Bayesian LASSO, and the corresponding Gibbs sampler. The
Bayesian LASSO is given by:

p*+Y) = [X'X + A(BFN) 171Xy (2.32)
Hassan (2016)
He proposed a model selection procedure for the problem of high multicollinearity. His
method led to the best m-models in terms of posterior model probability; a simulation study
was carried out in order to compare the estimates of LASSO estimator obtained by Tibshirani
(1996) with the estimates of Bayesian approach. His proposed Bayesian method performed
better than the LASSO estimator.

Ijarchelo et al. (2016)
They developed a Bayesian regression procedure for variable selection under collinearity of

parameters using a Zellner’s g-prior given by:
1
P (Bo, | V) x & (2.33)
Their results showed that a strong collinearity may lead to a multimodal posterior distribution
over models in which joint summaries are more appropriate than marginal summaries. They

concluded that their posterior distribution were not available in closed form, and that can

make the problem of collinearity become computationally challenging.

Londono (2016)

He proposed a model selection procedure when faced with the problem of high collinearity
levels, and applied it to the inference over a treatment effect. He showed different frequentist
and Bayesian approaches in the application to a model selection procedure based on a post
double estimation procedure. His simulation results had evidence in favour of Bayesian
procedures when the number of observations was not much higher than the number of
possible controls, while a real life data of the impact of legalized abortion crimes rates were
also used with a post double Markov Chain Monte Carlo Model Composition called MC3.
Efendi and Effrihan (2017)

They conducted a simulation study in the implementation and evaluation of ridge regression

model with Bayesian estimation method when the degree of collinearity is high using a Gibbs
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sampler; their posterior distribution obtained for ridge parameter is unknown. They
concluded that their estimates of ridge regression models from both least squares and
Bayesian methods have similar properties, while Bayesian method was better in small sample

size setting.
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CHAPTER THREE
THEORETICAL FRAMEWORK

3.1 Introduction

In this chapter, the model specification, classical methods of estimation of regression model

and basic assumptions/principles guiding the application of Bayesian method are presented.
3.2 Linear Regression Model

Linear regression is probably the most widely used statistical technique for solving economic
problems. Linear regression models are extremely powerful, and have the power to
empirically simplify very complicated relationships between variables.

In general, the technique is useful among other applications to help in predicting observations
of a dependent variable, usually denoted Y, with observed values of one or more independent

variables, usually denoted by X, Xa, ... .

A key feature of all regression models is the inclusion of the error term, which captures
sources of error that are not captured by other variables, the dependent variable Y, and an
independent variable X. Hence, the simple linear regression model for Y on X is given by:

Y =p,+B X, +¢ i=1..,n 3.1

Model Specification

The general idea of a simple linear regression model is that the dependent variableY, is a
straight-line function of a single explanatory variable X,. Here, we extend the simple linear

regression model in (3.1) to multiple linear regression model by considering the dependent

variable to be a function of k explanatory variables X, , X X, . This relationship is a

il» i2°°°

straight-line and can thus be written as:

Yi=00+0:X;1 +0:Xip +. ..+ X T & (3.2)

Where the random errors ¢;, i = 1, ...,n are independently and normally distributed random

variables with zero mean and constant variance c°. The linear regression model in (3.2)

means that the mean of the dependent variable can be expressed as:
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E(Yl) = 90 + 91Xi1 + 92Xi2 +...+ QkXik (33)

The common assumption in linear regression model is the assumption of normality. In the
case where the normality assumption was not satisfied, the use of generalized linear model

becomes relevant.

Matrix Notation

Statistical results for multiple linear regression models such as parameter estimates, test
statistic, etc., can become complex and tedious to write out, particularly, when the numbers
of explanatory variables are more than two. A very useful approach is to simplify the
complex expressions by introducing matrix notation.

The Linear Regression Model (LRG) in (3.2) can also be written as:

y =X0+ ¢ (3.4)
Where

vy is N x 1 vector of the dependent variable

X is a N x k matrix of explanatory variables

0 is k x 1 of parameters vector

€ is a N x 1 vector of error terms
N and k are the number of observations and parameters, respectively.

Using matrix notation, equation (3.4) can be written as:

Y1 1 X1 oo X176 €o
H o R | e (35)
yN 1 XNl XNk Hk SN
where
1 1 X1 X1k 8o €o
y: 3/52 , X: } X:21 ....” Xz:k , 9: 9:1 , g: g.l
YN 1 XNl XNk Bk SN
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3.3 Assumptions Underlying Multiple Regression

Most statistical techniques have a set of underlying assumptions that guide their use in
applications. The assumptions underlying regression model can be generally categorized into

two: assumptions of the model and assumptions about the error term.

Assumptions of the Model
The assumptions about the model in equation (3.2) are as follows:

@) It is a linear regression model i.e., linear in parameters.

(i) The X’s have fixed values which are independent of error term.

(iii)  The number of observations n must be greater than the number of parameters to
be estimated.

(iv)  There should be no multicollinearity.
Assumptions on the Error Term

The following are the assumptions on the error term of the regression model in (3.4).

The mean of the probability distribution of the error term is zero (E(e;) = 0).

This is true by design of the estimator of OLS, but it also reflects the notion that it is not
expected of the error terms to be mostly positive or negative (overestimation or

underestimation of the regression line), but it should be centered on the regression line.

The probability distribution of error term has constant variance (Var(e;)= o).

It implies that a constant variance for Y variable across all the levels of the independent
variables is assumed. This is also called homoscedasticity, and it enables the pooling of
information from all the data to make a single estimate of the variance. When data do not

have constant error variance, we have heteroscedasticity.

The error terms are independent of each other and with the independent variables in the
model (Cov (g;, ;) =0 and Cov(X;, &) =0).
It means that the error terms are uncorrelated with each other or with any of the independent

variables in the model. Correlated error terms are common in time series data, and are known
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as auto-correlation. If there is correlation among the error terms and the independent

variables, it usually implies that the model is mis-specified.

3.4 Estimation in Classical Regression Model

The econometrician is interested in estimating the parameters 8 and o2, the Classical
econometrician therefore obtains data y and X and simply write the likelihood function of the

model in (3.0) as follows:

P(y|6,02) = exp [~ 5 (v — X0)' (v — X0)] (3.6)

(@2)"/2(2m)" /2
There are two (2) generally used methods of estimation in Classical Regression model:

(1) Ordinary Least Squares (OLS)
(2) Maximum Likelihood method.

Ordinary Least Squares

This method is used extensively in regression analysis, primarily, because it is intuitively
appealing and mathematically much simpler than the method of maximum likelihood, Cohen
et al. (2003), Hung et al. (2012), Lavallee (2007), and Michalos and Kahlke (2010).
However, the two methods OLS and maximum likelihood generally give similar results.

The principle of least squares is to find the ‘best fitting’ model. According to this principle,
the best fitting model is the one that minimizes the sum of squared residuals, where the
residuals are the difference between the observed variables and the values predicted by the
fitted model. The smaller the residuals, the closer the fit.

The residuals £, can be obtained using the expression given by:

& =Y, [0y +0: Xy +0, Xz +. .. + 0, Xy] (3.7)

We illustrate the derivation for the case of two regressors, X;; and X, with Y the dependant

variable, a and 3’s as parameters. The model in (3.2) now becomes:
Yi=oa+ 31X+ BaXoi + (3.8)

We look for estimators &, 3}, 35 so as to minimise the sum of squared errors,
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S=>(Y; —a- BXy; - fXy) (3.9)
i=1

Differentiating and setting the partial differentials to zero we obtain the following normal
equations:

0S oA .
Py - Z2(Yi —a - [ Xy — BrXo)(=1)=0 (3.10)
i=1

oS oA .
A :ZZ(Yi_a_ﬂlXu—ﬂzXzi)(—Xu):O (3.11)

B T

oS & oA .

PY: =D 2%, =& = B Xy = PaXp)(=X5) =0 (3.12)
2 =l

The three equations (3.10), (3.11) and (3.12) are called the “normal equations”. Equation

(3.10) can be written as

SYi=nd+ B> X+ Y X (3.13)
i=1 i=1 i=1
or

Where the bar over Y, X; and X, indicates sample mean.

Equation (3.12) can also be written as
n n A n 2 A n
ZXliYi:aZXli+ﬂlzXli +IBZZX11'X21‘ (3.15)
i=l i=l i=l i=l

Substituting in the value of & from (3.15), we get:

— — A — A — A 2 A
ZXliYi :”X1(Y—[7’1X1_,B2X2)+,B1ZXU +ﬂZZX1iX2i (3.16)

Similar equations result from (3.12) and (3.14). The equations can be simplified using the
following notations:
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SIIZZXliz_nylz SIY:ZXliYi_n)?IY

S1H ZZXUXzi —n)?1)?2 Soy :ZXziYi _”)_(217

2 - 2
S :ZXZi —nX,

Equation (3.16) can then be written

Siv= B8+ a1

Similarly, equation (3.12) becomes

Sov = BiS12 + BrSa

The two equations (3.17) and (3.18) can then give:

B, = S8y gslzszy

and

> 8118y =SS
B, =21 2YA 1291y

SYY:zYiz —nY?

(3.17)

(3.18)

(3.19)

(3.20)

Where A =SS5 — S1»>. @ can be obtained from equation (3.14).

RSS, ESS and TSS can also be calculated in the same way simple regression is calculated,

that is:

RSS = Z(Yi —a-BX,; - B Xy) (3.21)

ESS=) (¥, -¥)*

1SS= Y (Y, - Y)?

(3.22)

(3.23)

Where RSS = Residual Sum of Squares, ESS = Explained Sum of Squares and TSS = Total

Sum of Squares.
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And, the coefficient of multiple determination is given by:

R?=ESS/TSS (3.24)
R? is the proportion of the variation in Y explained by the regression.
The variances of the estimators are given by:

02

Var(f)=————-
Sid=ny")

(3.25)

and

02

Var(fy) = ———-
’ S (1= rlzz)

(3.26)

where 11,° is the squared correlation coefficient between X; and X,. Thus, the greater the
correlation between the two explanatory variables, the greater the variance of the estimators,
i.e., the harder it is to get significant results.

In order to give explicit formulae for the least squares estimates of the regression parameters,
it is convenient to switch to matrix notation. Without matrix notation, the formulae quickly
become unmanageable when the number of explanatory variables increase. Recall that the
multiple linear regression model (3.4) is given in matrix form, where the random errors, ¢; ,
i=1, . . . ,n are independently normally distributed random variables with zero mean and
constant variance o2, It can be shown that the vector Hof least squares estimates of 8 is given
by :

0=X"X)"'X'y (3.27)

where y is the vector of observed response variables, and where the superscripts 'and

—denote transposed and inverse matrices, respectively.

Maximum Likelihood Based Estimation

When the maximum likelihood estimation procedure is applied to the classical linear
regression model, the result is to get the maximum likelihood estimator. The maximum
likelihood estimation procedure implies choosing estimates of the unknown parameters of

those values that maximize the likelihood function for the sample of data. However, once the
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sample is obtained, the values of Y and the X’s are known, but the values of the 6’s are
unknown. The likelihood function is a function of the unknown 8’s, because one chooses the
values of the 8’s that maximize the likelihood function and the sample is more likely to come
from a population with these parameter values than any other parameter values.
Recall the model in equation (3.4)

y =X0+ ¢

And
e=y—0X

The multivariate normal distribution for € in (3.4) is given by:

1 !
f(e) = oz P - (3.28)

1 1
T oo hanh P e 0700 6K

The Likelihood function can be obtained as:
L(8;y) = f(y; ) (3.29)

Where f (y; 0) is the joint density function of y.

L(6,0%y) = @no®)™/* (@)™ exp {55 (v = 6X)' (v — 6X)} (3.30)

Taking the natural log of likelihood function in equation (3.30), we have:
[=InL(8,0%;y) (3.31)

1 1
707 T 2g7

[= -ZIn(@2m)-1n(0?)- (y — 6X) (v — 6X)} (3.32)

We take the partial derivative of [ with respect to 8 which gives the score function as:
S(6;y) == 3.33
( ) y) - 00 ( * )

The vector of unknown parameters has (k+1) elements, therefore the score function is written

as:

al
S([fz] =% (3.34)

do?
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a_ 1 , ,

6 "z (Xy+ Xx0) (3.35)
o __ N N o
60-2 - 20-2 + 2(0.2)2 (y QX) (y QX) (336)

The MLE can be obtained by setting equation (3.35) to zero.
From equation (3.35), we have;
X'y-X'X0=0 (3.37)

-X'X0=-X'y (3.38)
0=X'X)"'X'y (3.39)

The MLE for 8 was derived in (3.39).
Also, we set equation (3.36) to zero; the MLE can be obtained as:

o2 = (y-6x)" (y-6X)

- (3.40)

3.5 Bayesian Estimation Method

In statistical modelling, one of the important interests of a researcher is to estimate the
parameters such as what is obtained in classical approach. However, estimation of parameters

in Bayesian approach is rigorous due to the use of prior information and likelihood function.

The derivation of Bayesian estimator or estimation of the linear regression model using
Bayesian techniques can be performed through the following three steps (Simon, 2009);
1) Determine the likelihood function of the unknown parameters to be estimated given
the data.
2) Specify the prior distribution for all the unknown parameters.
3) Obtain the posterior distribution of the parameters given the data and prior
distribution.

The relationship between the three steps can be written as:
P (6ly) < P(8) P (y]6) (3.41)

P (8|y) is referred to as posterior density function, P (8) is the prior density function and P

(v|0) is the likelihood function.
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Likelihood Function
Using the properties of a multivariate normal distribution, the likelihood function is given as:

w2

P(y|@,h)= ——
(vl ) (Zn)N/Z

exp [ (y — X0)' (v — X0)] (3.42)

For convenience, it is better to write (3.42) in terms of Ordinary Least Squares (OLS)

estimator:
(y—X0) (y—X0) =(y—-X0+x0—X0) (y—X0 + X0—-X0)  (3.43)
= (y—X0)(y—xX)+(@ —-0)'X'X(6-0) (3.44)
=SSE+ (0 —0)'X' X (6-0) (3.45)
Where SSE is the Sum of Squares of Error
And
6=X"X)"'X'y (3.46)
While the variance of 8 is given as:
v(@) =Ss*(x'X)” (3.47)
The variance of the model is given as:

SZ — (y—XG) (y_Xe) (348)

v

S2 is the estimator of variance of the model (3.4)
And
v= N —k ,the degree of freedom
Equation (3.47) can be written as:
vS?=(y — X0)' (y — X0) (3.49)

Hence, the likelihood is written as:
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N/,

P(y|6, k) = (Z’L)N/z exp [ {SSE + (8 —0)'X'X(8-0)} 1  (3.50)

Prior Distribution
Prior distributions are divided into two as explained in chapter two;

(i) Informative

(i) Non-Informative

Priors are meant to reflect any information the researcher has before seeing the data, which he
wishes to incorporate in the analysis of the data. Hence, priors can take any form. Often time,
particular classes of priors are chosen to make computation and interpretation easier, Koop
(2003), Gelman (2006). Natural conjugate, an example of informative prior and non-
informative prior using local uniform distributions, belongs to this class of priors.

Hence, informative prior (natural conjugate) and non-informative prior (local uniform

distribution) will be used in this study. Therefore, two estimators will be derived as:

@) Bayesian with Informative prior

(i)  Bayesian with Non-informative prior

3.51 Bayesian Estimator with Informative Prior (Natural Conjugate Prior)

To carry out Bayesian inference in the presence of multicollinearity with an informative

prior, a natural conjugate will be utilized in developing the estimator.

Natural Conjugate Prior is a type of prior when combined with the likelihood function,
gives a posterior distribution that falls in the same class of distribution, Raifa and Sclaifer
(1961). Examples are Normal-Gamma and Normal priors. A natural conjugate prior was also
found to have additional property of the same functional form with the likelihood

function,Dreze and Richard (1983), Richard and Steel (1988), and Koop and Poirier (1993).

In the linear regression model given in (3.4), we must elicit prior distribution for parameter
fand the precision h which is given by P (0, h), in the sense that we are not conditioning on
the data but on parameters, which implies that P(6, h) is a prior distribution. Prior distribution

can now be written as:

P (6,h)= P(6|h)P(h)
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One then think about of a prior for 8|h and the other one for h.Tsionas (2000).

The likelihood function in (3.50) suggests a prior in form of Normal distribution for 8|h and

a Gamma distribution for h. The name of such prior which is a product of Gamma and a

conditional Normal is called a Normal-Gamma distribution.

Based on the above premise, it follows that:

0] h~N( 8y, h"1Qy) (3.51)
This implies that it follows a Normal distribution.
This can also be written as:
hk/2 h
PO = sz (expl=5 (0= 6,) (@)™ (0 - 6,1} (3.52)
And also,
h~ G( S52%,v,) (3.53)
This also implies that (3.53) follows a Gamma distribution.
(3.53) can also be written as:
P(h) = Wh%ew (%) (3.54)

2 vo

Where ,

v\ 255 2. 20. . .
r (?) ( - ) 2 is the integrating constant.
0

In the distribution of (3.52) and (3.54), 8, denotes the prior mean for parameter 6, Q, is the

un-scaled variance-covariance matrix for parameter 8, Sy? is the prior mean of gamma

density function for the model precision h and v, is the prior degree of freedom of gamma

distribution for the model precision h.
Recall the rule of probability,
P(B,A) =P(B|A)P(A)

Therefore,
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P (6,h)= P(6|h)P(h) (3.56)

Hence, equations (3.52) and (3.54), the natural conjugate prior for 6 and h can be simply

written as:

_ nk/2 n , 1
PO.h) = sz texpl=3 (0 = 0,)" (@)™ (0 — 0]}

vo—2
X mh 2z exp (-2’;17_02) (357)
(35 ’
_ hvoT+k_1 h , 1 Vo
P(6,h) = 5270 1exp[—2 (0 —-6,) (Q0) (6 -6,) + =1}
2mk/2 |Qol /2 (%) 522 2 %o
(3.58)
Equation (3.58) can also be written as:
6,h~ NG (6,,Q,,552%,v,) (3.59)

Equation (3.59) above implies that the distribution of the prior, P (8,h) for 6 and h is a

multivariate Normal-Gamma.

N.B: The symbol “ 0’’ under the parameters is the prior, while symbol represented by * over

the parameters indicate the posterior parameters.
Posterior Distribution for Informative Prior

The work of posterior distribution is to summarize the information from both the data, and

prior about the unknown parameters 8and h.

For the linear regression model in (3.4), it can be shown that the posterior distribution is also
a Normal-Gamma distribution form, which also confirmed that the prior obtained earlier is a

natural conjugate prior for 8 and h, Koop (2003) and Koop et al (2007).
The posterior distribution is then obtained from the relation as follows:
P(6,hly) « P(6,h)P (y]6,h) (3.60)

This expression means that we should multiply (3.58) and (3.41), which gives the joint

posterior distribution as:

6,hly ~NG (6,Q",55%v") (3.61)
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Equation (3.61) follows a Normal-Gamma posterior distribution.

