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ABSTRACT

The estimation of static panel data model assumes homoscedastic error terms that is
often violated in most economic models and when this happens, the Dynamic Panel
Data Model (DPDM) is specified. The DPDM presumes correlation between lagged
dependent variable and individual (unit) specific effects, resulting to heterogeneity
among the units. The parameters of DPDM are usually estimated using classical
approach which has no control for heterogeneity of the error terms leading to non-
consistent estimates of the parameters. This study was aimed at deriving Hierarchical
Bayesian Estimator (HBE) capable of handling Heterogeneous Dynamic Panel Data
Model (HDPDM).

The HDPDM, y, =06y, +pB+X,b;+X,,B+¢&,, was generalised as
v, =X,y +e¢, for X, =(X,y,.,) andy, =(B'5)’; where i indicates that the marginal
effect of X on y varies across the units, yis (NT x1)vector of dependent variable,
X'is (NT x NK) matrix of unit specific regressors,  is (NK x1) vector of parameters,

and ¢ is (NT x1) vector of error terms. The HBE was derived in two stages. First

Stage of Hierarchical (FSH) parameter priors were y,|y,h~N(u,V,) and

h~G(s™,v), where u, and s~ are means, V, is variance-covariance and v is
degree of freedom with independent Normal-Gamma prior. Second Stage of
Hierarchical (SSH) parameter priors were u, ~ N(u,,%,) andV, ~ W(XV,ZV’I) , where

(4, andy,) are means and (X, andgl) are variance-covariance with independent
Normal-Wishart prior. To account for heterogeneity, the FSH was derived from SSH
to produce consistent estimates. Data were simulated using Markov chain Monte
Carlo approach with ¢, ~B(0,1), S, ~N(0,0.25), B, =2 and p, =3 to obtain
Posterior Estimates (PEs) at 10,000 iterations. Three experiments for the individual
(N) and time (T) were considered: N <T (20, 50), N=T (50, 50) and N >T (100,
15). The performance of the HBE was assessed using Numerical Standard Error
(NSE). Relatively Non-informative Prior (RNP) (/4= 0.04, 0.03, 0.02, 0.01) and

Informative Prior (IP) (2= 25, 30, 50, 70) were examined to check for the sensitivity
of priors on the PEs.



The derived HBE was p(y,,%|y) = p(y|7,,h).p(y,).p(h). The PEs of SSH for 4,

(0, 1,,5,,5,) were 0.1009, 0.1326, 1.0808, 4.0607, NSE (5, S,, 8., /,) were 0.0002,
0.0008, 0.0017, 0.0068 and V, was 0.0007 for N<T; 4, 0,8, 8, 5,)were  0.0154,
0.0061, 3.9674, 1.9943, NSE (6, B, B, ,) were 0.0002, 0.0005, 0.0014, 0.0041 and V,
was 0.0001 for N=T and w, (6,4,,5,5,) were 0.1535, 0.1635, 2.0456, 2.8847, NSE
(6,88, 5,) were 0.0001, 0.0004, 0.0006, 0.0006 and ¥, was 0.0000 for N >T. The
obtained ¥, gave a constant error variance for all the parameters across the units. The

N > T option produced the least NSE, hence outperformed the other two. The PEs of
FSH fory, =(5,, By, B> By)» i=1,2,...,5 were 6,= 0.1425, 0.1443, 0.1501, 0.1275,

0.1333. g, = 1.0172, 0.9123, 0.8553, 1.0172, 0.2225, B, = 1.5539, 1.5911, 1.5761,
1.5539, 1.4245, p,,= 2.5193, 2.5345, 2.5005, 2.5193, 2.5231. These reflected the
marginal effects of X on y across the units. The RNP with values of % for 3 =
1.5400, 1.5404, 1.5413, 1.5431 and p, = 2.5358, 2.5336, 2.5354, 2.5358, while for IP,
B= 1.5418, 1.5399, 1.5427, 1.5420 and f,= 2.6358, 2.6336, 2.6369, 2.6373. The
estimated parameters with changes in 4 values were closely identical to the pre-set f,

and g, values. Thus, indicating the sensitivity of prior information on the PEs.

The Hierarchical Bayesian Estimator facilitated by suitable prior information solved
the problem of heterogeneity in the dynamic panel data model. Therefore, will find

useful applications in panel data economic models.
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CHAPTER ONE

GENERAL INTRODUCTION

1.1 Introduction

The linear regression model with panel data is a repeated cross-sections on statistical
units over a given period of time. It is the pooling of observations of cross-sectional
data such as households, countries, firms and so on over several time periods,
Baltagi(2008). Statistics survey deals with cross-sectional data reporting each of many
different units at a single point in time while time series data are used to describe a
single entity, usually an economy, consumer price indices or market. Panel data have
become increasingly useable and popular in both developing and developed nations,
for examples, two of the popular panel datasets in the United States of America are the
Panel Study of Income Dynamic (PSID) and the National Longitudinal Survey (NLS)
of labour market experience, Baltagi(2005) and Hsiao (2003). Panel data models in
macroeconomics are commonly increased in the past years with the maximum
accessibility of cross country datasets which enable researchers to check common
information about the model parameters across all units. The analyses and policy
evaluations increasingly require taking observations of cross-sectional data over
several time periods existing across sectors, markets and countries into account.

In contemporary econometric methodology, panel data analysis plays a vital role in
that it takes benefit of the grouping structure to address essential economic questions
completely than it is possible with single kinds of data. Specifically, the grouping
structure (panel data) can be used to analyse models with complicated forms of
heterogeneity across individuals. Also, panel data ensure that the methods used to
estimate parameters are suitable to the problem at hand. Under normal circumstances,
one would expect the computation of panel data estimator to be more complicated than
cross-sectional or time series data, but in many sectors and markets data, the
availability of panel data simplifies estimation and statistical inference. Panel data

suggest that individuals, states, firms or countries are heterogeneous, hence, it is useful



to control the individual heterogeneity. With heterogeneity, variations about the model
parameters across the individual are studied. Empirical analysis of panel data balance
heterogeneity with some statistically meaningful concept of information accumulation
and commonality of interest.

Panel data give more informative data, less collinearity, degree of freedom, efficiency,
and variability among variables. They give information on the time-ordering of cases.
They are better able to discover and accese effects that are simply not noticeable in
pure time series or pure cross-sectional data, and are more suitable for studying the
dynamic of adjustment. Also, panel data allow us to construct and test more
complicated behavioural models than purely cross-sectional or time-series data; Panel
data also provide a means of resolving the econometric problems that often arise in
empirical studies, especially the studies of unobserved individual variables that are

correlated with independent variables.

Panel data models can be indicated as a static or dynamic. Static panel data model is
the traditional model which assumes that the error terms have constant variance
(homoscedastic) through the random individual effect. The general framework for the
static panel data analysis is a regression model of the form

v, =X, p+¢&, (1.1)
Wherei=1,2,... Nandt=1,2,...,T. For N and T are the cross-section and time

series dimension respectively. y, is the response variable, £ is the parameter to be
estimated, X, is explanatory variable and &, are error terms.

A dynamic panel data model can be described as model with lagged dependent
variable on the right-hand side of the equation of a panel data model. Dynamic panel
data are exhibiting phenomenal growth and consistently becoming popular among the
behavioural and social researchers.One of the advantages of dynamic panel data over
cross-sectional data is that dynamic panel data provide sufficient information about
earlier time periods for dynamic relationships to be investigated rather than
observation of a single point in time. Another advantage of the dynamic panel data is
that the totality of time series data containing the possibility that underlying micro-
economic dynamics may be unnoticed by aggregation biases, and scope that the panel
data offers to examine heterogeneity in adjustment dynamics between different types

of individuals, households or firms.



Panel data models allow the researcher to understand the dynamics of adjustment. For
example Balestra and Nerlove (1966) on the dynamic demand for natural gas, Baltagi
and Levin (1986) on dynamic demand for an addictive commodity like cigarettes,
Holtz-Eakin et al (1988) on a dynamic wage equation, Arellano and Bond (1991) on a
dynamic model of employment, Blundell et al. (1992) on a dynamic model of
company investment, Islam (1995) on a dynamic model for growth convergence, and
Ziliak (1997) on a dynamic lifecycle labour supply model.

Dynamic models are of concern in a full range of economic applications which include
Euler equations for family uptake, empirical models of economic growth and
adjustment cost models for organisation factor demand, education and democracy,
empirical model of economic growth and so on, Bond and Windmeijer (2002). Even
when much interest are not placed on regression coefficients of lagged dependent
variables, to recover consistent estimates of other parameters, dynamic in the process
may be of importance. Many economic processes show dynamic adjustment over time
and overlook the dynamic points of the data. This is not only a loss of relevant and
vital information, but can result to severe misspecification biases in the parameter
estimation. A model with lagged dependent variables for many omitted variables can
be controlled to a large extent. Additional complications related to the degree of
heterogeneity in the lagged dependent variable parameters may occur when the
regression equation includes dynamic terms, pooling the data assuming common
autoregressive dynamics across all units is one option.

The model for simple autoregressive order (1) dynamic model is given as,

Vy=0y,  + X p+(n+e,); OI<I;  i=12..N;, t=12..T (1.2)
Where y, is an observation on series for individual (unit) iin time t, y,,,is the one-
period lagged value of the dependent variable with parameter &, X/ is the row vector

of explanatory variable and £ is the coefficient of the explanatory variable. 7, is an

unobserved individual-specific time-invariant effect which allows for heterogeneity in

the average of the y, series across units, and ¢, is the error term. Where these two
assumptions 77, ~IIN (0, a:) and ¢, ~IIN (0, ”)are independent of each other and

among themselves. The assumptions hold when the error terms are exogenous across
the units. The individual numbers (N) for the available data is assumed to be large

along time period numbers (T) which is assumed to be small while the asymptotic



properties are considered as individual number (N) becomes large with T fixed. The
individual effects are stochastic implying that they are correlated with the lagged

dependent variable y,,, unless the distribution of the y,, , is degenerated with the

assumption that error terms are uncorrelated. These jointly indicated that the Ordinary
Least Squares (OLS) estimator of o in equation (1.2) is inconsistent, since the

independent variable y,,  is positively correlated with disturbance terms due to the

presence of the individual effects, Baltagi(2005). Autocorrelation due to the inclusion
of a lagged dependent variable among the regressors and individual-specific effects
characterizing the heterogeneity among the units leads to certain problems which are
dealt with by different estimation methods such as OLS, Fixed Effects Estimator
(FEE), Least Squares Dummy Variable (LSDV) among others. Some of the basic

problems introduced by the presence of a lagged dependent variable are; since y, is a
function of 7, , it follows immediately that y,, , is also a function of 7,. Therefore,
V.. @ right-hand regressor in equation (1.2), is correlated with the error term. This

makes the OLS estimator biased and inconsistent even if the g, are not serially

correlated. It is unfortunate that estimation of dynamic panel model is problematic.
The problem arises as a consequence of relatively short time series component for the
Fixed Effects (FE) specification. Thus,Nickel(1981) instigated the usual Hurwicz type
bias into OLS estimation of a FE dynamic panel data model. In the random effect
specification, Generalised Least Squares (GLS) estimators are likewise biased due to a
correlation between the equations error terms through the lagged variableand the
individual effect, Sevestre and Trognon(1985). Instrumental Variables (IV) estimators
appear to be the most favourable form of consistent estimation for both fixed and
random effect specifications in the classical approach. The LSDV for autoregressive
panel data models is inconsistent for small T, Nickel (1981), therefore, in such cases,
IV estimators and Generalised Method of Moments (GMM) are both widely used.
More generally, dynamic panel data models with autoregressive coefficients are
extensively used in the analysis of economic data, Arellano and Honore(2001).

Pesaran and Smith (1995) examined dynamic panel data models with heterogeneous
autoregressive coefficients, centred on models that assume the same autoregressive
coefficients for all units but allow intercepts to vary across units. They showed that not

accounting for the heterogeneity produces inconsistent estimates of the mean



autoregressive coefficient and pooling of observations will result in asymptotic non-
consistent estimates. To address this problem, they suggested the mean group
estimator which entails the estimation of the regression model unit-by-unit as a way
out to this problem. The execusion of this technique requires a T that is greatly large to
assure unbiased coefficients in each cross- sectional data, Pesaran and Smith(1995).
In the case of small T, Phillips and Sul (2002) proposed Fixed Generalised Least
Squares Seemingly Unrelated Regression (FGLS-SUR) estimator to address both
cross-sectional dependence and dynamic heterogeneity but this estimator failed to deal
with the problem of cross-sectional dependence. Their estimator is impracticeable
when N>T, Pesaran (2006) suggests the Common Correlated Effects Mean Group
(CCEMQ) estimator. Small sample bias means that this approach is likely not to work
when T is small, as in the case of mean group estimator.
More so, Bai (2009) present dynamic panel estimators that are specifically designed
for micro panel data and allow for cross-sectional correlation but dynamic
heterogeneity is not addressed.
Parameter heterogeneity has been of interest in econometrics for a long time, showing
the inherent instability of economic relationships that can arise from consumer tastes,
structural change, aggregation problems, or misspecification, Nerlove (1967).
Consider a dimensional dynamic panel model with minimal restrictions on the
parameter heterogeneity:

v, = 0, +BX,+s, (1.3)
Where

B =A+4 (1.4)
Swamy (1970) consider equations (1.3) and (1.4) and introduced the random

coefficients model where 4, is a random process with E(4)=0. A highly related

approach was suggested by Pesaran and Smith (1995) and it is called Mean Group
(MG) OLS. Regressions are undertaken on each individual to obtain consistent

estimates for # and these are then averaged to derive a consistent estimate of A

usually as a simple average:
A 1 N A
By =N~ Zﬂ, (1.5)
i=1

Explicit estimates of 4, can also be of inherent economic interest, for instance when 1

represents an individual.



In practice, there are two essential econometric problems in estimating dynamic panel
data models. Firstly, parameters are known to be biased in models with fixed effects
and lagged dependent variables, and secondly the homogeneity assumptions that are
often imposed on the coefficients of the lagged dependent variable can lead to critical
biases when the dynamics are heterogeneous across the cross-section individuals,
Weinhold (1998). An additional problem of injecting dynamics into a panel data model
is the potential bias induced by heterogeneity of the cross- section individuals. Pesaran
and Smith (1995) explore this problem many times. They show that parameter
estimates derived from panel data are inconsistent in dynamic models even for large N
and 7. Panel data model with large N and small 7, assume homogeneity of the slope
coefficients when the observations are pooled.

In the modern econometric methodology, panel data analysis plays avital role because
it is often possible to take merit of the grouping structure to address important
economic questions more totally than is possible with simpler kinds of data. In
particular, the grouping structure can be used to estimate models with complicated
forms of heterogeneity across units. For panel data studies with large N and small 7,
itis usual to pool the observations, assuming homogeneity of the slope coefficients.
Moreover, with the increasing time dimension of panel datasets, some researchers
including Robertson and Symons(1992) and Pesaran and Smith(1995) have questioned
the poolability of the data across heterogeneous units. Instead, they argue in favour of
heterogeneous estimates that can be combined to obtain homogeneous estimates if the
need arises. To buttress this point, Robertson and Symons (1992) studied the properties
of some panel data estimators when the regression coefficients vary across individuals,
that is, when they are heterogeneous but are assumed homogeneous. The basic
conclusion is that severe biases can occur in dynamic estimation even for relatively
small parameter variation, Robertson and Symons (1992) and Tiao and Zellner (1964).

Estimation of panel data models with lagged dependent variables and cross-sectionally
dependent errors has been considered by Moon and Weidner (2015), who proposed a
Gaussian Quasi Maximum Likelihood Estimator (QMLE). Moon and Weidner analysis
assumes homogeneous coefficients, and therefore it is not applicable to dynamic
panels with unobserved individual specific effects. Similarly, the Interactive-Effects
Estimator (IEE) developed by Bai (2009) also allows for cross-sectionally dependent
errors, but assume homogeneous slopes. Song (2013) extends the analysis of

Bai(2009) by allowing for a lagged dependent variable as well as coefficient
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heterogeneity, but provides results on the estimation of cross-section specific
coefficients only.

However, working with panel data requires care to ensure that the techniques used are
appropriate to the problem at hand. With heterogeneity, an additional unit of data is at
best only partially informative about the model parameters common to all units.
Bayesian approach is suggested by Hsiao e a/ (1999) to solve dynamic heterogeneity
bias for single-equation dynamic panel data models. Bayesian Econometrics seeks the
combination of Bayesian statistics in relevant ways to models and phenomena of
interest to economists. It is based on few simple rules of probability.

More generally, Bayesian statistics presumes that there are certain parametric
distributions for the unknown coefficients. It attaches the probability model of
consideration by incorporating prior information regarding the unknown parameters
and the likelihood function of the data. It assumes that all quantities, including the
parameters, are random variables. Therefore, prior probability distributions are
introduced for the parameters. This prior distribution expresses a state of knowledge or
ignorance about the parameters before the data are obtained.

The Markov Chain Monte Carlo (MCMC) method is considered in the context of
Bayesian inference to simulate a Markov Chain so as to incur posterior samples from
the joint posterior distribution of parameters of interest under a certain prior
probability density.

Bayesian estimation via repeated sampling from posterior distributions facilitates
hierarchical modeling of dynamic panel data, whether of random effects, correlated or
unstructured observed error levels or time varying regressor effects. As noted by
Davidian and Giltinan (1995), the random effects are treated as parameters in Bayesian
MCMC estimation, and are ordinarily not integrated out as often done in classical
approaches.

In addition, one of the characteristics of the Bayesian estimation is that no conjugate
priors are imposed for the individual-specific effects, that is, the effects are not
necessarily required to follow a normal prior distribution to ensure that the posterior
distribution fall in the same family class of the prior as with the conjugate prior
assumption imposed in regular Bayesian regression model. Rather the posterior
distribution form is non-analytical in nature implementing a MCMC algorithm in the

Bayesian inference to estimate the model. The models with large number of



parameters to be estimated require additional effort of Bayesian technique called
hierarchical Bayesian technique.

Hierarchical Bayesian estimation is a multi-level analysis which brings about
flexibility in parameter estimation. The hierarchical Bayesian technique is premised on
assuming that hierarchical prior distributions are independentlydrawn from the same
distribution with unknown parameters. A hierarchical prior for random coefticient
(heterogeneous) model is one which assumes that parameters across the units are
independent of one another and treated both the mean and the covariance as unknown
parameters that require their own prior distributions, James and Stein(1960), Efron and
Morris(1975) and Morris(1983).

Therefore, this study derives a hierarchical Bayesian estimator to estimate parameters
of dynamic heterogeneous panel modelwhich is an essential task in economics, suited

for inference in micro panel data models.

1.2 Nature of Panel Data

The concept of panel data model is a little different from that of cross-sectional and
time series data. Each of the cross-sectional and time series has only one dimension,
respectively the individual and time. Panel data is possessive of the individual

characteristic of the cross-sectional data and time series data. In panel data model, y,

denotes the observed values of y for individual 7at time¢. It is worth mentioning that

the word individual connotes the units under study. Such units could be households,
countries, firm and so on. Usually, iruns from 1to N and #zruns from Ito T implying
that N individuals and T time periods are involved. A panel is said to be balanced
when T is the same for all individuals, else it is said to be unbalanced. An unbalanced
panel may result from unavailability of some individuals after some time. If the
individuals are humans, this could be as a result of death and if the individuals are
firms, it could be due to shut down. However, the balance panel data are employed

under this study.



1.3 Micro and Macro Panel Data

Micro panel data refer to the panel data in which the number of units is much greater
than the number of time periods (N>T). Typically, many microeconomic analyses use
large datasets with many individual to solve economics problems. Micro panels are
short and wide because N is much larger than T. Using panel data models of this type
can account for unobserved individual-specific differences, or heterogeneity. Micro
panels are rich in information, and require the use of considerable quantity of
computing power, Olubusoye et al.(2016). Working with micro panel datasets
invariably present two problems: the problem of unobserved individual- specific
effects and the problem of sample selection. These problems may be solved using

micro panel data models where each unit of analysis is observed more several times.

Macro panel data refer to panel data with relatively large N and large T. Peter Kennedy
describes this situation as “Long and wide” datasets. For example, Penn World Table
provides purchasing power parity and national income accounts converted to national
prices for 189 counties for some or all the year 1950-2007, which roughly characterize
as having both large N and large T, Olubusoyeet al.(2016). With large N, large
T,macro panels give more attentions to non-stationarity analyses. Specifically, time
series fully amendestimation method that accounts for endogeneity of the regressors
and correlation among the parameters and heteroscedasticityof the error terms which
can now be combined with fixed and random effects panel estimation methods. Some
of the prominent results that are obtained with nonstationary macro panel datasets are
estimators that have normal limiting distributions and many test of statistics. This is in
contrast to the nonstationary time series study where the limiting distributions are
complicated functional of Weiner processes. Macro panel data have a longer time
series and unlike the problem of nonstandard distributions typical of unit roots tests in

time-series analysis.



1.4 Benefits of Panel data
Hsiao (2003) and Baltagi (2005) list several benefits derived from panel data. These

include the following:

(i) Controlling for individual heterogeneity: Panel data propose that individuals, firms,
states or nations are heterogeneous in nature. On the other hand, time-series and cross-
sectional data do not control for heterogeneity hence run the risk of producing biased
results. Not controlling for the unobserved individual-specific effects leads to bias in
the resulting estimates. Panel data containing time series data for a number of
individuals is optimal for investigating the “homogeneity” versus “heterogeneity”
consideration.

(i1) Identification of parameters: Panel data are better able to discover and assese
effects that are simply not noticeable in pure time series or pure cross-sectional data.
Measurement errors can lead to under- identification of an economic model. The
availability of multiple data for a given unit or at a given time may allow a researcher
to make different transformation to induce different and deducible changes in the
estimators.

(iii) Panel data are better able to study the dynamics of adjustment: Panel data are
more appropriate for the study of complex issues of dynamic behaviour. Cross-
sectional studies that look relatively stable hide a multitude of changes leading to bias
in parameter estimation. For example, with cross-section data one can estimate the rate
of unemployment at a particular period in time, while panel data can be used to study
changes in this proportion over time.

(iv) Analysis of nonstationary time series: When time series data are not stationary, the
large sample approximation of the distributions of the maximum likelihood or the
least-squares estimator is no longer normally distributed. But if observations among
cross-sectional individuals are independent and panel data are accessible, then the
central limit theorem across-sectional units can be introduced to show that the limiting
distributions of many estimators remain asymptotically normal, Hsiao(1991).

(v) Panel data provide more informative data, more variability and less collinearity
among the variables: Panel data sets give more informative data, less collinearity
among the variables, more variability, more efficiency and more degrees of freedom.
Time-series studies are often plagued with multicollinearity; for example, in the case

of demand for cigarettes in United State of America, there is high collinearity between
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price and income in the aggregate time series data. Therefore, larger sample sizes due
to pooling individual and time dimension give accurate statistical inference about the

parameters in the model, Baltagi (2005).

1.5 Problems of Panel Data

The problems of panel data in econometrics include measurement errors. Panel data
models are distorted due to measurement errors. They may arise due to unclear
questions, memory errors, and deliberate distortion of responses, misreporting of
responses, inappropriate informants, coding inaccuracy and interviewer effects, Kalton
et al(1989). Also, short time-series dimension problem. A typical panel data involve in
annual observation (low frequency data) covered a limited span of time for each
individual. This means that asymptotic arguments rely heavily on the number of
individuals in the panel tending to infinity, Baltagi(1995). Increasing the time span of
the panel will increase cost. In fact, this aggravates the chances of attrition and
increases the computational problems for limited dependent variable panel data
models.

The problem of non-response is another problem encountered in the use of panel data.
Non-response occurs when one or more questions are left unanswered or are found not
to provide a useful response. This may show bias in some surveys, the respondents
may refuse to respond faithfully, and the interviewer may not find anybody at home.
This may also introduce some bias in the statistical inference drawn from the sample,
Baltagi(2004). While non-response can also occur in cross-sectional data, it is more
problematic in panel data because subsequent of the data pooling (panel) are still
subject to non-response. More so, the problems include attrition and self-selectivity.
Data collection, management of panel surveysand designare other issues encountered
in panel data. This may include interview spacing, incomplete account of the
population of interest, time-in-sample bias, reference time, frequency of interview, the
use of bounding problems of coverage and respondent not remembering correctly
(recall).

Finally, problems of cross-sectional dependence are many times found in panel data.
Macro panels on firms, countries or regions with long time series that do not give
account for cross-country dependence may seriously lead to bias in statistical

inference. Nonstationary panels show that several panel unit root tests proposed in the
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literature assumed cross-section independence. Accounting for cross-section
dependence turns out to be essential and improve inference. Panel data is not a
solutionor remendy to all the problems that a cross sectional study cannot handle,

Olubusoye et al. (2016).

1.6 FrequentistMethodversus Bayesian Method

There are many things remotely controversial about statistical analysis due to the mode
of estimating parameters. Nevertheless, appearances can be misleading, and a
disagreement exists at the very heart of the researcher between the so-called
Frequentist (also known as Classical) and Bayesian statisticians.

Frequentist uses methods such as Maximum Likelihood (ML), Ordinary Least Squares
(OLS), Instrumental variable (IV), Least SquaresDummy Variable (LSDV),
Generalised Least Squares (GLS), Generalised Methods of Moments (GMM) and
many others, Silvio (2002). These are the traditional types of method that the research
analysts employ for estimation, hypothesis testing, prediction, confidence intervals,
and so on. In contrast, Bayesian statistics looks much different, and this is because it is
fundamentally all about making partial changes to conditional probabilities; it uses
prior distributions for unknown parameters with the appropriate likelihood function of
the observed datawhich lead to posterior distributions using the laws of probability,
Tsai(2004). Bayesian econometrics is all about the rules of probability.

The classical study considers that the status of parameters is either random or fixed.
Fixed effects are treated as parameters and estimated by a least-squares dummy
variable, this approach assimilates random effects to the error terms and estimated the
effects by a generalised least squares, Wallance and Hussain(1969). While the
Bayesian framework treats both fixed and random effects as random variables.
Bayesian econometricians specify what is called a “prior distribution” to represent
prior parameter information and then update this distribution to be completely
consistent with the observed data (using Bayes’ Rule), Egerton (2015).

Subjective uncertainty is an essential component in applied economics and economic
theory, it characterizes the impressions of economic researchers about the status of
their environment. Subjective uncertainty in applied economics explains the situation
of researchers who judge competing models based on the conditions of decision

makers who must act given short information and their implications for what might be
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observed, Poirier (1995). With the uses of the expected utility model in increasingly
richer environments, explicit distributional assumptions have become common, but
closed form analytical expressions for the distribution of observables are typically
unobtainable. In this situation, simulation methods are required which represent
probability distributions by related finite samples. Even in the commonest typical
situation the decision maker must precede knowing the observe values which are
random variables in models, but not knowing the specification of technology. Bayesian
inference reviews the applied economics problem in this way: given a probability
distribution over the study models and the prediction of each model for the observe
values, the distribution of the models conditional on the observed values is then
defined.

A fundamental issue in any form of inference, either classical or Bayesian is explicitly
based on probability theory of some kind. The set of models which investigators,

researchers and theorists have before them is constantly changing and needs attention.

1.7 The Concept of Bayesian Inference

Berka et al (2011) examined a conventional set up of a Bayesian statistics as y; a
random variableknown to have a probability distribution function conditional on an
unknown g parameter, that is, P(y | #).The focus is on f parameter value, given one
or more independent draws from the conditional distribution of y given B . Also, prior
beliefs about the value of the pparameter are captured in a prior probability

distribution then combining the sample information and this prior distribution using

Bayes’ theorem to obtain posterior distribution, which is the conditional distribution of
the parameter given the data [P(S | y)]

In addition, Bayesian analysis is of two settings. Firstly, data in the model given some
unknown constant parameters indicated as a probability distribution function: p(f,y),
this function is referred to as the likelihood function denoted by L(B) orL(S/y).
Secondly, parameters in the model have a specific prior distribution denoted as p(3).

The researchers choose prior distribution carefully to maximise its impact on posterior
distribution. Then, the posterior distribution which is the conditional distribution of the

parameter given the datais calculated using Bayes’ theorem.
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The quantity p(y)is called marginal distribution normalizing constant of the posterior

distribution, and as long as it is finite it can be ignored. Hence p(f| y)is written as:

p(Bly)ec p(y| B p(B)=L(S).p(f). (1.7)
Once the product in equation (1.7) is calculated, then, the resulting expression will be
integrated into one as a function of the constant parameter. At this stage itrequires little
effort to figure out and realised the class of the posterior distribution otherwise a
simulation technique is introduced. Bayesian models are concerned with the inferences

on a parameter set # =(f,, f,,..., 3,) , of dimension q that includes uncertain quantity,

whether fixed or random effects, hierarchical parameters, unobserved indicator
variables and missing data, Gelman and Rubin (1992).

In econometrics, there are typically given reasons for lack of Bayesian approaches.
First is the problem in choosing correct prior distributions, another is theanalytical
complexity of deriving posterior distributions as well as the need for a specified
parametric model. None of these aforementioned reasons is compelling. In principle,
the influence of specification of the prior distribution vanishes as the sample gets
larger, as Imbens and Wooldridge(2002)formalized the Bernstein-Von Mises theorem.
This is able to be compared to the way in which large sample normal approximations
can be applied for the finite sample distributions of frequentist methods. On the other
hand, it is likely that the sampling distribution of the maximum likelihood estimator is
not well approximated by a normal distribution against the true value of the parameter
in a classical analysis, if the posterior distribution is sensitive to the choice of prior
distribution. In Bayesian analysis it is requiredthat a prior distribution on all the
parameters of the model is fully specified. In classical analysis, it is possible to specify
only part of the model and use a semi-parametric approach. This benefit is not as clear
cut as it may seem. Koop and Poirier(2004) suggests when the greatest questions under
consideration do not depend on certain characteristics of the distribution, the outcomes
of a parametric model are often strong given an inconstant specification of the
inconvenience functions. A semi-parametric model as a result,extends to a complete
parametric model with flexibility in modelling the nonparametric model often works
well in empirical analyses, Yatchew(1998). Bayesian analyses are now in practice in

many settings therefore, few restrictions on the dimension of the models used and type
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of prior distributions can now be considered. In particular, Bayesian approaches are
attractive in studies with many parameters for example discrete choice observation
with many unobserved product features, instrumental variables with many instruments
and panel data with individual-level heterogeneity with many parameters. In such
cases, there will be poor repeated sampling properties in the methods that estimate
every parameter accurately without connecting it to identical parameters. This reflects
the dogmatic posterior distributions obtaining from flat prior distribution (non-
informative prior)in Bayesian analyses.Imbens and Wooldridge(2007) proposed a
more attractive method that is suitable to the aforementioned examples based on
hierarchical prior distributions where the parameters in the model are drawn from a
common distribution with unknown location and scale independently.

Under hierarchical Bayesian reasoning, whenever belief about the behaviour of the
situation and the appropriate prior information are available and known to the
researcher, such information may be desirable to make use of in the estimation of the
regression parameter model. This is extra structure if consistent with the patterns in the
data making the estimates to be more precise and accurate, McCulloch and

Tsay(1994), Rossi et al.(1996) and Hansen et al.(2006).

1.8 Specifications of Prior Distributions

Prior distributions are the key components in a Bayesian model analysis and should be
chosen carefully. Prior information are meant to show and quantify any information
the researcher has before seeing the data which he wishes to inculcate in the data
analysis. Hence, the prior distribution is a mechanism that enables the researchers to
incorporate expert knowledge into the analysis and to combine that information with
the available observed data. Priors can take any reasonable form of distribution.
However, it is usual to choose specific classes of prior distribution that are easy to
interpret when multiplied with the likelihood which would make computation easier,
Gelman (2006). Conjugateand natural conjugate prior distributions typically have such
advantages.

Raif and Schlaifer(1961) defined aconjugate prior distribution as one which, when
multiplied with the likelihood function gives a posterior distribution that has the same
class with prior distributions. A natural conjugate prior has the additional property of

having the common functional form as the likelihood function of the data. This
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property means that the prior information can be interpreted in the same way as the
likelihood function’s information of the study. In other words, the prior can be
understood as arising from an imaginary dataset from the same process that produced
the actual data.

Some statisticians want to benefit from the Bayesian approach with as short as
influence from the prior distribution as possible which can be obtained by choosing
priors that have a limited influence on the posterior distribution. Such priors are
referred to as noninformative priors, and they are common to some study. If the
posterior distribution is flat a prior distribution is noninformative. The use of
noninformative prior can lead to improper posterior which is nonintegrable and
possibly not making good inferences. Improper prior distributions are commonly used
in Bayesian methods for they give noninformative prior and proper posterior
distribution, Rao(1982). Noninformative prior does not represent complete ignorance
about the parameter under study. A noninformative prior distribution projects a very
high variance and does not impose strong preconditions on the parameter in question
and as a result data dominate the posterior distribution completely. An informative
prior can be used if nothing or less information is known of the parameter model
before the experiment, Kalton er al (1989). However, informative priors refer to
information we have about the parameters present in the model before seeing the data.
An informative prior dominates the likelihood function, and thus it has a credible
influence on the posterior distribution.

Nevertheless, if the posterior distribution for the parameter vector has no analytical
closed form, a hierarchical Bayesian analysis can be applied using a sampling-based
approach, such as the Gibbs sampler, Metropolis-Hastings algorithm, Importance

Sampling, and so on.

1.9 The Likelihood Function

The likelihood function is the density of the data conditional on the parameters of the

model, p(y| ). Koop(2003) referred to the likelihood function as the data generating
process. Hence, it consists all the information about the parameters of the model.

Let X" =(X,,X,,...,X,) having joint density p(X";pf)= p(X,,X,,....X,; ) where
L EO.

16



The likelihood function L:f# — (0,0)is defined by L(S;x")= p(x",)where x"is
fixed and g varies in®. The likelihood function is a function of £ and it is not a

probability density function. If the data are independent and are identically distributed,

then the likelihood is given as:
LB =[]r(x:P (1.8)
i=1

A constant of proportionality is defined only up to likelihood function. It is used to
generate estimators like the maximum likelihood estimators and it is a pivotal clue for

Bayesian inference, Daniel (1997).

1.10 The Posterior Distribution

The posterior distribution is a probability model which describes the knowledge

obtained after observing a set of data, p(f|y). Inferences about the unknown

parameters are derived from the posterior distribution when Bayesian analysis is
conducted. It is very common in Bayesian inference that the posterior distribution of
the parameters is analytically intractable, Tanner and Wong(1987). This means that it
is not possible to derive a closed form summaries of the posterior, such as mean,
variance, or marginal distribution of a specific parameter. Most often, the posterior
density is only known up to a normalizing factor. This problem will be overcome if the
standard practice is resort to simulation methods. For instance, if a researcher draws a
random sample of independent and identically distributed sample from the posterior
distribution of parameters, then, using the standard Monte Carlo method, the means of
function having finite posterior expectation can be approximated numerically by a
simple average, West and Harrison (1997). To simulate a Markov chain in order to
obtain posterior samples from the joint posterior distribution of parameters under a
certain prior probability density, Metropolis et al. (1953) and Hasting (1970)
developed the theory of Markov Chain Monte Carlo (MCMC). Precision of the prior

and the likelihood are the relative weights which lead to the posterior distribution of 5.

Hence, the posterior distribution is written as:

p(Bly)e p(y| B)p(B)=L(B).p(B). (1.9)
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1.11 Justification for the Study

In recent times, many studies have been conducted in the estimation of static panel
data model using different classical estimation techniques such as Ordinary Least
Squares (OLS), Maximum Likelihood (ML), Instrumental Variables (IV) and many
others. They appear to be the most favourable forms of consistent estimation method
for both fixed and random effect specifications which are found to be inconsistent for
large N and small T. In the estimation of static panel data model, error terms are
assumed to be homoscedastic through the random individual effect, a condition which
is often violated in most economic models. Therefore, the dynamic panel data model is
specified which presumes there is correlation between error terms and lagged
dependent variable, characterising the heterogeneity among the units. The use of
classical approach to estimate parameters of dynamic panel data model is however
usually plagued with the problem of not controlling for the heterogeneity leading to
inconsistent estimates of the parameters. The performance of several estimators for
dynamic panel data models in the context of macroeconomics has been analysed by
different authors, namely: Baltagi and Levin (1986), Ahn and Schmidt (1995), Judson
and Owen (1996), Senykina and Wooldridge (2011) which failed to address the

problem of heterogeneity of the parameter error variance across individuals.

Obtaining consistent estimates, especially in the presence of heterogeneity among the
regressors, is a severe problem in dynamic panel data models which has been shown
by Pesaran and Smith (1995) that not accounting for the heterogeneity produces
inconsistent estimates of the mean autoregressive coefficient and pooling of

observations will result in asymptotic non-consistent estimates.

Therefore, this study attempts to account for heterogeneity of the parameter error
variance across the individuals of dimensions of N and T (N<T, N=T and N>T) in
which no single study has been able to compare the posterior estimates through the

derived hierarchical Bayesian estimator.

Furthermore, there are inadequacies in the use of distribution property such as normal
and logitnormal distribution whose support is not imposing a stability condition on the
coefficient of lagged dependent variable.To impose stationarity on autoregressive

order one coefficient (0,), we assume that the o, are generated from a distribution

whose support is (0, 1), in particular the beta distribution.
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The hierarchical Bayesian approach allows the study to free up normality assumptions
which brings about flexibility in parameter estimation of a high dimensional space.
This hierarchical Bayesian technique based on hierarchical prior distributions for
random coefficient (heterogeneous) model is one which assumes that parameters
across the units are independent of one another and treated both the mean and the

covariance as unknown parameters that require their own prior distributions.

1.12 Aim and Objectives of the Study

The aim of this study is to derive a hierarchical Bayesian estimator of dynamic panel
data model with heterogeneity among the units as an extension of the work of Koop
(2003) and Zhang and Small (2006).
The specific objectives are:
i. To examine the performance of hierarchical Bayesian estimator as the
dimensions of N and T change.

ii.  To employ stability condition on coefficient of lagged dependent variable using
beta distribution (0, 1) in examining its performance on the posterior
estimation.

iii.  To investigate the prior sensitivity of the parameters to posterior probability of

the model using relatively non-informative and informative priors.

1.13 Scope of the Study

This study focuses on hierarchical Bayesian estimation of dynamic panel data model in
the presence of heterogeneity among the units. The hierarchical Bayesian estimation is

derived in two stages: the first stage of hierarchical parameter priors are
7;1y, h~N(u,, V,)and h~G(s™,v) with independent Normal-Gamma prior which
are obtained by the second stage of hierarchical parameter priors g~Muy, %) and

Vy~W(gy, Z/’l) with independent Normal-Wishart prior to produce consistent

estimates that account for heterogeneity. Also, the autoregressive order (1) coefficient
for each unit of lagged dependent variable is assumed to have absolute values less than
1 that is |0, |< 1, generated from a beta distribution whose support is (0,1) to facilitate
the Bayesian sampling properties. Relatively non-informative prior and informative
prior are used to examine the sensitivity of prior information on the posterior
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estimates. The posterior inference for the study model (dynamic panel data model) is
carried out using Markov Chain Monte Carlo (MCMC) approach through Gibbs

sampler algorithm which involves data generating process.

1.14 Organisation of the Thesis

The thesis consists of five chapters. Following this chapter is the chapter which
reviews literature on statics panel data, dynamic panel data,random coefficient
(heterogeneity) panel data and hierarchical Bayesian estimation.Chapter three contains
theoretical framework: Linear regression panel data model, Set-up of Bayesian
estimation of panel data, hierarchical Bayesian computation. Analysis of data and
interpretations are discussed in chapter four while chapter five presents the summary
of findings, conclusions and recommendations along with research contribution to

knowledge, recommendations and suggestions for further research.

20



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter reviews related literature on static panel data, dynamic panel data,random
coefficient specification (heterogeneity) panel data and hierarchical Bayesian

estimation.

2.2 Static Panel Data

Static panel data models are traditional models which assume that the error terms have
constant variance (homoscedastic) and non serial correlation via the random individual
effects, Hsiao (2003a) and Baltagi (2002). In the literature, serial correlation of the
linear panel data models biases the standard errors and causes the results to be less
efficient. A number of tests for serial correlation in panel data models have been
proposed by Wooldridge (2002) which are very attractive, easy to implement and
require relatively few assumptions. Tests for serial correlation in the presence of fixed
and random effects are extensively discussed by Baltagi (2001). The problems of serial
correlation in panel data are well noted among Lillard and Willis (1978), Bhargava et
al. (1982) and Baltagi and Li (1991, 1994, and 1995).1t is evident from most studies
that problems in the panel data analysis are mainly on serial correlation and
heteroscedasticity. Meanwhile, when the attention is on the serial correlation,
heteroscedasticity is ignored, and when the focus is on the heteroscedasticity, serial
correlation is ignored. It is very rare in literatures to consider both serial correlation
and heteroscedasticity problems in the analysis of panel data but Baltagi (2008) in his
work assumed the existence of both serial correlation and heteroscedasticity problems
in panel data regression model. He derived a joint Lagrangian Multilpier (LM) test for
homoscedasticity and zero order serial correlation. In the context of random effects
panel data model, he developed a conditional LM test for homoscedasticity, given

serial correlation  and a conditional LM test when  there is
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zero order serial correlation; given homoscedasticity. The results via Monte Carlo
simulation showed that the tests along with their likelihood ratio alternatives have
good size and power under various forms of heteroscedasticity.
Garba et al. (2013) investigated the efficiency of methods of estimating panel data
models when the assumptions of homoscedasticity, no collinearity and no
autocorrelation are violated. Also, Olofin et al. (2010) considered time effects to test
for the feasible existence of serial correlation and heteroscedasticity in the model and a
more comprehensive model, the two-way error component model that takes care of
both random individual.
The general framework for the static panel data model is given as

v, =X, p+e, (2.1)
and

g, =&+, (2.2)
Where i=1,2,....N and ¢t=1,2,...,T for N and T are the cross-section and time series
dimensions respectively, also y, is the response variable, the slope coefficient (), X,
is the independent variable, and &, is error term.
Consider one way error component model as shown in (2.2),the error term &, is
decomposed into ¢, and 7, , where ¢, is the individual-specific effect (that captures the
individual heterogeneity) and 7, is the error term which varies over the cross-section
and time. The assumptions that guide the error term in the static panel data model are:

E(&'l.) = OaE(ni;) =0, E(f‘f,-?],-t) = O,E(giz) = 03 7E(77;) = G:? , and E(77f;77is) =0,1#s.
Also, for the independent variable to be exogeneous under the assumptions of the error
terms, E(g,X,)=0 andE(n,X,)=0,for t#s andt=s.

To obtain a consistent estimator of 4, Ordinary Least Squares (OLS) method can be

used.
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2.3 Dynamic Panel Data
A dynamic panel data model can be described as model with lagged dependent
variable on the right-hand side of the equation of a panel data model. Dynamic panel
data are exhibiting phenomenal growth and consistently becoming popular among the
behavioural and social researchers.
The linear dynamic panel data model which contains the lagged dependent variable

V., and the independent variables x; is of the form:

Yie = 5)71‘,171 + Xl’tﬂ +1,+ &, (2.3)

Where i=1,2,....N and t=1,2,...,T for N and T are the cross-sectional and time
series dimensions respectively. Also, y,is the dependent variable, £ is unknown
parameter vector of the k& explanatory variables, X, is row vector of explanatory
variables with dimension £, 7, is individual specific fixed effects, Jis unknown

parameter of the lagged endogenous variable, | |<1and ¢, ~ N(0,07),Islam (1995).

The model in (2.3) is specified based on two assumptions: the error term is

uncorrelated with the lagged dependent variable that is E(y,,, ¢,)=0, and the error

term is orthogonal to the exogenous variables, that is E(X] ¢,)=0

Dynamic panel model has been commonly used recently in empirical economic
studies. Examples are Lee et al. (1997) that studied the convergence of countries
economic outputs and Pesaran er al. (2004) which examined the determinants of
economic growth using panel of countries. Bhargava (1991), who studied the income
elasticity of the demand for food and nutrients in rural South India using panel of
households. Baltagi and Levin (1986) studied the effect of taxation and advertisement

on cigarette demand using a panel datasets in the United State of America,

The discussion of Dynamic Panel Data (DPD) model is opened and suggested to
estimate the model with unobserved individual component using Generalised Least
Squares (GLS) estimator. However, GLS random effects or Maximum Likelihood
(ML) estimators are not consistent if the unobserved individual effects are correlated

with exogenous variable, Balestra and Nerlove (1966).
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Under asymptotic sequences where the number of cross-sectional units (N) is large and
the number of time period (T) is fixed, the within groups estimator of dynamic panel
data is biased even in large samples, Nickel (1981). In the past studies, OLS estimator
is biased for an analytical treatment, Nerlove(1967). Nickel (1981) and Sevestre and
Trognon (1985) derived analytical expressions for the asymptotic biases of the OLS
estimator of an autoregressive panel data models with fixed time dimension. Nerlove
(1967 and 1971)explored the properties of the bias of the OLS estimation through
Monte Carlo simulations. In the random effects model, Random Effect Maximum
Likelihood (REML) in levels and first differences estimators enforce mean stationarity
for Autoregressive of order p (AR (p)) models with individual effects, their
investigation showed that REML in levels achieved substantial efficiency relative to
estimators from data in differences. The random effects GLS estimator is also biased in
a dynamic panel data model. Therefore, Everaert and Pozzi (2007) considered using
Monte Carlo simulations for panels with small to moderate T in the bias correction for
the within estimator based on an iterative bootstrap procedure. Hence, the procedure
offers a better substitute for existing dynamic panel data. Olajide et al. (2014)
investigated the performance of GMM and IV methods of dynamic panel data model
with random individual effect when the disturbance term is serially correlated. They
discovered that Anderson- Hsiao (AH) using lagged difference as instrument is
appropriate when the dimension of time is small while Arellano-Bond Generalised
Method of Moment (ABGMM) performed better when T is large and the effect of the

serial correlation 1s minimal.

In the fixed effects specification, the estimation of dynamic panel data models has
been the major tasks in econometrics. Several literatures have proposed and compared
various Instrumental Variables (IV) and Generalised Method of Moments (GMM)
estimators of fixed effect dynamic panel data models. Prominent among these are:
Anderson and Hsiao (1981, 1982), Amemiya and MaCurdy(1986), Arrelano and Bond
(1991), Ahn and Schmidt (1995), Blundell and Bond (1998), Harris and Matyas
(2010). Also, Nickell (1981) demonstrates that the Least Squares Dummy Variable
(LSDV) for autoregressive panel data models is inconsistent for small T. Woodridge
(2005) suggested an approach for handling initial conditions problem in dynamic
nonlinear unobserved effect models. The approach has been applied to the probit,

Tobit and Poisson panel data models. A modified maximum likelihood to correct the
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first term on the asymptotic bias that is associated with estimation of fixed effects
which reduce the order of bias is proposed by Carro (2007). Although, this estimator is
consistent only as T tends to infinity, it is shown through Monte Carlo experiments to
have finite sample bias for logit and probit dynamic panel data models with T= 8.
Fraderisken et al. (2007) suggested estimation of dynamic discrete choice models by
using the duration in the current states as a covariate. The estimators (maximum
likelihood estimator) allow for group- specific effects in both parametric and semi-
parametric versions of the model. The method is applied to analyse job duration
allowing for firm-specific effect using Danish data on all employees of all
establishments in the private sector observed over the period 1980-2000. Harris and
Matyas (2010) provided a survey of the mainstream estimators, in their simulation
experiment, they chose the values of N and T to be small. The results showed that
within estimator in the fixed effect setting asymptotically performed better than IV
proposed by Arellano (1988) and Arellano and Bond (1991).

