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ABSTRACT 

Cure models are special survival models developed to estimate cure rate in cancer 

research. Several cure models such as Lognormal-Mixture Cure-Models (LNMCM), 

Loglogistics-Mixture-Cure-Models (LLMCM), Weibull-Mixture-Cure-Models 

(WMCM) and Generalised-Gamma-Mixture-Cure-Models (GGMCM) have been used 

to study cure rates in epidemiology. The GGMCM has been established to have out-

performed other parametric models in terms of Akaike Information Criterion (AIC) but 

could not handle acute- asymmetry in survival data. Therefore, this study was designed 

to develop a Modified Generalised-Gamma Mixture Cure Model (MGGMCM) that can 

handle acute-asymmetry in survival data. 

The GGMCM: 
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the scale parameter was modified using a gamma generator: 
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, where 𝜔isthe shape parameter, ( )G t and ( )g t  are cumulative density function (cdf) 

and probabilty density function (pdf), respectively. Life ovarian cancer data was 

obtained from Department of Obstetrics and Gynaecology, University College Hospital, 

Ibadan, Nigeria covering the period 2000-2015. The diagnosis time (in months) was 

until death. The simulation study utilised data based on the continuous uniform 

distribution with 100b  and 1a  using samples of sizes of 10, 20 and 50 each in 50, 

100 and 500 replicates, respectively. The hazard-function of the MGGMCM was 

derived by 
1

pdf

cdf
 of MGGMCM; the cure model was given as S(t) = c + (1 − c)Su(t)  

where S(t) is the survival function of the entire population, Su(t) is the survival function 

of the uncured patients and c is cure-rate.Parameters c,  (median time-to-cure) and 

of MGGMCM were determined using Maximum Likelihood Estimation. The 

MGGMCM was exhaustively investigated in terms of its parametric essence and against 

extant models of similar intent using relevant assessment criteria like scope, general 

estimability, AIC and relative efficiency of estimates of cure rate, median time-to-cure, 

variances, bias and mean square error where applicable.  
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The hazard-function of the developed model was obtained as: 
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The AIC, median to cure, c and variance(c) of ovarian cancer data were: WMCM 

(216.89, 60.07, 0.29, 0.097); LNMCM (205.98, 57.98, 0.37, 0.004); LLMCM (203.27, 

56.87, 5.95, 0.052); GGMCM (206.20, 20.90, 0.11, 0.005) and MGGMCM (199.24, 

11.82, 0.82, 0.001), respectively. For simulated data, Mean Square Error (MSE) and 

|𝑏𝑖𝑎𝑠|were obtained as follows:  𝑛 = 10, 𝑟 = 50: WMCM (772.11, 26.10); LNMCM 

(707.23, 26.70); LLMCM (791.30, 27.89); GGMCM (691.03, 25.33); MGGMCM 

(701.10, 25.81), respectively. At 𝑛 = 20, 𝑟 = 50:  WMCM (611.59, 23.59); LNMCM 

(655.71, 25.31); LLMCM (695.0, 26.00); GGMCM (601.33, 23.57); MGGMCM 

(609.31, 23.89), respectively. At  𝑛 = 50, 𝑟 = 50: WMCM (700.18, 25.77); LNMCM 

(699.52, 25.83); LLMCM (719.52, 25.50); GGMCM (689.15, 25.59); MGGMCM 

(601.59, 23.19), respectively. At 𝑛 = 50, 𝑟 = 500: WMCM (623.90, 23.95); LNMCM 

(619.61, 24.01); LLMCM (644.59, 24.89); GGMCM (602.10, 24.01); MGGMCM 

(501.37, 22.11), respectively. The better model corresponds to the smallest MSE and 

|𝑏𝑖𝑎𝑠| values as sample size and replicate increases. 

The Modified Generalised-Gamma Mixture Cure Model was the better on the AIC 

criterion; the MGGMCM adequately handled the problem of acute-asymmetry 

associated with survival data and its robustness.  

 

Keywords: Acute-asymmetry, Cure-rate, Diagnosis-time, Hazard-function, Median-to-

cure 

Word count: 490 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of Study 

Survival analysis is a type of data analysis in which response variable becomes the time 

prior to the actual occurrence of an event of interest. This event might be death, disease 

incidence, marriage, divorce, among others. Survival analysis has become frequently 

beneficial in a variety of fields including biology, medicine, public health, as well as 

epidemiology. 

A typical analysis of survival data involves the modeling of time-to-event data, such as 

the time until death. The time to the event of interest is called either survival time or 

failure time;possibly the time of diagnosis of a disease such as cancer.   

Years, months, weeks, days etc. can be used as standard for the observation of time to 

event. If the observation at hand is ovarian cancer, then the survival times in years until 

the patients develop such cancer. The outcome variable may be observed from two 

perspectives. It may be time to event or the status of event, which reveals the condition 

of event of interest. Survival time or failure time is the time to the event of interest 

(Zhao, 2008). It frequently occurs that not all individuals under medical observation 

will be observed until time of failure; that is, some individuals may be lost to follow-up, 

or may drop out of the study. This is known as Censoring.  

The common types of censoring are right censoring, left censoring, right truncation and 

left truncation. The details of these will be discussed in the next chapter. 

For illustration, right censoring occurs when an individual decides to drop in a clinical 

trial before the event of interest occurs. It is the moment when the time-to-event of the 

individual has not taken place and leaves the trial. Let's say, if we consider time until 

death, and the subjects are admitted gynecological cancer patients aged 65 years or 
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older, then every individual who dies before 65 years cannot be observed, this 

illustration gives what is meant by left-truncated data. 

Right censored data have been considered throughout this thesis. The data used can be 

in the form of accurate data, censored data, or truncated data in survival analysis. Exact 

data set for survival can be identified similarly as uncensored data set for survival that 

takes place with specific time, pending interest time. With the set of censored 

survivaldata, the subjects ' time is unknown until the event of interest occurs but in a 

certain time (Zhao, 2008).  

The ultimate objective of cancer research is to accomplish cure where feasible or 

manage a substantial proportion of patients such that the symptoms of the disease 

wholly disappear and the disease never resurfaces. Also, for cancer patients and the 

physician society alike, the odds of becoming cured and indeed the length of time of 

survival from diagnosis are also of great concern.  

Researchers are therefore interested in benefiting from medical intervention in good      

number of patients. In survival analysis, it is obvious to have subjects with censored 

observations.  These are subjects that will either be lost to follow-up by the time of the 

analysis and maybe have not experienced the major interest event yet. Special models in 

survival analysis established as cure models directly measure this proportion (Ibrahim, 

et.al. 2001 &Maller and Zhou 1996). 

Cure models are unique forms of the approach of survival data analysis where it might 

be expected that certain fraction of subjects may still not experience the occurrence of 

interest. Thus, a plateau finally reaches the survival curve (Lambert et al, 2007).  

Cure has turned out to be an important long-term, therapy-based survival management 

procedure. Many clinical researches have also lately concentrated on evaluating the 

fraction of cured patients, and many are not probably experiencing the event of interest 

again. Presently, there exist two (2) key categories of cure fraction models; the mixture 

cure fraction model and the non -mixture cure fraction model. 

Boag (1949) first established a model that could be used to estimate the fraction of cure 

and in 1952 Berkson and Gage revised that model which was called mixture cure 

model. This one was identified similarly as the standard model of cure rate. 
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 Non-mixture cure model widely known as Bounded Cumulative Hazard (BCH) model 

was another mixture cure model established by Yakovlev et. al.(1993). 

Claeskens and Keilegom (2016) gave different names to the very same model; it is 

termed the Cure model in Biostatistics, the Split Population Model in Econometrics and 

Limited Failure Population Model in Reliability Engineering. Lambert et.al.(2006) 

established that cure is proven to happen any time and that the diseased category rate of 

mortality in individual’s yields accurately same level as that expected in the over-all 

population.  

Conventionally, proportion of cured patients from a disease refers to the cure fraction, 

along with being suitable techniques to measure the developments in survival of curable 

diseases.  

An accurate and informative conclusion is an extension derived from cure models.  

These conclusions would otherwise be unobtainable from any analysis that fails to 

account for a cured fraction in the population. If a cured component is not present, the 

analysis reduces to standard approaches of survival analysis. Most cure models assume 

that the susceptible individuals are homogeneous in risk (Wienke et al. 2003).  

Survival time is the time from the initial event until failure occurs say time from birth 

until death; time from diagnosis of ovarian cancer until the medical intervention; time 

from start of treatment until remission of disease. Survival time is the main interest in 

medical statistics and it is rarely normally distributed because it is a continuous 

measurement that cannot assume negative values.   

Lucijanic and Petrovecki (2012) had already established that time is the response 

variable which mostly showcases the length of time before an event happens which 

could be empirically reviewed as one of the many research variables. The achievements 

and concern in clinical studies are indeed the survival of patients and thus no researcher 

is interested in death because this is an undesired event. Events could also be regarded 

as an end point as long as they could be characterized as dichotomous, e.g. “event takes 

place”, is assigned one (1) and zero (0) otherwise. There are so many possible uses of 

such a sort of analysis in biomedical research findings, including evaluating time to 

recover following a long therapeutic procedure, time to achieve predetermined serum 
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levels of a substance, time to recover from disease, time to discharge from hospital, and 

so many others.  

A time trend is a significant techniqueused to assess advancements throughout cancer 

therapy for patients. The net survival change estimate is the focus when analysing time 

trends in survival analysis of patients with cancer. Net survival at time ‘t’ refers to the 

proportion of patients who would have survived up to that time ‘t’ if the only possible 

cause of death is the disease of interest that is there is no other cause of death. The 

analysis of Parametric Cure Model (PCM) was established 50 years ago.This technique 

is used for enhancement of appropriate requirements for analysis of clinical 

investigation. Also, it can be utilised for analysis from several cancers studies where 

achievements of cure are possible such as gynecology, pediatrics, etc (Maetani and 

Gamel, 2013) 

 

1.2 Statement of Problem 

In medical studies, researchers are concerned with analysing the progression of a disease 

and achievement of cure from management of the disease. Thus, we usually wish to 

calculate the probability of an individual person surviving for a given length of time. 

This is the ultimate objective of cancer research, which would be to achieve cure in a 

substantial proportion of patients undergoing cancer management trials. In other words, 

the disease's symptoms and signs completely disappear and the disease never recurs. 

The chance of healing and the number of years of diagnosis survival are of great interest 

to cancer patients as well as to the health community. In clinical studies, it is common to 

have some subjects that are censored in nature. These occurred when some subjects or 

observations are incomplete as a result of several random causes. In typical systems of 

analysis, censoring causes must be independent of the event of interest. Also, it must be 

noted that censored subjects resulted either from death from another cause differently 

from the cause of interest; subject survives when the study terminate or the subject is 

lost to the study, by dropping out from the study, moving to a different area, etc. Special 

models of survival analysis known as cure models easily calculate this proportion 

(Maller and Zhou, 1996& Ibrahim et al., 2001). 

Going by common opinion, cancers have always been deemed as terminal diseases and 

not curable. Cancers however have differing cure rates. The survival or cure status can 
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be measured scientifically giving an avenue for health professionals to evaluate the 

efficacy of treatment. Thus, mixture cure fraction model will be employed because of its 

ability to simultaneously estimate the cure fraction and identify the distribution of the 

uncured. Also, a new modified parametric mixture cure models is requiredto check the 

key features of asymmetry in survival data. 

1.3 Motivation 

In the past, very little attention was paid to models that could handle acute-asymmetry 

features of survival data by many authors. Zografos and Balakrishnan (2009), a skewed 

distribution family that is being applied to merge two distributions, have recently 

proposed the Gamma Generated link function. The proposed mixture cure model was 

generated using the gamma generator. Also, there have been high demands in cancer 

cure research across the globe.  

This being a fact, in any epidemiology research the success of cure management is vital. 

Thus, this research draws motivation in seeking for alternative estimation method for 

the cure fraction within population based cancer investigation. 

1.4 Justification of Study 

Recently, the improvement of novel therapies has brought about reduction in the death 

of cancer patients. The inspiration for this research originated from the point that the 

success from management of cure remains vital from every clinical work / investigation, 

hence the term, curative Medicine used when individuals have developed the disease. 

This contrasts with preventive Medicine.  

An operative health measure exists when a vital cohort of patients are being managed 

from a specific ailment, however with respect to several features including differing 

factors and different body chemistry, some patients will not benefit from the particular 

treatments. Advancing in health managements, it is pertinent for individual subject to 

detach between changes within cure possibility and rise of expected survival time for 

uncured patients. Thus; Mixture cure fraction model will be employed because of its 

ability to simultaneously estimate a cure fraction and identify the distribution of the 

uncured. Also, the major characteristics of survival data is acute-asymmetry, hence, this 
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require a parametric mixture cure model that can handle the acute-asymmetry in the 

survival data. 

1.5 Scope of Study 

This study covers four prevailing parametric Mixture Cure Models (MCM) which 

becomes the competing models for the new proposed one. These competing parametric 

cure models are lognormal MCM (LNMCM), loglogistic MCM (LLMCM), Weibull 

MCM (WMCM) and generalised-gamma MCM (GGMCM). These models had been 

used previously on gastric cancer data and it was discovered that generalised-gamma 

MCM performed better than lognormal MCM, loglogistic MCM, Weibull MCM but it 

could not control acute-asymmetry features in survival data. The present study will use 

real life ovarian cancer data to determine the flexible model that can compete with the 

existing models. Also, simulation study will be done; the simulation sample size will 

mimic the real life ovarian cancer data. The parameters estimation for the study will 

make use of Maximum likelihood estimation. 

1.6 Definitions of Some Concepts 

Survival time: It is the time from the initial event until failure occurs such as time from 

birth until death; time from HIV infection until the development of AIDS; time from 

start of treatment until remission of disease. Survival time is rarely normally distributed 

because it is a continuous measurement that cannot assume negative values. In cancers, 

it is the time from diagnosis. 

Censoring: It is the incomplete observation of time to failure. Since one does not have 

complete observation which can give full information hence there is partial information 

contained in censored observations. 

Cure: This is the accomplishment of a health condition. The component or process that 

terminates the health situation could be a drug prescription, medical managements, 

lifestyle changes, as well as philosophical frame of mind, meant to finish a person’s 

suffering. The situation might also be referred to the level of being healthy or treated. 

Remission: This is a short-term completion to the health indications and warnings of a 

life-threatening disease. 
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Relapse: A disease is said to be lethal if there exists an odds of the patient relapsing, no 

matter how elongated the patient has been in remission. Relapse (National Cancer 

Institute, 2018): This can also be referred to reoccurrence of a disease or reappearance of 

the signs and symptoms of a disease after a period of improvement. 

Expected survival: It is obtained from national population life tables stratified by age, 

sex, calendar year and possibly other covariates. 

Statistical cure: It is when the mortality rate observed in the patients eventually returns 

to the same level as that in the general population. 

Cure fraction: The proportion of diseased cohorts that are treated through a particular 

management is refers to as cure fraction or cure rate. This is arisen via linking the 

disease-free survival of healed populaces against a corresponding control unit that have 

not experience the disease of interest. A different approach for determining cure fraction 

stands by means of determining at what time is the hazard rate of individuals diseased 

group resulted to the measurement of general population hazard rate. [Lambert. (2007) 

and Smoll et.al. (2012)] 

1.7 Advantages of Parametric Cure Models 

The advantages of parametric over nonparametric/semi parametric cure models are: 

1. Flexibility of its hazard functions. 

2. It is possible to estimate its parameters while the cox model can only provide 

estimates of the hazard differences between two or more groups.  

3. We usually have data sets in health-life research that require more sophisticated 

parametric models. 

4. It has long term validity and is more useful when compared with nonparametric 

and semi parametric cure models. 

5. It is used to distinguish between curative and life prolongation therapies where by 

giving clinicians a false estimate of the best regimen, traditional methods fail to do 

this.  

6. It can be used to predict time for survival. 
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1.8 Aim and Objectives 

1.8.1 Aim 

The aim of the study is to develop a modified generalised-gamma mixture cure model 

that is explicitly competent to handle acute-asymmetry in survival data. This in turn will 

give comprehensive and additional report/evidence for the cured patients’ proportion 

that have benefited after health managements. 

1.8.2 Specific Objectives 

1. To derive a new parametric mixture cure fraction model capable of handling acute 

asymmetry in survival data. 

2. To investigate the properties of the new parametric cure fraction models. 

3. To compare the modified model with the existing ones.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Survival Analysis: An Overview 

Survival analysis can be described as a variety of techniques for data analysis whereby 

the response variable becomes period before an event of interest takes place. This type 

of analysis generally centers on time to event data.  It is a discipline of statistics that 

deals with data from time to event. From a broad perspective, it consists of techniques 

for positive, valued random variables, such as: time to death, time to recovery from a 

disease, hospital admission, duration of strike by workers,duration of doctoral study, 

time of diagnosis until death and so on. In medical research, times until death or 

recurrence of the ailment are the major category of time-to-event data where the 

concerned random variable remains a continuous positive random variable “T” 

(Claeskens and Keilegom, 2016). 

The hazard functions and survival functions stand as the fundamental theories in 

survival analysis aimed at showing event times distribution. The probability of 

surviving, that is, when the patients are not experiencing the event is specified by the 

survival function.  The hazard function provides the possibilities for the event to occur 

per time unit, given that an individual has survived up to the specified time. Studies 

show that, it is regularly of direct concern. There are other concepts e.g., median 

survival, cumulative hazard function, etc., that might be measured from knowing either 

the hazard or survival function. 

In survival analysis, it normally happens that somehow the occurrence of interest may 

not be experienced by several individuals under study; they are referred to being' cured.' 

Therefore, the population is a mixture of two population units, whereby, one is a cured 

entity and the other a' susceptible' entity (Patilea and Keilegom, 2017). The time from 

entry into a study until an individual has a particular outcome is referred to as ‘time-to-

event’. 
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2.1.1 Survival Function (S(t)) 

The survival function explains the probability of an individual surviving beyond a 

specified time t. Here, T is represented as the random variable specifying survival time. 

Therefore, ‘t’ is the time until the event of interest. The probability of experiencing the 

event of interest beyond time t is presented by the survival function (Coolen, 2012). The 

statistical expression of the survival function is shown in equation (2.1) below; 

                                   𝑆(𝑡) =  𝑃(𝑇  >  𝑡) =  1 −  𝐹( 𝑡)(2.1) 

Where 𝐹(𝑡) is the probability distribution function and it is given by; 𝐹(𝑡) = 𝑃𝑟(𝑇 ≤

 𝑡) 

 𝑇 is a continuous random variable. The survival function can be presented as it is in the 

equation below, where 𝑆(𝑡) is the integral of the probability density function (PDF), 

𝑓(𝑡): 

                                                      𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = න 𝑓(𝑡) 𝑑𝑡

ஶ

଴

                                        (2.2) 

 

Characteristics of S(t) 

Wang (2006) established the survival function with the following features: 

1. S(t) =  1 if t <  0 ;  therefore, the survival function S(t) is a non-increasing 

function of that same value 1 at 𝑡 =  0,that is. 𝑆(0) =  1. 

2. For a proper random variable 𝑇, 𝑆(∞)  =  0,  implying that ultimately everyone 

will experience the event.. However, we will also allow the possibility 

that 𝑆(∞) > 0. This coincides to some kind of scenario in which there is a high 

likelihood that perhaps the event would not die and therefore not experience it. 

For example, if the event of interest is the time from both the response to the 

deterioration of the disease as well as the disease really does have a cure over a 

certain percentage of the population, then we will have 𝑆(∞)  > 0, where 𝑆(∞) 

corresponds to the percentage of the population of cured individuals or groups. 
 

Generally speaking, the survival function S(t) provides important information like those 

of average survival rates, t-year death rate, etc. 
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2.1.2 The Hazard Function (h(t)): 

Wang (2006} described the function of hazard as the rate of instant failure. In the real 

sense, a person is more likely to experience the event of interest while 't' has not 

occurred . Hazard function is represented by; 

                                    ℎ(𝑡) =  𝑃 ൬𝑡 <  𝑇 <
𝑡 + Δ

𝑇
>  𝑡൰                                         (2.3) 

=
𝑓(𝑡)

1 + 𝐹(𝑡)
 

                               ℎ(𝑡) =
𝑓(𝑡)

𝑠(𝑡)
                                                                                    (2.4) 

The instantaneous failure rate (ℎ(𝑡)) refers to outcome of the risk concept in an interval 

after time ‘t’ . This is condition on the subject having survived to that time ‘t’. Such 

outcome could be death, failure, hospitalisation and so on. 

The hazard function corresponds to the phenomenon of outcome risk (e.g., death, 

failure, hospital admission) at a time t interval, conditional on the subject having 

survived to time t.  

Also, it provides the possibility that there is occurrence of death between t and(𝑡 + ∆), 

divided by the probability that the individual survived beyond time ‘t’. The (ℎ(𝑡))  

contributes additional essential to the general usage in survival analysis than the density 

function.  It is also used to compute the instantaneous risk. 

 

2.2  Forms of Survival analysis 

Blayney (2012) stressed that several models in survival time are available for use in the 

relationship between the set of explanatory variables.  He furthered categorized them as 

parametric, nonparametric and semi parametric approaches.  

 
2.2.1 The Parametric Survival Analysis 

In parametric techniques of survival analysis, the random variable T is assumed to 

follow known probability distributions. The common ones are the Log-Logistic, 

Weibull, and Gamma distributions among others. 

The description of probability distributions for outcome variable is a function of the 

predictors of interest (Fieller, 2010). In these conditions, estimations of parameter 

requires an appropriate modification of maximum likelihood. 
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Normally, there is need to estimate unknown parameter 𝜃 from the data because the 

probability density function relies on it. There are lots of estimation techniques; 

however, Fieller (2010) asserted that maximum likelihood estimation (M.L.E) is the 

best with the justification of asymptotic properties i.e. large samples.  

In summary, the likelihood of a parameter 𝜃 for data  𝑥ଵ, 𝑥ଶ, … … , 𝑥௡, is the probability 

of observing the data 𝑥ଵ, 𝑥ଶ, … … , 𝑥௡This probability is calculated in terms of unknown 

quantity 𝜃 and so will be a function of it, 𝐿(𝜃) say. We can now maximize 𝐿(𝜃) with 

respect to 𝜃, and the value that produces the maximum say, 𝜃, is the maximum 

likelihood estimate of  𝜃. It can be thought of as the most probable value of 𝜃, in the 

light of the data just obtained. 