Hence, the hyper-parameters given in (3.61) are:

Q*=(Q, '+ x'x) 1 (3.62)
6"= Q* (Qo ‘6, + X'X ) (3.63)
v =N+, (3.64)

Equations (3.62), (3.63) and (3.64) are the estimators for un-scaled variance-covariance
matrix (which is a k X k matrix), posterior mean and degree of freedom of posterior,

respectively.

While the Sum of Squares of Error (SSE) and Variance of the error of the model in (3.4) can

also be given respectively as:

SSE= (vS%)y + vS%2 + (8 — 6,) [Qo + (X'X]72 (6 — 6p) (3.65)

_ (v5%)g + 8% + (6 — 6p) [Qo+(X'X)"]7* (8 - 6p)
v*

§2*

(3.66)

In regression modelling, the coefficient on the regressors, 6 is usually a primary focus, and a
measure of marginal effect of the regressors on the dependent variable. The posterior mean, E
(B]y) is the point estimate, and v(6) is a metric for measuring the uncertainty associated with

the point estimate.

Since the interest is on 6, we integrate outh in (3.61) to obtain the marginal posterior for 6.

Applying the rule of probability we have:

E (8|y)=[[ 6 P(8, h|y)0h 06 = [ 6 P(0|y)06 (3.67)
Where,

P(8]y) = [ P(6,h|y)oh (3.68)
Hence, equation (3.68) becomes:

v*l_, v +k

v*

POy ) =T IS QT 4 (66 (52T Q)T - 00T (369
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Equation (3.68) follows a t-distribution which can also be written as:
Oly ~t(8*,5%* Q*,v") (3.70)

And from the definition of t-distribution, the mean and variance can be obtained as:

E@ly)= 6" (3.71)
v() = viS_EZQ* (3.72)

Equations (3.71) and (3.72) are mean and variance estimators used to obtain the values for

parameter, 6 for different degree of collinearity analytically.

SE (6) is the standard error of Bayesian estimator of 6* which can also be obtained as:

SE (6) =+/v(6%) (3.73)

The credible interval for estimators of Bayesian in the same way we have confidence interval

in the classical is given by:
0" £ t1_q/2, v SE (0%) (3.74)

Hence, equations (3.71) to (3.74) provide an insight on how Bayesian methods combine the
prior (informative) and data information, using model (3.4). The results Bayesian

econometrician will report can then be written analytically.
3.52 Bayesian Estimator with Non-Informative Prior

In deriving the Bayesian estimator with non-informative prior, non-informative prior will be

multiplied with the likelihood function in the manner as obtained for informative prior.

Recall the relationship between the posterior distribution, likelihood function and prior

distribution is given by:
P (6,h|y) < P(0,h) XP(y|6, h)

Non-informative prior: Prior elicitation often lead to wide disagreement about the choice of
prior which in turn gave rise to the use of non-informative prior, in some cases, it is desirable
for data information to be predominant over prior information. Non-informative priors are

used to make inferences which are not greatly affected by external information or when
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external information is not provided. As noted by Jeffreys (1961), non-informative prior tend
to be proper in most models, and two rules must be adhered to when choosing a non-

informative prior distribution:

(1) Ifa parameter have any value in a finite range from -co to +oo , the prior probability
should be taken as uniformly distributed.
(2) If the parameter by nature can take any value from 0 to oo, the prior probability of the

logarithm should be taken as uniformly distributed.

It is assumed that fand h are independently distributed, and then prior distributions can be

written as:
P(6,h) =P(08) P(h) (3.75)

Jeffreys” non-informative prior is based on invariant principle, which states that

transformation, & = h (6) of a non-informative prior should not yield additional information.
Using Jeffreys’ invariant theory proposed by Zellner (1971), we then write the prior as:
P(@) =constant=1  -0o to +oo , (3.76)
Equation (3.76) is called uniform distribution
P(hyec 1= 1/, (3.77)
the non-informative prior combining (3.76) and (3.77) is then given by:

PO, h) e 1x 1/, (3.78)

P(0,h) o< 1/, (3.79)

Likelihood Function

The likelihood function is given by:

N

h'/2 h ,
POIO )= o exp [-5 (v —X0)" (y — X6)] (3.80)

It is convenient to re-write the likelihood function in (3.80) in a slightly different way by

focussing on the exponent part as:
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(y—X0) (y—X0) = (y—X0+X0—x0) (y—X0 + X0 —X0) (3.81)
Thus,
(y—X60) (y—X0) =@ —-X0)'(y—-X0)+©O—-0)X'"X©O-0) (3.82)

Recall from (3.48), that:

§2 = (y—Xa);(y—Xé) (3.83)
where v =N-k (3.84)
Equation (3.82) becomes:
52 = GO 018 (3.85)
Then, we have:
(N-Kk)S? =(y—X0)'(y — X0) (3.86)

Substitute (N — k)S? for (y — X0)'(y — X0 ) in (3.82), we have:
(y—X6) (y—X0) = (N=K)S?+@0—-0)X'"X0—-0) (3.87)

Substitute (3.87) into (3.80); the likelihood function then becomes:

N

/A N _
P(y|6, h) = (Z’;Wexp [ {N=1)S? + (0 —0)'x' X(6 —9)}] (3.88)

If we combine equation (3.80) with (3.88), it will yield posterior distribution as:

/2—-1

P(0, h|y)= 2>
@, Iy)—(m

e [3 {N=1)S? + (6 —0)'x' X(6 — 0)}](3.89)

P(6, hly)=

pN/2-1
2T

Ty X [-3(N=K)S?] exp[-2(8 —0)X' X(6-8)]  (3.90)

Since the interest is on parameter 6, by examination of (3.90), treating parameter h as fixed

and ignoring the terms that do not involve parameter 8, we have:
P (6]h,y)= exp [—%(9—9*)’X’ X6 — 6] (3.91)

Equation (3.91) is the kernel of multivariate Normal distribution
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NB: * over the parameter indicates a parameter of posterior distribution

3.6 Bayesian Monte Carlo Integration

As stated in chapter two, the posterior distribution is an important aspect of Bayesian
whereby numeric summaries are made from. e.g. mean, standard deviation etc. If the numeric
summaries cannot be obtained analytically, the best way is to obtain the results by using a

method called posterior simulation methods. An example of such is Monte Carlo Integration.

The posterior simulation using Monte Carlo Integration (MCI) method will be compared with
analytical method obtained in (3.71) to (3.74) under informative prior for all the degrees of

collinearity in order to compare their performance in the presence of multicollinearity.

MCI is a widely used technique in many branches of mathematics and engineering. Suppose
the random variable X has arbitrary probability distribution p(x), and we have an algorithm
for generating a large number of independent realisations x™,x@ . . | x(™ from this

distribution, then;
E(X)=[xp(X)dx ~ ~XI_, X® (3.92)

In other words, the theoretical expectation on X can be approximated by the sample mean of
a set of independent realisations drawn from p(X). By the strong law of large numbers, the
approximation becomes arbitrarily exact as T— oo. For example, the expectation of any

function of X, g(X), can be obtained as:

E(9(X)=[ g p()ox ~ 231, g(x©®) (3.93)

That is, the sample mean of the function of the simulated values. In particular, since the
variance of X is simply a function of the expectations of X and X2, this too may be
approximated in a natural way using MCI. Not surprisingly, the estimate turns out to be the

sample variance of the realisations: x™, x| x™ from p(x).

Another important function of X is the indicator function, I(L < X < U), which takes value 1
if X lies in the interval (L, U) and 0 otherwise. The expectation of I(L< X < U) with respect
to p(x) gives the probability that X lies within the specified interval,
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Pr (L < X < U), and may be approximated using MCI by taking the sample average of the
value of indicator function for each realisations x (.
Straightforwardly, it gives:

number of realisations x(® €(L,U)

Pr(L<X<U) = -

(3.94)

Hence, any desired summary of p(x) may be approximated by calculating the corresponding
summary of the sampled values generated from p(x), with the approximation becoming

increasingly exact as the sample size increases.

The algorithm for MCI is provided in chapter four of this work.
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CHAPTER FOUR
METHODOLOGY

4.1 Introduction

This chapter discusses the design of the experiment and procedure used in generation of data
for the research, estimation of the parameters using the derived estimators provided in chapter

three, different criteria used for evaluation and summarising the results.
4.2 Design

1. Data generation of regressors involving six cases of collinearity among regressors.

a. High Positive Collinearity (HPC): when there is high positive level of collinearity
among regressors in the model. p = 0.95, 0.90 and 0.80.

b. Moderate Positive Collinearity (MPC): when there is moderate positive level of
collinearity among regressors in the model. p =0.49, 0.46 and 0.36.

c. Low Positive Collinearity (LPC): when there is low positive level of collinearity
among regressors in the model. p = 0.20, 0.17 and 0.15.

d. High Negative Collinearity (HNC): when there is high negative level of collinearity
among regressors in the model. p =-0.95, -0.90 and -0.80.

e. Moderate Negative Collinearity (MNC): when there is moderate negative level of
collinearity among regressors in the model. p =-0.49, -0.46 and -0.36

f. Low Negative Collinearity (LNC): when there is low negative level of collinearity

among regressors in the model. p =-0.20, -0.17 and -0.15.
2. Generation of the error term.
3. Specification of the true parameter values.

4. Use the regressors, the error term and true parameter values to generate the dependent

variable.

5. Specify the prior values for the hyper-parameters for the derived Bayesian estimators

(Informative and Non-informative) as contained in chapter three.
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6. Use the data generated for both the regressors and dependent variable to obtain the
estimates of the parameters from the Bayesian estimators (informative and non-

informative).

7. For the posterior simulation using Monte Carlo Integration, the specified hyper-parameters

will be used with the aid of computer.

8. Collate and summarize the results for clear conclusions and interpretations.

4.3 Data Generation Procedure for the Study

The model for this study is given by:
y = 60+ 91X1 + 62X2 + 63X3 + & (40)

Where, y is the dependent variable 8, 6;, 6, and Ozare the parameters to be estimated, X;,
i =1,2,3 are the regressors and ¢; is the error term.
In order to estimate the parameters of the model in (4.0), we simulate the data as illustrated
below:

(1) The error term, &; were generated from a normal distribution with mean zero and

unit variance, i.e &~ N(0,1).

(i) The explanatory variables, X;,X,, X; were generated using the procedure by
Wichem and Churchilll (1978), Alkhamisi et al (2006) and Muniz et al (2012). It

follows as:
Xij= (1 =p»)Y2X;" + pX;j” (4.1)

Where p is the correlation between regressors and X;;" is independent variables obtained

from uniform distribution i.e. X;;"~ U(0,1).

(iii))  The true parameter values were set as: 8y = 17,68, =8.5,6,=5.0,65 =2.0

(iv)  The dependent variable y can then be obtained given the values of 8, 6;, 6,, 65
X1X5,X3 and g

%) Sample sizes are set as: 10, 30, 70, 100, 200 and 300.

54



4.4 Prior Specification
The following prior specifications are used:

(1) Informative prior:

2.4 0 0 0
_ _[ 0 6x1077 O 0
Vo =4, Q=1 o 0 015 0 |’
0 0 0 06
15
_ 10
h=5S7%=15, 6,=|c¢
2.5
(2) Non-informative prior:
0 0 0O 0
0 0 0O 0 _
Qo= 0 0 0 o) vy =0, 6,= WE h = 5;2=15
0 0 0O 0

4.5 Algorithms of Bayesian Monte Carlo Integration (MCI)
The following are the algorithms to evaluate the model in equation (4.0):

(1) Select a random draw 8() from the joint Posterior given in equation (3.60) for 8, , 8,
, 8, and 05 using a random number generator.

(2) Obtain g(68)) for 6, , 6, ,0, and 65 and keep the results.

(3) Repeat (1) and (2) S-times

(4) Obtain the average of S draws for:

9O, .. g6y for 6,
gOgD. . .. .gOF) for 6, ,
gOGD, . .. g6y for 6,
gOGD, . .. g6y for 6,

(5) Carry out analysis of interest.

6(1)

()
(0),. . ,6

(o) are the draws of replication for 6, for analysis using MCI
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9((8 S Béf)) are the draws of replication for 8, for analysis using MCI
9((21)) See e 9((5)) are the draws of replication for6, for analysis using MCI
9((;)) See e 9((5)) are the draws of replication forf; for analysis using MCI

The algorithms illustrated above will yield an estimate of E[ g(8)|y] for any function of
interest like mean, variance etc., with the aid of computer by taking a random sample from
the posterior. MCI yields only approximation for E[ g(6)|y] since the replication S, cannot be
set to infinity. However, when selecting S, the researcher can control the degrees of

approximation error.

For example, if the interest is centred on the mean, it can be calculated as:
— _1gs
Gs =5Zi=19(0°)

The replications to perform the MCI were set as:

1. S=1000 = MCI (1000)
2. $=10000 = MCI (10000)
3. $=100000 = MCI (100000)

4.6 Criteria for Assessing the Performances of the Estimators

Some of the criteria used in literature will also be used to judge the performances of the

estimators for the six cases of collinearity:

1. Standard Error (SE)

2. Credible Interval and Confidence Interval (CI) for the Bayesian estimators
and Likelihood based, respectively

3. Mean
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CHAPTER FIVE
DISCUSSION OF RESULTS

5.1 Introduction

This chapter presents the discussion of the results of the analysis carried out. The
performances of the estimators using model in (4.0) of chapter four are done across sample
sizes N= 10, 30, 70, 100, 200 and 300 for the degrees of collinearity while the performances
of Bayesian posterior simulation, and analytical methods in the presence of collineairty for
varying level of collineairty, p = 0.95, 0.90 etc using means, standard errors and

Confidence/Credible Intervals of estimators are also carried out.
The degrees of collinearity considered were:

e High Positive Collinearity (HPC); p =0.95, 0.90 and 0.80

e Moderate Positive Collinearity (MPC); p = 0.49, 0.46 and 0.36

e Low Positive Collinearity (LPC); p =0.20, 0.17 and 0.15

e High Negative Collinearity (HNC); p =-0.95, -0.90 and -0.80

e Moderate Negative Collinearity (MNC); p =-0.49, -0.46 and -0.36
e Low Negative Collinearity (LNC); p =-0.20, -0.17 and -0.15

The following notations are used in the presentation of the results.

e Likelihood Based method- LB
e Bayesian with Non-informative Prior- BNIP

e Bayesian with Informative Prior- BIP

Tables 5.1-5.130 present the means, standard errors and 95% and 99% confidence/credible
intervals for sample sizes of 10, 30, 70, 100, 200 and 300 in the presence of collinearity while
Tables 5.133-5.168 present the means, standard errors, and 95% and 99% confidence/credible
intervals for Bayesian Analytical method and Bayesian posterior simulation (MCI) methods,
using informative prior. The posterior simulation methods were replicated 1000, 10000 and
100000 times to examine the sensitivity of Bayesian posterior simulation methods on

multicollinearity to increasing number of replication.

Figures 5.1-5.28 present the plots of the estimators for different sample sizes for the six

degrees of collinearity.
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5.2 Performances of the Estimators In The Presence of Multicollinearity.

Table 5.1: High Positive Collinearity, p = 0.95 and sample size, N=10.

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6o LB 16.8594 1.2872 (13.7099, 20.0091)  (12.0874, 21.6315)
(17) BNIP 16.8594 0.9970 (14.6379, 19.0810)  (13.6996, 20.0193)
BIP 15.4915 0.4130 (14.6217,16.3614)  (14.2842, 16.6989)
6, LB 13.2207 7.5473 (-5.2469, 31.6883)  (-14.7604, 41.2018)
8.9 BNIP 13.2207 5.8461 (0.1947,26.2467)  (-5.3073, 31.7487)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9978, 10.0022)
6, LB 1.7932 9.1344 (-20.5578, 24.1442)  (-32.0718, 35.6582)
5.0 BNIP 1.7932 7.0755 (-13.9719, 17.5583)  (-20.6308, 24.2172)
BIP 5.5092 0.3874 (4.7113, 6.3070) (4.4018, 6.6165)
04 LB -3.8846 9.6393 (-27.4711,19.7019)  (-39.6216, 31.8524)
(2.0) BNIP -3.8846 7.4666 (-20.5211, 12.7520)  (-27.5481, 19.7790)
BIP 2.5116 0.7362 (0.9658, 4.0575) (0.3661, 4.6571)
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Table 5.2: High Positive Collinearity , p = 0.90 and sample size, N=10.

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.3852 0.5068 (16.1451, 18.6252)  (15.5063, 19.2640)
(17) BNIP 17.3852 0.3926 (16.5105, 18.2598)  (16.1410, 18.6293)
BIP 16.5191 0.3657 (15.7347,17.3035)  (15.4303, 17.6078)
04 LB 6.9682 1.8906 (2.3420,11.5943)  (-0.0411, 13.9774)
(8.5) BNIP 6.9682 1.4645 (3.7052,10.2312) (2.3269, 11.6094)
BIP 10.0000 0.0007 (9.9984, 10.0016) (9.9978, 10.0022)
0, LB 8.2848 3.1037 (0.6403,15.8793)  (-3.2270, 19.7916)
(5.0 BNIP 8.2848 2.4041 (2.9281, 13.6416) (0.6655, 15.9042)
BIP 5.3799 0.3677 (4.5912, 6.1687) (4.2852,6.4747)
04 LB 0.4720 2.7504 (-6.258, 7.2021) (-9.7250, 10.6690)
2.0) BNIP 0.4720 2.1305 (-4.2749, 5.2190) (-6.2800, 7.2241)
BIP 1.8349 0.6856 (0.3644, 3.3054) (-0.2061, 3.8759)
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Table 5.3: High Positive Collinearity, p = 0.80 and sample size, N=10.

Parameters Estimators Mean Standard Error 95% CI 99% CI
6, LB 16.0313 1.5473 (12.2451, 19.817) (10.2947, 21.7679)
(17) BNIP 16.0313 1.1986 (13.3607, 18.7018) (12.2327, 19.8298)
BIP 15.4915 0.4056 (14.6217,16.3614) (14.2842, 16.6989)
6, LB 12.8662 3.2158 (4.9975, 20.7348) (0.9440, 24.7884)
(8.5) BNIP 12.8662 2.4909 (7.3161, 18.4163) (4.9718, 20.76006)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9978, 10.0022)
6, LB 3.9309 8.1683 (-16.0563,23.91808)  (-26.3526, 34.2144)
(5.0) BNIP 3.9309 6.3272 (-10.1669, 18.0287) (-16.1216, 23.9834)
BIP 5.5092 0.3720 (4.7113, 6.3070) (4.4018, 6.6165)
05 LB -1.5202 8.1652 (-21.4998, 18.4593) (-31.7922, 28.7517)
(2.0) BNIP -1.5202 6.3247 (-15.6126, 12.5722) (-21.5651, 18.5246)
BIP 2.5116 0.7207 (0.9658, 4.0575) (0.3661, 4.6571)
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Table 5.4: Moderate Positive Collinearity, p = 0.49 and sample size, N=10.