Moreover, additional difficulties arise when the regression equation includes dynamic
terms are connected to the degree of heterogeneity in the lagged dependent variable
coefficients.

Under the classical assumptions,a number of estimators have been proposed for
estimating a heterogeneous dynamic panel data model. In the pooled cross-sectional
and time series data (panel data) models, the Pooled Least Squares (POLS) estimator
appears to be the Best Linear Unbiased Estimator (BLUE) in the general linear
regression model but inconsistent. Also, Ordinary Least Squares Fixed Effects (OLS-
FE) estimator is used to account for some degree of heterogeneity in dynamic panel
data models, when estimating individual-fixed effects or random effects when some
concomitant assumptions are imposed over heterogeneous “intercepts" and
homogeneous “slope coefficients" across individuals. The OLS-FE is asymptotically
biased and inconsistent when the heterogeneous slope coefficients are correlated with
the variance of the regressors. Literature in econometrics has developed two main

approaches to deal with OLS-FE estimator bias.

Firstly, using tools for the lagged dependent variable, and compare four estimators: the
First-Difference Generalised Methods of Moments estimator (FD-GMM), Arellano
and Bond(1991), the System Generalised Moment of Method estimator (SYS-GMM),
Blundell and Bond(1998), the Long-Difference GMM estimator (LD-GMM or LDP-
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GMM), the just-identified Instrumental Variable estimator (AH-IV), and Anderson and
Hsiao(1981), each of these tools depends on long-difference parameters used by Hahn
et al. (2007) and Huang and Ritter (2009).

Secondly, the approach comprising of three estimators such as: a simulation-based
indirect inference method (II), Gouriéroux et al. (1993), Least Squares Dummy
Variable estimator (LSDV), Kiviet (1995), Bruno(2005), and an iterative Bootstrap-
based Correction procedure (BC) Everaert and Pozzi(2007) to correct for the
estimation bias either by simulation or analytical estimate. Everaert and Pozzi (2007)
developed bias correction formulas and advance in theory to reduce the POLS and FE
bias. Some problems could arise and render proposed instruments invalid such as non-
zero correlation between the regressors and the individual fixed effects leading to
unobserved heterogeneity and endogeneity, and presence of residual autocorrelation,
which breaks one of the most essential assumptions of the GMM/IV estimators,

Arellano and Bond(1991).

As mentioned earlier, especially when the time period (T) is small, the fixed effect
estimator is not consistent, Nickell(1981). In such cases, IV estimator proposed by
Anderson and Hsiao(1981) and GMM estimator suggested by Arellano and
Bond(1991) are both used. These estimators are basically methods that choose
parameter estimates such that the theoretical model is satisfied. The estimates are
chosen to reduce the weighted distance between the actual and theoretical values.
Therefore, it requires that the theoretical relations between the parameters satisfy
orthogonality conditions; meaning correlations between the independent variables and
instruments is zero.

Baltagi (2005) suggested Limited Information Maximum Likelihood (LIML) as a
possible alternative to GMM in order to eliminate the small sample bias of GMM.
However, in dynamic panel data models where the cross-sectional data are highly
autoregressive and the time-series observation is moderately small, the GMM
estimator is found to have poor precision in simulation studies and large finite sample
bias.Islam (1998) investigates the small sample size of dynamic panel data estimators
using Summers-Hesston dataset for estimation of the growth convergence equations.
His Monte-Carlo results proved that parameter estimates from different estimators are

not the same.
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Bun and Caress (2006) developed bias-corrected estimation method for theLSDV
estimator in the dynamic panel data model with heteroscedastic error terms. The
inconsistencies of the LSDV estimator for N large and finite T were derived under
panel data heteroscedasticity. The results are used to express and extend the existing
nonlinear bias correction and additive procedures. In addition, provides some
simulation techniques which allow for either cross-section or time-series
heteroscedasticity. The results showed that root mean squared criterion bias-corrected
LSDV estimators performed well against GMM estimators.

Hayakawa (2008) considered the following panel auto regression (p) model
Vi =Y, Ty, ot ta,y, iy, 2.4)
Where y, is the endogenous variable, y,, ,is the P x 1 vector of lagged endogenous

variables, &, , is unknown parameter of the lagged endogenous variables, and v, is

,,,,, p)

the error term, 7 is an unobserved individual-specific time-invariant effect in which
heterogeneity in the average of the y, series across units is exermined. Where these

two assumptions 77, ~IIN (0, O';) and v, ~IIN (0,0”)are independent of each other

and among themselves.

When both N and T are large, Hayakawa showed that the infeasible optimal IV
estimator using instrumented deviated from past means are asymptotically the same in
the sense that IV and GMMestimators have the identical asymptotic distribution. He
further revealed that if normality assumption is on the error terms, the suggested IV
estimator is asymptotically efficient when both N and T are large. The simulation
results indicated that in terms of the bias and median absolute error, the new IV

estimator performs better than the GMM which is commonly used in the literature.

Garba et al. (2013) performed Monte Carlo experiments based on panel data model.
They compared the First-Differenced (FD), Between Estimator (BTW), Feasible
Generalised Least Squares (FGLS) and Pooled Ordinary Least Squares (POLS)
estimators. Their findings for several combinations of violations revealed that in small
sample sizes, irrespective of number of time spans, FGLS is preferable when
heteroscedasticity is intense regardless of level of autocorrelation. But when
heteroscedasticity is low and the autocorrelation level is moderate, both FGLS and FD

are preferred, while BTW performs better only when there is low degree of
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heteroscedasticity and no autocorrelation. That is, in large sample sizes with little time
spans both FD and BTW could be used when there is no autocorrelation and low
degree of heteroscedasticity. Also when the degree of heteroscedasticity is not severe
and there is no autocorrelation in large sample sizes with small time periods, either the
FD or FGLS would produce efficient results. Finally, FGLS is superior when severe
degree of heteroscedasticity is present and autocorrelation is visible in large sample
observation regardless of time periods. Meanwhile, both FD and FGLS are appropriate
when there is low heteroscedasticity despite the existence of autocorrelation and
multicollinearity.

However, Blundell and Bond, (1998) noted that the aforementioned estimators
bothencounter a weak instrument problem when the nature of the estimator depends on
small T and the dynamic panel autoregressive coefficient tends to unity, invariably the
estimators are asymptotically random, and when Tis large the unweighted GMM
estimators are inconsistent and the two-stage least squares estimator may violate
economics assumptions. Franzese and Hays (2007) compared both the performance of
the IVestimator and ML estimator of the panel data models with a spatially lagged
dependent variable in terms of unbiasedness and efficiency but without considering
spatial fixed/random effects. The results showed that the ML estimator is unbiased and

inefficient.

Wansbeek and Knaap(1999) considered a dynamic panel data model with
heterogeneous coefficients on the lagged dependent variable and the time period, given

as:

Yy =0y, +n +u, (2.5)
Where y,is an observation on series for individual (unit) 7in time t, (dependent
variable), y, ,_, is the one-period lagged value of the dependent variable with parameter
o . n is an unobserved individual-specific time-invariant effect in which heterogeneity
in the average of the y, series across units is exermined, and u, is the error term. The
two assumptions 77, ~IIN (0, O';) and u, ~1IN (0, o) are independent of each other.

The above model results from Islam’s (1995) version of Solow’s model on growth

convergence among countries. Wansbeek and Knaap (1999) showed that double

differencing solved the problems of the individual specific effects (77,.) on the first
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stage of differencing and heterogeneous coefficient on the time period (8,.) on the

second stage of differencing. The most prominent assumption for panel data models is
that the individuals in the database are generated from a population with the same
regression coefficient vector. Obviously, classical econometric approach appeared to
be unbiased, inconsistent and highly inefficient in literature.

Therefore, Bayesian linear regression is an alternative method to classical linear
regression in which the statistical analysis is undertaken within the context of Bayesian

inference.

2.4 Random Coefficient (Heterogeneity) Panel Data

Panel datasets derive their effectiveness through estimating and identifying effects that
are not noticeable with data that are cross-sectional or time series. Particularly, pooling
of data realises a deep analysis and yields a good source of variation that permits
effective parameter estimation. Hence, more reliable estimates could be obtained and

sophisticated behavioural models with less restrictive assumptions can be tested.

According to Alcacer etal.(2013), the assumption for panel datasets is that the units in
the database are usually generated through a population with an identical regression
coefficient vector. Conversely, the slope coefficients of a panel data model must be
fixed and cogent. This assumption is not supported by most economic models.
However, when such assumption is relaxed, the panel data models are studied and the
model is referred to as “Random-Coefficients Panel Data (RCPD) model". Swamy
(1970) is one of the earliest authors to introduce variability in the coefficients in a
panel data setting and parameterise them assuming independence between the random
coefficients and the regressors and a random coefficient framework. Swamy, in his
different publications, examined RCPD model. A number of econometrics and
statistical publications made reference to this model as the Random Coefficient
Regression (RCR) model or Swamy’s model. He assumes that in RCR model, the
individuals in the panel datasets are generated via a population with an identical
regression coefficientthat has a fixed and a random component which enable slope

coefficients to vary from individual to individual.
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There are twocategories of random-coefficients models, namely: stationary random-
coefficients and non-stationary random-coefficients models. These models depend on
the assumption about the coefficient variation. Stationary random-coefficients models
are the regression coefficients having constant means and variance-covariances. While
non-stationary random-coefficients models are the regression coefficients having non
constant means and variance which can vary systematically. These two models are
important and appropriate for modeling the systematic structural variation in time
series data, for example the Cooley-Prescott (1973) model.

The random-coefficients models, in general, have been used in diverse fields of
econometric and established a unifying setup for many statistical problems. Several
literatures have proposed the use of RCR model, among many are Swamy’s models
which severally have been used in finance and economics.

Pesaran and Smith, (1995) suggested another estimator that improved Swamy’s
estimator called a Mean Group (MG) estimator which is computationally and
analytically simple. A mean group estimator for estimation of dynamic random
coefficient panel data models is defined as the simple average of the parameters of the

model:

i=1,2,.,N, t=12,.,T (2.6)

it ?

yit = é‘iyi,t—l +ﬂiXit +&
Where y, is the endogenous variable , X, is a kx 1 vector of exogenous variables, f,

is the slope coefficient, viewed as invariant over time, but varying from one unit to

another, y,_, is the lagged endogenous variable, 6 is unknown parameter of the lagged
endogenous variable, and the disturbance term ¢, is assumed to be independently,

identically distributed over t with mean zero and variance o7, and is independent
across 1.

Let®, =(0,4,)". We assume that ©, is independently distributed across i with
E©,)=0=(5 p) 2.7
Q=E[(©,-0,)0,-0,)] (2.8)

MG estimator is described as the simple average of the OLS estimator, @)i :

6, 2.9)

M=

2 1
®MG=Ni
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When the error terms are independently distributed and regressors are strictly

exogeneous, an unbiased estimator of the covariance matrix of ©,,. can be estimated

as:

C/(-)\U(Ci)MG): NS (2.10)

Where

~ 1 (A~ 1A
Q_NE{Q—NZ®J (2.11)
:(@i_%iéjj —N*‘ﬁ“&%x;)(i)* (2.12)

n 1 N n 1 N . n 1 N o '
Q=— D -—D0O.||6.-—>Y0, 2.13
N-1<1 NZ / ! NZ / @.13)

The mean group estimator is consistent when both N and7" — co . In finite 7", (:)l. for O,

is biased to the order of T~' Hurwicz (1950), Kiviet and Phillips, (1993). The limited
Monte Carlo study appears to show that the MG estimatorcan be critically biased when

T is very small, Hsiao et al.(1999).

The Swamy’s GLS estimator is another estimator equivalent to MG estimator as T
tends to infinitywhen the model is linear in the variable slope coefficients. It is noted
that when random coefficients are assumed, the subject parameters problem is no
longer applicable but T small sample bias in question remains valid in the
heterogeneous panel data model. Pesaran and Yamagata (2008) demonstrated a test for
slope coefficient homogeneity in macro panel data. Arellano and Bonhomme (2011a)
managed the general identification of random coefficients in a fixed effects approach
when the distribution of the variable slope coefficients is not defined and when
possible endogeneity of regressors with respect to the individual-specific coefficients
is allowed in the model that is linear in coefficients. Bonhomme(2012) considered a
random coefficient model to be linear in parameters and illustrated the functional
differencing approach for the case.

Mohamed (2016)provided a generalised model for the random-coefficients panel data

model where the error terms are cross-sectional heteroscedastic and correlated with the
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first-order autocorrelation of the time series errors. Heemphasisedthatthe usual
estimators such as Generalised Least Squares (GLS), Mean Group (MG) and General
Mean Group (GMGQG) estimators are not suitable for the standard random-coefficients
panel data model. Therefore, he considered the MG and GMG estimators to be less
efficient to RCR estimator in random- and fixed-coefficients models especially when T

is small.

Lin and Ng (2011) proposed two techniques for estimating panel data models with unit
specific parameters when unit membership is unknown. The first approach applies the
time series framework of the individual slope coefficients to generate threshold
variables. The second approach is a modification of the K-means algorithm in which
the units are grouped according to their differences. Both approaches are uncertain
about the origins of parameter heterogeneity. Hsiao and Tahmiscioglu (1997)
discovered heterogeneity in the parameters of the investment dynamics and observed
that differences in parameter cannot be explained by commonly considered firm
characteristics. Browning and Carro (2007) pointed out that researcher allow less
parameter heterogeneity than those existing in empirical study. Robertson and Symons
(1992) found that using the estimator proposed by Anderson and Hsiao (1982) was
severely biased when parameter heterogeneity is excluded. Through a random
coefficient model, the mean of the coefficients can be estimated but is uninformative
about the response at a more disaggregated level, which many times are object of

interest.

Holtz-Eakin et al.(1988) and Ahn et al.(2001) focused on single factor residual models
and allowed for time-varying individual effects in the case of panel model with
homogeneous slopes where N —>oand T is fixed. Robertson and Symons (2002)
studied a random coefficient multi-factor error model where the factors are distributed

independently of explanatory variable, x , , and argued that the MLestimator would still

it
be appropriate even when N is greater than T.

Pesaran (2006) proposed the Common Correlated Effects (CCE) approach of multi-
factor error structure to estimate panel data models which were developed by Chudiket
al. (2011), Pesaran and Tosetti (2011), and Kapetanios ef al. (2011). The CCE method

is efficient to possible unit roots in factors, different types of cross-section dependence
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of errors, and slope heterogeneity. However, Pesaran (2006) extended the CCE
approach to allow for the dynamic panel data model or weakly exogenous variables as
regressors. While Chudik and Pesaran (2013) extended this approach but not
straightforward for the parameter heterogeneity in the lags of the dependent variable.
They introduced infinite order lag polynomials in the large N relationships between the
unobserved factors and cross-sectional averages. More so, they focus on stationary
coefficient heterogeneous panels including weakly exogenous regressors where the
cross-sectional dimension (N) and the time series dimension (T) are large. The study
centred on estimation and statistical inference of the mean coefficients, and deal with

the small T bias of the estimators through bias correction methods.

Moon and Weidner (2013a and 2013b) proposed a Gaussian Quasi Maximum
Likelihood Estimator (QMLE) to estimate dynamic panel data models and cross-
sectionally dependent errors which assumed homogeneous coefficients in analysis.
They emphasised that the estimator is not applicable to pooled data having lagged
dependent variables of heterogeneous coefficients and lack ability to address Cross-
Sectional (CS) dependence. Similarly, Bai (2009) developed the Interactive-Fixed
Effects (IFE) estimator and allowed for cross-sectionally dependent errors but assumed
homogeneous slopes. The analysis of Bai (2009) was extended by Song (2013) which
allowed for coefficient heterogeneity as well as lagged dependent variable but gave
results on the estimation of cross-section individual specific coefficients only. In
addition, Pesaran (2006) proposed a mean group estimator of the mean coefficients
and showed that CCE types estimators once increased with a sufficient number of lags
and cross-sectional averages performed well even in the case of dynamic models with
weakly exogenous regressors.

Pesaran and Smith(1995) showed that when the true model is heterogeneous and
dynamic, the pooled estimators are inconsistent meanwhile an average estimator of
heterogeneous dynamic panel data coefficient can result to consistent estimates as long
as both N and T tend to infinity. They argued in favour of heterogeneous dynamic
panel data estimators rather than static pooled estimators for panels with large N and
T.

Robin Sickles and Tsionas (2013) proposed two panel data models with unobserved
heterogeneous time-varying effects, first with individual-specific effects as random

functions of time period while the second presented the time-varying effects with
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common factors whose number are not known and are firm-specific effects. These
panel data models have two distinctive characteristics which are considered as a
generalisation of conventional panel data models.

Firstly, the model examined by Bai (2009), Kneip ef al. (2012), and Ahn et al. (2013)
treated both the individual effects that are assumed to be heterogeneous among the
units and time-varying effect as non-parametric.

Secondly, the Bayesian knowledge of random coefficient models developed by Swamy
(1970), Swamy and Tavlas (1995) for two panel data models above will subjectively
not assume a general functional form for all the individuals as the processes of its
subjectivity. This may vary across the individuals and fixed parametric values to the
estimated parameters which explained the relationship of functional form that may not
be properly defined. Hence, a Bayesian technique overcome the computational intense
and the theoretical complexity of nonparametric or semi-parametric regression
approach, Yatchew(1998) and this prompt the need to depend on asymptotic theory for

statistical inference, Koop and Poirier(2004).

Broeck et al. (1994) used a Bayesian method to panel data models with applications in
stochastic frontier analysis under the composed error model. The establishment of a
Bayesian approach to analyse model where the fixed and random effect are specified
and applied through Gibbs Sampling way of simulations. Osiewalski and Steel(1998)
applied Bayesian numerical integration approaches to perform the Bayesian analysis of
the stochastic frontier model using cross-sectional data and panel data hence, the
individual-specific effects are assumed to be time-invariant which is not appropriate in
many economy settings. They suggested a Bayesian approach defining prior
distribution for the unknown parameters in the model using Markov chain Monte Carlo
to estimate the parameters of the resulting model for the individual choices. Blomquist
and Westerlund (2013) suggested a method that is efficient to general forms of serial
correlation and cross-sectional dependence. Also, the method for slope homogeneity in
large-dimensional panel models with interactive fixed effects was developed by Su and
Chen (2013).

Bayesian estimation through repeated iterative sampling from posterior densities make
hierarchical modelling of panel data easier, whether random effects, time varying
regressor effects or common factors, unstructured observation level errors or correlated

in multivariate panel data.

34



Davidian and Giltinan (1995) considered parameters in the model as random under
Bayesian Markov Chain Monte Carlo estimation, and are not integrated out ordinarily
as often done in classical approaches. The marginal likelihood estimation or integrated
approach used different maximisation methods to obtain parameter estimates of the
model which may become unreliable or unachievable in difficult varying coefficient
models, Tutz and Kauermann(2003) and Molenberghs and Verbeke (2004). Therefore,
hierarchical Bayesian estimation of short-run slope coefficients proposed by Hsiao et

al (1999) is found to have good small sample properties in the Monte Carlo study.

2.5 Review of Hierarchical Bayesian Estimation

Hierarchical is a multi-level model which is central to the analysis of Bayesian
statistics for both theoretical and practical purposes; this allows us to incorporate richer
and better information into the parameters of the model, Andrew (2006). Hierarchical
Bayesian models, on the theoretical side, allow a more objective approach to statistical
inference by estimating the slope coefficients of prior distributions from data rather
than requiring them to be specified through subjective information, James and
Stein(1960), Efron and Morris (1975) and Morris(1983). On the practical side,
hierarchical Bayesian models are flexible devices for combining information and
partial pooling of inferences, Carlin and Louis(2001) and Gelman et al, (2004).
Hierarchical parameters in the model are random, specified with their own distribution
and hyper priors. The implemented hierarchical Bayesian methods to the estimation of
model take merit from modern computational methods for constructing a MCMC
based simulation algorithm and employs data augmentation techniques for the latent

variables of the model.

Hierarchical Bayesian estimation is an engine via MCMC techniques that generates
draws from posterior distribution of the model parameters. The use of MCMC methods
has ability to remove problems arising from many conventional analyses. The MCMC
methods place a set of repeating calculations that in effect, simulations are drawn from
distribution rather than deducing the analytic form of the known distribution of
posterior. Criteria such as posterior means, numerical standard error, and highest

posterior density intervals and so on are used to assess the performance of the posterior
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simulation techniques through the applications of Monte Carlo draws. Estimation of
hierarchical Bayesian models with MCMC methods are helpful in that it gives
estimates of all parameters in the model, including the estimates of model joined with
individual-specific parameters. The use of MCMC techniques preside the functional
interest of parameters in the model which are closely related to individual decisions

making.

Allenby and Ginter (1995) reviewed the hierarchical Bayesian estimation with MCMC
which gives freedom to explore the parameter estimate of high dimensional space.
Missing data problems and hierarchical models are some of the problems that find
solution in Bayesian method. The Bayesian method is useful in building model,
performing estimation of model parameters and providing statistics inference for
problems that are complicated and possibly not obvious in classical methods.
Bayesian methods are founded on the assumption of probability rules, functionalised
as a degree of belief which is not found in classical statistics. Hierarchical Bayesian
models deal with the possibility of variability in parameter across units by
appropriating a model for the parameters. The “hierarchy” arises when the model for
the parameters places “above” the model for the data. Bayesian models are hierarchical
in that a prior of # is placed over the model for y. Simon (2008) investigates the
statistical model notion nested as a hierarchy of stochastic relations displace all
hierarchical modelling and also listed why hierarchical models are very agreeable to
Bayesian analysis. Generally, the hierarchical Bayesian statistical model can be of the
form;

y|\pB ~p(y,|B) (Model for the data in group i=1,...,7)

B lo~p(B|v) (Between-group model or “prior” for the parameters f3,)

v~ p() (Prior for the hyperparametersv),
The hierarchy are written from “bottom” to “top”. The inferential problem will be to

estimate the posterior density of all the parameters in the model, S =(f,,f,,.... 3,0)’
and possible marginal posterior densities for individual-specific elements of S that

may be of interest using the property called conditional independence.

Research in quantitative analysis makes use of models with slope coefficients which

are of focus in the analysis of hierarchical Bayesian models using probability
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distributions to quantify prior knowledge about the parameters not just the effect
presence or absence but the information originated from the data to give a posterior
distribution.

The hierarchical Bayesian model has value that lies in its capacity to characterise
heterogeneity in options while maintaining its ability to study individual- specific
effects of the parameter model. Browning and Carro, (2006) defined heterogeneity as
the variations of factors that are known and important to individual agents when a
particular decision is required. The nature, feature and determinant of heterogeneity
have received much attention over the last decade, among the studies is the distribution
of heterogeneity exhibited by a continuous and not a discrete distribution of
heterogeneity, Allenby et al. (1998). Moreover, researchers have not correctly asserted
the existence of a small number of homogeneous groups but have relevant implications
for analysis connected with market segmentation. Hierarchical Bayesian approaches
are being used to identify complicated variables that point to brand preferences, Yang
et al (2003) while the new methods of dealing with individual heterogeneity in scale

usage are originated from Rossi and Allenby(2001).

Rouder et al. (2007) demonstrated hierarchical Bayesian model, variability from
nuisance sources such as individual agents and items are modelled simultaneously. The
contribution to these models is not in mass data, and the results are processed in
parameter estimates across items and individuals. In this case, the behaviour of this
process of parameter estimates is not only studied across conditions, but across items
and individuals as well, and provides activity of a process-model informed study of
individual and item differences. Hence, hierarchical Bayesian models bridge the gap
and account for inconvenience and nuisance variation that over-view the process-
parameters into strength. Hierarchical models provide a means of exploring process
varying across populations of items or individuals and making clearer view of process-
parameters. Moreso, hierarchical linear models are models that extend regression
analysis and analysis of variance to account for multiple sources of variance which are
rampant in areas of social sciences as well as areas of psychology study, Raudenbush
and Bryk(2002).

Adopting a Bayesian method has several advantages, one of the most pertinent for
intellectual researchers is the building of hierarchical models which become easy to

account for dispersion in real-world settings. If the available data provide only indirect
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information or small sample size about the parameters of study, the prior distribution
becomes more essential. In many setting, models can be set up hierarchically, so that

groups of parameters can be estimated from data shared prior distributions.

Silvio (2002) examined the use of Bayesian perspective in both fixed and random
effects. He treated them as random parameters in stages of hierarchical model. The
response variable and regressors are both distributed around a mean value on certain
parameters model, these parameters later distributed around a mean value ascertained
by other parameters called hyperparameters which are random in nature. Random
effects estimation updates the prior distribution of the hyperparameters while fixed
effects estimation updates the prior distribution of the parameters. Importantly, the
distribution between fixed, random and mixed models is subjected to the distinction
between different prior assigned to different stages of the hierarchy, Smith (1973).

Beck and Katz (1995, 1996) opined that the randomness resides in the parameters as
the merit found in hierarchical Bayesian linear model which is not found in classical
model of units. Hence, the difference between sampled units and fixed is no longer
applicable, therefore making the approach yields similar results to the random

coefficients model.

Stone and Springer (1965), Hill (1965), Tiao and Tan (1965) considered fully-
Bayesian analyses of hierarchical linear models which remained a topic of applied
interest and theoretical findings. Portnoy (1971), Box and Tiao (1973), Gelman et al.
(2003), Carlin and Louis (1996) and Meng and Dyk(1999) provided Bayesian and non-
Bayesian inference for hierarchical models which were compared by considering some
different prior distributions for variance parameters.

Moreover, the principles of hierarchical prior distributions in the context of a definite
class of models were discovered by Browne and Draper (2005). In the context of an
expanded conditionally-conjugate family, hierarchical variance parameters expressed
the prior distribution where noninformative prior distributions, including inverse-
gamma and uniform families were examined. They emphasised a hierarchical model
which demands for hyperparameters, where prior distributions of each parameter is
defined and a proposed half-t model is demonstrated as a component in a variance
parameters of hierarchical model and as a weakly-informative prior distribution which

found a hierarchical method useful in Bayesian settings both in theory and practical.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter discusses the theoretical framework of a linear regression with panel data
model, pooled model, individual effects model using a non-hierarchical prior and a
hierarchical prior and random coefficients dynamic panel data model. Details of the
hierarchical Bayesian computations are discussed. Also, the data generating scheme
and the data simulation for sensitivity of prior information on posterior estimates are

presented.

3.2 Theoretical Framework

3.2.1 Linear Regression Panel Data Model

The simple linear regression model with the panel data refers to the pooling of
observations on cross-sectional data such as households, countries, and firms over
several time periods. The traditional model for the panel data is the static panel data

model. The basic framework for this static panel data is a regression model of the form

v, =X, B +¢&, (3.1)
Where y,is the dependent variable, X, is the independent variables, i=1,2,...,N,
t=12,..,Tand k=12, ..., K, while N, T and K are the cross-sectional, time series
dimensions and number of unknown parameters respectively, k-vector of regression
coefficients £ including the ¢, is error term and intercept.

The asymptotic properties of the estimators in the traditional regression model in (3.1)
are established under the following assumptions:

() E(g, | X, Xy +..s X)) =0 (3.2)

1l

39



(i) Var(e, | X,y Xy, «oo s Xp) =07 (3.3)

(1)) Cov(e,, €, | X\ Xypy oo o s Xp) =0 1 i jOr £#5s (3.4)
If the remaining assumptions of the traditional model are met,in this form
E(¢,|X,)=0, homoscedasticity, independence across observations, i, and strict
exogeneity of X ), then ordinary least squares is the efficient estimator and reliable
inference can be made.
The model in equation (3.1) can be written more compactly in matrix form:

v, =X, p+¢&, (3.5)

Defining the N7 x 1 vectors:

yi,l &
yi,2 gl 2
y=| |, and e=|"
_yi,T i _g,'j |
And the NT x K matrix
_XOil Xlil X2i1 inl ] _ﬂ .
0
XOiZ X1i2 X2i2 inZ
B
X= ' ’ ' T, Kx 1 vector, f=
. . . . 5
| Xor Xir Xor - - o Xir | T

Implicitly X, is set to 1 which allow for an intercept. The K regression parameters in

S provide information about each independent variable’s unique relationship with the

dependent variable.
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3.2.2 Set-up of Bayesian Estimation of Panel Data Model
A.  The Pooled Model

This model assumes that regression coefficients are identical for the entire individual

(N) and time period (T) and that the common regression line is suitable for all units.

Vi =Xy + & (3.6)
Where y,is the dependent variable, X/ is row vector of explanatory variables,
dimension K, i =1,2,....N and t=1,2,...,T, while N and T are the cross-sectional and
time series dimensions respectively, y denoteK-vector of regression coefficients, with
the intercept,and ¢, is the error term which is normally distributed with mean zero
and variance sigma squared that is, &, ~ N(0,57).
The error terms are independent over all individual and time period. The likelihood

function form relies on assumptions made about the error terms.

The assumptions are:
(i) The ¢, has a multivariate Normal distribution with mean Oand variance h~'
that is, &, ~ N(0, h™")
(i) The & and ¢, are independent of one another for 7=, that is,
E(¢e,)=0Vi#j
(ii))The error term is statistically unrelated to the exogeneous variables:
E(Xe,)=0
(iv)The error term is uncorrelated with the lagged endogenous variable:
E(y,,,&,)=0
These assumptions of errors are independent over entire cross-sectional and time
periods making the model simply a linear regression model.
All the elements of explanatory variables are not random but fixed. Explanatory

variables are random variables if they are independent of all elements of ¢, with a

probability density function, p(X i|0) for @ is a vector of parameters that does not

include y and 4.
Estimation of the linear regression model in equation (3.6) using Bayesian estimators
can be executed via the following three steps, Simon (2009);

(i) Determine the likelihood function of the unknown parameters to be estimated.
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(ii) Specify the prior distribution for all the unknown parameters in the model.
(ii1) Define the posterior distribution of the parameters given the data.
The posterior distribution is proportional to the product of likelihood function and the
prior distribution

The posterior function of equation (3.6) can be obtained as:

p(y,h|y, X))o p(y| X,y,h).p(y).p(h)

The likelihood function of a Pooled Model

Suppose y, ..., y, be a set of independently and identically distributed random

variable of size N from continuous density function f(y,,y)with an unknown

parameter (7). Then, the likelihood function of y is given by

L) =]]/fmn) (3.7)
i=1
It is noted from the linear regression model y, =X,y+¢& in equation (3.5) that
g~ N(0, 5°1,), we setvar(e) = o’1,, = h™'I,, with error precision as h = %_2

In a matrix notation

var(g))  cov(ge,) . . . cov(gey) e ()
cov(ge,) var(s,) .. . . 0 n'
cov(&,&g) .. . . =1 . .
cov(ey 1, Ey) . . .. .0
cov(g,ey) . S var(ey) 0o . .. 0 n

This is a matrix which contains the variances on the diagonal and covariances at the

upper and lower diagonal, var(¢)=/4""1, is a compact notation for var(¢,)=h"' and
cov(ge;)=0 fori,j=1,...,Nand i # j

This shows thaty,~N(X,7, h"'I,) for the regression mean is X,y with random
variable y, as the data information, the expression for the likelihood density is
denoted by p(y|y,h),

The likelihood function form relies upon assumptions made about the errors.
Assumptions about & and X, ascertainthe likelihood functionform using the definition

of the Normal density as:
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_(yi_Xi]/) i| (3.8)

1
P ,0°)=———¢ex
ly.o%) o p[ =
Since 1 #J, yi and y; are independent of one another, it follows that &, and ¢, are

independent of one another since dependent variable is the function error terms.
By the definition of the multivariate Normal density, we can write the likelihood

function as:
hg h '
P(y|y.h)= —W{exr{—z(y—)@) (%M)}} (3.9)
(2r) *

we seto” = i with error precision as 4 = % 2
o

Hence, the likelihood function can be obtained through

P17, oz)=+exp[—2;2 >0 —X,-y)z}
(27)2 0" - (3.10)

It proves suitedto re-write the likelihood in aanother way. The exponent

N
Z( y, — X,y)* in equation (3.10) can be expressed as

i=1

N

X=Xy =vst+(r=y) ) X] (3.11)
i=1

where

v=N-1

= ZXii

72X

TX,
SZZZ(yi_Xi}?)Z
y

LX) =2 - XF) - X -7

Substituting equation (3.11) into equation (3.10) we have,

P(y|y,a2)=+exp{—2l - (5° +(y—7>2ZX3)} (3.12)
@2r)2o" e =

Substituting, o =" 6> =h™', N = v +linto equation (3.12)
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POy )= exp[—zgl(vs2+(y—7>zzxf>} (3.13)

Qr)2rh?
., hN/Z h 5 > N )
P(yly,h™)= Nexp{—z(vs (=7 X )} (3.14)
(27)? -
N=v+1
1 h%rl h 2 —\2 S 2
P(yly,h™) = Nexp{—g(vs (=712 X )} (3.15)
(27)2 -
Pyl ity =22 exp{—g(vsz + (y—WZXf)} (3.16)
(27)? =

P(y|y,h™")=

Khi exp —’g’s ](h exp_?h(ﬂf—?)zi)(f)ﬂ (3.17)

i=1

0|z

(27)

P(y|y,h")=

K}ﬂ exp 2‘;’2 J.(W exp_—zh(j/— WZX,?)H (3.18)

i=1

o=z

(27)

4 1 s =h, o o& L —hy
P(yly.h)=——|| B exp—-(r=7)" 2 X)) || i exp—— || (3.19)
= 2 pary 2s
(27)?
Using the matrix generalisation, the likelihood function can be written as above which

indicates that the natural conjugate prior is Normal- Gamma density.

44



The Prior Distribution of a Pooled Model

We draw out a prior for y conditional on h from equation (3.19) as stated below;

7ih=N(r.h"V) (3.20)

And a prior for h given as

h=G(s2.) (3.21)

Then the joint priorhas Normal-Gamma distribution form given in notation form as:
y: h~NG (7. V. 52, v) (3.22)

Where y is a k-vector containing the prior means for k regression slope coefficients

V1>7.--Y,and Vis a k x k positive definite prior covariance matrix.

The Posterior Inference of a Pooled Model
The posterior density is derived by multiplying the likelihood in (3.19) with prior
density in (3.22)

y:h|y~NG(7, V57, 7)

(3.23)
Where,
V=0"+Xx%)"
7=(r"y+xx7)
Vv=v+N
and s~ is defined through
w5 = s’ s’ + (7 [P ] - p)
v is the degree of freedom
h= ins the error precision
o
Themean y is E(y|y)=y (3.24)
and
Vst —
Var(y/ y)=——=V (3.25)
v-2
The parameters of error precision are E(h/y)=5" (3.26)
and
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257

v

Var(h!/y) =

(3.27)

The expressions in equations (3.24) to (3.27) describe the informative prior.
For non-informative prior, we assume that v=0and V™' =0 i.e ¥ =

where its posterior distribution has

y.h|y~NG(7.V 57, 7)

(3.28)
Where,
V=(XX)"
r=7
v=N
vs? =vs?

These formulasrequire only data information, and are equivalent to OLS quantities.
Note that we use bars over parameters to represent parameters of a posterior density,

and bars under parameters to represent parameters of the prior density.
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A pooled model can be displayed in a graphical form as

it

it

t=1L...,T

Figure 3.1: Graphical representation of a pooled model: y, =X,y+¢,, i=1,2,..,N and

i it?

t=12,..,T
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B. The Individual Effects Models
This is the model where the regression intercepts are permitted to differ across
individuals (N). This assumes that the slope parameters are the same for all individuals
but the intercepts are different across the individuals.It also assumes that all
individuals (N) have regression line with the same slope but different intercepts,
The individual regression model is given as:

v, =0.+X,y+e, (3.29)
Where y, is the dependent variable, X is the independent variables, i =1,2,...,N and
t=12,.,T for N and T are the cross-sectional and time series dimensions

respectively, also y describes the same parameter for all individuals, while 6, are

referred to as intercepts of the individual effects and ¢, is error term.

The Likelihood Function of Individual Effects Models

The likelihood function of equation (3.29) is based on the regression equation given as:
v, =0l + X7 +¢, (3.30)

Where 6, represents the intercepts of ith individual’s regression equation and y

represents the vector of regression parameters (which presumes to be the same for all

individuals).

Equation (3.30) along with error assumptions given in the pooled model, a multivariate

Normal density implies a likelihood function of the form

!

p(y|0.7.h) = H(z’;j{exp{—g(yi -6-X7) (v -6, —ffi)}}(&sl)

Where 6 =(6,...,0, )’
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The Prior Forms of Individual Effects Models

Bayesian inference may be contested because each parameter in the model requires
that prior type must be specified for the model. These are subjectively chosen by the
researcher depending on the parameter rigour of the model. However, we examine two
kinds of prior which are commonly used and computationally simple.

(1) A Non- hierarchical prior

(ii) A Hierarchical prior

Individual Effects Models (A Non- Hierarchical Prior)

A non- hierarchical prior of a Bayesian analysis leads to a model which is similar to
the fixed effects models of the classical approach.

To establish this fact equation (3.30) can be written as:
y=Xy+e (3.32)
Where y and & is a NTx 1 vector and X is a NT x (N+ K -1) matrix, while " is a

N+ K vector given as

¥, I, 0, .. 0, X 6, g
. 0, L. . .. X, . .
y=| . |, X = .0 o , V= .|, e=| . |(3.33)
OT HN
Yy 0, ... L X, y Ey

Where 7 is the slope coefficients of the individual without any intercepts and y°
denote regression coefficients both slope and the intercepts, &is the error term and y is
the dependent variable. Also, X "is a matrix which contains the independent variables
attached to a matrix including a dummy variable for each individual.

The use of dummy variables is an attempt to specify a model with an error term that
has zero mean, that is, effects are nuisance or incidental parameters which may distort
a consistent estimation of the slope. Fixed effect models use dummy variables to

account for class effects.
This model assumed independent Normal-Gamma prior and thus y and h are priors
independent of each other with
Yy ~N(y. V) (3.34)
and
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h~G(s7, v) (3.35)

Individual Effects Models (A Hierarchical Prior)

The hierarchical prior is used to solve issues instigated by high dimensional parameter
spaces. The equation in (3.30) isindividual effects model with a parameter space which

contains N + k parameters (that is, N intercepts iné, k -1 slope coefficients in
together with the error precision, /). If T is small relative to N, the number of
parameters is quite large relative to sample size. This indicates that a hierarchical prior
might be suitable and such priors are indeed mostly used.
Such a hierarchical prior of a Bayesian analysis leads to a model which is similar to the
classical random effects model.
A hierarchical prior assumes that, fori=1,..., N

0, ~ N(uy,Vy) (3.36)
With ¢, and 6,being independent of one another fori # j. The hierarchical structures
of the prior occur if g,andV, are treated as unknown parameters which require their
own prior information. We assume ,and V7, to be independent of one another along
with their prior distribution

#,~N(g,.0%,) (3.37)
And

vt ~G (v, (3.38)
For the other parameters, we incorporate a non-hierarchical prior of the independent

Normal-Gamma prior. Thus
7~N(@y, V) (3.39)
and

h~G(s?, v) (3.40)
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The Posterior Forms of Individual Effects Models
Posterior Inference Individual Effects Models (A Non- Hierarchical

Prior)
The posterior inference can be executed using Gibbs sampler method which takes

sequential draw from

7' yh~N(7".7) (3.41)
and

hly.y ~G(37.9) (3.42)
where

v=(r +h)(*’)(*)'1

7= V(z”y_’# hx*’y)

V=NT+v
and

, ﬁ:(yi_eilT_j(i?)’(yi_eflr_)?i?)"‘ﬁ
<=2 _ =

N

‘7
The convergence and degree of approximation implied in the Gibbs sampler can be

estimated using MCMC diagnostics described in Koop (2003).
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The individual effects models (a non- hierarchical prior) can be displayed in a

graphical form as

0

it

Vit

=5L...,N

-~

Figure 3.2: Graphical representation of the individual effects models (a non- hierarchical prior):

y,=0L+Xj+¢,i=12,..N
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Individual Effects Models (A Hierarchical Prior) Posterior Inference

The derivation involves multiplying the likelihood with prior and then investigating
the outcome for each of 7, h, 8, yu,and V, to find the kernels of each conditional
posterior distribution under the hierarchical prior given in (3.36) through (3.40). The
posterior simulation used Gibbs sampler algorithm which are drawn sequentially from
posterior conditionals. The appropriate posterior distributions for 7 and 4, conditional
ond, are derived in the same manner as those in equation (3.8) through (3.19) with

independent Normal-Gamma prior

]7/}/, h7 95 Hy» VHNN(}?a 177) (343)
and
hly, 7. 0. ty, V,~G(57, ) (3.44)
Where
N -1
_ . -
Vy:(zy +th:XXl.j
J— N ~
F7(r a3 Ko
i=1
V=NT+y
and
N !
Z(yi -0l _Xi,?) (yi -0l _Xi,j;)—i_ﬁ
EZ — =l

v

The conditional posteriors for each ¢, is independent of &, for i # j and is given by

0,17, 7, 0, 1y, V, ~N(0, V1) (3.45)
where
. -1
7 V, h _
TV, +h
And
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Vé’(yi _Xi)'lT + h_llug

0= -
(TV,+h™)

The conditional posteriors for the hierarchical parameters, ,and V, are

Hy |ya 777 ha 09 Vg NN(ﬁga 5;) (346)
and
_ - —1 _
V& ﬂya 7/’ h’ 9, lua NG(VQ 5vg) (347)
where
=2 _ Vggza
Oy = 2
V,+No’,
N
Vot +3° 5.6
o, = _ i=1
’ V.9+NQ29
Vo =Vy+ N
and

N
. Z(Qi_/la)z"'l_/al’a
Va — =l

Vo
The Gibbs sampler for the posterior stimulator involves only random number
generation from Normal-Gamma distributions of equation (3.43) through (3.47).
Both the non-hierarchical and hierarchical priors permit for every individual to have
uncommon intercept. However, more structure is placed on parameter through the
hierarchical prior in that it assumes all intercepts are generated from the same
distribution. This extra structure, if consistent with patterns in the data allows for more

precise estimation.
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The individual effects models (a hierarchical prior) can be displayed in a graphical

form as

Figure 3.3: Graphical representation of the individual effects models (hierarchical prior):

v, =61, +)?i}7+8i, i=1,2,..,N .Hierarchically, 8, ~ N(u,,V,)
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C. Random-Coefficients Model
The random coefficients model allows for every individual £, to be different. It uses a
K-vector of regression coefficients and intercept denoted by

yvi=Xp+¢ (3.48)
Where yis the response variable, X'is row vector of independent variables with

dimension k, i =1,2,..., N and the whole model contains Nk +1parameters, that is &

regression coefficients for each of N individuals together with the error precision, 4. 8

is the k-vector of regression coefficients, with the intercept,and & is the error term,
independently and identically distributed with mean zero and variance sigma squared
thatis¢, ~ N(0,07).

Hence, the pooled model assumes that the common regression line is suitable for all
individuals, while the individual effects models assume all individuals had regression
lines with the common slopes, but possibly with different intercepts. Meanwhile, the
random-coefficients model assumes all regression coefficients vary across individuals
(both slope coefficients and intercepts). The random-coefficients model are practiced
when the errors are cross-sectional, heteroscedastic and contemporaneously correlated

with the first-order autoregression of the dependent variables.

D. Random Coefficients Dynamic Panel Data Model

Many economic relationships are dynamic in nature and one of the benefits of pooling
data is that they permit the researcher to better understand the dynamics of
modification. The dynamic relationships are characterised by the presence of a lagged
dependent variable among the explanatory variables and individual effects describing
the heterogeneity amidst the individuals in the model. Random coefficients model
enables researchers to study the existence of heterogeneity (individual differences)
among the regression parameters. Failure to account for the heterogeneity produces
inconsistent estimates of the mean autoregressive coefficient, for panel of large N and
large T, Smith (1995).

A random coefficient dynamic panel data model can be described as:
K
Vi =0+ 2 Kb+ &, (3.49)
k=0

i=L.,N, t=1,..,T andk=0, 1, 2
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Vie =0V + Poi + X+ Xy o + €, (3.50)
Now, the above model is generalised as

Vit :Xz:}/i"'git (3.51)

Where

X =(X,,.)
And

7 =(B5)

1

Subscript 'i ' indicates that the marginal effect of X * on y

varies across the units which suggests the presence of heterogeneity, that is, non-const
ant error variance.

The model in equation (3.50) is writing in matrix form

Defining the N7 x 1 vector:

_yi,l ] _gi,l |
Yi2 €in
y = , g =
_yi,T B _g,',r |
And
I Yio Xoo X Xy - o o Xy ]
Yia Xon Xin Xo X
The NT x NK matrix X'=| ' ' ' ,
| Vira Xor Xip Xy o . inT_
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Boi
NK x1 vector y =|

By |
Where y is (NMI'x1) vector of dependent variable, X~ is a (N7'x NK) matrix of unit
specific regressors, y is (NKx1) vector of parameters, and ¢ is (NI'x/) vector of

error terms that has a well-defined probabilistic properties. The disturbancetermsmay

well represent all those factors that affect response variable but arenot taken into

account explicitly. Since y, is a function of ¢, , it follows immediately that y,,_,is also

a function ofg;, Baltagi (2005). Therefore y,, ,, a right-hand regressor in equation

(3.50) is correlated with the error term which render OLS estimator biased and
inconsistent.
A random coefficient dynamic panel data model set-up in equation (3.51) requires

likelihood function, a specification of the prior distributions over the parameters (7,

and /1) and computation on the posterior distribution using Bayesian learning process:

Likelihood Function of the Random Coefficient Dynamic Panel Data
Model

The pattern of the likelihood function relies upon assumptions made about the errors.
Assumptions about & and X, determine the pattern of the likelihood function using

the definition of the Normal density as:

1 Xy,
P(J’|7/a0'2):ﬁe>(p{—%}
o

Since i #j, &, and ¢, are independent of one another, it follows that y; and y; are also

(3.52)

independent of one another. The regression mean of Normal density in equation (3.52)
is Xy, with random variabley, as the datainformation. This shows that
y~N(X;7,, h"'I)), the expression for the likelihood density denoted by p(y|y,h),

using the definition of the multivariate Normal density, we can write the likelihood

function as:
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N
2

p(y|7:h)= h N{exp[_g(yi_Xi*}/i)’(yi_Xi*}/i)]}
(27)?