 

Examples of Parametric Survival  

2.2.1.1 Log-logistics distribution 
 

The distribution of log-logistic probability density function is specified as: 

 

                𝑓(𝑥) =
𝛼

𝛽
൬

𝑥

𝛽
൰

ఈିଵ

൬൬1 +
𝑥

𝛽
൰

ఈ

൰
ିଶ

                𝑥, 𝛼, 𝛽 > 0                                      (2.5) 

The cumulative distribution function  (𝐹(𝑥))  of log-logistic distribution is specified as: 

𝐹(𝑥) = න 𝑓(𝑡)𝑑𝑡

௫

଴

 

∴ 𝐹(𝑥) =  න
𝛼

𝛽
൬

𝑥

𝛽
൰

ఈିଵ

൬൬1 +
𝑥

𝛽
൰

ఈ

൰
ିଶ

𝑑𝑥

௫

଴

 

𝐹(𝑥) =
𝛼

𝛽𝛽ఈିଵ
න 𝑥ఈିଵ

௫

଴

൬൬1 +
𝑥

𝛽
൰

ఈ

൰
ିଶ

𝑑𝑥 

                                    𝐹(𝑥) = ቆ൬1 +
𝛽

𝑥
൰

ఈ

ቇ

ିଵ

                                                              (2.6) 
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The survival function 𝑆(𝑥) of log-logistic distribution is specified as:   

1 − 𝐹(𝑥) 

Where 

𝑆(𝑥) = 1 − ቆ1 + ൬
𝛽

𝑥
൰

ఈ

ቇ

ିଵ

 

𝑆(𝑥) =
1

ቀ1 + ቀ
ఉ

௫
ቁ

ఈ

ቁ
 

                                                                   =
ቀ

ఉ

௫
ቁ

ఈ

1 + ቀ
ఉ

௫
ቁ

ఈ                                                            (2.7) 

The hazard function ℎ(𝑥) of log-logistic distribution is specified as:  

ℎ(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
 

ℎ(𝑥) =

ఈ

ఉ
ቀ

௫

ఉ
ቁ

ఈିଵ

ቀቀ1 +
ఉ

௫
ቁ

ఈ

ቁ
ିଶ

ቀ
ഁ

ೣ
ቁ

ഀ

ଵାቀ
ഁ

ೣ
ቁ

ഀ

 

ℎ(𝑥) =

ఈ

௫
ቀ

௫

ఉ
ቁ

ఈ

ቀቀ1 +
ఉ

௫
ቁ

ఈ

ቁ
ିଶ

ቀ1 + ቀ
ఉ

௫
ቁ

ఈ

ቁ

ቀ
ఉ

௫
ቁ

ఈ  

                                            ℎ(𝑥) =

ఈ

௫
ቀ

௫

ఉ
ቁ

ଶఈ

ቀ1 + ቀ
ఉ

௫
ቁ

ఈ

ቁ

ቀቀ1 +
ఉ

௫
ቁ

ఈ

ቁ
ଶ                                                      (2.8) 
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2.2.1.2 The Weibull Distribution 

The distribution of Weibull probability density function is specified as: 

            𝑓(𝑥) =
𝛼

𝛽
൬

𝑥

𝛽
൰

ఈିଵ

exp ൬− ൬
𝑥

𝛽
൰

ఈ

൰   𝑡 > 0, 𝛼 > 0, 𝛽 > 0                                      (2.9) 

The cumulative distribution function 𝐹(𝑥) of Weibull distribution is specified as: 

𝐹(𝑥) = න 𝑓(𝑥)𝑑𝑥

ஶ

଴

 

= න
𝛼

𝛽
൬

𝑥

𝛽
൰

ఈିଵ

exp ൬− ൬
𝑥

𝛽
൰

ఈ

൰ 𝑑𝑥       

ஶ

଴

 

    =
𝛼

𝛽𝛽ఈିଵ
න 𝑥ఈିଵ exp ൬− ൬

𝑥

𝛽
൰

ఈ

൰ 𝑑𝑥       

௫

଴

 

                                        𝐹(𝑥)  = 1 − exp ൬− ൬
𝑥

𝛽
൰

ఈ

൰                                                 (2.10) 

𝑆(𝑥) = 1 − 𝐹(𝑥) 

            = 1 − ቆ1 − exp ൬− ൬
𝑥

𝛽
൰

ఈ

൰ ቇ 

                                       𝑆(𝑥) =  𝑒
ିቀ

ೣ

ഁ
ቁ

ഀ

                                                                           (2.11)  

 

The hazard function ℎ(𝑥) of Weibull distribution is specified as: 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑓(𝑥)

1 − 𝐹(𝑥)
 

                           =

ఈ

ఉ
ቀ

௫

ఉ
ቁ

ఈିଵ

exp ቀ− ቀ
௫

ఉ
ቁ

ఈ

ቁ

exp ቀ− ቀ
௫

ఉ
ቁ

ఈ
ቁ

 

                                                          ℎ(𝑥) =
𝛼

𝛽
൬

𝑥

𝛽
൰

ఈିଵ

                                                       (2.12) 
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2.2.2 The Non Parametric Survival Analysis 

Coolen (2012) described Kaplan Meier as a technique which is generally used as a 

function of time in non-parametric survival models to evaluate survival probabilities. 

This technique provides a graphical survival probabilities as well as obtaining 

descriptive results for the survival data. The method is very useful for comparison of 

two or more survival experience. It can also be used for comparing survival curve for 

two or more groups of subjects.  

The Kaplan Meier method is a typical example of nonparametric where the outcome 

variable does not follow any underlying distribution.Kaplan & Meier (1958) proposed 

the technique.  It is distribution-free and many other statistics could be estimated using 

the Kaplan Meier method, such as median survival time, to describe the survival data. 

There is other nonparametric test for survival models such as log-rank test which is a 

type of chi-square test. This method is used for comparing estimated Kaplan-Meier 

curves in respective group of subjects (Coolen, 2012). 

2.2.2.1 The Kaplan Meier Estimate 

The likelihood of staying alive until the end of each observation is estimated using the 

techniques of Kaplan Meir. The time for each surviving patient at the beginning of that 

time, could be evaluated in days, months or years (Blayney , 2012). The approach is 

considered conditional likelihood meanwhile the survival estimate at the end of the 

current observation period would be based on the patient's last survival condition. 

Censored patients make a significant contribution to the likelihood of surviving for 

every observation time of which they are followed throughout the study. Patients 

experiencing the "event" will reduce the likelihood of survival for the next observation 

time. The term cumulative probability of survival is the combination of all the 

conditional probabilities of surviving for each observation time and is represented by 

S(t) notation. Assuming time was classified into the following intervals 𝑡଴ <  𝑡ଵ <

⋯ <  𝑡௠ where starting time is   ‘t0’ and the study ends at time ‘𝑡௠’. Actually, the time 

periods considered corresponds to death or censoring events. This indicate that no one 

dies or censored between times 𝑡௝ and 𝑡௝ାଵ. The set of all subjects who survive to the 
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time just before time 𝑡௝ is the risk set R୨ . Thus it consists of all those who die at 

time 𝑡௝ or who are censored or die after time 𝑡௝.  

We further define nj = the number of subjects at the time 𝑡௝and 𝑑௝ = the number who die 

at time 𝑡௝. Thus,  𝑆(𝑡௝) could therefore be computed iteratively as follows: 

                                           𝑠(𝑡଴) =  1                                                                     (2.13) 

                                                       𝑠(𝑡௝ାଵ) =  𝑠(𝑡௝). ቆ1 −  
𝑑௝

𝑛௝
ቇ                                        (2.14) 

Based on the above definitions,  

For any 𝑡,  𝑡௞  ≤  𝑡 < 𝑡௞ାଵ for 𝑘 =  1, … ,  𝑚 − 1 

                                    𝑠(𝑡) = ෑ ቆ1 −  
𝑑௝

𝑛௝
ቇ

௞

௝ୀଵ

                                                       (2.15) 

𝑆(𝑡)  =  1 𝑓𝑜𝑟 𝑡 <  𝑡ଵ. If 𝑡௠   is a censored time, then 𝑆(𝑡)  =  0 for 𝑡 ≥  𝑡௠. 

Otherwise, 𝑆(𝑡) is undefined for any 𝑡 >  𝑡௠. 

Also note that if there are no censored data, then 𝑛௝ାଵ =  𝑛௝  − 𝑑௝. Thus since 𝑛ଵ =  𝑛, 

it follows that 

               𝑠(𝑡) = ෑ ቆ1 −  
𝑑௝

𝑛௝
ቇ =  

𝑛ଶ

𝑛ଵ
 .

𝑛ଷ

𝑛ଶ
…  

𝑛௞ାଵ

𝑛௞
=  

𝑛௞ାଵ

𝑛ଵ
=

𝑛௞ାଵ

𝑛

௞

௝ୀଵ

                       (2.16) 

 

2.2.3 Semi-Parametric Survival Analysis 

Cox proportional hazards regression models remains a widely used regression technique 

for the analysis of survival data. 

It facilitates analysis of differences in survival times for various groups of interest, 

while allowing adjustment for covariates of interest.  
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Bewick et.al.(2004) described the model of Cox regression as a semi-parametric model 

with far less assumptions than conventional parametric methods. It also has more 

assumptions than previously explained non-parametric methods. This does not make 

any assumptions about some of the description from the so-called baseline hazard 

function as opposed to parametric models  

The Cox regression model is advantageous and straightforward to interpret by providing 

predictors with details about the relationship of the hazard function.  A nonlinear 

relationship is assumed between the function of hazard and the predictors. The hazard 

ratio comparing any two observations is constant over time in the setting where the 

predictor variables remain constant. This assumption is called the proportional hazards 

assumption. Verifying this assumption is an important part of Cox regression analysis 

(Wolsztynski , 2015). 

The Cox Proportional Hazard Regression Model 

The model of Cox regression is a strategy frequently used for the analysis in survival. 

Its attraction is analogous to conventional methods of regression in which one or more 

independent variables explain a response variable.  

 Cox Regression Model 

                                  ℎ(𝑡; 𝑥) = ℎ଴(𝑡)𝑒𝑥 𝑝{𝐵ଵ𝑥ଵ + ⋯ + 𝐵௞𝑥௞}                                    (2.17)  

where: 

ℎ଴(t) is the baseline hazard function, i.e. the hazard function when all covariates equal 

zero 

𝑒𝑥𝑝 is the exponential function (exp(x)=𝑒௫) 

𝑥௜ is the 𝑖௧௛ covariate in the model, and 

𝐵௜is the regression coefficient for the 𝑖௧௛ covariate , 𝑥௜ 
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The peculiarities of the Cox Regression Model 

The Cox Model varies greatly from normal regression in such a way that somehow the 

covariates are being used to estimate the hazard function, instead of just dependent 

variable Y.  

The hazard function of the baseline can sometimes take any form, but it might not be 

negative. The covariates ' exponential function is often used to ascertain that the hazard 

is positive.  

There is no intercept in the Cox Model. ((Any intercept might be consumed into the 

baseline hazard. The fundamental Cox Model assumes that somehow the hazard 

functions of two covariate levels are proportional to all t values.  

The Cox Proportional Hazard Model 

Hence, the following generalization is considered; 

                                ℎ(𝑡, 𝑥) = ℎ଴(𝑡, ∝)𝑒𝑥 𝑝(𝐵்𝑥)                                       (2.18) 

Where ∝  are some parameters influencing the baseline hazard function. The hazards 

are decomposed into a product of 2 items; 

ℎ଴(𝑡, ∝)a term that depends on time but not the covariates and; 

𝑒𝑥𝑝 (𝐵்𝑥): : a term that depends on the covariates but not time. 

The hazard function is the probability that an individual will experience an event (for 

example, death) within a small time interval: given that the individual has survived up 

to the beginning of the interval. It can therefore be interpreted as the risk of dying at 

time 1. The hazard function denoted by h(t) —can be estimated using the following 

equation: 

ℎ(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑥 𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑖𝑛𝑔 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑎𝑡 𝑡

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑠𝑢𝑟𝑣𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) 𝑋 (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑤𝑖𝑑𝑡ℎ)
 

To see the proportional hazards property analytically, take the ratio of ℎ(𝑡; 𝑥) 

for two different covariate values: 
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ℎ(𝑡; 𝑥௜)

ℎ(𝑡; 𝑥௝)
=

ℎ଴(𝑡)𝑒𝑥𝑝 {𝐵ଵ𝑥௜ଵ + ⋯ + 𝐵௞𝑥௜௞}

ℎ଴(𝑡)𝑒𝑥𝑝 {𝐵ଵ𝑥௝ଵ + ⋯ + 𝐵௞𝑥௝௞}
                                     (2.19) 

= 𝑒𝑥 𝑝൛𝐵௜൫𝑥௜ଵି𝑥௝ଵ൯ + ⋯  𝐵௜൫𝑥௜௞ି𝑥௝௞൯ൟ 

ℎ଴(𝑥) cancels out => the ratio of those hazards is the same at all time points. 

For a single dichotomous cavariate, say with values 0 and 1, the hazard ratio is 

ℎ(𝑡; 𝑥௜ୀଵ)

ℎ(𝑡; 𝑥௜ୀ଴)
=

ℎ଴(𝑡)𝑒஻∗ଵ

ℎ଴(𝑡)𝑒஻∗଴
=  

𝑒஻

𝑒଴
= 𝑒஻                                       (2.20) 

2.3  Concepts of the Log Rank Test 

The log rank test is used to examine null hypothesis of no difference in survival time 

between two or more predictors group.  

The test compares the entire survival experience between groups. It can also be used to 

check if the survival curves are identical (overlapping) or not. Survival curves are 

estimated for each group separately, using the Kaplan Meier method and compared 

statistically using the log rank test. The log rank test is a non-parametric test which is 

distribution free. In essence, the log rank test compares the observed number of events 

in each group to what would be expected if the null hypothesis were true i.e.  If the 

survival curves were identical (Bewick et. al, 2004). 

𝐻଴ : The two survival curves are identical 

𝐻ଵ : The two survival curves are not identical 

(∝= 0.05)  Level of significant 

Chi-square Test  

Chi-square is a test commonly used to compare observed data that would be expected 

according to specific hypothesis. The chi-square test is always testing the null 

hypothesis which states that there is no significant difference between the expected and 

the observed result. 
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Chi-Square is denoted as 𝜒ଶ and the basic computational formula is given as 

𝜒ଶ =
(𝑂௜ − 𝐸௜)

ଶ

𝐸௜
 

Where 𝑂௜ represented observed data or frequency, 𝐸௜ represent expected data or 

frequency. 

2.4 Concepts of Censoring 

Cook (2008) perceived that subjects had always been followed within a length of time 

thus this is the main purpose of the interest in the analysis of survival. The use of a 

linear regression model is therefore not appropriate for survival time as a function of a 

set of explanatory variables since survival times are typically positive integers ; 

ordinary linear regression might not have been the best alternative unless these times 

are first transformed to remove this restriction, and ordinary linear regression cannot 

adequately justify censoring observations. Cook (2008) had said that the censored 

observation is termed incomplete information in an observation. There seem to be four 

popular types of censoring, viz right censoring, left censoring, right truncation and left 

truncation. 

For quite number of reasons, the study focuses exclusively on right censoring. 

Moreover, the most easily understood of all four types of censuring is right censoring, 

and if a researcher can understand the concept comprehensively, ability to understand 

the other three types becomes much easier. Therefore, if an observation is right 

censored, it indicates that somehow the information is incomplete in some way because 

the subject did not experience an event throughout the whole period.  The point of the 

analysis of survival is to follow subjects over time and observe when they experience 

the event of interest. Sometimes it tends to happen that, for all of the subjects 

throughout the study, the study sometimes doesn't take approximately sufficient time to 

observe the occurrence. This might have been due to a number of reasons. For reasons 

unrelated to the study, subjects may drop out from the study (i.e. patients moving to 

another area and leaving no address).  

The unique feature behind all these instances is that when the subject might continue to 

stay in the study, then this would ultimately had been possible to study the time of the 

event (Cook, 2008). 
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2.4.1 Types of Censoring 

Right-Censoring is an observation that is popular. If patients are followed in a study for 

a few months and do not experience the event of interest for the duration of the study, it 

is called right censored.  

The patient's survival time is considered based on the study length of time. A good 

example of right censoring is that when a patient decides to leave the study before the 

end of the observation time and has not experienced the event. The survival time of the 

patient is said to be censored because there was no event of interest. (Cook, 2008).  

 Right censoring may take place because of the following: 

 The study terminates whereas the subject survives 

 The subject dies from a different cause.  

 The subject is lost to the study by willingly dropping out. 

This is called right-censoring because while the real un-observed occurrence is on the 

right side of our censoring time; i.e. at the end of the follow-up, not the entire event 

actually occurred. 

Andersen and Keiding (1998) provided practical illustrations of right censoring. If one 

models the time for occurrences of failure, there is a justified reason for censoring, to be 

specific; one would not actually expect all participants to fail. Assuming the effect of 

children's vaccines is screened and a randomized controlled trial should be conducted 

implying that the last individuals in the study would die a hundred years or more from 

the start of the study. This naturally introduces censorship and the case is right-

censoring signifying that "one does not know how long this person is going to live; only 

one knows that the individual is still alive."  

Right-censoring could also happen if subjects are lost to follow-up in the randomized 

controlled trial, e.g. they might need to temporarily suspend or move away from the 

study.   

Andersen and Keiding (1998) referred to all of these as examples of right-censorship, 

the main interest is in the longevity of the subjects, but due to practical circumstances 

one only has censored observations, meaning that for some subjects one will never 
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know when they die, only that they were still alive at some point in time (the censoring 

period). Thus, one knows that the data point (time of death) for a censored individual is 

significantly larger than a certain value (time of censoring). 

Left-Censoring:  Cook (2008) sees that it may be too short to observe the failure time. 

Consider, for instance, a study in which interest centers on the time after surgical 

removal of the primary tumor recurring of a particular cancer. The patients are 

examined a few months after the operation to determine whether another cancer has 

recurred. Let T = time from surgery to cancer recurrence. Some of the patients could be 

found to have a recurrence at this time and hence the actual time from operation to 

examination is less than the time. It would seem that such situations are left censored.  

In other words, Cook (2008) said that Left censoring actually takes place when subjects 

are only observed at a fixed appointment and it is only then discovered that death 

occurred sometime before, so survival times are less than the observation period. 

Andersen and Keiding (1998) also gave as an example of left-censoring assuming some 

baboon troop always sleeps in the trees. one’s interest is to estimate at what time in the 

morning they descend from the trees, and assuming that they do descend every day. 

Following them for couples of days, however, while sleeping, meaning that some days 

they descend before one even arrives at the scene. If one arrives at 9 a.m. on a particular 

day x and the baboons already descended, that gives left-censored observations. One 

needs to know when they descended, but all result is an upper limit (9 a.m.), because 

since the time of arrival they had already descended. Analogously, one now know that 

the data point (time of descent on day x) is smaller than a certain value (9. a.m.). 

Interval Censoring 

In Interval censoring, the exact time of occurrence of event is not known precisely, but 

an interval bounding this time is known. If interval is very short, e.g. one day, it is 

common to ignore this form of censoring and pick one end point of the interval 

consistently. Examples of interval censoring include: infection with a sexually-

transmitted disease such as HIV/AIDS with regular testing (e.g. annually); and failure 

of a machine during the Japanese New Year (Cook, 2008). 
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Censoring versus Truncation 

On the final note, Cook (2008) generally compared censoring to truncation and said that 

Censoring is when an observation is incomplete due to some random cause. The cause 

of the censoring must be independent of the event of interest if we are to use standard 

methods of analysis. 

Truncation, on the other hand, is a variant of censoring which often occurs when the 

observer's incomplete nature is due to a systematic selection process inherent in the 

design of the study. 

2.5 Reviews on Cure Models 

Survival data models with surviving proportion can be referred to as models capturing 

the rate of cure as well as long-term survival models which can handle essential task in 

survival analysis. Boag (1949) developed the model and it was revised by Berkson and 

Gage (1952) who extended the long-term survival models as the mixture model to study 

events in which a percentage of the patients are cured. 

In this specific model, the survival at time (t) is equivalent to the cured and uncured 

individuals. The moment all the uncured individuals have died or re-developed the 

disease, leaving only the completely cured members of the population then the Disease 

Free Survival (DFS) shape is going to be completely leveled. The original time that the 

shape proceeds to being leveled is the stage at which almost all outstanding disease-free 

survivors are admitted to be completely cured. In the case where the shape never goes 

leveled, the disease is definitely regarded incurable with the prevailing therapies. After 

a couple of years, researchers like Yakovlev et al. (1994), Yakovlev and Tsodikov 

(1996) and Chen et. al. (1999) in conjunction with Ibrahim et al. (2001) who developed 

an exceptional instance of the weighted Poisson distribution and expressed the long-

term survival function. 

 Tsodikov, et.al. (1998) reviewed a prevailing cure fraction model and attention from 

proportion of survivor of long-term in phase moving hazard associated to the relapse of 

observed subjects of leukaemia in Hodgkin’s disease cured patients. Their models were 

applied to Hodgkin’s disease data from the International Data-base. 
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In 2000, Ibrahim, and Chen developed methods of Bayesian cure fraction models 

designed for multivariate failure time data using right censoring subjects. They offered a 

different model, termed as the multivariate cure rate model, and also provided a 

naturalmotivation and interpretation of it. Their proposed model was an introduction of 

a frailty term with the assumption of a positive stable distribution to create the 

association structure between the failure times in possession. The outcome from the 

correlation system is categorized with the frailty term and this outcome is quite 

innovative and generates a very suitable characterization of the association between the 

failure times. 

Ibrahim et al. (2001) further confirmed that the Bayesian cross-validated predictive 

density based method of Conditional Predictive Ordinate (CPO) is problematic 

predominantly designed for models with cure proportion because the CPO for a subject 

can be either density-value (for uncensored non-cured) or probability (for either 

censored or cured). 

The most acceptable techniques in statistic established designed for calculating cure 

otherwise prognostic properties originating aftermath from cancer emanated from the 

logrank test and Cox regression analyses was established by Sposto (2002). This 

depends on the proportional hazards (PH) assumption and implicitly which emphasize 

covariate effects on failure times rather than their effects on the proportion of cures. 

Classes of two parametric cure models (PCMs) were used to analyse Children’s Cancer 

data which were compared to analyses of Cox regression model and concluded that 

PCM analyses results are similar or identical to Cox regression analysis when the PH 

assumption is appropriate and inappropriate, PCMs can offer a coherent way to 

investigate and report covariate effects on the proportion cured separately from their 

effect on time to failure. Despite their reliance on explicit parametric forms, PCMs often 

provide a good description of cancer outcome, and are insensitive to lack of fit provided 

that follow-up is sufficient. 

In 2004, Binbing et. al. progressed from the semi parametric model to parametric cure 

model by recommending utmost frequently its usage among which are lognormal, 

loglogistic, weibull and generalised-gamma distributions and concluded that most 

estimates acquired from cure proportion especially from generalised-gamma 

distribution are established to be relatively characterized with statistics robustness. They 
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finally recommended that several cautions should be taken on the global use of such 

type of cure fraction models. Their study employed simulation.  

Yingwei and Keith (2000) asserted that nonparametric techniques had attracted fewer 

attentions compared to the parametric techniques for analysis of cure rate. Therefore, 

they considered a non-parametric convectional mixture cure model where the 

proportional hazard assumption is used to model covariate effects on the failure time of 

patients who are not cured. To estimate parameters of interest in the model, the EM 

algorithm, the marginal likelihood approach, and multiple imputations were used. 

Yingwei and Keith (2000) also expanded the proportional hazard regression model of 

Cox by enabling a percentage of event-free patients and examining covariate impacts on 

that percentage.Their model has indeed been affirmed by data on breast cancer as well 

as its parameter estimation procedure and simulations have also been investigated. Their 

result incorporates comparisons with previous analyses with a parametric model, and 

other researchers support the conclusions of the parametric model but not those of the 

existing nonparametric model.  

Odukogbe et.al.  (2001) reported that in the developing world there have been poor and 

very few reports of previous ovarian cancer studies and suggested that motivating 

revitalized ovarian cancer studies in less developed countries such as Nigeria is 

absolutely essential for so many reasons. 

Judy and Jeremy (2004) modeled the probability of incidence and parametric failure 

with the assumption of binary distribution to model latency and improved maximum 

likelihood procedures for joint estimation using a non-parametric probability form and 

an Expectation Maximization (EM) algorithm. They also affirmed that parametric 

survivorship analyses of clinical trials usually consist of the assumption of a hazard 

function constant with time. When the empirical curve obviously levels off, one can 

transform the hazard function model with the use of Gompertz or Weibull distribution 

with hazard decreasing over time. 

Odukogbe et.al. (2004) reported that the Gynecology Oncology Units (GOU) of 

Department of Obstetrics and Gynaecology, University College of Hospital, Ibadan, 

Nigeria that is saddled with responsibility of services of cancer in the ovary had 

commenced their premier longitudinal study for this life threatening female cancer 

starting in December 1st, 1998 so as to inaugurate a regional cancer research study 
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Centre. They affirmed that the case fatality rate 6 month after surgery was 76% for 

ovarian cancer patients according to their study in Ibadan. 

 

Betensky and Schoenfeld (2001) employed a risk model that is competing in nature and 

can be referred to a corresponding mixture model which was established for cure data. 

Furthermore, they obtained an estimator for the variance of the cumulative incidence 

function from the competing risks model, along with the cure rate, based on elementary 

computations.  

Yin and Ibrahim (2005) worked on unified cure rate model and Cancho et.al (2011) 

modified the Conway–Maxwell–Poisson (COMPoisson). The new model is called The 

Conway–Maxwell–Poisson-generalised gamma regression model. Theproposed 

Poissons (COMPoisson) cure rate model is a flexible substitute for the unified cure rate 

model reviewed by Yin and Ibrahim (2005). Their model was able to account for over-

dispersion and under-dispersion which is mostly encountered in discrete data. 

Lambert et. al. (2007) upgraded non-mixture cure fraction model within the parametric 

framework in the direction of integrating background mortality, via stimulating 

estimations from cure fraction within population based cancer investigations. They 

studied estimations from relative survival and the cure fraction amidst two forms of 

model as well as investigating modeling significance of parameters ancillary for both 

types of model over selected parametric distribution. 

 

Yi and Tiwari (2007) developed an innovative risk cure fraction models that is 

competing in nature and they modeled the dependence amongst the time of censoring 

and the survival time with the aids of a class models from Archimedean copula.  

Therefore, estimating parameter from sample with large result with the means of 

Matingale principle through the simulation study was considered.   

Cooner, Banerjee, Carlin, and Sinha (2007) proposed a set of unifying cure proportion 

models which can expedite highest structure of hierarchical model building together 

with mutually prevailing cure model sets as exceptional conditions. This uniting group 

facilitates model robustness by means of detecting for improbability that resulted from 

some underlying management of cure. Concerns such as regressing on the cure fraction 

and propriety of the associated posterior distributions under different modeling 
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assumptions finally offered a simulation study for illustration with two datasets (on 

melanoma and breast cancer) that revealed their framework’s capability to differentiate 

between fundamental procedures resulted to deterioration and cure. 