Parameters Estimators Mean Standard Error 95% CI 99% CI
6, LB 18.6167 1.3629 (15.2817,21.9517)  (13.5637, 23.6698)
17) BNIP 18.6167 1.0557 (16.2644,20.9691)  (15.2708, 21.9626)
BIP 15.6370 0.5752 (14.4033,16.8706)  (13.9247, 17.3492)
0, LB 9.0641 2.0404 (4.0715, 14.0568) (1.4995, 16.6288)
(8.5) BNIP 9.0641 1.5805 (5.5426, 12.5857) (4.0551, 14.0731)
BIP 10.0000 0.0011 (9.9976, 10.0023) (9.9967, 10.0033)
0, LB 3.3798 4.7171 (-8.1626, 14.9221)  (-14.1086, 20.8081)
5.0 BNIP 3.3798 3.6539 (-4.7615, 11.5211) (-8.2003, 14.9598)
BIP 5.3373 0.5394 (4.1804, 6.4942) (3.7316, 6.9430)
04 LB -3.2938 4.8666 (-15.2019, 8.6142)  (-21.3363, 14.7486)
(2.0) BNIP -3.2938 3.7696 (-11.6931, 5.1054) (-15.2408, 8.6531)
BIP 1.6390 1.0248 (-0.5590, 3.8370) (-1.4117, 4.6896)
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Table 5.5: Moderate Positive Collinearity, p = 0.46 and sample size, N=10.

Parameters Estimators Mean Standard Error 95% CI 99% CI
0, LB 18.6286 1.0971 (15.9441,21.3130)  (14.5612, 22.6959)
a7 BNIP 18.6286 0.8498 (16.7351, 20.5220)  (15.9354, 21.3218)
BIP 15.7337 0.5356 (14.5850, 16.8823)  (14.1394, 17.3279)
0, LB 6.5615 1.2958 (3.3908, 9.7323) (1.7574, 11.3657)
(8.9 BNIP 6.5615 1.0037 (4.3251, 8.7980) (3.3804, 9.7427)
BIP 10.0000 0.0010 (9.9978, 10.0022) (9.9970, 10.0030)
0, LB 2.3067 3.3697 (-5.9388, 10.5522)  (-10.1864, 14.7998)
5.0 BNIP 2.3067 2.6102 (-3.5092, 8.1225) (-5.9657, 10.5791)
BIP 5.3927 0.5008 (4.3186, 6.4668) (3.9019, 6.8835)
05 LB 1.8186 2.5253 (-4.3607, 7.9979) (-7.5439, 11.1811)
(2.0) BNIP 1.8186 1.9561 (-2.5399, 6.1771) (-4.3809, 8.0181)
BIP 1.9958 0.9389 (-0.0181, 4.0096) (-0.7993, 4.7908)
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Table 5.6: Moderate Positive Collinearity, p = 0.36 and sample size, N=10.

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6, LB 16.6114 1.3042 (13.4200, 19.8028) (11.7759, 21.4469)
(17) BNIP 16.6114 1.0103 (14.3603, 18.8625) (13.4095, 19.8133)
BIP 15.7337 0.3945 (14.5850, 16.8823) (15.0005, 17.3493)
0, LB 10.3367 1.4125 (6.8803, 13.7930) (5.0998, 15.5736)
(8.5) BNIP 10.3367 1.0941 (7.8988, 12.7746) (6.8690, 13.8043)
BIP 10.0000 0.0008 (9.9978, 10.0022) (9.9977, 10.0023)
0, LB 6.9233 3.4316 (-1.4735, 15.3200) (-5.7991, 19.6457)
(5.0) BNIP 6.9233 2.6581 (1.0006, 12.8459) (-1.5010, 15.3475)
BIP 5.3927 0.3775 (4.3186, 6.4668) (4.4097, 6.6574)
65 LB -1.1555 3.1432 (-8.8467, 6.53571)  (-12.8088, 10.4978)
(2.0) BNIP -1.1555 2.4347 (-6.5804, 4.2694) (-8.8718, 6.5608)
BIP 1.9958 0.7176 (-0.0181, 4.0096) (0.1417,4.4139)
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Table 5.7: Low Positive Collinearity, p = 0.20 and sample size, N=10.

Parameters Estimators Mean Standard Error 95% CI 99% CI
6o LB 17.8763 0.9143 (15.6390, 20.1136) (14.4865, 21.2662)
(17) BNIP 17.8763 0.7082 (16.2983, 19.4544) (15.6317, 20.1209)
BIP 16.0203 0.3488 (15.2722, 16.7684) (14.9820, 17.0587)
6, LB 8.2282 1.1826 (5.3345, 11.1219) (3.8438, 12.6125)
(8.5) BNIP 8.2282 0.9160 (6.1871, 10.2692) (5.3250, 11.1313)
BIP 10.0000 0.0007 (9.9985, 10.0015) (9.9979, 10.0021)
6, LB 3.7700 2.3684 (-2.0254, 9.5654) (-5.0104, 12.5508)
(5.0) BNIP 3.7700 1.8346 (-0.3177,7.8577) (-2.0443, 9.5843)
BIP 5.4410 0.3467 (4.6974, 6.1847) (4.4089, 6.4732)
05 LB 0.3099 1.8120 (-4.1238, 4.7437) (-6.4079, 7.0277)
(2.0) BNIP 0.3099 1.4036 (-2.8174, 3.4372) (-4.1383, 4.7582)
BIP 2.2905 0.6426 (0.9122, 3.6688) (0.3775, 4.2035)
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Table 5.8: Low Positive Collinearity regressors, p = 0.17 and sample size, N=10.

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6, LB 14.2507 1.0575 (13.4200, 19.8028) (11.7759, 21.4469)
(17) BNIP 14.2507 0.8192 (12.4255, 16.0758) (11.6545, 16.8468)
BIP 16.0892 0.3134 (15.4171, 16.7613)  (15.1564, 17.0221)
0, LB 10.8832 0.9618 (6.8803, 13.7930) (5.0998, 15.5736)
(8.5) BNIP 10.8832 0.7450 (9.2233, 12.5431) (8.5222, 13.2443)
BIP 10.0000 0.0006 (9.9986, 10.0014) (9.9981, 10.0019)
0, LB 9.2429 2.8139 (-1.4735, 15.3200) (-5.7991, 19.6457)
(5.0) BNIP 9.2429 2.1797 (4.3863, 14.0995) (2.3349, 16.1508)
BIP 5.5819 0.3157 (4.9048, 6.2591) (4.6421, 6.5217)
05 LB 3.4000 2.2126 (-8.8467, 6.53571)  (-12.8088, 10.4978)
(2.0) BNIP 3.4000 1.7139 (-0.4187, 7.2188) (-2.0317, 8.8317)
BIP 2.7162 0.6079 (1.4124, 4.0200) (0.9066, 4.5258)
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Table 5.9: Low Positive Collinearity regressors, p = 0.15 and sample size, N=10.

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6, LB 17.6192 0.9534 (15.2865, 19.9520) (14.0847,21.1538)
(17) BNIP 17.6192 0.7385 (15.9738, 19.2647) (15.2788, 19.9596)
BIP 16.3954 0.3794 (15.5818,17.2090)  (15.2661, 17.5247)
6, LB 8.4999 1.2881 (5.3481, 11.6517) (3.7244, 13.2753)
(8.5) BNIP 8.4999 0.9977 (6.2768, 10.7230) (5.3378, 11.6620)
BIP 10.0000 0.0008 (9.9983, 10.0017) (9.9977, 10.0023)
0, LB 2.7172 2.1093 (-2.444, 7.8785) (-5.10278, 10.5373)
(5.0) BNIP 27172 1.6338 (-0.9232, 6.3577) (-2.4609, 7.8953)
BIP 5.4141 0.3835 (4.5916, 6.2366) (4.2725, 6.5557)
05 LB 4.0064 2.2311 (-1.4529, 9.4658) (-4.2653, 12.2782)
(2.0) BNIP 4.0064 1.7282 (0.1557,7.8571) (-1.4708, 9.4836)
BIP 2.6546 0.7285 (1.0921, 4.2171) (0.4859, 4.8233)
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From Tables 5.1-5.9, the following are observed:

In terms of CI, the CI of Bayesian estimators at 95% and 99% are more compact than the LB
estimator most especially the BIP for all the parameters considered across the three levels of

collineairty (HPC, MPC and LPC).

The standard errors of Bayesian estimators (BNIP and BIP) are smaller than the LB method
for HPC, MPC and LPC for sample size 10. In table 5.1, the SE for parameters, 6,, 6,, 6,
and 63 are (1.2872,0.9970 and 0.4130), (7.5473, 5.8461 and 0.0008), (9.1344, 7.0755 and
0.3874) and (9.6393, 7.4666 and 0.7362) respectively for HPC, MPC and LPC, when the
sample size, is 10.

The means of the estimators especially the BIP are not too far from the initial values of the
simulated data, the means of LB and BNIP are the same for all the parameters across the

levels of collinearity.

The CI of LPC is more compact than the HPC, for instance; parameterf, when LPC (p =
0.15), the CI for LB, BNIP and BIP are (-2.444<CI<7.8785), (-0.9232<CI<6.3577) and
(4.5916<CI< 6.2366), respectively but when HPC (p = 0.95), the CI for LB, BNIP and BIP are
(-20.5578<CI<24.1442), (-13.9719<CI<17.5583) and (4.7113<CI< 6.3070), respectively.

In Low Positive Collinearity, it shows that the performance of Likelihood Based (LB)

method becomes better than HPC and MPC. Hence, the collinearity does not have much

effect on the LB for LPC.
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Table 5.10: Summary of Tables 5.1 -5.9 for Standard Error when the sample size, N=10.

Parameters Estimators  0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15
0o LB 1.2872 0.5060 1.5473 1.3629 1.0971 1.3042 0.9143 1.0575 0.9534
BNIP 0.9970 0.3956 1.1986 1.0557 0.8498 1.0103 0.7082 0.8192 0.7385
BIP 0.4130 0.3657 0.4045 0.5752 0.5356 0.3945 0.3488 0.3134 0.3794
0, LB 7.5473 1.8906 3.2158 2.0404 1.2958 1.4125 1.1826 0.9618 1.2881
BNIP 5.8461 1.4645 2.4909 1.5805 1.0037 1.0941 0.9160 0.7450 0.9977
BIP 0.0008 0.0007 0.0008 0.0071 0.0010 0.0008 0.0007 0.0006 0.0008
6, LB 9.1344 3.1037 8.1683 4.7171 3.3697 3.4316 2.3684 2.8139 2.1093
BNIP 7.0755 2.4041 6.3272 3.6539 2.6102 2.6581 1.8346 2.1797 1.6338
BIP 0.3874 0.3677 0.3720 0.5394 0.5008 0.3775 0.3467 0.3157 0.3835
05 LB 9.6393 2.7504 8.1652 4.8666 2.5253 3.1432 1.8120 2.2126 2.2311
BNIP 7.4666 2.1305 6.3247 3.7696 1.9561 2.4347 1.4036 1.7139 1.7282
BIP 0.7362 0.6856 0.7207 1.0248 0.9389 0.7176 0.6426 0.6079 0.7285
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Table 5.10 shows the summary of SE for multicollinearity (HPC, MPC and LPC) of the
estimators across the parameters (8, 6;, 8, and 83) when the sample size is 10. There
seems to be no fixed pattern in the performance of the estimators for the levels of
multicollinearity (p = 0.15-0.95). It is also observed that as p decreases, the SE of
estimators also decreases for all the parameters. When p = 0.95, all the estimators have

the highest value of SE for the parameters except for the intercept parameter 6.

The Bayesian estimators (BIP and BNIP) have the smallest SE for all the levels of
multicollinearity considered (p =0.15-0.95) when the sample size, N=10. It is also
observed that LB has the highest value of SE, when p = 0.95, for parameter 65 being
9.6293. The SE of BIP for parameter 8, for p’s are almost the same. It was also observed
in table 5.10, that HPC is characterized with large SE especially when the p = 0.95 and as
the level of collinearity move from high positive to low positive, the SE also reduces

consistently.

Hence, BIP outperformed other estimators (BNIP and LP).
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Table 5.11: Summary of Tables 5.1-5.9 for Mean for sample size, N= 10.

Parameters  Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

6o LB 16.8594 17.3852 16.0313 18.6167 18.6286 16.6114 17.8763 14.2507 17.6192
(17.00) BNIP 16.8594 17.3852 16.0313 18.6167 18.6286 16.6114 17.8763 14.2507 17.6192
BIP 154915 16.5191 154915 15.6370 15.7337 15.7337 16.0203 16.0892 16.3954

0, LB 13.2207 6.9682 12.8662  9.0641 6.5615 10.3367  8.2282 10.8832  8.4999

8.5) BNIP 13.2207 6.9682 12.8662  9.0641 6.5615 10.3367  8.2282 10.8832  8.4999

BIP 10.0000  10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

0, LB 1.7932 8.2848 3.9309 33798 23067 69233 3.7700  9.2429 2.7172

(5.00) BNIP 1.7932 82848 39309 33798 23067 6.9233 377700  9.2429 2.7172

BIP 55092 53799 55092 53373 53927 53927 54410 5.5819 5.4141

03 LB -3.8846 04720 -1.5202 -3.2938 1.8186 -1.1555 0.3099 3.4000 4.0064

(2.00) BNIP -3.8846 0.4720 -1.5202 -3.2938 1.8186 -1.1555 0.3099 3.4000 4.0064

BIP 2.5116 1.8349  2.5116 1.6390  1.9958 1.9958  2.2905 2.7162 2.6546
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Table 5.11 summarizes the mean estimates of all the estimators for parameters (6, 0, 65

and 63), when the sample size is 10.

The mean of LB and BNIP are the same for all levels of multicollinearity across the
parameters. However, there is evidence to suggest that BIP is the best for estimating
parameters of the regression model because the means are closer to the true parameter

value for all the levels of multicollinearity.

The mean estimates of the estimators get closer to the true parameter values for LPC
(0.20, 0.17 and 0.15). Also none of the estimators generated negative average estimates
and none generated large positive estimates except for parameter ;under LB and BNIP
estimators. The average estimates have shown no consistent pattern for all levels of

multicollinearity across the parameters when the sample size is 10.
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Table 5.12: High Positive Collinearity, p = 0.95 and sample size, N=30

Parameters Estimators Mean Standard Error 95% CI 99% CI
6o LB 17.9670 0.6965 (16.5354,19.3985)  (16.03172, 19.9022)
17) BNIP 17.9670 0.6484 (16.6428,19.2911)  (16.1840, 19.7499)
BIP 16.5256 0.3642 (15.7856, 17.2657)  (15.5321, 17.5192)
0, LB 9.2698 2.8858 (3.3379,15.2017) (1.25093, 17.2887)
(8.5) BNIP 9.2698 2.6866 (3.7831, 14.7565) (1.8818, 16.6579)
BIP 10.0000 0.0009 (9.9981, 10.0019) (9.9974, 10.0026)
0, LB 2.2399 49174 (-7.8681,12.3478)  (-11.4243,15.9039)
(5.0 BNIP 2.2399 4.5779 (-7.1094, 11.5891)  (-10.3493, 14.8290)
BIP 5.1549 0.4546 (4.2310, 6.0787) (3.9146, 6.3952)
0 LB 0.9541 5.2168 (-9.7692, 11.6775)  (-13.542,15.4502)
(2.0) BNIP 0.9541 4.8566 (-8.9644, 10.8726)  (-12.4015, 14.3098)
BIP 1.1338 0.8081 (-0.5084, 2.7760) (-1.0709, 3.3385)
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Table 5.13: High Positive Collinearity, p = 0.90 and sample size, N=30.

Parameters Estimators Mean Standard Error 95% CI 99% CI
6, LB 16.9105 0.5528 (15.7743, 18.0468)  (15.3745,18.4466)
a7 BNIP 16.9105 0.5146 (15.8595, 17.9615)  (15.4953, 18.3257)
BIP 16.5785 0.3091 (15.9503, 17.2068)  (15.7351, 17.4220)
6, LB 7.8741 2.4975 (2.7404, 13.0079)  (0.9342, 14.8141)
(8.9 BNIP 7.8741 2.3251 (3.1257,12.6226)  (1.4802, 14.2681)
BIP 10.0000 0.0009 (9.9982,10.0018)  (9.9975, 10.0025)
0, LB 9.7744 3.4381 (2.7072,16.8415)  (0.2208, 19.3279)
(5.0 BNIP 9.7744 3.2007 (3.2377,16.3111)  (0.9724, 18.5763)
BIP 5.3574 0.4338 (4.4759, 6.2389) (4.1740, 6.5409)
03 LB -1.2346 3.3749 (-8.1718,5.7026)  (-10.6125, 8.1432)
(2.0) BNIP -1.2346 3.1419 (-7.6512, 5.1819) (-9.8747, 7.4054)
BIP 1.3367 0.7483 (-0.1841, 2.8575) (-0.7051,3.3785)
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Table 5.14: High Positive Collinearity, p = 0.80 and sample size, N=30.

Parameters  Estimators Mean Standard Error 95% CI 99% CI
0, LB 17.1931 0.6793 (15.7968, 18.5894) (15.3055, 19.0807)
(17) BNIP 17.1931 0.6324 (15.9015, 18.4846) (15.4540, 18.9322)
BIP 16.3754 0.3371 (15.6903, 17.0605) (115.4556, 17.2952)
0, LB 8.6261 1.5259 (5.4896, 11.7626) (4.3861, 12.8660)
(8.5) BNIP 8.6261 1.4205 (5.7250, 11.5272) (4.7196, 12.5325)
BIP 10.0000 0.0008 (9.9983, 10.0017) (9.9977, 10.0023)
0, LB 4.4173 24797 (-0.6799, 9.5144) (-2.4732, 11.3078)
5.0 BNIP 4.4173 2.3085 (-0.2973, 9.1319) (-1.9311, 10.7657)
BIP 5.3091 0.4078 (4.4804, 6.1378) (4.1965, 6.4217)
05 LB 2.5640 2.6355 (-2.8534, 7.9813) (-4.7593, 9.8873)
(2.0) BNIP 2.5640 2.4535 (-2.4468, 7.5748) (-4.1832, 9.3112)
BIP 1.8231 0.7238 (0.3521, 3.2941) (-0.1518, 3.7980)
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Table 5.15 Moderate Positive Collinearity, p = 0.49 and sample size, N=30.

Parameters  Estimators Mean Standard Error 95% CI 99% CI

0, LB 17.8159 0.4069 (16.9796, 18.6523)  (16.6853, 18.9465)
(17) BNIP 17.8159 0.3788 (17.0424, 18.5895)  (16.7743, 18.8576)
BIP 16.1627 0.2686 (15.6168, 16.7086) ( 15.4298, 16.8956)

0, LB 9.6426 0.6478 (8.3110, 10.9742)  (7.8425, 11.4427)
(8.5) BNIP 9.6426 0.6031 (8.4110, 10.8743)  (7.9842,11.3011)
BIP 10.0000 0.0007 (9.9987,10.0013)  (9.9982, 10.0018)

0, LB 3.1630 1.0671 (0.9695, 5.3565) (0.1978, 6.1282)

(5.0 BNIP 3.1630 0.9934 (1.1341, 5.1918) (0.4311, 5.8949)

BIP 5.2558 0.3145 (4.6167, 5.8949) (4.3977,6.1138)

64 LB -0.3051 1.0492 (-2.4618, 1.8515) (-3.2206, 2.6103)
(2.0) BNIP -0.3051 0.9767 (-2.2999, 1.6896) (-2.9912, 2.3809)

BIP 1.5739 0.5596 (0.4366,2.7112) (0.0470, 3.1008)
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Table 5.16 Moderate Positive Collinearity, p = 0.46 and sample size, N=30.