Hence, the likelihood function of equation (3.52) becomes

1 1 & .o
N eXp _2 ZZ(yi_Xiyi)
(271')701\, o =

P(y|7/’02):

Substitute, 4 = %;2 = ol=h"

, 1 1 . .
o) = - XY - Xy,
p(y|]’0') 27[)%}1_1% eXp{ 2h_12(y1 t]/t)(yl l]/l)}

(

Where,
}7i = (Xi*,Xi*)_lX;'yi
and

S2 _ (yi _Xi*yi)l(yi _Xi*yl)
1%

Also,
Z(yi _Xi*j}i),(yi _Xi*};i) = VS2 +(7l‘ _j;i)’Xi*'Xi*(j/i _7;,')
7 h

h A~ 12 * * ~
~ P(yly,0%)= 7 exp{——[vs’ + (7, = 7.) X X; (v, = 7)1}
27)7? 2

Forv=N-k,N=v+k

v+% 5

h ~ 12 *f * ~
P(y|]/,(72): —]Vexp{__[vsz +(7i_7/i) X, X, (71' _71')]}
2772 2

% ho e
P(yly,o°) = —AVCXP{——[VS +(7i_7i) X, X, (7/1'_7/1')]}
27)? 2

hv

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

S—Z

P(y | 7a62): 1 ]\7 ({h% exp[_ﬁ(},i _]’;i)rXi*’Xi*(yi _7;1)]} {h% eXp—ﬁVSZ}J (360)
2w )"? 2 2
2 1 k h AN ~ v,
P(y|7.0%)= ,V(%éemﬂ—EOG—%)Xr&(%—%ﬂ}wéem%2
27)7?

59

}j(3.61)



The quantity {h% exp[—%(yi—;?i)’X "X (y,—7)]}in equation (3.61) resembles the

kernel of the multivariate normal density while {h% exp— 2h—v_2} also looks like the
s

kernel of the gamma density. These results simply suggest a normal-gamma prior for
the likelihood function, Koop(2003).

P(y|y.0%)= — [{h/ expl= (7, = 70V (7, - 701 1 exp— Y.
(2ﬁ)é 2 2s

}] (3.62)

Where V =(X"X")" is simply the prior covariance matrix of y,

P(yly,c%)=

1 - I NN v hy
—(2”)%'(2”)%|V| ({eXP[ 2(% 7V (= 7)1 b ? exp =

}) (3.63)

s
The independent normal-gamma prior has posterior conditional densities that are non-
analytical in nature. Different from the natural conjugate normal-gamma prior, which
can be denoted asp(y,,h)~ fy:(7..h| Zi,l_/i,g’z,g) , because of the theorem of

independence, we cannot join the independent prior together, that is,

p(7,,h) = p(y,).p(h), Feller (1971).

Prior Distribution of the Random Coefficient Dynamic Panel Data
Model

A prior is the information we have about a particular study before seeing the data, we
denote the independent prior by p(y,,h).Therefore, from the law of independent
random variables we have that p(y,,h) = p(y,).p(h)

From equation (3.62)

p(y,;)~ Normal

And
p(h) ~ Gamma
1 - 1 o
p(y,)= V2 expl—=(r, =)V, (7, = 7)1 (3.64)
> 2
(27)?
and
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v-2 _
p(h)y=C'h 2 exp[ hzj (3.65)
S

Where, C,'is an integrating constant, It is deduced that: El[y,|y,]=y, 1s the prior
mean of y, and Var(y,|h)=V, is the prior covariance matrix of y, with the mean of

h, as §72 and vdegree of freedom.

Posterior Distribution of the Random Coefficient Dynamic Panel Data

Model

A posterior can be described as the product of the likelihood and the prior which
implies the information obtained about the parameters after seeing the data. Applying
some mathematical methods, the posterior can be an independent, a conjugate or not

taking a common distribution form.

It is usually denoted by p(y,, k| y,).
Mathematically, using p(7;, k| y) = p(y;17:,h).p(7;)-p(h)

but note that  p(y,,h|y)# p(y,|y,,h)- p(h|y,y,)which makes the prior an
independent normal-gamma prior and the posterior conditional densities are non-
analytical forms. Then, the posterior is proportional to the likelihood times the prior.

Hence, if wemultiply equation (3.53), (3.64) and (3.65), we will obtain

N
P(7/i7h|y): hzﬁ eXp|:_g(yi_Xi*7/i)'(yi_Xi*yi):l.
(27) (3.66)
1 1 o L2 (o
P | ZeXI{—E(%—L) v, l(y,-—zl.)]CG 2 exp(zggj

p(]/,-,h | y) oc exp[—%{h(yl. —X,-*%)'(yi _X:}/i)-"(]/i _L)IZ—I(% _Z,)}]

N+v-2 _hy (3.67)
h ? exp( —j

22
s
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This joint posterior density for y, and 4 does not yield any well-known distributional

form; so it cannot be solved analytically but only through a posterior simulation

techniques.

The Simplification of the Posterior Distribution in a Matrix

Multiplication
Wy =X7) Gi=X7)+0 =y YV i-7) (3.68)
=h (y,-’yi =2y X v +y X Xy, ) +(=y )V -7)

=hyy, = 2hy X"y, +hy X Xy, + 7V v, =20 V. y 4y V. y

=hy/y,+y V. y 4y 0T X X))y, =25 1(hX ]y, +V Ty ) (3.69)
Let V, =V, +hx X))

=V, =W, +hX X)) and 7, =V(hX, v+ V)
Hence, substituting back to equation (3.63) we have:

=hyy, 4y Uy r V-2, (3.70)

carrying out a simple mathematical assumption by including -7V, 7 and

+77i'V7177i into the equation (3.70) does not change anything in the equation but only

1

making us realise the desired result we want, we have;

. o =1 e - S
=y, +y, Vo A rV =2 TV AT T

—1 —-1 —1_

; Iy, = — — ' ’ o
=y +y V. y =TV T TV =2 AT
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Let,w=hy)y, + Zi' K[lzi - Z'VJIZ and

! _ -1 R S b S
=)V Gi=r)=rV. =2V vi+V Vi T
*\r * "y - — 7, —
= h(y, =y X))~ v XD+ =y )V =) ==V, (=7)+e  (371)
Substituting the equation (3.71) for the expression in equation (3.67), we obtain

— _ 1 N+v-2 —hV
V. (r=7) expl-—olh * exp S (3.72)

!

1 _
P(7,,h|y)ec exp{—a{(% 7))
By ignoring the terms that do not involve y; in equation (3.72) we obtain,

P(y, Iy,h)OCCXP{—%{(%-—Z)' 17:-_1(7,-—?,-)}} (3.73)
This is the kernel of a multivariate Normal density. In other words
Vil yh~N@7.V) (3.74)
Where,
V=, +hx'x)"
and
=V, (hX'y,+V."y)

Similarly, by treating (3.67) as a function of h ignoring terms that do not involve h we

can obtain

N+v-2

h * 12 *
P(h|y,}/l.)OCh g eXp[_E{(yi_Xi]/i)(yi_Xiy[)+‘_}§2}] (3.75)

By comparing (3.75) with the definition of the Gamma density, it has a posterior
distribution as:

hy,y, ~GE2,V) (3.76)
The posterior conditional densities in equation (3.72) yield density that is non-
analytical in nature. The formulae of equations (3.73) and (3.75) look the same to

those of the conjugate normal-gamma priors, but it does not relate directly to the
posterior of interest sinceP(yi,h | y) % P(%- |y,h)~P(h | y,}/l.) .

Therefore, the conditional posteriors in equation (3.74) and (3.76) do not directly
describe everything about the posterior, P(,,h|y).

However, there is a posterior simulator called the Gibbs Sampler which makes use of

the conditional posteriors like (3.74) and (3.76) to create random draws y“’and 4 for
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s=1,2,...,5 which can be averaged to produce parameter estimates of the posterior
properties just as the Monte Carlo integration.

The Gibbs sampling algorithm used in this study generates a sequence of random
samples from the conditional posterior distributions of each parameter, in turn
conditional on the current values of the other parameters, and thus generate a sequence
of samples that constitute a Markov Chain, where the stationary distribution of that

Markov chain is just the desired joint distribution of all the parameters.

Hierarchical Prior for the Random Coefficients Dynamic Panel Data

Model

In the case of fully hierarchical priors, a Markov Chain Monte Carlo method (the
Gibbs sampler) is employed to calculate posterior distributions. Such an approach is
particularly useful in our framework since it exploits the recursive characteristics of

the posterior distribution.

Assuming y; for i =1,..., N are independent draws from a normal distribution and thus,
vi~ N, V) (3.77)

With y, and y,being independent of one another fori # j. The hierarchical structures

of the prior occur if x, and V, are treated as unknown parameters which require their

own prior information. We assumed that x and V, to be independent of one another

with prior distribution as

#~N (102, (3.78)

and

V,~W(v,.v;")

(3.79)
The Wishart distribution is a matrix generalisation of the Gamma distribution.
Defining the covariance matrix of a vector which includes the covariances appears at
the upper and lower caes of the diagonal element while the variances of all the

elements occupy the diagonal.

4, 18 now a k-vector containing the prior means for the & regression coefficients, and

V,is now a Kx K positive definite prior covariance matrix.
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For the error precision, using the familiar Gamma prior:
h~G(s™,v) (3.80)

The conditional posteriors for the ;/lfs are independent of one another, for i =1,..., N,

with

7l./yl.,h,,u7,V7~N(7pVi) (3.81)
Where

Vi=(hX'X + vl
and

77i =Vi (hXi*'yi + Vyil/uy)

For the hierarchical parameters, 4 and V, , the relevant posterior conditionals are

v,y hV, ~N(,,2,) (3.82)
and
— -1
1 — —
Vy |y,}/,h,V7,,uy~W(vy,[vy V7:| ) (383)
Where
J— B 1 -1
z, =(vr ez )
— < 1 o -1
A, =27[V[ 27+E, ﬁyj
i=1
v,=N+y,
_ N
V}/ = z(]/l _/'l;/)(j/l _/'l]/),+K}/
i=1
N
Since Z 7, 1s the k-vector containing the sums of the elements of ;.
i=1
The posterior conditional for the error precision has the form:
—2
hy,y.V,, 1, ~G(E,v) (3.84)
Where
V=TN +v
and
N * * 2
Z(yi _Xi 7,-)’(yl~ _Xi%‘)'i'ﬁ
<2 i=1
S =

‘_)
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Nevertheless, the posterior simulator called the Gibbs sampler, involving (3.82)-(3.84),
involves only random number generation from the Normal, Gamma and Wishart
distributions.

The predictive densities and the marginal likelihoodsdo not existin a situation where
the posterior distribution does not have a common distributional form. The normal
linear model with independent normal-gamma prior becomes very complicated and
difficult in Bayesian econometrics model because posterior distributional form does
not have a usual form of distribution that can be solved analytically, rather via a
posterior simulation approach in which the Gibbs sampler becomes an essential device

of concern used in this study.
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The random coefficients dynamic panel data model can be displayed in a graphical form as

Figure 3.4: Graphical representation of the random coefficients dynamic panel data model:

Vi =X, 7t €,

1

i=1,2,...,N . Hierarchically, y, ~ N(,uy, Vy)
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3.2.3 Hierarchical Bayesian Computation

3.23.1 Markov Chain Monte Carlo (MCMC) Approach

Markov Chain Monte Carlo (MCMC) approach is a posterior simulator used to obtain
posterior estimates of the regression model of high dimensional parameter spaces. The
techniques of MCMC approach to simulate posterior distributions, use Bayesian
statistics especially in macroeconomic analyses and policy evaluation for estimation
and prediction of empirical analysis, these two aspects of analysis are easily overcome
given a sample of draws from the posterior distribution, Tanner and Wong (1987),
Gelfand and Smith (1990).

The essence of MCMC approach is to incur a representative and large sample from the
posterior distribution and then apply the sample to acquire information about the
features of the model parameters. The sequential draws from the posterior distribution
are built such that they comprise a Markov chain converging to a distribution stable
which concurs with the aim posterior distribution. MCMC diagnostics are informative
to measuring whether Gibbs sampler is appropriate over the study and are sufficiently
of large number replicates to achieve desired degree of accuracy. The rule behind the
Gibbs sampler algorithm is to partition the parameter vector into blocks of parameters
and then sequentially sample from each block of parameters conditional on all the

other blocks of parameters, Tierney (1994).

3.2.3.2 The Simulation Study

Simulation studies are computer experiments that include creating datarelating to
numbers generated by a computational process that are from a deterministic sequence

but which are designed to have as many characteristics as possible of a random
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sequence. The key effectiveness of simulation studies is the power to know the
performance of statistical estimators because some parameters of interest are identified
throughthe data generating process. This enables us to consider estimators criteria,
such as numerical standard error. Although the simulation method, the setting of
scenarios and the choices of the number of burn in iterations and posterior sample size
are made in the process of estimating parameter model which enabled us to perform a
comprehensive simulation study in a relatively short time. The focus of simulation
study in this work is to examine the appropritenessof a hierarchical Bayesian estimator
in the dynamic panel data in conjuction with suitable prior information.The
performance of Bayesian estimation was evaluated using simulation studies of

longitudinal data with different sample sizes.

3.2.3.2.1 Data Generating Scheme

The design of the Markov Chain Monte Carlo (MCMC) experiments was carried out
based on the following data generating process;

Given the model,

Vu =8V + B+ Xy B+ Xy o + 6, 1=1,s N andt =1,..,T , k=0,1,2

Markov Chain Monte Carlo (MCMC) experiments with 10,000 replications were
made for the two scenarios.
To perform the simulation of the random coefficient (heterogeneous) dynamic panel

data model above

(1) The explanatory variable (X,,,X,,)are generated using uniform distribution

(0,1) thatis X,, ~ U(0,1)
(i1) The intercept is drawn independently from Normal distribution with mean zero

and variance 0.25, that is f,, ~ N(0,0.25)

(iii)To impose stationarity on the coefficient lagged dependent variable (J,), it is
assumed that J, are generated from Beta distribution whose support is (0, 1).
Examine its stationarity condition |, |

(iv) The initial values for regression coefficients are S, =2and S, =3
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3.2

(v) The error terms are generated from normal distribution with mean zeros and
one variance, that is & ~ N(0, 2™")of & ~ N(0,1). We set our error precision:
— . -1 _ _
h = 25 and prior hyperparameters as w, =0,, X =1,, V" =1, and v, =2

(vi) The first scenario has three experiments for the individual (N) and time (T):

N<T: (10, 15), (15, 20), (20, 50)
N=T: (10, 10), (20, 20), (50, 50)
N>T: (20, 5), (50, 10), (100, 15)

(vii) The second scenario improves the dimension of N>T to establish its
better performance over other two experiments in first scenario as; (N, T) =
(505), (100, 5), (100, 10), (200, 10), and (200, 20)

(viii) Markov Chain Monte Carlo (MCMC) experiments with 10,000

replicates were made for the two scenarios.

3.2.2  Data Simulation for Sensitivity of Prior Information on

Posterior Estimates

To observe the behaviour of the posterior distribution, both informative and relatively

non

-informative priors are considered. All the prior distribution of y,coefficients is

identical at each hierarchical prior of the model. In order to compare the effect of

differently precise prior information; the error precision for the y, parameters priors

are

(i)

(ii)

(iii)

(iv)

different between the models for the influence of the data to be examined.
The independent variables (X, , X,, ) are generated using uniform distribution
(0, 1) thatis X,, ~ U(0,1).
The y, parameters: S, ~ B(0,1), B, ~ N(0,0.25), B, =2, f,, =3, are used in
the simulation.
We generate values for the errors, ¢, ~ N(0,4") and use the independent

variables and errors to generate the dependent variable

Relatively non-informative prior hyperparameters are stated as y, :

,uy=04,§ =1, Zy’l=1,andgy=2

/4
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V) Informative prior hyperparameters are stated as y, = 1, = (0.5, 0.5, 0.5, 0.5)
_ _l_ _ . . .o, . .
, 2, =0.05, V,7=0.05, and v, =10. To examine the prior sensitivity on the

posterior distribution, we set the error precision (h=0.04, 0.03, 0.02, 0.01) for
relatively noninformative prior and (h=25, 30, 50, 70) for informative prior.

(vi)  The value of N (individual) is chosen to be 20 and time T=5 for the two sets of
priors.

(vii)  Posterior results for the model are based on 10,000 replications, with 1000
burn-in replications discarded and 9000 replications retained.

(viil) Markov Chain Monte Carlo (MCMC) experiments with 10,000 replications
were made for the two scenarios.

The following criteria will be used to assess the performance of the posterior

simulation techniques:

(1) Posterior Mean
The posterior simulation approach such as Gibbs Sampling provides us with g
S

Where g, = 1 Z g(7®) which is an estimate of posterior mean: E[g(y,)|y]

1 s=8,+1

(i1) Posterior Standard Deviation

The posterior variance is given as:
o, =var[g(y,,h)| y]

where posterior standard deviation can be given as:
o, ={varlg(y, )| y1}"

Geweke (1992) uses the intuition to draw on ideas from the time series literature to

develop an estimate of o, of the form:

5 _ S0
4 Sl

(iii)  Numerical Standard Error
Numerical standard error was derived through the use of a central limit theorem of the

familiar form:
IS {&, — Elg(r) | ¥1} > N(0,07)

It is possible to calculate a numerical standard error as:
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6-g
s,

Where

S(0) is the spectral density of the sequence y for s=S,+1, ...,S evaluated at ,
S, is called burn- in replications which are discarded
S, is the remaining replicate which retained for the estimate of E[g(y,)|»]

S,+8,=8

(iv) Pictorial graph (Histogram and Density)
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CHAPTER FOUR

ANALYSIS OF DATA AND INTERPRETATION

4.1 Introduction

In this chapter, the performance of hierarchical Bayesian estimator on dynamic panel
data models when the parameters are heterogeneous across individuals are considered
using the posterior mean, posterior standard deviation and numerical standard error
criteria. Attention is also focussed on the two scenarios of dimension of individual (N)
and time (T).
Firstly, when N<T: (10, 15), (15, 20), (20, 50)

N=T: (10, 10), (20, 20), (50, 50)

N>T: (20, 5), (50, 10), (100,15)

Secondly, improvement on performance of N>T over other two experiments in first
scenario as

(N>T) = (50 5), (100, 5), (100,10), (200, 10) and (200,20)
The sensitivity of prior information on the posterior estimates of heterogeneous
dynamic panel data model will also be investigated using relatively non- informative
and informative priors. Data were simulated using Markov Chain Monte Carlo

(MCMC) approach to obtain posterior estimates with 10,000 iterations.

4.2 First Scenario of the Empirical Analysis
The first scenario of the empirical analysis involve three experiments for the individual
(N) and time (T) which are

A. N<T: (10, 15), (15,20), (20,50)

B. N=T: (10,10), (20,20), (50,50)

C. N>T: (20,5), (50,10), (100, 15)
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A. Experiment I: When N<T

Table 4.1:

second stage hierarchical prior parameters ( 4, andV, );

Posterior mean and Numerical standard error (in brackets) for the

= =
|y, yhV, ~N(f, 2, )and V, |y, 7,0V, 1, ~W(vy,[vyVy] ), By ~N(0,0.25)

S ~B(0,1)
N=10, T=15 N=15, T=20 N=20, T=50
Mean -0.018960 0.126969 0.100956
NSE (0.00042) (0.00037) (0.00019)
5 Mean -0.270528 0.220349 0.132611
o| NSE (0.00207) (0.00142) (0.00076)
Mean 2.761221 1.852535 1.080804
gl) NSE (0.00171) (0.00123) (0.00017)
5 Mean 1.674693 1.719858 4.060692
2| NSE (0.00180) (0.00152) (0.0068)
v, 0.0033 0.0011 0.0007
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Discussion of Results Al
Table 4.1 presents the posterior estimates of second stage hierarchical prior for

w1, (0, By, B> B,) - It shows that the regression coefficients are identical for the entire

individual (N=10, 15, 20) and time period (T= 15, 20, 50). The posterior means of the

parameter 0 and S, exhibit negative values at N=10, T=15 while the estimates of
parameters S, and f, fluctuate around the true mean. The numerical standard errors

of the parameters consistently decrease as N increases for all values of T. Also, the

constant error variance (V) which projects the homogeneity among the parameters

decreases as the sample size increases.

Figures 4.1 (a — c)reveal graphical presentations of posterior estimates. The figures
depict the general shapes of the marginal posterior distributions of model parameters.
Histograms which superimpose a kernel density provide useful additions to the various
numerical statistics for summarising MCMC output. These graphs display a marginal
posterior distribution of parameters to show if the empirical distributions have normal
distributions. As the dimension of N and T change, the shape of the distribution of

each parameter has the normal distribution.
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Table 4.2: Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y, | y,,h, u,,V, ~ N (;71.,;,-) For N=10, T=15,
f, ~N(0,0.25) 5, ~ B(0,1)

Individ

ual Posterior Mean Posterior Standard deviation
o b | BO) | BB | 9 Ko | BO | ARG
1 -0.0198 | -0.3246 | 2.6871 | 1.7403 |0.0031 |0.0348 |0.0566 |0.0838
2 -0.0197 | -0.2655 | 2.8181 | 1.6056 |0.0297 |0.0242 |0.0744 |0.0509
3 -0.0297 | -0.3796 | 2.7098 | 1.7918 |0.0129 |0.0898 |0.0341 |0.1353
4 -0.0272 | -0.2599 | 2.8131 | 1.6440 |0.0104 |0.0299 |0.0693 |0.0125
5 -0.0219 | -0.1658 | 2.7794 | 1.5998 |0.0052 |0.1241 |0.0356 |0.0567
6 -0.0046 | -0.3148 | 2.7317 | 1.5776 |0.0121 |0.0249 |0.0121 |0.0789
7 -0.0381 | -0.3011 | 2.7644 | 1.7434 |0.0214 |0.0114 |0.0206 |0.0869
8 -0.0007 | -0.2686 |2.7231 | 1.6182 |0.0160 |0.0211 |0.0207 | 0.0384
9 -0.0175 | -0.3281 | 2.7711 | 1.6381 |0.0009 |0.0383 |0.0274 |0.0184
10 -0.0120 | -0.2901 | 2.6401 | 1.6063 |0.0287 |0.0002 |0.1036 |0.0502
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Figure 4.2: Histogram of posterior mean of parameters }, |y,h, M, Vy ~N(}7i, 171) for N=10 and

T=15
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Table 4.3: Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y; | y,, /1, 1,,V, ~ N(7,, Vi) For N=15, T=20,

Sy ~N(0,025) 5, ~ B(0,1)

Individ

ual Posterior Mean Posterior Standard deviation
g B | B@ | BB | 9 B | B | O
1 0.1286 | 0.1538 | 1.8563 | 1.6789 | 0.0005 | 0.0570 |0.0041 |0.0273
2 0.1296 |0.2149 | 1.8676 |1.6749 |0.0014 | 0.0039 |0.0155 |0.0313
3 0.1047 |0.1724 | 1.8994 | 1.7537 |0.0234 | 0.0384 | 0.0473 |0.0474
4 0.1273 |0.2240 | 1.8577 | 1.7270 | 0.0007 | 0.0132 | 0.0057 | 0.0207
5 0.1262 |0.1914 | 1.8317 | 1.7749 | 0.0019 |0.0195 |0.0204 | 0.0686
6 0.1260 | 0.2091 | 1.8279 | 1.7247 |0.0020 | 0.0018 |0.0241 |0.0183
7 0.1106 |0.1732 | 19137 |1.7697 |0.0174 |0.0377 |0.0615 |0.0634
8 0.1194 |0.2513 | 1.8819 | 1.7081 | 0.0087 | 0.0404 | 0.0298 |0.0018
9 0.1303 |0.2396 |1.8390 |1.7148 |0.0021 |0.0288 |0.0131 | 0.0085
10 0.1382 |0.2637 | 1.8339 | 1.6988 |0.0100 |0.0528 |0.0181 |0.0074
11 0.1482 | 0.2006 | 1.7929 |1.6501 |0.0201 |0.0103 |0.0592 |0.0562
12 0.1466 |0.2159 |1.8491 |1.5985 |0.0184 | 0.0051 |0.0029 |0.1078
13 0.1214 | 0.1951 | 1.8814 |1.7122 | 0.0067 | 0.0157 |0.0294 | 0.0059
14 0.1446 |0.2656 | 1.8097 |1.6325 |0.0164 |0.0547 |0.0423 |0.0737
15 0.1199 |0.1923 | 1.8391 |1.7753 |0.0082 | 0.0185 |0.0129 | 0.0690
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Figure 4.3: Histogram of posterior mean of parameters J, | ¥, /, ,uy,Vy ~N(7,, Z)for N=15 and

T=20
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Table 4.4:

Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters, 7, |y,,h, u,,V, ~ N (;71.,;,-) For N=20, T=50,

Sy ~N(0,025) 5, ~ B(0,1)

indivi Posterior Standard deviation
dual Posterior Mean

o B @ | BB | 9 b | BQ | BB
1 0.1023 0.1145 2.0846 |2.0493 |0.0015 |0.0082 |0.0051 | 0.0124
2 0.0903 0.1402 2.1292 |2.0837 |0.0105 |0.0174 |0.0497 | 0.0221
3 0.1000 0.1471 2.0789 |2.0605 |0.0007 |0.0243 |0.0004 | 0.0011
4 0.1097 0.1143 2.0795 |2.0226 |0.0089 |0.0084 |0.0002 | 0.0391
5 0.0981 0.1188 2.0743 |2.0758 |0.0027 |0.0038 |0.0051 | 0.0141
6 0.1005 0.1328 2.0832 |2.0651 |0.0002 |0.0101 |0.0037 | 0.0034
7 0.1063 0.1101 2.0696 |2.0557 |0.0055 |0.0126 |0.0098 | 0.0059
8 0.1026 0.0702 2.0718 |2.0632 |0.0018 |0.0525 |0.0076 | 0.0016
9 0.1023 0.1124 2.0941 |2.0281 |0.0015 |0.0103 |0.0147 | 0.0335
10 | 0.0987 0.1868 2.1005 |2.0531 |0.0022 |0.0641 |0.0210 | 0.0086
11 ]0.0929 0.0696 2.0872 | 2.0785 |0.0079 |0.0531 |0.0078 | 0.0168
12 | 0.1056 0.1063 2.0480 |2.0560 |0.0048 |0.0165 |0.0313 | 0.0058
13 | 0.1036 0.1253 2.0805 |2.0617 |0.0028 |0.0025 |0.0011 | 0.0001
14 |0.1030 0.1089 2.0762 |2.0611 |0.0021 |0.0138 |0.0031 | 0.0006
15 ]0.1033 0.1648 2.0566 |2.0623 |0.0024 |0.0421 |0.0228 | 0.0007
16 | 0.0954 0.0986 2.0512 |2.1074 | 0.0054 |0.0241 |0.0821 | 0.0457
17 ]0.0983 0.1423 2.0770 |2.0755 |0.0025 |0.0195 |0.0024 | 0.0138
18 | 0.0971 0.0967 2.0946 |2.0599 |0.0937 |0.0259 |0.0152 | 0.0017
19 10.1003 0.1487 2.0753 | 2.0592 |0.0005 |0.0259 |0.0041 | 0.0025
20 | 0.1058 0.1463 2.0586 |2.0544 |0.0049 |0.0235 |0.0035 | 0.0073
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Figure 4.4: Histogram of posterior mean of parameters J, | ¥, /, ,uy,Vy ~N(7,, Z)for N=20 and

T=50
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Discussion of Results AII

Tables 4.2-4.4 present the posterior estimates of first stage hierarchical prior for
V.0, Bois By Po;) - The results obtained reveal clearly the contributions of each
individual towards the response variable. Table 4.2, when N = 10 and T= 15, the

individual posterior means of o, and S, give negative results, while posterior mean
for p, is closer to the true value and the posterior mean for f, are far reaching the

true mean. Table 4.3 reveals that the coefficient of lagged dependent variable (J)

possesses a stability condition, that is |0 |[<1 while S, and f, posterior means behave

in the same manner as Tables 4.2. Table 4.4 has an improved individual posterior
estimate above Table 4.2 - 4.3. More so, the posterior standard deviations for all
individual parameters decrease as the sample size increases.

Figures 4.2 - 4.4 exhibit the real influence of a specific variable across the individuals.
The graphs show the hidden differences among the individual parameters as their

histogram is significantly different.
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B. Experiment II: When N=T

Table 4.5:

Posterior mean and Numerical standard error (in brackets) for the

second stage hierarchical prior parameters (&, andV, ); u | y,7,h,V, ~ N( ﬁy,i)

— -1
and Vyfl |y, 7.V, 1, NW@’[@VVJ )» By ~N(0,025) &, ~ BO,1)

N=10, T=10 N=20, T=20 N=50, T=50

Mean 0.148184 0.087397 -0.015373

{ NSE (0.00067) (0.0003) (0.00021)

Mean 0.874782 -0.213237 -0.006062

ﬁo{ NSE (0.00251) (0.00125) (0.00052)

Mean 1.540179 1.905516 3.967415

gl) { NSE (0.00229) (0.00108) (0.00014)

Mean 2.235636 1.908115 1.994385

g% { NSE (0.00268) (0.00127) (0.00048)
v, 0.0027 0.0007 0.0001
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Discussion of Results BI

Table 4.5 gives the posterior estimates of second stage hierarchical prior for
w1, (0, By, B, B,) . The table shows that at each dimension of N=T, the regression
coefficients has a single posterior mean of the entire individual (N) and time period

(T). The posterior mean of the parameters & and g, display negative values at N=50,
T=50 while the parameters f, and f, are close to the true values at N=10, T=10 but
when N=50, T=50, £, and p, are not found relatives to the true mean. The numerical
standard error of each parameter decreases as every dimension of N=T increases. Also,
the constant error variance (V,) decreases consistently as the sample size (NT)

increases.

The histogram superimpose of a kernel density in Figure 4.5 (a — c) describes the
pattern of each parameter posterior mean. The graph indicates marginal posterior
distribution of parameters and shows that the empirical distributions have normal

distributions with different shape as the dimension of N = T changes.
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Table 4.6:Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y, | v, h, u,,V, ~ N (;7,.,;,-) For N=10, T=10,

Sy ~N(0,025) 5, ~ B(0,1)

Indivi Posterior Mean Posterior Standard deviation
dual
o B | B@ | BB | 9 B A@ | AG)
1 0.1425 | 1.0172 | 1.5538 | 2.2193 | 0.0051 | 0.1071 | 0.0019 | 0.0117
2 0.1443 | 09123 | 1.5911 | 2.2345 | 0.0035 | 0.0022 | 0.0352 | 0.0037
3 0.1501 | 0.8553 | 1.5761 | 2.2004 | 0.0023 | 0.0576 | 0.0202 | 0.0307
4 0.1275 | 0.8414 | 1.5868 | 2.2826 | 0.0203 | 0.0685 | 0.0309 | 0.0514
5 0.1333 | 1.0225 | 1.4245 | 2.4231 | 0.0144 | 0.1124 | 0.1312 | 0.1919
6 0.1565 | 0.8764 | 1.5535 | 2.2184 | 0.0087 | 0.0335 | 0.0023 | 0.0126
7 0.1734 | 0.8494 | 1.5283 | 2.1866 | 0.0256 | 0.0606 | 0.0274 | 0.4455
8 0.1381 | 0.8553 | 1.6584 | 2.1986 | 0.0097 | 0.0548 | 0.1026 | 0.0325
9 0.1721 | 0.7864 | 1.5381 | 2.1254 | 0.0244 | 0.1236 | 0.0177 | 0.1057
10 0.1398 | 1.0843 | 1.5476 | 2.2223 | 0.0079 | 0.1742 | 0.0082 | 0.0089
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Table 4.7:Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y, | y,,h, u,,V, ~ N (77,.,;,-) For N=20, T=20,

Sy ~N(0,025) 5, ~ B(0,1)

Indivi Posterior Standard deviation
dual Posterior Mean

o B, B | BB o B | B@ | A
1 0.0919 | -0.2448 | 1.8891 1.9069 | 0.0063 | 0.0384 | 0.0218 | 0.0015
2 0.1029 | -0.2797 | 1.8367 | 19113 | 0.0172 | 0.0733 | 0.0742 | 0.0029
3 0.1106 | -0.2361 | 1.8571 1.8325 | 0.0250 | 0.0297 | 0.0538 | 0.0759
4 0.0714 | -0.2231 | 1.9498 | 1.9416 | 0.0142 | 0.0168 | 0.0389 | 0.0332
5 0.0945 | -0.2159 | 1.8830 | 1.8708 | 0.0089 | 0.0095 | 0.0279 | 0.0376
6 0.0738 | -0.2189 | 1.9562 | 1.9675 | 0.0119 | 0.0125 | 0.0452 | 0.0592
7 0.0998 | -0.2461 | 1.8287 | 1.8916 | 0.0142 | 0.0398 | 0.0821 | 0.0167
8 0.0750 | -0.2825 | 1.9324 | 1.9431 | 0.0107 | 0.0761 | 0.0214 | 0.0347
9 0.0803 | -0.1792 | 1.9229 | 1.9340 | 0.0054 | 0.0271 | 0.0119 | 0.0256
10 0.8595 | -0.2131 | 1.8923 | 1.9146 | 0.0003 | 0.0068 | 0.0185 | 0.0063
11 0.0878 | -0.2085 | 1.9173 | 1.9183 | 0.0021 | 0.0022 | 0.0064 | 0.0100
12 0.0776 | -0.2440 | 1.9586 | 1.9279 | 0.0081 | 0.0376 | 0.0476 | 0.0195
13 0.0685 | -0.1593 | 1.8835 | 2.0242 | 0.0171 | 0.0469 | 0.0274 | 0.1159
14 0.0841 | -0.1303 | 1.9252 | 1.8993 | 0.0016 | 0.0760 | 0.0142 | 0.0090
15 0.0986 | -0.1821 | 1.9096 | 1.8143 | 0.0129 | 0.0242 | 0.0013 | 0.0941
16 0.0818 | -0.1625 | 1.9292 | 1.9140 | 0.0038 | 0.0438 | 0.0183 | 0.0056
17 0.0765 | -0.1730 | 1.9377 | 1.9519 | 0.0092 | 0.0333 | 0.0267 | 0.0435
18 0.0917 | -0.1302 | 1.9083 | 1.8600 | 0.0060 | 0.0761 | 0.0026 | 0.0483
19 0.0891 | -0.2140 | 1.9494 | 1.8427 | 0.0035 | 0.0077 | 0.0384 | 0.0655
20 0.0710 | -0.1830 | 1.9514 | 1.9004 | 0.0146 | 0.0233 | 0.0405 | 0.0080
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Figure 4.7: Histogram of posterior mean of parameters J, | ¥, /, ,uy,Vy ~N(7,, Z)for N=20 and

T=20
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Table 4.8:Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y, | y,,h, u,,V, ~ N (;71.,;,-) For N=50, T=50,

Sy ~N(0,025) 5, ~ B(0,1)

Individu

al Posterior Mean Posterior Standard deviation
0 b | B@ | BB | 9 b | BO | BB
1 -0.0149 | 0.0405 | 1.9721 | 1.9981 | 0.0004 | 0.0431 | 0.0045 | 0.0041
2 -0.0159 | 0.0065 | 1.9507 | 2.0129 | 0.0006 | 0.0090 | 0.0168 | 0.0188
3 -0.0162 | -0.0119 | 1.9493 | 2.0222 | 0.0008 | 0.0092 | 0.0183 | 0.0281
4 -0.0116 | 0.0089 | 1.9682 | 1.9759 | 0.0038 | 0.0115 | 0.0006 | 0.0182
5 -0.0114 | 0.0057 | 1.9887 | 1.9648 | 0.0039 | 0.0082 | 0.0210 | 0.0292
6 -0.0119 | -0.0157 | 1.9578 | 1.9739 | 0.0034 | 0.0131 | 0.0097 | 0.0201
7 -0.0129 | -0.0134 | 1.9482 | 2.0011 | 0.0024 | 0.0109 | 0.0194 | 0.0069
8 -0.0166 | -0.0239 | 1.9687 | 1.9866 | 0.0013 | 0.0213 | 0.0011 | 0.0075
9 -0.1124 | -0.0095 | 1.9762 | 1.9759 | 0.0041 | 0.0068 | 0.0086 | 0.0183
10 -0.0118 | 0.0120 | 1.9612 | 2.0032 | 0.0035 | 0.0146 | 0.0064 | 0.0091
11 -0.0189 | -0.0262 | 1.9718 | 1.9974 | 0.0036 | 0.0237 | 0.0041 | 0.0033
12 -0.0197 | -0.0291 | 1.9721 | 2.0132 | 0.0044 | 0.0265 | 0.0045 | 0.0190
13 -0.0183 | -0.0086 | 1.9718 | 2.0073 | 0.0029 | 0.0061 | 0.0042 | 0.0131
14 -0.0209 | -0.0055 | 1.9772 | 2.0098 | 0.0056 | 0.0029 | 0.0095 | 0.0157
15 -0.0138 | 0.0318 | 1.9577 | 1.9933 | 0.0016 | 0.0343 | 0.0098 | 0.0008
16 -0.0156 | -0.0076 | 1.9597 | 1.9930 | 0.0002 | 0.0051 | 0.0079 | 0.0011
17 -0.0186 | -0.0231 | 1.9653 | 2.0139 | 0.0033 | 0.0206 | 0.0022 | 0.0199
18 -0.0132 | -0.0122 | 1.9666 | 1.9833 | 0.0021 | 0.0097 | 0.0009 | 0.0107
19 -0.0078 | -0.0315 | 1.9517 | 1.9839 | 0.0075 | 0.0290 | 0.0159 | 0.0302
20 -0.0141 | 0.0031 | 1.9545 | 1.9882 | 0.0012 | 0.0056 | 0.0131 | 0.0059
21 -0.0152 | -0.0029 | 1.9575 | 2.0041 | 0.0001 | 0.0003 | 0.0101 | 0.0099
22 -0.0129 | -0.0057 | 1.9656 | 1.9949 | 0.0024 | 0.0031 | 0.0020 | 0.0008
23 -0.0169 | -0.0171 | 1.9810 | 1.9989 | 0.0016 | 0.0145 | 0.0134 | 0.0047
24 -0.0161 | 0.0072 | 1.9709 | 1.9902 | 0.0008 | 0.0098 | 0.0033 | 0.0039
25 -0.0160 | 0.0165 | 1.9815 | 1.9845 | 0.0007 | 0.0187 | 0.0139 | 0.0096
26 -0.0076 | -0.0281 | 1.9379 | 1.9894 | 0.0077 | 0.0256 | 0.0297 | 0.0046
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27 -0.0091 | -0.0058 | 1.9578 | 1.9759 | 0.0063 | 0.0032 | 0.0097 | 0.0181
28 -0.0226 | -0.0079 | 1.9943 | 2.0074 | 0.0072 | 0.0053 | 0.0267 | 0.0133
29 -0.0119 | 0.0401 | 1.9771 | 1.9682 | 0.0034 | 0.0427 | 0.0094 | 0.0258
30 -0.0156 | -0.0241 | 1.9797 | 1.9829 | 0.0002 | 0.0216 | 0.0121 | 0.0112
31 -0.0187 | 0.0021 | 1.9853 | 1.9905 | 0.0033 | 0.0047 | 0.0177 | 0.0036
32 -0.0171 | 0.0156 | 1.9739 | 2.0056 | 0.0017 | 0.0182 | 0.0062 | 0.0114
33 -0.0099 | -0.0161 | 1.9972 | 1.9541 | 0.0055 | 0.0134 | 0.0295 | 0.0399
34 -0.0141 | 0.0016 | 1.9677 | 1.9806 | 0.0013 | 0.0042 | 0.0002 | 0.0134
35 -0.0189 | 0.0300 | 1.9760 | 2.0045 | 0.0035 | 0.0325 | 0.0084 | 0.0104
36 -0.0209 | 0.0110 | 1.9769 | 2.0031 | 0.0056 | 0.0135 | 0.0093 | 0.0090
37 -0.0151 | 0.0118 | 1.9692 | 1.9972 | 0.0003 | 0.0144 | 0.0016 | 0.0030
38 -0.0125 | 0.0157 | 1.9694 | 1.9752 | 0.0027 | 0.0183 | 0.0017 | 0.0189
39 -0.0176 | 0.0165 | 1.9500 | 2.0126 | 0.0022 | 0.0191 | 0.0175 | 0.0184
40 -0.0219 | -0.0246 | 1.9778 | 2.0146 | 0.0066 | 0.0008 | 0.0101 | 0.0204
41 -0.0131 | -0.0246 | 1.9588 | 1.9857 | 0.0021 | 0.0221 | 0.0088 | 0.0083
42 -0.0181 | -0.0162 | 1.9491 | 2.0306 | 0.0028 | 0.0135 | 0.0185 | 0.0365
43 -0.0217 | 0.0067 | 1.9734 | 2.0265 | 0.0063 | 0.0093 | 0.0057 | 0.0323
44 -0.0169 | -0.0129 | 1.9575 | 2.0077 | 0.0016 | 0.0102 | 0.0101 | 0.0135
45 -0.0092 | -0.0121 | 1.9595 | 1.9714 | 0.0061 | 0.0094 | 0.0080 | 0.0227
46 -0.0187 | 0.0150 | 1.9768 | 1.9972 | 0.0034 | 0.0177 | 0.0091 | 0.0031
47 -0.0181 | -0.0108 | 1.9726 | 1.9906 | 0.0028 | 0.0082 | 0.0049 | 0.0035
48 -0.0173 | -0.0116 | 1.9720 | 1.9929 | 0.0019 | 0.0090 | 0.0043 | 0.0042
49 -0.0131 | -0.0039 | 1.9612 | 1.9929 | 0.0022 | 0.0013 | 0.0064 | 0.0011
50 -0.0143 | -0.0051 | 1.9631 | 2.0002 | 0.0011 | 0.0026 | 0.0045 | 0.0060
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Figure 4.8: Histogram of posterior mean of parameters 7, | v,h, i,,V, ~N(7,, Z)for N=50 and

T=50
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Discussion of Results BII

Tables 4.6 - 4.8 present the posterior estimates of first stage hierarchical prior for
V.0, Bois By» Po;) - The tables show the simulation results of posterior mean and
posterior standard deviation of unobserved individual effects. The hierarchical
Bayesian estimator perform fairly good at N=50, T=50 of the posterior mean (J,) for
the entire individual parameters, it exhibits negative posterior mean of 5, meanwhile,
|0]<1. Also, parameters S, and p, reveal the impact of regressors across the

individuals toward the dependent variable. The posterior standard deviations for every
dimension of N=T considered are maximum compared to numerical standard error in
Table 4.5.

Figures 4.5-4.8 display the true unobserved individual effects on dependent variable.
The kernel density does not exhibit a normal distribution shape while some are flat and

skewed in shapes.
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C. Experiment I1I: When N>T

Table 4.9: Posterior mean and Numerical standard error (in brackets) for the second
stage hierarchical prior parameters (,andV, ); u, | y,7,h,V, ~ N( ﬁy,zy)

a = 1
and Vyfl |y, 7.V, 1, NW(Vy’[vyVVJ )» By ~N(0,025) &, ~ BO,1)

N=20, T=5 N=50,T=10 | N=100,T=15

Mean 0.148197 0.0870798 0.153492

{ NSE (0.00067) (0.00028) (0.00017)

Mean 0.874168 0.013789 0.163543

p o{ NSE (0.00251) (0.00109) (0.00043)

Mean 1.540353 2.016961 2.045637

gl){ NSE (0.00229) (0.00092) (0.00055)

Mean 2.23545 2.333829 2.884716

g% { NSE (0.00268) (0.001195) (0.00069)
v, 0.0007 0.0001 0.0000
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Discussion of Results CI
Table 4.9 presents the posterior estimates of second stage hierarchical prior for

u, (0, By, B, B,) when N>T. The table shows that the regression parameters are

common for all individuals in the model (N=20, 50, 100) and time period (T= 5, 10,
15). The posterior mean of the parameter 6 and f, are well behaved for each
parameter for fall within the distribution range. The posterior mean for all parameters
are consistent with the initial values of every sample size considered. The hierarchical
Bayesian estimator performs better when N>T compared to N<T and N=T. None of

the obtained posterior means exhibits negative results. The posterior means of £, and
S, approach the true values. The numerical standard error of every parameter

decreased consistently as the sample size increased. Also, the constant error variance

(V,) which project the homogeneity among the parameters decreases as the sample

size increases and eventually becomes zero at N=100.This indicates a good
convergence of MCMC approach and shows that the error cross-sectionals are
uncorrelated as N — .