Andersson et.al. (2011) used cure fraction models to analyse time trends and gave 

valued information to unravel certain problems with the cure fraction models. They 

extended the flexible parametric survival model by including cure as a special case to 

evaluate the proportion of cure and the "uncured" survival. Robust parametric survival 

models use splines to model the underlying hazard function and therefore need not 

specify any parametric distribution.  

Abu-Bakar, Salah, Ibrahim and Haron (2009) assessed the cure fraction models and 

revised them towards checking developments from survival of cancer patient over time, 

besides concentrating on a number of difficulties arose from the usage of the models.  

Ortega, Cancho and Lachos (2008) reconsidered non informative prior’s assumptions 

for Bayesian analysis designed using parameters from cure fraction model. The fresh 

methodology existed with the aids of Markov Chain Monte Carlo Procedures using an 

algorithms step of Metropolis-Hasting towards achieving summaries of interest from 

posterior. Aiming at cure fraction and covariates in survival data analysis, specific 

influence procedures like the local influence, individual total local influence, predictions 

local influence and generalised leverage were derived, analysed and discussed.  

Shuangge (2009) affirmed that survival data for current status can be measured when 

the time from censoring random cause as well as the time from event censoring can be 

observed. 

Thus, they considered cure model data for current status, with percentage of the cohorts 

that are not predisposed to the event of interest. They also assumed cure probability 

with generalised linear model and proposed new techniques of parameter estimation 

known as (penalized) maximum likelihood. Their results indicated that parametric 

regression coefficients estimates yields inconsistency, asymptotically normal and 

efficient. 

Cancho, Ortega and Bolfarine (2009) developed the log exponentiated-Weibull 

regression model to allow the possibility that long term survivors were present in the 
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data. The modification led to a log-exponentiated-Weibull regression model with cure 

rate, as special cases. The effects of covariates on the acceleration/deceleration of the 

timing of a given event and the surviving fraction were simultaneously estimated with 

their models; that is, the proportion of the population for which the event never occurs.  

Ranganathan, Rajaraman and Perumal (2010) worked on mixture cure model by 

estimating the cure fraction and comparing it with other approaches like Kaplan-Meier 

method which was used for event free survival probability. Lognormal distribution for 

survival time was used to estimate both the cure fraction and the survival function for 

the uncured. They concluded that PH conditions are violated, analysis using a non PH 

model is advocated and mixture cure models are useful in estimating the cure fraction 

and constructing survival curves for non-cures. 

Yu Gu and Banerjee (2010) developed a new universal forms of cure rate models using 

a proportional likelihoods arrangement where the models preserved all the benefits of 

stable proportional odds model designed for survival data analysis. This model 

correspondingly derived proportional odds model using cure rate initiating from the 

latent factors model, which incorporated several features of the earlier model by Cooner 

et al (2007).  Yu Gu and Banerjee (2010) also established techniques for model 

selection criteria in the Bayesian framework where attention is at censoring as a result 

for comparison for models’ performance with the criteria of Posterior predictive loss via 

Markov Chain Monte Carlo samples. Breast cancer data was used to validate the model 

and the results revealed that their proportional odds model with cure rate was 

adequately fitted compared to the other two competing models. 

Wenbin (2010) studied the cure fraction model with accelerated failure time using the 

parameter estimation techniques established for kernel nonparametric maximum 

likelihood and the expectation maximization (EM) algorithm. This techniques was 

established to evaluate estimates of both the regression parameters as well as the 

unidentified error density in which kernel-smooth conditional profile probability was 

maximized in the M-step.He showed that the resulting estimates were consistent and 

asymptotically normal with a proper selection of the kernel bandwidth parameter. By 

inverting the empirical Fisher information matrix obtained from the probability of the 

profile using the EM algorithm, the asymptotic covariance matrix could be consistently 

estimated.  
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Aljawadi et.al. (2012) developed a Bounded Cumulative Hazard (BCH) model that is 

more appropriate than a mixture cure model whenever there are long-term survivors or 

cured in the interest population and proposed this cure rate model based on Weibull 

distribution with censored interval data. The technique for calculating the maximum 

likelihood estimation (MLE) was proposed to estimate the parameters throughout the 

algorithm of expectation-maximization (EM). The method of Newton Raphson has also 

been used. Their result showed that the cure fraction cannot be obtained analytically, 

but may be obtained from the numerical solution of the estimated equations. A 

simulation study was also provided for assessing the efficiency of the proposed 

estimation procedure.  

In the presence of cure fraction, censored data and covariates, Achcar, Coelho-Barros 

and Mazucheli (2012) introduced Weibull distributions. They explored mixture and 

non-mixture models, and inferences were obtained using standard MCMC (Markov 

Chain Monte Carlo) methods for the proposed models under the Bayesian approach. A 

lifetime data set was used to illustrate the proposed methodology.  

Datta (2013) introduced cure rate models to deal with survival models and compared the 

PH cure rate model performance with case weights to the standard unweighted PH cure 

rate model through simulation studies. Results of these studies suggest that when the 

sample size is relatively small, adding case weights in the PH cure rate model improves 

the estimation of the latency parameter.  

Modern medical treatments have significantly improved cure rates for many chronic 

diseases and have generated increased interest in adequate statistical models for 

handling non-negligible cure fractions of survival data (Chao, 2013). The mixture cure 

models are therefore designed to model such data set, which assumes that the population 

being studied is a mixture of those cured and uncured. This led to Chao’s contribution 

(2013), who developed two programs in R called smcure and NPHMC. The first 

program aims to facilitate the estimation of two popular models of mixture cure: the 

model of proportional hazards (PH) mixture cure and the model of accelerated failure 

time (AFT). The second program focuses on designing the sample size required by the 

PH mixture cure model and standard PH model in survival trials with or without cure 

fractions. Extensive simulation settings and real data sets had been used to evaluate the 

two programs (Chao,et.al.2015). R CRAN (https:/cran.r-
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project.org/web/packages/NPHMC/NPHMC.pdf) is currently available for download. 

Ortega,et.al. (2014) recently introduced a new generalised distribution of binomial 

gamma. This is a flexible survival ratio model for cure. The underlying assumption with 

the model is that the number of competing causes of the event of interest following the 

negative binomial distribution also follows a generalised gamma distribution.  

Adekanbi et.al. (2014) reported studies in Ibadan, Nigeria. the long-term survival of 

ovarian cancer patients in their study. The survival period was estimated to be a post-

operative intervention of 250 weeks. This time was shorter than those of other studies 

and thus the shortest-term survivor discovered to be 120 weeks. The deficiencies of 

their study were the fact that the suboptimal surgery was performed by some patient. 

Also, since the operations were performed outside UCH, the magnitude of the operation 

could not be determined. Another unmatched co-founder was the varying skill levels 

among the surgeons; in addition, the death record dates were crude estimates.  

Taweab et.al. (2015) investigated a cure fraction survival model as well as change-point 

effect established on the model for bounded cumulative hazard (BCH). They used 

maximum likelihood method to estimate the unknown parameters and the key difficulty 

in their work was that the likelihood function was not differentiable with respect to a 

change point parameter. Thus, a smoothed likelihood approach was proposed to address 

this problem. A simulation study was conducted to evaluate the efficacy of the 

estimators under various practical situations. Numerical results exhibited the satisfying 

performance of the proposed estimates and that the proposed model represents a useful 

addition to the literature of the BCH model. 

Hsu et.al. (2016) confirmed that recently, in oncology studies, the appraisal of cure 

fractions underneath prominent cure rate model contributes a substantial recognition 

now within the past studies amidst literatures, however, ultimate prevailing testing 

techniques decided on restrictive assumptions, thus they extended previous studies by 

improving detection of cure fraction models with a score based techniques integrating 

covariate data including the prevailing process aiding as distinct case. However, the 

limitations of this extension lead to the fact that the hypotheses definition are not similar 

and the testing conditions may not hold as well as conditions of standard regularity 

might be complicated. By means of empirical findings, they constructed a sup-score test 
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statistic for cure fractions and proved its limiting null distribution as an efficient mixture 

of chi-square methods. 

Elangovan and Jayakumar (2016) claimed the advantages of models of cure rates over 

conventional survival analytical methods, including the well-known Cox regression 

model which assumes that no patient is cured but that all remain at risk of death or 

relapse in which they are concerned with survival only and do not accommodate the 

possibility of cure. Whereas in some types of cancer, like choriocarcinoma, breast and 

leukemia, a substantial number of patients may now be cured by treatment, i.e., cured 

proportion. The patients who are cured are called immunes or long-term survivors, 

while the remaining patients who develop a recurrence of the diseases are termed 

susceptible. In Cure rate models, the subjects of interest are therefore split into two 

forms i.e. cured subjects and uncured subjects. This model provides suitable methods in 

such scenario. 

Gallardo et.al. (2017) launched the new WeibullYuleSimon distribution. Estimation of 

maximum probability for model parameters is performed. The estimation approach 

involved a small-scale simulation study indicating satisfactory parameter recovery. 

Results are applied to a real data set (melanoma) demonstrating the implication that in 

terms of model fitting, the proposed model can outperform conventional alternative 

models. 

 

2.6 Reviews on Gamma and Generalised Gamma Family 

The gamma function was firstly introduced by the Swiss mathematician Leonhard Euler 

(1707 − 1783). This was reported by Sebah and Gourdon (2002) in their review. It is 

notable that we need to generalise the factorial to non-integer values. Later, because of 

its extra ordinary significance, it was studied by other eminent mathematicians like 

Adrien−Marie Legendre (1752−1833), Carl Friedrich Gauss (1777 − 1855), Christoph 

Gudermann (1798 − 1852), Joseph Liouville (1809 − 1882), Karl Weierstrass (1815 − 

1897), Charles Hermite (1822 − 1901), as well as many others. Roynette, et.al. (2009) 

described a family of generalised gamma convoluted (abbreviated as GGC) variables 

where they were able to prove that several random variables, related to the length of 

excursions away from 0 for a recurrent linear diffusion on R+, are GGC. 

Zografos-Balakrishnan-G (2009) and Ristic-Balakrishnan−G (2011) studied some 

mathematical properties and presented special sub-models with an extra positive 
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parameter which provides a comprehensive treatment of general mathematical 

properties of Zografos−Balakrishna distributions. 

Barriga et.al. (2018)  asserted that several attempts have been made to define new 

classes of distributions that provide more flexibility for modelingskewed data in 

practice.  In their study, they defined a new extension of the generalised gamma 

distribution where their new lifetime model is very flexible distribution and was to fit 

real data from several fields, such asengineering, hydrology and survival analysis.  

Balakrishnan and Pal (2015) measured the cure rate and assuming the time-to-event to 

follow the gamma distribution, they developed exact likelihood inference based on the 

EM algorithm.  Their study employed an extensive Monte Carlo simulation study to 

discover the technique of inference developed. Model discrimination between different 

cure rate models is carried out by means of likelihood ratio test and Akaike and 

Bayesian information criteria.  

Other parametric cure fraction models have been studied in literatures among which are 

Destructive weighted Poisson cure rate models which was done and discussed by 

Rodrigues et.al. (2009). Left truncated and right censored Weibull data and likelihood 

inference with an illustration have been discussed by Balakrishnan et.al. (2012). EM 

algorithm-based likelihood estimation for some cure rate models was discussed also 

discussed by Balakrishnan et.al. (2012).  

Lognormal lifetimes and likelihood-based inference for flexible cure rate models based 

on COMPoisson family was discussed by Balakrishnan and Pal (2013). Expectation 

maximization-based likelihood inference for flexible cure rate models with Weibull 

lifetimes is discussed by Balakrishnan and Pal (2013).  

An EM algorithm for the estimation of parameters of a flexible cure rate model with 

generalised gamma lifetime and model discrimination using likelihood-and information-

based methods has been discussed by Balakrishnan and Pal (2015). Latent cure rate 

model under repair system and threshold effect have been discussed by Balakrishnan, 

et. al.(2015). 
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CHAPTER THREE 

METHODOLOGY 

3.1 Study Site 

The site of this study is the University of Ibadan, Teaching Hospital at the Department 

of Obstetrics and Gynaecology. This is one of Nigeria’s and West Africa's leading 

tertiary cancer therapy center. That Department in University College Hospital (UCH) 

accepts medical transfers from all states within the country and at large. For a 

substantial percentage of patients with cancer, they mark it as the right choice. The 

Gynaecology Oncology Unit (GOU) of UCH manages Patients with ovarian cancer 

included in this study. 

 

3.2 Study Design 

Life ovarian cancer data was obtained from Department of Obstetrics and Gynaecology, 

University College Hospital, Ibadan, Nigeria covering the period 2000-2015. The 

diagnosis time (in months) was until death. This study is retrospective in nature as well 

as descriptive non-intervention. It comprises the usage of accessible facts from ovarian 

cancer patient’s medical registers including the procedure of follow-up of patient’s 

status by means of contacting and communicating with the patients or their relatives in 

order to regulate the patients’ health status should in case there might be missing 

observations and uncertain facts originating from accessible registers. The telephone 

method was also performed as a follow-up to the members of the family of the patient 

whenever the need came to light. 

3.3 Overview of Cure Model 

A patient who has survived for five years after a cancer diagnosis is not 

necessarily medically cured but is considered statistically cured because the 

five−year relative survival analysis is considered a good indication that the 

cancer is responding to treatment and that the treatment is successfully 

extending the life of the cancer patient. The survival figures so obtained are 
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utilized in choosing treatment types and regimes, doses, in discriminating between the 

side effects profiles and cost effectiveness. 

Cure models connotes the distinct survival models established to evaluate cure rate in 

cancer research. The estimation of the probability of survival as well as the cured 

proportion is done with the aid of this model.The model is split into: 

Mixture cure model: This particular form of cure model is developed to evaluate the 

percentage of cured patients including percentage of the population in uncured patients ' 

survival function [ Boag (1949) and Berkson and Gage (1952) ]. 

Non-Mixture Cure Model: The Bounded Cumulative Hazard (BCH) can be portrayed 

as a model of non-mixture cure fraction. (Yakovlev et. al., 1993) 

 

3.4 Importance of measuring Statistical Cure 

In cancer studies, there was some necessary significance of statistical cure among which 

are listed below: 

• The survival of patients is paramount and the most relevant queries. 

• The model gives additional facts about the survival of patient.  

• Cure models calculate the percentage of cured patients from cancer. 

• The model predicts the time until cured is achieved. 

• The model is used for estimation of uncured patient’s survival time. 

• The patient’s “Net survival” estimate is not influenced by other cause mortality. 

3.5 Ethical Consideration 

The results from this study will not be generally accepted without the ethical approval. 

The Institute for Advanced Medical Research and Training (IAMRAT) granted this 

ethical approval, College of Medicine, University of Ibadan, Nigeria. UI/UCH EC gave 

full approval for an ethical consideration of benefits of subjects, their details on non-

maleficence, fairness and privacy had been adhered strictly to when managing the study 

subjects and in administration of data. During data entry, observations were numbered 

serially; statistical analysis and study reports are to be defended even when publishing 

so as to safeguard the patients’ documentation as anonymous. This ethical approval is to 
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have access to patient treatment and to collect real-life data on ovarian cancer along 

with other types of gynaecological cancer. (The copy of the ethical approval is attached 

and can be found in Appendix: UI/UCH EC approval by the IAMRAT.) 

 

3.6 The Model: Mixture Cure Model 

Boag (1949) was the first author that developed this model and it was revised by 

Berkson & Gage (1952) as: 

    𝑆(𝑡) =  𝑐 + (1 −  𝑐)𝑆𝑢(𝑡)(3.6.1)  

Where 

 𝑆(𝑡)  = Population Survival function  

 𝑆𝑢(𝑡)  = Uncured patients Survival function  

 𝑐 =Proportion cured 

In a mixture cure model, the population involves two components where those with 

probability 𝑃(1 –  𝑐) are uncured component and 𝑃(𝑐) are cure component. 

 

3.6.1 Estimations Procedure of Mixture Cure Model (MCM) 

A technique used for parameter estimation in this study is Maximum Likelihood 

Estimation (MLE) method. Conventionally, estimations of mixture cure model 

parameters can either follow parametric or non-parametric techniques. The present 

study goes through parametric system of estimation. Considering the given equation 

(3.6.1) above, parameter c of the mixture cure model can be acquired as follow:  

     𝑐 =
𝑆(𝑡) − 𝑆௨(𝑡)

1 − 𝑆௨(𝑡)
(3.6.2)  
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3.6.2 Estimation of MCM’s Likelihood Function. 

In MCM, the likelihood function is given as follow: 

   1
1

( ) ( )
n

di di

i i
i

L f t S t




     (3.6.3) 

Where 𝑑௜ = ൝

 0,    𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖𝑠 𝑐𝑢𝑟𝑒𝑑

1,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑑௜ is 0 if the patient is cured and 1 if the patients is not cured. 

𝑓(𝑡) = 𝑝𝑑𝑓 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑢𝑟𝑒 𝑚𝑜𝑑𝑒𝑙 

𝑆(𝑡௜) = 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Recall that S(t) = 1 – F(t), hence equation (3.6.1) becomes; 

                              1 − 𝐹(𝑡) = 𝑐 + (1 − 𝑐)൫1 − 𝐹௨(𝑡)൯(3.6.4)  

Differentiating(3.6.4), 𝑤𝑒 ℎ𝑎𝑣𝑒; 

                                         𝑓(𝑡) = ൫(1 − 𝑐)𝑓௨(𝑡)൯(3.6.5)  

Put (3.6.5) in equation (3.6.3) to obtain 

   1
1

(1 ) ( ) (1 ) ( )
n

di di

u u
i

L c f t c c S t




       (3.6.6) 

The log-likelihood function of mixture cure model can be gotten with the aid of taking 

logarithms of equation (3.6.6) as follow: 

 
1 1

(1 ) log ( ) (1 ) log (1 ) ( )
n n

i i u i u
i i

LogL d c d f t d c c S t
 

          (3.6.7) 

  

3.7 Review of Some Existing Parametric Mixture Cure Fraction Models 

Several MCM amidst Lognormal MCM (LNMCM), Loglogistics MCM (LLMCM), 

Weibull MCM (WMCM) and Generalised-Gamma MCM (GGMCM) have been used to 

study cure rates in epidemiology. In MCM, estimation of corresponding c that is 

patients cure proportion, median time-to-cure and variances will be estimated from the 

examined distributions mentioned earlier. Some transformation were done in order to 

incorporate the distribution in cure fraction models, thus each parametric distribution 

were embedded in cure fraction models, which transformed a distribution to a model. 

The existing parametric cure models considered are reviewed below: 
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3.7.1 The LogLogistic MCM 

The probability density function that is Loglogistic distributed is defined as:  

1

2( ; , )

1

t

f t
t






 

 




 
 
 

  
  

   

; , 0      (3.7.1) 

with  𝛽 = 𝜆ିଵ and 
1


 ; then we have 

 

1

2

( )
( )

1

t
f t

t





 







   (3.7.2) 
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Fig 3.1: Density function of Loglogistic distribution 
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The above Fig 3.1 is the density function of loglogistic distribution. The figure shows 

the shapes of the distribution on how far it is from normal curve.  

All the different values shown in the graph are the varying values of the shape 

parameters and it was discovered that this valueincreases; log-logistic distribution 

approaches normal distribution. This is clearly seen that when the value increases 8, the 

curve approaches a bell shape. 

This is in agreement with the concept of "Central limit theorem" in the theory of 

classical inference which state that "as the sample size n becoming large, then the 

population of all possible sample statistic is approximately normal regardless of what 

probability distribution that describe the sample population 

 

Using the transformation 𝜇 = − log 𝜆 which implies 𝜆 = 𝑒ିఓ, 𝜎 =
ଵ

ఈ
 and 𝑦 =

log 𝑡 ⟹ exp௬ = t 

1log

2
log

1

( ; , )

t

t

e

f t

e








 





 
 
 
  
  
   

, , 0t        (3.7.3) 

                            =
భ

഑
(௘೤షഋ)

భ
഑

 షభ

ቂ1 + ቀ𝑒
౯ షഋ

഑ ቁቃ
ଶ

(3.7.4)  

 

          𝑓(𝑡; 𝜇, 𝜎) =

భ

഑
ቆ௘

ౢ౥ౝ ೟షഋ
഑ ቇ

భష഑

ቂ1 + ቀ𝑒
ౢ౥ౝ ೟ష

഑ ቁቃ
ଶ

(3.7.5)  

 

The Cumulative Density Function (cdf) can be achieved using:  

𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡) = න 𝑓(𝑥)𝑑𝑥

௧

଴

 

   𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡) = න
𝛼𝜆(𝜆𝑥)ఈିଵ

[1 + (𝜆𝑥)ఈ]ଶ
𝑑𝑥                                   (3.7.6)

௧

଴

 

                                              = 𝛼𝜆 න
(𝜆𝑥)ఈିଵ

[1 + (𝜆𝑥)ఈ]ଶ
𝑑𝑥                   (3.7.7)

௧

଴
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Let    

𝑦 = (𝜆𝑥)ఈ ,
𝑑𝑦

𝑑𝑥
= 𝛼𝜆ఈ𝑥ఈିଵ ⟹ 𝑑𝑥 =

𝑑𝑦

𝛼𝜆ఈ𝑥ఈିଵ
 

And 

𝑥 = 0 ⟺ 𝑦 = 0, 𝑥 = 𝑡 ⟺ (𝜆𝑡)ఈ  = y 

𝐹(𝑡) = 𝛼𝜆 න
𝑦𝜆ିଵ𝑥ିଵ

(1 + 𝑦)ଶ

𝑑𝑦

𝛼𝜆ఈ𝑥ఈ𝑥ିଵ

(ఒ௧)ഀ

଴

 

          = 𝛼𝜆 න
𝑦𝜆ିଵ𝑥ିଵ. 𝑑𝑦

(1 + 𝑦)ଶ𝛼𝑦𝑥ିଵ

(ఒ௧)ഀ

଴

= න
1

(1 + 𝑦)ଶ
𝑑𝑦 

(ఒ௧)ഀ

଴

 

       = න (1 + 𝑦)ିଶ𝑑𝑦 

(ఒ௧)ഀ

଴

 

                  = −
1

1 + (𝜆𝑡)ఈ
− −

1

1 + (0)
 

 = 1 −
1

1 + (𝜆𝑡)ఈ
 

                                𝐹(𝑡) = 1 − [1 + (𝜆𝑡)ఈ]ିଵ(3.7.8)  

Therefore, the survival function is now obtained using 

                                     𝑆(𝑡)  = 1 − 𝐹(𝑡)(3.7.9)  

                                                  = [1 + (𝜆𝑡)ఈ]ିଵ(3.7.10)  

Using the transformation 𝜇 = − log 𝜆 which implies 𝜆 = 𝑒ିఓ, 𝜎 =
ଵ

ఈ
 and 𝑦 =

log 𝑡 ⟹ e௬ = 𝑡 

Then, 

                                       𝑆(𝑡; 𝜇, 𝜎)    = ቂ1 + (𝑒ିఓ𝑒௬)
భ
഑ቃ

ିଵ
(3.7.11)  

= ቀ1 + 𝑒
೤షഋ

഑ ቁ
ିଵ

 

                                                             = ቂ1 + 𝑒
ౢ౥ౝ ೟ ష ഋ

഑ ቃ
ିଵ

(3.7.12)  

                                                 𝐺(𝑍) = (1 + 𝑒௓)ିଵ(3.7.13)  

Where    𝑍 = ౢ౥ౝ ೟ష

഑
 

 

 

 

Using equation (3.6.2), the 𝑐̂ for logistic becomes 
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                              clog log 𝑖𝑠𝑡𝑖𝑐  = 1 −
1 − 𝑠(𝑡௜)

1 − ቂ1 + 𝑒
ౢ౥ౝ ೟షഋ

഑ ቃ
ିଵ

(3.7.14)  

 

3.7.2  Lognormal MCM 

The probability density function (pdf) that is lognormal distributed is defined as: 

         𝑓(𝑡; 𝜇, 𝜎) =
1

𝑡𝜎√2𝜋
𝑒

ିభ
మ

൬
ౢ౥ౝ ೟ష

഑
൰

మ

𝑡 > 0, 𝜇 > 0, 𝜎 > 0             (3.7.15)  

The Cumulative Density Function (cdf) is obtained following the next procedures: 

𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡) = න 𝑓(𝑥)𝑑𝑥 
௧

଴

 

    = න
1

𝑥𝜎√2𝜋
𝑒

షభ
మ

൬
ౢ౥ౝ ೣష

഑
൰

మ

𝑑𝑥                                                                   (3.7.16)
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൬
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൰
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𝐿𝑒𝑡 logz x  

1
dz dx

x
  

2
1

log
2

0

1

2

z
t
e dz




 

   
    

z 

   

 
 

From the above, the survival function can then be gotten/obtained using 

 𝑆(𝑡) = 1 − 𝐹(𝑡) 

𝑆(𝑡; 𝜆, 𝜎) = 1 − Φ ൬
log 𝑡 − 𝜇

𝜎
൰                                                                (3.7.18)  

where 𝑍 = ቀ
୪୭୥ ௧ି

ఙ
ቁ, we have 

𝐺∗(𝑍) = 1 − Φ(𝑍) 

Using equation (3.6.2), the 𝑐̂ for log normal becomes 

 𝑐  𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙 == 1 −
1 − 𝑠(𝑡௜)

Φ ቀ
୪୭୥ ௧ି

ఙ
ቁ

(3.7.19)  
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Figure 3.2: Density function of Lognormal distribution 
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In the figure 3.2 above shows the log-normal distribution for the basic form, with 
µ =  0 and 𝜎 =  1, where the variable 𝑥 >  0 and the parameters µand 𝜎 >  0 all are 
real numbers.  It is sometimes denoted Λ(𝜇, 𝜎ଶ) and can also be denoted as normally 
distributed variable by 𝑁(𝜇, 𝜎ଶ).  