Parameters  Estimators Mean Standard Error 95% CI 99% CI

0, LB 18.0459 0.5174 (16.3655,19.1095)  (16.6081, 19.4837)
a7 BNIP 18.0459 0.4817 (17.0621, 19.0297)  (16.7212, 19.3706)
BIP 16.4598 0.3476 (15.7534,17.1662)  (15.5114, 17.4082)

0, LB 7.6960 0.5931 (6.4770, 8.9150) (6.0481, 9.3440)

(8.5) BNIP 7.6960 0.5521 (6.5685, 8.8236) (6.1777,9.2143)
BIP 10.0000 0.0010 (9.9981, 10.0019) (9.9974, 10.0026)

0, LB 4.2493 1.5303 (1.1037, 7.3950) (-0.0031, 8.5016)

(5.0 BNIP 4.2493 1.4247 (1.3398, 7.1589) (0.3315, 8.1671)

BIP 5.2562 0.4569 (4.3277, 6.1847) (4.0096, 6.5028)

03 LB 1.7192 1.4710 (-1.3045, 4.7428) (-2.3683, 5.8067)
(2.0) BNIP 1.7192 1.3694 (-1.0776, 4.5159) (-2.0468, 5.4851)
BIP 1.7676 0.8176 (0.1061, 3.4291) (-0.4630, 3.9982)
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Table 5.17: Moderate Positive Collinearity, p = 0.36 and sample size, N=30.

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 17.7265 0.4843 (16.3655, 18.5295) (15.9848, 18.9102)
a7 BNIP 17.7265 0.4509 (16.8057, 18.6474) (16.4866, 18.9665)
BIP 16.2950 0.2979 (15.6896, 16.9003) (15.4823, 17.1077)

04 LB 8.6495 0.6465 (6.7665, 9.4106) (6.3002, 9.8759)
(8.5) BNIP 8.6495 0.6019 (7.4202,9.8787) (6.9942,10.3047)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9979, 10.0021)

0, LB 4.0811 1.2169 (1.2469, 7.3829) (0.1675, 8.4623)

(5.0 BNIP 4.0811 1.1329 (1.7674, 6.3948) (0.9656, 7.1966)

BIP 5.2628 0.3685 (4.5139, 6.0117) (4.2574, 6.2682)

04 LB 0.5145 1.3533 (1.4159,5.9183) (0.6239, 6.7103)
2.0) BNIP 0.5145 1.2599 (-2.0585, 3.0875) (-2.9502, 3.9791)
BIP 1.7875 0.6697 (0.4265, 3.1486) (-0.0398, 3.6149)

77



Table 5.18: Low Positive Collinearity, p = 0.20 and sample size, N=30.

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.4475 0.5264 (16.3655, 18.5295) (15.9848, 18.9102)
17) BNIP 17.4475 0.4900 (16.4467, 18.4483) (16.0999, 18.7951)
BIP 16.3871 0.2725 (15.8334, 16.9408) (15.6437,17.1305)

0, LB 8.0880 0.6434 (6.7665, 9.41006) (6.3002, 9.8759)

8.9 BNIP 8.0880 0.5990 (6.8647,9.3113) (6.4408, 9.7353)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9979, 10.0021)

0, LB 43149 1.4926 (1.2469, 7.3829) (0.1675, 8.4623)

(5.0 BNIP 43149 1.3895 (1.4772,7.1526) (0.4938, 8.1360)

BIP 5.4291 0.3711 (4.6750, 6.1832) (4.4167, 6.4415)

03 LB 3.6671 1.0952 (1.4159, 5.9183) (0.6239, 6.7103)

2.0 BNIP 3.6671 1.0196 (1.5849, 5.7493) (0.8633, 6.4709)

BIP 24619 0.6192 (1.2035, 3.7203) (0.7724, 4.1514)
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Table 5.19: Low Positive Collinearity, p = 0.17 and sample size, N=30.

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 16.9460 0.6337 (16.3746, 18.9796)  (15.9163, 19.4379)
17) BNIP 17.6771 0.5899 (16.4723, 18.8819)  (16.0548, 19.2994)
BIP 15.8294 0.3537 (15.1107, 16.5481)  (14.8644, 16.7944)

6, LB 7.3974 0.6856 (5.9880, 8.8067) (5.4922,9.3026)
(8.5) BNIP 7.3974 0.6383 (6.0938, 8.7010) (5.6421,9.1527)
BIP 10.0000 0.0010 (9.9980, 10.0020) (9.9973, 10.0027)

6, LB 2.7093 1.5297 (-0.4351, 5.8536) (-1.5414, 6.9599)
(5.0 BNIP 2.7093 1.4241 (-0.1991, 5.6176) (-1.2069, 6.6255)
BIP 5.2537 0.4741 (4.2903, 6.2172) (3.9603, 6.5472)

04 LB 2.8356 1.3558 (0.0486, 5.6226) (-0.9319, 6.6031)
(2.0 BNIP 2.8356 1.2622 (0.2578, 5.4134) (-0.6355, 6.3067)
BIP 2.5796 0.8355 (0.8817,4.2775) (0.3001, 4.8591)
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Table 5.20: Low Positive Collinearity, p = 0.15 and sample size, N=30.

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 16.6501 0.4818 (15.6597,17.6405)  (15.3112,17.9890)
17) BNIP 16.6501 0.4486 (15.7340, 17.5662)  (15.4166,17.8837)
BIP 16.0062 0.2340 (15.5307,16.4817)  (15.3678,16.6446)

04 LB 8.7457 0.5508 (7.6135, 9.8780) (7.2152,10.2763)
(8.5) BNIP 8.7457 0.5128 (7.6985, 9.7930) (7.3356, 10.1559)
BIP 10.0000 0.0007 (9.9987, 10.0013) (9.9982, 10.0018)

0, LB 4.0759 1.2089 (1.5910, 6.5608) (0.7168, 7.4351)

(5.0 BNIP 4.0759 1.1254 (1.7775, 6.3743) (0.9811, 7.1708)

BIP 5.4219 0.3155 (4.7807, 6.0630) (4.5611, 6.2827)

04 LB 4.2218 0.9666 (2.2350, 6.2086) (1.5360, 6.9076)

2.0) BNIP 4.2218 0.8998 (2.3841, 6.0595) (1.7473, 6.6963)

BIP 2.9690 0.5488 (1.8537, 4.0844) (1.4716, 4.4665)
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From Tables 5.12-5.20, the following observations were made when the sample size is 30:

The mean estimates of all the estimators (LB, BNIP and BIP) are close to the true parameter
values, but BIP outperformed all other estimators except few cases; for HPC when the sample
size is 30, the means of the estimators are 17.9670, 17.9670, 16.5256 for LB, BNIP and BIP

respectively for parameter 6, with true value of the parameter of 17.00.

BNIP and BIP estimator have smaller SE than LB estimator, the SE of all the estimators also
decreases as sample size increases. HPC has the highest values of SE among the levels of
collinearity, the values also reduced consistently compared to sample size of 10, but for LPC,

the SE increases when p = 0.17.

The confidence interval of LB becomes more compact compared to when the sample size is
10 for HPC, MPC and LPC. The CI of intercept parameter is compact for all the estimators
across the levels of collinearity. BIP has the smallest SE values for all the parameters
considered while the 95% and 99% CI of BIP are also more compact than LB and BNIP for
HPC, MPC and LPC.
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Table 5.21: Summary of Tables 5.12 -5.20 for Standard Error when the sample size, N= 30.

Parameters  Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

0, LB 0.6965 0.5528  0.6793 0.4069 0.5174 0.4843 0.5264 0.6337 0.4818
BNIP 0.6484 0.5146  0.6324 0.3788 0.4817 0.4509 0.4900 0.5899 0.4486

BIP 0.3642 03091 0.3371 0.2686 0.3476 0.2979 0.2725 0.3537 0.2340

04 LB 2.8858 24975 1.5259 0.6478 0.5931 0.6465 0.6434 0.6856 0.5508
BNIP 2.6866 23251 1.4205 0.6031 0.5521 0.6019 0.5990 0.6383 0.5128

BIP 0.0009 0.0009  0.0008 0.0007 0.0010 0.0008 0.0008 0.0010 0.0008

0, LB 49174 3.4381 24797 1.0671 1.5303 1.2169 1.4926 1.5297 1.2089
BNIP 4.5779 3.2007 23085 0.9934 1.4247 1.1329 1.3895 1.4241 1.1254

BIP 0.4546 0.4338 0.4078 0.3145 0.4569 0.3685 0.3467 1.2622 0.3155

03 LB 5.2168 33749  2.6355 1.0492 1.4710 13533 1.0952 1.3558 0.9666
BNIP 4.8566 3.1419 24535 09767 13694 1.2599 1.0196 1.2622 0.8998

BIP 0.8081 0.7483  0.7238 0.5596 0.8176 0.6697 0.6192 0.8355 0.5488
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Table 5.21 gives the summary of SE in tables 5.12-5.20 when the sample size is 30. p = 0.95
gives the highest SE among the levels of multicollinearity for all the estimators across the

parmaters.

Bayesian estimators (BNIP and BIP) have the smallest SE for all the p’s (0.15-0.95) across
the parameters. It was also observed that when p = 0.15, all the estimators have minimum SE

values for all the parameters.

Among the three estimators, BIP outperformed all the estimators at all the levels of
multicollinearity having the smallest SE in most cases. Hence, SE has not shown any
consistent pattern within the three levels of multicollinearity (high, moderate and low positive

collinearities).
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Table 5.22: Summary of Tables 5.12-5.20 for Mean for sample size, N= 30.

Parameters ~ Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

0, LB 17.9670 169105  17.1931 17.8159 18.0459 17.7265 17.4475 16.9460 16.6501
(17.00) BNIP 17.9670 169105  17.1931 17.8159 18.0459 17.7265 17.4475 16.9460 16.6501
BIP 16.5256  16.5785 163754 16.1627 16.4598 16.2950 16.3871 15.8294 16.0062

6, LB 9.2698 7.8741 8.6261  9.6426  7.6960 8.6485 8.0880  7.3974  8.7457

(8.5) BNIP 9.2698 7.8741 8.6261  9.6426  7.6960 8.6495 8.0880  7.3974  8.7457

BIP 10.0000  10.0000  10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

6, LB 22399  9.7744 44173  3.1630 4.2493 4.0811 43149  2.7093  4.0759

(5.00) BNIP 2.2399  9.7744 4.4173  3.1630 4.2493 4.0811 43149  2.7093 4.0759

BIP 5.1549 53574 5.3091 52558 52562 52628 5.4291 5.2537 5.4219

05 LB 0.9541 -1.2346  2.5640 -0.3051 1.7192 0.5145 3.6671 2.8356 4.2218

(2.00) BNIP 0.9541 -1.2346 25640 -0.3051 1.7192 0.5145  3.6671 2.8356 4.2218

BIP 1.1338 1.3367 1.8231 1.5739 1.7676 1.7875  2.4619 2.5796 2.9690
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Table 5.22 shows the summary of mean for tables 5-12-5.20 for all the levels of
multicollinearity when the sample size is 30. The means of LB and BNIP are the same for all
levels of multicollinearity across the parameters. The means of BIP are not too far from true

parameter values for all the levels of multicollinearity for all the parameters considered in

most cases.

Negative means was observed when p = 0.49 and 0.90 for LB and BNIP estimators for

parameter 05.
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Table 5.23: High Positive Collinearity, p = 0.95 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% CI

0, LB 17.4391 0.3760 (16.6885, 18.1898)  (16.4419, 18.4364)
a7 BNIP 17.4391 0.3651 (16.7110, 18.1673)  (16.4724, 18.4058)
BIP 16.7363 0.2351 (16.2679, 17.2046)  (16.1148, 17.3577)

04 LB 9.7138 1.8816 (5.9572,13.4704)  (4.7232, 14.70447)
(8.5) BNIP 9.7138 1.8270 (6.0700, 13.3577)  (4.8761, 14.5516)
BIP 10.0000 0.0008 (9.9983,10.0017)  (9.9978, 10.0022)

0, LB 2.8381 2.5519 (-2.2569, 7.9331) (-3.9304, 9.6067)
(5.0 BNIP 2.8381 24779 (-2.1039, 7.7801) (-3.7231, 9.3993)
BIP 4.9526 0.3948 (4.1658,5.7393) (3.9086, 5.9965)

03 LB 0.8514 2.9699 (-5.0783, 6.7811) (-7.0261, 8.7288)
(2.0 BNIP 0.8514 2.8838 (-4.9003, 6.6030) (-6.7848, 8.4875)
BIP 0.5777 0.6369 (-0.6912, 1.8467) (-1.1060, 2.2615)
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Table 5.24: High Positive Collinearity, p = 0.90 and sample size, N=70

Parameters Estimators  Mean Standard Error 95% CI 99% CI

0, LB 16.9460 0.3787 (16.1899, 17.7021)  (15.9415, 17.9505)
(17) BNIP 16.9460 0.3677 (16.2126, 17.6794)  (15.9723, 17.9197)
BIP 16.2691 0.2396 (15.7917, 16.7465)  (15.6356, 16.9025)

04 LB 10.8772 1.3907 (8.7007, 13.6538) (7.1887,14.5658)
(8.5) BNIP 10.8772 1.3503 (8.1841, 13.5704) (7.3017, 14.4528)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9978, 10.0021)

0, LB 3.7170 2.1729 (-0.6213, 8.0553) (-2.0463, 9.4803)
(5.0) BNIP 3.7170 2.1099 (-0.4910, 7.9250) (-1.8697, 9.3038)
BIP 5.2293 0.3843 (4.4636, 5.9949) (4.2133, 6.2452)

04 LB -0.7270 2.0584 (-4.8367, 3.3827) (-6.1866, 4.7327)
(2.0) BNIP -0.7270 1.9987 (-4.7133, 3.2593) (-6.0194, 4.5654)
BIP 1.1752 0.5952 (-0.0107, 2.3611) (-0.3984, 2.7488)
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Table 5.25: High Positive Collinearity, p = 0.80 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.2351 0.4167 (16.4032, 18.0670) (16.1300, 18.3402)
a7 BNIP 17.2351 0.4046 (16.4282, 18.0420) (16.1638, 18.3064)
BIP 16.7268 0.2525 (16.2236, 17.2299) (16.0591, 17.3944)

6, LB 8.8310 1.0675 (6.6997, 10.9624) (5.9995, 11.6626)
(8.5) BNIP 8.8310 1.0366 (6.7636, 10.8984) (6.0863, 11.5758)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9979, 10.0021)

6, LB 5.0839 1.4572 (2.1745,7.9934) (1.2188, 8.9491)

(5.0) BNIP 5.0839 1.4150 (2.2618, 7.9060) (1.3372, 8.8307)

BIP 5.1653 0.3615 (4.4450, 5.8857 (4.2095, 6.1212)

05 LB 1.6487 1.4436 (-1.2335, 4.5310) (-2.1803, 5.4778)
(2.0 BNIP 1.6487 1.4018 (-1.1470, 4.4445) (-2.0630, 5.3605)

BIP 1.2926 0.5747 (0.1474,2.4377) (-0.2270, 2.8121)
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Table 5.26: Moderate Positive Collinearity, p = 0.49 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.0015 0.4092 (16.1845,17.8184)  (15.9162, 18.0865)
a7 BNIP 17.0015 0.4031 (15.7654, 16.8137)  (15.9494, 18.0535)
BIP 16.2896 0.2667 (15.7917, 16.7465)  (15.5941, 16.9851)

0, LB 9.0363 0.6659 (7.7068,10.3659) (7.2701,10.8026)
(8.5) BNIP 9.0363 0.6560 (7.7467, 10.3260) (7.3242,10.7485)
BIP 10.0000 0.0008 (9.9983,10.0017)  (9.9978, 10.0022)

0, LB 4.2182 1.1278 (1.9665, 6.4700) (1.2268, 7.2096)

(5.0 BNIP 4.2182 1.1111 (2.0341, 6.4023) (1.3185,7.1179)

BIP 5.1215 0.3870 (4.3608, 5.8822) (4.1122, 6.1308)

04 LB 1.8422 1.0265 (-0.2073, 3.8918) (-0.8806, 4.5650)
(2.0 BNIP 1.8422 1.0113 (-0.1458, 3.8303) (-0.7971, 4.4816)

BIP 1.1752 0.6194 (0.5038, 2.9385) (0.1058, 3.3364)
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Table 5.27: Moderate Positive Collinearity, p = 0.46 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.4871 0.3629 (16.7625, 18.2117)  (16.5244, 18.4498)
17) BNIP 17.4871 0.3524 (16.7842, 18.1900)  (16.5539, 18.4203)
BIP 16.5841 0.2641 (16.0578, 17.1104)  (15.8857, 17.2825)

6, LB 8.6788 0.4957 (7.6892, 9.6686) (7.3642, 9.9935)
(8.5) BNIP 8.6788 0.4813 (7.7189, 9.6387) (7.4044, 9.9532)
BIP 10.0000 0.0009 (9.9982,10.0018)  (9.9977, 10.0023)

6, LB 4.0078 0.9211 (2.1688, 5.8470) (1.5648, 6.4508)
(5.0 BNIP 4.0078 0.8943 (2.2240, 5.7915) (1.6396, 6.3759)
BIP 5.0442 0.3980 (4.2513,5.8371) (3.9920, 6.0964)

04 LB 1.6666 0.8560 (-0.0424, 3.3755) (-0.6038, 3.9369)
(2.0 BNIP 1.6666 0.8311 (0.0089, 3.3242) (-0.5342, 3.8673)
BIP 1.4772 0.6059 (0.2698, 2.6845) (-0.1249, 3.0792)
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Table 5.28: Moderate Positive Collinearity, p = 0.36 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6, LB 17.0015 0.4092 (16.1845,17.8184)  (15.9162, 18.0865)
a7 BNIP 17.0015 0.4031 (15.7654, 16.8137)  (15.9494, 18.0535)
BIP 16.2896 0.2667 (15.7917, 16.7465)  (15.5941, 16.9851)

6, LB 9.0363 0.6659 (7.7068,10.3659) (7.2701,10.8026)
(8.9 BNIP 9.0363 0.6560 (7.7467, 10.3260) (7.3242,10.7485)
BIP 10.0000 0.0008 (9.9983,10.0017)  (9.9978, 10.0022)

0, LB 4.2182 1.1278 (1.9665, 6.4700) (1.2268, 7.2096)

(5.0 BNIP 4.2182 1.1111 (2.0341, 6.4023) (1.3185,7.1179)

BIP 5.1215 0.3870 (4.3608, 5.8822) (4.1122, 6.1308)