Figures 4.9 (a — c) above reveals graphical presentations of posterior estimates. The
figures for posterior mean () at N=20, T=5 and f,at N=50, T=10 depict a peak
shapes of the marginal posterior distributions. As the dimension of N and T change,
the shape of the distribution of each parameter has the normal distribution of identical
patterns. The figures look similar indicating that the patterns look the same for

different values of N and T.
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Table 4.10:Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y, | y,,h, u,,V, ~ N (771.,;,-) For N=20, T=5,

Sy ~N(0,025) 5, ~ B(0,1)

Individ

ual Posterior Mean Posterior Standard deviation
o By A2 | BB |0 By A2 | BB
1 0.1636 0.8460 | 1.4940 |2.1818 |0.0185 |0.0267 |0.0595 |0.0583
2 0.1186 0.7985 | 1.6798 |2.2720 |0.0264 |0.0742 |0.1261 | 0.0318
3 0.1689 0.8326 | 1.5563 |2.1300 |0.0238 |0.0401 |0.0026 |0.1101
4 0.1236 0.8679 | 1.5536 |2.3523 |0.0213 |0.0048 |0.0004 |0.1121
5 0.1330 0.9214 | 1.5615 |2.2546 |0.0120 | 0.0486 |0.0078 |0.0146
6 0.1201 0.7757 | 1.5167 |2.4114 |0.0249 |0.0970 |0.0368 |0.1712
7 0.1582 0.8579 | 1.5736 |2.1272 |0.0132 |0.0148 | 0.0200 |0.1129
8 0.1841 0.6862 | 1.4768 |2.1038 |0.0390 |0.1865 |0.0767 |0.1363
9 0.1341 0.8867 | 1.5499 |2.3098 |0.0109 |0.0139 |0.0056 |0.0696
10 0.1562 0.9133 | 1.4822 | 22337 |0.0111 |0.0405 |0.0714 | 0.0064
11 0.1521 0.8523 | 1.5854 |2.2332 |0.0071 |0.0204 |0.0317 |0.0069
12 0.1565 0.9159 | 1.5428 |2.1937 |0.0114 |0.0431 |0.0107 | 0.0464
13 0.1404 1.0213 | 1.5098 |2.2927 |0.0046 |0.1485 |0.0437 |0.0525
14 0.1446 0.9002 | 1.6232 |2.1767 |0.0004 |0.0274 |0.0696 |0.0634
15 0.1053 0.8419 | 1.6085 |2.3791 |0.0397 |0.0308 |0.0549 |0.1389
16 0.1518 0.9038 | 1.5373 |2.2435 |0.0067 |0.0310 |0.0162 |0.0033
17 0.1415 0.9180 | 1.6492 |2.1591 |0.0035 |0.0452 |0.0956 |0.0810
18 0.1470 0.9556 | 1.5720 |2.2305 |0.0019 |0.0828 |0.0184 |0.0096
19 0.1275 0.9837 | 1.4822 |2.4039 |0.1749 |0.1109 |0.0714 |0.1637
20 0.1735 0.7762 | 1.5190 |2.1142 |0.0284 | 0.0965 |0.0345 |0.1259
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Table 4.11: Posterior mean and Posterior Standard deviation for the first stage
hierarchical prior parametery, | y,, h, 1,,V, ~ N(7,,V:) when N=50, T=10,
By, ~N(0,025) 5, ~ B(0, 1)

Indivi Posterior Standard deviation
dual Posterior Mean

g By £Q2) | BB g By 5@ | £OB)

1 0.0866 |-0.0170 |2.1856 |2.3581 | 0.0011 |0.0342 |0.0168 |0.0191
2 0.0940 | 0.0640 2.1985 |2.2797 | 0.0085 | 0.0468 | 0.0039 | 0.0592
3 0.0887 | 0.0938 2.1873 | 2.3039 | 0.0031 | 0.0766 | 0.0151 | 0.0350
4 0.0975 |-0.0031 |2.1585 |2.2855|0.0120 | 0.0203 | 0.0438 | 0.0534
5 0.0860 | 0.0431 2.1927 |2.3586 | 0.0005 | 0.0259 | 0.0097 |0.0196
6 0.0741 |-0.0001 |2.2105 |2.3884 |0.0113 | 0.0173 | 0.0080 | 0.0494
7 0.0846 | 0.0046 2.1883 |2.3747 | 0.0009 | 0.0125 |0.0140 |0.0371
8 0.0915 | 0.0185 2.1694 |2.3379 | 0.0060 | 0.0013 | 0.0330 |0.0010
9 0.0916 | 0.0285 2.1797 |2.3523 1 0.0061 |0.0113 |0.0227 |0.0133
10 |0.0887 |0.0169 2.2109 |2.3280 | 0.0032 | 0.0002 | 0.0084 |0.0109
11 ]0.0781 | 0.0430 2.1887 |2.3816 | 0.0073 | 0.0258 | 0.0136 | 0.0426
12 |0.0817 |0.0523 2.2335 |2.3312 { 0.0037 | 0.0351 |0.0310 |0.0077
13 ]0.0761 |-0.0119 |2.2044 |2.3906 | 0.0093 | 0.0291 | 0.0019 |0.0516
14 |0.0936 |0.0157 2.2202 |2.2833 | 0.0081 | 0.0014 |0.0177 | 0.0555
15 |0.0819 |0.0326 2.2137 |2.3427 | 0.0035 | 0.0154 |0.0113 | 0.0038
16 |0.0863 |0.0104 2.1659 |2.3375 | 0.0008 | 0.0067 |0.0365 |0.0014
17 |0.0847 | 0.0029 2.1840 |2.3547 | 0.0007 | 0.0142 |0.0184 |0.0157
18 |0.0787 | 0.0419 2.2540 |2.3388 | 0.0067 | 0.0247 | 0.0515 |0.0001
19 |0.0877 |0.0290 2.1895 |2.3462 | 0.0022 | 0.0118 |0.0129 | 0.0072
20 | 0.0738 |-0.0294 |2.2476 |2.3803 | 0.0116 | 0.0466 |0.0451 |0.0413
21 | 0.0783 | 0.0064 2.2185 |2.3699 | 0.0071 | 0.0107 |0.0160 | 0.0309
22 | 0.0671 |0.0058 2.2394 |2.4038 | 0.0184 | 0.0113 |0.0370 | 0.0648
23 1 0.0850 |-0.0763 |2.2311 |2.2925 |0.0004 |0.0935 |0.0286 | 0.0464
24 | 0.0788 |0.0168 2.2335 |2.3375 | 0.0066 | 0.0003 |0.0310 |0.0014
25 | 0.1009 |0.0747 2.1599 |2.2940 | 0.0154 | 0.0569 | 0.0425 | 0.0449
26 | 0.0962 | 0.0064 2.1810 |2.3254 | 0.0107 | 0.0108 |0.0213 |0.0135
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27 10.0798 | 0.0396 2.2022 | 2.3858 | 0.0056 | 0.0224 | 0.0002 | 0.0468
28 10.0861 | 0.0072 2.2128 |2.3289 | 0.0006 | 0.0099 |0.0103 | 0.0099
29 10.0802 | 0.0451 2.2073 |2.3272 | 0.0052 | 0.0279 |0.0049 |0.0117
30 | 0.0809 |0.0252 2.2005 |2.3433 | 0.0046 | 0.0080 | 0.0019 |0.0043
31 0.0853 | 0.0059 2.1971 |2.3431 | 0.0001 |0.0112 |0.0053 | 0.0041
32 10.0713 | -0.0155 |2.2436 |2.3710 | 0.0142 | 0.0327 |0.0411 | 0.0320
33 10.0747 | 0.0334 2.2577 |2.3523 | 0.0107 | 0.0162 | 0.0552 |0.0133
34 10.0915 |0.0551 2.1960 |2.3123 | 0.0059 | 0.0379 |0.0063 |0.0266
35 |0.0808 | 0.0284 2.2440 |2.3319 | 0.0046 | 0.0112 | 0.0415 | 0.0070
36 | 0.0778 |0.0346 2.2124 ]2.3545 | 0.0076 |0.0174 | 0.0100 |0.0155
37 10.0950 |0.0421 2.2035 |2.2913 | 0.0095 | 0.0249 |0.0011 |0.0476
38 [0.0895 |-0.0225 |2.2216 |2.3196 | 0.0040 | 0.0397 |0.0191 |0.0193
39 10.0856 |0.0194 2.200 2.3708 | 0.0001 | 0.0022 |0.0019 |0.0318
40 10.1033 |0.0793 2.1760 |2.2707 | 0.0178 | 0.0621 |0.0264 | 0.0682
41 0.0888 | 0.0443 2.2026 |2.3219 | 0.0033 | 0.0271 |0.0001 |0.0170
42 | 0.0910 | 0.0048 2.1985 ]2.3239 | 0.0055 |0.0124 | 0.0038 |0.0150
43 10.0922 |0.0171 2.1409 |2.3404 | 0.0067 | 0.0000 |0.0615 |0.0014
44 1 0.0905 |-0.0074 |2.1878 |2.3318 | 0.0050 |0.0246 |0.0145 | 0.0071
45 10.0774 |-0.0244 | 2.1851 |2.3747 | 0.0080 |0.0416 |0.0173 | 0.0357
46 | 0.0936 | 0.0264 2.2152 ]2.3043 | 0.0081 | 0.0092 |0.0127 | 0.0346
47 10.0881 |-0.0107 |2.1915 |2.3636 | 0.0022 |0.0279 |0.0109 | 0.0246
48 | 0.0904 | 0.0024 2.1853 |2.3267 | 0.0049 |0.0147 |0.0170 |0.0121
49 10.0765 |-0.0348 |2.1926 |2.3910 | 0.0089 |0.0520 | 0.0098 | 0.0520
50 ]0.0907 |-0.0050 |2.2002 |2.2891 | 0.0052 |0.0222 |0.0021 | 0.0498
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Figure 4.11: Histogram of posterior mean of parameters 7, | v, 4, 44,,V, ~N(7,, 171) for N=50 and

T=10
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Table 4.12:Posterior mean and Posterior Standard deviation for the first stage

hierarchical prior parameters y, | y,,h, u,,V, ~ N (;71.,;,-) For N=100, T=15, For
f, ~N(0,0.25) 5, ~ B(0,1)

Posterior Mean

Posterior Standard deviation

Ind | & Bo £ Q) p@3) |0 Bo £Q) | BO)
1 0.15362 | 0.18872 |2.04768 | 1.88267 |0.00045 |0.02642 |0.00073 |0.00277
2 0.15097 | 0.14775 |2.07213 | 1.88496 | 0.00220 | 0.01456 | 0.02372 | 0.00049
3 0.15946 | 0.15507 |2.05688 | 1.84909 | 0.00629 | 0.00723 |0.00847 | 0.03635
4 0.15875 |0.21536 |2.03774 | 1.86828 |0.00558 |0.05309 |0.01067 |0.01717
5 0.14794 | 0.15254 |2.06859 | 1.90182 | 0.00523 |0.00977 |0.02018 | 0.01638
6 0.14678 | 0.22505 |2.03814 | 1.93535 |0.00639 |0.06275 |0.01027 |0.04990
7 0.15332 | 0.09711 |2.04999 | 1.88602 | 0.00015 |0.06519 |0.00159 |0.00057
8 0.14923 | 0.16095 |2.03645 |1.91936 |0.00394 |0.00135 |0.01196 | 0.03392
9 0.15442 | 0.16809 |2.05282 | 1.88307 |0.00125 |0.00579 |0.00441 |0.00237
10 | 0.16241 |0.13027 |2.00478 | 1.88556 | 0.00925 | 0.03204 |0.04363 |0.00012
11 |0.14702 | 0.14851 |2.06981 | 1.89309 |0.00619 |0.01379 |0.02140 | 0.00765
12 1 0.14896 |0.15357 |2.04182 | 1.89643 | 0.00421 | 0.00874 |0.00659 | 0.01098
13 | 0.14829 |0.16903 |2.03806 | 1.93006 |0.00488 | 0.006728 |0.01035 |0.04462
14 |0.15394 |0.17672 |2.05269 | 1.89029 | 0.00077 | 0.01442 | 0.00428 | 0.00485
15 [0.14839 |0.14677 |2.07135 |1.90498 |0.00477 |0.01553 |0.02294 | 0.01954
16 [0.15733 |0.14573 |2.04061 | 1.88107 |0.004165 | 0.01657 | 0.00780 | 0.0044

17 |0.15387 |0.17881 |2.02430 | 1.91527 |0.00070 |0.01650 |0.02411 | 0.02983
18 [0.16199 |0.20272 |2.05540 | 1.84356 |0.00882 |0.04042 |0.00694 |0.04189
19 [0.14879 |0.17773 |2.06405 | 1.89568 | 0.00437 |0.01543 |0.01564 |0.01023
20 | 0.16316 | 0.20569 |2.03959 | 1.85482 |0.00992 |0.04338 |0.00881 |0.03062
21 |0.15154 |0.17382 |2.06851 |1.87781 |0.00163 |0.01151 |0.02009 |0.0076

22 1 0.15346 | 0.15978 |2.05611 | 1.88939 |0.00029 |0.00253 |0.00769 | 0.00395
23 | 0.16192 |0.13502 |2.02164 | 1.84030 | 0.00875 |0.02729 |0.02677 |0.04514
24 | 0.15570 |0.18192 |2.05901 | 1.86129 |0.00253 |0.01962 |0.01059 |0.02415
25 | 0.14880 | 0.19459 |2.04605 | 1.90041 |0.00437 |0.03228 |0.00236 | 0.01497
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26 | 0.14092 |0.16733 | 2.07606 | 1.92777 |0.01225 |0.00503 | 0.02765 | 0.04232
27 10.14733 | 0.18252 | 2.05181 | 1.90506 | 0.00584 | 0.02021 |0.00339 |0.01961
28 | 0.15569 |0.16611 |2.03188 | 1.89084 | 0.00252 |0.00380 |0.01653 |0.00539
29 10.15072 | 0.16604 |2.03914 | 1.90442 | 0.00245 | 0.00374 |0.00928 | 0.01898
30 |0.16238 | 0.14009 |2.00993 | 1.85599 |0.00921 |0.02221 | 0.03848 |0.02945
31 |0.15053 |0.16327 |2.05982 | 1.87019 |0.00264 |0.00096 |0.01141 |0.01526
32 | 0.15957 |0.15704 |2.03877 | 1.87722 |0.00639 | 0.00527 |0.00964 |0.00822
33 [ 0.15799 |0.16472 |2.04336 | 1.87039 |0.004829 |0.00241 | 0.00506 |0.01506
34 |0.15507 |0.15774 |2.02475 | 1.87537 |0.001903 | 0.00456 | 0.02366 | 0.01008
35 [0.15840 |0.12943 |2.05493 | 1.84771 |0.00523 |0.03288 | 0.00652 |0.03774
36 |0.14713 | 0.16912 |2.04802 | 1.90874 |0.00604 | 0.00681 |0.00039 |0.02329
37 |0.15539 |0.16922 |2.02848 | 1.89623 |0.00223 | 0.00692 |0.01993 |0.01076
38 | 0.15089 |0.14437 |2.04723 | 1.88816 |0.00228 |0.01793 |0.00118 | 0.00272
39 10.14783 | 0.18286 |2.07025 | 1.90869 |0.00534 | 0.02056 |0.02185 |0.02324
40 ]0.16046 |0.15306 |2.04109 |1.85892 |0.00729 |0.00925 |0.00731 |0.02653
41 10.16303 |0.14358 |2.02809 | 1.85327 |0.00986 |0.01873 |0.02032 |0.03217
42 | 0.14735 | 0.19171 | 2.07113 | 1.89636 | 0.00582 |0.02940 |0.02272 |0.01092
43 10.15035 |0.15693 |2.07428 | 1.88144 | 0.00282 | 0.00537 | 0.02587 | 0.00400
44 10.14589 |0.19347 |2.04347 |1.94193 |0.00728 |0.03117 | 0.00494 | 0.05649
45 10.15979 |0.12356 |2.04101 | 1.85566 | 0.00662 |0.03871 |0.00740 |0.02978
46 |0.15493 |0.11362 |2.06166 | 1.86280 |0.00176 |0.04869 |0.01325 |0.02264
47 10.15493 | 0.11075 |2.04939 | 1.97898 |0.00176 |0.05156 | 0.00099 |0.00646
48 10.15353 |0.12425 |2.04873 | 1.87744 | 0.00037 | 0.03805 |0.00032 |0.00801
49 10.15367 |0.12300 |2.04204 | 1.88486 | 0.00050 |0.03930 | 0.00637 |0.00056
50 |0.14613 | 0.15171 |2.05975 |1.9132 0.00704 | 0.01059 |0.01134 | 0.02775
51 |0.14972 | 0.17537 |2.07028 | 1.87778 |0.00345 | 0.01307 |0.02187 | 0.00765
52 | 0.15508 | 0.16539 |2.06219 |1.85563 |0.00191 |0.00309 |0.01378 |0.02982
53 10.15776 | 0.15279 |2.03541 | 1.85864 |0.00459 |0.00951 |0.01299 |0.02681
54 |0.15146 |0.116931 | 2.05259 | 1.88911 |0.00171 |0.04537 |0.00418 | 0.00367
55 |0.15582 |0.13147 |2.05182 | 1.87932 |0.002651 | 0.03083 | 0.00341 |0.00612
56 |0.15128 | 0.20896 |2.05054 | 1.89618 |0.001891 | 0.04665 |0.00213 |0.01074
57 10.15802 | 0.13970 |2.01205 | 1.89018 | 0.004854 | 0.02260 | 0.03636 | 0.00473
58 |0.15015 |0.15826 |2.07344 | 1.87883 |0.003024 | 0.00405 | 0.02503 |0.00662
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59 10.15279 | 0.16796 |2.09096 | 1.87535 |0.00038 |0.00566 |0.04255 |0.01009
60 | 0.15753 | 0.15535 |2.01146 | 1.88999 |0.00436 |0.00696 |0.03695 |0.00454
61 |0.13945 |0.18375 |2.07304 | 1.93581 |0.01372 |0.02448 | 0.02463 | 0.05037
62 |0.15524 |0.16502 |2.05284 | 1.87424 |0.00204 | 0.00272 |0.00443 |0.01120
63 |0.15301 |0.23091 |2.03968 |1.89874 |0.00016 |0.06860 |0.00873 |0.01329
64 | 0.15427 |0.16962 |2.02628 | 1.88049 |0.00109 |0.00732 |0.02213 | 0.00495
65 |0.16141 |0.14705 |2.02606 | 1.86385 |0.00824 |0.01525 |0.02235 |0.02159
66 |0.14596 |0.17212 |2.06067 |1.90876 |0.00728 |0.00982 |0.01226 |0.02332
67 |0.15438 |0.14608 |2.03629 | 1.88005 |0.00121 |0.01623 |0.01212 |0.00539
68 |0.15383 |0.19348 |2.04872 |1.89299 |0.00067 |0.03117 |0.00031 |0.00755
69 |0.15484 |0.15841 |2.05800 | 1.85708 |0.00168 |0.00389 |0.00959 |0.02837
70 |0.14219 |0.18054 |2.03139 | 1.94743 |0.01098 |0.01824 |0.01702 |0.06199
71 10.14573 | 0.17911 |2.05897 |1.91842 |0.00744 |0.01680 |0.01056 |0.03298
72 | 0.14267 | 0.15767 |2.08066 | 1.91421 |0.01050 |0.00464 |0.03225 |0.02877
73 | 0.15131 |0.16251 |2.05212 | 1.88230 |0.00186 |0.00021 |0.00371 |0.00314
74 | 0.15191 |0.18081 |2.07464 | 1.86607 |0.00125 |0.01851 |0.02623 |0.01937
75 |0.15553 | 0.16580 |2.04453 | 1.88396 |0.00236 |0.00349 | 0.00388 |0.00149
76 |0.16127 | 0.15848 |2.04159 | 1.85204 | 0.00810 |0.00383 |0.00682 |0.03340
77 10.15989 |0.14702 |2.01099 | 1.87598 |0.00671 |0.01528 | 0.03742 |0.00947
78 10.14812 | 0.16240 |2.06138 | 1.89945 |0.00505 |0.00010 |0.01297 |0.01400
79 10.15451 |0.17625 |2.02871 | 1.87864 |0.00134 |0.01395 |0.01970 | 0.00680
80 | 0.15147 | 0.15991 |2.06091 |1.88642 |0.00169 |0.00239 |0.01250 |0.00098
81 | 0.15767 | 0.16445 |2.04204 | 1.86833 |0.00450 |0.00215 |0.00639 |0.01712
82 10.14869 | 0.18104 |2.06886 | 1.88931 |0.00448 |0.01873 |0.02045 | 0.00387
83 10.15750 | 0.16424 |2.05099 | 1.86073 |0.00433 |0.00194 |0.00258 |0.02472
84 |0.15333 | 0.18379 |2.04865 |1.89319 |0.00016 |0.02149 |0.00024 |0.00775
85 |0.15334 | 0.12973 | 2.05015 |1.88493 |0.00017 |0.03257 |0.00174 |0.00512
86 |0.15564 |0.16094 |2.06112 | 1.86356 |0.00247 |0.00136 |0.01271 |0.02189
87 | 0.15172 | 0.14596 |2.04209 |1.88726 |0.00145 |0.01634 |0.00632 |0.00181
88 [0.15091 |0.16199 |2.04249 | 1.90069 |0.00226 |0.00032 |0.00592 |0.01524
89 10.15731 | 0.13779 |2.06385 | 1.85457 |0.00414 |0.02452 |0.01544 |0.03088
90 |0.14146 |0.16028 |2.06584 |1.94091 |0.01171 |0.00202 |0.01743 |0.05547
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91 |0.14903 |0.13782 |2.04081 | 1.89996 |0.00414 |0.02448 |0.00760 |0.01452
92 |0.15993 |0.17401 |2.03856 |1.86726 |0.00677 |0.01171 |0.00986 |0.01819
93 |0.14868 |0.16002 |2.06548 | 1.88618 |0.00449 | 0.00229 |0.01707 |0.00073
94 |0.15473 | 0.15163 |2.03696 | 1.88767 |0.00157 |0.01067 |0.01145 |0.00223
95 |0.15700 |0.16749 |2.04203 | 1.86297 |0.00383 |0.00519 |0.00638 |0.02248
96 |0.14751 |0.14177 |2.06147 |1.90708 |0.00565 |0.02054 |0.01306 |0.02164
97 10.15799 |0.18319 |2.01941 | 1.87945 |0.00482 |0.02089 |0.02900 |0.00599
98 |0.15861 |0.18919 |2.04348 | 1.86820 |0.00544 |0.02689 |0.00493 |0.01724
99 |(0.15184 |0.18018 |2.03704 |1.89738 |0.00133 |0.01788 |0.01138 |0.01194
100 | 0.15746 | 0.14895 |2.04221 | 1.85457 |0.00429 |0.01335 |0.00619 |0.03087
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Figure 4.12: Histogram of posterior mean of parameters ¥, | ¥, 4, M, V; ~N(7,, Z)for N=100 and

T=15
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Discussion of Results CII
Tables 4.10—4.12 present the posterior estimates of first stage of hierarchical prior

v.(0., Byi» B> Po;) Which reveal the exact relationship that exists between dependent

variables and independent variables. It is observed that the posterior means of the
model parameters for all individuals exhibit the similar pattern over time period. It is

worth noting that 6, are non-negative while posterior mean of f,, and f,, approach

their true values. The posterior standard deviations also decreased as sample size
advanced across all individuals of every regression coefficients.

Figures 4.10-4.12 give very detailed information about the patterns of the model
parameter at different values of N and T, the patterns exhibit a normal distribution
shape compared to Figures 4.2-4.4 and Figures 4.6-4.8 as N — ©

Therefore, our findings reveal that the result of experiment III (N>T) outperforms
other two experiments in terms of unbiasedness and consistency. Based on these facts,

the second scenario of the study will be investigated.
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4.3

Second Scenario of the Empirical Analysis

The second scenario of the empirical analysis involves dimension of the individual (N)

greater than time (T); (N, T) = (50, 5), (100, 10), (200, 10), (200, 20).

4.3.1 Performance of Estimator on (N>T): (N=50, T=5)

Table 4.13:

The second stage of hierarchical Bayesian Estimates:
| y,y,hV, ~N(u,,2,) When N=50, T=5, h=25, £, ~N(0,0.25) 6, ~ B(0,1)

) B, B2 B,(3) Precision (h)

Mean 0.07218707 | 0.02074556 | 1.91806187 | 2.10788077 | 17.47170448
Standard

deviation | 0.01261984 | 0.04887839 | 0.04089667 | 0.05229691 | 2.43211366
Numerical
Standard

Error 0.000399075 | 0.00154567 | 0.00129326 | 0.001653774 | 0.076910187

The posterior estimates of variance covariance matrix forV/, :

_ = 7!
I/}/1|y37’h,n,ﬂ7NW(vys|:vyV7:| )

Mean

[ 0.02141
-0.00003
—0.00002
| 0.00004

[0.00441
0.00325
0.00326
0.00307

[0.00014
0.00010
0.00010

| 0.00009

-0.00003
0.02135
0.00004
0.00017

Standard deviation

0.00325
0.00462
0.00319
0.00327

Numerical Standard Error

0.00010
0.00010
0.00015
0.00009

0.00010
0.00015
0.00010
0.00010

0.00326
0.00319
0.00457
0.00314

0.00307 |
0.00327
0.00314
0.00461

0.00009 |
0.00010
0.00009

0.00015

—-0.00002 0.00004
0.00004
0.02155
0.00004

0.00017
0.00004
0.02134
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Table 4.14:  Posterior mean and Posterior Standard deviation for the first stage of
hierarchical Bayesian Estimates: y, | y,, 4, 1,,V, ~ N(7,,V:) When N=50, T=5,
By, ~N(0,025) 5, ~ B(0, 1)

Ind.
Posterior Mean Posterior Standard deviation
o B @ | BB J B @ | A
1 0.07358 | -0.02565 | 1.83795 | 2.14661 | 0.05571 | 0.05997 | 0.09265 | 0.03121
2 0.06444 | 0.08625 | 1.94537 | 2.11449 | 0.00343 | 0.05193 | 0.01476 | 0.00091
3 0.06260 | 0.11452 | 1.93332 | 2.16197 | 0.00526 | 0.08020 | 0.00259 | 0.04658
4 0.05142 | 0.07941 | 1.99516 | 2.12224 | 0.01644 | 0.04509 | 0.06455 | 0.00684
5 0.07241 | 0.05235 | 1.98161 | 2.04238 | 0.00454 | 0.01803 | 0.05100 | 0.07301
6 0.04602 | 0.07090 | 1.93496 | 2.19153 | 0.02184 | 0.03658 | 0.00436 | 0.07614
7 0.05603 | 0.04069 | 1.96837 | 2.13468 | 0.01183 | 0.00637 | 0.03776 | 0.01928
8 0.06178 | -0.00453 | 1.93557 | 2.12401 | 0.00608 | 0.03885 | 0.00496 | 0.00861
9 0.08661 | -0.00954 | 1.88705 | 2.01874 | 0.01874 | 0.04386 | 0.04355 | 0.02866
10 | 0.04559 | 0.07211 | 1.96371 | 2.16776 | 0.02227 | 0.03779 | 0.03310 | 0.05237
11 | 0.05459 | 0.07220 | 1.94618 | 2.20138 | 0.01327 | 0.03788 | 0.01557 | 0.08598
12 | 0.05765 | 0.09510 | 1.94645 | 2.15023 | 0.01021 | 0.06079 | 0.01586 | 0.03483
13 | 0.07064 | 0.03162 | 1.90173 | 2.16609 | 0.00276 | 0.00269 | 0.02887 | 0.05070
14 | 0.06770 | 0.03687 | 1.95442 | 2.04331 | 0.00016 | 0.00255 | 0.02381 | 0.07208
15 | 0.04752 | 0.02535 | 1.97016 | 2.18496 | 0.02034 | 0.00897 | 0.01773 | 0.06956
16 | 0.04845 | 0.03664 | 1.94834 | 2.19839 | 0.00455 | 0.07894 | 0.01635 | 0.08300
17 | 0.06685 | 0.07908 | 1.89044 | 2.17847 | 0.00066 | 0.03682 | 0.01636 | 0.06308
18 | 0.07242 | -0.04462 | 1.94759 | 2.05981 | 0.00156 | 0.00020 | 0.02911 | 0.05558
19 | 0.06721 | -0.00251 | 1.91424 | 2.14406 | 0.00467 | 0.01887 | 0.02561 | 0.02866
20 | 0.06630 | 0.03411 | 1.95972 | 2.05818 | 0.00179 | 0.00648 | 0.02024 | 0.05720
21 | 0.07253 | 0.01544 | 1.90499 | 2.15087 | 0.00221 | 0.00132 | 0.00644 | 0.03547
22 | 0.06966 | 0.02783 | 1.91036 | 2.14318 | 0.00112 | 0.00263 | 0.00453 | 0.02779
23 | 0.08150 | -0.03112 | 1.96748 | 2.01519 | 0.01363 | 0.06544 | 0.03687 | 0.10019
24 | 0.06359 | 0.03319 | 1.93774 | 2.11973 | 0.00427 | 0.00112 | 0.00714 | 0.00440
25 | 0.07353 | 0.05172 | 1.87455 | 2.13596 | 0.00566 | 0.01739 | 0.05605 | 0.02057
26 | 0.09365 | -0.01784 | 1.90267 | 1.99469 | 0.02589 | 0.05216 | 0.02793 | 0.12069
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27 | 0.06480 | 0.08751 | 1.96601 | 2.10029 | 0.00307 | 0.05320 | 0.03541 | 0.01510
28 | 0.06575 | 0.06366 | 1.92353 | 2.14116 | 0.00211 | 0.02934 | 0.00707 | 0.02577
29 | 0.07251 | 0.08876 | 1.88710 | 2.11079 | 0.00464 | 0.05444 | 0.04359 | 0.00459
30 | 0.04273 | 0.01542 | 1.97719 | 2.24856 | 0.02514 | 0.01889 | 0.04659 | 0.13316
31 | 0.09354 | -0.01915 | 1.88835 | 1.99927 | 0.02566 | 0.05347 | 0.04224 | 0.11611
32 | 0.07869 | -0.09493 | 1.93139 | 2.08159 | 0.01082 | 0.12924 | 0.00079 | 0.03380
33 | 0.07032 | 0.01297 | 1.93188 | 2.08937 | 0.00245 | 0.02134 | 0.00127 | 0.02601
34 | 0.08070 | 0.05432 | 1.91427 | 2.04554 | 0.01283 | 0.02001 | 0.01633 | 0.06985
35 | 0.09661 | 0.06819 | 1.87028 | 2.03895 | 0.02874 | 0.03387 | 0.06032 | 0.07643
36 | 0.07825 | 0.00958 | 1.89285 | 2.08654 | 0.01039 | 0.02473 | 0.03775 | 0.02885
37 | 0.06802 | -0.00108 | 1.89942 | 2.16728 | 0.00016 | 0.03539 | 0.03118 | 0.05188
38 | 0.03824 | 0.00437 | 1.99790 | 2.17705 | 0.02962 | 0.02994 | 0.06729 | 0.06165
39 | 0.04396 | 0.08524 | 2.00966 | 2.22819 | 0.02389 | 0.05092 | 0.07902 | 0.11281
40 | 0.08749 | 0.00319 | 1.83984 | 2.12089 | 0.01962 | 0.03112 | 0.09076 | 0.00550
41 | 0.06901 | 0.13043 | 1.94630 | 2.10783 | 0.00114 | 0.09612 | 0.01569 | 0.00757
42 | 0.07297 | 0.02433 | 1.91539 | 2.09219 | 0.00510 | 0.00998 | 0.01521 | 0.02320
43 | 0.05370 | 0.11503 | 1.97580 | 2.12752 | 0.01416 | 0.08070 | 0.04519 | 0.01213
44 | 0.05766 | 0.06420 | 2.01867 | 2.10431 | 0.01559 | 0.05305 | 0.01286 | 0.01108
45 | 0.08346 | 0.08736 | 1.91775 | 2.05729 | 0.00452 | 0.01264 | 0.00134 | 0.05810
46 | 0.07239 | 0.04696 | 1.92926 | 2.08129 | 0.01572 | 0.04464 | 0.04390 | 0.03409
47 | 0.05214 | -0.01032 | 1.97450 | 2.17493 | 0.00906 | 0.06492 | 0.05519 | 0.05954
48 | 0.07693 | -0.03061 | 1.87541 | 1.87541 | 0.04248 | 0.02972 | 0.03432 | 0.01000
49 | 0.08035 | 0.01060 | 1.89924 | 2.03630 | 0.01246 | 0.02371 | 0.03136 | 0.07909
50 | 0.09877 | -0.01981 | 1.88826 | 1.99004 | 0.03089 | 0.05413 | 0.04234 | 0.12535
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Figure 4.14: Histogram of posterior mean of parameters J, | v, 5, H,, Vy ~N(7,, 171) for N=50

and T=5
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Discussion of Results (Tables 4.13 & 4.14 and Figures 4.13 & 4.14)

Table 4.13 presents results for the second stage hierarchical prior. The table reveals the
posterior estimates that regression coefficients are common for entire individual (N).

The obtained values for S, and f,,show good estimates as it was set of the initial
values 2 and 3. The posterior estimates of variance-covariance matrix for V) are

presented and noticed that numerical standard error are smaller to standard deviation of
all the parameters.

Table 4.14 gives posterior estimates of all the parameters across the individual as each
approach the true value. Figure 4.13 presents the histogram graph of each parameter of
the posterior means, while Figure 4.14 displays a normal distribution shape which
picks out the variation in the regression coefficients. Hence perfect constant error

variance was not recorded for all the parameters in the model.
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4.3.2 Performance of Estimator on (N>T): (N=100, T=10)

Table 4.15

The second stage of hierarchical Bayesian Estimation:
w1 y,y,hV, ~N(z,,2,) When N=100, T=10, h=25, £, ~N(0,0.25) 5, ~ B(0,1)

o B, BQ2) B, (3) Precision
(h)
Mean 0.1009522 0.1325840 2.0809505 | 2.0605782 | 24.566376
Standard
deviation 0.0059320 0.0239983 | 0.021264790 | 0.02531231 | 2.28856164
Numerical
Standard
Error 0.000187589 | 0.000758895 | 0.0006724517 | 0.00080044 | 0.13561643

The posterior estimates of variance covariance matrix for V, :

_ = 7!
I/}/1|y37’h,n,ﬂ7NW(vys|:vyV7:| )

Mean

0.01034
0.00003
—0.00006
—-0.00002

0.00003
0.01028

—0.00002

Standard deviation

0.00142
0.00106
0.00106
0.00099

0.00106
0.00150
0.00098
0.00106

Numerical Standard Error

0.00005
0.00003
0.00003
0.00003

0.00003
0.00005
0.00003
0.00003

—-0.00006
—0.00000
—-0.00000 0.01025

—0.00001

0.00106
0.00098
0.00150
0.00102

0.00003
0.00003
0.00005
0.00003

0.00099
0.00106
0.00102
0.00150

0.00003
0.00003
0.00003
0.00005

—-0.00002

—-0.00002

—-0.00001
0.01025
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Figure 4.15: Histograms of posterior means of parameters £, | v, 7, h, Vy for N=100, T=10
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Table 4.16:

Posterior mean and Posterior Standard deviation for the first stage of
hierarchical Bayesian Estimates:y,|y,,h,u,,V, ~N(7,,Vi) When N=100, T=10,
By, ~N(0,025) 5, ~ B(0, 1)

Posterior Mean

Posterior Standard deviation

Indi | § Bo B2 p3) |0 Bo B2 B3
vidu

al

1 0.10559 | 0.13397 |2.05168 |2.05857 |0.00482 |0.00777 |0.03021 |0.00356
2 0.10715 | 0.13164 |2.10159 |2.02486 |0.00838 | 0.00544 |0.01970 |0.03726
3 0.10393 | 0.10362 | 2.08728 |2.04670 |0.00316 |0.02258 | 0.00539 |0.01542
4 0.10533 | 0.14628 |2.07259 |2.05323 |0.45585 | 0.02008 | 0.00929 |0.00889
5 0.09743 | 0.12253 |2.12908 | 2.03539 |0.00339 |0.00367 |0.04721 |0.02673
6 0.09607 | 0.17476 | 2.12470 |2.06334 |0.00469 | 0.04856 |0.04282 |0.00122
7 0.10100 | 0.14282 |2.07993 |2.06799 |0.00023 |0.01662 | 0.00196 | 0.00587
8 0.09580 | 0.14416 | 2.09597 |2.05694 |0.00497 |0.01796 |0.01408 |0.00518
9 0.09324 | 0.08886 |2.12364 |2.05652 |0.00753 |0.03734 |0.04175 |0.00561
10 0.11077 | 0.12841 |2.07097 |2.01039 |0.01000 |0.00221 |0.01092 |0.05174
11 0.10835 | 0.11729 |2.05842 |2.04120 | 0.00758 | 0.00891 0.02347 | 0.02092
12 0.12142 | 0.15614 | 2.02699 | 1.99002 | 0.02065 |0.02993 |0.05490 |0.07211
13 0.10257 | 0.08789 | 2.08513 |2.06435 |0.00181 |0.03832 |0.00324 |0.00222
14 0.09793 | 0.09768 |2.08448 |2.06797 |0.00284 | 0.02852 |0.00259 |0.00585
15 0.10103 | 0.08182 |2.05097 |2.09814 |0.00026 |0.04437 |0.03092 |0.03616
16 0.10894 | 0.13621 |2.06822 |2.01531 0.00817 |0.01000 |0.01367 |0.04681
17 0.10155 | 0.12656 | 2.07365 |2.04297 |0.00079 |0.00035 | 0.00827 |0.01916
18 0.09706 | 0.09133 | 2.12525 |2.05348 |0.00371 |0.03487 |0.04336 |0.00864
19 0.10468 | 0.15002 | 2.06097 |2.05429 |0.00392 |0.02382 |0.02092 |0.00784
20 0.09854 | 0.15204 |2.07891 |2.06470 |0.00223 |0.02584 |0.00299 |0.00258
21 0.10219 | 0.13310 | 2.08890 |2.05244 |0.00142 |0.00689 | 0.00702 |0.00969
22 0.09007 | 0.11179 |2.10086 |2.08631 0.01069 |0.01442 |0.01897 |0.02419
23 0.09409 | 0.13086 |2.09003 |2.09787 |0.00667 | 0.00466 |0.00814 |0.03575
24 0.09795 | 0.12777 |2.11416 | 2.03001 0.00282 | 0.00157 |0.03227 |0.03211
25 0.10916 | 0.06799 |2.07196 |2.03069 | 0.00839 | 0.05821 0.00993 |0.03144
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26 0.10241 | 0.12267 |2.07927 |2.06079 |0.00164 |0.00354 |0.00262 | 0.00133
27 0.11094 | 0.13534 |2.06386 |2.00451 |0.01018 |0.00914 |0.01803 | 0.05761
28 0.09698 | 0.14512 |2.08164 |2.05632 |0.00378 |0.01892 |0.00025 |0.00579
29 0.09493 | 0.15980 |2.09067 |2.09056 |0.00583 |0.03359 |0.00878 |0.02843
30 0.10107 | 0.13493 | 2.05452 |2.09263 |0.00030 |0.00873 | 0.02737 |0.03051
31 0.08792 | 0.13087 |2.09015 |2.10136 |0.01285 |0.00467 |0.00826 | 0.03935
32 0.10351 | 0.11559 |2.06362 |2.06685 |0.00274 |0.01061 |0.01827 |0.00473
33 0.10259 | 0.10549 |2.07559 |2.06184 |0.00206 |0.02071 |0.00629 |0.00028
34 0.09600 | 0.16949 |2.09076 |2.10166 |0.00475 |0.04329 |0.00887 |0.03954
35 0.10100 | 0.15182 |2.08634 |2.07309 |0.00023 |0.02562 |0.00445 |0.01097
36 0.10266 | 0.12526 |2.08119 |2.05482 |0.00189 |0.00095 | 0.00069 |0.00731
37 0.09614 | 0.15425 |2.09336 |2.06297 |0.00463 |0.02804 |0.01147 | 0.00085
38 0.09575 |0.11094 |2.09112 |2.08826 |0.00502 |0.01526 | 0.00931 |0.02613
39 0.10305 | 0.14327 |2.08549 |2.04423 |0.00228 |0.01706 |0.00359 |0.01789
40 0.10443 | 0.09845 |2.07099 |2.04069 |0.00366 |0.02775 |0.01089 |0.02143
41 0.10001 | 0.13321 |2.08793 |2.06047 |0.00075 |0.00701 | 0.00604 |0.00165
42 0.11013 | 0.14089 |2.05341 |2.05416 |0.00936 |0.00147 |0.02848 | 0.00796
43 0.09502 | 0.14454 |2.09508 |2.07110 |0.00487 |0.01833 |0.01318 | 0.00898
44 0.09676 | 0.12532 | 2.07787 |2.09550 |0.00401 |0.00088 |0.00402 |0.03338
45 0.09429 | 0.10593 |2.10260 |2.07209 | 0.00648 |0.02027 |0.02071 | 0.00997
46 0.09899 | 0.10909 |2.08014 |2.05906 |0.00177 |0.01712 |0.00175 |0.00307
47 0.10275 | 0.11859 |2.09962 |2.04998 |0.00199 |0.00761 |0.01773 |0.01215
48 0.10417 | 0.13384 |2.05756 |2.06757 |0.00340 |0.00764 | 0.02433 | 0.00545
49 0.10932 | 0.09989 |2.06315 |2.02452 |0.00855 |0.02631 |0.01874 |0.03761
50 0.10492 | 0.07953 |2.10176 |2.03373 |0.00415 |0.04667 |0.01987 | 0.02839
51 0.10254 | 0.11215 |2.09141 |2.04655 |0.00177 |0.01405 |0.00952 |0.01557
52 0.10085 | 0.13413 | 2.06229 |2.06845 |0.00008 |0.00792 |0.01959 |0.00632
53 0.11034 | 0.10039 |2.05977 |2.02715 |0.00958 |0.02580 |0.02212 | 0.03498
54 0.09967 | 0.13674 |2.08164 |2.08309 |0.00109 |0.01054 |0.00025 |0.02097
55 0.10811 | 0.13519 |2.06919 |2.05670 |0.00734 |0.00899 |0.01270 | 0.00542
56 0.09710 | 0.09708 |2.10577 |2.05657 |0.00367 |0.02912 |0.02388 | 0.00556
57 0.09249 | 0.13188 |2.07305 |2.11832 |0.00828 |0.00567 |0.00884 |0.05619
58 0.09756 | 0.08753 |2.09386 |2.06470 |0.00321 |0.03868 |0.01197 |0.00258
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59 0.10403 | 0.09741 |2.06325 |2.07651 |0.00326 |0.02879 |0.01864 |0.01439
60 0.09950 | 0.13146 |2.08170 |2.08889 |0.00127 |0.00526 |0.00019 |0.02677
61 0.10207 | 0.15789 |2.07704 |2.05852 |0.00131 |0.03169 |0.00485 |0.00361
62 0.08821 | 0.12890 |2.11619 |2.08895 |0.01256 |0.00270 |0.03430 | 0.02683
63 0.10479 | 0.13643 |2.04683 |2.04433 | 0.00402 |0.01022 |0.03506 |0.01779
64 0.09441 | 0.18428 |2.05939 |2.11491 |0.00628 |0.05808 |0.02249 | 0.05278
65 0.09103 | 0.14738 |2.09143 |2.08910 |0.00973 |0.02118 |0.00954 |0.02697
66 0.10421 | 0.12623 | 2.06092 |2.05855 |0.00344 |0.00002 |0.02097 |0.00358
67 0.10331 | 0.11295 |2.05535 |2.07758 |0.00255 |0.01325 |0.02654 | 0.01545
68 0.09618 | 0.14727 |2.12892 |2.07048 | 0.00459 |0.02107 |0.04703 | 0.00836
69 0.10234 | 0.16699 |2.10277 |2.03184 |0.00158 |0.04079 |0.02088 | 0.03028
70 0.09635 | 0.13485 |2.06919 |2.09502 |0.00442 |0.00865 |0.01269 | 0.03289
71 0.09237 | 0.17945 |2.07953 |2.11000 |0.00839 |0.05324 |0.00236 |0.04788
72 0.10635 | 0.14278 | 2.08965 |2.03914 |0.00558 |0.01658 |0.00776 | 0.02298
73 0.10442 | 0.10789 | 2.07966 |2.02925 |0.00366 |0.0183 0.00223 | 0.03288
74 0.09757 | 0.13628 |2.10614 |2.03871 |0.00320 |0.01008 | 0.02425 | 0.02341
75 0.09639 | 0.11261 |2.09592 |2.08251 |0.00347 |0.01359 |0.01403 | 0.02039
76 0.09926 |0.12096 |2.08011 |2.07129 |0.00150 |0.00523 |0.00178 |0.00917
77 0.09574 | 0.16454 |2.11619 |2.06398 |0.00502 |0.03834 |0.03431 |0.00186
78 0.10279 | 0.08713 |2.09093 |2.05005 |0.00203 |0.03907 |0.00904 |0.01207
79 0.10284 | 0.14324 |2.06294 |2.06028 |0.00208 |0.01738 |0.01895 |0.00184
80 0.09828 | 0.11268 |2.08772 |2.06179 |0.00249 |0.01357 | 0.00583 | 0.00033
81 0.09612 | 0.10083 |2.08368 |2.09006 |0.00464 |0.02537 |0.00179 |0.02793
82 0.10141 | 0.07683 |2.07132 |2.07133 | 0.00064 |0.04937 |0.01057 |0.00920
83 0.10324 | 0.13370 |2.07630 |2.05323 |0.00247 |0.00750 |0.00556 | 0.00889
84 0.10636 | 0.12979 |2.04735 |2.06213 | 0.00559 |0.00359 | 0.03453 | 0.00001
85 0.09814 | 0.11475 |2.08094 |2.08442 |0.00263 |0.01146 | 0.00095 |0.02229
86 0.10928 | 0.09664 | 2.04605 |2.05608 |0.00851 |0.02956 |0.03584 | 0.00604
87 0.10250 | 0.12013 | 2.07445 |2.05079 |0.00173 |0.00607 | 0.00744 |0.01133
88 0.09461 | 0.14244 |2.09829 |2.08078 |0.00615 |0.01624 |0.01639 | 0.01865
89 0.10172 | 0.11094 |2.08401 |2.05699 |0.00095 |0.01526 |0.00212 |0.00514
90 0.10204 | 0.11439 |2.09723 |2.04868 |0.00127 |0.01181 | 0.01534 |0.01345
91 0.09635 | 0.15988 |2.09498 |2.07062 |0.00442 |0.03368 |0.01309 | 0.00849
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92 0.09754 | 0.11531 |2.10781 |2.06287 |0.00323 |0.01089 |0.02592 | 0.00075
93 0.09146 | 0.10541 |2.10223 |2.08779 |0.00930 |0.02080 |0.02034 | 0.02567
94 |0.09812 |0.09988 |2.07513 |2.08300 |0.00265 |0.02634 |0.00676 |0.02088
95 0.10414 | 0.14633 | 2.08264 |2.03256 |0.00337 |0.02013 |0.00075 | 0.02957
96 |0.10534 |0.14637 |2.05595 |2.07075 |0.00457 |0.02016 |0.02594 | 0.00863
97 0.09284 | 0.14174 | 2.09640 |2.08392 |0.00793 |0.01554 |0.01451 |0.02179
98 0.10453 | 0.12935 |2.06802 |2.05701 |0.00376 |0.00315 |0.01387 |0.00512
99 0.10075 | 0.14434 | 2.08353 |2.08429 |0.00001 |0.01814 |0.00164 |0.02217
100 | 0.11063 | 0.09680 |2.04975 |2.04940 |0.00987 |0.02942 |0.03214 |0.01272
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Figure 4.16: Histogram of posterior mean of parameters J, | , A, M Vy ~N(7,, 171) for N=100

and T=10
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Discussion of Results (Tables 4.15 & 4.16 and Figures 4.15 & 4.16)

Table 4.15 exhibits the posterior estimates of second stage hierarchical prior. Here, it is
observed that as N increases the posterior means are substantially closer to the initial
values even when the error precision was set to be 25. It is obvious that standard
deviation of each parameter across all individuals decrease as N tends to large, so also
the numerical standard error through the error variance matrix indicates a perfect
constant error variance of all the parameters.