 

3.7.3  The Weibull MCM 
 

The probability density function (pdf) that is Weibull distributed is defined as: 

1( )
t

f t t e









 
     0, 0, 0t         (3.7.20) 

The Cumulative Density Function is then obtained using 

𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡) = න 𝑓(𝑥)𝑑𝑥
௧
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                                                (3.7.21) 
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Therefore, the survival function can be obtained using: 

𝑃(𝑇 > 𝑡) = 𝑆(𝑡) = 1 − 𝐹(𝑡) 

𝑆(𝑡) = 1 − ቆ1 − 𝑒
ି ቀ

೟

ഁ
ቁ

ഀ

ቇ 

                              𝑆(𝑡) = 𝑒
ି ቀ

೟

ഁ
ቁ

ഀ

                                                                       (3.7.22) 

 

Using equation (3.6.2), the 𝑐̂ for Weibull becomes 

cWeibull 1 ( ) 1
t

S t e




 

 
           (3.7.23) 
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Figure 3.3: Weibul Distribution Density Function 
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The above fig 3.3 is the density function of Weibull distributionwhere𝜆 = 1 that is, it is 

fixed, meaning that the scale parameter is fixed, and the shape parameter k is varying. 

All the different values shown in the graph are the varying values of k and it was 

discovered that as parameter k increases Weibull distribution approaches normal 

distribution. 
 

3.7.4  The Generalised-Gamma MCM 

The distribution of generalised-gamma probability density function is defined as: 

𝑓(𝑡) =
𝛽

𝜃Γ(𝛼)
൬

𝑡

𝜃
൰

ఈఉିଵ

𝑒
ି ቀ

೟

ഁ
ቁ

ഀ

          𝑡 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0                  (3.7.24) 

Given 𝜃 > 0 as scale parameter, then shape parameters are 𝛽 > 0 𝑎𝑛𝑑 𝛼 > 0 and the 

gamma function of 𝑥 is given as Γ(𝑥). 

The cumulative density function can also be obtained using: 

 𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡) = න
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The survival function can then be obtained using: 

𝑆(𝑡) = 1 − 𝐹(𝑡) 

= 1 −
𝛾 ൤𝛼, ቀ

௧

ఏ
ቁ

ఉ

൨

Γ(𝛼)
 

With 𝑦 = log 𝑡 ⟹ 𝑡 = 𝑒௬and 𝜇 = 𝑙𝑜𝑔𝜃 ⟹ 𝜃 = 𝑒ఓ 
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Figure 3.4: Density Function of Generalised-Gamma Distribution 
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The above fig 3.4 is the density function of generalised-gamma distribution. The figure 
demonstrates the shapes of the distribution on how far it is from normal curve. 

3.8  Parameter Estimations and Inferences 

3.8.1 Parameter Estimations 

The key three parameters that were obtained from transformation earlier discussed, that 

is, 𝜇, 𝜎, 𝑎𝑛𝑑 𝑐 will be estimated. Differentiating the baseline distribution in equation 

3.6.7 that is the cure model log-likelihood functions with respect to the parameters.  
 

Log Likelihood Functions of Lognormal MCM 

Given the density function and survival function of lognormal distribution, and plugging 

them into the log likelihood functions of cure models in equation 3.6.7, it gives equation 

3.8.1 below: 

𝑓௨(𝑡) =
1

𝑡𝜎√2𝜋
𝑒

ିభ
మ

ቀ
ౢ౥ౝ ೟షഋ

഑
ቁ

మ

 

log
( ) 1u

t
S t



   

 
 

𝐿𝑜𝑔 𝐿 = ෍ 𝑑௜ log(1 − 𝑐) + ෍ 𝑑௜  𝑙𝑜𝑔 𝑓௨(𝑡௜) +

௡

௜ୀଵ

௡

௜ୀଵ

෍(1 − 𝑑௜)log [𝑐 + (1 − 𝑐)𝑆௨(𝑡)]

௡

௜ୀଵ

 

= ෍ 𝑑௜ log(1 − 𝑐) + ෍ 𝑑௜ log
1

𝑡𝜎√2𝜋
𝑒

ିభ
మ

ቀ
ౢ౥ౝ ೟ష

഑
ቁ

మ

+

௡

௜ୀଵ

௡

௜ୀଵ

෍(1

௡

௜ୀଵ

− 𝑑௜) log ൥𝑐 + (1 − 𝑐) ൭1 −  ൬
log 𝑡 − 𝜇

𝜎
൰൱൩ 

= ෍ 𝑑௜ log(1 − 𝑐) + ෍ 𝑑௜ ቈlog ൫𝑡௜𝜎√2𝜋൯
ିଵ

−
1

2
൬

log 𝑡 − 𝜇

𝜎
൰

ଶ

቉ +

௡

௜ୀଵ

௡

௜ୀଵ

෍(1 − 𝑑௜)log ൥𝑐

௡

௜ୀଵ

+ (1 − 𝑐) ൭1 −  ൬
log 𝑡 − 𝜇

𝜎
൰൱൩ 

 𝐿𝑜𝑔 𝐿 = ෍ 𝑑௜ log(1 − 𝑐) + ෍ 𝑑௜ log൫𝑡௜ 𝜎√2𝜋൯

௡

௜ୀଵ

௡

௜ୀଵ

−
1

2
෍ 𝑑௜

௡

௜ୀଵ 

൬
log 𝑡 − 𝜇

𝜎
൰

ଶ

+ ෍(1

௡

௜ୀଵ

− 𝑑௜) log ൥𝑐 + (1 − 𝑐) ൭1 −  ൬
log 𝑡 − 𝜇

𝜎
൰൱൩                               (3.8.1) 
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Differentiating with respect to parameters 𝜇, 𝜎 𝑎𝑛𝑑 𝑐, we then have equations 3.8.2, 

3.8.3, and 3.8.4. 

𝜕 log 𝐿

𝜕𝜇
=

1

2𝜎ଶ
2 ෍ 𝑑௜

௡

௜ୀଵ 

(log 𝑡௜ − 𝜇) = 0 

= ෍ 𝑑௜

௡

௜ୀଵ 

(log 𝑡௜ − 𝜇̂) = 0                                                     (3.8.2) 

𝜕 log 𝐿

𝜕𝜎
= − ෍

𝑑௜𝑡௜√2𝜋

𝑡௜𝜎√2𝜋
+

1

2𝜎ଷ
෍ 𝑑௜

௡

௜ୀଵ 

(log 𝑡௜ − 𝜇)ଶ

௡

௜ୀଵ

+ ෍(1 − 𝑑௜)

ങ

ങ഑
ቂ𝑐 + (1 − 𝑐) ൬1 −  ቀ

୪୭୥ ௧ିఓ

ఙ
ቁ൰ቃ

ቂ𝑐 + (1 − 𝑐) ൬1 −  ቀ
୪୭୥ ௧ିఓ

ఙ
ቁ൰ቃ

௡

௜ୀଵ

 

 

𝜕 log 𝐿

𝜕𝜎
= −

1

𝜎
෍ 𝑑௜

௡

௜ୀଵ 

+
1

2𝜎ଷ
෍ 𝑑௜

௡

௜ୀଵ 

(log 𝑡௜ − 𝜇)ଶ                  (3.8.3) 

 

𝜕 log 𝐿

𝜕𝑐
= − ෍

𝑑௜

(1 − 𝑐)
+ ෍ 1 −  ൬

log 𝑡 − 𝜇

𝜎
൰

௡

௜ୀଵ

௡

௜ିଵ

 

𝜕 log 𝐿

𝜕𝑐
= −

1

1 − 𝑐
෍ 𝑑௜

௡

௜ୀଵ 

+ ෍  ൬
log 𝑡 − 𝜇

𝜎
൰

௡

௜ୀଵ 

                                      (3.8.4) 

Equations 3.8.2, 3.8.3 and 3.8.4 do not have a close form solution; that is, the 

parameters can only be solved with numerical approach. 

Log likelihood functions of Weibull MCM 

Given the density function and survival function of Weibull distribution and plugging 

them into the log likelihood functions of cure models in equation 3.6.7, it gives equation 

3.8.5 below: 

 

1( )
t

uf t t e









 
     

Let 
1


 , 
1


 , yt e and logy t  
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 
 
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11 1
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 
 
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


 
 
   
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

 

 
 
   
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


 

 
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 
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



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(y) 1 mF e   

𝑑𝐹(𝑦)

𝑑𝑚
= 𝑒ି௠

𝑑𝑚

𝑑𝑦
=

1

𝜎
𝑒

೤షഋ
഑  

𝑑𝐹(𝑦)

𝑑𝑚
=

1

𝜎
𝑒

೤షഋ
഑ 𝑒ି௘

೤షഋ
഑  

Recall that y = logt 

Therefore; 
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𝐿𝑜𝑔 𝐿 = ෍ 𝑑௜ log(1 − 𝑐)

௡

௜ୀଵ

+ ෍ 𝑑௜ log ቈ
1

𝜎
𝑒

೗೚೒೟షഋ
഑

 ష೐

೗೚೒
഑ ቉

௡

௜ୀଵ

+ ෍ (1 − 𝑑௜) 𝑙𝑜𝑔 (𝑐 + (1 − 𝑐)) ൥𝑒
ିቆ௘

ౢ౥ౝ ೟షഋ
഑ ቇ

൩

௡

௜ୀଵ

                                (3.8.5) 

Differentiating 3.8.5 with respect to parameters 𝜇, 𝜎 𝑎𝑛𝑑 𝑐, we then have (3.8.6), 

(3.8.7), and (3.8.8) 

𝜕 log 𝐿

𝜕𝐶
=

− ∑ 𝑑௜
௡
௜ୀଵ

1 − 𝐶
+ ෍(1 − 𝑑௜) ൦൮

1 − ቀ1 + 𝑒
ౢ౥ౝ ೟

഑ ቁ
ିଵ

𝐶 + (1 − 𝐶) ቀ1 + 𝑒
ౢ౥ౝ ೟షഋ

഑ ቁ
ିଵ൲൪                           (3.8.6)

௡

௜ୀଵ

 

𝜕 log 𝐿

𝜕𝜇
= 𝜎 ෍ 𝑑௜

ങ

ങഋ
ቆ௘

೟೔షഋ

഑ ି௘
೟೔షഋ

഑ ቇ

𝑒
೟೔షഋ

഑ − 𝑒
೟೔షഋ

഑

+ ෍(1 − 𝑑௜)

௡

௜ୀଵ

௡

௜ୀଵ

𝜕

𝜕𝜇
൬𝐶 + (1

− 𝐶) ቀ1 + 𝑒
ౢ౥ౝ ೟షഋ

഑ ቁ
ିଵ

ቁ      (3.8.7) 

𝜕 log 𝐿

𝜕𝜎
= ෍ 𝑑௜

ങ

ങഋ
ቆ௘

೟೔షഋ
഑ ି௘

೟೔షഋ
഑ ቇ

𝑒
೟೔షഋ

഑ − 𝑒
೟೔షഋ

഑

+ ෍(1 − 𝑑௜)

௡

௜ୀଵ

௡

௜ୀଵ

𝜕

𝜕𝜇
log ൤𝐶 + (1 − 𝐶) ቀ1 + 𝑒

ౢ౥ౝ ೟షഋ
഑ ቁ

ିଵ

൨ (3.8.8) 

 

From the results above, it is shown that it does not have a close form solution; that is, 

the parameters can only be solved with numerical approach. 

 

Log likelihood functions of Generalised Gamma MCM 

Given the density function and survival function of generalised gamma distribution and 

plugging them into the log likelihood functions of cure models in (3.6.7), we have 

(3.8.8) below:  

                𝑓௨(𝑡) =  
ఉ

ఏ୻(ఈ)
) ቀ

௧

ఏ
ቁ

ఈఉିଵ

𝑒
ିቀ

೟

ഇ
ቁ

ఉ

𝑡 > 0, 𝜃 > 0, 𝛽 > 0                                                                         

𝐹௎(𝑡) =
ఊ൤ఈ,ቀ

೟

ഇ
ቁ

ഁ
൨

୻(ఈ)
𝑆(𝑡, 𝜇, 𝜎) = 1 −  

ஓቈఈ,௘
ౢ౥ౝ ೟ష

഑ ቉

୻(ఈ)
 

 

 

Therefore; 
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𝐿𝑜𝑔 𝐿 = ෍ 𝑑௜ log(1 − 𝐶) + ෍ 𝑑௜  𝑙𝑜𝑔 ൤𝑒(ఈ௓ି௟௢௚ ௧೔ି௘ೋ).
1

𝜎Γ(𝛼)
൨

+ ෍(1 −  𝑑௜) log ൥𝐶 + (1 − 𝐶) ൤1 − 
γ(α, 𝑒௭)

Γ(𝛼)
൨൩ 

= ෍ 𝑑௜ ൥log(1 − 𝑐) +  ൬
1

𝜎Γ(𝛼)
൰ + 𝛼 ൬

log 𝑡௜ − 𝜇

𝜎
൰ − 𝑙𝑜𝑔𝑡௜ − exp ൭൬

log 𝑡௜ − 𝜇

𝜎
൰൱൩

+ ෍(1 −  𝑑௜) log ൤𝑐 +  (1 − 𝑐) ൬1 −  
γ

Γ(𝛼)
൰൨                    (3.8.9)         

 

Differentiating (3.8.9) with respect to parameters μ, σ and C. we then have (3.8.10), 

(3.8.11) and (3.8.12) 

డ ௅௢௚ ௅

డ ஼
=  − 

ଵ

ଵି஼
∑ 𝑑௜ + 

ଵ

୻(ఈ)
+ ∑(1 − 𝑑௜)

ఊ൫ఈ,   ௘ೋ൯

஼ା(ଵି஼)൤ଵି
ം൫ഀ,   ೐ೋ൯

౳(ഀ)
൨
           (3.8.10)                                                                       

= − (1 − 𝑐)ିଵ𝛴𝑑௜ +  
1

Γ(𝛼)
Σ(1 − 𝑑௜)𝛾(𝛼, 𝑒௓) ൥𝑐 + (1 − 𝑐) ቈ1 −  

𝛾(𝛼,   𝑒௓)

Γ(𝛼)
቉൩

ିଵ

 

డ ௅௢௚ ௅

డ ఓ
= Σ𝑑௜ ቈ−

ఈ

ఙ
−  𝑒

൬
ౢ౥ౝ ೟೔షഋ

഑
൰
 . ቀ−

ଵ

ఙ
ቁ቉ + Σ(1 −  𝑑௜) ቂ𝑐 +  (1 − 𝑐) ቀ1 − 

ఊ

୻(ఈ)
ቁቃ

ିଵ (ିଵ)(ଵି஼) ఊఓ

୻(ఈ)
(3.8.11) 

డ ௅௢௚ ௅

డ ఙ
=

ି ஊௗ೔

ఙ
ቈ𝛼 −  𝑒

൬
ౢ౥ ೔షഋ

഑
൰
቉

ିଵ

୻(ఈ)
Σ(1 −  𝑑௜)(1 − 𝑐) 𝛾𝜇 ቂ𝑐 + (1 − 𝑐) ቀ1 −  

ఊ

୻(ఈ)
ቁቃ

ିଵ

    (3.8.12) 

3.9  Hessian Matrix 

The derivatives from the second order of equations (3.8.10), (3.8.11) and (3.8.12) 

produced the Fisher Information Matrix in equation (3.91); the result is the diagonal 

elements of the Fishers information matrix obtained as follows. The matrix is also 

known as the Hessian matrix. This is a square matrix of a function's partial second-order 

derivatives. It describes a function of several parameters in the local curve. 

Hessian matrix (or Variance-Covariance) for each parameter: 

⎣
⎢
⎢
⎢
⎢
⎡

డమ ୪୭୥ ௅

డ௖మ

డమ ୪୭୥ ௅

డ௖డఓ

డమ ୪୭୥ ௅

డ௖డఙ

డమ ୪୭୥ ௅

డఓడ௖

డమ ୪୭୥ ௅

డఓమ

డమ ୪୭

డఓడఙ

డమ ୪୭

డఙడ௖

డమ ୪୭୥ ௅

డఙడఓ

డమ ୪୭୥ ௅

డఙమ ⎦
⎥
⎥
⎥
⎥
⎤

                                       (3.9.1) 

−
డమ௅௢௚ ௅

డ௖మ =  
ଵ

(ଵି஼ )మ Σ𝑑௜ −  
ଵ

୻(ఈ)మ Σ(1 −  𝑑௜)[𝛾(𝛼,   𝑒௭)]ଶ ቈ𝑐 + (1 + 𝑐) ቂ1 −  
ఊ(ఈ,   ௘೥)

୻(ఈ)
ቃ቉

ଶ

(3.9.2) 
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−
𝜕ଶ𝐿𝑜𝑔 𝐿

𝜕𝜇ଶ
=  −Σ

𝑑௜

𝜎ଶ
𝑒

ቀ
ౢ౥ౝ ೟೔షഋ

഑
ቁ ି(ଵି௖)୻(ఈ)ஊ(ଵିௗ೔)

ംഋഋ౳(ഀ)శ(భశ೎)ൣംమഋ ംഋഋം൧

[౳(ಉ)షം(భష೎ )]మ (3.9.3)  

and 

−
𝜕ଶ𝐿𝑜𝑔 𝐿

𝜕𝜎ଶ
=  

1

𝜎ସ
Σ𝑑௜ ൤𝜎ଶ + (log 𝑡௜ − 𝜇) ൬ 2𝛼𝜎 − (2𝛼 + log 𝑡௜ − 𝜇)𝑒

ቀ
ౢ౥ౝ ೟೔షഋ

഑
ቁ
൰൨ 

−(1 −  𝑐)(1 − 𝑑௜)
ఊఙఙ୻(ఈ)ା(ଵି௖)ൣఊమఓఊఓఓఊ൧

[୻(ఈ)ିఊ(ଵି௖)]మ (3.9.4) 

 

3.10    Gap to Fill 

In practice, highly skewed data requires skewed distribution to handle it, thus, having 

confirmed that survival data like cancer data is highly skewed, thus, the data should 

then be handled with distributions that can accommodate high degree of asymmetry. 

Therefore, there is an utmost purpose for us to modify 𝑓(𝑥) that is the convectional 

distribution (generalised-gamma), with the assumptions that we are going to combine 

existing 𝐺(𝑥) 𝑎𝑛𝑑 𝑔(𝑥). In this case, the gamma generator known as the Gamma-

Generated Gamma is the link function that will be used.  The process is to achieve the 

study second objective that is to derive an innovative parametric mixture cure fraction 

model that can control acute-asymmetry in survival data. The gamma generator is 

defined in the equation 3.10.1 below’ 

                                                                𝑓(𝑥) =  
ଵ

୻(ఠ)
[− log[1 − 𝐺(𝑥)]]𝜔ିଵ𝑔(𝑥)(3.10.1) 

where: 

𝜔         = Shape parameter 

𝐺(𝑥) = reference distribution cdf 

𝑔(𝑥) = reference distribution pdf 

If the shape parameter  𝜔becomes 1, at that point, 

                             𝑓(𝑥) =  
1

Γ(1)
×  [− log[1 − 𝐺(𝑥)]]ଵିଵ 𝑔(𝑥) =  [− log[1 − 𝐺(𝑥)]]଴𝑔(𝑥) 

                                            ∴ 𝑓(𝑥) = 𝑔(𝑥) 
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The essence of shape parameters is to control the asymmetry in the survival data. In a 

situation where the degree of asymmetry is so high and conventional distribution cannot 

handle it, one need to seek for distribution that is explicitly competent to regulate and 

control acute-asymmetry in survival data. This in turn will give comprehensive and 

additional report/evidence for the cured patients’ proportion that have benefited from 

medical interventions. 

3.11 Development of Modified GGMCM 

This study developed an innovative cure model termed modified GGMCM. The 

following pdf and cdf were used jointly to achieve the proposed model. Following the 

assumption that random variable t follows a generalised-gamma distribution, and then 

its density function is defined follows as: 

𝑓(𝑡) =  
ఉ

ఏ୻ఈ
ቀ

௧

ఏ
ቁ 𝑒

ିቀ
೟

ഁ
ቁ

ഁ

     (3.11.1) 

 and its cdf as; 

𝐹(𝑡) =  
ఊ൤ఈ,ቀ

೟

ഇ
ቁ

ഁ
൨

ఊ(ఈ)
      (3.11.2) 

But in scale location form, equations (3.11.1 & 3.11.2) becomes 

 𝑓(𝑡) =  
ଵ

ఙ୻஑
𝑒

ିఈቀ
ౢ౥ౝ ೟ష

഑
ቁ  ି 

𝑒
ౢ౥ౝ ೟షഋ

഑    (3.11.3) 

and 

 𝐹(𝑡) =  
ఊቈఈ,   ௘

ౢ౥ౝ ೟ష
഑ ቉

୻(ఈ)
     (3.11.4) 

If we put the pdf and cdf in equation (3.11.3 & 3.11.4) into (3.10.1), we have  

                𝑔(𝑡) =  
1

Γ𝛽
 . ൦− log ൦1 −

𝛾 ൤𝛼,   𝑒
ౢ౥ౝ ೟షഋ

഑ ൨

Γ𝛼
൪൪

ఠିଵ

1

𝜎Γ𝛼
𝑒

ିఈቀ
ౢ౥ౝ ೟షഋ

഑
ቁ

−  𝑒
ౢ౥ౝ ೟ష

഑                   (3.11.5) 

Where in the above equation (3.11.2), the parameter β is equal to the parameter 𝛼 in the 

same equation ,Thus, cdf of gamma generalised link function is 
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𝐺(𝑡) =  
ఊ(ି ୪୭୥(ி(௧)),   ఉ)

୻ఉ
        (3.11.6) 

Putting equation (3.11.4) in scale location form through equation (3.11.6), we obtain the 

cdf of modified generalised Gamma as 

𝐺(𝑡) =  
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                             (3.11.7)   

Equations (3.11.5) and (3.11.7) above provide a new model of parametric mixture cure 

fraction. This is good for the management of acute asymmetry in survival data. They are 

the density function (pdf) and cumulative distribution function (cdf) of the modified 

GGMCM 

 

To derive a new parametric mixture cure fraction model that would control acute 

asymmetry in survival data.  

Using the Known function of density and survival from Modified-Generalised Gamma 

Mixture Cure Models and plugging them into the functions of log likelihood from cure 

models in equation 3.6.7, it gives equation (3.11.8) below: 

Using the log-likelihood parameter function, the following procedures were obtained: 

log 𝐿 = Σ𝑑௜ log(1 − 𝐶) + Σ𝑑௜ log 𝑔(𝑡௜) + Σ(1 −  𝑑௜) log[𝐶 + (1 − 𝐶)𝑆(𝑡௜)] + Σ(1 −  𝑑௜) log[𝐶 + (1 − 𝐶)𝑆(𝑡௜)] 

log 𝐿 = Σ𝑑௜ log(1 − 𝑐 ) + Σ𝑑௜ 𝑙𝑜𝑔
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            (3.11.8) 

The differentiation of equation (3.11.8) for c and solve the equation to zero provides the 

likelihood equation as 
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Furthermore, the second derivatives equation (3.12.8) above for c is 
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 (3.11.10) 

It is not possible to achieve equation (3.11.10) in a close form after having equated it to 

zero when resolving for c, it is therefore resolved through numerical repetitive process. 