03 LB 1.8422 1.0265 (-0.2073, 3.8918) (-0.8806, 4.5650)
(2.0) BNIP 1.8422 1.0113 (-0.1458, 3.8303) (-0.7971, 4.4816)

BIP 1.1752 0.6194 (0.5038, 2.9385) (0.1058, 3.3364)
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Table 5.29: Low Positive Collinearity, p = 0.20 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.3447 0.4080 (16.5301, 18.1593)  (16.2625, 18.4269)
(17) BNIP 17.3447 0.3962 (16.5546, 18.1349)  (16.2957, 18.3937)
BIP 16.3027 0.2495 (15.8056, 16.7998)  (15.6431, 16.9623)

04 LB 8.6242 0.4610 (7.7038, 9.5445) (7.4015, 9.8469)

(8.5) BNIP 8.6242 0.4476 (7.7314,9.5169) (7.4389, 9.8094)
BIP 10.0000 0.0009 (9.9983,10.0017) (9.9977,10.0023)

0, LB 4.6462 0.9301 (2.7892, 6.5033) (2.1792,7.1133)

(5.0 BNIP 4.6462 0.9032 (2.8449, 6.4475) (2.2548,7.0377)

BIP 5.2790 0.3963 (4.4893, 6.06806) (4.2312, 6.3267)

04 LB 1.2628 0.8934 (-0.5210, 3.0466) (-1.1070, 3.6325)
2.0) BNIP 1.2628 0.8675 (-0.4675, 2.9930) (-1.0344, 3.5599)
BIP 1.6263 0.6275 (0.3760, 2.8766) (-0.0327, 3.2853)
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Table 5.30: Low Positive Collinearity, p = 0.17 and sample size, N=70

Parameters  Estimators Mean  Standard Error 95% CI 99% CI
6o LB 16.9087 0.3868 (15.9175, 17.2918) (15.6949, 17.5144)
17) BNIP 16.9087 0.3756 (16.1596, 17.6579) (15.9141, 17.9033)
BIP 16.0190 0.2353 (15.5502, 16.4878) (15.3969, 16.6410)
6, LB 8.5162 0.4059 (5.2364, 8.9481) (4.6357,9.5494)
(8.5) BNIP 8.5162 0.3942 (7.7300, 9.3024) (7.4725, 9.5599)
BIP 10.0000 0.0009 (9.9983, 10.0017) (9.9977, 10.0023)
6, LB 4.9773 0.9050 (3.9008, 10.5841) (2.8182, 11.6666)
(5.0) BNIP 4.9773 0.8788 (3.2246, 6.7299) (2.6504, 7.3042)
BIP 5.3295 0.3908 (4.5508, 6.1082) (4.2962, 6.3628)
04 LB 2.2787 0.7948 (1.1373,5.3914) (0.4483, 6.0804)
(2.0 BNIP 2.2787 0.7717 (0.7396, 3.8179) (0.2353, 4.3222)
BIP 2.3808 0.5991 (1.1871, 3.5745) (0.7968, 3.9648)
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Table 5.31: Low Positive Collinearity, p = 0.15 and sample size, N=70

Parameters  Estimators Mean Standard Error 95% CI 99% C1

6o LB 17.2549 0.3766 (16.5029, 18.0069) (16.2559, 18.2539)
(17) BNIP 17.2549 0.3657 (16.5255, 17.9843) (16.2865,18.2233)
BIP 16.3744 0.2453 (15.8857, 16.8632) (15.7259, 17.0229)

04 LB 8.0682 0.4260 (7.2177, 8.9187) (6.9382,9.1981)

(8.5) BNIP 8.0682 0.4137 (7.2431, 8.8932) (6.9728,9.1635)
BIP 10.0000 0.0008 (9.9983,10.0016) (9.9978, 10.0022)

0, LB 4.4982 0.8206 (2.8598, 6.1366) (2.3217, 6.6748)

(5.0) BNIP 4.4982 0.7968 (2.9090, 6.0874) (2.3883, 6.6081)

BIP 5.2396 0.3766 (4.4893, 5.9899) (4.2440, 6.2352)

04 LB 3.1267 0.9184 (1.2931, 4.9604) (0.6908, 5.5627)

(2.0) BNIP 3.1267 0.8918 (1.3482, 4.9053) (0.7655, 5.4880)

BIP 2.3696 0.6324 (1.1095, 3.6298) 0.6975, 4.0417)
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Table 5.32: Summary of Tables 5.23 -5.31 for Standard Error when the sample size, N= 70.

Parameters Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

0o LB 0.3760 0.3787  0.4167 0.4092 0.3629 0.4092 0.4080 0.3868 0.3766
BNIP 0.3651 03677  0.4046 0.4031 0.3524 0.4031 0.3962 0.3756 0.3657

BIP 0.2351 0.2396  0.2525 0.2667 0.2641 0.2667 0.2495 0.2353 0.2453

0, LB 1.8816 1.3907 1.0675 0.6659 0.4957 0.6659 0.4610 0.4059 0.4260
BNIP 1.8270 1.3503 1.0366 0.6560 0.4813 0.6560 0.4476 03942 0.4137

BIP 0.0008 0.0008  0.0008 0.0008 0.0009 0.0008 0.0009 0.0009 0.0008

0, LB 2.5519 2.1729 14572 1.1278 09211 1.1278 0.9301 0.9050 0.8206
BNIP 24779 2.1099 1.4150 1.1111 0.8943 1.1111 0.9032 0.8788 0.7968

BIP 0.3948 0.3843  0.3615 0.3870 0.3980 0.3870 0.3963 0.3908 0.3766

03 LB 2.9699 2.0584 1.4436  1.0265 0.8560 1.0265 0.8934 0.7948 0.9184
BNIP 2.8838 1.9987 14018 1.0113 0.8311 1.0113 0.8675 0.7717 0.8918

BIP 0.6369 0.5952  0.5747 0.6194 0.6059 0.6194 0.6275 0.5991 0.6324
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Table 5.32 gives the summary of SE in tables 5.23-5.31. When p = 0.95, for all the estimators
have the highest SE for all the parameters except for intercept parameter 8,. The SE
estimators decreases as the p decreases across the parameters but increases when p =0.36 and
also decreases again when p =0.20. For all levels of multicollinearity, BIP has the smallest
SE across the parameters followed by BNIP estimator. There is no fixed pattern in the

performance of the estimators for the levels of multicollinearity (HPC, MPC and LPC).
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Table 5.33: Summary of Tables 5.23-5.31 for Mean for sample size, N= 70.

Parameters  Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

0, LB 17.4391  16.9460 17.2351 17.0015 17.4871 17.0015 17.3447 16.9087 17.2549
(17.00) BNIP 17.4391  16.9460 17.2351 17.0015 17.4871 17.0015 17.3447 16.9087 17.2549
BIP 16.7363  16.2691 16.7268  16.2896 16.5841 16.2896 16.3027 16.0190 16.3744

0, LB 9.7138  10.8772  8.8310  9.0363  8.6788 9.0363  8.6242 85162  8.0682

(8.5) BNIP 9.7138 10.8772 8.8310  9.0363  8.6788 9.0363 8.6242  8.5162  8.0682

BIP 10.0000  10.0000 110.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

0, LB 2.8381 3.7170  5.0839  4.2182  4.0078 4.2182 4.6462 49773  4.4982

(5.00) BNIP 2.8381 3.7170  5.0839 4.2182  4.0078 4.2182 4.6462 49773  4.4982

BIP 49526  5.2293 5.1653  5.1215  5.0442 5.1215 52790 53295  5.2396

04 LB 0.8514 -0.7270  1.6487 1.8422  1.6666 1.8422 12628  2.2787  3.1267

(2.00) BNIP 0.8514 -0.7270  1.6487  1.8422 1.666 1.8422  1.2628  2.2787  3.1267

BIP 0.5777 1.1752 1.2926 1.1752 14772 1.1752 1.6263 23808  2.3696
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Table 5.33 shows the summary of mean for tables 5-23-5.31 when the sample size is 70, BIP
has positive means values for all the levels of collinearity across the parameters. As the p
reduces, the mean estimates tend toward the true parameter values. The mean values of LB
and BNIP are the same for all the levels of collinearity for all the parameters considered
while the negative mean values were observed for LB and BNIP when p= 0.90 for parameter

0,.
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Table 5.34: High Positive Collinearity, p = 0.95 and sample size, N=100

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6o LB 17.2229 0.2946 (16.6382, 17.8076)  (16.4488, 17.9970)
(17) BNIP 17.2229 0.2886 (16.6503, 17.7955)  (16.4651, 17.9808)
BIP 16.6918 0.2177 (16.2600, 17.1236)  (16.1205, 17.2632)
04 LB 9.0684 1.5291 (6.0332, 12.1037) (5.0499, 13.0870)
(8.5) BNIP 9.0684 1.4982 (6.0960, 12.0408) (5.1343,13.0026)
BIP 10.0000 0.0008 (9.9984, 10.0016)  (9.9978, 10.0022)
0, LB 5.2582 2.1747 (0.9413,9.5750) (-0.4571, 10.9735)
(5.0) BNIP 5.2582 2.1308 (1.0307, 9.4856) (-0.3371, 10.8534)
BIP 4.9383 0.3778 (4.1890, 5.6875) (3.9469, 5.9296)
04 LB -0.0828 2.1315 (-4.3138, 4.1481) (-5.6844, 5.5187)
(2.0 BNIP -0.0828 2.0884 (-4.2262, 4.0605) (-5.5667, 5.4011)
BIP 0.2707 0.5756 (-0.8709, 1.4122) (-1.2398, 1.7811)
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Table 5.35: High Positive Collinearity, p = 0.90 and sample size, N=100

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 16.6046 0.3462 (15.9175,17.2918)  (15.6949, 17.5144)
17) BNIP 16.6046 0.3392 (15.9317, 17.2775) (15.7140, 17.4953)
BIP 16.6678 0.2320 (16.2078, 17.1279)  (16.0591, 17.2766)

6, LB 7.0922 0.9350 (5.2364, 8.9481) (4.6357, 9.5494)
(8.5) BNIP 7.0922 0.9161 (5.2748, 8.9097) (4.6867, 9.4978)
BIP 10.0000 0.0008 (19.9983, 10.0017) (9.9978, 10.0022)

6, LB 7.2424 1.6835 (3.9008, 10.5841) (2.8182, 11.6666)
(5.0 BNIP 7.2424 1.6495 (3.9699, 10.5149) (2.9111, 11.5737)

BIP 4.9277 0.3825 (4.1740, 5.6813) (3.9304, 5.9249)

04 LB 3.2644 1.0716 (1.1373,5.3914) (0.4483, 6.0804)
2.0 BNIP 3.2644 1.0499 (1.1814, 5.3473) (0.5074, 6.0213)
BIP 1.2330 0.5727 (0.0974, 2.3687) (-0.2697, 2.7357)
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Table 5.36: High Positive Collinearity, p = 0.80 and sample size, N=100

Parameters Estimators =~ Mean Standard 95% CI 99% CI
Error

0, LB 16.4488 0.3102 (15.833,17.0644) (15.6336,17.263)
17) BNIP 16.4488 0.3039 (15.8458, 17.0517) (15.6507,17.246)
BIP 16.3866 0.2239 (15.9427, 16.8306) (15.7993,16.974)

04 LB 7.5078 0.7894 (5.9408,9.0748)  (5.4334,9.5824)
(8.5) BNIP 7.5078 0.7735 (5.9732,9.0423)  (5.4767,9.5389)
BIP 10.0000 0.0008 (9.9985, 10.0015)  (9.9980,10.0020)

0, LB 7.6124 1.0594 (5.5094,9.7153)  (4.8282,10.3966)
(5.0) BNIP 7.6124 1.0380 (5.5529,9.6718)  (4.8866,10.3381)
BIP 5.2772 0.3366 (4.6097,5.9447)  (4.3940, 6.1605)

04 LB 2.2977 1.1462 (0.0225,4.5730)  (-0.7146,5.3100)
(2.0) BNIP 2.2977 1.1231 (0.0696,4.5259)  (-0.6513,5.2468)
BIP 1.0252 0.5268 (-0.0195, 2.0699)  (-0.3572,2.4076)
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Table 5.37: Moderate Positive Collinearity, p = 0.49 and sample size, N=100

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6o LB 16.3881 0.7826 (14.8415, 17.9415) (14.3314, 18.4447)
a7 BNIP 16.3881 0.7668 (14.8668, 17.9093) (14.3746, 18.4015)
BIP 16.2830 0.5786 (15.1356, 17.4304) (14.7648, 17.8012)
6, LB 4.4289 1.3624 (1.7246, 7.1331) (0.8485, 8.0092)
(8.5) BNIP 4.4289 1.3348 (1.7806, 7.0772) (0.9237, 7.9340)
BIP 10.0000 0.0022 (9.9957, 10.0043) (9.9943, 10.0057)
6, LB 8.9793 2.3137 (4.3868, 13.5719) (2.8990, 15.0597)
(5.0 BNIP 8.9793 2.2669 (4.4819, 13.4768) (3.0267, 14.9320)
BIP 4.9845 0.9454 (3.1098, 6.8592) (2.5039, 7.4651)
0 LB 5.6519 2.2472 (1.1912, 10.1126) (-0.2538, 11.5576)
(2.0 BNIP 5.6519 22018 (1.2836, 10.0202) (-0.1298, 11.4336)
BIP 1.3869 1.4472 (-1.4829, 4.2567) (-2.4104, 5.1842)
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Table 5.38: Moderate Positive Collinearity, p = 0.46 and sample size, N=100

Parameters Estimators Mean Standard Error 95% CI 99% CI

8, LB 16.4596 0.2905 (15.8829, 17.0362)  (15.6961, 17.2230)
(17) BNIP 16459 0.2846 (15.8948,17.0243)  (15.7121, 17.2070)
BIP 16.2111 0.2286 (15.7578, 16.6645)  (15.6113, 16.8110)
0, LB 8.1608 0.3873 (73919, 8.9296)  (7.1428,9.1787)
(8.5) BNIP 8.1608 0.3795 (7.4078,8.9137)  (7.1642,9.1573)
BIP 10.0000 0.0008 (9.9984,10.0016)  (9.9979, 10.0021)
0, LB 6.6151 0.6907 (5.2441,7.9861)  (4.8000, 8.4302)
(5.0) BNIP 6.6151 0.6767 (5.2725,7.9577)  (4.8381,8.3921)
BIP 5.4260 0.3463 (4.7392,6.1127)  (4.5173, 6.3347)
05 LB 2.2563 0.7361 (0.7953,3.7174)  (0.3220, 4.1907)
(2.0) BNIP 2.2563 0.7212 (0.8255,3.6871)  (0.3626, 4.1501)
BIP 1.6359 0.5357 (0.5736,2.6981)  (0.2303, 3.0415)
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Table 5.39: Moderate Positive Collinearity, p = 0.36 and sample size, N=100

Parameters  Estimators Mean Standard Error 95% CI 99% CI
6o LB 16.7849 0.4135 (15.9642, 17.6057) (15.6984, 17.8715)
a7 BNIP 16.7849 0.4051 (15.9812, 17.5887) (15.7212, 17.8487)
BIP 16.1767 0.2699 (15.6415, 16.7120) (15.4685, 16.8850)
6, LB 8.6829 0.4816 (7.7269, 9.6390) (7.4172,9.9487)
(8.5) BNIP 8.6829 0.4719 (7.7467,9.6192) (7.4437,9.9221)
BIP 10.0000 0.0009 (9.9982, 10.0018)  (9.9976, 10.0024)
6, LB 4.6911 0.9750 2.7558, 6.6264) (2.1289, 7.2534)
(5.0) BNIP 4.6911 0.9553 (2.7959, 6.5864) (2.1827,7.1996)
BIP 5.1728 0.4138 (4.3521, 5.9934) (4.0869, 6.2586)
04 LB 3.0622 0.8887 (1.2982,4.8263)  (0.72679, 5.3977)
(2.0 BNIP 3.0622 0.8707 (1.3348, 4.7897) (0.7758, 5.3487)
BIP 2.2752 0.6187 (1.0483, 3.5021) (0.6518, 3.8986)
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Table 5.40: Low Positive Collinearity, p = 0.20 and sample size, N=100

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 17.0939 0.3124 (16.4737,17.7140)  (16.2728, 17.9149)
17) BNIP 17.0939 0.3061 (16.4866, 17.7012)  (16.290, 17.8977)
BIP 16.2146 0.2199 (15.7786, 16.6506)  (15.6377, 16.7915)

04 LB 8.2836 0.3602 (7.5687, 8.9986) (7.3371,9.2302)

(8.5) BNIP 8.2836 0.3529 (7.5835, 8.9837) (7.3569, 9.2103)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9978, 10.0022)

0, LB 5.2181 0.6888 (3.8509, 6.5853) (3.4080, 7.0282)

(5.0) BNIP 5.2181 0.6749 (3.8792, 6.5570) (3.4460, 6.9902)

BIP 5.2852 0.3598 (4.5717, 5.9986) (4.3411, 6.2292)

04 LB 2.0146 0.6895 (0.6459, 3.3834) (0.2025, 3.8268)

(2.0) BNIP 2.0146 0.6756 (0.6742, 3.3550) (0.2406, 3.7887)

BIP 2.1230 0.5526 (1.0271, 3.2189) (0.6729, 3.5731)
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Table 5.41: Low Positive Collinearity, p = 0.17 and sample size, N=100

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 17.1693 0.2713 (16.6307, 17.7080)  (16.4563, 17.8824)
17) BNIP 17.1693 0.2659 (16.6419, 17.6968)  (16.4712, 17.8675)
BIP 16.2104 0.2019 (15.8100, 16.6107)  (15.6806, 16.7401)

6, LB 8.4619 0.3093 (7.8480, 9.0758) (7.6491, 9.2746)
(8.5) BNIP 8.4619 0.3030 (7.8607, 9.0630) (7.6662, 9.2576)
BIP 10.0000 0.0008 (9.9985, 10.0015) (9.9980, 10.0020)

6, LB 4.4443 0.6257 (3.2023, 5.6862) (2.8000, 6.0885)
(5.0) BNIP 4.4443 0.6130 (3.2281, 5.6605) (2.8346, 6.0540)
BIP 5.1451 0.3322 (4.4863, 5.8039) (4.2734, 6.0168)

04 LB 1.6344 0.6242 (0.3953,2.873)5) (-0.0061, 3.2749)
(2.0 BNIP 1.6344 0.6116 (0.4209, 2.8478) (0.0283, 3.2404)
BIP 1.7343 0.5089 (0.7252,2.7435) (0.3991, 3.0696)
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Table 5.42: Low Positive Collinearity, p = 0.15 and sample size, N=100

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 16.8517 0.3297 (16.1972, 17.5061)  (15.9852, 17.7181)
17) BNIP 16.8517 0.3230 (16.2107, 17.4926)  (16.0034, 17.6999)
BIP 16.1034 0.2148 (15.6775, 16.5293)  (15.5398, 16.6669)

6, LB 8.7026 0.3474 (8.0130,9.3922) (7.7896, 9.6156)
(8.5) BNIP 8.7026 0.3404 (8.0273,9.3780) (7.8088, 9.5965)
BIP 10.0000 0.0008 (9.9984, 10.0016)  (9.9978, 10.0022)

6, LB 5.6415 0.6710 (4.3096, 6.9733) (3.8782, 7.4048)
(5.0) BNIP 5.6415 0.6574 (4.3372, 6.9458) (3.9152,7.3678)
BIP 5.4518 0.3528 (4.7521, 6.1515) (4.5259, 6.3776)

04 LB 1.5498 0.7346 (0.0917, 3.0079) (-0.3807, 3.4802)
(2.0 BNIP 1.5498 0.7197 (0.1218,2.9777) (-0.3402, 3.4397)
BIP 2.0187 0.5585 (0.9113, 3.1262) (0.5533, 3.4841)
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From Tables 5.23-5.42, the following observations were made when the sample sizes are 70

and 100:

The means of LB and BNIP are the same for the sample sizes considered across the
parameters. The means of LB and BNIP for parameters 6,, 6;, 6,, 0; are

17.4871, 8.6758, 4.0078 and 1.6666, respectively when the sample size is 70 for MPC.