It is observed that in Table 4.16 hierarchical Bayesian estimator performed better
estimates as second stage hierarchical prior was injected into the first stage hierarchical
prior, the posterior estimates gave exact influence of X’s over y across all individuals.
Figure 4.15 demonstrates different patterns by posterior means of the simulated
datasets while Figure 4.16 projects symmetric shapes for each posterior mean

indicating that the datasets are normally distributed.
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4.3.3 Performance of Estimator on (N>T): (N=200, T=10)

Table 4.17 The second stage of hierarchical Bayesian Estimation:
w1 y,y,hV, ~N(i,,2,) When N=200, T=10, h=25, £, ~N(0,0.25) 5, ~ B(0,1)

o B, B(2) B,(3) Precision (h)

Mean 0.02351085 | 0.05651572 | 2.12348264 | 2.1798687 | 133.4405863

Standard
deviation 0.00430891 | 0.01753861 | 0.01484233 | 0.0180112 | 6.756558950

Numerical
Standard
Error 0.00013625 | 0.000554619 | 0.000469356 | 0.00056956 | 0.2136611543

The posterior estimates of variance covariance matrix forV/, :

_ = 7!
I/}/ 1|y57,h’n’ﬂ7NW(vya|:vyV7:| )
Mean

0.00509  0.00003 —0.00000 0.00001

0.00003  0.00507  0.00000 —0.00001
—0.00000 0.00000  0.00506 —0.00001
0.00001 —0.00001 0.00001 0.00506

Standard deviation

0.00053 0.00037 0.00038 0.00037
0.00037 0.00050 0.00036 0.00037
0.00038 0.00036 0.00051 0.00036
0.00037 0.00037 0.00036 0.00051

Numerical Standard Error

0.00002 0.00001 0.00001 0.00001
0.00001 0.00002 0.00001 0.00001
0.00001 0.00001 0.00002 0.00001
0.00001 0.00001 0.00001 0.00002
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Figure 4.17: Histograms of posterior means of parameters s, | y,y,h,V, for N=200,

T=10
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Table 4.18:

hierarchical Bayesian Estimates: y, | y,, A, vV, ~N (}71.,171) When N=200, T=10,

Posterior mean and Posterior Standard deviation for the first stage of

Sy ~N(0,025) 5, ~ B(0,1)

Posterior mean

Posterior Standard Deviation

Ind. o Py £ Q) £ (3) g By £ Q) 5 03)
1. 0.00864 | 0.05286 |2.15850 |2.27769 |0.01421 | 0.00371 |0.03489 |0.04432
2. 0.02122 | 0.05695 | 2.12803 |2.17890 |0.00163 | 0.00038 | 0.00442 | 0.00440
3. 0.02483 | 0.05622 |2.12213 |2.16479 |0.00198 | 0.00035 |0.00147 |0.01858
4. 0.02070 |0.05762 |2.13814 |2.18397 |0.00215 |0.00104 |0.01454 | 0.00060
5. 0.02450 | 0.04689 |2.13938 |2.16338 |0.00164 |0.00968 |0.01577 |0.01998
6. 0.02145 | 0.05683 | 2.14245 |2.16076 |0.00139 |0.00025 |0.01884 |0.02261
7. 0.02106 | 0.07305 |2.11423 |2.20678 |0.00178 |0.01648 | 0.00937 |0.02341
8. 0.02354 | 0.07175 | 2.11512 |2.18562 | 0.00068 | 0.01517 |0.00848 |0.02246
9. 0.02234 | 0.04449 | 2.12392 |2.18147 | 0.00050 | 0.01208 |0.00031 |0.00189
10. |0.02344 | 0.07898 | 2.12368 |2.17681 | 0.00059 | 0.02240 | 0.00007 | 0.00065
11. [0.02561 |0.04474 | 2.13425 |2.16936 |0.00276 |0.01183 |0.01064 |0.01401
12. | 0.02604 | 0.05135 |2.12935 |2.16308 |0.00319 |0.00521 |0.00574 |0.02029
13. | 0.02463 | 0.06292 |2.11737 |2.18651 |0.00178 |0.00635 |0.00623 |0.00313
14. 0.02032 | 0.05372 | 2.14217 |2.17606 | 0.00252 | 0.00285 |0.01856 |0.00731
15. | 0.02038 | 0.08391 |2.15966 |2.16861 |0.00247 |0.02734 |0.03605 |0.01475
16. [ 0.01794 |0.04916 |2.12400 |2.20165 | 0.00490 |0.00741 |0.00004 |0.01827
17. 10.01926 |0.05436 |2.14072 |2.17642 |0.00359 |0.00220 |0.01711 |0.00695
18. | 0.02469 | 0.07012 |2.11507 |2.18035 |0.00184 |0.01354 | 0.00833 |0.00302
19. 10.02365 |0.06101 |2.13312 |2.17691 | 0.00798 | 0.00443 |0.00951 |0.00646
20. 1 0.02096 |0.06077 |2.13247 |2.19036 | 0.00189 |0.00419 |0.00886 |0.00698
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21. 10.02564 | 0.05219 |2.12540 |2.16755 |0.00279 |0.00437 |0.09179 |0.01582
22. 10.01905 |0.04198 |2.14776 |2.17285 |0.00379 |0.01458 |0.02415 |0.01052
23. 10.02671 |0.04616 |2.13397 |2.14835 |0.00386 | 0.01041 |0.01036 | 0.03501
24. 10.01913 | 0.05731 |2.13984 |2.18411 |0.00371 |0.00074 |0.01623 |0.00073
25. 10.02658 | 0.06804 |2.11801 |2.17521 |0.00372 |0.01146 |0.00558 |0.00816
26. 10.02420 | 0.05896 |2.13141 |2.17982 |0.00134 |0.00239 |0.00780 |0.00355
27. 10.02833 | 0.03885 |2.11424 |2.16261 |0.00547 | 0.01772 |0.00936 |0.02076
28. 10.02962 | 0.05081 |2.11229 |2.16323 |0.00676 | 0.00576 |0.01131 |0.02014
29. 10.02506 |0.03972 |2.11308 |2.18144 |0.00221 |0.01685 |0.01052 |0.00193
30. | 0.01778 |0.02593 |2.13496 |2.20891 |0.00506 |0.03063 |0.01135 |0.02553
31. |0.01707 |0.01675 |2.13124 |2.21075 |0.00577 |0.03982 |0.00763 |0.02737
32. 10.02493 | 0.05495 |2.12029 |2.17022 |0.00208 |0.00162 |0.00331 |0.01314
33. 10.01954 |0.07262 |2.14262 |2.18754 |0.00330 |0.01605 |0.01901 |0.00041
34. 10.02145 |0.07685 |2.13328 |2.18322 |0.00139 |0.02027 |0.00967 |0.00015
35. 10.01482 | 0.05028 |2.12251 |2.21287 |0.00802 | 0.00628 |0.00109 | 0.02950
36. |0.02923 | 0.05299 |2.09812 |2.18323 |0.00638 |0.00357 |0.02548 |0.00014
37. 10.01959 |0.03973 |2.12683 |2.19267 |0.00325 |0.01683 |0.00322 |0.00929
38. 10.01623 | 0.04619 |2.12335 |2.22702 |0.00661 |0.01038 |0.00024 |0.04364
39. 10.01916 | 0.07588 |2.12420 |2.21318 | 0.00368 | 0.01930 | 0.00059 | 0.02980
40. | 0.02667 | 0.03118 |2.09693 |2.19176 | 0.00382 |0.02539 |0.02666 |0.00838
41. 10.02378 | 0.02818 |2.11839 |2.18014 |0.00093 |0.02839 |0.00521 |0.00323
42. 10.01879 |0.05346 |2.13458 |2.18370 |0.00405 |0.00311 |0.01097 |0.00033
43. 10.02012 | 0.05729 |2.13264 |2.18141 |0.00273 | 0.00007 |0.00903 |0.00194
44. 10.02385 |0.03164 |2.10615 |2.18474 |0.00100 |0.02492 |0.01745 |0.00137
45. 10.02526 |0.03929 |2.11286 |2.17400 |0.00241 |0.01727 |0.01074 |0.00937
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46. 10.02862 | 0.06312 |2.11263 |2.16212 | 0.00577 | 0.00654 |0.01097 |0.01924
47. 10.02248 | 0.06084 |2.12371 |2.19379 |0.00036 |0.00426 |0.00010 |0.01041
48. 10.01708 | 0.04581 |2.12672 |2.20278 |0.00576 | 0.01076 |0.00311 | 0.01941
49. 10.01972 | 0.06837 |2.11422 |2.19764 |0.00312 |0.01179 |0.00938 |0.01408
50. |0.02931 |0.04484 |2.12205 |2.17584 |0.00646 |0.01173 |0.00154 | 0.00753
51. 10.02268 | 0.07714 |2.12457 |2.18323 |0.00016 | 0.02056 |0.00096 |0.00014
52. 10.02694 | 0.04947 |2.11544 |2.16850 |0.00409 |0.00710 |0.00816 |0.01487
53. 10.02623 | 0.03810 |2.11413 |2.17156 |0.00338 | 0.01847 |0.00947 |0.01181
54. 10.02662 | 0.00495 |2.12402 |2.17416 |0.00376 |0.07008 | 0.00042 | 0.00920
55. 10.02388 | 0.05317 |2.14002 |2.16119 |0.00103 |0.00339 |0.01641 |0.02217
56. |0.02883 | 0.03638 |2.11425 |2.18152 |0.00597 |0.02019 |0.00935 |0.00185
57. 10.01958 |0.03628 |2.13411 |2.20347 |0.00326 |0.02029 |0.01050 |0.02009
58. [ 0.01773 |0.04348 |2.14156 |2.17939 |0.00512 |0.01309 |0.01795 |0.00398
59. 10.02098 | 0.06862 |2.14768 |2.16327 |0.00186 |0.01204 |0.02424 | 0.02010
60. | 0.02654 | 0.01756 |2.10494 |2.17745 |0.00368 |0.03901 |0.01864 |0.00592
61. |0.02653 | 0.06142 |2.12382 |2.17296 |0.00368 | 0.00484 |0.00021 |0.01040
62. |0.02289 |0.03313 |2.12746 |2.18488 |0.00438 |0.02343 | 0.00385 |0.00150
63. |0.02306 |0.05728 |2.13022 |2.18419 |0.00021 |0.00070 |0.00661 |0.00081
64. |0.02027 |0.07474 |2.11573 |2.19612 |0.00257 |0.01816 |0.00787 |0.01274
65. |0.01624 |0.04408 |2.12662 |2.19917 |0.00661 |0.01249 |0.00301 |0.01579
66. | 0.02714 | 0.04749 |2.11019 |2.17038 |0.00429 |0.00908 |0.01341 |0.01298
67. |0.02098 |0.03118 |2.11115 |2.20039 |0.00187 |0.02538 |0.01245 |0.01702
68. |0.02269 |0.06140 |2.13179 |2.18193 |0.00015 |0.00483 |0.00818 |0.00144
69. |0.02015 | 0.05069 |2.12871 |2.20434 |0.00270 | 0.00587 |0.00510 |0.02096
70. 10.02255 | 0.06386 |2.13500 |2.18398 |0.00029 |0.00729 |0.01140 |0.00060
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71. 10.02253 | 0.05056 |2.11609 |2.19015 |0.00031 |0.00601 |0.00751 |0.00677
72. 10.02912 | 0.05721 |2.11255 |2.16790 |0.00626 | 0.00063 |0.01105 |0.01547
73. 10.02043 | 0.05812 |2.13924 |2.18055 |0.00241 |0.00155 |0.01563 | 0.00281
74. | 0.01799 | 0.05051 |2.09739 |2.21220 |0.00485 |0.00605 |0.02621 |0.02882
75. 10.02303 | 0.05273 | 2.11273 |2.19979 |0.00017 | 0.00383 |0.01087 |0.01642
76. 10.02531 |0.05183 |2.11772 |2.16824 |0.00245 |0.00474 |0.00588 |0.01513
77. 10.02490 |0.03783 |2.10304 |2.18723 |0.00205 |0.01874 |0.02056 | 0.00385
78. 10.02531 | 0.07007 |2.09723 |2.20534 |0.00246 |0.01350 |0.02637 |0.02197
79. 10.02599 |0.03679 |2.11418 |2.18167 |0.00314 |0.01978 |0.00942 | 0.00170
80. |0.02236 | 0.07398 |2.11502 |2.18431 |0.00048 |0.01741 |0.00858 |0.00093
8l. | 0.01974 |0.06644 |2.12139 |2.19182 |0.00310 | 0.00986 |0.00221 | 0.00845
82. | 0.01925 |0.06484 |2.11821 |2.19983 |0.00360 | 0.00827 |0.00539 |0.01645
83. 10.02253 | 0.03895 | 2.13328 |2.17279 |0.00031 |0.01762 |0.00967 |0.01058
84. 10.01624 | 0.04064 |2.12491 |2.20346 | 0.00660 |0.01593 |0.00130 |0.02008
85. 10.02213 | 0.04087 |2.08562 |2.20597 |0.00072 | 0.01569 |0.03798 | 0.02260
86. |0.02380 | 0.06576 |2.11899 |2.19382 |0.00094 | 0.00918 |0.00461 |0.01044
87. 10.02088 | 0.05670 |2.12865 |2.18777 |0.00196 | 0.00012 |0.00504 |0.00439
88. 10.02211 | 0.09884 |2.13350 |2.17114 |0.00073 |0.04227 |0.00989 |0.01223
89. 10.01914 | 0.05267 |2.12868 |2.19553 |0.00370 |0.00390 |0.00507 |0.01215
90. |0.02092 | 0.08155 |2.11414 |2.19617 |0.00193 |0.02498 |0.00946 |0.01279
91. |0.01422 | 0.03587 |2.16652 |2.18219 |0.00863 |0.02070 |0.04291 |0.00117
92. 10.02867 |0.07345 |2.11535 |2.14431 |0.00581 |0.01687 |0.00825 |0.03906
93. 1 0.01809 |0.05987 |2.15429 |2.18784 |0.00475 |0.00329 |0.03068 |0.00447
94. 10.02936 | 0.05053 |2.11056 |2.16464 |0.00651 |0.00603 |0.01304 |0.01873
95. 10.02158 |0.03835 |2.12293 |2.19657 |0.00127 |0.01822 |0.00067 |0.01320
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96. |0.01977 |0.09001 |2.15632 |2.17963 |0.00307 |0.03343 |0.03271 |0.00374
97. 10.03071 |0.07485 |2.11800 |2.15570 |0.00786 |0.01828 |0.00560 |0.02767
98. 10.02477 |0.05395 |2.12528 |2.17298 |0.00192 |0.02625 |0.00167 |0.01038
99. 10.02961 | 0.08119 |2.10736 |2.16947 |0.00676 |0.02461 |0.01624 |0.01390
100. | 0.02049 | 0.05459 |2.14146 |2.18183 |0.00235 |0.00001 |0.01785 |0.00154
101. [ 0.02020 | 0.02833 | 2.13299 |2.18229 |0.00264 | 0.02823 | 0.00938 | 0.00108
102. ] 0.03191 | 0.07032 |2.10861 |2.15748 |0.00905 |0.01374 |0.01499 |0.02589
103. | 0.01681 | 0.05002 |2.12479 |2.22418 |0.00603 | 0.00655 |0.00118 | 0.04081
104. | 0.01743 | 0.07162 | 2.14546 |2.18174 |0.00542 |0.01504 |0.02185 |0.00163
105. | 0.02850 | 0.05933 | 2.11699 |2.16394 |0.00564 | 0.00276 |0.00661 |0.01943
106. | 0.03436 | 0.00737 | 2.08676 |2.15765 |0.01151 |0.01720 |0.03684 |0.02571
107. 1 0.02935 | 0.09744 | 2.09939 |2.16786 | 0.00650 | 0.04087 |0.02421 |0.01550
108. [ 0.02872 | 0.08319 | 2.09870 |2.17022 |0.00587 |0.02662 |0.02490 |0.01314
109. | 0.02099 | 0.06776 |2.13557 |2.17343 |0.00185 |0.01119 |0.01196 | 0.00994
110. | 0.02460 | 0.06338 |2.12876 |2.18523 |0.00175 | 0.00681 |0.00515 |0.00186
111.]0.02190 | 0.05051 |2.15263 |2.17395 |0.00095 | 0.00605 |0.02902 |0.00942
112.] 0.01835 | 0.06452 |2.14358 |2.17583 |0.00449 |0.00795 |0.01997 |0.00754
113. 1 0.01872 | 0.08782 | 2.12544 |2.20762 |0.00412 |0.03124 |0.00183 |0.02425
114. 1 0.02030 | 0.08620 |2.21177 |2.19817 |0.00254 |0.02963 |0.00582 |0.01479
115.10.02246 | 0.05744 | 2.09159 |2.19893 |0.00038 | 0.00086 |0.03201 |0.01555
116. | 0.02365 | 0.06781 |2.11714 |2.17898 | 0.00079 |0.01123 | 0.00646 | 0.00439
117.]0.03383 | 0.05183 |2.07931 |2.16713 |0.01098 |0.00474 | 0.04429 |0.01623
118.]0.02574 | 0.07617 |2.12015 |2.17602 |0.00289 |0.01960 |0.00345 |0.00735
119.] 0.02564 | 0.04248 |2.10374 |2.19209 |0.00278 | 0.01409 |0.01986 | 0.00872
120. | 0.01853 | 0.05756 |2.14277 |2.19515 |0.00431 | 0.00098 |0.01916 |0.01177
121. | 0.01416 | 0.07017 | 2.13750 |2.21181 |0.00868 | 0.01359 |0.01389 |0.02843
122.10.01261 | 0.03896 |2.13644 |2.21904 |0.01023 | 0.01760 |0.01283 |0.03567
123.10.02605 | 0.05199 |2.11336 |2.15972 |0.00320 |0.00045 |0.01024 |0.02364
124.10.02787 | 0.07710 | 2.10458 |2.18029 |0.00502 |0.00205 |0.01902 |0.00307
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125. 1 0.01619 | 0.04092 | 2.13964 |2.20665 | 0.00665 |0.01565 |0.01603 |0.02327
126. | 0.01585 | 0.05233 | 2.14312 | 2.20436 | 0.00699 | 0.00424 |0.09151 |0.02099
127.10.02315 | 0.05836 |2.13264 |2.17656 | 0.00030 | 0.00179 |0.09034 |0.00680
128. 1 0.02647 | 0.05001 |2.10531 |2.18798 |0.00362 | 0.00656 |0.01829 |0.00460
129.1 0.02299 | 0.02759 |2.13524 |2.18249 |0.00014 | 0.02897 |0.01633 | 0.00092
130. | 0.02437 | 0.05359 |2.09633 |2.20434 |0.00152 |0.00297 |0.02727 |0.02096
131. | 0.02075 | 0.04945 |2.10685 |2.20838 |0.00209 |0.00711 |0.01675 |0.02500
132.] 0.02290 | 0.06659 |2.11452 |2.18140 |0.00056 | 0.01001 |0.00908 |0.00197
133. 1 0.01980 | 0.06234 | 2.14417 |2.19007 | 0.00305 | 0.00576 |0.02056 |0.00869
134. 1 0.02898 | 0.05362 | 2.12660 |2.14214 |0.00613 | 0.00295 |0.00299 |0.04123
135. 1 0.02566 | 0.04431 | 2.13014 |2.16388 |0.00281 | 0.01226 |0.00653 |0.01948
136. | 0.02060 | 0.08410 | 2.13381 |2.16982 |0.00224 |0.02752 |0.01020 |0.01355
137.] 0.01851 | 0.05595 |2.11994 |2.20777 |0.00433 | 0.00061 |0.00366 |0.02439
138. | 0.02086 | 0.04553 |2.12041 |2.19247 |0.00199 |0.01104 |0.00319 |0.00910
139. ] 0.02163 | 0.03844 |2.12148 |2.17595 |0.00121 |0.01813 |0.00212 | 0.00742
140. | 0.02487 | 0.08119 |2.13450 |2.15644 |0.00202 |0.02462 | 0.01089 |0.02693
141. | 0.02081 | 0.05015 | 2.13360 |2.18005 |0.00203 | 0.00642 |0.00999 |0.00332
142. 1 0.01827 | 0.04301 | 2.13900 |2.19260 |0.00458 |0.01356 |0.01539 |0.00923
143. 1 0.02497 |0.01245 |2.11750 |2.17219 |0.00211 |0.06794 |0.00610 |0.01117
144. 1 0.02738 | 0.05795 | 2.10097 |2.18502 |0.00452 |0.00138 |0.02262 |0.00165
145. ] 0.01820 | 0.05314 | 2.15236 |2.18306 |0.00465 |0.00343 |0.02876 | 0.00031
146. | 0.02009 | 0.06525 |2.13609 |2.18621 |0.00275 |0.00867 |0.01248 |0.00283
147.1 0.02914 | 0.06010 |2.11226 |2.17813 |0.00629 |0.00352 |0.01134 |0.00524
148. | 0.02311 | 0.01877 |2.12044 |2.17355 |0.00026 |0.03779 |0.00136 | 0.00981
149. 1 0.01808 | 0.05727 | 2.12891 |2.19461 |0.00476 | 0.00069 |0.00530 |0.01123
150. [ 0.02945 | 0.04761 | 2.09522 |2.16047 |0.00659 | 0.00895 |0.02838 |0.02290
151. 1 0.02456 | 0.04460 | 2.12537 |2.16318 |0.00171 |0.01197 |0.00176 |0.02019
152.10.02172 | 0.05399 | 2.13054 |2.18701 |0.00112 |0.00257 |0.00693 |0.00364
153. ] 0.01469 | 0.04985 |2.15279 |2.20928 |0.00815 |0.00672 |0.02918 |0.02590
154. | 0.026463 | 0.04793 |2.11261 |2.17021 |0.00360 | 0.00863 |0.01099 |0.01315
155.] 0.016177 | 0.05884 |2.15448 |2.18112 |0.00668 | 0.00226 | 0.03087 |0.00225

136




156. | 0.028041 | 0.06224 | 2.09989 |2.16934 | 0.00518 | 0.00567 |0.02371 |0.01403
157.10.021017 | 0.04902 | 2.13246 |2.18447 |0.00184 | 0.00755 |0.00886 |0.00109
158. 1 0.022086 | 0.05615 | 2.12000 |2.20237 | 0.00077 | 0.00042 |0.00360 |0.01899
159.10.029074 | 0.03503 | 2.10541 |2.15802 | 0.00622 |0.02153 |0.01819 |0.02534
160. | 0.017996 | 0.08367 |2.12862 |2.20662 |0.00485 |0.02710 |0.00502 |0.02325
161. | 0.024794 | 0.04360 |2.15310 |2.14318 |0.00194 |0.01297 |0.02949 |0.04019
162. | 0.020598 | 0.06734 | 2.12514 |2.18860 | 0.00226 |0.01076 |0.00153 |0.00523
163. | 0.02344 | 0.06984 | 2.10930 |2.19229 |0.00058 |0.01326 |0.01430 | 0.00891
164. | 0.01134 | 0.05525 |2.15481 |2.20911 |0.01151 |0.00131 |0.03120 |0.02573
165. 1 0.02680 | 0.06726 | 2.09758 |2.18126 |0.00397 |0.01069 |0.02602 |0.00211
166. | 0.02447 | 0.06308 | 2.10338 |2.18854 |0.00169 | 0.00650 |0.02022 |0.00516
167. 1 0.02362 | 0.06431 | 2.12544 |2.16260 | 0.00077 |0.00773 |0.01840 |0.02076
168. | 0.01434 | 0.07194 |2.13669 |2.21629 |0.00850 |0.01536 |0.01308 | 0.03291
169. | 0.01950 | 0.07937 |2.13110 |2.19877 |0.00335 |0.02280 |0.00749 |0.01540
170. | 0.02669 | 0.04635 |2.11349 |2.18517 |0.00384 |0.01021 |0.01011 |0.00179
171.] 0.02892 | 0.08235 |2.09709 |2.19160 |0.00607 |0.02577 |0.02651 |0.00822
172.10.02584 | 0.06314 | 2.11813 |2.16998 |0.00299 | 0.00657 |0.05474 |0.01338
173.10.02018 |-0.0020 |2.13482 |2.18115 |0.00267 |0.05861 |0.01121 |0.00222
174.10.01804 | 0.07627 |2.13071 |2.19448 |0.00480 |0.01969 |0.00710 |0.01110
175.10.02316 | 0.04520 |2.12740 |2.15436 |0.00031 |0.01137 |0.00379 |0.02900
176. | 0.02675 | 0.05122 |2.12101 |2.17202 | 0.00389 | 0.00535 |0.00259 |0.01134
177.] 0.02646 | 0.04125 |2.10719 |2.20700 |0.00360 | 0.01531 |0.01641 |0.02362
178. ] 0.01833 | 0.06014 |2.14176 |2.20695 |0.00451 | 0.00357 |0.01815 |0.02357
179.10.02584 | 0.07327 | 2.10969 |2.19086 |0.00299 |0.01669 |0.01391 |0.00749
180. | 0.02550 | 0.05333 | 2.11767 |2.18988 | 0.00265 | 0.00323 |0.00593 |0.00650
181. 1 0.03276 | 0.08785 | 2.09195 |2.16501 |0.00990 |0.03128 |0.03165 |0.01835
182. 1 0.01584 | 0.08178 | 2.14066 |2.21542 |0.00700 |0.02511 |0.01705 |0.03205
183. 1 0.02676 | 0.05613 | 2.10815 |2.18450 | 0.00390 | 0.00044 |0.01545 |0.00113
184. | 0.02504 | 0.05388 |2.12415 |2.18434 |0.00218 | 0.02695 | 0.00054 | 0.00096
185.10.03238 | 0.06588 |2.08602 |2.15989 |0.00953 |0.00931 |0.03758 |0.02348
186. | 0.02549 | 0.04439 |2.14598 |2.15532 |0.00264 |0.01218 |0.02238 | 0.02804
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187.10.02555 |0.07672 | 2.13199 |2.16480 |0.00270 |0.02014 |0.00838 |0.01856
188. [ 0.02808 | 0.05653 | 2.10896 |2.18121 |0.00522 |0.00003 |0.01464 |0.00216
189. 1 0.02450 | 0.03749 | 2.11527 |2.17750 |0.00165 | 0.01907 |0.00833 |0.00586
190. | 0.01987 |0.08411 | 2.13121 |2.20759 |0.00366 | 0.02753 |0.00760 |0.02421
191. ] 0.02289 | 0.07038 |2.11483 |2.17173 |0.00143 | 0.01380 | 0.00877 |0.01163
192.] 0.02809 | 0.06210 |2.12661 |2.16016 |0.00523 |0.00552 |0.00301 |0.02320
193. 0.02039 | 0.07103 |2.14428 |2.18238 |0.00246 |0.01445 | 0.02067 | 0.00099
194. | 0.02389 | 0.06171 |2.11615 |2.18594 |0.00104 | 0.00514 |0.00745 |0.00256
195.10.02038 | 0.03698 | 2.12787 |2.19295 |0.00246 | 0.01959 |0.00427 |0.00958
196. | 0.02657 | 0.06768 | 2.10991 |2.16846 |0.00372 |0.01104 |0.01369 |0.01491
197.10.02467 | 0.05276 | 2.12858 |2.19087 |0.00181 | 0.00380 |0.00497 |0.00749
198.10.02119 | 0.04529 | 2.11572 |2.19921 |0.00166 |0.01128 |0.00787 |0.01583
199. 1 0.02130 | 0.03274 |2.12013 |2.20098 | 0.00154 |0.02383 | 0.00347 |0.01760
200. ] 0.02262 | 0.03470 |2.12964 |2.16614 |0.00022 | 0.02186 | 0.00603 |0.01723
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Figure 4.18: Histogram of posterior mean of parameters J, | v, 5, H,, Vy ~N(7,, 171) for N=200

and T=10
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4.3.4 Performance of Estimator on (N>T): (N=200, T=20)

Table 4.19:

The second stage of hierarchical Bayesian estimates:
w1 y,y,hV, ~N(i,,2,) When N=200, T=20, h=25, £, ~N(0,0.25) 5, ~ B(0,1)

o B, B2 B, (3) Precision (h)
Mean 0.09538802 | 0.19013004 | 2.04777405 | 2.16638865 | 247.02428
Standard
deviation | 0.00309614 | 0.01251531 | 0.010898460 | 0.012709515 | 9.145090868
Numerical
Standard
Error 0.00009790 | 0.000395768 | 0.000344639 | 0.000401910 | 0.28919322

The posterior estimates of variance covariance matrix forV/, :

_ = 7!
I/}/1|y37’h,n,ﬂ7NW(vys|:vyV7:| )

Mean

0.00507
0.00000
0.00000

—-0.00000 0.00001

0.00000
0.00506

—-0.00002  0.00507
—-0.00000 0.00507

Standard deviation

0.00050
0.00036
0.00036
0.00036

Numerical Standard Error

0.00001
0.00001
0.00002
0.00001

0.00002
0.00001
0.00001
0.00001

0.00036
0.00052
0.00036
0.00036

0.00001
0.00002
0.00001
0.00001

0.00036
0.00036
0.00052
0.00035

0.00036
0.00036
0.00035
0.00050

0.00001
0.00001
0.00001
0.00002

0.00000  —0.00000
-0.00002  0.00001
-0.00000
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Figure 4.19: Histograms of posterior means of parameters £, | v,7,h, Vy for N=200, T=20
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Table 4.20:

Posterior mean and Posterior Standard deviation for the first stage of
hierarchical Bayesian Estimates:y,|y,,h,u,,V, ~N(7,,Vi) When N=200, T=20,
By, ~N(0,025) 5, ~ B(0, 1)

Posterior Mean Posterior Standard Deviation
o Bo B B2 o Bo B B2
1 0.09644 | 0.18720 | 2.04471 | 2.15816 | 0.00110 | 0.00291 | 0.00415 | 0.00779
2 0.09473 | 0.18100 | 2.05196 | 2.16389 | 0.00059 | 0.00911 | 0.00302 | 0.00205
3 0.09678 | 0.18441 | 2.05087 | 2.16474 | 0.00144 | 0.00571 | 0.00193 | 0.00121
4 0.09537 | 0.19621 | 2.06135 | 2.15319 | 0.00031 | 0.00060 | 0.01241 | 0.01275
5 0.09451 | 0.19804 | 2.05312 | 2.16433 | 0.00082 | 0.00791 | 0.00418 | 0.00161
6 0.09194 | 0.18711 | 2.04910 | 2.18474 | 0.00339 | 0.00301 | 0.00017 | 0.01879
7 0.09627 | 0.20834 | 2.05347 | 2.15605 | 0.00093 | 0.01821 | 0.00454 | 0.00989
8 0.09305 | 0.20488 | 2.05870 | 2.16298 | 0.00228 | 0.01475 | 0.00977 | 0.00279
9 0.10115 | 0.20061 | 2.03271 | 2.13803 | 0.00581 | 0.01048 | 0.01622 | 0.02791
10 | 0.09807 | 0.18470 | 2.03859 | 2.16243 | 0.00273 | 0.00542 | 0.01033 | 0.00355
11 | 0.09769 | 0.18075 | 2.04648 | 2.15065 | 0.00235 | 0.00937 | 0.00245 | 0.01529
12 | 0.10107 | 0.18710 | 2.03751 | 2.15296 | 0.00573 | 0.00302 | 0.01141 | 0.01298
13 | 0.09766 | 0.17383 | 2.05086 | 2.15324 | 0.00232 | 0.01639 | 0.00192 | 0.01270
14 | 0.09939 | 0.20491 | 2.03651 | 2.15723 | 0.00405 | 0.01388 | 0.01241 | 0.00871
15 | 0.09794 | 0.21081 | 2.04224 | 2.16183 | 0.00260 | 0.02068 | 0.00669 | 0.00412
16 | 0.09485 | 0.21120 | 2.04583 | 2.16853 | 0.00048 | 0.02107 | 0.00309 | 0.00258
17 | 0.09711 | 0.19119 | 2.06453 | 2.14879 | 0.00177 | 0.00106 | 0.01560 | 0.01716
18 | 0.09583 | 0.18204 | 2.05152 | 2.16680 | 0.00049 | 0.00808 | 0.00259 | 0.00085
19 | 0.09200 | 0.20200 | 2.05301 | 2.18467 | 0.00333 | 0.01187 | 0.00407 | 0.01872
20 | 0.09147 | 0.19274 | 2.06462 | 2.17279 | 0.00386 | 0.00261 | 0.00156 | 0.00684
21 | 0.09049 | 0.19591 | 2.05173 | 2.19054 | 0.00484 | 0.00578 | 0.00279 | 0.02459
22 | 0.09831 | 0.18819 | 2.03877 | 2.16252 | 0.00297 | 0.00193 | 0.01016 | 0.00342
23 | 0.09029 | 0.19357 | 2.06706 | 2.18046 | 0.00503 | 0.00344 | 0.01812 | 0.01451
24 | 0.09519 | 0.19804 | 2.06368 | 2.16260 | 0.00014 | 0.00791 | 0.01474 | 0.00334
25 | 0.09575 | 0.18304 | 2.03622 | 2.16461 | 0.00042 | 0.00708 | 0.01271 | 0.00133
26 | 0.09644 | 0.16605 | 2.04679 | 2.16383 | 0.00110 | 0.02407 | 0.00214 | 0.00212
27 | 0.09973 | 0.18874 | 2.04959 | 2.13904 | 0.00439 | 0.00137 | 0.00006 | 0.02690
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28 | 0.09803 | 0.19536 | 2.01445 | 2.18349 | 0.00269 | 0.00523 | 0.03448 | 0.01754
29 | 0.09161 | 0.19399 | 2.06154 | 2.17494 | 0.00272 | 0.00386 | 0.01261 | 0.00899
30 | 0.09954 | 0.21248 | 2.03688 | 2.16081 | 0.00420 | 0.02235 | 0.01205 | 0.00513
31 0.08898 | 0.17551 | 2.06691 | 2.18811 | 0.00635 | 0.01461 | 0.01797 | 0.02215
32 | 0.09850 | 0.17465 | 2.03350 | 2.17042 | 0.00316 | 0.01547 | 0.01542 | 0.00447
33 | 0.09679 | 0.18638 | 2.04552 | 2.16683 | 0.00146 | 0.00374 | 0.00340 | 0.00088
34 | 0.08743 | 0.18416 | 2.07484 | 2.18388 | 0.00790 | 0.00596 | 0.02590 | 0.01793
35 | 0.09846 | 0.19746 | 2.08235 | 2.16857 | 0.00312 | 0.00733 | 0.02057 | 0.00262
36 | 0.09572 | 0.19475 | 2.06193 | 2.15275 | 0.00038 | 0.00462 | 0.01299 | 0.01320
37 | 0.09447 | 0.20498 | 2.04371 2.7422 | 0.00085 | 0.01485 | 0.00522 | 0.00827
38 | 0.09275 | 0.19806 | 2.05819 | 2.16916 | 0.00258 | 0.00793 | 0.00925 | 0.00322
39 | 0.09068 | 0.18217 | 2.06138 | 2.17977 | 0.00465 | 0.00795 | 0.01244 | 0.01378
40 | 0.10330 | 0.21184 | 2.02609 | 2.13950 | 0.00796 | 0.02171 | 0.02283 | 0.02636
41 0.10129 | 0.18722 | 2.03784 | 2.14302 | 0.00596 | 0.00290 | 0.01109 | 0.02287
42 | 0.09665 | 0.17706 | 2.03699 | 2.17223 | 0.00132 | 0.01306 | 0.01194 | 0.00634
43 | 0.10146 | 0.21146 | 2.04073 | 2.13649 | 0.00612 | 0.02133 | 0.00819 | 0.02954
44 | 0.09764 | 0.19572 | 2.05606 | 2.14879 | 0.00230 | 0.00559 | 0.00713 | 0.01716
45 | 0.09680 | 0.16222 | 2.04228 | 2.16446 | 0.00147 | 0.02789 | 0.00665 | 0.00148
46 | 0.09197 | 0.19009 | 2.05325 | 2.17460 | 0.00336 | 0.00003 | 0.00432 | 0.00865
47 | 0.09467 | 0.18371 | 2.04496 | 2.16899 | 0.00066 | 0.00641 | 0.00396 | 0.00304
48 | 0.09733 | 0.19108 | 2.04243 | 2.16018 | 0.00200 | 0.00095 | 0.00650 | 0.05771
49 | 0.09371 | 0.18999 | 2.04231 | 2.17487 | 0.00161 | 0.00013 | 0.00662 | 0.00892
50 | 0.09624 | 0.18952 | 2.04145 | 2.16614 | 0.00090 | 0.00059 | 0.00748 | 0.00019
51 0.10068 | 0.19755 | 2.03835 | 2.15118 | 0.00534 | 0.00743 | 0.01058 | 0.01476
52 | 0.09188 | 0.18685 | 2.06646 | 2.17166 | 0.00345 | 0.00326 | 0.01752 | 0.00570
53 | 0.08797 | 0.19052 | 2.05344 | 2.20110 | 0.00736 | 0.00039 | 0.00450 | 0.03515
54 | 0.09271 | 0.20954 | 2.04375 | 2.18694 | 0.00262 | 0.01941 | 0.00518 | 0.02098
55 | 0.09516 | 0.17976 | 2.03882 | 2.17920 | 0.00017 | 0.01036 | 0.01010 | 0.01325
56 | 0.09229 | 0.16782 | 2.06729 | 2.17111 | 0.00304 | 0.02230 | 0.01835 | 0.00515
57 | 0.09318 | 0.18087 | 2.05690 | 2.17240 | 0.00215 | 0.00924 | 0.00796 | 0.00645
58 | 0.09728 | 0.20739 | 2.05808 | 2.14580 | 0.00194 | 0.01726 | 0.00914 | 0.02015
59 | 0.09521 | 0.19733 | 2.05251 | 2.15949 | 0.00012 | 0.00720 | 0.00358 | 0.00645
60 | 0.09942 | 0.19421 | 2.03679 | 2.16310 | 0.00408 | 0.00409 | 0.01214 | 0.00284
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61 0.09544 | 0.20083 | 2.06194 | 2.16586 | 0.00011 | 0.010708 | 0.01306 | 0.00009
62 | 0.09636 | 0.17301 | 2.04767 | 2.15177 | 0.00102 | 0.01712 | 0.00129 | 0.01418
63 | 0.08885 | 0.19928 | 2.07348 | 2.18091 | 0.00648 | 0.00915 | 0.02455 | 0.01496
64 | 0.09847 | 0.20170 | 2.04841 | 2.15505 | 0.00319 | 0.01150 | 0.00052 | 0.01089
65 | 0.09386 | 0.19510 | 2.06214 | 2.15816 | 0.00147 | 0.00497 | 0.01321 | 0.00778
66 | 0.09090 | 0.18274 | 2.05448 | 2.17805 | 0.00443 | 0.00738 | 0.05545 | 0.01210
67 | 0.09529 | 0.19758 | 2.06335 | 2.15448 | 0.00004 | 0.00745 | 0.00144 | 0.01146
68 | 0.09598 | 0.16239 | 2.04894 | 2.16098 | 0.00065 | 0.02773 | 0.00009 | 0.00497
69 | 0.09783 | 0.20106 | 2.04459 | 2.15233 | 0.00249 | 0.01093 | 0.00434 | 0.01362
70 | 0.09198 | 0.18881 | 2.03818 | 2.18468 | 0.003351 | 0.00131 | 0.01075 | 0.01873
71 0.09556 | 0.18286 | 2.04553 | 2.16580 | 0.00028 | 0.00726 | 0.00339 | 0.00015
72 | 0.09783 | 0.16771 | 2.04565 | 2.14912 | 0.00247 | 0.02241 | 0.00328 | 0.01682
73 | 0.09490 | 0.19283 | 2.04512 | 2.17963 | 0.00045 | 0.00270 | 0.00381 | 0.01367
74 | 0.09232 | 0.19070 | 2.04550 | 2.17820 | 0.00306 | 0.00058 | 0.00557 | 0.01225
75 | 0.09435 | 0.19813 | 2.05446 | 2.16422 | 0.00095 | 0.00800 | 0.00552 | 0.00172
76 | 0.09739 | 0.17499 | 2.04027 | 2.15199 | 0.00204 | 0.01513 | 0.00866 | 0.01396
77 | 0.09174 | 0.19140 | 2.06425 | 2.17847 | 0.00353 | 0.00127 | 0.01532 | 0.01251
78 | 0.09584 | 0.19476 | 2.04336 | 2.16797 | 0.00055 | 0.00463 | 0.00557 | 0.00201
79 | 0.09578 | 0.18717 | 2.04675 | 2.15785 | 0.00047 | 0.00295 | 0.00217 | 0.00809
80 | 0.09802 | 0.18786 | 2.04333 | 2.15734 | 0.00284 | 0.00226 | 0.00560 | 0.00860
81 0.09591 | 0.19741 | 2.05083 | 2.16766 | 0.00073 | 0.00728 | 0.00190 | 0.00171
82 | 0.09428 | 0.19133 | 2.05463 | 2.15871 | 0.00148 | 0.00120 | 0.00569 | 0.00723
83 | 0.10220 | 0.18389 | 2.03080 | 2.13872 | 0.00862 | 0.00623 | 0.01812 | 0.02722
84 | 0.09064 | 0.18172 | 2.05065 | 2.19744 | 0.00696 | 0.00840 | 0.00171 | 0.03149
85 | 0.09595 | 0.19374 | 2.04360 | 2.16800 | 0.00616 | 0.00361 | 0.00532 | 0.00204
86 | 0.09921 | 0.19574 | 2.02650 | 2.16175 | 0.00880 | 0.00561 | 0.02243 | 0.00420
87 | 0.09375 | 0.21468 | 2.04915 | 2.17538 | 0.00581 | 0.02455 | 0.00021 | 0.00943
88 | 0.09136 | 0.21120 | 2.05654 | 2.18070 | 0.00975 | 0.02107 | 0.00760 | 0.01474
89 | 0.09400 | 0.20602 | 2.05427 | 2.16180 | 0.00330 | 0.01590 | 0.00533 | 0.00414
90 | 0.09548 | 0.19179 | 2.04640 | 2.17051 | 0.00142 | 0.00166 | 0.00253 | 0.00456
91 0.09795 | 0.20224 | 2.03380 | 2.16545 | 0.00614 | 0.01211 | 0.01512 | 0.00050
92 | 0.09143 | 0.20697 | 2.03912 | 2.19100 | 0.00901 | 0.01684 | 0.00980 | 0.02505
93 | 0.09272 | 0.18917 | 2.05965 | 2.17558 | 0.00617 | 0.00095 | 0.01071 | 0.00963
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94 | 0.09212 | 0.17584 | 2.05836 | 2.17588 | 0.00210 | 0.01428 | 0.00942 | 0.00993
95 | 0.08930 | 0.17401 | 2.07535 | 2.16900 | 0.00035 | 0.01610 | 0.02642 | 0.00304
96 | 0.10331 | 0.18882 | 2.05439 | 2.13970 | 0.00978 | 0.00130 | 0.00353 | 0.02625
97 | 0.09879 | 0.19884 | 2.04718 | 2.14881 | 0.00460 | 0.00872 | 0.00175 | 0.01713
98 | 0.09606 | 0.19000 | 2.04923 | 2.15779 | 0.00727 | 0.00012 | 0.00029 | 0.00815
99 | 0.09557 | 0.18764 | 2.03136 | 2.16757 | 0.00239 | 0.00248 | 0.00175 | 0.00162
100 | 0.09136 | 0.19603 | 2.05134 | 2.17349 | 0.00977 | 0.00591 | 0.00241 | 0.00754
101 | 0.09763 | 0.18670 | 2.03860 | 2.16568 | 0.00294 | 0.00342 | 0.01032 | 0.00026
102 | 0.09705 | 0.19277 | 2.05517 | 2.15970 | 0.00720 | 0.00264 | 0.00623 | 0.00624
103 | 0.08971 | 0.20655 | 2.06147 | 2.18071 | 0.00621 | 0.01642 | 0.00125 | 0.01476
104 | 0.09520 | 0.17504 | 2.05680 | 2.16402 | 0.00129 | 0.01508 | 0.00786 | 0.00192
105 | 0.09234 | 0.18050 | 2.04575 | 2.17738 | 0.00995 | 0.00962 | 0.00318 | 0.01188
106 | 0.09936 | 0.19457 | 2.03407 | 2.15524 | 0.00027 | 0.00444 | 0.01485 | 0.01070
107 | 0.09231 | 0.19016 | 2.04522 | 2.18722 | 0.00021 | 0.00003 | 0.00370 | 0.02127
108 | 0.04979 | 0.18885 | 2.05261 | 2.16009 | 0.00039 | 0.00127 | 0.00368 | 0.00585
109 | 0.09906 | 0.18714 | 2.03151 | 2.16231 | 0.00373 | 0.00298 | 0.01741 | 0.00364
110 | 0.08992 | 0.17319 | 2.07033 | 2.17845 | 0.00540 | 0.01693 | 0.02139 | 0.01249
111 | 0.09204 | 0.17880 | 2.04728 | 2.19235 | 0.00329 | 0.01132 | 0.00164 | 0.02635
112 | 0.09781 | 0.16091 | 2.04554 | 2.16571 | 0.00247 | 0.02920 | 0.00339 | 0.00023
113 | 0.08838 | 0.17935 | 2.05762 | 2.19180 | 0.00694 | 0.01077 | 0.00869 | 0.02585
114 | 0.09616 | 0.19518 | 2.03358 | 2.16920 | 0.00082 | 0.00505 | 0.01534 | 0.00325
115 | 0.09289 | 0.20605 | 2.05100 | 2.17337 | 0.00244 | 0.01592 | 0.00207 | 0.00742
116 | 0.09632 | 0.17890 | 2.04817 | 2.15659 | 0.00098 | 0.01122 | 0.00075 | 0.00935
117 | 0.09405 | 0.18176 | 2.05392 | 2.16894 | 0.00128 | 0.00836 | 0.00499 | 0.00299
118 | 0.10247 | 0.16898 | 2.03070 | 2.14399 | 0.00713 | 0.02114 | 0.01226 | 0.02195
119 | 0.09817 | 0.20944 | 2.04032 | 2.16285 | 0.00283 | 0.01931 | 0.00860 | 0.00310
120 | 0.09350 | 0.18055 | 2.05833 | 2.16999 | 0.00183 | 0.00957 | 0.00939 | 0.00402
121 | 0.09799 | 0.17908 | 2.02588 | 2.16991 | 0.00265 | 0.01103 | 0.02304 | 0.00396
122 | 0.10000 | 0.18448 | 2.04279 | 2.15324 | 0.00464 | 0.00564 | 0.00614 | 0.01270
123 | 0.09789 | 0.17568 | 2.04284 | 2.16703 | 0.00256 | 0.01444 | 0.00608 | 0.00107
124 | 0.09550 | 0.18493 | 2.05479 | 2.15977 | 0.00016 | 0.00519 | 0.00586 | 0.00617
125 | 0.09223 | 0.18530 | 2.05979 | 2.15676 | 0.00309 | 0.00482 | 0.01085 | 0.00173
126 | 0.09767 | 0.17354 | 2.04346 | 2.16393 | 0.00234 | 0.01658 | 0.00547 | 0.00203