Reasons for Modified-Generalised Gamma Distribution 

1. Due to its robustness. 

2. It has wider scope of applicability. 

3. It is used for a good description of life time scenario such as survival data. 

4. It is a distribution used to handle skewness in data. 

3.12 Statistical Properties 

In this section, the fourth objectives to investigate the properties of the new 

parametric cure fraction models will be examined. 

3.12.1 Proper Density function for Modified GGMCM. 

If the proposed MGGMCM is a proper PDF, this procedure should be followed: 

From equation (3.11.5) above, the probability density function of the proposed model 

(MGGMCM) is given by: 
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𝑔(𝑡) =  
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To prove that the proposed (MGGMCM) is a proper density function, it must satisfied 

equation (3.12.1) condition. 

∫ 𝑔(𝑡)𝑑𝑡 = 1
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𝑙𝑒𝑡 𝑦 =  − log(1 − 𝐹) 

−𝑦 = log(1 − 𝐹) 

Taking the exponential of both sides 

𝑒ି௬ =  𝑒୪୭୥(ଵିி) 

𝑒ି௬ = 1 − 𝐹                                    (3.12.2) 

From 

𝑦 =  − log(1 − 𝐹) 
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Γ𝛼 =  න 𝑒ି௫𝑥ఈିଵ𝑑𝑥
ஶ

଴

 

∴ =  
1

Γ𝛽 
× Γ𝛽 

                      = 1.                 𝑃𝑟𝑜𝑣𝑒𝑑 



 60

3.12.2  Asymptotic Properties 

Taking limit of equation (3.13.2) as 𝑡 → 0 𝑎𝑛𝑑 𝑎𝑡 𝑡 → ∞ 
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3.12.3 Hazard Function 
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3.12.4  Entropy 

The Renyi Entropy is examined in this section; which is a measure of uncertainty 

variation. It is also used to measure the degree of disorderliness in a model. The 

equation below gives the formulae used to estimate it . 

𝐸𝑛𝑡 =
1

1 − 𝑆(𝑡)
log[𝑓(𝑥)] 
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The survival functions at time t; 
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3.13 Order Statistics of the proposed Model  
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log 𝑡 = 𝑦 → 𝑡 = 𝑒௬    
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𝑓(𝑦) =  
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The above is the Modified Generalised-Gamma in Scale Location Form. 
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3.14 Setting up Monte Carlo Experiment 

In this simulation study, the uniform distribution with value of b=100 and a=1 are 

considered for data generation. Each data set contained 10, 20, and 50 observations with 

50, 100, and 500 replications, each of whose different censoring rates depends on the 

value of a and b. For the purpose of regulating the generation process, assumptions were 

made by subjecting that our true survival time t will have to follow uniform distribution. 

The following were the algorithms used for data generation: 

1. Generate from U (10, 1,100), U (20, 1,100) and U (50, 1,100) with (50,100,500) 

replications each. 

2. Generate from each sample size the censoring time of 3+20[U (10, 1,100)]. 

3. We conditioned the censoring time for if else statement, 

If else (censoring < survival time, 1, 0) 
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CHAPTER FOUR 

ANALYSIS, RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter focuses on the results of data analysis described in the last chapter. The 

analysis tracks results from life data as well as simulation study outcomes. These results 

were presented in tables, plots, charts, and figures. 

We used simulated data from the experiment discussed earlier to show capability of the 

proposed Modified Generalised-Gamma MCM (MGGMCM).  In order to compare the 

models, we considered MSE, RMSE and Absolute BIAS as some criteria to check for 

the best across the replications considered. The efficiency of the model is determined 

from model with least criterion value. 

 We also used thirty seven (37) life ovarian cancer data which was gotten from 

Department of Obstetrics and Gynaecology, University College Hospital, Ibadan, 

Nigeria covering the period 2000-2015. The survival period for cohort of patients is 

from the date of diagnosis until death in months and it was done using the prevailing 

four models of parametric mixture cure compared to the model proposed. The 

simulation was carried out with R codes, some of the outputs were copied to excel 

spread sheet in other to calculate some necessary statistics such as the average 

parameters. Data cleaning of the thirty seven life ovarian cancer data was done with the 

use of Microsoft excel spread sheet and the analysis was carried out using R software.  

The R codes were used to estimate all the parameters such as µ,σ,c and median time-to-

cure from the considered models as they were showcased in the previous sections for 

both simulated data and ovarian cancer data. . The following statistics were estimated 

for each of the parametric distribution; Akaike Information Criterion (AIC), log-

likehood Density Curves, Survival Curves, Hazard Curves, median, Median time to 

recuperate, and variances of c in all the considered models were also obtained. 
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4.2 Presentation of Results (Simulated Data) 

Table 4.1: Model Evaluation of Simulated Data 

Sample 
Size 

Rep MSE RMSE |Bias| 

 Llogis Weib Lnorm GG MGG Llogis Weib Lnorm GG MGG Llogis Weib Lnorm GG MGG 

n=10 50 791.300 772.110 707.230 691.030 701.100 28.130 27.790 26.480 26.290 26.480 27.890 26.100 26.700 25.330 25.810 

 100 801.900 777.030 700.520 700.100 710.400 28.320 27.890 26.470 26.450 27.650 27.100 26.230 25.900 25.890 25.970 

 500 856.200 819.450 810.010 711.320 750.610 29.260 28.630 28.460 26.670 26.400 27.150 26.550 27.200 25.910 26.380 
n=20} 50 695.200 611.590 655.710 601.330 609.310 26.370 24.730 25.610 24.520 24.640 26.000 23.590 25.310 23.570 23.890 

 100 720.500 774.630 671.910 623.500 620.900 26.840 27.830 25.920 24.970 24.920 26.230 26.190 25.500 23.270 23.130 

 500 751.300 71.980 704.130 671.450 663.530 27.410 26.700 26.530 25.910 25.760 26.710 25.550 25.890 24.890 23.800 

n =50 50 719.640 700.180 699.520 689.150 601.590 26.830 26.460 26.450 26.250 24.530 25.500 25.770 25.830 25.590 23.150 

 100 703.900 707.480 700.850 610.790 598.400 26.530 26.600 26.470 24.710 24.460 25.900 25.980 25.800 24.080 23.030 

 500 644.590 623.900 619.610 602.100 501.370 25.390 24.980 24.890 24.540 22.390 24.890 23.950 24.010 24.000 22.110 

 

llogis:  LLMCM 

lognorm: LNMCM 

Weibull: WMCM 

GG:  GGMCM 

MGG:   MGGMCM 
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The result in the table 4.1 above gives the simulation result where values are 

consequently generated through a uniform distribution of which different censoring 

rates depends on the value of a and b. Simulation were done as it was explained in 

previous chapter under setting up the Monte Carlo Experiment. The data set were 

generated with sample sizes 10, 20 and 50 with the replication’s levels of 50, 100 and 

500. In this simulation settings, censoring times were uniformly distributed. We 

mimicked the situation of the real life ovarian cancer data resulting to having a scenario 

of when the data set is relatively large with sample size of 37.  That informed the choice 

of using sample size not more than 50 observation. 

From the table, using MSE criterion, when the sample size n=10, with replications’ 

level of 50, 100 and 500. The results show that GGMCM has the least values with 

690.030, 700.100 and 711.320 respectively. For RMSE criterion, with the same sample 

size n=10, and replications’ level of 50, 100 and 500, the results show that GGMCM 

still has the least values with 26.290, 26.450 and 26.670, respectively. Also, for 

absolute bias as criterion, when the sample size n=10, with replications’ level of 50, 100 

and 500. The results show that GGMCM has the least values with 25.330, 25.890 and 

25.910, respectively. 

When the sample size increases to n=20, using MSE, RMSE and absolute bias criterion, 

with replications’ level of 50, GG still gives the least values with 601.330, 24.520, 

23.570, respectively. However, as the sample size increases to n=20 for replications 

level of 100 and 500. The results show that the proposed MGGMCM has the least 

values with 620.900 and 663.530, respectively. Also, for RMSE criterion, the results 

show that MGGMCM has the least values with 24.920 and 25.760, respectively. And 

finally for the absolute bias criterion, with the same sample size n=20, and replications 

level of 100 and 500, the results show that MGGMCM has the least values with23.130 

and 23.800, respectively.  

As soon as the sample size further increases to 50, results from the MSE criterion with 

replications level of 50, 100 and 500 show that the proposed MGGMCM has the least 

values with 601.590, 598.400 and 501.370 respectively. The same result was gotten for 

RMSE criterion, with the same sample n=50 and replications level of 50, 100 and 500. 

The results are 24.530, 24.460 and 22.390 respectively for MGGMCM which has the 

least values. Finally, using absolute bias criterion, when the sample size n=50 and 
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replications level is 50, 100 and 500, the results show that MGGMCM has the least 

values with23.150, 23.030 and 22.110, respectively.  

On the final note, it was observed that the mean square error (MSE) criterion for each 

sample sizes increases as the number of replication increases. Consistently, the 

proposed estimators outperforms other convectional models unless there is a very small 

sample size. 

 

 

 

 

 

 

  



 69 

 

Table 4.2: Average Parameters 

Sample 

Size 

Rep 𝜇̂ 𝜎ො 𝑐 

 Llogis Weib Lnorm GG MGG Llogis Weib Lnorm GG MGG Llogis Weib Lnorm GG MGG 

n =10 50 4.981 3.451 4.267 5.885 5.203 25.883 24.910 25.557 27.490 27.089 0.016 27 × 10(ିହ) 0.051 0.154 0.127 

 100 5.020 4.116 5.013 5.910 5.414 26.117 25.100 26.350 27.890 27.158 0.009 9.2 ×  10(ିହ) 0.089 0.553 0.501 

 500 3.510 2.584 3.391 4.831 4.549 25.339 24.024 25.150 26.001 25.911 0.001 0.000 0.094 0.468 0.531 

n=20 50 5.319 5.100 5.417 5.810 5.900 24.389 24.219 25.380 26.800 27.580 0.001 0.000 0.004 0.007 0.493 

 100 5.511 4.777 5.031 5.883 6.316 25.019 25.100 26.017 26.933 27.877 0.005 0.000 0.009 0.101 0.524 

 500 5.826 4.966 5.225 6.010 6.515 25.111 24.361 26.232 27.100 28.203 0.008 0.000 0.019 0.358 0.612 

n =50 50 5.818 5.300 5.712 6.223 6.400 25.419 25.012 26.817 27.111 27.821 0.012 0.003 0.051 0.444 0.571 

 100 5.908 5.450 5.410 6.298 6.792 26.101 25.714 26.114 27.495 28.400 0.053 0.006 0.055 0.481 0.716 

 500 6.044 5.555 5.700 6.546 6.889 26.349 25.422 27.036 27.811 28.759 0.077 0.002 0.093 0.500 0.890 

 

llogis:  LLMCM 

lognorm: LNMCM 

Weibull: WMCM 

GG:  GGMCM 

MGG:   MGGMCM  
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In the previous chapters, some transformations were done to have the same parameters 

across the models. This led to the process of getting the three salient parameters of 

interest for this study. The parameters are 𝜇, 𝜎 𝑎𝑛𝑑 𝑐.  The result depicts the estimate of 

the aforementioned parameters: the location parameter (µ), the scale parameter (𝜎 ) and 

most importantly the cure fraction parameter (c) for all the model explored with the 

proposed model MGGMCM.  The scaling factor  𝜎 in the subject matter is used for the 

purpose of standardization across the models. 

 When considering the location parameter (µ), with sample size n=10, and replications’ 

level of 50, 100 and 500. The results show that GGMCM has the highest average values 

with 5.885, 5.910 and 4.831, respectively. Also, the scale parameter (𝜎 ) when the 

sample size n=10, with same replications’ level are 27.490, 27.890 and 26.001. The 

results also show that GGMCM has the highest values with 24.530, 24.460 and 22.390, 

respectively. For Cure fraction parameter (c), when the sample size n=10, with 

replications’ level of 50, 100 and 500. The highest value of c still belongs to GGMCM 

with 0.154, 0.553 and 0.468, respectively.  

For the location parameter (µ), when the sample size n=20, with replications’ level of 

50, 100 and 500. The results show that the proposed MGGMCM has the highest 

average values with 5.900, 6.316 and 6.515, respectively. Similarly, the scale parameter 

(𝜎 ) when the sample size n=20, and the level of replications 50, 100 and 500 gives the 

proposed MGGMCM to have the highest values with 27.580, 27.877 and 28.230, 

respectively. Furthermore, for cure fraction parameter (c), when the sample size n=20, 

with replications level of 50, 100 and 500. The results also show that MGGMCM has 

the highest values with 0.493, 0.524 and 0.612, respectively.  

Steadily, for the location parameter (µ), when the sample size n=50, with replications’ 

level of 50, 100 and 500. The results show that the proposed MGGMCM has the highest 

numerical values with 6.400, 6.792 and 6.889, respectively. In the same vein, the scale 

parameter (𝜎 ) when the sample size n=50, with same level of replications show that 

MGGMCM has the highest values with 27.821, 28.400 and 28.759 respectively. On a 

final note, consistently, cure fraction parameter (c), when the sample size n=50, with 

replications level of 50, 100 and 500. The results show that MGGMCM has the highest 

values with 0.571, 0.716 and 0.890, respectively.  
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The results in table 4.2 above indicates that when the sample sizes increases to 20 and 

50 at all levels of replications, the proposed MGGMCM give estimates that is higher in 

numerical value than the existing models with larger dispersion. A case when n=50 at 

500 level of replication, the results presents cure fraction parameter (c) under the 

MGGMCM to be 0.8902, a result very close to 1The cure fraction that corresponds to 

the proportion of patients cured of theirdisease is 0.89 while those that are uncured of 

their disease are 0.11. this result corroborate with the definition of mixture cure model 

by Boag (1949) & Berkson and Gage (1952 which gives it as the evaluation of the 

proportion of cured patients along with proportions of uncured patients’ survival 

function. This result is equivalently calculating the percentage of cured patients from 

cancer that is their cure rate. As it was established in previous chapters that the cure (c) 

lies between 0 and 1, and the closer to the value of 1, the better the proportion of cure; 

in this case, the proposed model MGGMCM gives better rate.  

It can be deduce from the result in table 4.2 that in a small sample size study when the 

sample size is relatively small, say when n=10, distribution like GGMCM can over-

estimate parameters of interest or better put that the proposed MGGMCM will under 

estimate parameters of the models considered with less level of variety. This is evidence 

from table 4.2 when n=10 at every levels of replication.  

However, as sample size n increases to n= 20 and n=50, irrespective of the replication’s 

level, the proposed model MGGMCM gives the best with the competing models, across 

all the parameters of interest considered for this study. 

On the final note, it was observed that cure fraction (c) associated with the convectional 

models for each sample sizes increases as the number of replication increases. 

Consistently, cure fraction (c) associated with the proposed gives the highest value of c.  

Since c represent the proportion of patients who can benefit from medical intervention, 

having c = 0.890 implies that the convectional models underestimate the cure fraction. 

This indicated that about 89% patients were able to be managed or cured after medical 

intervention using the proposed MGGMCM. 
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Table 4.3: Median Time to Cure (Recovery Time of Patients) 

Distributio

n 

𝑛 = 10 𝑛 = 20 𝑛 = 50 

50 100 500 50 100 500 50 100 500 

𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 𝑒𝜇̂ 

Weibull 61.0706

0 

29.1813

0 

24.7235

0 

22.1491

0 

20.3232

0 

20.0019

0 

20.3915

0 

15.1949

0 

10.1818

0 

IIogis 67.6150

0 

25.2367

0 

19.3001

0 

19.1010

0 

17.1991

0 

15.5190

0 

11.0010

0 

10.3333

0 

8.32110 

Lognorm 53.9151

0 

19.7568

0 

16.3915

0 

15.1565

1 

11.5117

0 

10.1111

0 

10.5519

0 

9.91000 8.01290 

GG 24.5810

0 

12.6686

0 

12.2807

0 

10.3988

0 

8.22920 8.31070 7.77810 7.00210 6.11900 

MGG 10.7278

0 

12.0098

0 

9.67230 7.19990 6.71580 6.00130 6.11710 5.82510 3.10590 

 

llogis: LLMCM 

lognorm: LNMCM 

Weibull: WMCM 

GG: GGMCM 

MGG:  MGGMCM 
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This table 4.3 above gives the result of median time-to-cure that is the recovery time of 

patients at which cure happens across the models. This is the amount of time after 

which some proportions of the patients have died and some proportion has recovered 

after therapy (medical intervention). The time that it takes for cure to occurs. From the 

result, when considering sample size n=10 with replications’ level of 50, 100 and 500. 

The results show that the proposed MGGMCM has the minimum recovery time that is 

the values of median time-to-cure are 10.72780, 12.00980 and 9.67230 respectively. 

Also, for sample size n=20 with the same replications’ level, the results are 7.19990, 

6.71580 and 6.00130. As n increases, with sample size n=50, under all the levels of 

replications considered, the median time-to-cure gives better result which has the least 

median time to cure. The results are 6.11710, 5.82510 and 3.10590 

It can be deduced that table 4.3 presents results on the longevity of time required to cure 

a particular ovarian cancer patients that is the recovery time. The smaller the value 

under a particular model or distribution, the better it (distribution) is.  Hence, it is 

evidenced within the scope of statistical investigation and analysis of this research that 

proposed MGGMCM proved beyond any reasonable doubt the reason for its adoption. 

This is crystal clear as its median time to cure is the least among the considered models 

across all the sample sizes and level of replications. According to this study, other 

competing models were experiencing longer recovery time than that of the new 

proposed MGGMCM.  

This result implies that MGGMCM has recovery time of approximately 10 months, 12 

months and 9 months when sample size n= 10, with 50, 100 and 500 replications 

respectively. The recovery time when sample size n= 20, with 50, 100 and 500 

replications are 7 months, 6.5 months and 6 months respectively.  Finally, MGGMCM 

has recovery time of approximately 6 months, 5 months and 3 months when sample size 

n= 50, with 50, 100 and 500 replications respectively. The result on the above table 4.3 



 74

confirms the Yigzaw et.al (2019) studywhich established that the minimum recovery 

time to cure a particular disease is substantial. 

In this study, we are trying to compare on the average those patients who can benefit 

from medical intervention that is the proportion of patients that can be managed from 

cancer or cured.  We don’t want a situation whereby the patients will stay a longer time 

because of the pain they undergone, we need a model that can guarantee quick recovery 

time that is a model that can improve their healing. With the above result, we realize 

that many patients were able to cure faster on the average using the proposed model 

comparing to other convectional models. 

On the final note, it was observed that the median time to cure (𝑒𝜇̂) associated with the 

convectional models for each sample sizes decreases as the number of replication 

increases. Consistently, median time to cure (𝑒𝜇̂) associated with the proposed model 

gives the minimum value of𝑒𝜇̂.  Since 𝑒𝜇̂ represent the median time to cure of patients 

who can benefit from medical intervention, having small value of median time to cure 

implies that a lot of patients were able to cure on time and this shows that proposed 

model is optimal in estimating the proportion of those who can benefit from medical 

intervention. 

 

4.3 Analysis of exploratory data (Ovarian Cancer) 

Exploratory data analysis (EDA) is an approach for analysing data sets by summarising 

their key features, often with pictorial procedures. A statistical model can be used or 

not, but primarily EDA is for seeing what the data can tell us beyond the formal 

modeling or hypothesis testing task. It is techniques that help one to understand the data 

and assist to understand the events that generated the data. In this section, descriptive 

statistics of the ovarian cancer were done. The figures in this section clearly show the 

spread of the distribution for the observed data. 
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Figure 4.1. Histogram plot for the survival time 
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The figure 4.1 above represents the histogram plot of the survival time for the 

real life ovarian cancer observation. In the figure above, the ovarian cancer 

data is clearly shown and the spread of the distribution for the observed data 

were shown graphically. 

It is evident from the plot that the data is skewed to the right. Similarly, this 

result claimed that survival data were rightly skewed.  Also, there is a wide gap 

between the observation with 100 months and 159 months. The gap indicates 

that there is an outlier case.  
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Figure 4.2 Survival Period Density Plot 
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The Figure 4.2 clearly demonstrates the survival density plot. This plot proves that the 

real life ovarian cancer data is far from normal density curve. The curve also shows the 

right long tail that was accrued from the outlier observed from the data, that is, the 

observation with 159 months. The non-normality in the data is more strikingly shown 

with this curve. 

From the figure 4.2 above, the density curve in survival analysis always describes the 

transition times, and a sharp peak, for instance around a particular value means that 

most survival times are found around. It could be observed that the ovarian cancer cure 

rate rises rapidly to the peak around 50 followed by another rapid then decline which 

seems to level off.  The curve assists us to see the true pictures of the characteristics of 

the ovarian cancer data. It also helps us to know the center and the spread about this 

central value. Since our interest is to investigate outliers or study the distribution or 

pattern of the ovarian cancer data values, several plots are available to allow the study 

of the distribution. One such plot is the density plot. 
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Figure 4.3 Survival Period Normal Q−Q Plot  

 

  



 80

The above figure 4.3 displays the Q-Q plot which checks for normality status of the 

data. In most cases, survival data is characterized with skewed data and prior 

expectation is that ovarian cancer data should have same features.  The result from the 

figure depicted that the real life ovarian cancer shows that it is skewed to the right 

having much longer tail due to the outlier case observed with (159 months). Thus, the 

prior expectation is true that the data exhibits non-normality.  The point at the extreme 

end to the right is the outlier month mentionedearlier. 
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Figure 4.4 Survival Period Box-Plot 
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Figure 4.4 demonstrates the survival period boxplot. This plot is often used to detect 

outliers in a dataset, but the outliers observed from the data on ovarian cancer can be 

clearly located outside the plot displaying outliers as dots outside the whiskers. 

Figure 4.4 above also provides pictorial information about ovarian cancer in real life 

scenerio from the result. There are two lines beyond the box and they are called the 

whiskers. These lines show the minimum and maximum observation The plot represents 

the five number summaries of statistics in a dataset namely minimum, Q1, Q2, Q3 and 

maximum respectively.. From the result of this figure 4.4, it can be deduced that there is 

distinct case of ovarian cancer that has survived up till 159 months after being 

diagnosed of the diseases, in this study, that observation was seen as an outlier. 
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Figure 4.5 Empirical Density 
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Figure 4.5 above illustrates the life data based on observation density plot that shows 

the histogram and the curve of density embedded on it. This plot clearly shows how the 

distribution is far from normality which illustrates the shapes of the distribution and 

how it spread.  It also shows the length of the tails and which side the tails move either 

to the right or left. This result conformed to the previous results that show that it is 

positively right skewed. The gap in the plot shows that the data has an outlier case. 
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Figure 4.6 Cumulative Distribution plot 
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Figure 4.6 above shows the cumulative density plot of the data on ovarian cancer, the 

plot displays that it converges to 1, and so this indicates a perfect distribution estimate 

on the data for all patients observed. In cumulative distribution function, the curve is a 

concave up parabola which lies between −1 <x ≤ 0 and a concave down parabola which 

also lies between 0 <x< 1. Hence, the figure 4.6 gives the curve that is a concave down 

parabola which lies between 0 <x< 1. The x-axis signifies time in months, and the y-axis 

displays the cumulative distribution function of surviving or the percentage of patients 

benefiting from medical intervention. 
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Figure 4.7 Cumulative Density Plot of Weibull Mixture Cure Model. 
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The figure 4.7 above gives the cumulative density plot of the ovarian cancer data 

associated with weibull MCM , the plot show the movement from 0 to 1, In cumulative 

distribution function, the curve is a concave up parabola which lies between −1 <x ≤ 0 

and a concave down parabola which also lies between 0 <x< 1. Hence, the figure 4.6 

gives the curve that is a concave down parabola which lies between 0 <x< 1. The x-axis 

signifies time in months, and the y-axis displays the cumulative distribution function of 

surviving or the percentage of patients likely to enjoy the benefits of medical 

intervention. The lines represent survival curves of the ovarian cancer associated with 

weibull. A stepwise dotted black line in the plot indicates the observed event. It is 

observed that weibull MCM is closely converged to observed data. This implies that the 

model estimate the ovarian cancer but not as fast as the clinicians expect. 
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Figure 4.8 Cumulative Density Plot of Lognormal Mixture Cure Model. 
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  The figure 4.8 above gives the cumulative density plot of the ovarian cancer data 

associated with lognormal MCM , the plot show the movement from 0 to 1, In 

cumulative distribution function, the curve is a concave up parabola which lies between 

−1 <x ≤ 0 and a concave down parabola which also lies between 0 <x< 1. Hence, the 

figure 4.6 gives the curve that is a concave down parabola which lies between 0 <x< 1. 

The x-axis signifies time in months, and the y-axis displays the cumulative distribution 

function of surviving or the proportion of patients that have benefited from medical 

intervention.  