The mean estimates of all the estimators (LB, BNIP and BIP) are in line with the true
parameter values. Bayesian estimators (BNIP and BIP) have smaller SE than LB, for instance
in table 5.36, the SE of LB, BNIP and BIP are 1.0594, 1.0380, 0.3366, respectively for
parameter 6,. HPC and MPC have the highest values of SE for sample sizes 70 and 100. The
Confidence Intervals of LB are wider than the Bayesian estimators (BIP and BNIP) for HPC,
MPC and LPC.

The CI for sample sizes of 70 and 100 for all the estimators are better compared to sample
sizes of 10 and 30; for instance, when the sample size is 70 for parameter
6, CI for LB, BNIP and BIP are (2.8598, 6.1366), (2.9090, 6.0874) and (4.4893, 5.9899),
respectively while sample size of 30 for parameter 6,, the CI for LB, BNIP and BIP are
(1.5910, 6.5608), (1.7775, 6.3743) and (4.7807, 6.0630) respectively under LPC. This means

as the sample size increases the CI also becomes more compact.

Hence, BIP outperformed other estimators, having the smallest SE values for all the
parameters considered and compact CI. It also appears that sample size 70 is a turning point

that shows the asymptotic effect of the estimators.
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Table 5.43: Summary of Tables 5.34 -5.42 for Standard Error when the sample size, N= 100.

Parameters Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

6, LB 0.2946 0.3462  0.3102 0.7826 0.2905 0.4135 0.3124 02713 0.3297
BNIP 0.2886 0.3392  0.3039 0.7668 0.2846 0.4051 0.3061 0.2659 0.3230

BIP 0.2177 0.2320 0.2239 0.5786 0.2286 0.2699 0.2199 02019 0.2148

0, LB 1.5291 0.9350 0.7894 1.3624 0.3873 0.4816 0.3602 0.3093 0.3474
BNIP 1.4982 09161 0.7735 1.3348 0.3795 0.4719 0.3529 0.3030 0.3404

BIP 0.0008 0.0008  0.0008 0.0022 0.0008 0.0009 0.0008 0.0008 0.0008

0, LB 2.1747 1.6835 1.0594 23137 0.6907 0.9750 0.6888 0.6257 0.6710
BNIP 2.1308 1.6495 1.0380 22669 0.3463 0.9553 0.6749 0.6130 0.6574

BIP 0.3778 0.3825 03366 0.9454 0.3463 0.4138 0.3598 0.3322 0.3528

05 LB 2.1315 1.0716 1.1462 22472 0.7361 0.8887 0.6895 0.6242 0.7346
BNIP 2.0884 1.0499 1.1231 22018 0.7212 0.8707 0.6756 0.6116 0.7197

BIP 0.5756 0.5727 0.5268 1.4472 0.5357 0.6187 0.5526 0.5089 0.5585
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Table 5.43 gives a summary of SE of Tables 5.34-5.42 for all the levels of collinearity.

Highest SE of estimate was observed mostly when p =0.49 for all the estimators while lowest
SE of estimate was observed when p =0.17 for all the estimators across the parameters. BIP
has the smallest SE compared to other estimators (LB and BNIP) for all the level of
collinearity across the parameters. LB estimator has the highest SE for all the levels of

collinearity across the parameters considered.

Hence, BIP outperformed other estimators in terms of SE.
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Table 5.44: Summary of Tables 5.34-5.42 for Mean for sample size, N= 100.

Parameters  Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15
LB 17.229  16.6046 16.4488 16.3881 16.4596 16.7849 17.0939 17.1693 16.8517
% BNIP 17.229  16.6046 16.4488 16.3881 16.4596 16.7849 17.0939 17.1693 16.8517
(1700 BIP 16.6918 16.6678 16.3866  16.2830 16.2111 16.1767 16.2146 16.2104 16.1034
LB 9.0684 7.8772  7.5078 44289  8.1608 8.6829  8.2836 8.4619  8.7026
o BNIP 9.0684 7.8772  7.5078 44289  8.1608  8.6829 8.2836  8.4619  8.7026
® BIP 10.0000  10.0000 110.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
LB 52582  7.2424  7.6124 49845  6.6151 4.6911 5.2181 44443  5.6415
” BNIP 52582  7.2424  7.6124 49845  6.6151 4.6911 5.2181 44443  5.4515
(00 BIP 4.9383 49277 52772 49845 54260 5.1728 5.2852  5.1451 5.4518
LB -0.0828 3.2644 22977  5.6519  2.2563  3.0622 2.0146 1.6344  1.5498
% BNIP -0.0828 3.2644 22977  5.6519  2.2563  3.0622 2.0146 1.6344  1.5498
(200 BIP 0.2707 1.2330 1.0252  1.3869  1.6359 2.2752 2.1230 1.7343  2.0187
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Table 5.44 gives a summary of means of Tables 5.34-5.42 for all the levels of collinearity.
Negative means of estimate was not observed at all the levels of collinearity using the
estimators except for p =0.95 for LB and BNIP. Most of the means are not too far from the

true parameter values except for parameter 8; when p =0.49 and 0.95.
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Table 5.45: High Positive Collinearity, p = 0.95 and sample size, N=200

Parameters  Estimators Mean  Standard Error 95% CI 99% CI

6o LB 17.0056 0.2174 (16.5865, 17.4247)  (16.4528, 17.5583)
(17) BNIP 17.0056 0.2104 (16.5907, 17.4204)  (16.4585, 17.5527)
BIP 16.8949 0.2125 (16.5879, 17.2018)  (16.4900, 17.2997)

6, LB 8.0263 1.0457 (5.9640,10.0887)  (5.3062,10.7465)
(8.5) BNIP 8.0263 1.0352 (5.9849,10.0677)  (5.3341, 10.7186)
BIP 10.0000 0.0008 (9.9983,10.0016)  (9.9978, 10.0022)

0, LB 24794 1.5373 (-0.5523,5.5111)  (-1.5192, 6.4780)
(5.0 BNIP 2.4794 1.5218 (-0.5214,5.4803)  (-1.4782, 6.4371)
BIP 4.5251 0.3689 (3.7979, 5.2524) (3.5660, 5.4842)

04 LB 5.2057 1.5661 (2.1171, 8.2944) (1.1320, 9.2795)
(2.0 BNIP 5.2057 1.5504 (2.1485, 8.2630) (1.1737,9.2377)
BIP 0.3455 0.5015 (-0.6434, 1.3343)  (-0.9586, 1.6495)
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Table 5.46: High Positive Collinearity, p = 0.90 and sample size, N=200

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 16.7492 0.2174 (16.3204, 17.1780)  (16.1836, 17.3148)
(17) BNIP 16.7492 0.2152 (16.3247,17.1736)  (16.1894, 17.3090)
BIP 16.8698 0.1615 (16.5513,17.1883)  (16.4498, 17.2898)

6, LB 7.4293 0.7690 (5.9127, 8.9458) (5.4290, 9.4295)

(8.5) BNIP 7.4293 0.7613 (5.9281, 8.9304) (5.4495, 9.4090)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9979, 10.0021)

6, LB 6.7790 1.0858 (4.6376, 8.9203) (3.9546, 9.6033)

(5.0) BNIP 6.7790 1.0749 (4.6594, 8.8986) (3.9836, 9.5744)

BIP 4.9483 0.3457 (4.2667, 5.6299) (4.0494, 5.8471)

04 LB 2.8935 1.1222 (0.6804, 5.1066) (-0.0255, 5.8125)

(2.0 BNIP 2.8935 1.1109 (0.7029, 5.0841) (0.0044, 5.7826)
BIP 0.4838 0.4612 (-0.4256, 1.3932) (-0.7155, 1.6831)
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Table 5.47: High Positive Collinearity, p = 0.80 and sample size, N=200

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 16.6954 0.2050 (16.2912, 17.0996)  (16.1623, 17.2285)
a7 BNIP 16.6954 0.2029 (16.2953, 17.0955)  (16.1678,17.2231)
BIP 16.6262 0.1660 (16.2988, 16.9536)  (16.1945, 17.0579)

6, LB 8.2638 0.4811 (7.3150,9.2127) (7.0123,9.5153)

(8.5) BNIP 8.2638 0.4763 (7.3246,9.2030) (7.0251, 9.5025)
BIP 10.0000 0.0008 (9.9985, 10.0015) (9.9980, 10.0020)

6, LB 5.7751 0.7675 (4.2616, 7.2887) (3.7789,7.7714)

(5.0 BNIP 5.7751 0.7597 (4.2770, 7.2733) (3.7993, 7.7509)

BIP 4.9022 0.3240 (4.2634, 5.5410) (4.0598, 5.7446)

04 LB 1.8511 0.7885 (0.2960, 3.4062) (-0.2000, 3.9022)
2.0 BNIP 1.8511 0.7806 (0.3118,3.3904) (-0.1790, 3.8812)
BIP 0.3914 0.4334 (-0.4631, 1.2459) (-0.7354, 1.5183)

115



Table 5.48: Moderate Positive Collinearity, p = 0.49 and sample size, N=200

Parameters  Estimators ~ Mean  Standard Error 95% CI 99% CI

6o LB 16.8946 0.2141 (16.4724,17.3168) (16.3378, 17.4514)
17) BNIP 16.8946 0.2119 (16.4767, 17.3125)  (16.3435, 17.4457)
BIP 16.6711 0.1870 (16.3023, 17.0398) (16.1847, 17.1574)

01 LB 7.9956 0.3617 (7.2823, 8.7089) (7.0548, 8.9364)

(8.5) BNIP 7.9956 0.3581 (7.2896, 8.7017) (7.0644, 8.9268)
BIP 10.0000 0.0008 9.9983, 10.0016)  (9.9978, 10.0021)

0, LB 5.3705 0.5955 (4.1961, 6.5450) (3.8215, 6.9195)

(5.0 BNIP 5.3705 0.5895 (4.2080, 6.5330) (3.8373, 6.9037)

BIP 4.7703 0.3299 (4.1198, 5.4208) (3.9124, 5.6281)

04 LB 2.6325 0.6206 (1.4085, 3.8565) (1.0182, 4.2468)

2.0) BNIP 2.6325 0.6144 (1.4210, 3.8440) (1.0347, 4.2303)
BIP 1.0956 0.4612 (0.1863,2.0050) (-0.1036, 2.2948)
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Table 5.49: Moderate Positive Collinearity, p = 0.46 and sample size, N=200

Parameters Estimators = Mean  Standard Error 95% CI 99% CI

6o LB 16.8689 0.2328 (16.4097, 17.3282)  (16.2633, 17.4746)
(17) BNIP 16.8689 0.2305 (16.4144, 17.3235)  (16.2695, 17.4684)
BIP 16.3679 0.2064 (15.9610, 16.7748)  (15.8313, 16.9045)

04 LB 8.0520 0.2998 (7.4608, 8.6433) (7.2722, 8.8318)

(8.5) BNIP 8.0520 0.2968 (7.4668, 8.6372) (7.2802, 8.8238)
BIP 10.0000 0.0009 (9.9982, 10.0017) (9.9977, 10.0023)

6, LB 5.3563 0.5659 (4.2402, 6.4723) (3.8842, 6.8283)

(5.0) BNIP 5.3563 0.5602 (4.2515, 6.4610) (3.8993, 6.8132)

BIP 4.8690 0.3489 (4.1811, 5.5569) (3.9619, 5.7761)

04 LB 2.7603 0.5858 (1.6050, 3.9157) (1.2365, 4.2842)

(2.0 BNIP 2.7603 0.5800 (1.6167, 3.9040) (1.2521,4.2686)

BIP 1.6816 0.4955 (0.7045, 2.6586) (0.3931, 2.9700)
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Table 5.50: Moderate Positive Collinearity, p = 0.36 and sample size, N=200

Parameters Estimators Mean Standard Error 95% CI 99% CI

6o LB 16.7701 0.2331 (16.3105, 17.2298)  (16.1639, 17.3764)
a7 BNIP 16.7701 0.2307 (16.3151, 17.2251)  (16.1701, 17.3702)
BIP 16.4683 0.1856 (16.1024, 16.8342)  (15.9858, 16.9509)

04 LB 8.6002 0.2678 (8.0721, 9.1284) (7.9036,9.2969)

(8.5) BNIP 8.6002 0.2651 (8.0774, 9.1231) (7.9107, 9.2898)
BIP 10.0000 0.0008 (9.9984,10.0015)  (9.9979, 10.0020)

0, LB 6.0823 0.5189 (5.0588, 7.1057) (4.7324,7.4321)

(5.0 BNIP 6.0823 0.5137 (5.0692, 7.0953) (4.7462,7.4183)

BIP 5.3394 0.3094 (4.7294, 5.9494) (4.5349, 6.1439)

04 LB 1.7572 0.5056 (0.7601, 2.7543) (0.4420,3.0723)

2.0) BNIP 1.7572 0.5005 (0.7702, 2.7442) (0.4555, 3.0588)

BIP 1.3304 0.4202 (0.5018, 2.1590) (0.2377,2.4231)
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Table 5.51: Low Positive Collinearity, p = 0.20 and sample size, N=200

Standard

Parameters  Estimators Mean Error 95% CI 99% CI

0, LB 17.0776 0.2158  (16.6521,17.5032)  (16.5164, 17.6389)
(17) BNIP 17.0776 0.2136  (16.6564, 17.4989) (16.5221, 17.6332)
BIP 16.4234 0.1780  (16.0724, 16.7743) (15.96006, 16.8862)

04 LB 8.3348 0.2491 (7.8437, 8.8260) (7.6870, 8.9827)

(8.5) BNIP 8.3348 0.2465 (7.8487, 8.8210) (7.6937, 8.9760)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9979, 10.0021)

0, LB 5.5911 0.4769 (4.65006, 6.5315) (4.3507, 6.8314)
(5.0 BNIP 5.5911 0.4721 (4.6602, 6.5219) (4.3634, 6.8187)

BIP 5.2829 0.3188 (4.6542,5.9115) (4.4539,6.1119)

05 LB 1.9444 0.4908 (0.9764,2.9124) (0.6676,3.2211)

2.0 BNIP 1.9444 0.4859 (0.9862, 2.9025) (0.6807, 3.2080)

BIP 1.4727 0.4367 (0.6117,2.3338) (0.3372,2.6083)
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Table 5.52: Low Positive Collinearity, p = 0.17 and sample size, N=200

Parameters Estimators =~ Mean  Standard Error 95% CI 99% CI

6o LB 17.0260 0.2248 (16.5827,17.4693) (16.4413,17.6107)
17) BNIP 17.0260 0.2225 (16.5872, 17.4648) (16.4473,17.6047)
BIP 16.3895 0.1752 (16.0440, 16.7349)  (15.9339, 16.8450)

04 LB 8.6144 0.2773 (8.0675,9.1612) (7.8931, 9.3357)

(8.5) BNIP 8.6144 0.2745 (8.0730,9.1557) (7.9005, 9.3283)
BIP 10.0000 0.0008 (9.9983, 10.0016)  (9.9978, 10.0022)

0, LB 5.3104 0.5273 (4.27036, 6.3504) (3.9387, 6.6821)

(5.0) BNIP 5.3104 0.5220 (4.2809, 6.3398) (3.9527, 6.6680)

BIP 5.2743 0.3327 (4.6184, 5.9302) (4.4094, 6.1393)

04 LB 1.1954 0.4943 (0.2207,2.1702) (-0.0902, 2.4811)
(2.0) BNIP 1.1954 0.4893 (0.2306, 2.1603) (-0.0771, 2.4679)
BIP 1.0690 0.4307 (0.2199, 1.9181) (-0.0508, 2.1888)
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Table 5.53: Low Positive Collinearity, p = 0.15 and sample size, N=200

Parameters Estimators = Mean  Standard Error 95% CI 99% CI

6o LB 17.0242 0.2260 (16.5786, 17.470)  (16.4365, 17.6120)
17) BNIP 17.0242 0.2237 (16.5831, 17.4653)  (16.4425, 17.6060)
BIP 16.2998 0.1745 (15.9557, 16.6439)  (15.8461, 16.7535)

04 LB 8.6313 0.2533 (8.1318,9.1309) (7.9725, 9.2902)

(8.5) BNIP 8.6313 0.2508 (8.1369, 9.1258) (7.9792, 9.2835)
BIP 10.0000 0.0008 (9.9984, 10.0016) (9.9978, 10.0021)

0, LB 4.7879 0.4853 (3.8308, 5.7450) (3.5255, 6.0503)

(5.0) BNIP 4.7879 0.4804 (3.8405, 5.7353) (3.5385, 6.0374)

BIP 5.0798 0.3220 (4.4450, 5.7146) (4.2426, 5.9170)

04 LB 2.2433 0.4850 (1.2868, 3.1997) (0.9818, 3.5048)

(2.0) BNIP 2.2433 0.4801 (1.2965, 3.1900) (0.9947, 3.4919)

BIP 2.0880 0.4351 (1.2302, 2.9458) (0.9567, 3.2193)
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Table 5.54: Summary of Table 5.45 -5.53 for Standard Error when the sample size, N=200.

Parameters Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

0o LB 02174 0.2174 0.2050 0.2141 0.2328 0.2331 0.2158 0.2248 0.2260
BNIP 0.2104 0.2152  0.2029 0.2119 0.2305 0.2307 0.2136 0.2225 0.2237

BIP 0.2125 0.1615 0.1660 0.1870 0.2064 0.1856 0.1780 0.1752 0.1745

0, LB 1.0457 0.7690 0.4811 0.3617 0.2998 0.2678 0.2491 0.2773 0.2533
BNIP 1.0352 0.7613  0.4763 0.3581 0.2968 0.2651 0.2465 0.2745 0.2508

BIP 0.0008 0.0008  0.0008 0.0008 0.0009 0.0008 0.0008 0.0008 0.0008

0, LB 1.5373 1.0858 0.7675  0.5955 0.5659 0.5189 0.4769 0.5273 0.4853
BNIP 1.5218 1.0749 0.7597 0.5895 0.5602 0.5137 04721 0.5220 0.4804

BIP 03689 03457 03240 03299 0.3489 0.3094 0.3188 0.3327 0.3220

05 LB 1.5661 1.1222  0.7885 0.6206 0.5858 0.5056 0.4908 0.4943 0.4850
BNIP 1.5504 1.1109 0.7806  0.6144 (.5800 0.5005 0.4859 0.4893 0.4801

BIP 05015 04612 04334 04612 (4955 04202 04367 04307 0.4351

122



Table 5.54 gives the summary of SE in tables 5.45-5.53 when the sample size is 200. As the
p decreases, the SE of the estimators also decreases for all the parameters. It is also observed

that the SE are smaller compared to sample sizes of 10, 30, 70 an 100 across the parameters.