145




127 | 0.09812 | 0.17682 | 2.04592 | 2.16117 | 0.00278 | 0.01329 | 0.00300 | 0.00475
128 | 0.09499 | 0.19982 | 2.04052 | 2.16933 | 0.00034 | 0.00969 | 0.00840 | 0.00340
129 | 0.09801 | 0.17765 | 2.05888 | 2.13458 | 0.00267 | 0.01247 | 0.00994 | 0.03140
130 | 0.09095 | 0.19211 | 2.05393 | 2.18300 | 0.00438 | 0.00198 | 0.05002 | 0.01711
131 | 0.09561 | 0.19356 | 2.04566 | 2.17340 | 0.00027 | 0.00343 | 0.00327 | 0.00745
132 | 0.09675 | 0.19447 | 2.04074 | 2.17086 | 0.00141 | 0.00434 | 0.00818 | 0.00491
133 | 0.09506 | 0.20099 | 2.03983 | 2.16934 | 0.00027 | 0.01086 | 0.00909 | 0.00338
134 | 0.09416 | 0.20895 | 2.05214 | 2.16066 | 0.00117 | 0.01882 | 0.00321 | 0.00529
135 | 0.09278 | 0.18990 | 2.06240 | 2.16785 | 0.00255 | 0.00022 | 0.01346 | 0.00190
136 | 0.09444 | 0.19692 | 2.05038 | 2.16422 | 0.00089 | 0.00679 | 0.00144 | 0.00172
137 | 0.09618 | 0.18210 | 2.05494 | 2.16211 | 0.00085 | 0.00802 | 0.00601 | 0.00383
138 | 0.10027 | 0.17065 | 2.03184 | 2.16135 | 0.00494 | 0.01947 | 0.01708 | 0.00459
139 | 0.09415 | 0.19033 | 2.04564 | 2.16948 | 0.00118 | 0.00020 | 0.00329 | 0.00353
140 | 0.09877 | 0.17653 | 2.03915 | 2.15462 | 0.03433 | 0.01359 | 0.00978 | 0.01133
141 | 0.08865 | 0.17717 | 2.04536 | 2.20307 | 0.00668 | 0.01295 | 0.00357 | 0.03712
142 | 0.09290 | 0.19388 | 2.06517 | 2.16737 | 0.00243 | 0.00375 | 0.01621 | 0.00142
143 | 0.09232 | 0.19131 | 2.05906 | 2.18053 | 0.00300 | 0.00118 | 0.01013 | 0.01458
144 | 0.08861 | 0.19023 | 2.07294 | 2.18555 | 0.00672 | 0.00010 | 0.02400 | 0.01960
145 | 0.09365 | 0.18888 | 2.05489 | 2.16899 | 0.00168 | 0.00124 | 0.00595 | 0.00304
146 | 0.09336 | 0.18289 | 2.05132 | 2.17082 | 0.00197 | 0.00723 | 0.00239 | 0.00486
147 | 0.09813 | 0.19867 | 2.03454 | 2.16984 | 0.00279 | 0.00854 | 0.01438 | 0.00389
148 | 0.09424 | 0.18144 | 2.06285 | 2.15403 | 0.00109 | 0.00868 | 0.01392 | 0.01191
149 | 0.09496 | 0.18627 | 2.04179 | 2.17117 | 0.00037 | 0.00385 | 0.00713 | 0.00521
150 | 0.09180 | 0.19499 | 2.04547 | 2.18224 | 0.00353 | 0.04863 | 0.00345 | 0.01629
151 | 0.09536 | 0.18345 | 2.04493 | 2.16803 | 0.00002 | 0.00667 | 0.00400 | 0.00208
152 | 0.09786 | 0.19600 | 2.04987 | 2.14667 | 0.00252 | 0.00587 | 0.00093 | 0.01928
153 | 0.09282 | 0.17510 | 2.05204 | 2.17512 | 0.00251 | 0.01502 | 0.00311 | 0.00917
154 | 0.09173 | 0.20342 | 2.06864 | 2.17112 | 0.00360 | 0.01329 | 0.01970 | 0.00517
155 | 0.09844 | 0.19441 | 2.04352 | 2.15336 | 0.03103 | 0.00428 | 0.00540 | 0.01258
156 | 0.09859 | 0.18118 | 2.03655 | 2.16012 | 0.00326 | 0.00894 | 0.01238 | 0.00583
157 | 0.08917 | 0.18334 | 2.07346 | 2.18599 | 0.00124 | 0.00062 | 0.02452 | 0.02003
158 | 0.09658 | 0.19075 | 2.05122 | 2.15533 | 0.00160 | 0.00274 | 0.00229 | 0.01061
159 | 0.09373 | 0.18738 | 2.04108 | 2.17674 | 0.00353 | 0.04863 | 0.00784 | 0.01079
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160 | 0.09107 | 0.19816 | 2.07228 | 2.15939 | 0.00426 | 0.00803 | 0.02335 | 0.00656
161 | 0.09696 | 0.21035 | 2.03287 | 2.16773 | 0.00162 | 0.02022 | 0.01606 | 0.00177
162 | 0.09656 | 0.20000 | 2.05226 | 2.15356 | 0.00122 | 0.00987 | 0.00333 | 0.01238
163 | 0.09960 | 0.20651 | 2.04365 | 2.15243 | 0.00426 | 0.01638 | 0.00527 | 0.01351
164 | 0.07551 | 0.21677 | 2.05638 | 2.13541 | 0.00221 | 0.02664 | 0.00744 | 0.03054
165 | 0.09322 | 0.19942 | 2.06704 | 2.16308 | 0.00211 | 0.00930 | 0.01810 | 0.00286
166 | 0.09754 | 0.18034 | 2.05952 | 2.14830 | 0.00221 | 0.00978 | 0.01059 | 0.01764
167 | 0.09393 | 0.19833 | 2.04243 | 2.17743 | 0.00140 | 0.00820 | 0.00649 | 0.01148
168 | 0.09294 | 0.17190 | 2.04225 | 2.18538 | 0.00239 | 0.01822 | 0.00667 | 0.01943
169 | 0.09829 | 0.19052 | 2.04343 | 2.16188 | 0.00295 | 0.00039 | 0.00550 | 0.00406
170 | 0.09774 | 0.19465 | 2.02984 | 2.16861 | 0.00240 | 0.00452 | 0.01909 | 0.00265
171 | 0.09781 | 0.19580 | 2.04684 | 2.16429 | 0.00247 | 0.00567 | 0.00209 | 0.00165
172 | 0.09397 | 0.18449 | 2.05785 | 2.17505 | 0.00135 | 0.00563 | 0.00892 | 0.00909
173 | 0.09728 | 0.18606 | 2.04499 | 2.15466 | 0.00194 | 0.00406 | 0.00394 | 0.01128
174 | 0.09191 | 0.20378 | 2.05860 | 2.17821 | 0.00342 | 0.01365 | 0.00967 | 0.01225
175 | 0.09453 | 0.19605 | 2.06292 | 2.16307 | 0.00080 | 0.00592 | 0.01399 | 0.00287
176 | 0.09305 | 0.22387 | 2.04979 | 2.17731 | 0.00228 | 0.03374 | 0.00086 | 0.01136
177 | 0.09247 | 0.19018 | 2.05344 | 2.16740 | 0.00286 | 0.00005 | 0.00450 | 0.00144
178 | 0.09461 | 0.20553 | 2.04458 | 2.17353 | 0.00072 | 0.01540 | 0.00435 | 0.00758
179 | 0.09359 | 0.17610 | 2.04803 | 2.17518 | 0.00174 | 0.01402 | 0.00090 | 0.00923
180 | 0.09731 | 0.17096 | 2.03778 | 2.16226 | 0.00197 | 0.01916 | 0.01115 | 0.00368
181 | 0.09503 | 0.20391 | 2.03107 | 2.17721 | 0.00030 | 0.01379 | 0.01785 | 0.01126
182 | 0.09752 | 0.17416 | 2.04034 | 2.16071 | 0.00218 | 0.01596 | 0.00859 | 0.00524
183 | 0.09314 | 0.20449 | 2.04775 | 2.17061 | 0.00219 | 0.01436 | 0.00117 | 0.00466
184 | 0.09612 | 0.19661 | 2.03175 | 2.18403 | 0.00078 | 0.00648 | 0.01717 | 0.01807
185 | 0.09877 | 0.18491 | 2.04211 | 2.16013 | 0.00343 | 0.00521 | 0.00682 | 0.00581
186 | 0.09800 | 0.18759 | 2.05140 | 2.14791 | 0.00266 | 0.00253 | 0.00246 | 0.01803
187 | 0.09861 | 0.20074 | 2.03135 | 2.15443 | 0.00327 | 0.01061 | 0.01758 | 0.01151
188 | 0.10020 | 0.19999 | 2.05657 | 2.13505 | 0.00486 | 0.00986 | 0.00763 | 0.03090
189 | 0.09657 | 0.18838 | 2.04441 | 2.15886 | 0.00123 | 0.00174 | 0.00451 | 0.00708
190 | 0.09717 | 0.20202 | 2.05069 | 2.16401 | 0.00183 | 0.01899 | 0.00176 | 0.00193
191 | 0.09560 | 0.18509 | 2.05552 | 2.16269 | 0.00026 | 0.00503 | 0.00659 | 0.00325
192 | 0.09500 | 0.18319 | 2.03893 | 2.17302 | 0.00033 | 0.00693 | 0.01001 | 0.00706
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193 | 0.09839 | 0.18078 | 2.04041 | 2.15401 | 0.00305 | 0.00934 | 0.00852 | 0.01193
194 | 0.09402 | 0.16009 | 2.05929 | 2.17264 | 0.00131 | 0.03003 | 0.01035 | 0.00669
195 | 0.09287 | 0.18408 | 2.04988 | 2.18034 | 0.00246 | 0.00604 | 0.09541 | 0.01439
196 | 0.09545 | 0.20263 | 2.05563 | 2.15580 | 0.00011 | 0.01250 | 0.00669 | 0.01014
197 | 0.09134 | 0.18735 | 2.06482 | 2.16892 | 0.00399 | 0.00277 | 0.01589 | 0.00269
198 | 0.09371 | 0.18260 | 2.06524 | 2.16454 | 0.00162 | 0.00752 | 0.01649 | 0.00141
199 | 0.09782 | 0.18127 | 2.05217 | 2.15622 | 0.00248 | 0.00885 | 0.00323 | 0.00973
200 | 0.09629 | 0.17375 | 2.05952 | 2.15694 | 0.00095 | 0.01637 | 0.01058 | 0.00900
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Figure 4.20: Histogram of posterior mean of parameters 7, | v, A, M Vy ~N(7,, 171) for N=200

and T=20
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Discussion of Results (Tables 4.17 & 4.19 and Figures 4.17 & 4.19)

Table 4.17 and Table 4.19present the posterior estimates of second stage hierarchical

prior for (6, B, B, B,) - The posterior means for all parameters are unbiased and
consistent with the initial values of every sample size considered. o, are non-negative

and f are given a positive posterior estimate all throughwhile £, and f,, approach

the true values consistently. MCMC diagnostics indicate convergence of all the Gibbs
samplers and numerical standard errors indicate an approximation error which is small
relative to posterior standard deviations of all parameters. Figure 4.17 and 4.19 look to
be replicating the same pattern of previous graphs quite accurately.

An examination of Figure 4.18 and 4.20 shows that random coefficients model is very
appropriate at picking out the variation in the parameters. Hence, hierarchical Bayesian
estimator is found useful in locating complicated patterns embedded in the data. It is
important to model variation in the parameter correctly so that such variation will not
be assigned to error variance in order to avoid misleading inferences with regard to

coefficients.
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4.4 Investigation of Sensitivity of Prior Information on the
Posterior Estimates of Heterogeneous Dynamic Panel Data
Model: Relatively Non- Informative and Informative Prior

4.4.1 The Prior Information on Posterior Estimates

The prior distributionis a major component of Bayesian estimation which represents
the information about the unknown parameters combined with the probability
distribution of data (likelihood) to yield the posterior distribution.The two main types
of priors are non-informative/relatively non-informative and informative priors. A non-
informative prior suggests ignorance or insufficient information about the unknown
parameters of the model to help in drawing posterior inferences, while informative
prior reviews what you know about parameters before the data is obtained. It

comprises non-data information about the parameter of the study.
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4.4.1.1 Performance of Relatively Non-informative Prior on

Posterior Estimates

Table 4.21: Posterior means and Numerical standard errors of the second stage
hierarchical relatively non-informative prior: when N=20, T=5

Posterior Estimates

Posterior Means Numerical Standard Errors
v vy ~N(0,25),h=0.04
0~ B(0,1) 0.14828 0.00065
B, ~ N(0,0.25) 0.87469 0.00251
yixe) 1.54003 0.00233
5, (3) 2.23406 0.00267

¥ ~ N(0,30), 1=0.03

6 ~ B(0,1) 0.14817 0.00059
B, ~ N(0,0.25) 0.87438 0.00229
52 1.54043 0.00213
B (3) 2.23449 0.00244

7 ~N(0,50), h=0.02

5~ B(0,1) 0.14793 0.00046
B, ~ N(0,0.25) 0.87368 0.00177
B2 1.54129 0.00165
B, (3) 2.23547 0.00188

¥ ~ N(0,70), 1=0.01

5~ B(0,1) 0.14734 0.00038
B, ~ N(0,0.25) 0.86966 0.00153
52 1.54315 0.00139
5 (3) 2.23767 0.00157

Note: This Table presents the second stage of hierarchical prior
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Table 4.22: Posterior means and Posterior standard deviations of the first stage
hierarchical  relatively  non-informative  prior: when N=20 and T=5,
¥ ~N(0,25),h=0.04

/4 Posterior Means Posterior Standard Deviations

Ind | & By £(2) 5 (3) o By £(2) 5 (3)

1 0.14052 | 0.88116 | 1.48663 |2.35474 | 0.00351 | 0.00647 | 0.07682 |0.11304
2 10.09892 |0.95129 |1.76378 |2.31406 |0.04509 |0.07655 |0.20037 |0.07231
3 10.12482 |0.96279 | 1.63426 |2.27781 |0.01926 | 0.08806 |0.07085 |0.03616
4 10.15130 | 0.90686 | 1.59088 |2.16731 |0.00737 |0.03211 |0.02733 | 0.07445
5 10.12067 | 0.85697 | 1.62664 |2.29567 |0.02346 |0.01785 |0.06325 |0.05394
6 |0.20268 |0.80078 | 1.49368 |1.99736 |0.05872 |0.07390 |0.06980 | 0.24449
7 10.11991 |0.93816 | 1.57039 |2.34961 |0.02411 | 0.06347 | 0.00695 |0.10794
8 |0.14560 |0.78486 | 1.49223 |2.32289 |0.00165 |0.08996 |0.07137 |0.08122
9 10.12361 |0.94866 | 1.57771 |2.29193 |0.02044 |0.07892 |0.01422 |0.05026
10 | 0.16023 | 0.74768 | 1.50081 |2.28037 |0.01623 |0.12711 |0.06264 | 0.03862
11 | 0.16049 | 0.94168 | 1.47768 |2.16152 |0.01645 |0.06691 |0.08572 |0.08021
12 | 0.17687 | 0.72698 | 1.46649 |2.14393 |0.03291 |0.14781 |0.09692 | 0.09782
13 | 0.11798 | 1.02155 | 1.72106 |2.24232 | 0.02601 |0.14672 |0.15761 | 0.00067
14 | 0.12790 | 091651 | 1.58667 |2.31146 |0.01611 |0.04177 |0.02322 | 0.06970
15 | 0.15460 | 0.94561 |1.55673 |2.17110 |0.01061 |0.07082 | 0.00682 | 0.07060
16 | 0.18078 | 0.78138 | 1.49518 |2.13104 |0.03671 |0.09344 |0.06833 |0.11071
17 | 0.14147 |0.72262 | 1.63044 |2.22624 |0.00252 |0.15211 |0.06693 |0.01551
18 |0.13236 | 0.98673 | 1.51299 |2.32263 |0.01172 |0.11194 |0.05050 |0.10091
19 | 0.18804 | 0.73610 | 1.46437 |2.10529 | 0.04400 |0.13862 |0.09911 |0.13643
20 | 0.11159 |0.93709 |1.62096 |2.34747 |0.03244 |0.06233 |0.05744 | 0.10572

This Table presents the first stage of hierarchical prior y,/y,,h, 1,,V, ~N ()_/,.,V,-)
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Table 4.23:

Posterior means and Posterior standard deviations of the first stage

hierarchical relatively non-informative prior: When N=20, T=5, y ~ N(0, 30), 2=0.03

7 | Posterior Mean Posterior Standard Deviation
g By £(2) 5 03) o By £ (2) 5, (3)

1 0.13515 | 0.74574 1.65266 |2.25992 |0.01015 |0.11797 0.10918 | 0.00155
2 0.12988 | 0.98236 1.56066 |2.35729 |0.01549 |0.11867 0.01711 | 0.09898
3 0.15873 | 0.85927 1.55589 | 2.16784 |0.01348 | 0.00458 0.01238 | 0.09057
4 0.18393 | 0.89867 1.42942 | 2.13133 | 0.03870 | 0.03490 0.11415 |0.12709
5 0.13931 | 0.92575 1.49919 | 2.35728 | 0.00599 | 0.06201 0.04434 | 0.09890
6 0.14315 | 0.81746 1.51804 |2.21531 |0.00219 |0.04639 0.02559 |0.04310
7 0.12321 | 0.94967 1.48616 |2.41259 |0.02210 | 0.08590 0.05741 | 0.15424
8 0.13122 | 0.88272 1.55729 | 2.24916 |0.01404 | 0.01894 0.01376 | 0.00925
9 0.13431 | 0.88272 1.55729 |2.24916 |0.01096 |0.01844 0.01286 | 0.06198
10 | 0.15444 | 0.83841 1.60232 | 2.17335 | 0.00924 | 0.02538 0.05887 | 0.08509
11 | 0.15158 | 0.78690 1.52948 | 2.26987 | 0.00633 | 0.07688 0.01414 |0.01158
12 | 0.16991 | 0.82857 1.47315 | 2.22646 | 0.02468 |0.03510 0.07049 | 0.03207
13 10.12529 | 0.87823 1.61488 | 2.34047 | 0.01998 | 0.01458 0.07136 | 0.08216
14 |0.14879 | 0.80068 1.47597 | 2.25101 |0.03510 | 0.06306 0.06766 | 0.00743
15 | 0.13657 | 0.92966 1.54692 | 2.35194 | 0.00876 | 0.06598 0.00347 | 0.09360
16 |0.12919 |0.76727 1.61961 | 2.25065 |0.01618 | 0.09644 0.07614 | 0.00775
17 |0.16401 | 0.92604 1.48861 |2.21805 |0.01877 |0.06237 0.05496 | 0.04035
18 |0.14527 |0.80211 1.62246 | 2.23760 | 0.00007 | 0.06166 0.07895 | 0.02076
19 |0.13475 |0.91222 1.53457 | 2.25869 | 0.01050 | 0.04859 0.00894 | 0.00038
20 | 0.16656 | 0.89734 1.54741 | 2.11841 |0.02138 | 0.03366 0.00390 | 0.13994

This Table presents the first stage of hierarchical prior y,/y,,h,u,,V, ~N ()_/,.,V,-)
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Discussion of Results (Relatively Non-informative Prior on Posterior

Estimates)

A research models used in classical techniques of a dynamic panel data model analysis
can also be used in Bayesian Estimation approach. One of the qualities of a Bayesian
statistics is that prior information can be included in the analysis. A non-informative
prior, which is a distribution with a very high variance, does not impose strong
preconditions on the parameter and the posterior estimate as a result is almost
completely determined by the data. Table 4.21 presents the posterior estimates of

second stage hierarchical relatively non-informative prior for u (3, 5,, B, ,). The

results show that as the precision values decrease, the posterior means of each
parameter are getting closer to the initial values while their numerical standard error
are reducing. Tables 4.22-4.23 reveal the posterior estimates of first stage hierarchical
relatively non-informative prior. The obtained results reflect the individual
contribution to the study after the variation has been removed. The results establish
that the effect of the prior information depends greatly on its precision and on the
variance of the variables while the structure of data has little or no impact on the
posterior distribution. Hence, if the prior variance selected is high, it means researcher
is very uncertain about what likely values of parameters are. As a result, the prior
precision will be small and little weight will be attached to the parameter prior mean.
The posterior mean attaches weight proportional to the precision of prior mean that is,

the inverse of its variance.
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4.4.1.2
Table 4.24:

hierarchical informative prior: when N=20, T=5

Performance of Informative Prior on Posterior Estimates

Posterior means and Numerical standard errors of the second stage

Posterior Estimate

v Posterior means Numerical Standard Errors
y ~N(0.5,0.04), h=25
o~ B(0,1) 0.14779 0.00064
B, ~ N(0,0.25) 0.86685 0.00257
B(2) 1.54183 0.00231
B,(3) 2.23584 0.00263
7y ~N(0.5,0.03), h=30
o~ B(0,1) 0.14841 0.00060
B, ~ N(0,0.25) 0.87298 0.00229
B(2) 1.53992 0.00213
B,(3) 2.23363 0.00243
7y ~N(0.5,0.02), h=50
o~ B(0,1) 0.14752 0.00045
B, ~ N(0,0.25) 0.86848 0.00182
B(2) 1.54270 0.00164
B,(3) 2.23696 0.00186
y ~N(0.5,0.01), h=70
o~ B(0,1) 0.14744 0.00039
B, ~ N(0,0.25) 0.86905 0.00154
B(2) 1.54293 0.00139
B,(3) 2.23729 0.00157
Note:  This Table presents the second stage of hierarchical prior

/’l}//yﬂyﬂhﬂl/;/ NN(;}ME}/)
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Table 4.25:

Posterior means and Posterior standard deviations of the first stage
hierarchical informative prior: When N=20, Informative prior y ~ N(0,0.04), =25,

5~ B(0,1) B, ~N(0,0.25)

7 | Posterior Means Posterior Standard Deviations
g By B2 £ 03) o Py £(2) 5, (3)

1 0.14039 |0.79772 | 1.65594 |2.19591 |0.00770 |0.05790 |0.10356 |0.02105
2 10.16700 |0.70915 | 1.53602 |2.15032 |0.01896 |0.14668 |0.01647 |0.06669
3 10.17317 |0.74349 | 1.55046 |2.0911 0.02515 |0.11223 |0.00197 |0.12578
4 10.14813 |0.96022 | 1.55842 |2.15422 |0.00005 |0.10455 |0.00603 |0.06278
5 10.13394 |0.89659 | 1.51130 |2.28612 |0.01424 |0.04094 |0.04114 |0.06932
6 |0.15253 |0.76677 | 1.58559 |2.19311 |0.00445 | 0.08894 |0.03324 |0.02396
7 10.13267 |0.83395 | 1.65969 |2.24899 |0.01540 |0.02186 |0.10735 |0.03205
8 10.15959 |0.82178 | 1.50733 |2.21471 |0.0115 0.03397 |0.04516 | 0.00224
9 |0.15146 |0.83202 | 1.47379 |2.25119 |0.00345 |0.02378 |0.07869 |0.03436
10 | 0.12195 | 0.83793 | 1.57512 |2.29447 |0.02627 |0.01772 |0.02274 |0.07762
11 | 0.17515 | 0.89285 | 1.44786 |2.16725 |0.02705 |0.03721 |0.01050 | 0.04966
12 | 0.13996 |0.78210 | 1.58815 |[2.17778 |0.00811 |0.07220 |0.03575 |0.03917
13 | 0.10829 |0.81824 | 1.74515 |2.27164 |0.03980 |0.03745 |0.19280 |0.05475
14 | 0.15423 | 091803 | 1.45113 |2.29634 |0.00614 |0.06232 |0.10132 |0.07945
15 |0.18208 |0.90709 | 1.39879 |2.17223 |0.03989 |0.05145 |0.15360 | 0.04482
16 | 0.13300 |0.92002 | 1.59531 |2.28552 |0.01511 |0.06432 |0.04293 | 0.06867
17 | 0.16007 |0.90573 | 1.52946 |2.14572 |0.01207 | 0.05007 |0.02291 |0.07121
18 | 0.15094 |0.95643 | 1.51762 |2.22404 | 0.00286 |0.10072 |0.03483 |0.00711
19 |0.12717 | 091517 | 1.61197 |2.29941 |0.02093 | 0.05957 |0.05950 | 0.08246
20 | 0.15026 |0.89749 | 1.54874 |2.21815 |0.00221 |0.04178 |0.00376 | 0.00123

This Table presents the first stage of hierarchical prior y,/y,,h,u,,V, ~N ()_/,.,V,-)
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Table 4.26:

Posterior means and Posterior standard deviations of the first stage

hierarchical relatively non-informative prior: When N=20, T=5, Informative prior
¥y ~N(0,0.03),7=30, 6 ~ B(0,1) S, ~N(0,0.25)

4 Posterior Means Posterior Standard Deviations
o By B2 5 (3) o By 52 5 (3)

1 0.14087 | 0.80456 | 1.64635 |2.20009 |0.00707 |0.05296 |0.09464 |0.01904
2 |0.16516 |0.72357 | 1.53688 |2.15854 |0.01727 |0.13390 |0.01485 |0.06059
3 0.17079 | 0.75484 | 1.55009 |2.10447 |0.02296 |0.10275 |0.00168 |0.11468
4 10.14806 |0.95291 | 1.55726 |2.16167 |0.00008 | 0.09536 |0.00558 |0.05743
5 0.13504 | 0.89498 | 1.51418 |2.28227 |0.01293 |0.03748 |0.03755 |0.06310
6 ]0.15196 |0.77625 | 1.58211 |2.19748 | 0.00409 |0.08139 |0.03047 |0.02162
7 10.13384 | 0.83774 | 1.64974 |2.24849 |0.01414 |0.01980 |0.09790 |0.02948
8 0.15844 | 0.82655 | 1.51062 |2.21712 |0.01048 |0.03106 |0.04116 |0.00196
9 10.15101 |0.83595 | 1.47996 |2.25039 |0.00316 |0.02166 |0.07174 |0.03134
10 | 0.12407 | 0.84142 | 1.57247 |2.28997 |0.02394 |0.01615 |0.02078 | 0.07095
11 |0.17266 | 0.89139 | 1.45631 |2.17362 |0.02471 |0.03393 |0.09543 |0.04542
12 | 0.14049 | 0.79151 | 1.58446 |2.18351 |0.00750 |0.06604 |0.03271 |0.03552
13 | 0.11156 | 0.82345 | 1.72776 |2.26925 |0.03639 |0.03419 |0.17605 |0.05023
14 | 0.15359 | 091457 |1.45922 |2.29146 |0.00565 |0.05705 |0.09254 |0.07239
15 |0.17901 | 0.90438 | 1.41150 |2.17812 |0.03114 |0.04686 |0.14036 |0.04092
16 |0.13418 |0.91639 | 1.59089 |2.28167 |0.01370 |0.05882 |0.03913 |0.06252
17 |0.15889 |0.90313 |1.53084 |2.15399 |0.01092 |0.04561 |0.02097 |0.06514
18 | 0.15056 | 0.94955 |1.51997 |2.22542 |0.00262 |0.09207 |0.05434 |0.00634
19 |0.12885 [ 091198 | 1.60609 |2.29437 |0.01919 |0.05444 |0.05433 |0.07524
20 | 0.14994 | 0.89572 | 1.54840 |2.22015 |0.00190 |0.03816 |0.00346 |0.00117

This Table presents the first stage of hierarchical prior y,/y,,h, u,,V, ~N (;_/,.,;,-)
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Discussion of Results (Informative Prior on Posterior Estimates)

Informative prior is appropriate when there is adequate prior information on the scale
and shape of the distribution of a model parameter. The suitable information about the
parameters is incorporated into the prior distribution. The variations within variables
are considered and specifically interesting to discover appropriate prior information,
since data only cannot provide all information needed for analysis. Therefore, Table
4.24 presents the posterior estimates of second stage hierarchical informative prior for

w1, (5, By, B, B,) - This table produced good estimates of posterior mean as the error

variance decreases and error precision increases, the results approach the initial values
steadily while the numerical standard error decreases as the error precision increases
indicate an approximation error which is small relative to posterior standard deviations
of all parameters while Tables 4.25 and 4.26 reflect the individual contribution of
explanatory variables towards the dependent variable. The tables show a substantial
influence of the prior information.The more precise the prior, the bigger its influence.

It is observed that as /changes in values, the posterior mean of both the relatively
noninformative prior and informative prior approached the true value at every stage of

the error precision which are closely identical to the pre-set 5, and £, values.

It is also important to note that posterior estimates of informative prior are more
appropriate in terms of minimum numerical standard error and closer posterior mean to
the initial values compared to estimates of relatively non-informative prior. This is an
indication that the data and information about the parameters are very sensitive to the
posterior distribution. Hence, Bayesian method is found relevant when sample sizes
are small or large relative to the number of parameters.

Therefore, Hierarchical Bayesian methods combine data and prior information is of
great technique to the study of unobserved individual heterogeneity dynamic panel

data model.
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CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Introduction

Estimation of parameters of a dynamic heterogeneous panel data model is an essential
task in economics. It often requires appropriate estimators for the small, moderate and
large dimensions of N (the number of units) and 7 (the number of time periods) with
slope heterogeneity. When regression coefficients vary across the units, pooling of
data in a dynamic model gives inconsistent and misleading estimates of the slope
coefficients. The problem of heterogeneity in the dynamic panel data model may be as
a result of omitted information in the regression equation and, in many study, it is
more realistic to model the variance of the random coefficients which differ across the
units. Ignoring heterogeneity when it is present yields efficient estimates of the
regression coefficients but these estimates will not be consistent and their standard
errors will be biased.

Bayesian method becomes essential when researcher wishes to make statistical
inference on the slope coefficients distribution of when sufficient or insufficient

knowledge about parameters of the model is very important.

5.2 Summary of the findings

In this study a more general framework is provided where the coefficients of the
lagged dependent variable, intercept and slopes are functions of a set of independent
variables (random coefficient model) and are randomly drawn from a certain
distribution. The presence of lagged dependent variable among the explanatory
variables raises a problem of endogeneity since they are function of the individual

effects.
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The hierarchical Bayesian estimator was derived to eliminate the problem of
heterogeneity in the dynamic panel data model which improved the non-consistent
estimates of the parameters of the classical approach.

The findings of the results with respect to the two stages of hierarchical Bayesian
estimator of their performances in terms of posterior mean, posterior standard
deviation and numerical standard error which were displayed in the previous tables and
figures are as follows:

(i) The results of the second stage hierarchical Bayesian estimates are presented in
Tables 4.1, 4.5 and 4.9. It was observed that as N increases the posterior mean
of the slope coefficients are closer to the initial values which are set to be 2 and
3 when the data was generated. The numerical standard errors of the parameters

consistently decreased as N increased for all values of T considered. The

posterior estimates for 6 and [, are obtained within the stipulated distribution

range, indicating that the estimator provide good estimates for all dimension of

N and T.

(i1) Tables 4.2-4.4, 4.6-4.8 and 4.10-4.12 presented results for the first stage
hierarchical Bayesian estimates. These results revealed the impact of each
individual on the dependent variable indicating that the MCMC approach
effectively handled variation among parameters across individual. The
numerical standard error indicates an approximation error obtained in second
stage hierarchical prior small relative to posterior standard deviation in first

stage hierarchical prior error of all parameters.

(ii))Figures 4.1(a-c), 4.5(a-c), 4.9(a-c), 4.13, 4.15, 4.17 and 4.19 displayed
histogram graphs for the second stage hierarchical Bayesian estimates. They
presented information about parameters in the model using the simulated
datasets while the figures look similar to one another, as the values of N and T
change, indicating that the hierarchical priors are providing basically closed

estimates of each parameter.

(iv)Figures 4.2-4.4, 4.6-4.8, 4.10-4.12, 4.14, 4.16, 4.18 and 4.20 displayed

histogram graphs for the first stage hierarchical Bayesian estimates. The graph
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displays the individual pattern over time period which exhibit the true picture
of each parameter across individuals, indicating the real influence of
independent variables over dependent variable. An examination of all these
figures shows that regression coefficient models are doing a very good job at

picking out the variation in each parameter.

(v) Our finding indicated that N > T option in experiment III produced the least
Numerical Standard Error (NSE), hence outperformed the other two

experiments.

(vi)The obtained error variance-covariance matrix produced a constant error

variance (V) for all the parameters across the units through the generalization

of Gamma distribution (Wishart) indicate homogeneity property within the

parameters.

(vii) The potential achievement of the estimation results are facilitated by suitable
prior information. The estimated parameters with changes in 4 values were closely

identical to the pre-set S, and f, values. Thus, indicating the sensitivity of prior

information on the posterior estimates.

5.3 Conclusions

This study uses a dynamic panel model to examine how unobserved individual
heterogeneity affects parameters of inference. It is observed that not accounting for the
heterogeneity yields non-consistent estimates of the mean of dynamic panel data
model, even with large N and T. Therefore, a great deal of interest was placed on
hierarchical Bayesian estimation of unobserved individual heterogeneity of dynamic
panel data model, in order to improve on a static panel data model. The method allows
for unit-specific coefficients to be different across observations and imposing a
stability condition for individual autoregressive coefficient drawn from a beta
distribution (0, 1). The theoretical findings are accompanied by extensive Markov

Chain Monte Carlo (MCMC) experiments. The examination of all the figures and
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tables indicate that the hierarchical Bayesian method effectively handled the
complicated pattern exhibited by the data as the dimensions of N and T change.

The results show that the parameter model with insufficient information (relatively non
informative prior) and sufficient information (informative prior) produce consistent
parameter estimates.

The hierarchical Bayesian estimator facilitated by suitable prior information solved the
problem of heterogeneity in the dynamic panel data model. Therefore, the estimator

will find useful applications in panel data economic models.

5.4 Research Contributions to Knowledge

This study contributes to the existing literature in the following distinctive ways:

(1) It derived a hierarchical Bayesian estimator to estimate random coefficients of
a dynamic panel data model as against the static panel data model proposed by Koop
(2003).

(i1) It imposed a stationarity assumption for each unit's process by assuming that

the unit- specific autoregressive coefficient (J,) of a lagged dependent variable is
drawn from a beta distribution whose support is (0, 1) with the stationarity condition

| 6, |<1as against the logitnormal distribution (-1,1) imposed on &, proposed by Zhang
and Small (2006)

(iii) It developed a process to check for the sensitivity of prior information via
relative non-informative and informative prior on the posterior estimate of the dynamic
panel data model.

(iv)  Different dimension of N and T (N<T, N=T, N>T) were examined which no
single study has been able to compare.

) An R code was written for Gibbs Sampling algorithm to obtain a consistent

estimate of dynamic panel data model.

5.5 Limitations of the study
The study was with several limitations. Below are few of them:
(i) One of the difficulties experienced was that of R code unable to produce results
on time and unreliable computer components (such as computer charger,
battery). Writing of program that will successfully yield a reasonable result

becomes a big challenge.
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(i1) Different stages involved in the hierarchical Bayesian estimates distort the free
flow of the simulated data and also the systematically manner of injecting
second stage of hierarchical prior into first stage of hierarchical prior was not

found easy.

5.6 Recommendations for further research
Based on the results of the analysis carried out, the outcomes of our findings and
conclusions give out the following recommendations to researchers in Bayesian
econometrics:
(1) The problem of heterogeneity should not be over looked in the estimation of
dynamic panel data model to obtain consistent estimates of the parameters.
(i1)) The use of hierarchical prior in Bayesian estimation should be in practice
especially when parameters space is of high dimensions.
(iii)Coefficient of a lagged dependent variable should be generated from a
distribution whose support is (0, 1) in order to establish its stationary condition.
(iv) Appropriate prior information should be chosen in the estimation of parameter
model for the Bayesian approach to be efficient.
(v) Researchers are encouraged to account for individual specific effects capable of
giving the true picture of the relationship between dependent variable and

independent variables.

5.7 Suggestions for Further Research
Thisstudy has obviously obtained a consistent parameter estimates through a
hierarchical Bayesian estimate of a dynamic panel data model.

(i) The study focuses on model whose random coefficients differ across the units.
Therefore, further study can considera dynamic panel data model of the random
coefficients which differ across both the units and the times.

(i1) This study can also be extended to dynamic panel data of non-linear model.

(iii) We use a Gibbs sampling algorithm to generate the hierarchical Bayesian
estimator; further research can consider a Metropolis-within-Gibbs-Sampling

algorithm to generate its Bayes estimates.
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(iv) It is suggested to compare the classical approach of a dynamic panel data
model with Bayesian approach of purely noninformative prior in order to
establish their equivalent according to Koop (2003).

(v) Different prior distributions can also be used to investigate the prior sensitivity

on posterior estimates.
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APPENDIX I

R-Written Code For Dimension (N, T)

rm(list = 1s())

unlink("R.data")

getwd()
setwd(''C:/Users/oluwalovesme/Desktop/Akinlade')

L

norm_rnd = function(sig){
# if nargin ~= 1 error("Wrong # of arguments to norm_rnd')
h = chol(sig)
nrow = dim(sig)[1]
X = rnorm(nrow,1)
y = t(h)*x
}
R R R T R R R
HitH#H
gamm_rnd = function(nrow, ncol, m, k){
# if(nargin !=4){ error("Wrong # of arguments to gamm_rnd")}
gb = matrix(0, nrow=nrow, ncol=ncol)
if(m <= 1){
# Use RGS algorithm by Best, p. 426
c=1/m
t=0.07 + 0.75 * sqrt(1-m)
b =1 + exp(-t) * m/t
for(il in 1:nrow){
for(i2 in 1:ncol){
accept =0
while(accept == 0){
u = runif(1); w = runif(1); v=>b * u;
if(v<=1){
x=t* (v*c);
accept = (W <= ((2-x)/(2+))) | (W <= exp(-x)))
} else{
=-log(c*t*(b-v))
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y=x/t
accept = ((W*(m+y-m*y))<=1) | (w<=(y*(m-1))));

gb[il,i2] =x
}
}else{
# Use Best's rejection algorithm XG, p. 410
b=m-1
c=3*m-0.75
for(il in 1:nrow){
for(i2 in 1:ncol){
accept =0
while(accept == 0){
u = runif(1l); v =runif(1);
w=u*(1-u); y=sqrt(c/w)*(u-0.5);
x=b+y
if(x >= 0){
z2=64 % (W"3)*v*v;
accept = (z<=(1-2*y*y/x)) | (log(z)<=(2*(b*log(x/b)-y)))
}
3
ghblil,i2] =x
}
}
gb = gb/k
}

}
HEH B B R R R R R R R

HitHHH
HEH B R R R R R R

HiHHHE
HiHHHHHHHHEHE . logwish_pdf function  #HHHHHRHHHHEHEHEHH
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R R R T R R R
HitHHH
# PURPOSE: log of pdf of the Wishart(A,a) distribution evaluated at Z
# defined as in Poirier (1995) page 136
#
logwish_pdf = function(Z, A, omega){
M = nrow(Z)
lintcon = .5*omega*M*log(2) + .25*M*(M-1)*log(pi)
for(iin 1:M){

lintcon = lintcon + log(gamma(.5*(omega + 1-i)))

}

pdf = -lintcon + .5*(omega-M-1)*log(det(Z)) - .5*omega*log(det(A))

- S*sum(diag(solve(A)*Z))
}
R R R T R R R
HitHHH
HiHHHHEHHHEAH End of logwish_pdf function  #HEHHHEHEHHEHHHE
R R R T R R R
HitHHH
wish_rnd = function(sigma,v){

n = dim(sigma)[1]

k = dim(sigma)|2]

# if(n != k){error('"wish_rnd: requires a square matrix')} else

# if(n < k){warning('wish_rnd: n must be >= k+1 for a finite distribution')}

tp = chol(sigma)

t=tp[l]

p=1tp[2]

# if(p < 0){error('wish_rnd: matrix must be a positive definite')}

y = t(t) * rnorm(n,v)

w=y %*% t(y)
}
R R R R R R R
HitHHH
HiHHH A End of wish_rnd function — #H#HHHHHEFHHHEHHHIHR
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R R R T R R R
HitHHH
momentg <- function(draws){
results = dim(draws); ndraw = as.numeric(results[1]);
nvar = as.numeric(results[2]);
results pmean = numeric(nvar); results_pstd = numeric(nvar)
results rne = numeric(nvar); results rnel = numeric(nvar)
results rne2 = numeric(nvar); results rne3 = numeric(nvar)
results nse = numeric(nvar); results nsel = numeric(nvar)
results nse2 = numeric(nvar); results nse3 = numeric(nvar)
# results.meth = "momentg"
NG =100;
ntaper = c(4, 8, 15); ns = floor(ndraw/NG); nuse = ns*NG

eg = numeric(nvar); varg = numeric(nvar)
ann=0; add=0; and=0; adn=0
rnn = numeric(NG); rdd = numeric(NG); rnd = numeric(NG);
rdn = numeric(NG);
eg = numeric(nvar); varg = numeric(nvar); sdnum = numeric(nvar);
varnum = numeric(nvar)
for(j in 1:nvar){ # loop over all variables
cnt=0
cn =rep(0,NG); cd =rep(0,NG); cdn = rep(0,NG); cdd = rep(0,NG);
cnn = rep(0,NG); cvar = rep(0,NG)
td = 0; tn = 0; tdd = 0; tnn = 0; tdn = 0; tvar =0
for(iin 1:NG){ # form sufficiency statistics needed below
gd =0; gn =0; gdd =0; gdn = 0; gnn = 0; gvar =0
for(k in 1:ns){
cnt = cnt + 1; g = draws|cnt,j]; ad=1; an=ad*g;
gd = gd + ad; gn = gn + an; gdn = gdn + (ad*an);
gdd = gdd + (ad*ad); gnn = gnn + (an*an);
gvar = gvar + (an*g);
}
td = td + gd; tn = tn + gn; tdn = tdn + gdn; tdd = tdd + gdd;
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tnn = tnn + gnn; tvar = tvar + gvar;
cnfi] = gn/ns; cd[i] = gd/ns; cdn[i] = gdn/ns; cdd[i] = gdd/ns;
cnnli] = gnn/ns; cvar[i] = gvar/ns;
}
eg = tn/td
varg = (tvar/td) - (eg"2)
sdg =-1
if(varg > 0){
sdg = sqrt(varg)
} else sdg = sdg
# save posterior means and std deviations to results structure
results pmean[j] = eg

results_pstd[j] = sdg

# numerical standard error assuming no serial correlation
varnum = (tnn - 2*eg*tdn + tdd*eg”2)/(td*2);
sdnum = -1;
if(varnum > 0){
sdnum = sqrt(varnum)
}
# save to results structure

results nse[j] = sdnum; results rne[j] = varg/(nuse*varnum);

# get autocovariance of grouped means
barn = tn/nuse; bard = td/nuse;
for(iin 1:NG){

cnf[i] = en[i] - barn; cd[i] = cd[i] - bard;
}
Ng =NG-1
for(lin 0:Ng){

h=1+1# To avoid complexities

for(i in h:NG){

ann = ann + cn[i]*cn[i-l]; add = add + cd[i]*cd[i-1];

and = and + cn[i]*cd[i-l]; adn = adn + cd[i]*cd][i-1];
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}

# index 0 not allowed, lag+1 stands for lag
rnn[h] = ann/NG; rdd[h] = add/NG; rnd[h] = and/NG;
rdn[h] = adn/NG;
}
# numerical standard error with tapered autocovariance functions
for(mm in 1:3){
m = ntaper[mm]; am = m;
snn = rnn[1]; sdd = rdd[1]; snd = rnd[1];
for(lag in 1:(m-1)){
att =1 - lag/am; snn = snn + 2*att*rnn|h];
sdd = sdd + 2*att*rdd[h]; snd =snd + att*(rnd[h] + rnd[h]);
}
varnum = ns*nuse*(snn - 2*eg*snd + sdd*eg”"2)/(td"2);
sdnum =-1;
if(varnum=>0){

sdnum = sqrt(varnum)

}
# save results in structure
if(mm == 1){
results nsel[j] = sdnum; results rnel[j] = varg/(nuse*varnum);
} else
if(mm == 2){
results nse2[j] = sdnum; results_rne2[j] = varg/(nuse*varnum);
} else
if(mm == 3){

results nse3[j] = sdnum; results_rne3[j] = varg/(nuse*varnum);

}
}
}

rsltmntg = cbind(results_pmean, results_pstd, results_nse, results_nsel,
results_nse2, results nse3, results_rne, results_rnel,

results_rne2, results_rne3)
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HEHBHRHEHHIHIH END OF MOMENTG FUNCTION
HEHBH R

HHBHH R R R
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#Generate artificial data on the explanatory variable
# simulation data
n=50
t=50
tn=t*n
library("dyn')
set.seed(134)
tz < zoo(cbind(Y = 0,agpara=rbeta(2501,0,1),xo=rnorm(2501,0,0.25),
x1=runif(2501),x2=runif(2501), e=rnorm(2501)))
# simulate values
for(i in 2:2501) {
tz$Y|i] <- with(as.data.frame(tz),
lagpara*Y/[i-1]+xo+2*x1[i]+3*x2[i] + e[i])
}
y=tz§Y[2:2501]
lagy=tz$Y[1:2500]
x0=tz$x0[1:2500]
x1=tz$x1[1:2500]
x2=tz$x2[1:2500]
x=cbind(lagy,xo0,x1,x2)
xpx=t(x) % * % (x) #x'x
xpxinv=solve(xpx) # (x'x)"-1
xpy=t(x) % * % (y) # x'y
bols=(xpxinv)% * % (xpy)
# posterior distribution
library(bayesm)
n=50
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t=50

tn=t*n

h02=25

$02=1/h02

k=4

rho =2

# Define the prior hyperparameters
sigma=(1/h02)

xpx=t(x) % * % (x) #x'x

xpxinv=solve(xpx) # (x'x)"-1
xpy=t(x)%*%(y) # x'y
bols=(xpxinv)%* % (xpy) # B=(x'x)"-1*(x"y)
s2 = t(y - x%*%bols) %*% (y - x%*%bols)/(tn-k)[1]

# Hyperparameters for independent Normal-Gamma prior
v0=1

vl=v0 + tn

smallv=2

sigmabeta=solve(diag(4));

priorv=diag(4);

vbar=diag(4)

mu_beta=matrix(c(0,0,0,0),byrow=T )
smallv_bar=n+smallv

bigv_bar=(bols-(mu_beta))% *%t(bols-(mu_beta))+vbar

xsquare = t(x) %*% x
v0s02 = v0 * h02

vrho =rho +n

s=solve(smallv_bar*bigv_bar)
priorv=rWishart(1,smallv_bar,s)
priorv=matrix((priorv),ncol=4,nrow=4)
deg=n*priorv+sigmabeta

# choose a starting value for h
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hdraw = 1/s2
# If imlike==1 then calculate marginal likelihood, if not then no marglike
imlike =1
if (imlike==1){
bchib = bols
hchib = 1/502

# log prior evaluated at this point

b0 = matrix(0,nrow = k,ncol = 1)

logprior = -.5*v0*log(2*h02/v0) - gamma(log(.5*v0)) + .5*(v0-2)*log(hchib) -
S5*v0*hchib/h02 -.5%k*log(2*pi) -.5*k*log(det(priorv))-.5*t(bchib-b0) %*% deg
%*% (bchib-b0)

# log likelihood evaluated at the point

loglike = -.5*tn*log(2*pi)+.5*tn*log(hchib)-.5*hchib*t(y - x%*%bchib) %*% (y
- X%*%bchib)
}

loglike

# Use Chib (1995) method for marginal likelihood calculation

# this requires point to evaluate all at --- try ols results or use post means

# Specify the number of replications

# number of burnin replications

s0 =1000

# number of retained replications
s1 =10000

sk =s0+s1

# store all draws in the following matrices
# initialize them here
b_ = matrix(nrow = sk, ncol = k)

h_ = matrix(nrow = sk, ncol = 1)
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logpost2 = 0;

# Now start Gibbs loop

# beta conditional on h is Normal

# h conditional on beta is Normal

for (i in 1:sk){
# draw from beta conditional on h
library(MASS)
post_sigmabeta=solve(deg)
f=((sigmabeta)%* % (mu_beta))
post_meanbeta=post_sigmabeta%* % ((priorv%*%bols)+f)
beta_mu=mvrnorm(1,post_meanbeta,post_sigmabeta)
library(MASS)
postv=solve(priorv+(drop(h02)*xpx))
postbeta=postv%* % (h02*xpy+(priorv%*%beta_mu))
mubeta=mvrnorm(1,postbeta,postv)
mubeta=as.matrix(mubeta)

mubeta # first stage

# posterior conditional for the error precision
# draw from h conditional on beta
s12 = (t(y - x %*% mubeta) %*% (y - x %*% mubeta) + v0s02)/v1

precision = rgamma(l, .20%v1, s12)

if (i>s0){
# after discarding burnin, store all draws
b_[i,] = mubeta

h_[i,] = precision

if (imlike==1){
# log posterior for betaevaluated at point -- use for marg like
# see Chib (1995, JASA) pp. 1315 for justification
logpost = -.5*k*log(2*pi) -.5*k*log(det(post_sigmabeta)) - .5*t(bchib-f) %*%
deg %*% (bchib-f)
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if (imlike ==1){
logpost2 = logpost2/s1
# we need p(beta,h|y) evaluated as point
# In loop we calculated p(betaly) now need p(h|y,beta) to complete
s12 = (t(y - x %*% bchib) %*% (y - x %*% bchib) + smallv_bar)/vl
logpostl = -.5*v1*log(2/(v1*s12)) - gamma(log(.5*%v1)) + .5*(v1-2)*log(hchib) -
S*v1*hchib*s12
logmlike = loglike + logprior - logpost2 - logpost1;
}
alldraws = cbind(b_, h_)
alldraws7d = alldraws[101:sk,]
result7d = momentg(alldraws7d)
# Posterior results based on Informative Prior
# number of burnin replications
# Trace plot
plot(h_,type="1")
plot(b_[,1],type="1")
plot(b_[,2],type="1",col=""red")
plot(b_[,3],type="1")
plot(b_[,4],type="1",col="blue')