The lines represent survival curves of the ovarian cancer associated with lognormal. A 

stepwise dotted black line in the plot indicates the observed event.  It is observed that 

lognormal MCM does not closely converge to observed data. This implies that the 

model under estimate the ovarian cancer and this could undermine the clinician’s effort. 
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Figure 4.9 Cumulative Density Plot of Loglogistic Mixture Cure Model. 
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The figure 4.8 above gives the cumulative density plot of the ovarian cancer data 

associated with loglogistic MCM , the plot show the movement from 0 to 1, In 

cumulative distribution function, the curve is a concave up parabola which lies between 

−1 <x ≤ 0 and a concave down parabola which also lies between 0 <x< 1. Hence, the 

figure 4.6 gives the curve that is a concave down parabola which lies between 0 <x< 1. 

The x-axis signifies time in months, and the y-axis displays the cumulative distribution 

function of surviving or the percentage of patients likely to enjoy the benefits of medical 

intervention. 

The lines represent survival curves of the ovarian cancer associated with loglogistic. A 

stepwise dotted black line in the plot indicates the observed event. It is observed that 

loglogistic MCM does not closely converge to observed data. This implies that the 

model under estimate the ovarian cancer and this could undermine the clinician’s effort. 
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Figure 4.10 Cumulative Density Plot of Generalised - Gamma Mixture Cure Model 
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The figure 4.10 above gives the cumulative density plot of the ovarian cancer data 

associated with Generalised - Gamma MCM , the plot show the movement from 0 to 1, 

In cumulative distribution function, the curve is a concave up parabola which lies 

between −1 <x ≤ 0 and a concave down parabola which also lies between 0 <x< 1. 

Hence, the figure 4.6 gives the curve that is a concave down parabola which lies 

between 0 <x< 1. The x-axis signifies time in months, and the y-axis displays the 

cumulative distribution function of surviving or the percentage of patients likely to 

enjoy the benefits of medical intervention. The lines represent survival curves of the 

ovarian cancer associated with Generalised - Gamma. A stepwise dotted black line in 

the plot indicates the observed event.  It is observed that Generalised - Gamma MCM 

closely converge to observed data. This implies that the model estimate the ovarian 

cancer but not as fast as the clinicians expect. 
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Figure 4.11: Cumulative Density Plot of Modified Generalised-Gamma Mixture 

Cure Model    
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The figure 4.11 above gives the cumulative density plot of the ovarian cancer data 

associated with the proposed model modified Generalised - Gamma MCM, the plot 

show the movement from 0 to 1, In cumulative distribution function, the curve is a 

concave up parabola which lies between −1 <x ≤ 0 and a concave down parabola which 

also lies between 0 <x< 1. Hence, the figure 4.6 gives the curve that is a concave down 

parabola which lies between 0 <x< 1. The x-axis signifies time in months, and the y-axis 

displays the cumulative distribution function of surviving or the percentage of patients 

likely to enjoy the benefits of medical intervention. The lines represent survival curves 

of the ovarian cancer associated with modified Generalised - Gamma. A stepwise dotted 

black line in the plot indicates the observed event.  It is observed that as fast as the 

clinician would anticipate, modified Generalised-Gamma MCM converges closely to 

observed data. This means the model estimates the data on ovarian cancer faster than 

the models from existing models aside from Generalised – Gamma that is robust when 

sample size is very small. 
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   Figure 4.12: Cumulative plots of density for all models  
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Figure 4.12 above gives the competitive models and the proposed model. From the 

plots, the proposed MGGMCM is the dash line in lilac colour. The figure shows that 

MGGMCM converges to one more quickly than convectional models, which means that 

MGGMCM has outperformed. This implies that the distribution of the proposed model 

estimate perfectly on the data for all the observed patients.  In cumulative distribution 

function, the curve is a concave up parabola which lies between −1 <x ≤ 0 and a 

concave down parabola which also lies between 0 <x< 1. Hence, the figure 4.6 gives the 

curve that is a concave down parabola which lies between 0 <x< 1. The x-axis signifies 

time in months, and the y-axis displays the cumulative distribution function of surviving 

or the percentage of patients likely to enjoy the benefits of medical intervention. 

 The lines represent survival curves of the ovarian cancer associated with all the models. 

A stepwise dotted black line in the plot indicates the observed event.  It is observed that 

the proposed modified Generalised - Gamma MCM closely converge to observed data 

as fast as the clinician would expect. This implies that the model estimate the ovarian 

cancer data faster than the convectional models aside from Generalised – Gamma that is 

robust when sample size is very small. 
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4.3.1 Summary of Statistics for Life Data 

Table 4.4: Survival Time of Ovarian Cancer: Descriptive Statistics  

Min Q1 Mean Median Q3 Max Skewness Kurtosis 

1month 24months 48months 45.65months 57months 159months 1.395 7.339 
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Table 4.4 above shows the summary of the ovarian cancer data. Based on results gotten 

from the ovarian cancer data used to validate the proposed MGGMCM, the minimum 

time of diagnosis of the diseases is 1 month. The average month of diagnosis is 48 

months. The results from this descriptive statistics evidenced from histogram plot shows 

higher degree of departure from normality in the used data. Therefore, mean as a 

measure of location has to be accompanied by another important and better central of 

tendency that is useful for survival analysisin this case, is the median.The ovarian 

cancers survival times were sorted from shortest to longest that is it was ordered in 

magnitude and value for the median was computed to be 45.65 (in month of diagnosis). 

When the ovarian cancer was partitioned into four equal parts, the first end point of data 

is 24 months which gives with the upper third points is 57 points. The estimate of 

skewness, degree of asymmetry, is 1.395 which indicates that the ovarian cancer data is 

positively skewed and the kurtosis of 7.339 > 3 indicates that it is leptokurtic. The 

maximum time of diagnosis of the diseases is 159 months. 

In conclusion, the result gives the exploratory data analysis of the ovarian cancer data. 

This results corroborates with figure 4.1 (histogram plot), figure 4.3 (density plot) and 

figure 4.4 (boxplot). All these depicts that the distribution of the ovarian cancer is 

positively skewed. Commensurately, the same table shows that median = 45.65 < mean 

= 48. This agreed with the fact that when mean > median > mode = positive skewness. 
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Table 4.5: Model Evaluation of the Ovarian Cancer Data   

Model AIC -2loglike µ.˜ σ. eµ˜. c Var(c.) 
Weib 216.88450 210.88460 2.44000 68.2000 60.07060 0.28900 0.0968100 
Lognor 205.97820 199.97820 4.04000 0.32800 57.97480 0.37120 0.0042610 
Llog 203.27440 197.27440 5.97010 56.2070 56.86490 0.18100 0.2878700 
GG 206.20140 198.20140 3.96350 0.30170 20.90111 0.10840 0.0052300 
MGG 199.23530 194.47120 7.52400 15.2460 11.82010 0.82070 0.0001253 
 

llogis: LLMCM 

Weibull: WMCM 

GG: GGMCM 

MGG: MGGMCM 

𝜇෤: Median 

𝑒𝜇෤: Median time-to-cure 
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The findings in Table 4.5 present the synopsis for evaluation of model on real-life 

ovarian cancer. In order for assessment of the model performances, we make reference 

to Akaike Information Criterion (AIC) and the log-likelihood of each of the model 

examined in this study.  As a standard, the model with the lowest AIC is assumed to 

outperform others. With reference to the same Table 4.5, the value of AIC = 199.23530 

and log-likelihood = 194.47120 for the proposed MGGMCM, this result outperformed 

other models considered in the study.  

The interest of cancer study is to achieve a greater proportion of patients that have 

benefitted from medical intervention. That is proportion of patients that their cancer 

mass has been reduce to the nearest minimum. c is the proportion of those who are 

cured that is, it represents the proportion of patients who can benefit from medical 

intervention.  

 From the table 4.5 above c associated with all the models are ‘c’  associated with 

weibull is about 29%, ‘c’ associated with lognormal is almost 37%, c associated with 

loglogistic  is 18%, ‘c’  associated with genaralised-gamma  is 10% and ‘c’  associated 

with Modified generalised-gamma is 82%.  This implies that 82.07% of patients can 

benefit and likely to gain more medical intervention using the proposed model. The 

existing models underestimate the cure fraction.  The results show that the proposed 

model is optimal in estimating the proportion of those who can benefit from medical 

intervention. 

In survival analysis, eµ˜ is the median time to cure which gives the Average time we 

need for those patients who can benefit from medical intervention. The median time 

which can as well be regarded as recovery time of ovarian patients was discovered to 

take less than 12 months on the average for patients to be managed or cured using the 

proposed MGGMCM; this is the least recovery time among the considered models. The 

proposed model also has the smallest level of dispersion evidenced from variance 

measured for cure fraction parameter as var(c) = 0.0001253. The result in the table 

gives the median time to cure which is used for making an inference about the median 

time that a particular patient will be cured or will be managed, this is the average 

number of months that the patients can be managed before the occurrence of death. 
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On a final note, having obtained the least AIC value of the proposed MGGMCM, the 

least  among all its competing frontiers similar models, supports its selection as the best 

distribution to ovarian cancer data/survival data. The minimum value of var (c) also 

makes it a better estimate than others.  

4.4.  Hypothesis Testing (Significance of the cure fraction ‘c’) 

𝐻௢: 𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 

𝐻ଵ: 𝑐 𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 

Or 

𝐻௢: 𝑐 = 0 

𝐻ଵ: 𝑐 ≠ 0 

 

tcal = 
௖

௦(௖)
     versus    ttab =  𝑡∝

ଶൗ , n – p  

= 𝑡଴.ଽ଻ହ,ଷ଻ିଵ 

= 𝑡଴.ଽ଻ହ,ଷ଺ 

= 1.69 
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Table 4.6: Testing the Significance of Cure Fraction (c) 

Model c 𝑺𝑬(𝒄) tcal = 
𝒄

𝒔(𝒄)
 Remark 

Weibull 0.28900 0.3111431 0.9288 Not 

Significant 

(Accept H0) 

Lognormal 0.3712 0.0652763 5.6866 Significant 

(Reject H0) 

Llogis 0.18100 0.5365352 0.3373 Not 

Significant 

(Accept H0) 

GG 0.10840 0.0723187 1.4989 Not 

Significant 

(Accept H0) 

MGG 0.82070 0.0111938 73.3174 Significant 

(Reject H0) 
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In statistics, making inference is the important aspect of the discipline. Therefore, 

statistical inference can be divided into estimation of parameters, or other characteristics 

of the density function that has been selected as a model for a random variable, and of 

testing hypothesis about the model. The parameter of interest in all the considered models 

is cure fraction, thatis, proportion of diagnosed ovarian cancer patients that were cured, 

Hence, it is essential to carry out the significance test for this parameter. The table (4,6) 

above, compute cure fraction "c" foreach model/distribution, its standard error, the value 

of t-test statistic and the criticalvalue. Under similar situation with the fundamental rule 

ofstatistical inference, the test is significance if the critical value is less than the test-

statisticvalue. In this case, the critical value at 5% significance level is 1:96.  

Weibull distributioncomputes the t-test statistic to be 0:9288 a value that is not greater 

than the critical value of 1:96and consequently falls in feasible region. Hence, the 

parameter c in question is not significant.That is, its inclusion in the Weibull distribution 

does not improve its modelling efficiency for theovarian cancer data. Lognormal on the 

other hand produced test-statistic of 5.6866 which isgreater than 1.96 critical value, then, 

it is significant. This means, the parameter c is pertinentin Lognormal distribution for 

modelling ovarian cancer data. Log-logistic distribution andGeneralised-gamma are both 

not significant under similar argument, as their respective test-statistic values and less 

than the critical point.  

Unlike Log-logistic and Generalised Gamma, theproposed Modified Generalised-Gamma 

(MGG) distribution is highly significant among the class of compared models as the 

magnitude of the estimate of its test-statistic = 73:3174 > 1:96 and consequently fall in 

the critical region, indicating the significance of the test. That is, significance of the test 

parameter which gives information about its inclusion in the MGG distribution for 

modelling ovarian cancer data. In summary, the last column of table (4.6) gives a succinct 

remark about the significance of the parameter c under each distribution. Having estimate 

the point estimator of c = 0.82070 which is the proportion of patients who can benefit 

from medical intervention. It is pertinent to check for the efficiency of the estimator. This 

has been checked using the minimum variance criterion. And from the previous table 4.5 

the minimum variance across the model is 0.0001253 which is the variance associated 

with the proposed model. Conducting a significance test is paramount and the result in 

the table 4.6 reported that the proposed new model is highly significant followed by ‘c’ 

associated with lognormal. 
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Table 4.7 Confidence Interval of Cure Fraction Model (c) 

Model c Var(c) SE(c) 𝑆𝐸(𝑐) × 𝑍∝
ଶൗ  𝑐 ± 𝑍∝

ଶൗ 𝑆𝐸(𝑐) CI 

Weibull 0.28900 0.0986100 0.3111431 0.098405 0.28900 ± 
0.6098405 

[-0.3208405, 
0.8988405] 

Lognormal 0.37120 0.0042610 0.0652763 0.1279415 0.3712 ± 
0.1279415 

[0.2432585, 
0.4991415] 

Llogis 0.18100 0.2878700 0.5365352 1.05160900 0.18100 ± 
1.05160900 

[-0.870609, 
1.232609] 

GG 0.10840 0.0052300 0.0723187 0.1417447 0.10840 ± 
0.1417447 

[-0.0333447, 
0.2501447] 

MGG 0.82070 0.0001253 0.0111938 0.0219398 0.82070 ± 
0.0219398 

[0.7987602, 
0.8426398] 
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In statistics analysis, the most important benefit of using confidence interval is that you 

provide a range of values with a known probability of capturing the population 

parameter that is you can claim to have 95% confidence that it will include the true 

population parameter. It also helps one not to be so confident that the population value 

is exactly equal to the single point estimate. That is, it makes us more careful in how we 

interpret our data and helps keep us in proper perspective. Therefore the table 4.7 above 

gives the 95% confidence interval of the point estimate ‘c’ for all the considered 

models.  It is clearly observed that there is close margin of c in the proposed model. The 

margin of error associated with the proposed model MGGMCM is very small compare 

to the conventional models. The confidence interval of cure fraction with a very low 

margin of error gives a better one.  
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4.5 Discussion of Results 

It is common in survival analysis that many subjects under study will not experience the 

event of interest. These subjects are termed “cured”. The cohort is divided into two 

units namely the cured unit and the uncured unit. It depends on the components: the 

probability of being cured and the conditional survival function of the susceptible 

subjects. 

In this study, new model was proposed to estimate a mixture cure model when the data 

are subject to positive high asymmetry. The study used some parametric models for the 

cure proportion as shown in previous chapters. Modification was done on the 

generalised gamma mixture cure model and this model is referred to Modified 

Generalised – Gamma Mixture Cure Model (MGGMCM). Discussing the result of the 

study in line with the aim of the work, the study has been able to develop a modified 

generalised-gamma mixture cure model survival that is explicitly competent to regulate 

and control acute-asymmetry in survival data. The proposed which has been checked 

under various properties of new distribution has satisfied the condition of a proper 

density function in previous chapters. Other properties were checked as well. 

The study employed a simulation study to validate the performance of the proposed 

model in terms of the estimators used for the study. The generation of data were done 

with sample size n = 10, 20 and 50 with 50, 100 and 500 replications using uniform 

distribution to constraint the censoring rates in the cure model. The choice of the sample 

size not more than 50 was as a fact that the real life ovarian cancer gotten from UCH 

was 37 observations and the simulation study must mimick the real life scenario. 

From the simulation study, MSE, RMSE and absolute bias were used as the model 

selection criterion. The criterion may guide the choice of which model among the 

considered mixture cure models gives the best that can accommodate non-normality in 

the survival data since skewness is featured in the survival data and our interest is to 

focus on this. Therefore, all the results from simulation study showcase the efficiency of 

proposed model and how it outperformed other competing models having used the 

entire criterion.  
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The criteria used for the real life ovarian cancer data analysis are loglikelihood, cure 

rate (c),  Akaike Information Criterion (AIC), , variances, mean time-to-cure, var (c) 

and median survival time. These criteria are used to determine efficiency of the model. 

The result from the real life ovarian data indicated that the data conform to prior 

expectation that the distribution of the data is far from normal, and that it is positively 

skewed. It is also deduced from the result that there is an outlier observation in the 

ovarian cancer data meaning that there was a particular patient that has survived for 159 

month during the period of the study and the same patient is under cancer management 

at Gyneacology Oncology Unit (GOU) of UCH.  

It was evidenced from the real life ovarian cancer data analysis that the model with the 

least AIC gives the best model. This agreed with Loreet. al. (2014) in their work “An 

Akaike information criterion for multipleevent mixture cure models” where they 

reported that after calculating the AIC values for each of the considered models, the 

models weresorted according to their resulting AIC values; the models were examined 

andcompared, the best models according to the AIC has the least value. The proposed 

MGGMCM has the least AIC. Also, the loglikelihood of MGGMCM gives the least 

values compared to the competing models. The var(c) gives the minimum variances 

among the parametric cure models considered.  

From the exploratory data analysis of the real life ovarian cancer, the results comprises 

of the summary statistics that depicts the description information of the ovarian cancer 

survival time, this recapitulates the thirty seven life ovarian cancer data used in this 

research. It always captures the minimum observed data, maximum observation; central 

tendencies such as mean, median plus measures of spread like quartiles were also 

reported. The summarization includes other statistic which can illustrate the ovarian 

cancer information description such as the measure of symmetry such as skewness and 

kurtosis. Furthermore, all the plots showcase that the data is characterized with acute-

asymmetry.  

In the result, proposed model MGGMCM performs better when we use cumulative 

distribution function plot to estimate the real life ovarian cancer data. The plot from the 

cdf converges to one more quickly than convectional modelsThese results were in 

agreement with Seppa et.al. (2009).In their study, a random effect of mixture cure 

fraction model was examined. The study was modeled to cause-specific survival data. 
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The female breast cancer data used to validate the model is from the Finnish Cancer 

Registry. The study is a population based and it makes use of sets of random effect. 

This is used to capture the variation in the cure fraction and in the survival of the non-

cured patients. 

Furthermore, other results fromreal life ovarian cancer data showed that model selection 

criteria for this study established that convectional models were significantly less 

effective than the modified Gamma-Generalised Mixture Cure Model (MGGMCM) 

with the underlying assumptions. This indicated that the MGGMCM enriched progress 

and provides a better fit for the real life ovarian cancer data used in comparing the 

competing models. Therefore, the result implies that MGGMCM offers least criterion 

value. It is then established that the MGGMCM is efficient, more consistent and 

effectively solve acute-asymmetry problem associated with survival data. 

The study revealed that the recovery time of ovarian patients was less than 12 months 

for the proposed MGGMCM. The other existing parametric mixture cure models 

considered has their patients having longer recovery time. According to this study, 

patients were experiencing longer recovery time under the existing parametric cure 

models. The implication of this is that, Cure time refers to the length of time needed for 

something to fully cure. In practice, the idea of a cure is the permanent end to the 

specific instance of the disease but in cure model, the cure refers to when a patient 

recovers from it, the person is said to be cured at that moment. The symptoms might 

reoccur especially in cancer cases like ovarian cancer. So the beauty of this is that, since 

researchers interest is on management of the disease which is cure, the time to cure 

should be another interest of researchers, what duration it takes for cure to occur. This is 

what i refer to mean time to cure or recovery time. The recovery time should be small in 

order to have an efficient cure model. 

All statistics models cannot be 100% sufficient because they rely on so many 

assumptions, and any model that has so many assumptions will definitely have some 

limitations because of violations of assumptions.  In that case, in a situation where the 

level of violations is much, that when there is high level of violations of assumption of 

models, one needs a robust model that is the main reason for adding the shape 

parameters in our link functions for the benefit of flexibility.  In this study, we have 

been able to develop a robust point estimator for the proportion of patients who can 



 111

benefit from medical intervention. A cohort of patients who need medical intervention 

from the proposed model was about 82%. It is believed that all the patients will not gain 

medical intervention that is 100% of them cannot, it is expected that the proportion 

should lie between 0 and 1. It can never be 0 and it can never be 1, when it is 0, it means 

that no one is benefited from medical intervention and when it is 1, it also means that all 

the cohort of patients will benefit but in reality, that is not possible. 

4.6 Implications from the Study 

From the result of this study, the last objectives that is to make suggestions for policy 

makers, clinicians and academicians. This study has succeeded in developing a robust 

model that can be used to estimate the proportions of patients that can actually benefit 

from medical intervention Judging from the value of c, the proposed model has the 

highest value of c compared to the existing models that underestimate the proportion of 

c, which in turn will undermine the efforts of the clinicians. With the efforts put forward 

by the clinicians, we want to know the percentage of patients that they had been able to 

manage or cure after medical intervention. Within the time frame under which the 

patients are being managed, those values of ‘c’ that we arrived at are cure fraction. The 

clinicians have interest in those that are likely to gain from medical intervention and 

those that are not likely to gain. They need a model that can give the true picture of this 

proportion. Since cancer data are featured with high degree of asymmetry, we need a 

modification of the existing parametric cure models that will be flexibly robust to 

accommodate this feature. The study also reported that the time is going to take a 

particular patient to be cured is going to vary from patients to patients because patient 

have different body chemistry, thus, the clinicians also have interest in the recovery 

time. The recovery time associated with the proposed model on the average is very 

small compared to the existing models.  this is a good one for the clinicians because, 

after medical intervention, they want a situation where their patients recover on time, 

they don’t want a situation where large proportion of patients are staying longer than 

necessary because the pains associated with ovarian cancer is severe. On a final note, 

the property of the robust estimator cure proportion shows that the variance of c is small 

and it is efficient.  According to Cramer Rao, a lower value of the variance indicates 

that the estimator is efficient. This is a justification that the proposed is estimating the 

proportion of patients accurately and there will not be issue for undermining the 

clinician’s efforts. 
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CHAPTER FIVE 

SUMMARY AND CONCLUSION  

 

5.1 Summary 

Based on the findings of this study as well as the facts from the discussion of study 

outcomes, we can affirm that after all the criterions used to determine the efficiency of 

the proposed model, it is appropriate to give the necessary information about the values 

of the criteria used. From the study, the output confirmed that the criteria for 

determining the flexible best model between the competing models and the proposed 

models show that the proposed model significantly perform better than the convectional 

models; having considered the underlying assumptions associated with criterion in 

question. 

As a result of this outcome, the proposed Modified Generalised-Gamma Mixture Cure 

Model enriched improvement as well as gives appropriate estimates for the real life 

ovarian cancer data compared to the previous models.  As a result of this, proposed 

model MGGMCM provides minimum numerical value. Also, with simulated data, it 

has the minimum MSE, RSME and absolute bias. Also, the significance of the cure 

fraction parameter ‘c’ associated with theproposed Modified Generalised-Gamma 

Mixture Cure Model (MGGMCM) is highly significant among competing models.  

Furthermore, from confidence interval of cure fraction parameter ‘c’, the margin of 

error associated with the proposed model MGGMCM is very small compare to the 

conventional models. The confidence interval of cure fraction with a very low margin of 

error gives a better one. Therefore, this research has added to knowledge in terms of 

remarkable contribution of generalization and improvement on existing GGMCM. 

Furthermore, according to the results, the context affirmed that modified GGMCM 

accomplished extra consistent outcomes which can sufficiently control restrictions of 

non-normality related with survival data and to its robustness. 
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5.2 Conclusion 

As mentioned earlier, this study is an improvement to the solutions associated with 

survival data analysis that is characterized with the problem of acute-asymmetry. Using 

the outcomes acquired from both the simulated data and real life data set, we can 

conclude that MGGMCM provides the model that is robust. This has been confirmed 

from the results of the analysis, using the real life data for ovary cancer as well as 

simulation study. The proposed converged to 1 quickly than the existing indicating that 

the model is very efficient. The MGGMCM have the ability to efficiently estimate 

sizeable real life ovarian cancer data. The study outcomes displayed that proposed 

MGGMCM stood as better model aimed at modeling survival data that is characterized 

with non-normality. Additionally, this new model is applicable for modeling of survival 

data analysis and appropriate statistical mechanisms to solve various data that exhibits 

acute-asymmetry. It also provides inference robustness, criterion robustness and model 

robustness.  