Among all the estimators considered, BIP outperformed all other estimators having the
smallest SE in all the cases of collinearity considered (0.15-0.95). However, as the p

decreases, the SE of both LB and BNIP tends toward the SE of BIP.
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Table 5.55: Summary of Tables 5.45-5.53 for Mean for sample size, N=200.

Parameters  Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15
0, LB 17.0056 16.7492 16.6954 16.8946 16.8689 16.7701 17.0776 17.0260 17.0242
(17.00) BNIP 17.0056 16.7492 16.6954 16.6711 16.8689 16.7701 17.0776 17.0260 17.0242
BIP 16.8949 16.8698  16.6262 16.6711 163679 16.4683 16.4234 16.3895 16.2998
04 LB 8.0263 74293  8.2638  7.9956  8.0520 8.6002  8.3348 8.6144  8.6313
(8.5) BNIP 8.0263 7.4293 82638  7.9956  8.0520 8.6002 83348  8.6144  8.6313
BIP 10.0000  10.0000 110.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
6, LB 24794  6.7790 57751 53705  5.3563 6.0823 5.5911 53104  4.7879
(5.00) BNIP 24794  6.7790 57751 53705 53563 6.0823 5.5911 53104  4.7879
BIP 4.5251 49483 49022 47703 48690 53394 52829 52743  5.0798
05 LB 5.2057 2.8935 1.8511  2.6325 27603  1.7572 1.9444 1.1954  2.2433
(2.00) BNIP 5.2057 2.8935 1.8511  2.6325  2.77603 1.7572 1.9444 1.1954  2.2433
BIP 0.3455 0.4838 03914 1.0956 1.6816 13304 1.4727 1.0690  2.0880
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Table 5.55 summarizes the mean estimates of all the estimators for parameters (6,, 8,, 8, and

05), when the sample size is 200.

The means of LB and BNIP are the same for all the levels of collinearity considered across
the parameters. All the means are positive and not too far from the true parameter values. For
parameter 65, the means of BIP are far from the true parameter value except for p=0.46 and

0.15.
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Table 5.56: High Positive Collinearity, p = 0.95 and sample size, N=300

Parameters  Estimators =~ Mean Standard Error 95% CI 99% CI

6o LB 16.6654 0.1720 (16.3269, 17.0038)  (16.2195, 17.1113)
17) BNIP 16.6654 0.1708 (16.3292, 17.0016)  (16.2225, 17.1083)
BIP 16.8260 0.1297 (16.5707,17.0812)  (16.4898, 17.1621)

0, LB 6.9703 0.7995 (5.3969, 8.5436) (4.8976, 9.0429)

(8.5) BNIP 6.9703 0.7941 (5.4075, 8.5330) (4.9117,9.0289)
BIP 10.0000 0.0008 (9.9985, 10.0015) (9.9980, 10.0020)

6, LB 54153 1.1662 (3.1202, 7.7103) (2.3920, 8.4386)

(5.0) BNIP 5.4153 1.1584 (3.1357, 7.6948) (2.4124, 8.4181)
BIP 4.6317 0.3327 (3.9769, 5.2864) (3.7692, 5.4941)

04 LB 4.9680 1.1761 (2.6534, 7.2825) (1.9188, 8.0171)

(2.0 BNIP 4.9680 1.1682 (2.6690, 7.2669) (1.9395, 7.9964)
BIP 0.4720 0.4245 (-0.3632,1.3072)  (-0.6282, 1.5722)
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Table 5.57: High Positive Collinearity, p = 0.90 and sample size, N=300

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 17.1138 0.1572 (16.8045, 17.4232)  (16.7063, 17.5213)
(17) BNIP 17.1138 0.1561 (16.8066, 17.4211)  (16.7091, 17.5186)
BIP 17.0194 0.1247 (16.7741, 17.2647)  (16.6962, 17.3425)

0, LB 8.8058 0.6309 (7.5643,10.0474) (7.1703, 10.4414)
(8.5) BNIP 8.8058 0.6266 (7.5727,10.0390) (7.1814, 10.4303)
BIP 10.0000 0.0007 (9.9985, 10.0015) (9.9981, 10.0019)

0, LB 5.0298 0.8404 (3.3759, 6.6837) (2.8577,7.2085)

(5.0) BNIP 5.0298 0.8348 (3.3871, 6.6725) (4.3634, 6.8187)

BIP 4.6994 0.3043 (4.1006, 5.2981) (3.9106, 5.4881)

04 LB 1.1155 0.8998 (-0.6553, 2.8863) (-7.2173, 3.4482)
(2.0) BNIP 1.1155 0.8938 (-0.6434, 2.8743) (-1.2015, 3.4324)

BIP -0.0930 0.3860 (-0.8525, 0.6665) (-1.0935, 0.9074)
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Table 5.58: High Positive Collinearity, p = 0.80 and sample size, N=300

Parameters  Estimators Mean  Standard Error 95% CI 99% CI

6o LB 16.5598 0.1744 (16.2166, 16.9030) (16.1077, 17.0120)
(17) BNIP 16.5598 0.1732 (16.2189, 16.9007)  (16.1107, 17.0089)
BIP 16.6580 0.1482 (16.3663, 16.9497)  (16.2737, 17.0422)

6, LB 7.8726 0.4130 (7.0599, 8.6854) (6.8020, 8.9433)

(8.9 BNIP 7.8726 0.4102 (7.0654, 8.6799) (6.8092, 8.9360)
BIP 10.0000 0.0008 (9.9984, 10.0015)  (9.9980, 10.0020)

6, LB 5.5473 0.6380 (4.2917, 6.8028) (3.8933,7.2013)

(5.0 BNIP 5.5473 0.6337 (4.3002, 6.7944) (3.9045, 7.1901)

BIP 4.6711 0.3068 (4.0674, 5.2748) (3.8758, 5.4663)

05 LB 3.5240 0.6512 (2.2425, 4.8056) (1.8358, 5.2123)

(2.0) BNIP 3.5240 0.6468 (2.2511, 4.7969) (1.8472, 5.2008)

BIP 1.1061 0.3952 (0.3285, 1.8838) (0.0818,2.1305)
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Table 5.59: Moderate Positive Collinearity, p = 0.49 and sample size, N=300.

Parameters Estimators ~ Mean Standard Error 95% CI 99% CI

6, LB 17.1785 0.1854 (16.8136, 17.6978)  (6.6978, 17.6591)
17) BNIP 17.1785 0.1841 (16.8161, 17.5408) (16.7011, 17.6558)
BIP 16.9271 0.1613 (16.6098, 17.2445)  (16.5091, 17.3452)

0, LB 8.6202 0.3067 (8.0165,9.2237) (7.8250,9.4159)
(8.5) BNIP 8.6202 0.3046 (8.0206, 9.2196) (7.8304, 9.4098)
BIP 10.0000 0.0008 (9.9984,10.0016)  (9.9979, 10.0021)

0, LB 4.4730 0.5210 (3.478,5.4982) (3.1224, 5.8236)
(5.0) BNIP 4.4730 0.5175 (3.4547, 5.4913) (3.1316, 5.8144)
BIP 4.4304 0.3065 (3.8273,5.0335) (3.6360, 5.2248)

05 LB 1.7868 0.5025 (0.7979, 2.7757) (0.4841, 3.0895)
(2.0) BNIP 1.7868 0.4991 (0.8046, 2.7690) (0.4929, 3.0807)
BIP 0.6372 0.3784 (-0.1074, 1.3818) (-0.3436, 1.6180)
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Table 5.60: Moderate Positive Collinearity, p = 0.46 and sample size, N=300

Parameters Estimators  Mean Standard Error 95% CI 99% CI

0, LB 16.9032 0.1732 (16.5624,17.2439)  (16.4542,17.3521)
17) BNIP 16.9032 0.1720 (16.5647,17.2416)  (16.4573, 17.3490)
BIP 16.6155 0.1610 (16.2987,16.9322)  (16.1982,17.0327)

6, LB 8.3735 0.2451 (7.8912, 8.8559) (7.7381, 9.0090)

(8.9 BNIP 8.3735 0.2435 (7.8944, 8.8526) (7.7424, 9.0046)
BIP 10.0000 0.0008 (9.9983, 10.0016) (9.9978, 10.0022)

0, LB 5.3975 0.4473 (4.5173, 6.2778) (4.2380, 6.5571)
(5.0 BNIP 5.3975 0.4443 (4.5232,6.2718) (4.2458, 6.5492)
BIP 4.8655 0.3048 (4.2657, 5.4652) (4.0755, 5.6555)

05 LB 1.9901 0.4347 (1.1347,2.8456) (0.8633,3.1170)
(2.0) BNIP 1.9901 0.4318 (1.1405, 2.8398) (0.8709, 3.1094 )

BIP 1.0248 0.3743 (0.2883,1.7613) (0.0546, 1.9950)
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Table 5.61: Moderate Positive Collinearity, p = 0.36 and sample size, N=300

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6, LB 17.3307 0.1859 (16.9648, 17.6966)  (16.8487, 17.8127)
(17) BNIP 17.3307 0.1847 (16.9672, 17.6941)  (16.8519, 17.8094)
BIP 16.7763 0.1651 (16.4515,17.1012)  (16.3484, 17.2042)

0, LB 8.5606 0.2340 (8.1001,9.0211) (7.9539,9.1673)
(8.5) BNIP 8.5606 0.2324 (8.1032,9.0180) (7.9580,9.1631)
BIP 10.0000 0.0008 (9.9983, 10.0016)  (9.9978, 10.0021)

0, LB 5.0745 0.4316 (4.2251, 5.9239) (3.9556, 6.1935)
(5.0) BNIP 5.0745 0.4287 (4.2309, 5.9182) (3.9632, 6.1859)
BIP 4.8544 0.3017 (4.2606, 5.4482) (4.0722, 5.6365)

05 LB 0.7574 0.4382 (-0.1050, 1.6197) (-0.3786, 1.8933)
(2.0) BNIP 0.7574 0.4352 (-0.0991, 1.6139) (-0.3709, 1.8856)
BIP 0.4090 0.3911 (-0.3605, 1.1785) (-0.6047, 1.4226)
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Table 5.62: Low Positive Collinearity, p = 0.20 and sample size, N=300

Parameters Estimators ~Mean  Standard Error 95% CI 99% CI

6o LB 17.1668 0.1845 (16.8037, 17.5300)  (16.6885, 17.6452)
(17) BNIP 17.1668 0.1833 (16.8061, 17.5275)  (16.6917, 17.6420)
BIP 16.4520 0.1560 (16.1449, 16.7591)  (16.0475, 16.8565)

6, LB 8.4631 0.2092 (8.0514, 8.8749) (7.9207, 9.0056)

(8.9) BNIP 8.4631 0.2078 (8.0541, 8.8721) (7.9244,9.0019)
BIP 10.0000 0.0008 (9.9983, 10.0016)  (9.9978, 10.0022)

6, LB 5.0539 0.4143 (4.2386, 5.8692) (3.9800, 6.1279)

(5.0 BNIP 5.0539 0.4115 (4.2441, 5.8637) (3.9872, 6.12006)

BIP 4.9868 0.3050 (4.3866, 5.5870) (4.1962,5.7774)

05 LB 1.2353 0.4210 (0.4067, 2.0638) (0.1438,2.3267)

(2.0 BNIP 1.2353 0.4182 (0.4123,2.0582) (0.1512,2.3193)

BIP 1.1284 0.3981 (0.3450,1.9117) (0.0965, 2.1603)
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Table 5.63: Low Positive Collinearity, p = 0.17 and sample size, N=300

Parameters  Estimators Mean  Standard Error 95% CI 99% CI
0, LB 16.9019 0.1812 (16.5452,17.2585)  (16.4320, 17.3717)
(17) BNIP 16.9019 0.1800 (16.5476, 17.2561)  (16.4352, 17.3685)
BIP 16.2381 0.1491 (15.9447,16.5314)  (15.8517, 16.6245)
6, LB 8.5005 0.2115 (8.0842, 8.9168) (7.95211, 9.0489)
(8.5) BNIP 8.5005 0.2101 (8.0870, 8.9140) (7.9558, 9.0452)
BIP 10.0000 0.0008 (9.9983,10.0016)  (9.9978, 10.0021)
0, LB 5.3246 0.4126 (4.5126, 6.1365) (4.2549, 6.3942)
(5.0) BNIP 5.3246 0.4098 (4.5181, 6.1311) (4.2622, 6.3870)
BIP 5.2013 0.3008 (4.6094, 5.7932) (4.4216, 5.9810)
03 LB 1.8227 0.4079 (1.0199, 2.6254) (0.7652,2.8802)
(2.0) BNIP 1.8227 0.4052 (1.0253, 2.6200) (0.7723, 2.8730)
BIP 1.6928 0.3844 (10.9363, 2.4492) (0.6963,2.6892)
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Table 5.64: Low Positive Collinearity, p = 0.15 and sample size, N=300

Parameters  Estimators Mean  Standard Error 95% CI 99% CI

0, LB 17.2024 0.1776 (16.8530, 17.5519)  (16.7421, 17.6628)
17) BNIP 17.2024 0.1764 (16.8553, 17.5496)  (16.7452, 17.6597)
BIP 16.4611 0.1516 (16.1627, 16.7595)  (16.0681, 16.8542)

0, LB 8.4046 0.2005 (8.0100, 8.7992) (7.8848, 8.9244)

(8.9 BNIP 8.4046 0.1991 (8.0127, 8.7965) (7.8883, 8.9208)
BIP 10.0000 0.0008 (9.9983, 10.0016) (9.9978, 10.0021)

0, LB 4.7788 0.3860 (4.0191, 5.5385) (3.7780, 5.7796)

(5.0 BNIP 4.7788 0.3834 (4.0242, 5.5334) (3.7848, 5.7728)

BIP 4.9459 0.2947 (4.3660, 5.5259) (4.1820, 5.7098)

05 LB 2.0009 0.3968 (1.2200, 2.7818) (0.9721, 3.0297)

(2.0) BNIP 2.0009 0.3942 (1.2252,2.7766) (0.9791, 3.0227)

BIP 1.6626 0.3808 (0.9132,2.4119) (0.6754, 2.6497)
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From Tables 5.45-5.64, the following observations were made when the sample sizes are 200

and 300:

The mean estimates of all the estimators (LB, BNIP and BIP) are not too far from the true
parameter values. Bayesian estimators (BNIP and BIP) have smaller SE than LB. HPC and
MPC have the highest values of SE for sample sizes 200 and 300 than LPC.

The confidence intervals of LB are wider than the Bayesian estimators (BIP and BNIP) for
HPC, MPC and LPC at 95% and 99% CI. For instance, at 95% CI, CI of LB, BNIP and BIP
when the sample size is 200 for parameter 6, are (4.6506, 6.5315), (4.6602, 6.5219) and (4.6542,
5.9115), respectively in LPC (p =0.20).

BIP has the smallest SE values for all the parameters considered. The performances of all the
estimators become better due to increase in sample sizes compared to sample sizes of 10, 30,
70 and 100; for instance, when the sample size is 70, the SE of LB, BNIP and BIP
are 2.1729, 2.1099 and 0.3843, respectively while the SE of LB, BNIP and BIP when the
sample size is 300 are 0.5404, 0.8348 and 0.3043 for parameter 8, in HPC (p =0.90).

Hence, increase in sample sizes has a great effect in reducing SE.
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Table 5.65: Summary of Tables 5.56 -5.64 for Standard Error when the sample size, N= 300.

Parameters  Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

0o LB 0.1720 0.1572  0.1744 0.1854 0.1732 0.1859 0.1845 0.1812 0.1776
BNIP 0.1708 0.1561  0.1732 0.1841 0.1720 0.1847 0.1833 0.1800 0.1764

BIP 0.1297 0.1247  0.1482 0.1613 0.1610 0.1651 0.1560 0.1491 0.1516

04 LB 0.7995 0.6309 0.4130 0.3067 0.2451 0.2340 0.2092 0.2115 0.2005
BNIP 0.7941 0.6266 0.4102 0.3046 0.2435 0.2324 0.2078 0.2101 0.1991

BIP 0.0008 0.0007  0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

6, LB 1.1662 0.8404 0.6380 0.5210 0.4473 04316 04143 04126 0.3860
BNIP 1.1584 0.8348 0.6337 0.5175 0.4443 0.4287 04115 0.4098 0.3834

BIP 0.3327 0.3043 0.3068 0.3065 0.3048 0.3017 0.3050 0.3008 0.2947

03 LB 1.1761 0.8998 0.6512 0.5025 0.4347 04382 04210 0.4079 0.3960
BNIP 1.1682 0.8938 0.6468 0.4991 04318 0.4352 0.4182 0.4052 0.3942

BIP 0.4245 0.3860 0.3952 0.3784 0.3743 0.3911 0.4981 0.3844 0.3808

136



Table 5.65 shows the summary of SE for multicollinearity (HPC, MPC and LPC) of the

estimators across the parameters (6, 6,1, 8, and 83) when the sample size is 300.

As p decreases, SE of the estimators also decreases for parameters 6,, 8, and 6. Large SE is
also observed in high and moderate positive collinearity. The SE of the estimators are smaller

compared to when the sample sizes are 10, 30, 70, 100 and 200.
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Table 5.66: Summary of Tables 5.56-5.64 for Mean for sample size, N=300.