#Histogram
f<-b_[,1]
k<-b_[,2]
I<-b_[,3]
m<-b_|[,4]

fa<-(f[101:1100])

lagymu<-hist(fa, main=""Histogram of lag y'")
xfit<-seq(min(fa),max(fa),length=10)
yfit<-dnorm(xfit,mean=mean(fa),sd=sd(fa))
yfit <- yfit*diff((lagymu)$mids[1:2])*length(fa)
lines(xfit, yfit, col="blue", lwd=2)
plot(density(fa),main=""density of lag y'")
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ka<-(k[101:1100])

betaOmu<-hist(ka, main=""Histogram of beta 0'")
xfit<-seq(min(ka),max(ka),length=10)
yfit<-dnorm(xfit,mean=mean(ka),sd=sd(ka))

yfit <- yfit*diff((beta0mu)$mids[1:2])*length(ka)
lines(xfit, yfit, col=""red", Iwd=2)
plot(density(ka),main="density of beta 0'")

la<-(1[101:1100])

betal mu<-hist(la, main=""Histogram of beta 1")
xfit<-seq(min(la),max(la),length=10)
yfit<-dnorm(xfit,mean=mean(la),sd=sd(la))

yfit <- yfit*diff((betalmu)$Smids[1:2])*length(la)
lines(xfit, yfit, col=""red", Iwd=2)
plot(density(la),main="'density of beta 1")
ma<-(m[101:1100])

beta2mu<-hist(ma, main=""Histogram of beta 2")
xfit<-seq(min(ma),max(ma),length=10)
yfit<-dnorm(xfit,mean=mean(ma),sd=sd(ma))
yfit <- yfit*diff((beta2mu)$mids[1:2])*length(ma)
lines(xfit, yfit, col=""blue", Iwd=2)
plot(density(ma),main=""density of beta 2'")
#lagy

par(mfrow=c(2,3))

lagymu<-hist(fa, main=""Histogram of lag y'")
plot(density(fa),main=""density of lag y')
plot(b_[,1],type="1")

lagymu<-hist(fa, main=""Histogram of lag y'")
xfit<-seq(min(fa),max(fa),length=10)
yfit<-dnorm(xfit,mean=mean(fa),sd=sd(fa))
yfit <- yfit*diff((lagymu)$mids[1:2])*length(fa)
lines(xfit, yfit, col="blue", lwd=2)
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#Beta 0

par(mfrow=c(2,3))

betaOmu<-hist(ka, main=""Histogram of beta 0'")
plot(density(ka),main="density of beta 0'")
plot(b_[,2],type="1",col="red")

betaOmu<-hist(ka, main=""Histogram of beta 0'")
xfit<-seq(min(ka),max(ka),length=10)
yfit<-dnorm(xfit,mean=mean(ka),sd=sd(ka))

yfit <- yfit*diff((beta0mu)$mids[1:2])*length(ka)
lines(xfit, yfit, col=""red", Iwd=2)

#Beta 1
par(mfrow=c(2,3))
betalmu<-hist(la, main=""Histogram of beta 1")

plot(density(la),main="'density of beta 1")
plot(b_[,3],type="1")

betalmu<-hist(la, main=""Histogram of beta 1")
xfit<-seq(min(la),max(la),length=10)
yfit<-dnorm(xfit,mean=mean(la),sd=sd(la))

yfit <- yfit*diff((betalmu)$mids[1:2])*length(la)
lines(xfit, yfit, col=""red", Iwd=2)

#Beta 2

par(mfrow=c(2,3))

beta2mu<-hist(ma, main=""Histogram of beta 2")
plot(density(ma),main=""density of beta 2'")
plot(b_[,4],type="1",col="blue')

beta2mu<-hist(ma, main=""Histogram of beta 2")
xfit<-seq(min(ma),max(ma),length=10)

yfit<-dnorm(xfit,mean=mean(ma),sd=sd(ma))
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yfit <- yfit*diff((beta2mu)$mids[1:2])*length(ma)
lines(xfit, yfit, col=""blue", Iwd=2)

R R R T R R R
HHBHH R R R
R R R T R R R
HHHHRHHHH I

par(mfrow=c(2,2))

fa<-(f[101:1100])

lagymu<-hist(fa, main=""Histogram of lag y'")
xfit<-seq(min(fa),max(fa),length=10)

yfit<-dnorm(xfit,mean=mean(fa),sd=sd(fa))

yfit <- yfit*diff((lagymu)$mids[1:2])*length(fa)

lines(xfit, yfit, col=""blue", Iwd=2)

ka<-(k[101:1100])

betaOmu<-hist(ka, main=""Histogram of beta 0'")
xfit<-seq(min(ka),max(ka),length=10)
yfit<-dnorm(xfit,mean=mean(ka),sd=sd(ka))

yfit <- yfit*diff((beta0mu)$mids[1:2])*length(ka)

lines(xfit, yfit, col=""red", Iwd=2)

la<-(1[101:1100])

betal mu<-hist(la, main=""Histogram of beta 1")
xfit<-seq(min(la),max(la),length=10)
yfit<-dnorm(xfit,mean=mean(la),sd=sd(la))

yfit <- yfit*diff((betalmu)$mids[1:2])*length(la)
lines(xfit, yfit, col=""red", Iwd=2)
ma<-(m[101:1100])

beta2mu<-hist(ma, main=""Histogram of beta 2")
xfit<-seq(min(ma),max(ma),length=10)
yfit<-dnorm(xfit,mean=mean(ma),sd=sd(ma))
yfit <- yfit*diff((beta2mu)$mids[1:2])*length(ma)
lines(xfit, yfit, col=""blue", Iwd=2

s0
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# number of included replications
sl
if (imlike==1){
# Log of Marginal Likelihood
logmlike
}
# Posterior means, std. devs and nse for parameters
# Parameters ordered as theta, gamma then error precision
# Save the posterior means for use as point at which to evaluate in Chib method
chibval7d = result7d[,1:3]
rownames(chibval7d ) = c("'lagpar","beta-0", "beta-1","beta-2","precision")

chibval7d

HHH RS Ca G e OW OHBHHIHHHHEHHIHHIB I
HHHHHHHHHERH

# theta0 has Normal prior with mean mu_theta and variance V_theta

# hierarchical prior for varying coefficients

# Notation used here has thetal being mean of theta in hierarchical prior
# theta0 has Normal prior with mean mu_theta and variance V_theta
kx=4

mu_theta = matrix(0,kx,1)

V_theta = 1*diag(kx)

V_thinv = solve(V_theta)

# Notation here has Sigma being variance of theta in hierarchical prior
# Sigma-inverse has prior which is Wishart

# degree of freedom = rho, scale matrix R --- implying mean = rho*R
n=50

rho =2

k=4

R = as.matrix(.5*diag(kx))

# for error precision use Gamma prior with mean h02 and v0=d.o.f.
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v0=1

h02 =25

s02 = 1/h02

# Do OLS and related results (assuming no heterogeneity) to get starting values
bols = solve(t(x) %*% x) %*% t(x) %*% y

$2 = t(y - x%*%bols)%*%(y - x %*% bols)/(tn-kx)

# choose a starting value for h

hdraw = 1/s2

# Calculate a few quantities outside the loop for later use
xsquare = t(x) %*% x

vl=v0+tn

v0s02 = v0 * h02

vrho =rho +n

# capital sigma inverse

sigchib = diag(kx)

# sigchib = chibval7c[(k+2):(k+kx+1), 1]

sigichib = solve(sigchib)

thOchib = bols|[1:(kx),1]

gchib = bols[(kx):k,1]

hchib = 1/s2

# starting value for theta

#thetdraw = cbind(bols[1,1]
matrix(1,n),bols[2,1]*matrix(1,n),bols[3,1]*matrix(1,n))
#thetOdraw = cbind(bols[1,1],bols[2,1],bols[3,1])

xsquare = t(x) %*% x
v0s02 = v0 * h02

vrho =rho +n

s=solve(smallv_bar*bigv_bar)
priorv=rWishart(1,smallv_bar,s)
priorv=matrix((priorv),ncol=4,nrow=4)
deg=n*priorv+sigmabeta

# choose a starting value for h
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hdraw = 1/s2
# If imlike==1 then calculate marginal likelihood, if not then no marglike
imlike =1
if (imlike==1){

bchib = bols

hchib = 1/s02

# log prior evaluated at this point

b0 = matrix(0,nrow = k,ncol = 1)

logprior = -.5*v0*log(2*h02/v0) - gamma(log(.5*v0)) + .5*(v0-2)*log(hchib) -
S5*v0*hchib/h02 -.5%k*log(2*pi) -.5*k*log(det(priorv))-.5*t(bchib-b0) %*% deg
%*% (bchib-b0)

# log likelihood evaluated at the point
loglike = -.5*tn*log(2*pi)+.5*tn*log(hchib)-.5*hchib*t(y - x%*%bchib) %*% (y
- x%*%bchib)

loglike

# Use Chib (1995) method for marginal likelihood calculation
# this requires point to evaluate all at --- try ols results or use post means
# Specify the number of replications

# number of burnin replications

s0 =100

# number of retained replications
s1 =1000

sk =s0+s1

# store all draws in the following matrices
# initialize them here

h_ = matrix(nrow=sk, ncol=1)

th0_ = matrix(nrow=sk, ncol=kx)

sig_ = matrix(nrow=sk, ncol=kx"2)

# Now start Gibbs loop

# beta conditional on h is Normal
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# h conditional on beta is Normal
for (i in 1:sk){
sigterm = matrix(0, nrow=kx, ncol=kx)
sigterm1 = solve(sigterm + rho * R)
siginv = rWishart(1,smallv_bar,sigterm1) # Replaced vrho with 1
sigdraw=matrix((siginv),nrow=4,ncol=4)
sigdraw=solve(sigdraw)
temp =matrix(sigdraw,nrow=1,ncol=(kx)"2);# # Check reshape(sigdraw, kx"2,
)

# draw from h conditional on other parameters
s12 = (t(y - x %*% mubeta) %*% (y - x %*% mubeta) + v0s02)/v1
precision = rgamma(l, .20*vl, s12);

# Now draw theta0 (mean in hierarchical prior)conditional on other params

# Now draw theta-i s

s=solve(smallv_bar*bigv_bar)
priorv=rWishart(1,smallv_bar,s)
priorv=matrix((priorv),ncol=4,nrow=4)
deg=n*priorv+sigmabeta

post_sigmabeta=solve(deg)
f=((sigmabeta)%* % (mu_beta))
post_meanbeta=post_sigmabeta%* % ((priorv%*%bols)+f)
library(MASS)
beta_mu=mvrnorm(1,post_meanbeta,post_sigmabeta)
library(MASS)

postv=solve(priorv+(drop(h02)*xpx))
postbeta=postv%* % (h02*xpy+(priorv%*%beta_mu))
beta=mvrnorm(1,postbeta,postv)

beta;

if(i>s0){
# after discarding burnin, store all draws

h_[i,] = precision
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th0_[i,] = beta
sig_[i,] = temp # cbind(sig_, temp);
if (imlike==1){
# log posterior for betaevaluated at point -- use for marg like
# see Chib (1995, JASA) pp. 1315 for justification
logpost = -.5*k*log(2*pi) -.5*k*log(det(post_sigmabeta)) - .5*t(bchib-f) %*%
deg %*% (bchib-f)
logpost2 = logpost2 + logpost
if (imlike ==1){
logpost2 = logpost2/s1
# we need p(beta,h|y) evaluated as point
# In loop we calculated p(betaly) now need p(h|y,beta) to complete
$12 = (t(y - x %*% bchib) %*% (y - x %*% bchib) + smallv_bar)/vl
logpostl = -.5%v1*log(2/(v1*s12)) - gamma(log(.5%v1)) + .5*(v1-2)*log(hchib) -
S*v1*hchib*s12
logmlike = loglike + logprior - logpost2 - logpostl1;
}
alldraws = cbind(h_,th0_,sig )
alldraws7db = alldraws[101:sk,]
result7db = momentg(alldraws7db)

plot(h_,type="1")
plot(th0_[,1],type="1",col="yellow')
plot(th0_[,2],type="1",col="red")
plot(th0_[,3],type="1",col="green")
plot(th0_[,4],type="1",col="blue')

# Posterior results'

# number of burnin replications'
s0

# number of included replications'

sl

#if(imlike==1){

200



# Posterior means, std. devs and nse for parameters

# Parameters ordered as error precision, theta0, vec(sig)

A=result7db[,1:3]

rownames(A ) = c("precision","lagpar","beta-0", "beta-1","beta-
2","Vec1","vec2","vec3","vec4","vecS","Vec6","vec7","vec8","Vec9","vec10","
vecll","vecl2","vecl3","vec14"," vecl5"," vecl16")

thmean = matrix(0, nrow = n, ncol = kx)

thsd = matrix(0, nrow = n, ncol = kx)

# Now draw theta-i s

s=solve(smallv_bar*bigv_bar)
priorv=rWishart(1,smallv_bar,s)
priorv=matrix((priorv),ncol=4,nrow=4)
deg=n*priorv+sigmabeta

post_sigmabeta=solve(deg)

f=((sigmabeta)%* % (mu_beta))
post_meanbeta=post_sigmabeta%* % ((priorv%*%bols)+f)
library(MASS)
beta_mu=mvrnorm(1,post_meanbeta,post_sigmabeta)
library(MASS)

postv=solve(priorv+(drop(h02)*xpx))
postbeta=postv%*%(h02*xpy+(priorv%*%beta_mu))

beta=mvrnorm(50,postbeta,postv)

thmeanl=thmean-+beta
MR=mean(beta|,1])
teta=betal[,1]-MR
lag=sqrt(teta*2)

MR2=mean(betal,2])
betaal=mean(beta[,2])
betal=beta[,2]-betaal
beetal=sqrt(betal”2)
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MR3=mean(betal,3])
betaa2=mean(beta[,3])
beta2=beta[,3]-betaa2
beeta2=sqrt(beta2"2)

MR4=mean(betal,4])
betaa3=mean(betal,4])
beta3=beta[,4]-betaa3
beeta3=sqrt(beta3”2)

sdd=cbind(lag,beetal,beeta2,beetal)

thsd1=thsd+sdd
# Posterior mean and standard deviation for theta

cbind(thmean1,thsd1)

lagy=thmeanl1[,1]

beta0=thmean1][,2]
betal=thmean1][,3]
beta2=thmean1[,4]

#figure(1)

h=hist(lagy,20, main=""Histogram of Posterior Means of the lag of y", xlab = ""Lag
y(i)",col="red")

y=density(lagy)

plot(y)

h=hist(lagy,20, main=""Histogram of Posterior Means of the lag of y", xlab = ""Lag
y(i)",col="red")

xfit<-seq(min(lagy),max(lagy),length=10)
yfit<-dnorm(xfit,mean=mean(lagy),sd=sd(lagy))

yfit <- yfit*diff(h$mids[1:2])*length(lagy)

lines(xfit, yfit, col="blue", lwd=2)
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#figure(2)

g=hist(beta0,20, main=""Histogram of Posterior Means of the Beta-(0)", xlab =
"Beta-(0)",,col=""red")

k=density(betal)

plot(k)

g=hist(beta0,20, main=""Histogram of Posterior Means of the Beta-(0)", xlab =
"Beta-(0)",,col=""red")

xfit<-seq(min(beta0),max(beta0),length=10)
yfit<-dnorm(xfit,mean=mean(beta0),sd=sd(beta0))

yfit <- yfit*diff(g$mids[1:2])*length(betal)

lines(xfit, yfit, col="blue", lwd=2)

#figure(3)

f=hist(betal,20, main="Histogram of Posterior Means of the Beta-1", xlab
"Beta-1(i)",,col="red")

m=density(betal)

plot(m)

f=hist(betal,20, main="Histogram of Posterior Means of the Beta-1", xlab
"Beta-1(i)",,col=""red")

xfit<-seq(min(betal),max(betal),length=10)
yfit<-dnorm(xfit,mean=mean(betal),sd=sd(betal))

yfit <- yfit*diff(fSmids[1:2])*length(betal)

lines(xfit, yfit, col=""blue", Iwd=2)

#figure(4)

k=hist(beta2,20, main=""Histogram of Posterior Means of the Beta-2'", xlab =
"Beta-2(i)",,col="red")

n=density(beta2)

plot(n)
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k=hist(beta2,20, main=""Histogram of Posterior Means of the Beta-2'", xlab =
"Beta-2(i)",,col=""red")

xfit<-seq(min(beta2),max(beta2),length=10)
yfit<-dnorm(xfit,mean=mean(beta2),sd=sd(beta2))

yfit <- yfit*diff(kSmids[1:2])*length(beta2)

lines(xfit, yfit, col="blue", Iwd=2)
e R e e e S e
e R e e e S e
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par(mfrow=c(2,2))

h=hist(lagy,20, main=""Histogram of Posterior Means of the lag of y'", xlab = "Lag
y(i)",col="red")

xfit<-seq(min(lagy),max(lagy),length=10)
yfit<-dnorm(xfit,mean=mean(lagy),sd=sd(lagy))

yfit <- yfit*diff(h$mids[1:2])*length(lagy)

lines(xfit, yfit, col="blue", lwd=2)

g=hist(beta0,20, main=""Histogram of Posterior Means of the Beta-(0)", xlab =
"Beta-(0)",,col=""red")

xfit<-seq(min(beta0),max(beta0),length=10)
yfit<-dnorm(xfit,mean=mean(beta0),sd=sd(beta0))

yfit <- yfit*diff(g$mids[1:2])*length(betal)

lines(xfit, yfit, col=""blue", Iwd=2)

f=hist(betal,20, main="Histogram of Posterior Means of the Beta-1", xlab
"Beta-1(i)",,col=""red")

xfit<-seq(min(betal),max(betal),length=10)
yfit<-dnorm(xfit,mean=mean(betal),sd=sd(betal))

yfit <- yfit*diff(fSmids[1:2])*length(betal)

lines(xfit, yfit, col="blue", lwd=2)

k=hist(beta2,20, main=""Histogram of Posterior Means of the Beta-2'", xlab
"Beta-2(i)",,col="red")

xfit<-seq(min(beta2),max(beta2),length=10)
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yfit<-dnorm(xfit,mean=mean(beta2),sd=sd(beta2))
yfit <- yfit*diff(kSmids[1:2])*length(beta2)
lines(xfit, yfit, col=""blue", Iwd=2)
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APPENDIX I

Estimation of Parameters and Other Working Graphs

Table 1:

The second stage of hierarchical Bayesian Estimation:
!y, y,hV, ~N(u,,2,) When N=50, T=15, h=25, B, ~N(0,0.25) 6, ~ B(0,1)

) B, B, B, Precision
(h)

Mean 0.01301419 | 0.01180033 | 2.01264133 | 2.30649713 | 49.772065
Standard
deviation 0.00701005 | 0.02961653 | 0.02335266 | 0.02864562 | 4.12003650
Numerical
Standard
Error 0.00022167 | 0.000936556 | 0.000738476 | 0.00090585 | 0.13028699

The posterior estimates of variance covariance matrix for 7, :

-1
V., /y,y.h

Mean

0.02134
—-0.00008
—0.00009
—-0.00002

—-0.00008
0.02134
0.00006
0.00017

Standard deviation

0.00448
0.00323
0.00330
0.00312

0.00323
0.00460
0.00331
0.00327

Numerical Standard Error

0.00014
0.00010
0.00010
0.00010

0.00010
0.00015
0.00010
0.00010

—0.00009
0.00006
0.02165
0.00006

0.00330
0.00331
0.00467
0.00314

0.00010
0.00011
0.00015
0.00010

,Vya,uy ~ W(;;/,[;J/;y]_l)

0.00312
0.00327
0.00314
0.00454

0.00010
0.00010
0.00010
0.00014

—-0.00002
0.00017
0.00006
0.02126

206




Histogram of delta

o Vil
&
(= 2
o™
I
g 8-
=3
£ g |
[T  d
% -
& o
I T T T T 1
0.01 0.00 0.01 0.02 0.03 0.04
Posterior mean of delta
Histogram of beta 1
2 ]
I
s g |
o =
o
L5
e
% e
& o
T T 1
1.95 2.00 2.05

Posterior mean of b1

Figure 1: Histograms of posterior means of parameters M,

Freguency

Freguency

207

150 200 250

50 100

a

150 200 240

50 100

a

Histogram of beta 0

1 AN

[ I I 1
-0.05 0.00 0.05 0.10

Posterior mean of b0

Histogram of beta 2

. &

[ I I I 1
220 225 230 235 240

Posterior mean of b2

|y77/,h,V7 for N=50, T=15



Table 2:

Posterior mean and Posterior Standard deviation for the first stage of

hierarchical Bayesian Estimates:y,/y,,h,u,,V, ~N (;_/,.,V,-) When N=50, T=15,
B ~N(0,025) & ~B(0,1)

Ind.
Posterior Mean Posterior Standard deviation
o B A@ | A J B @ | AOG)
1 0.02768 | 0.01573 | 1.98936 | 2.26469 | 0.01313 | 0.00357 | 0.02042 | 0.03766
2 | -0.00405 | -0.01371 | 2.01589 | 2.37451 | 0.01860 | 0.02588 | 0.00611 | 0.07214
3 0.01053 | 0.04404 | 1.99659 | 2.33348 | 0.00401 | 0.03187 | 0.01319 | 0.03111
4 0.02416 | -0.00660 | 2.03245 | 2.26791 | 0.00961 | 0.01818 | 0.02267 | 0.03444
5 0.01240 | -0.00811 | 2.01023 | 2.33615 | 0.00214 | 0.02027 | 0.00044 | 0.03379
6 0.01871 | 0.03910 | 2.01234 | 2.25034 | 0.00416 | 0.02693 | 0.00255 | 0.05201
7 0.01233 | -0.04486 | 2.04893 | 2.29697 | 0.00221 | 0.05703 | 0.01588 | 0.00660
8 0.00886 | -0.01277 | 2.04893 | 2.29697 | 0.00568 | 0.02494 | 0.03914 | 0.00538
9 0.01078 | 0.02868 | 2.00725 | 2.32655 | 0.00376 | 0.01652 | 0.00254 | 0.02418
10 | 0.01540 | 0.01060 | 1.99872 | 2.30867 | 0.00086 | 0.00156 | 0.01107 | 0.00631
11 | 0.00855 | -0.00229 | 2.02799 | 2.30277 | 0.00599 | 0.01445 | 0.01821 | 0.00040
12 | 0.02808 | -0.01762 | 1.98166 | 2.25350 | 0.01353 | 0.02979 | 0.02812 | 0.04885
13 | 0.02264 | -0.00291 | 1.96449 | 2.28837 | 0.00809 | 0.01508 | 0.04529 | 0.01398
14 | 0.01244 | 0.02974 | 1.99220 | 2.34018 | 0.00210 | 0.01757 | 0.01758 | 0.03783
15 | 0.00122 | -0.00330 | 2.04749 | 2.34471 | 0.01332 | 0.01547 | 0.03771 | 0.04235
16 | 0.03281 | 0.03714 | 2.00451 | 2.21804 | 0.01826 | 0.02497 | 0.00527 | 0.08432
17 | 0.01686 | 0.05813 | 2.00178 | 2.29868 | 0.00232 | 0.04596 | 0.00800 | 0.00367
18 | 0.01991 | 0.01233 | 2.02066 | 2.29383 | 0.00535 | 0.00017 | 0.01087 | 0.00853
19 | 0.01368 | -0.00461 | 1.97803 | 2.33281 | 0.00068 | 0.01677 | 0.03175 | 0.03045
20 | 0.00175 | -0.01969 | 2.07544 | 2.31209 | 0.01279 | 0.03186 | 0.06565 | 0.00973
21 | 0.03104 | 0.04628 | 1.96181 | 2.27269 | 0.01649 | 0.03411 | 0.04797 | 0.02965
22 | 0.00618 | 0.04262 | 1.99927 | 2.36356 | 0.00837 | 0.03045 | 0.01051 | 0.06120
23 | 0.01632 | -0.00721 | 2.03380 | 2.26168 | 0.00177 | 0.01938 | 0.02402 | 0.04067
24 | 0.01370 | 0.09373 | 1.99978 | 2.30571 | 0.00084 | 0.08157 | 0.01000 | 0.00335
25 | 0.00757 | 0.00181 | 2.02984 | 2.25276 | 0.00697 | 0.01035 | 0.02005 | 0.01078
26 | 0.02777 | -0.01770 | 1.98967 | 2.25277 | 0.01322 | 0.02987 | 0.02010 | 0.04959
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27 | 0.01615 | 0.00643 | 2.02886 | 2.29886 | 0.00161 | 0.00573 | 0.01907 | 0.00349
28 | 0.01181 | -0.05560 | 1.97344 | 2.31777 | 0.00273 | 0.06777 | 0.03633 | 0.01542
29 | 0.00291 | 0.03119 | 2.04164 | 2.34060 | 0.01163 | 0.01902 | 0.03185 | 0.03824
30 | 0.00611 | 0.06431 | 2.01584 | 2.34143 | 0.00844 | 0.05214 | 0.00605 | 0.04908
31 | 0.01335 | -0.00469 | 2.01951 | 2.29620 | 0.00119 | 0.01685 | 0.00973 | 0.00616
32 | 0.02138 | 0.03549 | 1.99645 | 2.27083 | 0.00683 | 0.02333 | 0.01333 | 0.03152
33 | 0.01148 | -0.00372 | 2.01294 | 2.32850 | 0.00306 | 0.01588 | 0.00316 | 0.02614
34 | 0.01600 | 0.02927 | 2.01537 | 2.30794 | 0.00146 | 0.01710 | 0.00558 | 0.00558
35 | 0.00978 | 0.02854 | 2.00145 | 2.34701 | 0.00476 | 0.01637 | 0.00832 | 0.04465
36 | 0.01112 | -0.02431 | 2.01697 | 2.31987 | 0.00342 | 0.03648 | 0.00719 | 0.01751
37 | 0.01369 | -0.02748 | 2.00848 | 2.29986 | 0.00085 | 0.03964 | 0.00130 | 0.00249
38 | 0.02059 | -0.01888 | 1.99114 | 2.28709 | 0.00604 | 0.03105 | 0.01863 | 0.01525
39 | 0.01225 | 0.05623 | 2.03054 | 2.27996 | 0.00229 | 0.04406 | 0.02075 | 0.02239
40 | 0.01654 | 0.02655 | 1.99284 | 2.31062 | 0.00199 | 0.01438 | 0.01693 | 0.00827
41 | 0.01264 | 0.04802 | 1.99901 | 2.33455 | 0.00190 | 0.03586 | 0.01077 | 0.03219
42 | 0.02137 | 0.00112 | 1.97604 | 2.28558 | 0.00682 | 0.01104 | 0.03373 | 0.01677
43 | 0.00558 | 0.02276 | 2.02052 | 2.33489 | 0.00897 | 0.01059 | 0.01073 | 0.03254
44 | 0.01579 | 0.03473 | 1.99057 | 2.32863 | 0.00124 | 0.02257 | 0.01921 | 0.02627
45 | 0.01641 | 0.00968 | 2.03510 | 2.25582 | 0.00187 | 0.00248 | 0.02531 | 0.04654
46 | 0.01421 | 0.00108 | 2.01184 | 2.27728 | 0.00033 | 0.01108 | 0.00205 | 0.01934
47 | 0.01613 | 0.04391 | 1.98737 | 2.27728 | 0.00158 | 0.03175 | 0.02241 | 0.02507
48 | 0.01946 | 0.01617 | 2.03138 | 2.24333 | 0.00491 | 0.00400 | 0.02160 | 0.05903
49 | 0.01639 | -0.03259 | 2.01631 | 2.29771 | 0.00184 | 0.04475 | 0.00653 | 0.00463
50 | 0.00863 | 0.02096 | 2.02965 | 2.31090 | 0.00591 | 0.00879 | 0.01986 | 0.00854
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Figure 2: Histogram of posterior mean of parameters J, | ¥, /1, M, V;, ~N(7,, VZ) for N=50 and

T=15
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Table 3:

The second stage of hierarchical Bayesian Estimation:
/v,y V, ~ N(u,,2,) When N=100, T=5, h=25, 3, ~N(0,0.25) 6, ~ B(0,1)

o B, ixe) 5,03 Precision (h)
Mean 0.08709066 | 0.01379586 | 2.19694481 | 2.33377946 | 24.12695181
Standard
deviation | 0.00870379 | 0.034655746 | 0.02906209 | 0.037801703 | 2.884860961
Numerical
Standard
Error 0.00027523 | 0.001095911 | 0.00091902 | 0.001195395 | 0.0912273137

The posterior estimates of variance covariance matrix forV/, :

- - — -1
Vyil/ya}/:haVy:,uyNW(V7:|:V}’V7j| )

Mean

0.01314
0.00003
—0.00006
—-0.00002

0.00003
0.01284

—-0.00000 0.01025
—-0.00000 0.01025

—-0.00000

Standard deviation

0.00144
0.00105
0.00099
0.00099

Numerical Standard Error

0.00005
0.00003
0.00003
0.00003

0.00105
0.00149
0.00099
0.00106

0.00003
0.00005
0.00003
0.00003

0.00103
0.00099
0.00149
0.00101

0.00003
0.00003
0.00005
0.00003

0.00099
0.00106
0.00101
0.00151

0.00003
0.00003
0.00003
0.00005

—-0.00006 —0.00002
—0.00000 —0.00000
-0.0000
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Figure 3: Histogram of posterior mean of parameters }; |y,h,y7,V7 ~N(7,, Z)for N=100 and

T=5
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Table 4:

Posterior mean and Posterior Standard deviation for the first stage of
hierarchical Bayesian Estimates:y,/y,,h, 1.V, ~N(y;,Vi) When N=100, T=5,
By, ~N(0,025) 5, ~ B(0, 1)

Posterior Mean Posterior Standard deviation
Ind. | & 28 @ | BB |9 28 B@ | B
1 0.08933 | 0.00231 |2.16879 |2.32306 | 0.00889 |0.00023 |0.21579 |0.23114
2 0.08455 |0.01429 |2.18356 |2.34623 | 0.00841 |0.00143 | 0.21726 |0.23344
3 0.09835 | 0.05824 |2.19439 |2.28373 |0.00979 |0.00579 |0.21834 |0.22723
4 0.09403 | 0.00280 |2.16447 |2.33049 | 0.00936 |0.00027 |0.21536 |0.23188
5 0.09168 | 0.01358 |2.16465 |2.31999 |0.00912 |0.00135 |0.21538 |0.23084
6 0.08403 | 0.09682 |2.19732 |2.34917 | 0.00836 | 0.00963 |0.21863 |0.23374
7 0.07858 | -0.02771 |2.19480 |2.38230 | 0.00782 |0.00276 |0.21838 |0.23704
8 0.07530 | -0.01909 |2.22470 |2.36888 |0.00749 |0.00190 |0.22136 |0.23570
9 0.08586 | -0.00981 |2.20824 |2.35582 | 0.00854 | 0.00098 |0.21971 |0.23440
10 0.08388 |0.03923 |2.19337 |2.35969 | 0.00835 |0.00390 |0.21822 |0.23477
11 0.09239 |-0.03722 |2.27031 |2.27389 |0.00919 |0.00370 | 0.22589 |0.22624
12 0.08239 | -0.03306 |2.23767 |2.29818 | 0.00820 |0.00329 |0.22265 |0.22867
13 0.10338 | 0.01529 |2.13437 |2.32099 |0.01029 |0.00152 |0.21237 |0.23094
14 0.08023 | -0.06855 |2.20058 |2.36468 | 0.00798 |0.00682 |0.21896 |0.23528
15 0.09018 |0.04411 |2.19773 |2.32384 | 0.00897 | 0.00439 | 0.21867 |0.23122
16 0.08827 | -0.02525 |2.19857 |2.32100 | 0.00878 |0.00251 |0.21876 |0.23094
17 0.07791 | -0.01355 |2.20989 |2.39319 | 0.00775 |0.00135 |0.21988 |0.23812
18 0.08963 | 0.03301 |2.21914 |2.29930 | 0.00892 |0.00328 | 0.22080 |0.22878
19 0.09012 |0.01039 |2.19013 |2.32415 | 0.00897 |0.00103 |0.21791 |0.23124
20 0.09030 |0.02309 |2.19511 |2.29861 |0.00899 |0.00230 |0.21841 |0.22871
21 0.09679 | 0.02386 |2.17569 |2.29998 | 0.00963 |0.00237 |0.21647 |0.22885
22 0.08177 | -0.00038 |2.21539 |2.34752 | 0.00814 |0.00004 | 0.22043 |0.23357
23 0.09345 |0.01103 |2.20287 |2.31710 |0.00929 |0.00109 |0.21918 |0.23055
24 0.10981 |-0.01231 |2.16079 |2.23083 |0.01093 |0.00123 |0.21499 |0.22197
25 0.09696 | 0.06189 |2.17820 |2.30198 | 0.00965 |0.00616 |0.21673 |0.22904
26 0.08679 | -0.00002 |2.22797 |2.31497 | 0.00863 | 0.00000 | 0.22168 |0.23034
27 0.08533 | -0.00575 |2.22929 |2.32413 | 0.00849 |0.00057 |0.22181 |0.23125
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28 0.09054 | 0.00704 | 2.17008 |2.32494 |0.00901 | 0.00070 | 0.21592 |0.23133
29 0.08814 | 0.04554 |2.19316 |2.33004 | 0.00877 |0.00453 |0.21822 |0.23184
30 0.09418 | 0.06919 |2.19817 |2.31363 | 0.00937 |0.00688 | 0.21872 | 0.23024
31 0.09611 | 0.02585 |2.15419 |2.31885 | 0.00956 |0.00257 |0.21434 |0.23072
32 0.08809 | -0.05025 |2.14267 |2.36453 | 0.00876 | 0.00500 |0.21319 | 0.23527
33 0.09034 | 0.01680 |2.19486 |2.32506 | 0.00899 |0.00167 |0.21839 |0.23134
34 0.08616 |0.01399 |2.18396 |2.27149 | 0.00857 |0.00139 | 0.21730 | 0.23596
35 0.09078 | 0.05600 |2.20266 |2.30651 |0.00903 |0.00557 |0.21916 |0.22949
36 0.08672 | 0.01483 | 2.14223 |2.40362 | 0.00863 |0.00147 | 0.21314 | 0.23916
37 0.07632 | 0.06504 |2.21589 |2.23829 |0.00759 |0.00647 |0.22047 |0.23710
38 0.08723 | -0.02056 |2.17939 |2.35542 | 0.00868 | 0.00205 |0.21685 |0.23436
39 0.08681 | 0.08140 |2.18761 |2.34695 | 0.00864 | 0.00809 |0.21766 |0.23352
40 0.08946 | -0.02504 | 2.17036 |2.32974 | 0.00890 | 0.00249 | 0.21766 | 0.23181
41 0.07750 | -0.06203 |2.17170 |2.38728 | 0.00771 |0.00617 | 0.21608 |0.23753
42 0.10381 | 0.01502 |2.16987 |2.24548 |0.01033 | 0.00149 | 0.21589 | 0.22342
43 0.08832 | -0.02733 | 2.20898 |2.35615 | 0.00879 |0.00272 |0.21979 |0.23443
44 0.08852 | -0.03050 |2.21601 |2.31272 | 0.00881 | 0.00303 | 0.22049 |0.23011
45 0.08278 | -0.01956 |2.22730 |2.34515 | 0.00824 |0.00195 |0.22161 |0.23333
46 0.06758 | 0.05124 | 2.25552 |2.37504 | 0.00672 | 0.00600 | 0.22442 | 0.23631
47 0.06721 | -0.08108 |2.24572 |2.41108 | 0.00668 | 0.00081 |0.22345 |0.23989
48 0.07793 | 0.00588 | 2.25119 |2.32858 | 0.00775 | 0.00059 |0.22399 |0.23169
49 0.07104 | -0.01923 |2.19068 |2.42169 | 0.00707 |0.00191 | 0.21796 | 0.24095
50 0.10706 | -0.02169 |2.14632 |2.25812 |0.01065 |0.00215 |0.21356 | 0.22469
51 0.08395 | 0.01053 |2.21453 |2.30752 |0.00835 |0.00105 |0.22034 | 0.22959
52 0.08814 | 0.00699 |2.17273 |2.31677 |0.00877 |0.00069 |0.21618 |0.23051
53 0.08378 | -0.01877 | 2.23671 |2.32985 | 0.00834 | 0.00186 | 0.22255 | 0.23182
54 0.08340 | 0.02584 |2.24996 |2.30694 |0.00829 |0.00257 |0.22387 |0.22954
55 0.10084 |-0.01243 | 2.15848 |2.29522 | 0.01003 | 0.00123 | 0.21477 |0.22837
56 0.07988 | 0.08443 | 2.23474 |2.32882 |0.00794 | 0.00840 | 0.22235 | 0.23171
57 0.08993 | 0.02206 |2.18785 |2.32508 | 0.00895 |0.00219 |0.21769 |0.23134
58 0.08017 |0.02390 |2.13693 |2.39589 |0.00798 |0.00238 | 0.21262 | 0.23839
59 0.09669 | 0.06535 |2.17664 |2.29024 |0.00962 | 0.00650 | 0.21659 | 0.22788
60 0.09721 |-0.00337 |2.13702 |2.31564 | 0.00967 |0.00034 | 0.21263 | 0.23040
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61 0.08889 | -0.01109 |2.16668 |2.32903 | 0.00885 |0.00110 | 0.21558 |0.23173
62 0.08239 | 0.03858 |2.20176 |2.36247 | 0.00819 |0.00384 | 0.21907 |0.23506
63 0.08470 | -0.00706 |2.19857 |2.30774 |0.00842 | 0.00070 | 0.21876 |0.22962
64 0.08146 | 0.05560 |2.19946 |2.38010 |0.00810 |0.00503 |0.21884 |0.23682
65 0.08841 |-0.01201 |2.23071 |2.30721 | 0.00879 |0.00119 |0.22195 |0.22956
66 0.07974 | 0.00210 |2.27156 |2.34532 | 0.00793 | 0.00021 | 0.22602 | 0.23336
67 0.09414 | 0.00863 | 2.22826 |2.27152 |0.00937 | 0.00086 |0.22171 |0.22601
68 0.06922 | -0.00564 | 2.23836 |2.38629 | 0.00688 | 0.00056 |0.22271 |0.23742
69 0.10496 |0.01001 |2.14411 |2.27571 |0.01044 | 0.00099 | 0.21334 |0.22643
70 0.08982 | -0.02489 |2.19399 |2.32260 |0.00894 |0.00247 |0.21829 |0.23109
71 0.07916 | -0.04387 |2.19222 |2.40166 |0.00787 |0.00437 |0.21812 |0.23896
72 0.07967 | 0.02207 |2.20272 |2.37399 |0.00793 | 0.00219 | 0.21917 |0.23621
73 0.08843 | 0.00573 |2.20298 |2.31158 |0.00879 |0.00057 |0.21919 |0.22999
74 0.09549 |0.03172 |2.16486 |2.31665 |0.00950 |0.00316 |0.21540 | 0.23050
75 0.08341 | -0.06233 | 2.22741 |2.33588 | 0.00829 | 0.00620 | 0.22162 | 0.23242
76 0.08335 |-0.01319 | 2.16758 |2.37664 |0.00829 | 0.00131 | 0.21567 | 0.23647
77 0.07727 |0.02004 | 2.24182 |2.35065 | 0.00769 |0.00219 | 0.22306 | 0.23387
78 0.07651 | 0.02958 |2.20782 |2.36199 |0.00761 |0.00294 |0.21967 |0.23502
79 0.08573 | 0.08301 |2.18548 |2.33011 |0.00853 |0.00826 |0.21745 |0.23184
80 0.09311 | 0.00754 |2.16801 |2.33314 |0.00926 |0.00075 |0.21572 |0.23215
81 0.07046 | 0.00187 |2.22893 |2.43283 |0.00701 | 0.00018 | 0.22178 | 0.24206
82 0.08101 |-0.01716 |2.20139 |2.38286 | 0.00806 |0.00107 |0.21904 |0.23709
83 0.08117 | 0.01779 |2.20944 |2.34707 | 0.00807 |0.00177 |0.21984 |0.23353
84 0.10357 | 0.01663 |2.14334 |2.28811 |0.01031 | 0.00165 |0.21326 | 0.22766
85 0.08729 |0.00293 | 2.19675 |2.36596 | 0.00869 | 0.00029 |0.21857 |0.23541
86 0.08394 | 0.06180 |2.21431 |2.34333 | 0.00835 | 0.00615 |0.22032 | 0.23316
87 0.09382 | 0.00663 |2.19051 |2.31356 |0.09335 |0.00066 |0.21795 |0.23019
88 0.09232 | 0.00860 |2.20472 |2.28478 |0.00918 | 0.00085 | 0.21937 |0.22733
89 0.09283 | 0.02806 |2.18218 |2.29630 |0.00924 | 0.00279 |0.21712 | 0.22848
90 0.08277 | -0.00908 | 2.18265 |2.40919 |0.00824 |0.00090 |0.21717 |0.23971
91 0.07295 | 0.04885 |2.23253 |2.37111 |0.00726 | 0.00486 | 0.22231 |0.23592
92 0.09063 | 0.07792 |2.20306 |2.31776 |0.00901 |0.00775 |0.21920 | 0.23061
93 0.10118 |0.01272 | 2.18279 |2.25345 |0.01007 |0.00127 | 0.21718 |0.22421
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94 0.07551 |0.04109 |2.22522 |2.36423 |0.00751 | 0.00408 | 0.22141 | 0.23525
95 0.08999 |0.04407 |2.18479 |2.31561 | 0.00895 |0.00439 |0.21738 |0.23040
96 0.09091 |0.04403 |2.17645 |2.30147 | 0.00905 |0.00438 | 0.21655 |0.22899
97 0.09327 |0.01585 |2.19505 |2.31035 |0.00928 | 0.00158 | 0.21841 | 0.22988
98 0.07040 | -0.02254 |2.21426 |2.39986 | 0.00701 |0.00224 | 0.22032 |0.23878
99 0.10125 |0.01878 |2.16119 |2.30309 |0.01007 |0.00187 | 0.21504 |0.22916
100 | 0.11156 |-0.07115 |2.15376 |2.24473 |0.01109 | 0.00708 | 0.21429 |0.22335
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Figure 4: Histogram of posterior mean of parameters }, |y,h,,u7,V7 ~N(7,, 171) for N=100 and

T=5
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Table 5:

The second stage of hierarchical Bayesian Estimation:
!y, y,hV, ~ N(u,,2,) When N=200, T=5, h=25, f3, ~N(0,0.25) &, ~ B(0,1)

o B, B2 B, (3) Precision (h)
Mean 0.0100976 | 0.0132563 | 2.0807478 2.0606310 | 58.5663764
Standard
deviation | 0.00603190 | 0.02387969 | 0.02173578 | 0.024998897 | 4.288568214
Numerical
Standard
Error 0.0001907 | 0.0007551 | 0.00068734 | 0.0007905345 | 0.1356164346

The posterior estimates of variance covariance matrix for V, :

- - — -1
Vyil/ya}/:haVy:,uyNW(V7:|:V}’V7j| )

Mean

0.00507
0.00000
—0.00000
—-0.00001

0.00000
0.00507

—0.00000  0.00507
—0.00002  0.00508

—-0.00001

Standard deviation

0.00050
0.00036
0.00036
0.00036

Numerical Standard Error

0.00002
0.00001
0.00001
0.00001

0.00036
0.00052
0.00035
0.00036

0.00001
0.00002
0.00001
0.00001

0.00036
0.00035
0.00052
0.00035

0.00001
0.00001
0.00002
0.00001

0.00036
0.00036
0.00035
0.00051

0.00001
0.00001
0.00001
0.00002
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Table 6:

Posterior mean and Posterior Standard deviation for the first stage of
hierarchical Bayesian Estimates: y,/ y;,h, iV, ~ N(y,,V:) When N=200, T=5
By ~N(0,0.25), 6 ~B(0,1)

Posterior Mean

Posterior Standard deviation

Posterior standard deviation

Posterior standard deviation

In |5 Bo Bi B2 S Bo B1 B2

d.