In Survival analysis where some patients have not experienced the event of interest, we 

prefer to use cure models (Jahanjou et al 2014& Smoll et. al. 2012); since many of 

patients among those diagnosed with Ovary malignancies will not require hysterectomy, 

these cases assumed to be cured. Moreover, survival data requires more flexible and 

robust models that would adequately accommodate and isolate intractable distribution 

characteristics such that would engender complex asymetry, this is the reason for 

Modiified Generalised Gamma Mixture Cure Model that can embrace or accommodate 

the high degree of asymmetry that survival data exhibits. We studied the performance of 

the developed model MGGMCM and compared it with selected conventional models 

such as LNMCM, LLMCM, WMCM and GGMCM. With the aid of simulation from 

MCMC and analysis from real life ovarian cancer data gotten from Department of 

Obstetrics and Gynaecology, University College Hospital, Ibadan, Nigeria covering the 

period 2000-2015 with the help of R software code. The results showed that our new 

MGGMCM remained an upgraded statistical model for statistical modeling and 

statistical inference. 



 114

5.3 Limitation of the Study 

From the result of the simulated data, we were able to establish that GGMCM gives the 

same or least in few cases for MSE, RSME, and absolute BIAS when the sample size is 

10 and when the replication is 50 times. Contrarily, the proposed model gives the least 

MSE, RSME, and Absolute BIAS when the sample size is 20 and 50 at each level of the 

replication. These results indicate that the proposed model is better when the sample 

size is large. The model will underestimate when the sample size is too small. 

 

5.4 Contribution to Knowledge 

According to Chukwu & Folorunso (2015), Generalised-Gamma Mixture Cure Fraction 

Model has the highest cure proportion among the considered models, it also gives a 

better fit to the gastric cancer but it cannot capture the skewness that survival data 

exhibits.  

 This work has provided an extension of GGMCM.  

 The modified GGMCM was better on the Akaike Information Criterion and 

other criterion used in this study. 

  The proposed model gives the minimum variance for the proportions of patients 

that can benefit from medical intervention. 

  The cure fraction parameter ‘c’ associated with the proposed model is 

significant. 

  The margin of error in the confidence interval for the cure proportion is also 

small 

  It adequately handled limitations of non-normality connected with survival data 

and to its robustness.  

.  
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5.5 Suggestion for Further Study 

For any other researcher that wants to engage and pursue the related study, the 

researcher should take into account other types of cure model such as non-mixture 

models. Also, the covariates were not involved in the analysis either in the real life data 

set that is the ovarian cancer data set or the simulated data set under the right censoring 

case. This increased the necessity of such research. Also, the clinician should endeavor 

to collect the entire necessary attribute that might boost the study in terms of patients 

other details that will serve as the independent variable (covariates). The clinicians 

should endeavor to continue to do follow up study on the patients and recruit more 

patients to the study.  The four stages of cancer should look into in order to test per 

stage. The added shape parameter in the proposed model should also be varied. 

  



 116

REFERENCES 

Abu-Bakar, M.R., Salah, K.A., Ibrahim, N. A. & Haron, K. 2009. Bayesian Approach 

for Joint Longitudinal and Time-to-Event Data with Survival Fraction. Bull. 

Malays.Math. Sci. Soc. 32, 75-100. 

Achcar, A.J., E.A. Coelho-Barros and J. Mazuchel, 2012. Cure fraction models using 

mixture and non-mixture models. Tatra Mt. Math. Publ., 51: 1-9. 

Adekanbi A. A., Olayemi O., Okolo C. A. Fawole , A. O. , Odukogbe A. A. et.al. 2014. 

Survival of Ovarian Cancer patients in Ibadan: Clinical andpathological factors. 

Journal of Obstetrics and Gynaecology, 34: 57–59. 

 Akaike H. 1973.  Information theory and extension of the maximum likelihood 

principle. In Petrov B. N. and Saki F. C Second International Symposium on 

Information Theory (pp. 267-281). 

Aljawadi B.A.I., Abu-Bakar M.R., Ibrahim N.A., et.al. 2012. Parametric Maximum 

Likelihood Estimation of Cure Fraction Using Interval-Censored Data. Science 

Alert. 

 Andersen, P.K. and Keiding, N. 1998. Survival analysis Encyclopedia of Biostatistics 

6. Wiley, pp. 4452-4461 

Andersson Therese ML , Dickman Paul W, Eloranta SandraandLambert Paul C. 2011. 

Estimating and modelling cure in population-based cancer studies within the 

framework of flexible parametric survival modelsBMC Medical Research 

Methodology 2011, 11:96  doi:10.1186/1471-2288-11-96 

Balakrishnan N. et.al. 2012. EM Algorithm-Based Likelihood Estimation for Some 

Cure Rate Models. Journal of Statistical Theory and Practice. 

Balakrishnan N. and Pal Suvra. 2013. Lognormal lifetimes and likelihood-based 

inference for flexible cure rate models based on COM-Poisson family. 

Computational Statistics & Data Analysis 67, pages 41-67. 

Balakrishnan N. and  Pal  S. 2015. An EM algorithm for the estimation of parameters of 

a flexible cure rate model with generalised gamma lifetime and model 

discrimination using likelihood- and information-based methods. Computational 

Statistics 30:1, pages 151-189.  

Balakrishnan N. and  Pal  S. 2015. Likelihood Inference for Flexible Cure Rate Models 

with Gamma Lifetimes.Communications in Statistics - Theory and Methods . 

Volume 44, 2015 - Issue 19https://doi.org/10.1080/03610926.2014.964807 



 117

Barriga Gladys D.C., Cordeiro Gauss M., Dey Dipak K.,. Cancho Vicente G, Louzada 

Francisco, Suzuki Adriano K. 2018. The Marshall-Olkin generalised gamma 

distribution. Communications for Statistical Applications and Methods. 2018, Vol. 25, No. 3, 

245–261https://doi.org/10.29220/CSAM.2018.25.3.245Print ISSN 2287-7843/Online ISSN 2383-4757 

Berkson J. and Gage R.P. 1952. Survival curve for cancer patients following treatment. 

Journal of the American Statistical Association, 47:501515. 

Betensky, R. A. and Schoenfeld, D.A. 2001. Nonparametric Estimation in a cure model 

with Random cure times. Biometrics 57, 282-286. 

Bewick V., Cheek L. and Ball J. 2004.Statistics review 12: Survival analysis.Critical 

Care 2004, 8:389-394 (DOI 10.1186/cc2955 

Binbing Y, Tiwari R, Cronin K, et.al. 2004. Cure fraction estimation from the mixture 

cure models for grouped survival data. Stat Med; 23: 173347. 

Blayney J. 2012. Survival Analysis: An Introduction. 

Boag J.W .1949. Maximum likelihood estimates of the proportion of patients cured by 

cancer therapy. Journal of the Royal Statistical Society. Series B 

(Methodological), 11(1):1553, 1949. 

Burnham K. and Anderson D. 2004. Multi-model inference: Understanding AIC and 

BIC in model selection. Sociological Methods Research, 33:261 304. 

Cancho Vicente G., Ortega Edwin M.M., Barriga Gladys D.C., Hashimoto Elizabeth 

M.. (2011) The Conway–Maxwell–Poisson-generalised gamma regression 

model with long-term survivors. Journal of Statistical Computation and 

Simulation 81:11, pages 1461-1481 

Cancho, V.G, Ortega E.M.M. and Bolfarine H. 2009. The Log-exponentiated-Weibull 

Regression Models with Cure Rate. R CRAN (https://cran.r-

project.org/web/packages/NPHMC/NPHMC.pdf).  

Chao C. 2013. Advanced Methodology Developments in Mixture Cure Models. 

University of South Carolina , Ph.D. Thesis Scholar Commons. 

Chao C., Songfeng, W., Wenbin, L. et.al. 2015. Package 'NPHMC'. Title Sample Size 

Calculation for the Proportional Hazards Mixture. Cure Model. Version 2.2. 

Date 2013-09-23. Description an R-package for calculating sample.  

Chen, M. H., Ibrahim, J. G., and Sinha, D. 1999. A new Bayesian model for survival 

data with a surviving fraction. Journal of the American Statistical Association, 

94(447), 909919. 

 



 118

Chukwu, A. U. and Folorunso, S.A. 2015. Determinant of flexible Parametric 

Estimation of Mixture CureFraction Model: An Application of Gastric cancer 

Data.West African Journal of Industrial & Academic Research Vol.15 No.1. 

Claeskens, G. I. and Keilegom,  V. 2016. The Focused Information Criterion for a 

Mixture Cure Model. Institute of Statistics, Biostatistics and Actuarial Sciences 

Université catholique de Louvainmaller 

Cook A. 2008.Censoring and Truncation; Introduction to Survival  Analysis. 

Coolen A. 2012. Principles of Survival Analysis. 

Cooner, F., Banerjee, S., Carlin, B. P. and Sinha, D. 2007. Flexible Cure Rate 

Modelling under Latent Activation Schemes. J. Amer. Statist. Assoc. 102 

560572. 

Datta A. 2013. A Study of the Cure Rate Model with Case Weights and Time-Dependent 

Weights. Guelph, Ontario, Canada. 

Elangovan, R. and Jayakumar, B. 2016. Cure Rate Models. Asia Pacific Journal of 

Research Vol: Issue XXXVIII.  

Fieller N. 2010. Survival Analysis Course Booklet. Department of Probability and 

Statistics. University of Sheffield. 

 Gallardo D.I., Hctor W. Gmez and Heleno Bolfarine. 2017. A new cure rate model 

based on the YuleSimon distribution with application to a melanoma data set. 

Journal of Applied Statistics 44:7, pages 1153-1164. 

Hsu, W., Todem,, D. and Kim K. 2016. A Sup-Score Test for the Cure Fraction in 

Mixture Models forLong-Term Survivors. Biometrics doi: 10.1111/biom.12514 

Ibrahim J.G, and Chen M.H 2000. Power Prior Distributions for Regression Models. 

Statistical Science. 15:46–60. 

Ibrahim J.G, Chen M.H. and Sinha D. Bayesian Semi-Parametric Models for Survival 

Data with a Cure Fraction. Biometrics. 2001b; 57: 383–388.  

Ibrahim J.G, Chen M.H. and Sinha D.2001. Bayesian Survival Analysis. Springer 

Series in Statistics. Springer-Verlag, New York. 

Judy, P. S. and Jeremy, M. G. T.  2004. Estimation in a Cox Proportional Hazards Cure 

Model. Biometricshttps://doi.org/10.1111/j.0006-341X.2000.00227 

Kaplan, E.L. & Meier, P. 1958. Non-parametric estimation from incomplete 

observations, J American Stats Assn. 53, pp. 457–481, 562–563. 

 

Lambert, P, Thompson, J.R. and Weston, C.L. 2006. Estimating and modeling the cure 



 119

fraction in population based cancer survival analysis, Biostatistics, 8, 576-594. 

Lambert, P 2007. Modeling of the cure fraction in survival studies. Stata J;7:125  

Lambert, P, Dickman, P and Osterlund, P, 2007. Temporal trends in the proportion 

cured for cancer of the colon and rectum: a population based study using data 

from the finish cancer registry. Int J Cancer;121:20529. 

Lore D., Gerda C., Bart B. 2014. An Akaike information criterion for multipleevent 

mixture cure models. 

LucijanicMarko and PetroveckiMladen 2012. Analysis of censored data. Biochemia 

Medica 22(2):151-5, DOI: 10.11613/BM.2012.018 

Maetani, S. and Gamel, J. 2013. Parametric Cure Model versus Proportional Hazards 

Model in Survival Analysis of Breast Cancer and Other Malignancies. Advances 

in Breast Cancer Research, 2, 119-125. doi: 10.4236/abcr.2013.24020. 

Maller, R.A. and X. Zhou, 1996. Survival Analysis with Long-Term Survivors. Wiley, 

New York, ISBN: 9780471962014, Pages: 278. 

National Cancer Institute, 2018. NCI Dictionary of Cancer Terms. 

Odukogbe, A.A, Adewole, I.F., Ojengbede, O.A., Olayemi, O.,Oladokun, A., et.al. 

2001. Grand-multi-parity trends and complications: a study in two hospital 

settings. Journal of Obstetrics and Gynaecology, 21, 361-367. 

Odukogbe, A.A., Adebamowo ,C.A., Ola, B., Olayemi, O.,Oladokun, A., Adewole, I.F., 

et.al. 2004. Ovarian cancer in Ibadan: characteristics and management. Journal 

of Obstetrics and Gynaecology, vol.24 N.3, 294-297. 

Ortega Edwin M. M., Cancho Vicente G.  and  Lachos Victor Hugo 2008. Assessing 

influence in survival data with a cure fraction and covariates. SORT 32 (2) July-

December 2008, 115-140 

Ortega E. M .M., Barriga G. D. C., Hashimoto E. M, et.al. 2014. A New Class of 

Survival Regression Models with Cure Fraction. A perspective. Eur J Cancer; 

45:106779. 

Patilea V. and Keilegom I.V. 2017. A General Approach for Cure Models in Survival 

Analysis. 

Ranganathan R., Rajaraman S. and Perumal V. 2010. Cure Models for Estimating 

Hospital-Based Breast Cancer Survival. Asian Pacific journal of cancer 

prevention. VL – 11 

Ristic,  M.M. and Balakrishnan, N. 2011. The gamma-exponentiated exponential 

distribution. J. Statist. Comput. Simulation. 



 120

doi:10.1080/00949655.2011.574633. 

Rodrigues Josemar, Cancho Vicente G, Castro Mario de, Balakrishnan N. (2012) A 

Bayesian destructive weighted Poisson cure rate model and an application to a 

cutaneous melanoma data. Statistical Methods in Medical Research 21:6, pages 

585-597. 

Rodrigues, J., Cancho, V.G., De Castro, M. and Louzada-Neto, F., 2009. On the 

unification of the long-term survival models. Statistics and Probability. Letters 

79,753759. 

Roynette Bernard, Vallois Pierre, Yor Marc. 2009. A family of generalised 

gamma convoluted variables.Probability and Mathematical Statistics, 

29 (2), pp.181-204. hal-00292334 

Sebah Pascal and Gourdon Xavier. 2002. Introduction to the Gamma Function numbers 

computation free fr / Constants /.html 

Shuangge, M. A. 2009. Cure Model with Current Status Data. Statistica Sinica 19 , 233-

249 

Smoll, N.R., Schaller, K. and Gautschi, O.P. 2012. The cure Fraction of Glioblastoma 

Multiforme Neuroepidemiology 2012;39:63–69 

https://doi.org/10.1159/000339319 

Sposto, R. 2002. Cure model analysis in cancer: an application to data from the 

Children Cancer Group. Stat Med;21:293312. 

Taweab, F., Ibrahim, N. A. and Arasan J. 2015. A Bounded Cumulative Hazard Model 

with A change- Point According to a Threshold in a Covariate for Right-

Censored Data 

Tsodikov A, Loeffler M and Yakovlev A 1998. A Cure Model with Time-Changing 

Risk Factor: An Application to the Analysis of Secondary Leukemia. A Report 

from the International Database on Hodgkin’s Disease. Statistics in 

Medicine.;17:27–40.PubMed 

Walck C, 2007, Hand-book on Statistical Distribution for Experimentalists, Particle 

Physics Group, Fysikum University of Stockholm. 

Wang M. 2006. Summary Notes for Survival Analysis. Department of 

BiostatisticsJohns Hopkins University. 

Wenbin, L. 2010.Efficient Estimation for an Accelerated Failure Time Model with a 

Cure Fraction. Statistica Sinica 20 661-674 



 121

Wienke, A., Lichtenstein, P. and Yashin, A.I. 2003. A Bivariate Frailty Model With A 

Cure Fraction Modeling Familial Correlations In Diseases, Biometrics 59,1178-

1189 

Wolsztynski E. 2015. ST3054/ST6004 - Survival Analysis. Department of Statistics 

School of Mathematical Sciences University College Cork, Ireland. 

Yakovlev, A.Y and Tsodikov, A.D. 1996. Stochastic Models of Tumor Latency and 

Their Biostatistical Applications. World Scientific, Singapore. 

Yakovlev, A.Y. 1994. Parametric versus nonparametric methods for estimating cure 

rates based on censored survival-data. Statistics in Medicine 13 (9), 983985 

Yakovlev, A.Y., Tsodikov, A.D. and Bass, L., 1993. A stochastic-model of hormesis. 

Mathematical Biosciences 116 (2), 197219. 

Yi Li and Tiwari. 2007. Mixture cure survival models with dependent censoring. 

Yigzaw A. L. and Demeke L. W. 2019. Survival analysis of time to cure on multi-drug 

resistance tuberculosis patients in Amhara region, Ethiopia BMC Public Health 

19:165 https://doi.org/10.1186/s12889-019-6500-3 

Yin, G. and Ibrahim, J.G., 2005. Cure rate models: a unified approach. The 

CanadianJournal of Statistics 33 (4), 559570 

Yingwei P. and Keith B. G. 2000. A Nonparametric Mixture Model for Cure Rate 

Estimation Biometrics Vol. 56, No. 1 (Mar., 2000), pp. 237-243 

https://www.jstor.org/stable/2677127 

Yu-Gu, D. S. and Banerjee S.2010. Analysis of Cure Rate Survival Data under 

Proportional Odds Model. 

Zhao, G.M.A. 2008. Nonparametric and Parametric Survival Analysis of Censored 

Data with Possible Violation of Method Assumptions. 

Zografos, K. and  Balakrishnan, N. 2009. On families of beta- and generalised gamma 

generated distributions and associated inference. Stat. Method., 6, 344-362. 

 

 

 

 

 

 

APPENDICES 



 122

 

a. R Code used for Exploratory Data Analysis. 

b. R Code for used for the Analysis 

c. R code for Simulation Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A 



 123

R Code for Exploratory Data Analysis 

a=200 b=10 c=12 d=1.3 x=seq(0,5,0.01) bww1.pdf=function(x,a,b,c,d){ k1=(1-exp(-

x^d)) k2=(1-exp(-(1+c)*x^d))/(c+1) k3=((c+1)/c)*k1 k6=(1-exp(-c*x^d)) 

k7=((c+1)/c)*d*x^(d-1)*exp(-x^d) k8=(k3-k2)^(a-1) k9=(1-(k3-k2))^(b-1) k4=beta(a,b) 

k5=1/k4 bww1.pdf=k5*k8*k9*k7*k6 } 

plot(x,bww1.pdf(x,200,10,12,1.3),col="red",ylim=c(0,3.5),type="p 

",xlab="x",ylab="pdf BWWD") lines(x,bww1.pdf(x,150,8,12,1.3),col="blue",lty=2) 

lines(x,bww1.pdf(x,100,6,12,1.3),col="black",lty=4) 

lines(x,bww1.pdf(x,10,5,12,1.3),col="green",lty=6) 

legend("topright",inset=0.02,col=c("red","blue","black","green") 

,legend=c("a=200,b=10,c=12,d=1.3","a=150,b=8,c=12,d=1.3","a=100, 

b=6,c=12,d=1.3","a=10,b=5,c=12,d=1.3"),lty=1:2:4) 

When a = 1 

a=1 b=10 c=12 d=1.3 x=seq(0,5,0.01) bww1.pdf=function(x,a,b,c,d){ k1=(1-exp(-x^d)) 

k2=(1-exp(-(1+c)*x^d))/(c+1) k3=((c+1)/c)*k1 k6=(1-exp(-c*x^d)) 

k7=((c+1)/c)*d*x^(d-1)*exp(-x^d) k8=(k3-k2)^(a-1) k9=(1-(k3-k2))^(b-1) k4=beta(a,b) 

k5=1/k4 bww1.pdf=k5*k8*k9*k7*k6 } 

plot(x,bww1.pdf(x,1,10,12,1.3),col="red",ylim=c(0,3.5),type="p", xlab="x",ylab="pdf 

LWWD (when a = 1) " ) lines(x,bww1.pdf(x,1,8,12,1.3),col="blue",lty=2) 

lines(x,bww1.pdf(x,1,6,12,1.3),col="black",lty=4) 

lines(x,bww1.pdf(x,1,5,12,1.3),col="green",lty=6) 

legend("topright",inset=0.02,col=c("red","blue","black","green") 

,legend=c("a=1,b=10,c=12,d=1.3","a=1,b=8,c=12,d=1.3","a=1,b=6,c= 

12 ,d=1.3","a=1,b=5,c=12,d=1.3"),lty =1:2:4) 

When b = 1 

a=200 b=1 c=12 d=1.3 x=seq(0,5,0.01) bww1.pdf=function(x,a,b,c,d){ k1=(1-exp(-

x^d)) k2=(1-exp(-(1+c)*x^d))/(c+1) k3=((c+1)/c)*k1 k6=(1-exp(-c*x^d)) 

k7=((c+1)/c)*d*x^(d-1)*exp(-x^d) k8=(k3-k2)^(a-1) k9=(1-(k3-k2))^(b-1) k4=beta(a,b) 

k5=1/k4 bww1.pdf=k5*k8*k9*k7*k6 } 

plot(x,bww1.pdf(x,200,1,12,1.3),col="red",ylim=c(0,3.5),type="p" 

,xlab="x",ylab="pdf EWWD (when b = 1) " ) 

lines(x,bww1.pdf(x,150,1,12,1.3),col="blue",lty=2) 

lines(x,bww1.pdf(x,100,1,12,1.3),col="black",lty=4) 

lines(x,bww1.pdf(x,10,1,12,1.3),col="green",lty=6) 
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legend("topleft",inset=0.02,col=c("red","blue","black","green"), 

legend=c("a=200,b=1,c=12,d=1.3","a=150,b=1,c=12,d=1.3","a=100,b= 1 

,c=12,d=1.3","a=10,b=1,c=12,d=1.3"),lty =1:2:4) 

When a = b = 1 

a=1 b=1 c=12 d=1.3 x=seq(0,5,0.01) bww1.pdf=function(x,a,b,c,d){ k1=(1-exp(-x^d)) 

k2=(1-exp(-(1+c)*x^d))/(c+1) k3=((c+1)/c)*k1 k6=(1-exp(-c*x^d)) 

k7=((c+1)/c)*d*x^(d-1)*exp(-x^d) k8=(k3-k2)^(a-1) k9=(1-(k3-k2))^(b-1) k4=beta(a,b) 

k5=1/k4 bww1.pdf=k5*k8*k9*k7*k6 } 

plot(x,bww1.pdf(x,1,1,12,1.3),col="red",ylim=c(0,3.5),type="p",x lab="x",ylab="pdf 

WW (when a = b = 1) " ) 

lines(x,bww1.pdf(x,1,1,12,1.3),col="blue",lty=2) 

lines(x,bww1.pdf(x,1,1,12,1.3),col="black",lty=4) 

lines(x,bww1.pdf(x,1,1,12,1.3),col="green",lty=6) 

legend("topleft",inset=0.02,col=c("red","blue","black","green"), 

legend=c("a=1,b=1,c=12,d=1.3","a=1,b=1,c=12,d=1.3"," 

a=1,b=1,c=12,d=1.3","a=1,b=1,c=12,d=1.3"),lty=1:2:4) 
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Appendix B 

R Code for the Analysis 

library(tidyverse) library(readxl) 

library(maxLik) library(survival) 

library(gsl) library(flexsurvcure) 

library(smcure) library(car) 

library(gtools) library(xtable) 

require("knitr") 

require("markdown") 

require("rattle") 

require("xtable") 

require("stringr") 

require("fBasics") 

require("MASS") 

require("survival")  

require("STAR") 

require("gamlss.dist") 

require("VGAM") getwd() 

setwd("C:/Users/FOLORUNSO/

Desktop/AlhajaSF") cerv <- 

read.csv(’OvarianC.csv’, 

header=T) attach(cerv) 

    General Log-Likelihood Function cureloglike <- function(stime,d,dist){ distri <- dist 

function(p){ params <- p alpha <- params[1] if(distri=="lnorm"){ 

mu <- params[2] ; sigma <- params[3] fu <- dlnorm(stime,mu,sigma) su <- 1 - 

plnorm(stime,mu,sigma) }else if(distri=="weibull"){ sh <- params[2] ; sc <- params[3] 

fu <- dweibull(stime,sh,sc) su <- 1 - pweibull(stime,sh,sc) }else if(distri=="llogis"){ sh 

<- params[2] ; sc <- params[3] fu <- dlogis(log(stime),log(sh),1/sc) su <- 1 - 

plogis(log(stime),log(sh),1/sc) 

}else if(distri=="gengamma"){ beta <- params[2] ; a <- params[3]; teta <- params[4] 

 a1 <- beta/(teta*gamma(a)) 

 a2 <- (stime/teta)^(a*teta - 1)  a3 <- exp(-(stime/teta)^beta) fu <- 

dgengamma.orig(stime,shape=beta,scale=a,k=teta)  su <- 1 - 
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pgamma(log(stime/a),shape=teta,scale=beta) su <- 1 - 

pgengamma.orig(stime,shape=beta,scale=a,k=teta) 

} else if(distri=="gamgengengam"){ work in progress} 

else stop("Error:Undefined Distribution given") 

cure <- exp(alpha)/(1 + exp(alpha)) ft <- (1 - cure)*fu st <- cure + (1 - cure)*su loglike 