Parameters

Estimators 0.95 0.90 0.80 0.49 0.46 0.36 0.20 0.17 0.15

6o

(17.00)

LB 16.6654 17.1138 16.5598 17.1785 16.9032 16.3307 17.1668 16.9019 17.2024
BNIP 16.6654 17.1138 16.5598 17.1785 16.9032 16.3307 17.1668 16.9019 17.2024

BIP 16.8260 17.0194  16.6580 16.9271 16.6155 16.7763 16.4520 16.2381 16.4611

LB 6.9703 8.8058 7.8726  8.6202  8.3735 8.5606  8.4631 8.5005  8.4046
BNIP 6.9703 8.8058  7.8726  8.6202  8.3735 8.5606 8.4631 8.5005  8.4046

BIP 10.0000  10.0000 110.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

LB 5.4153 0.8404  5.4873 44730 53975 5.0745 5.0539 53246  4.7788
BNIP 5.4153 0.8404  5.4873 44304 53975 5.0745 5.0539 53246  4.7788

BIP 4.6317 03043  4.6711 44304 48655 4.8544 49868  5.2013  4.9459

(2.00)

LB 4.9680 0.8998  3.5240  1.7868 1.9901  0.7574 1.2353 1.8227  2.0009
BNIP 4.9680 0.3860  3.5240  1.7868 1.9901 0.7574 1.2353 1.8227  2.0009

BIP 0.4720 0.3860 1.1061  0.6372  1.0248  0.4090 1.1284 1.6928 1.6626
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Table 5.66 shows the summary of mean for Tables 5-56-5.64 when the sample size is 300.
The means of LB and BNIP are the same for all the levels of collinearity across the
parameters. All the means of the estimator are positive. The means of parameter 8yare not too
far from the true parameter. BIP outperformed all other estimators having the closest mean

values to the true parameter value.
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Table 5.67: High Negative Collinearity, p = -0.95 and sample size, N=10

Parameters  Estimators Mean Standard Error 95% CI 99% CI

6o LB 15.8201 0.8105 (13.8370, 17.8032)  (12.8154, 18.8248)
a7 BNIP 15.8201 0.6278 (14.4213, 17.2189)  (13.8305, 17.8097)
BIP 16.7516 0.3626 (159738, 17.5293)  (15.6721, 17.8310)

04 LB 18.7079 4.0834 (8.7161,28.6997)  (3.5688, 33.8469)
(8.5) BNIP 18.7079 3.1630 (11.6602, 25.7555)  (8.6834, 28.7323)
BIP 10.0000 0.0009 (9.9982,10.0018)  (9.9974, 10.0026)

0, LB 18.0901 5.9046 (3.6420,32.5382)  (-3.8008, 39.9810)
(5.0) BNIP 18.0901 4.5737 (7.8993,28.2809)  (3.5948, 32.5854)
BIP 5.6452 0.4236 (4.7366, 6.5537) (4.3841, 6.9062)

05 LB 12.6807 7.0814 (-4.6470,30.0083) (13.5732, 38.9346)
(2.0 BNIP 12.6807 5.4853 (0.4588,24.9026)  (-4.7036, 30.0649)
BIP 2.9897 0.8118 (1.2486, 4.7309) (0.5731, 5.4063)
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Table 5.68: High Negative Collinearity, p = -0.90 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI
6o LB 15.8212 0.5321 (14.5191, 17.1234)  (13.8483, 17.7942)
a7 BNIP 15.8212 0.4122 (14.9028, 16.7397) (14.5149, 17.1276)
BIP 16.2791 0.2635 (15.7141, 16.8442) (15.4948, 17.0634)
04 LB 13.1034 1.9080 (8.4346,17.7721)  (6.0295,20.1772)
(8.5) BNIP 13.1034 1.4779 (9.8103,16.3964)  (8.4194, 17.7873)
BIP 10.0000 0.0006 (9.9986, 10.0014)  (9.9981, 10.0019)
0, LB 12.4186 2.9994 (5.0794, 19.7579)  (1.2986, 23.5387)
(5.0) BNIP 12.4186 2.3233 (7.2420, 17.5953)  (5.0554,19.7819)
BIP 5.5918 0.3102 (4.9264, 6.2572) (4.6682, 6.5153)
05 LB 4.4901 3.3105 (-3.6105, 12.5906) (-7.7834, 16.7636)
(2.0 BNIP 4.4901 2.5643 (-1.2236, 10.2037)  (-3.6369, 12.6171)
BIP 2.7271 0.5860 (1.4702, 3.9839) (0.9827, 4.4715)
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Table 5.69: High Negative Collinearity, p = -0.80 and sample size, N=10

Parameters  Estimators Mean  Standard 95% CI 99% CI
Error
0, LB 16.6465  1.5018  (12.9717,20.3212) (11.0787,22.2143)
17) BNIP 16.6465  1.1633 (14.0545, 19.2384) (12.9597, 20.3332)
BIP 15.7885  0.2817 (15.1844, 16.3927) (14.9500, 16.6271)
0, LB 7.9561 4.1433 (-2.1821, 18.0944) (-7.4048, 23.3171)
(8.5) BNIP 7.9561 3.2094 (0.8052, 15.1071) (-2.2153, 18.1275)
BIP 10.0000  0.0007 (9.9985, 10.0015) (9.9980, 10.0020)
0, LB 3.8754 4.2386 (-6.4962, 14.2469) (-11.8391, 19.5898)
(5.0) BNIP 3.8754 3.2832 (-3.4401, 11.1909) (-6.5301, 14.2808)
BIP 5.5119 0.3346 (4.7943, 6.2296) (4.5158, 6.5080)
05 LB 1.0505 6.5888 (-15.0716, 17.1726) (-23.3769, 25.4779)
(2.0) BNIP 1.0505 5.1036 (-10.3211, 12.4221) (-15.1243, 17.225)
BIP 2.5869 0.6501 (1.1927, 3.9812) (0.6518, 4.5221)
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Table 5.70: Moderate Negative Collinearity, p = -0.49 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI
0, LB 18.7485 0.5727 (17.3471, 20.1499)  (16.6252,20.8718)
17) BNIP 18.7485 0.4436 (17.7600, 19.7369)  (17.3425, 20.1544)
BIP 15.6463 0.2887 (15.0271, 16.2656)  (14.7868, 16.5058)
04 LB 6.1585 0.7693 (4.2761, 8.0409) (3.30637, 9.0106)
(8.5) BNIP 6.1585 0.5959 (4.8307, 7.4862) (4.2699, 8.0470)
BIP 10.0000 0.0007 (9.9985,10.0015)  (9.9979, 10.0021)
0, LB 1.0879 1.4513 (-2.4633, 4.6391) (-4.2927, 6.4685)
(5.0 BNIP 1.0879 1.1242 (-1.4169, 3.5927) (-2.4749, 4.6507)
BIP 5.4831 0.3475 (4.7378, 6.2283) (4.4487, 6.5174)
04 LB -4.8820 1.7412 (-9.1426, -0.6214)  (-11.3374,1.5735)
2.0) BNIP -4.8820 1.3487 (-7.8872,-1.8768)  (-9.1565, -0.6074)
BIP 2.2833 0.6866 (0.8108, 3.7558) (0.2395, 4.3271)
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Table 5.71: Moderate Negative Collinearity, p = - 0.46 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI
0, LB 16.5479 1.0223 (14.0464, 19.0494)  (12.7578,20.3380)
(17) BNIP 16.5479 0.7919 (14.7835, 18.3123)  (14.0383, 19.0575)
BIP 15.4561 0.2867 (14.8413, 16.0710)  (14.6028, 16.3095)
6, LB 8.3739 1.3498 (5.0710, 11.6769) (3.3695, 13.3784)
(8.5) BNIP 8.3739 1.0456 (6.0442,10.7036) (5.0602, 11.6876)
BIP 10.0000 0.0007 (9.9985, 10.0015) (9.9979, 10.0021)
0, LB 4.9129 3.5398 (-3.7485, 13.5744)  (-8.2105, 18.0363)
(5.0 BNIP 49129 2.7419 (-1.1964, 11.0222)  (-3.7768, 13.6027)
BIP 5.5189 0.3498 (4.7687, 6.2691) (4.4777, 6.5601)
04 LB 2.6512 2.7550 (-4.0901, 9.3925) (-7.5628, 12.8653)
(2.0) BNIP 2.6512 2.1340 (-2.1037, 7.4062) (-4.1121, 9.4146)
BIP 2.6077 0.6693 (1.1722,4.0431) (0.6153, 4.6000)
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Table 5.72: Moderate Negative Collinearity, p = - 0.36 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI
0, LB 14.4522 1.5200 (10.7329, 18.1715)  (8.81693, 20.0874)
17 BNIP 14.4522 1.1774 (11.8288, 17.0755)  (10.7207, 18.1836)
BIP 15.4811 0.3053 (14.8262, 16.1360)  (14.5721, 16.3901)
0, LB 10.8809 1.3927 (7.4730, 14.2888)  (5.71738, 16.0444)
(8.5) BNIP 10.8809 1.0788 (8.4771, 13.2846)  (7.4618, 14.2999)
BIP 10.0000 0.0007 (9.9985, 10.0015)  (9.9979, 10.0021)
0, LB 6.7326 2.8012 (-0.1217,13.5869)  (-3.6526, 17.1178)
(5.0 BNIP 6.7326 2.1698 (1.8980, 11.5672)  (-0.1440, 13.6093)
BIP 5.4971 0.3399 (4.7681, 6.2260) (4.4853, 6.5088)
05 LB 4.6547 2.9370 (-2.5318,11.8412)  (-6.2339, 15.5433)
(2.0) BNIP 4.6547 2.2750 (-4.1677,5.0494)  (-2.5553,11.8647)
BIP 2.6607 0.6456 (1.2761, 4.0452) (0.7390, 4.5824)
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Table 5.73: Low Negative Collinearity, p = -0.20 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI
6, LB 16.1853 1.0335 (13.6563, 18.7143)  (12.3535, 20.0171)
17 BNIP 16.1853 0.8006 (14.4015, 17.9691)  (13.6480, 18.7225)
BIP 16.0090 0.3060 (15.3528, 16.6652)  (15.0982, 16.9198)
0, LB 10.4408 1.3498 (7.4931, 13.3885)  (5.9747, 14.9070)
(8.5) BNIP 10.4408 0.9331 (8.3617,12.5199)  (7.4835, 13.3981)
BIP 10.0000 0.0007 (9.9986, 10.0014)  (9.9980, 10.0020)
0, LB 5.8531 2.1701 (0.5430, 11.1632)  (-2.1925, 13.8987)
(5.0 BNIP 5.8531 1.6810 (2.1077, 9.5986) (0.5256, 11.1806)
BIP 5.5370 0.3285 (4.8324, 6.2416) (4.5591, 6.5149)
05 LB 0.4409 2.6702 (-6.0929, 6.97460)  (-9.4587, 10.3404)
(2.0) BNIP 0.4409 2.0683 (-4.1677, 5.0494) (-6.1142, 6.9959)
BIP 2.3645 0.6364 (0.9995, 3.7295) (0.4699, 4.2590)
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Table 5.74: Low Negative Collinearity, p =-0.17 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 17.6981 1.8274 (13.2266,22.1697)  (10.9231, 24.4732)
a7 BNIP 17.6981 1.4155 (14.5442,20.8521) (13.2120, 22.1843)
BIP 16.5199 0.4727 (15.5061, 17.5336)  (15.1129, 17.9269)
6, LB 8.7610 2.4826 (2.6862,14.8357)  (-0.4432,17.9651)
(8.5) BNIP 8.7610 0.9331 (4.4762,13.0457)  (2.6663, 14.8556)
BIP 10.0000 0.0010 (9.9978, 10.0022)  (9.9969, 10.0031)
6, LB 8.0309 3.5764 (-0.7203, 16.7821)  (-5.2284, 21.2902)
(5.0 BNIP 8.0309 1.6810 (1.8583,14.2035)  (-0.7489, 16.8107)
BIP 5.6040 0.5079 (4.5146, 6.6935) (4.0920, 7.1161)
04 LB -1.2739 4.5380 (-12.378,9.8301)  (-18.0982,15.5503)
2.0 BNIP -1.2739 2.0683 (-9.1061, 6.5582)  (-12.4143, 9.8664)
BIP 2.2854 0.9877 (0.1670, 4.4037) (-0.6548, 5.2256)
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Table 5.75: Low Negative Collinearity, p =-0.15 and sample size, N=10

Parameters Estimators Mean  Standard Error 95% CI 99% CI
6, LB 17.8145 0.7140 (16.0674,19.5616)  (15.1674, 20.4616)
17 BNIP 17.8145 0.5531 (16.5822, 19.0468) (16.0617, 19.5673)
BIP 16.5954 0.3293 (15.8891, 17.3017)  (15.6151, 17.5757)
0, LB 7.4041 1.4158 (3.9399, 10.8684)  (2.1553, 12.6529)
(8.5) BNIP 7.4041 1.0966 (4.9607, 9.8476) (3.9286, 10.8797)
BIP 10.0000 0.0008 (9.9984, 10.0016)  (9.9977, 10.0023)
0, LB 4.0483 2.4788 (-2.0171,10.1136)  (-5.1416, 13.2382)
(5.0 BNIP 4.0483 1.9201 (-0.2299, 8.3264)  (-2.0369, 10.1334)
BIP 5.5025 0.3779 (4.6920, 6.3130) (4.3776, 6.6275)
05 LB 3.3376 2.5347 (-2.8646, 9.5398)  (-6.0597, 12.7348)
(2.0) BNIP 3.3376 1.9634 (-1.0371, 7.7122) (-2.8849, 9.5600)
BIP 2.3346 0.7145 (0.8022, 3.8669) (0.2077, 4.4614)
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Table 5.76: Summary of Tables 5.67-5.75 for Standard Error when the sample size, N= 10.

Parameters Estimators -0.95 -0.90 -0.80 -049 -046 -036 -0.20 -0.17 -0.15
LB 0.8105 0.5321 1.5018 0.5727 1.0223 1.5200 1.0335 1.8274 0.7140

6o BNIP 0.6278 0.4122 1.1633 0.4436 0.7919 1.1774 0.8006 1.4155 0.5531
BIP 0.3626 0.2635 0.2817 0.2887 0.2867 0.3053 0.3060 0.4727 0.3293

LB 4.0834 1.9080 4.1433 0.7693 1.3498 1.3927 1.3498 24826 1.4158

0, BNIP 3.1630 1.4779  3.2094 0.5959 1.0456 1.0788 0.9331 0.9331 1.0966
BIP 0.0009 0.0006  0.0007 0.0007 0.0007 0.0007 0.0007 0.0010 0.0008

LB 5.9046 2.9994 42386 14513 3.5398 2.8012 2.1701 3.5764 2.4788

0, BNIP 4.5737 2.3233 32832 1.1242 2.7419 2.1698 1.6810 1.6810 1.9201
BIP 0.4236 0.3102 0.3346 0.3475 0.3498 0.3399 0.3285 0.5079 0.3779

LB 7.0814 33105 6.5888 1.7412 2.7550 2.9370 2.6702 4.5380 2.5347

0s BNIP 5.4853 2.5643  5.1036 1.3487 2.1340 2.2750 2.0683 2.0683 1.9634
BIP 0.8118 0.5860 0.6501 0.6866 0.6693 0.6456 0.6364 0.9877 0.7145
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Table 5.76 shows the summary of SE for multicollinearity (HNC, MNC and LNC) of the
estimators across the parameters (6,, 6,1, 6, and 63) when the sample size is 10. There seems
to be no fixed pattern in the performance of the estimators for the levels of multicollinearity
(p = -0.15 to -0.95). It is also observed that as p increases, the SE of estimators also

decreases for all the parameters.

The Bayesian estimators (BIP and BNIP) have the smallest SE for all the levels of
multicollinearity considered. When the sample size, N=10. The SE of BIP for parameter 6,

for p’s are almost the same.
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Table 5.77: Summary of Tables 5.67-5.75 for Mean when the sample size, N= 10.

Parameters  Estimators -0.95 -0.90 -0.80 -0.49 -0.46 -0.36 -0.20 -0.17 -0.15
LB 15.8201 15.8212 16.6465 18.7485 16.5479 14.4522 16.1853 17.6981 16.8145
% BNIP 15.8201 16.2791 16.6465 18.7485 16.5479 14.4522 16.1853 17.6981 16.8145
(17:09 BIP 16.7516  16.2791 15.7885  15.6463 154561 154811 16.0090 16.5199 16.5954
LB 18.7079  13.1034 7.9561  6.1585 83739 10.8809 10.4408 8.7610  7.4041
o BNIP 18.7079  13.1034 7.9561  6.1585 83739 10.8809 10.4408 8.7610  7.4041
® BIP 10.0000  10.0000 110.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
LB 18.0901 124186 3.8754 1.0879 49129 6.7326 5.8531 8.0309  4.0483
7 BNIP 18.0901 124186 3.8754 1.0879 49129 6.7326  5.8531 8.0309  4.0483
00 BIP 5.6452 55918 55119  5.4831 55189 54971 55370  5.6040  5.5025
LB 12.6807  4.4901 1.0505 -4.8820 2.6512 4.6547 0.4409 -1.2739  3.3376
% BNIP 12.6807  4.4901 1.0505 -4.8820 2.6512 4.6547 0.4409 -1.2739  3.3376
(200 BIP 2.9897 2.7271 2.5869 2.2833  2.6077 2.6607 2.3645 22854  2.3346
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Table 5.77 summarizes the mean estimates of all the estimators for parameters (6,, 8,, 8, and

05), when the sample size is 10.

The mean of LB and BNIP are the same for all levels of multicollinearity across the
parameters. However, there is evidence to suggest that BIP is the best for estimating
parameters of the regression model because the means are closer to the true parameter value

for all the levels of multicollinearity.

None of the estimators generated negative average estimates and none generated large
positive estimates. The average estimates have showed no consistent pattern for all levels of

multicollinearity across the parameters when the sample size is 10.
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Table 5.78: High Negative Collinearity, p = -0.95 and sample size, N=30

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 17.3394 0.5739 (16.1598,18.5190)  (15.7448, 18.9340)
17) BNIP 17.3394 0.5342 (16.2484, 18.4305) (15.8703, 18.8086)
BIP 16.4476 0.2264 (15.9874,16.9077)  (15.8298, 17.0653)

6, LB 5.7488 3.0300 (-0.4794,11.9770)  (-2.6707, 14.1683)
(8.5) BNIP 5.7488 2.8208 (-0.0120, 11.5096)  (-2.0083, 13.5059)
BIP 10.0000 0.0009 (9.9982,10.0018)  (9.9976, 10.0024)

6, LB 5.2686 4.4026 (-3.7810, 14.3182)  (-6.9648, 17.5021)
(5.0 BNIP 5.2686 4.0986 (-3.1018, 13.6390)  (-6.0024, 16.5396)
BIP 5.6483 0.4237 (4.7872, 6.5094) (4.4923, 6.8044)

04 LB -3.8396 4.6462 (-13.39, 5.7108) (-16.7501, 9.0710)
2.0 BNIP -3.8396 4.3254 (-12.6732,4.9940)  (-15.7344, 8.0552)
BIP 2.8783 0.7496 (1.3549, 4.4016) (0.8331, 4.9235)
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Table 5.79: High Negative Collinearity, p = -0.90 and sample size, N=30

Parameters Estimators Mean  Standard Error 95% CI 99% CI

6o LB 16.8113 0.5450 (15.6910,17.931)  (15.2969, 18.3257)
17) BNIP 16.8113 0.5074 (15.7751, 17.8475)  (15.4160, 18.2066)
BIP 15.8980 0.1775 (15.5372,16.2588) (15.4136, 16.3824)

6, LB 6.9570 1.8625 (3.1287,10.7854)  (1.7818, 12.1323)
(8.5) BNIP 6.9570 1.7339 (3.4160,10.4980)  (2.1889, 11.7251)
BIP 10.0000 0.0007 (9.9986,10.0014)  (9.9981, 10.0019)

6, LB 2.2208 2.5703 (-3.0626, 7.5042) (-4.9214, 9.3630)
(5.0 BNIP 2.2208 2.3928 (-2.6660, 7.1077) (-4.3595, 8.8011)
BIP 5.5552 0.3327 (4.8790, 6.2314) (4.6474, 6.4631)

04 LB 0.9391 2.62