<- sum(log(ft^d * st^(1-d) )) return(-loglike) } 

} 

   Assuming the Censoring Indicator Equals Cure Indicator (Not a Good Option) 

    Lognormal Cure clm <- 

cureloglike(stime=cerv$Ovarian,d=cerv$Censoring,dist="lnorm") clm_results <- 

nlm(clm, p=c(alpha=-2,mu=2.1,sigma=0.5), hessian=T,iterlim=1000) aiclognorm <- (-

2*-clm_results$minimum) + (2 *length(clm_results$estimate )) 

 serror for meanlog and sdlog serror_lnorm <- 

sqrt(diag(solve(clm_results$hessian)))[2:3] names(clm_results$estimate) <- 

c("alpha","mu","sigma") alpha<- -291.0669819 cure_lnorm <- 

exp(alpha)/(1+exp(alpha));cure_lnorm  cure_lnorm <- 

deltaMethod(clm_results$estimate, "exp(alpha)/(1+exp(alpha))") 

    Survival Plot of lognormal Cure Model ( Ovarian ) fit<-survfit(Surv(Ovarian, 

Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)",main="Survival Plot (Ovarian Cancer)") stsl <- 

clm_results$estimate[1] + (1- clm_results$estimate[1])*(1-plnorm(cerv[,1], 

clm_results$estimate[2],clm_results$estimate[3])) lines(Ovarian,stsl,col=3,lwd=2) 

legend("topright",c("Kaplan-Meier","Lognormal Cure"),col=c(1,3),lwd=2) 

 

    Weibull Results cwe <- 

cureloglike(stime=cerv$Ovarian,d=cerv$Censoring,dist="weibull") cwe_results <- 

nlm(cwe,p=c(alpha=0.2,sh=0.5,sc=5), hessian=T,iterlim=1000) aicws <- (-2*-

cwe_results$minimum) + (2 *length(cwe_results$estimate )) 

 obtaining cure fraction and its serror serror_weibull <- 

sqrt(diag(solve(cwe_results$hessian)))[2:3] names(cwe_results$estimate) <- 

c("alpha","shape","scale") alpha<- -132.543320 cure_wei <- 

exp(alpha)/(1+exp(alpha));cure_wei 

    Survival Plot of weibull Cure Model ( Ovarian ) fit<-survfit(Surv(Ovarian, 

Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, xlab="Time",ylab="S(t)") stwei <- 
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cwe_results$estimate[1] + (1- cwe_results$estimate[1])*(1-pweibull(cerv[,1], 

cwe_results$estimate[2],cwe_results$estimate[3])) lines(Ovarian,stwei,col=2,lwd=2) 

legend("topright",c("Kaplan-Meier","weibull Cure"),col=c(1,2),lwd=2) 

new_data0 <- cerv[(cerv$Censoring==0),1] new_data1 <- cerv[(cerv$Censoring==1),1] 

para1 <- fitdistr(new_data0,"weibull")$estimate cureloglike <- 

function(new_data0,new_data1,fixed=c(F,F,F)){ params <- fixed function(p){ 

params[!fixed] <- p c <- params[1] alpha <- params[2] beta <- params[3] a <- 

alpha/(beta^alpha) b <- new_data1^(alpha-1) 

ft <- a * b*exp(-(new_data1/beta)^alpha) st <- 1 - pweibull(new_data0,alpha,beta) d <- 

sum(log((1-c)*ft)) e <- sum(log(c + ((1-c) *st ))) loglike <- -( d+e ) loglike } } nLL <- 

cureloglike(new_data0,new_data1) results1 <- nlm(nLL,c(c = 0.5,alpha = para1[1] ,beta 

= para1[2]) 

,hessian=T,iterlim=1000) 

fit<-survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") stwc <- results1$estimate[1] + (1- results1$estimate[1])*(1-

pweibull(cerv[,1], results1$estimate[2],results1$estimate[3])) 

lines(Ovarian,stwc,col=2,lwd=2) legend("topright",c("Kaplan-Meier","Weibull 

Cure"),col=c(1,2),lwd=2) 

    Log-Logistic Results cllogis <- 

cureloglike(stime=cerv$Ovarian,d=cerv$Censoring,dist="llogis") cllogis_results <- 

nlm(cllogis,p=c(alpha=-2,sh=2,sc=20), hessian=T,iterlim=1000) aicllog <- (-2*-

cllogis_results$minimum) + (2 *length(cllogis_results$estimate )) 

 obtaining cure fraction and its serror serror_llogis <- 

sqrt(diag(solve(cllogis_results$hessian)))[2:3] names(cllogis_results$estimate) <- 

c("alpha","scale","shape") alpha<- -21.321942 cure_llog <- 

exp(alpha)/(1+exp(alpha));cure_llog 

fit<-survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") stll <- cllogis_results$estimate[1] + (1- 

cllogis_results$estimate[1])*(1-pllogis 

( cerv[,1],cllogis_results$estimate[2],cllogis_results$estimate [3])) 

lines(Ovarian,stll,col=4,lwd=2) legend("topright",c("Kaplan-Meier","LogLogistic 

Cure"),col=c(1,4),lwd=2) 

   new_data0 <- cerv[(cerv$Censoring==0),1] new_data1 <- 

cerv[(cerv$Censoring==1),1] para1 <- fitdistr(new_data0,"llogis")$estimate  para1 <- 
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llogisMLE(new_data0)$estimate cureloglike <- 

function(new_data0,newdata1,fixed=c(F,F,F)){ params <- fixed 

function(p){ params[!fixed] <- p c <- params[1] alpha <- params[2] beta <- params[3] a 

<- ( alpha/beta)*((new_data1/beta)^(alpha -1)) b <- (1+(( new_data1/beta)^alpha))^ 2 ft 

<- a/b st <- 1 - pllogis(new_data0,alpha,beta) d <- sum(log((1-c)*ft)) e <- sum(log(c + 

((1-c) *st ))) loglike <- -( d+e ) loglike } } nLL <- cureloglike(new_data0,new_data1) 

results1 <- nlm(nLL,c(c = 0.5,alpha = 0.075 ,beta = 0.2) ,hessian=T,iterlim =1000) fit<-

survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") stll <- results1$estimate[1] + (1- results1$estimate[1])*(1-

pllogis(cerv[,1], results1$estimate[2],results1$estimate[3])) 

lines(Ovarian,stll,col=4,lwd=2) legend("topright",c("Kaplan-Meier","LogLogistic 

Cure"),col=c(1,4),lwd=2) 

    Generalised Gamma Results clgengam <- 

cureloglike(stime=cerv$Ovarian,d=cerv$Censoring,dist="gengamma") 

clgengam_results <- nlm(clgengam,p=c(alpha=-3,a=0.2,beta=0.02,teta=6), 

hessian=T,iterlim=1500,steptol=1e-5, gradtol=1e-6) aicgengam <- (-2*-

clgengam_results$minimum) + (2 *length(clgengam_results$estimate )) 

 obtaining cure fraction and its serror 

serror_gengamma <- sqrt(diag(solve(clgengam_results$hessian)))[2:4] 

names(clgengam_results$estimate) <- c("alpha","shape","scale","teta") alpha<- -

5.839908e+02 cure_GG <- exp(alpha)/(1+exp(alpha));cure_GG 

fit<-survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") stgg <- clgengam_results$estimate[1] + (1- 

clgengam_results$estimate [1])* 

(1- pgengamma.stacy(cerv[,1],clgengam_results$estimate[2],clgengam_results$estimate 

[3])) lines(Ovarian,stgg,col=5,lwd=2) legend("topright",c("Kaplan-Meier","GG 

Cure"),col=c(1,5),lwd=2) 

    new_data0 <- cerv[(cerv$Censoring==0),1] new_data1 <- 

cerv[(cerv$Censoring==1),1] k <- exp(-1); Scale <- exp(1) gdata <- 

data.frame(y=new_data0) para1 <- 

coef(vglm(y~1,gengamma.stacy,gdata,shape=k,scale=Scale)) cureloglike <- 

function(new_data0,newdata1,fixed=c(F,F,F,F)){ params <- fixed function(p){ 

params[!fixed] <- p c <- params[1] aa <- params[2] dd <- params[3] pp <- params[4] a 

<- ( pp/(aa^dd))/gamma(dd/pp ) b <- ( new_data1^(dd-1))*(exp(-new_data1/aa)^pp ) ft 
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<- a*b st <- 1 - pgengamma.stacy(new_data0,aa,dd,pp) d <- sum(log((1-c)*ft)) e <- 

sum(log(c + ((1-c) *st ))) loglike <- -( d+e ) loglike } } nLL <- 

cureloglike(new_data0,new_data1) results1 <- optim(c(c = 0.5,0.5,0.5,0.5), 

nLL,method="SANN",hessian=T, control=list(maxit=10000)) fit<-

survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") stggs <- results1$estimate[1] + (1- results1$estimate[1])*(1-

pgengamma.stacy(cerv[,1], results1$estimate[2],results1$estimate[3])) 

lines(Ovarian,stggs,col=5,lwd=2) legend("topright",c("Kaplan-Meier","GG 

Cure"),col=c(1,5),lwd=2) 

fit<-survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") lines(cerv[,1],stsl,col=3,lwd=2) 

lines(cerv[,1],stwei,col=2,lwd=2) lines(cerv[,1],stll,col=4,lwd=2) 

lines(cerv[,1],stggs,col=5,lwd=2) legend("topright",c("Kaplan-

Meier","lnorm","weibull","llogis","GG"),col=c(1,3,2,4,5), lwd=c(1,2,2,2,2)) 

library(actuar) 

fitf1 <- fitdist(Ovarian, "weibull") summary(fitf1) fitf2 <- fitdist(Ovarian, 

"llogis",start=list(shape=1,scale=500)) summary(fitf2) fitf3 <- fitdist(Ovarian, "lnorm") 

summary(fitf3) fitf4 <- fitdist(Ovarian, "gamma") summary(fitf4) fitf5 <- 

fitdist(Ovarian, "pareto", start=list(shape=1,scale=500)) summary(fitf5) cdfcomp(fitf2, 

lwd=2, legendtext="Loglogistic") cdfcomp(fitf3, lwd=2, legendtext="Lognormal") 

cdfcomp(fitf4, lwd=2, legendtext="GenGamma") cdfcomp(fitf5, lwd=2, 

legendtext="GammaGenGamma") 

    Modified Generalised Gamma 

setwd("C:/Users/FOLORUNSO/Desk

top/AlhajaSF") cerv <- 

read.csv(’OvarianC.csv’, header=T) 

attach(cerv) 

new_data0 <- cerv[(cerv$Censoring==0),1] new_data1 <- cerv[(cerv$Censoring==1),1] 

k <- exp(-1); Scale <- exp(1) gdata <- data.frame(y=new_data0) para1 <- 

coef(vglm(y~1,gengamma.stacy,gdata,shape=k,scale=Scale)) cureModelloglike <- 

function(new_data0,new_data1,fixed=c(F,F,F,F,F)){ params <- fixed function(p){ 

params[!fixed] <- p a <- params[1] b <- params[2] mu <- params[3] sigma <- params[4] 

m <- (1/gamma(b))*(-log(1 - dgamma(new_data1,a,exp((log(new_data1)-

mu)/sigma))))^(b-1) v <- (1 /sigma*gamma(a))*(exp(a*((log(new_data1)-mu)/sigma)-
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exp((log(new_data1)-mu)/sigma )) fu <- m*v su <- 1 - ((dgamma((-log(1 - 

dgamma(new_data1,a, exp((log(new_data1)-mu)/sigma)))), b)) 

*(gamma(-log(dgamma(new_data1,a, exp((log(new_data1)-mu)/sigma)))))/gamma(b)) 

cure <- exp(a)/(1 + exp(a)) ft <- (1 - cure)*(fu) 

st <- cure + (1 - cure)*su loglike <- 

sum(log(ft^(new_data1) * st^(1-(new_data1)))) 

return(-loglike) 

} } nLL <- cureModelloglike(new_data0,new_data1) results11 <- 

optim(c(c = 0.5,0.02,0.1,0.075), nLL,method="SANN",hessian=T, 

control=list(maxit=10000)) 

 results1 <- nlm(nLL,p=c(a=100, b=121,mu =520,sigma = 102), 

hessian=T,iterlim=1000) se <- sqrt(diag(solve(results1$hessian))) aicggs <- (-

2*results1$value) + (2 *length(results1$par )) 

fit<-survfit(Surv(Ovarian, Censoring) ~ Group, data = cerv) plot(fit,lty 

= 2:3, xlab="Time",ylab="S(t)") plot.survival(fit,lty = 2:3, 

xlab="Time",ylab="S(t)") stggs <- results1$estimate[1] + (1- 

results1$estimate[1])*(1-pgengamma.stacy 

( cerv[,1],results1$estimate[2],results1$estimate [3])) 

lines(Ovarian,stggs,col=5,lwd=2) legend("topright",c("Kaplan-

Meier","GG Cure"),col=c(1,5),lwd=2) 
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Appendix C 

R Code for Simulation 

 

 Simulation Study 

 set.seed(123) 

Ovarian10_50 <- matrix(replicate(50, 

runif(10,1,100)), 10) censtimes <- 3 + 20 *runif 

(10) ztimes <- pmin(Ovarian10_50, censtimes) 

status <- ifelse(censtimes < Ovarian10_50, 1, 0) 

;status simdata10<- data.frame(Ovarian10_50, 

censoring);simdata10 write.csv(Ovarian10_50, 

file="Ovarian10_50.csv") 

exp.fit <- 

survreg(Surv(cerv[,1],cerv[,2])~1,dist="weib",scale=1) 

coeff <- exp.fit$coeff   muhat var <- exp.fit$var thetahat <- 

exp(coeff)   exp(muhat) thetahat muhat <- exp.fit$coeff  

model Evaluation bias.est=thetahat-cerv[,1]  subtract y 

values bias=mean(bias.est)  average over all x values 

bias2=bias^2  square 

MSE<-var+bias2 

RMSE<-sqrt(MSE) 

cerv.u <- 

cerv[,1][cerv$Censoring=

=1] nu <- length(cerv.u) 

scalehat <- 

rep(exp(muhat),nu) 

Shat <- 1 - pweibull(cerv.u,1,scalehat) 

LCL <- exp(log(Shat)*exp(1.96/sqrt(nu))) 

UCL <- exp(log(Shat)*exp(-

1.96/sqrt(nu))) C.I.Shat <- 

data.frame(cerv.u,Shat,LCL,UCL) 

round(C.I.Shat,5)  

qq.weibull(Surv(cerv[,1],cerv[,2]),scale

=1) 
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  Weibull fit weib.fit <- 

survreg(Surv(cerv[,1],cerv[,2])~1,dist="weib") 

summary(weib.fit) 

  Estimated median along with a 95% C.I. (in months). 

medhat <- 

predict(weib.fit,type="uquantile",p=0.5,se.fit=T) 

medhat1 <- medhat$fit[1] medhat1.se <- 

medhat$se.fit[1] exp(medhat1) 

C.I.median1 <- c(exp(medhat1),exp(medhat1-

1.96*medhat1.se), exp(medhat1+1.96*medhat1.se)) 

names(C.I.median1) <- c("median1","LCL","UCL") 

C.I.median1 

 qq.weibull(Surv(cerv[,1],cerv[,2])) 

 weib.fit0 <- survReg(Surv(weeks,status) ~ 1 ,dist="weib" ) 

 summary(weib.fit0) weib.fit1 <- 

survreg(Surv(cerv[,1],cerv[,2]) ~ Group,dist="weib") 

summary(weib.fit1) weib.fit1$linear.predictors 

weib.fit20 <- 

survReg(Surv(weeks,status) ~ 1 , 

data=aml[aml$group==0,],dist="wei

b") weib.fit21 <- 

survReg(Surv(weeks,status) ~ 1 , 

data=aml[aml$group==1,],dist="wei

b") 

 lognorm fit.lognorm <- 

survreg(Surv(cerv[,1],cerv[,2])~1,dist="lognormal") 

qq.reg.resid.r(aml1,aml1$weeks,aml1$status,fit.lognorm,"q

norm", "standard normal quantile") 

  Estimated median along with a 95% C.I. (in months). 

medhat <- predict(fit.lognorm,type="uquantile",p=0.5,se.fit=T) 

medhat1 <- medhat$fit[1] 

medhat1.se <- medhat$se.fit[1] 

exp(medhat1) 
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  Log-logistic fit loglogis.fit<-survreg(Surv(cerv[,1],cerv[,2])~1,dist="loglogistic") 

summary(loglogis.fit) 

 Estimated median along with a 95% C.I. (in weeks). 

medhat <- 

predict(loglogis.fit,type="uquantile",p=0.5,se.fit=T) 

medhat1 <- medhat$fit[1] medhat1.se <- 

medhat$se.fit[1] exp(medhat1) 

C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se), 

exp(medhat1+1.96*medhat1.se)) 

names(C.I.median1) <- 

c("median1","LCL","UCL") 

C.I.median1 

qq.loglogistic(Surv(weeks,status)) 

  Generalised Gamma fit 

GG.fit<-survreg(Surv(cerv[,1],cerv[,2])~1,dist="extreme") 

summary(loglogis.fit) 

 Estimated median along with a 95% C.I. (in weeks). 

medhat <- 

predict(GG.fit,type="uquantile",p=0.5,se.fit=T) 

medhat1 <- medhat$fit[1] medhat1.se <- 

medhat$se.fit[1] exp(medhat1) 

C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se), 

exp(medhat1+1.96*medhat1.se)) 

names(C.I.median1) <- c("median1","LCL","UCL") 

C.I.median1 qq.loglogistic(Surv(weeks,status))                                                               

 Simulation estimate setwd("C:/Users/ FOLORUNSO /Desktop/AlhajaSF") simdata500 

<- read.csv(’simdata500.csv’, header=T) attach(simdata500) survgengam<-

flexsurvcure(Surv(lifetimes, status) ~ Group, data=simdata500, dist="gengamma", 

link="loglog", mixture = TRUE) survllogis<-flexsurvcure(Surv(lifetimes, status) ~ 

Group, data=simdata500, dist="llogis", link="loglog", mixture = TRUE) survwei<-

flexsurvcure(Surv(lifetimes, status) ~ Group, data=simdata500, dist="weibull", 

link="loglog", mixture = TRUE) survlnorm<-flexsurvcure(Surv(lifetimes, status) ~ 

Group, data=simdata500, dist="lnorm", link="loglog", mixture = TRUE) 

summary(survgengam) 
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  Alhaja’s Curves     

library(fitdistrplus) 

library(MASS) library(actuar) 

library(moments) 

library(extraDistr)  library(gbs) 

library(stats) library(lattice) 

getwd() setwd("C:/Users/ 

FOLORUNSO 

/Desktop/AlhajaSF") cerv <- 

read.csv(’OvarianC.csv’, 

header=T) attach(cerv) 

Dead <- cerv[(cerv$Censoring==0),1] Alive <- 

cerv[(cerv$Censoring==1),1] plotdist(Dead, 

histo = TRUE, demp = TRUE, col="yellow") 

plotdist(Alive, histo = TRUE, demp = TRUE, 

col="violet") densityplot(Ovarian, lwd=2, col = 

"blue") library(reliaR) 

  fitting distribution on Ovarian data library(actuar) fitf1 <- 

fitdist(Ovarian, "weibull") summary(fitf1) fitf2 <- fitdist(Ovarian, 

"llogis",start=list(shape=1,scale=500)) summary(fitf2) fitf3 <- 

fitdist(Ovarian, "lnorm") summary(fitf3) fitf4 <- fitdist(Ovarian, 

"gamma") summary(fitf4) fitf5 <- fitdist(Ovarian, 

"gengammagen", start=list(shape=1,scale=500)) summary(fitf5) 

x<-Ovarian par(mfrow=c(1,2),mar=c(5.1,5.1,4.1,2.1))   

Make room for the hat. 

  S(t), the survival curve curve((1-pgengamma.orig(x, scale=30.05032172, 

shape=1.84062842,k=10.03142, lower.tail=FALS from=0, to=200, col=’red’, lwd=2, 

ylab=expression(hat(S)(t)), xlab=’t’,bty=’n’,ylim=c(0,1) 

  h(t), the hazard curve curve(dgengamma.orig(x, scale=30.05032172, 

shape=1.84062842, k=10.03142)/(1-pgengamma.orig (x, scale=30.05032172, 

shape=1.84062842,k=10.03142, lower.tail=FALSE)), from=0, to=200, col=’blue’, 

lwd=2, ylab=expression(hat(h)(t)), xlab=’t’,bty=’n’) 
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 PDF plot of the models m<-curve(dweibull(x, scale=50.339355, shape=1.553091), 

col=’red’, ylab=’f(x)’, bty=’n’) p<-curve(dllogis(x, scale=39.513559, shape=2.142304), 

col=’blue’, ylab=’f(x)’, bty=’n’) q<-curve(dlnorm(x, meanlog=3.5254222, 

sdlog=0.9699595), col=’yellow’, ylab=’f(x)’, bty=’n’) r<-curve(dgamma(x, 

rate=0.04032172, shape=1.84062842), col=’green’, ylab=’f(x)’, bty=’n’) s<-

curve(dgengamma.orig(x, scale=30.05032172, shape=1.84062842, k=10.03142), 

col=’violet’, ylab=’f(x)’, bty=’n’) 

plot(c(x,m,p,q,r,s), lwd=2, type="s", bty="n", 

xlab="Ovarian Cancer", ylab="f(x)") lines(m, col = 

"blue", lwd=2) lines(p, col = "violet", lwd=2) lines(q, col 

= "yellow", lwd=2) lines(r, col = "green", lwd=2) lines(s, 

col = "orange", lwd=2) 

legend("topleft",c("Ovarian","Weibull","loglogistics","lo

gnormal 

","GenGamma", "ModifiedGenGamma"), 

col=c(1,"blue","violet","yellow","green","orange"),lwd=c(1,2,2,2,2,2), cex=0.45) 

a<-dweibull(x, scale=50.339355, shape=1.553091) b<-

dllogis(x, scale=39.513559, shape=2.142304) c<-dlnorm(x, 

meanlog=3.5254222, sdlog=0.9699595) d<-dgamma(x, 

rate=0.04032172, shape=1.84062842) e<-dgengamma.orig(x, 

scale=30.05032172, shape=1.84062842, k=10.03142) 

plot(c(x,a,b,c,d,e),lwd=2, type="s", 

bty="n") lines(x, col = "red", 

lwd=2) lines(a, col = "blue", 

lwd=2) lines(b, col = "violet", 

lwd=2) lines(c, col = "yellow", 

lwd=2) lines(d, col = "green", 

lwd=2) lines(e, col = "orange", 

lwd=2) 

 

 Simulation Study 

                                    set.seed(123) 

Ovarian10_50 <- matrix(replicate(50, 

runif(10,1,100)), 10) censtimes <- 3 + 20 *runif 
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(10) ztimes <- pmin(Ovarian10_50, censtimes) 

status <- ifelse(censtimes < Ovarian10_50, 1, 0) 

;status simdata10<- data.frame(Ovarian10_50, 

censoring);simdata10 write.csv(Ovarian10_50, 

file="Ovarian10_50.csv") 

weib.fit <- 

survreg(Surv(cerv[,1],cerv[,2])~1,dist="weib") 

summary(weib.fit) coeff <- weib.fit$coeff   muhat 

var <- weib.fit$var thetahat <- exp(coeff)   

exp(muhat) thetahat muhat <- weib.fit$coeff  

model Evaluation bias.est=thetahat-cerv[,1]  

subtract y values bias=mean(bias.est)  average 

over all x values bias2=bias^2  square MSE<-

var+bias2 RMSE<-sqrt(MSE) cerv.u <- 

cerv[,1][cerv$Censoring==1] nu <- length(cerv.u) 

scalehat <- rep(exp(muhat),nu) Shat <- 1 - 

pweibull(cerv.u,1,scalehat) 

LCL <- exp(log(Shat)*exp(1.96/sqrt(nu))) 

UCL <- exp(log(Shat)*exp(-

1.96/sqrt(nu))) C.I.Shat <- 

data.frame(cerv.u,Shat,LCL,UCL) 

round(C.I.Shat,5) 

  Estimated median along with a 95% C.I. (in weeks). 

medhat <- predict(weib.fit,type="uquantile",p=0.5,se.fit=T) medhat1 <- medhat$fit[1] 

medhat1.se <- medhat$se.fit[1] exp(medhat1)  median time to cure 

C.I.median1 <- c(exp(medhat1),exp(medhat1-

1.96*medhat1.se), exp(medhat1+1.96*medhat1.se)) 

names(C.I.median1) <- c("median1","LCL","UCL") 

C.I.median1 
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