1. [0.10420 |0.17477 |2.06372 |2.05588 |0.00320 |0.04451 |0.01694 |0.00523
2. 10.10678 |0.09072 |2.06415 |2.04943 |0.00577 |0.03954 |0.01652 |0.01168
3. 10.10167 |0.14298 |2.09044 |2.05509 |0.00066 |0.01271 |0.00976 |0.00602
4. 10.10809 |0.13923 |2.08081 |2.08081 |0.00201 |0.07087 |0.00141 |0.05077
5. 10.93026 |0.09830 |2.09059 |2.09359 |0.00798 |0.03196 |0.00992 |0.03247
6. 10.10496 |0.08456 |2.07830 |2.05491 |0.00395 |0.04570 |0.02364 |0.06214
7. 10.10482 | 0.13365 |2.07596 |2.05407 |0.00381 |0.00338 |0.00047 |0.07054
8. 10.11304 |0.15236 |2.06197 |2.01384 |0.00120 |0.00220 |0.00186 |0.00472
9. 10.09251 |0.10692 |2.08400 |2.09922 |0.00849 |0.02334 |0.03331 |0.00380
10. | 0.09989 | 0.08875 |2.06622 |2.06658 |0.00111 |0.00415 |0.01444 | 0.00546
11. | 0.10850 | 0.13455 |2.08164 |2.02088 |0.00749 |0.00428 | 0.09687 | 0.04023
12. 1 0.09998 |0.14742 | 2.08687 |2.07432 |0.00102 | 0.00175 |0.06202 |0.01322
13.10.09797 | 0.10111 |2.08297 |2.07720 |0.00303 |0.00291 | 0.00229 | 0.01607
14. 1 0.09835 | 0.10225 |2.07127 |2.07897 |0.00265 |0.00280 |0.09436 |0.01785
15.10.09833 | 0.16219 | 2.08805 |2.06805 |0.00267 |0.03196 |0.00737 |0.06901
16. | 0.10166 | 0.12323 |2.06683 |2.05626 |0.00065 |0.00703 |0.01383 | 0.00486
17.10.10036 | 0.11801 |2.10256 |2.06379 |0.00064 |0.00122 |0.02184 | 0.00266
18.10.10393 | 0.12312 |2.07591 |2.03610 |0.00293 |0.00714 |0.04760 | 0.00025
19. 1 0.09850 | 0.13806 |2.08938 |2.04744 |0.00241 |0.07799 |0.08710 |0.00136
20. | 0.10624 | 0.16152 |2.04901 |2.04120 |0.00524 |0.00315 |0.03165 |0.01991
21.10.08713 | 0.12512 |2.11860 |2.11295 |0.00138 |0.05148 |0.03793 | 0.00051
22.10.09914 |0.11444 |2.08104 |2.08443 |0.01864 |0.00158 |0.00376 |0.00023
23.10.10132 | 0.14214 |2.04582 |2.09730 |0.00031 |0.00118 |0.00348 |0.03617
24.10.10612 | 0.09069 |2.05498 |2.06038, | 0.00511 |0.00395 |0.00256 |0.00741
25. 1099513 | 0.16497 |2.08983 |2.05974 |0.00149 | 0.00347 |0.09160 |0.01337
26. | 0.11002 | 0.11064 |2.07141 |2.02526 |0.00901 |0.01962 |0.09263 |0.00358




27.10.09870 |0.12212 |2.09474 |2.05271 |0.00230 |0.00814 |0.01406 | 0.00840
28.10.09937 | 0.14495 |2.10300 |2.03980 |0.00163 |0.00146 |0.00022 |0.00213
29. | 0.10654 | 0.07676 |2.06516 |2.03630 |0.00553 |0.00535 |0.00155 |0.00248
30. | 0.10713 | 0.08777 |2.06241 |2.04173 |0.00612 |0.00424 |0.01826 |0.01939
31. 1 0.09768 | 0.13453 |2.09397 |2.05747 |0.00332 |0.00426 |0.00132 |0.00365
32.10.10499 | 0.11611 |2.08422 |2.04808 |0.00398 |0.00141 |0.00355 |0.00130
33.10.09645 | 0.07913 | 2.11385 |2.05554 |0.00455 |0.00511 |[0.00331 |0.00557
34.10.11413 | 0.14189 |2.02425 |2.03569 |0.00131 |0.01162 |0.00564 |0.02542
35.10.10362 | 0.15423 | 2.05555 |2.06112 |0.00261 |0.00239 |0.02511 |0.03276
36. | 0.11384 | 0.19845 |2.05305 |2.00147 |0.00128 | 0.06818 |0.00276 |0.05964
37.10.09597 |0.121352 | 2.09716 | 2.07645 | 0.00503 |0.08917 |0.01648 |0.00153
38.10.09405 | 0.123162 | 2.10735 |2.07234 | 0.00695 |0.07107 |0.00268 |0.00111
39. 1 0.08877 | 0.156442 | 2.10250 | 2.11659 |0.01223 |0.02617 | 0.02183 |0.05547
40. | 0.10917 | 0.148524 | 2.07328 | 2.02008 |0.00816 |0.00182 |0.00732 |0.00410
41. 10.10247 | 0.138347 | 2.06624 | 2.05222 | 0.00147 | 0.00807 |0.00144 | 0.00889
42.10.10120 | 0.07708 |2.09001 |2.05971 |0.00194 |0.00531 |0.09342 |0.01412
43. 1 0.10570 | 0.15412 |2.03951 |2.06460 |0.00469 |0.02385 |0.04116 |0.00347
44. 1 0.09765 | 0.13680 |2.09562 |2.04995 |0.00335 |0.00653 |0.00149 |0.01116
45. 1 0.09839 | 0.12502 |2.10853 |2.03983 |0.00261 | 0.00520 |0.00279 |0.02129
46. | 0.09506 | 0.10530 |2.10834 |2.08106 | 0.00059 |0.00249 |0.02767 |0.00199
47.10.09565 |0.11709 |2.05723 |2.10283 | 0.00535 |0.00131 |0.00234 |0.04170
48. 1 0.10882 | 0.09356 |2.05609 |2.03539 |0.00781 |0.00367 |0.02457 |0.00257
49. 1 0.10138 | 0.13330 |2.06525 |2.06674 |0.03761 |0.00304 |0.01541 |0.00056
50. 1 0.10353 | 0.13236 |2.08719 |2.06327 |0.00252 |0.00209 |0.00652 |0.00215
51.10.10888 | 0.15396 |2.07357 |2.01046 |0.00787 |0.02369 |0.00710 | 0.05066
52.10.10218 | 0.13191 |2.08055 |2.05064 |0.00117 |0.00164 |0.00012 |0.01047
53.10.09832 | 0.12387 |2.10255 |2.06735 |0.00268 |0.00639 |0.02188 |0.00623
54.10.09303 | 0.16042 |2.09871 |2.08814 |0.00797 |0.03015 |0.01804 |0.02701
55.10.09152 | 0.11831 |2.09964 |2.09174 |0.00948 |0.01195 |0.01897 |0.03062
56. | 0.09713 | 0.14854 | 2.08998 |2.07340 |0.00386 |0.01827 |0.00931 |0.01227
57.10.09534 |0.13526 |2.11010 |2.06345 |0.00566 |0.00499 |0.02943 |0.00233
58.10.09541 | 0.12564 |2.11331 |2.06930 |0.00559 |0.00462 |0.03264 |0.00818
59.10.09550 | 0.12988 |2.11347 |2.04982 |0.00550 |0.00038 |0.03280 |0.01130
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60. | 0.10239 | 0.12987 |2.06977 |2.06141 |0.00138 |0.00039 |0.01089 |0.00028
61.0.10200 | 0.11918 |2.06611 |2.05531 |0.00100 |0.01108 |0.01456 | 0.00580
62. | 0.10060 | 0.11358 |2.05835 |2.10287 |0.00401 |0.01668 |0.02231 |0.04174
63. | 0.10055 |0.13135 |2.11874 |2.02481 |0.00045 |0.00108 |0.03806 |0.03631
64. | 0.10086 | 0.13856 |2.08056 |2.05800 |0.00013 |0.00829 |0.00010 |0.00312
65. | 0.09889 | 0.12416 |2.08828 |2.05510 |0.00210 |0.00610 |0.00760 |0.00601
66. | 0.10108 | 0.16476 |2.08425 |2.05352 |0.00008 |0.03449 |0.00358 |0.00759
67.10.09822 | 0.11766 |2.10104 |2.05476 |0.00278 |0.01260 |0.02037 |0.00635
68. 1 0.09044 | 0.13485 |2.13471 |2.07807 |0.01056 |0.00458 |0.05404 |0.01694
69. | 0.08990 | 0.10435 |2.11606 |2.06519 |0.01110 |0.02591 |0.03539 |0.00407
70. 1 0.09839 | 0.13004 |2.10637 |2.06046 |0.00261 |0.00022 |0.02570 |0.00061
71.10.10052 | 0.11045 |2.09337 |2.04731 |0.00048 |0.01981 |0.01269 |0.01381
72.10.09621 | 0.15723 |2.07827 |2.07068 |0.00479 |0.02696 |0.00239 |0.00955
73.10.10393 | 0.14876 |2.07909 |2.04379 |0.00292 |0.01849 |0.00157 |0.01733
74.10.10205 | 0.10286 |2.08518 |2.05182 |0.00104 |0.02740 |0.00450 |0.00304
75.10.10744 | 0.11565 |2.04634 | 2.06618 |0.00643 |0.01461 |0.03432 |0.00505
76. | 0.09563 | 0.15237 |2.09278 |2.06575 |0.00537 |0.02210 |0.01211 | 0.00462
77.10.10267 | 0.15267 |2.08026 |2.04606 |0.00166 |0.02240 |0.00040 |0.01505
78.10.09911 | 0.12803 |2.04645 |2.09120 |0.00188 |0.00223 | 0.34215 | 0.03008
79. 10.10809 | 0.14458 |2.05680 |2.06626 |0.00708 |0.01427 |0.02386 |0.00513
80. | 0.10149 | 0.09761 |2.06608 |2.07249 |0.00048 | 0.03265 |0.01458 |0.01136
81.10.08911 |0.13718 |2.09806 |2.11105 |0.01189 |0.00691 |0.01733 |0.04992
82.10.09973 | 0.11024 |2.08743 |2.07980 |0.00127 |0.02002 | 0.00676 |0.01868
83.10.09443 | 0.14685 |2.10443 |2.08578 |0.00657 |0.01659 |0.02376 | 0.02465
84.10.09452 |0.13027 |2.10108 |2.07985 | 0.00648 | 0.00000 |0.00204 |0.01872
85.10.10623 | 0.13885 |2.06772 |2.05250 |0.00522 | 0.00858 |0.01295 | 0.00862
86. | 0.09879 | 0.08932 |2.08640 |2.08085 |0.00221 |0.04094 |0.00572 |0.01973
87.10.10292 | 0.17027 |2.07747 |2.05078 | 0.00191 | 0.04000 |0.00319 |0.01034
88. 1 0.09820 | 0.15830 |2.06540 |2.09931 |0.00280 |0.02803 |0.01526 |0.03818
89.10.09734 | 0.12206 |2.12718 |2.06344 | 0.00366 |0.00820 |0.04651 |0.00232
90. | 0.09739 | 0.15425 |2.10212 |2.05682 |0.00360 |0.02398 |0.02145 |0.00429
91. | 0.09866 | 0.15425 |2.04974 |2.10088 |0.00234 |0.02398 |0.03092 |0.03975
92.10.10638 | 0.07850 |2.05691 |2.06216 |0.00537 |0.05176 |0.02376 |0.00104
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93.10.11047 | 0.11333 |2.06930 |2.01693 |0.00946 |0.01693 |0.01137 |0.04418
94.10.09619 | 0.14312 |2.09346 |2.09036 |0.00480 |0.01285 |0.01279 |0.02924
95.10.09583 | 0.13787 |2.10520 |2.07862 |0.00517 |0.00760 |0.02453 |0.01749
96. | 0.11122 | 0.12387 |2.05940 |2.04113 |0.01021 |0.00639 |0.02127 |0.01998
97.10.10574 | 0.13043 | 2.07209 | 2.04448 |0.00473 |0.00016 | 0.00857 |0.01663
98.10.10557 |0.10315 |2.05573 |2.04118 |0.00456 |0.07117 |0.02494 |0.01993
99.10.09638 | 0.11155 |2.09945 |2.08054 |0.00462 |0.01871 |[0.01878 |0.01942
100.( 0.10143 | 0.12958 |2.07670 |2.07762 |0.00043 | 0.00068 |0.00397 |0.01650
101, 0.11029 | 0.09503 |2.05567 |2.05195 |0.00928 |0.03523 |0.02499 | 0.00916
102,/ 0.10108 | 0.11352 | 2.06489 |2.07356 |0.00007 |0.01673 |0.01577 |0.01243
103,/ 0.10020 | 0.15394 |2.09707 |2.05273 |0.00080 |0.02367 |0.01640 |0.00839
104, 0.09690 | 0.12134 |2.09438 |2.06368 |0.00410 |0.00892 |0.01363 |0.00255
105.1 0.09520 |0.12235 |2.09205 |2.09831 |0.00580 |0.00791 |0.01138 |0.03719
106, 0.09431 | 0.13299 |2.07589 |2.09838 |0.00669 |0.00272 |0.00478 |0.03725
1071 0.10486 | 0.13660 |2.06943 |2.05761 |0.00382 |0.00633 |0.01123 |0.00350
108.( 0.10209 | 0.16715 |2.05855 |2.07715 |0.00109 |0.03688 |0.02212 |0.01603
109, 0.09465 | 0.12721 |2.07912 |2.09097 |0.00635 |0.00305 |0.00154 |0.02985
110/ 0.09746 |0.16644 |2.09137 |2.07434 |0.00354 |0.03617 |0.01069 |0.01321
111.10.10040 |0.13641 |2.06646 |2.06201 |0.00060 |0.00614 |0.01420 |0.00089
1121 0.09897 |0.11172 |2.07630 |2.07318 |0.00202 |0.01854 |0.00437 |0.01205
1131 0.09965 | 0.12521 |2.08239 |2.06477 |0.00135 |0.00505 |0.00172 |0.00364
114.0.10809 | 0.10932 |2.04401 |2.06695 |0.00708 |0.02094 |0.03665 |0.00582
115/0.10429 |0.11716 |2.05264 |2.06487 |0.00328 |0.01310 |0.02802 |0.00374
116,/ 0.10289 | 0.09951 |2.09244 |2.06115 |0.00188 |0.03075 |0.01176 |0.00002
117 0.09279 | 0.10259 |2.10079 |2.08702 |0.00821 |0.02767 |0.02012 | 0.02590
118.0.09134 | 0.13280 |2.10203 | 2.08925 |0.00966 |0.00254 |0.02136 |0.02813
119.0.10437 | 0.13353 | 2.08549 |2.02453 |0.00336 |0.00326 |0.00482 |0.03658
120, 0.10284 | 0.15917 |2.04983 |2.07929 |0.00183 |0.02890 |0.03083 | 0.01816
1211 0.09573 | 0.11588 |2.11960 |2.06186 |0.00527 |0.01438 |0.03893 |0.00074
122]0.10473 | 0.14631 | 2.08985 |2.05805 |0.00373 |0.01604 |0.00917 | 0.00306
123 0.09773 | 0.13042 | 2.09838 |2.07047 |0.00326 |0.00015 |0.01771 |0.00935
124, 0.09887 |0.16170 |2.07126 |2.07385 |0.00213 |0.03143 |0.00941 |0.01273
125) 0.10126 | 0.12638 |2.07331 |2.05852 |0.00025 |0.00388 |0.00736 | 0.00259
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126, 0.10470 | 0.17489 |2.06374 |2.07300 |0.00369 |0.04462 |0.01693 |0.01187
127/ 0.10908 | 0.15859 |2.02041 |2.05924 |0.00807 |0.02833 |0.06025 |0.00187
128 0.09717 | 0.14629 |2.08155 |2.07935 |0.00382 |0.01602 |0.00088 |0.01823
129]0.09923 | 0.13979 |2.12224 |2.03078 |0.00177 |0.00952 |0.04157 | 0.03034
130.{ 0.09060 | 0.14022 |2.09778 |2.11529 |0.01039 |0.00996 |0.01711 |0.05417
131 0.09903 | 0.13625 |2.07590 |2.08214 |0.00196 |0.00598 |0.00476 |0.02101
132 0.10043 | 0.08896 |2.07927 |2.05346 |0.00057 |0.04130 |0.00139 |0.00765
133 0.11073 | 0.12799 | 2.06220 | 2.02136 |0.00972 | 0.00227 |0.01846 |0.03975
134 0.11281 | 0.13800 |2.02565 |2.05283 |0.01181 |0.00773 |0.05501 | 0.00829
135./0.10488 | 0.14694 |2.07687 | 2.04006 |0.00387 |0.01667 |0.00379 |0.02105
136,/ 0.10082 | 0.13845 |2.06861 |2.04904 |0.00018 |0.00818 |0.01205 |0.01207
137 0.10685 | 0.17747 | 2.06992 |2.04196 |0.00584 |0.04720 |0.01075 |0.01915
138.0.10321 |0.13037 |2.11194 |2.01416 |0.00220 | 0.00010 |0.03127 |0.04695
139/ 0.10490 | 0.15997 |2.08877 |2.03320 |0.00390 |0.02970 |0.00810 | 0.02792
140.( 0.10446 | 0.12115 |2.07442 |2.03564 |0.00345 |0.00911 |0.00624 |0.02547
141 0.11101 | 0.09675 |2.05541 |2.03682 |0.01000 |0.03351 |0.02525 |0.02430
142 0.10284 | 0.16882 |2.09903 |2.02895 |0.00183 |0.03855 |0.01836 |0.03217
143.10.09712 | 0.11998 |2.08535 |2.06739 |0.00387 |0.01028 |0.00468 |0.00626
144.0.09917 |0.09925 |2.08301 |2.06868 |0.00183 |0.03101 |0.00234 |0.00755
145/ 0.10142 | 0.14166 |2.04662 |2.07709 |0.00041 |0.01139 |0.03404 |0.01596
146.0 0.10599 | 0.09356 |2.06579 |2.04195 |0.00498 |0.03670 |0.01488 |0.01916
147 0.09678 | 0.13065 |2.07711 | 2.08306 |0.00422 | 0.00038 |0.00355 |0.02193
148.1 0.10830 | 0.10537 |2.05701 |2.03964 |0.00729 |0.00248 |0.02366 |0.02147
149/ 0.11126 | 0.17994 |2.05439 |2.06801 |0.01025 |0.04967 |0.02633 |0.05601
150, 0.10360 | 0.14546 |2.05439 |2.06801 |0.00259 |0.01519 |0.02628 | 0.00688
151.10.10951 |0.11818 |2.06562 |2.03050 |0.00850 |0.01208 |0.01504 |0.03061
1521 0.10655 |0.07471 |2.05704 | 2.05428 |0.00554 | 0.05555 |0.02362 |0.00683
153 0.09042 | 0.11883 |2.09241 |2.09953 |0.01058 |0.01143 |0.01174 | 0.03840
154.1 0.09835 | 0.13656 |2.08360 |2.08092 |0.00265 |0.00629 |0.00293 |0.01980
155]0.10291 | 0.06867 | 2.06999 |2.05627 |0.00190 |0.06159 |0.01067 | 0.00484
156, 0.10009 | 0.14618 |2.10124 |2.04332 |0.00091 |0.01591 |0.02056 | 0.01780
157/ 0.10400 | 0.15083 |2.07483 |2.04328 |0.00299 | 0.02056 |0.00584 |0.01783
158 0.08618 | 0.14474 |2.09453 |2.12944 |0.01482 |0.01447 |0.01386 | 0.06831

224




159 0.09394 | 0.15291 |2.09472 |2.09732 |0.00706 |0.02264 |0.01405 | 0.03620
160, 0.09844 | 0.14447 |2.11227 |2.04471 |0.00256 |0.01420 |0.03160 |0.01641
161, 0.09968 | 0.09284 |2.06207 |2.07674 |0.00131 |0.03742 |0.01859 |0.01561
162 0.10159 | 0.14282 |2.07386 |2.06290 |0.00059 |0.01255 |0.00681 |0.00177
163.1 0.10050 |0.13045 |2.08516 |2.06334 |0.00050 |0.00018 |0.00448 |0.00221
164, 0.10934 | 0.13061 |2.05103 |2.02127 |0.00833 |0.00034 |0.02963 | 0.03984
165 0.10104 | 0.13123 |2.08310 |2.06267 |0.00003 |0.00096 |0.00242 | 0.00154
166.( 0.09431 |0.17086 |2.10392 |2.07501 |0.00668 | 0.04059 |0.02325 |0.01388
167, 0.09928 | 0.11172 |2.09167 |2.06928 |0.00172 |0.01854 |0.01100 | 0.00816
168, 0.09931 |0.13682 |2.06916 |2.08025 |0.00168 |0.00655 |0.01150 |0.01912
169, 0.10527 | 0.12159 | 2.05856 | 2.04437 |0.00427 |0.00867 |0.02210 |0.01675
170 0.11169 | 0.11235 |2.05481 |2.03524 |0.01068 |0.01791 |0.02586 | 0.02587
1711 0.10276 |0.16918 |2.07004 |2.06629 |0.00175 |0.03891 |0.01062 |0.0.5174
172] 0.10170 | 0.13623 | 2.08787 |2.06439 |0.00069 |0.00596 |0.00719 | 0.00326
173.0.11291 |0.14592 |2.08073 |2.01032 |0.01190 |0.01565 |0.00006 |0.05080
174, 0.11024 | 0.18516 |2.06067 |2.02477 |0.00923 | 0.05489 |0.02000 |0.03634
175) 0.10621 | 0.15024 |2.07593 |2.04414 |0.00520 |0.01997 |0.00474 |0.01698
176.1 0.10554 | 0.10760 |2.05823 |2.06254 |0.00454 |0.02266 |0.02243 |0.00141
177/0.10417 |0.15668 |2.10192 |2.00790 |0.00316 |0.02641 |0.02124 |0.05322
178.0.09943 | 0.15111 |2.07643 |2.09184 |0.00157 |0.02084 |0.00424 |0.03072
179.1 0.09585 | 0.18204 |2.10449 |2.07805 |0.00515 |0.05177 |0.02382 |0.01692
180.[ 0.10942 | 0.13632 | 2.05873 |2.03398 |0.00841 |0.00605 |0.02193 |0.02714
181.10.09824 | 0.11776 |2.09825 |2.07954 |0.00275 |0.01250 |0.01758 |0.01841
182.0.11194 |0.13841 |2.06924 |2.02364 |0.01093 |0.00814 |0.01142 |0.03747
183, 0.10177 | 0.17220 |2.07643 |2.05090 |0.00076 |0.04193 |0.00423 |0.01021
184.10.09682 | 0.16105 |2.08155 |2.09183 |0.00418 |0.03078 |0.00087 |0.03071
185.10.08937 |0.12461 |2.11802 |2.06997 |0.01163 | 0.00565 |0.03734 |0.00885
186, 0.09790 | 0.09959 |2.10924 |2.05105 |0.00309 |0.00306 |0.02857 |0.01006
187/ 0.11030 | 0.08525 |2.06653 |2.03512 |0.00929 |0.04501 |0.01413 |0.02599
188, 0.08548 | 0.09248 |2.13224 |2.10841 |0.01551 |0.03778 |0.05157 |0.04728
189, 0.09912 | 0.08034 | 2.09495 |2.06478 |0.00188 |0.04992 |0.01428 | 0.00366
190/ 0.10149 | 0.13053 |2.08047 | 2.05029 |0.00048 | 0.00027 |0.00020 |0.01083
191 0.10250 | 0.14554 | 2.05989 |2.06085 |0.00149 |0.01527 |0.02077 | 0.00026
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192] 0.09001 | 0.17137 |2.10949 |2.09978 |0.01099 |0.04110 |0.02882 | 0.00386
193, 0.09497 | 0.12416 |2.10082 |2.07600 |0.00603 |0.00610 |0.02014 |0.01488
194, 0.09988 | 0.11564 |2.11008 |2.06372 |0.00111 |0.01462 |0.02941 | 0.00260
195 0.08614 | 0.09542 |2.09415 |2.11845 |0.01486 |0.03484 |0.01348 |0.05733
196. 0.09802 | 0.16530 |2.08143 |2.07966 | 0.00298 |0.03503 |0.00076 |0.01854
197) 0.10736 | 0.12548 | 2.08569 |2.01088 |0.00635 |0.00478 |0.00507 | 0.05024
198, 0.10985 | 0.09830 |2.06031 |2.04901 |0.00884 |0.03196 |0.0255 0.01211
199. 0.09966 | 0.14873 |2.08391 |2.06113 |0.00134 |0.01846 |0.00324 | 0.00001
200, 0.10116 | 0.13186 |2.08305 |2.05391 |0.00015 |0.00160 |0.00238 |0.00720
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Figure 6: Histogram of posterior mean of parameters 7, | v, 5, M, V;, ~N(y,, V;)for N=200
and T=5
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Table 7The second stage of hierarchical Bayesian Estimation: 4,/ y,y,h,V, ~N (;y,iy)

When N=200, T=10, h=25, 3, ~ N(0, 0.25) 5, ~ B(0,1)

o B, B2 B,(3) Precision (h)
Mean 0.02351085 0.05651572 | 2.12348264 | 2.179868 | 133.4405863
Standard
deviation 0.00430891 0.01753861 | 0.01484233 | 0.0180112 | 6.756558950
Numerical
Standard
Error 0.0001362597 | 0.0005546198 | 0.00046935 | 0.000569 | 0.21366115

The posterior estimates of variance covariance matrix forV/, :

- - — -1
Vyil/ya}/ahaVyaluyNW(V7:|:V7VVj| )

Mean

0.00509
0.00003

—0.00000 0.00000

0.00001

0.00003
0.00507

—0.00001

Standard deviation

0.00053
0.00037
0.00038
0.00037

0.00037
0.00050
0.00036
0.00037

Numerical Standard Error

0.00002
0.00001
0.00001
0.00001

0.00001
0.00002
0.00001
0.00001

0.00000
0.00506
0.00001

0.00038
0.00036
0.00051
0.00036

0.00001
0.00001
0.00002
0.00001

—0.00000 0.00001
—0.00001
—0.00001
0.00506

0.00037
0.00037
0.00036
0.00051

0.00001
0.00001
0.00001
0.00002
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Table 8:

hierarchical Bayesian Estimates: y,/ y,, A, u,V, ~N (7_/i,l7i) When N=200, T=10,

Posterior mean and Posterior Standard deviation for the first stage of

Sy ~N(0,025) 5, ~ B(0,1)

Posterior mean

Posterior Standard Deviation

Ind. o Py £ Q) £ (3) g By £ Q) 5 03)

1{0.00864 | 0.05286 | 2.15850 |2.27769 |0.01421 |0.00371 |0.03489 |0.04432
2. 0.02122 | 0.05695 | 2.12803 |2.17890 |0.00163 | 0.00038 | 0.00442 | 0.00440
3. 0.02483 | 0.05622 |2.12213 |2.16479 |0.00198 | 0.00035 |0.00147 |0.01858
4. 0.02070 |0.05762 |2.13814 |2.18397 |0.00215 |0.00104 |0.01454 | 0.00060
5. 0.02450 | 0.04689 |2.13938 |2.16338 |0.00164 |0.00968 |0.01577 |0.01998
6. 0.02145 | 0.05683 | 2.14245 |2.16076 |0.00139 |0.00025 |0.01884 |0.02261
7. 0.02106 | 0.07305 |2.11423 |2.20678 |0.00178 |0.01648 | 0.00937 |0.02341
8. 0.02354 | 0.07175 | 2.11512 |2.18562 | 0.00068 | 0.01517 |0.00848 |0.02246
9. 0.02234 | 0.04449 | 2.12392 |2.18147 | 0.00050 | 0.01208 |0.00031 |0.00189
10. |0.02344 | 0.07898 | 2.12368 |2.17681 | 0.00059 | 0.02240 | 0.00007 | 0.00065
11. [0.02561 |0.04474 | 2.13425 |2.16936 |0.00276 |0.01183 |0.01064 |0.01401
12. | 0.02604 | 0.05135 |2.12935 |2.16308 |0.00319 |0.00521 |0.00574 |0.02029
13. | 0.02463 | 0.06292 |2.11737 |2.18651 |0.00178 |0.00635 |0.00623 |0.00313
14. 0.02032 | 0.05372 | 2.14217 |2.17606 | 0.00252 | 0.00285 |0.01856 |0.00731
15. | 0.02038 | 0.08391 |2.15966 |2.16861 |0.00247 |0.02734 |0.03605 |0.01475
16. [ 0.01794 |0.04916 |2.12400 |2.20165 | 0.00490 |0.00741 |0.00004 |0.01827
17. 10.01926 |0.05436 |2.14072 |2.17642 |0.00359 |0.00220 |0.01711 |0.00695
18. | 0.02469 | 0.07012 |2.11507 |2.18035 |0.00184 |0.01354 | 0.00833 |0.00302
19. 10.02365 |0.06101 |2.13312 |2.17691 | 0.00798 | 0.00443 |0.00951 |0.00646
20. 1 0.02096 |0.06077 |2.13247 |2.19036 | 0.00189 |0.00419 |0.00886 |0.00698

230




21. 10.02564 | 0.05219 |2.12540 |2.16755 |0.00279 |0.00437 |0.09179 |0.01582
22. 10.01905 |0.04198 |2.14776 |2.17285 |0.00379 |0.01458 |0.02415 |0.01052
23. 10.02671 |0.04616 |2.13397 |2.14835 |0.00386 | 0.01041 |0.01036 | 0.03501
24. 10.01913 | 0.05731 |2.13984 |2.18411 |0.00371 |0.00074 |0.01623 |0.00073
25. 10.02658 | 0.06804 |2.11801 |2.17521 |0.00372 |0.01146 |0.00558 |0.00816
26. 10.02420 | 0.05896 |2.13141 |2.17982 |0.00134 |0.00239 |0.00780 |0.00355
27. 10.02833 | 0.03885 |2.11424 |2.16261 |0.00547 | 0.01772 |0.00936 |0.02076
28. 10.02962 | 0.05081 |2.11229 |2.16323 |0.00676 | 0.00576 |0.01131 |0.02014
29. 10.02506 |0.03972 |2.11308 |2.18144 |0.00221 |0.01685 |0.01052 |0.00193
30. | 0.01778 |0.02593 |2.13496 |2.20891 |0.00506 |0.03063 |0.01135 |0.02553
31. |0.01707 |0.01675 |2.13124 |2.21075 |0.00577 |0.03982 |0.00763 |0.02737
32. 10.02493 | 0.05495 |2.12029 |2.17022 |0.00208 |0.00162 |0.00331 |0.01314
33. 10.01954 |0.07262 |2.14262 |2.18754 |0.00330 |0.01605 |0.01901 |0.00041
34. 10.02145 |0.07685 |2.13328 |2.18322 |0.00139 |0.02027 |0.00967 |0.00015
35. 10.01482 | 0.05028 |2.12251 |2.21287 |0.00802 | 0.00628 |0.00109 | 0.02950
36. |0.02923 | 0.05299 |2.09812 |2.18323 |0.00638 |0.00357 |0.02548 |0.00014
37. 10.01959 |0.03973 |2.12683 |2.19267 |0.00325 |0.01683 |0.00322 |0.00929
38. 10.01623 | 0.04619 |2.12335 |2.22702 |0.00661 |0.01038 |0.00024 |0.04364
39. 10.01916 | 0.07588 |2.12420 |2.21318 | 0.00368 | 0.01930 | 0.00059 | 0.02980
40. | 0.02667 | 0.03118 |2.09693 |2.19176 | 0.00382 |0.02539 |0.02666 |0.00838
41. 10.02378 | 0.02818 |2.11839 |2.18014 |0.00093 |0.02839 |0.00521 |0.00323
42. 10.01879 |0.05346 |2.13458 |2.18370 |0.00405 |0.00311 |0.01097 |0.00033
43. 10.02012 | 0.05729 |2.13264 |2.18141 |0.00273 | 0.00007 |0.00903 |0.00194
44. 10.02385 |0.03164 |2.10615 |2.18474 |0.00100 |0.02492 |0.01745 |0.00137
45. 10.02526 |0.03929 |2.11286 |2.17400 |0.00241 |0.01727 |0.01074 |0.00937
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46. 10.02862 | 0.06312 |2.11263 |2.16212 | 0.00577 | 0.00654 |0.01097 |0.01924
47. 10.02248 | 0.06084 |2.12371 |2.19379 |0.00036 |0.00426 |0.00010 |0.01041
48. 10.01708 | 0.04581 |2.12672 |2.20278 |0.00576 | 0.01076 |0.00311 | 0.01941
49. 10.01972 | 0.06837 |2.11422 |2.19764 |0.00312 |0.01179 |0.00938 |0.01408
50. |0.02931 |0.04484 |2.12205 |2.17584 |0.00646 |0.01173 |0.00154 | 0.00753
51. 10.02268 | 0.07714 |2.12457 |2.18323 |0.00016 | 0.02056 |0.00096 |0.00014
52. 10.02694 | 0.04947 |2.11544 |2.16850 |0.00409 |0.00710 |0.00816 |0.01487
53. 10.02623 | 0.03810 |2.11413 |2.17156 |0.00338 | 0.01847 |0.00947 |0.01181
54. 10.02662 | 0.00495 |2.12402 |2.17416 |0.00376 |0.07008 | 0.00042 | 0.00920
55. 10.02388 | 0.05317 |2.14002 |2.16119 |0.00103 |0.00339 |0.01641 |0.02217
56. |0.02883 | 0.03638 |2.11425 |2.18152 |0.00597 |0.02019 |0.00935 |0.00185
57. 10.01958 |0.03628 |2.13411 |2.20347 |0.00326 |0.02029 |0.01050 |0.02009
58. [ 0.01773 |0.04348 |2.14156 |2.17939 |0.00512 |0.01309 |0.01795 |0.00398
59. 10.02098 | 0.06862 |2.14768 |2.16327 |0.00186 |0.01204 |0.02424 | 0.02010
60. | 0.02654 | 0.01756 |2.10494 |2.17745 |0.00368 |0.03901 |0.01864 |0.00592
61. |0.02653 | 0.06142 |2.12382 |2.17296 |0.00368 | 0.00484 |0.00021 |0.01040
62. |0.02289 |0.03313 |2.12746 |2.18488 |0.00438 |0.02343 | 0.00385 |0.00150
63. |0.02306 |0.05728 |2.13022 |2.18419 |0.00021 |0.00070 |0.00661 |0.00081
64. |0.02027 |0.07474 |2.11573 |2.19612 |0.00257 |0.01816 |0.00787 |0.01274
65. |0.01624 |0.04408 |2.12662 |2.19917 |0.00661 |0.01249 |0.00301 |0.01579
66. | 0.02714 | 0.04749 |2.11019 |2.17038 |0.00429 |0.00908 |0.01341 |0.01298
67. |0.02098 |0.03118 |2.11115 |2.20039 |0.00187 |0.02538 |0.01245 |0.01702
68. |0.02269 |0.06140 |2.13179 |2.18193 |0.00015 |0.00483 |0.00818 |0.00144
69. |0.02015 | 0.05069 |2.12871 |2.20434 |0.00270 | 0.00587 |0.00510 |0.02096
70. 10.02255 | 0.06386 |2.13500 |2.18398 |0.00029 |0.00729 |0.01140 |0.00060
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71. 10.02253 | 0.05056 |2.11609 |2.19015 |0.00031 |0.00601 |0.00751 |0.00677
72. 10.02912 | 0.05721 |2.11255 |2.16790 |0.00626 | 0.00063 |0.01105 |0.01547
73. 10.02043 | 0.05812 |2.13924 |2.18055 |0.00241 |0.00155 |0.01563 | 0.00281
74. | 0.01799 | 0.05051 |2.09739 |2.21220 |0.00485 |0.00605 |0.02621 |0.02882
75. 10.02303 | 0.05273 | 2.11273 |2.19979 |0.00017 | 0.00383 |0.01087 |0.01642
76. 10.02531 |0.05183 |2.11772 |2.16824 |0.00245 |0.00474 |0.00588 |0.01513
77. 10.02490 |0.03783 |2.10304 |2.18723 |0.00205 |0.01874 |0.02056 | 0.00385
78. 10.02531 | 0.07007 |2.09723 |2.20534 |0.00246 |0.01350 |0.02637 |0.02197
79. 10.02599 |0.03679 |2.11418 |2.18167 |0.00314 |0.01978 |0.00942 | 0.00170
80. |0.02236 | 0.07398 |2.11502 |2.18431 |0.00048 |0.01741 |0.00858 |0.00093
8l. | 0.01974 |0.06644 |2.12139 |2.19182 |0.00310 | 0.00986 |0.00221 | 0.00845
82. | 0.01925 |0.06484 |2.11821 |2.19983 |0.00360 | 0.00827 |0.00539 |0.01645
83. 10.02253 | 0.03895 | 2.13328 |2.17279 |0.00031 |0.01762 |0.00967 |0.01058
84. 10.01624 | 0.04064 |2.12491 |2.20346 | 0.00660 |0.01593 |0.00130 |0.02008
85. 10.02213 | 0.04087 |2.08562 |2.20597 |0.00072 | 0.01569 |0.03798 | 0.02260
86. |0.02380 | 0.06576 |2.11899 |2.19382 |0.00094 | 0.00918 |0.00461 |0.01044
87. 10.02088 | 0.05670 |2.12865 |2.18777 |0.00196 | 0.00012 |0.00504 |0.00439
88. 10.02211 | 0.09884 |2.13350 |2.17114 |0.00073 |0.04227 |0.00989 |0.01223
89. 10.01914 | 0.05267 |2.12868 |2.19553 |0.00370 |0.00390 |0.00507 |0.01215
90. |0.02092 | 0.08155 |2.11414 |2.19617 |0.00193 |0.02498 |0.00946 |0.01279
91. |0.01422 | 0.03587 |2.16652 |2.18219 |0.00863 |0.02070 |0.04291 |0.00117
92. 10.02867 |0.07345 |2.11535 |2.14431 |0.00581 |0.01687 |0.00825 |0.03906
93. 1 0.01809 |0.05987 |2.15429 |2.18784 |0.00475 |0.00329 |0.03068 |0.00447
94. 10.02936 | 0.05053 |2.11056 |2.16464 |0.00651 |0.00603 |0.01304 |0.01873
95. 10.02158 |0.03835 |2.12293 |2.19657 |0.00127 |0.01822 |0.00067 |0.01320
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96. |0.01977 |0.09001 |2.15632 |2.17963 |0.00307 |0.03343 |0.03271 |0.00374
97. 10.03071 |0.07485 |2.11800 |2.15570 |0.00786 |0.01828 |0.00560 |0.02767
98. 10.02477 |0.05395 |2.12528 |2.17298 |0.00192 |0.02625 |0.00167 |0.01038
99. 10.02961 | 0.08119 |2.10736 |2.16947 |0.00676 |0.02461 |0.01624 |0.01390
100. | 0.02049 | 0.05459 |2.14146 |2.18183 |0.00235 |0.00001 |0.01785 |0.00154
101. [ 0.02020 | 0.02833 | 2.13299 |2.18229 |0.00264 | 0.02823 | 0.00938 | 0.00108
102. ] 0.03191 | 0.07032 |2.10861 |2.15748 |0.00905 |0.01374 |0.01499 |0.02589
103. | 0.01681 | 0.05002 |2.12479 |2.22418 |0.00603 | 0.00655 |0.00118 | 0.04081
104. | 0.01743 | 0.07162 | 2.14546 |2.18174 |0.00542 |0.01504 |0.02185 |0.00163
105. | 0.02850 | 0.05933 | 2.11699 |2.16394 |0.00564 | 0.00276 |0.00661 |0.01943
106. | 0.03436 | 0.00737 | 2.08676 |2.15765 |0.01151 |0.01720 |0.03684 |0.02571
107. 1 0.02935 | 0.09744 | 2.09939 |2.16786 | 0.00650 | 0.04087 |0.02421 |0.01550
108. [ 0.02872 | 0.08319 | 2.09870 |2.17022 |0.00587 |0.02662 |0.02490 |0.01314
109. | 0.02099 | 0.06776 |2.13557 |2.17343 |0.00185 |0.01119 |0.01196 | 0.00994
110. | 0.02460 | 0.06338 |2.12876 |2.18523 |0.00175 | 0.00681 |0.00515 |0.00186
111.]0.02190 | 0.05051 |2.15263 |2.17395 |0.00095 | 0.00605 |0.02902 |0.00942
112.] 0.01835 | 0.06452 |2.14358 |2.17583 |0.00449 |0.00795 |0.01997 |0.00754
113. 1 0.01872 | 0.08782 | 2.12544 |2.20762 |0.00412 |0.03124 |0.00183 |0.02425
114. 1 0.02030 | 0.08620 |2.21177 |2.19817 |0.00254 |0.02963 |0.00582 |0.01479
115.10.02246 | 0.05744 | 2.09159 |2.19893 |0.00038 | 0.00086 |0.03201 |0.01555
116. | 0.02365 | 0.06781 |2.11714 |2.17898 | 0.00079 |0.01123 | 0.00646 | 0.00439
117.]0.03383 | 0.05183 |2.07931 |2.16713 |0.01098 |0.00474 | 0.04429 |0.01623
118.]0.02574 | 0.07617 |2.12015 |2.17602 |0.00289 |0.01960 |0.00345 |0.00735
119.] 0.02564 | 0.04248 |2.10374 |2.19209 |0.00278 | 0.01409 |0.01986 | 0.00872
120. | 0.01853 | 0.05756 |2.14277 |2.19515 |0.00431 | 0.00098 |0.01916 |0.01177
121. | 0.01416 | 0.07017 | 2.13750 |2.21181 |0.00868 | 0.01359 |0.01389 |0.02843
122.10.01261 | 0.03896 |2.13644 |2.21904 |0.01023 | 0.01760 |0.01283 |0.03567
123.10.02605 | 0.05199 |2.11336 |2.15972 |0.00320 |0.00045 |0.01024 |0.02364
124.10.02787 | 0.07710 | 2.10458 |2.18029 |0.00502 |0.00205 |0.01902 |0.00307
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125. 1 0.01619 | 0.04092 | 2.13964 |2.20665 | 0.00665 |0.01565 |0.01603 |0.02327
126. | 0.01585 | 0.05233 | 2.14312 | 2.20436 | 0.00699 | 0.00424 |0.09151 |0.02099
127.10.02315 | 0.05836 |2.13264 |2.17656 | 0.00030 | 0.00179 |0.09034 |0.00680
128. 1 0.02647 | 0.05001 |2.10531 |2.18798 |0.00362 | 0.00656 |0.01829 |0.00460
129.1 0.02299 | 0.02759 |2.13524 |2.18249 |0.00014 | 0.02897 |0.01633 | 0.00092
130. | 0.02437 | 0.05359 |2.09633 |2.20434 |0.00152 |0.00297 |0.02727 |0.02096
131. | 0.02075 | 0.04945 |2.10685 |2.20838 |0.00209 |0.00711 |0.01675 |0.02500
132.] 0.02290 | 0.06659 |2.11452 |2.18140 |0.00056 | 0.01001 |0.00908 |0.00197
133. 1 0.01980 | 0.06234 | 2.14417 |2.19007 | 0.00305 | 0.00576 |0.02056 |0.00869
134. 1 0.02898 | 0.05362 | 2.12660 |2.14214 |0.00613 | 0.00295 |0.00299 |0.04123
135. 1 0.02566 | 0.04431 | 2.13014 |2.16388 |0.00281 | 0.01226 |0.00653 |0.01948
136. | 0.02060 | 0.08410 | 2.13381 |2.16982 |0.00224 |0.02752 |0.01020 |0.01355
137.] 0.01851 | 0.05595 |2.11994 |2.20777 |0.00433 | 0.00061 |0.00366 |0.02439
138. | 0.02086 | 0.04553 |2.12041 |2.19247 |0.00199 |0.01104 |0.00319 |0.00910
139. ] 0.02163 | 0.03844 |2.12148 |2.17595 |0.00121 |0.01813 |0.00212 | 0.00742
140. | 0.02487 | 0.08119 |2.13450 |2.15644 |0.00202 |0.02462 | 0.01089 |0.02693
141. | 0.02081 | 0.05015 | 2.13360 |2.18005 |0.00203 | 0.00642 |0.00999 |0.00332
142. 1 0.01827 | 0.04301 | 2.13900 |2.19260 |0.00458 |0.01356 |0.01539 |0.00923
143. 1 0.02497 |0.01245 |2.11750 |2.17219 |0.00211 |0.06794 |0.00610 |0.01117
144. 1 0.02738 | 0.05795 | 2.10097 |2.18502 |0.00452 |0.00138 |0.02262 |0.00165
145. ] 0.01820 | 0.05314 | 2.15236 |2.18306 |0.00465 |0.00343 |0.02876 | 0.00031
146. | 0.02009 | 0.06525 |2.13609 |2.18621 |0.00275 |0.00867 |0.01248 |0.00283
147.1 0.02914 | 0.06010 |2.11226 |2.17813 |0.00629 |0.00352 |0.01134 |0.00524
148. | 0.02311 | 0.01877 |2.12044 |2.17355 |0.00026 |0.03779 |0.00136 | 0.00981
149. 1 0.01808 | 0.05727 | 2.12891 |2.19461 |0.00476 | 0.00069 |0.00530 |0.01123
150. [ 0.02945 | 0.04761 | 2.09522 |2.16047 |0.00659 | 0.00895 |0.02838 |0.02290
151. 1 0.02456 | 0.04460 | 2.12537 |2.16318 |0.00171 |0.01197 |0.00176 |0.02019
152.10.02172 | 0.05399 | 2.13054 |2.18701 |0.00112 |0.00257 |0.00693 |0.00364
153. ] 0.01469 | 0.04985 |2.15279 |2.20928 |0.00815 |0.00672 |0.02918 |0.02590
154. | 0.026463 | 0.04793 |2.11261 |2.17021 |0.00360 | 0.00863 |0.01099 |0.01315
155.] 0.016177 | 0.05884 |2.15448 |2.18112 |0.00668 | 0.00226 | 0.03087 |0.00225
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156. | 0.028041 | 0.06224 | 2.09989 |2.16934 | 0.00518 | 0.00567 |0.02371 |0.01403
157.10.021017 | 0.04902 | 2.13246 |2.18447 |0.00184 | 0.00755 |0.00886 |0.00109
158. 1 0.022086 | 0.05615 | 2.12000 |2.20237 | 0.00077 | 0.00042 |0.00360 |0.01899
159.10.029074 | 0.03503 | 2.10541 |2.15802 | 0.00622 |0.02153 |0.01819 |0.02534
160. | 0.017996 | 0.08367 |2.12862 |2.20662 |0.00485 |0.02710 |0.00502 |0.02325
161. | 0.024794 | 0.04360 |2.15310 |2.14318 |0.00194 |0.01297 |0.02949 |0.04019
162. | 0.020598 | 0.06734 | 2.12514 |2.18860 | 0.00226 |0.01076 |0.00153 |0.00523
163. | 0.02344 | 0.06984 | 2.10930 |2.19229 |0.00058 |0.01326 |0.01430 | 0.00891
164. | 0.01134 | 0.05525 |2.15481 |2.20911 |0.01151 |0.00131 |0.03120 |0.02573
165. 1 0.02680 | 0.06726 | 2.09758 |2.18126 |0.00397 |0.01069 |0.02602 |0.00211
166. | 0.02447 | 0.06308 | 2.10338 |2.18854 |0.00169 | 0.00650 |0.02022 |0.00516
167. 1 0.02362 | 0.06431 | 2.12544 |2.16260 | 0.00077 |0.00773 |0.01840 |0.02076
168. | 0.01434 | 0.07194 |2.13669 |2.21629 |0.00850 |0.01536 |0.01308 | 0.03291
169. | 0.01950 | 0.07937 |2.13110 |2.19877 |0.00335 |0.02280 |0.00749 |0.01540
170. | 0.02669 | 0.04635 |2.11349 |2.18517 |0.00384 |0.01021 |0.01011 |0.00179
171.] 0.02892 | 0.08235 |2.09709 |2.19160 |0.00607 |0.02577 |0.02651 |0.00822
172.10.02584 | 0.06314 | 2.11813 |2.16998 |0.00299 | 0.00657 |0.05474 |0.01338
173.10.02018 |-0.0020 |2.13482 |2.18115 |0.00267 |0.05861 |0.01121 |0.00222
174.10.01804 | 0.07627 |2.13071 |2.19448 |0.00480 |0.01969 |0.00710 |0.01110
175.10.02316 | 0.04520 |2.12740 |2.15436 |0.00031 |0.01137 |0.00379 |0.02900
176. | 0.02675 | 0.05122 |2.12101 |2.17202 | 0.00389 | 0.00535 |0.00259 |0.01134
177.] 0.02646 | 0.04125 |2.10719 |2.20700 |0.00360 | 0.01531 |0.01641 |0.02362
178. ] 0.01833 | 0.06014 |2.14176 |2.20695 |0.00451 | 0.00357 |0.01815 |0.02357
179.10.02584 | 0.07327 | 2.10969 |2.19086 |0.00299 |0.01669 |0.01391 |0.00749
180. | 0.02550 | 0.05333 | 2.11767 |2.18988 | 0.00265 | 0.00323 |0.00593 |0.00650
181. 1 0.03276 | 0.08785 | 2.09195 |2.16501 |0.00990 |0.03128 |0.03165 |0.01835
182. 1 0.01584 | 0.08178 | 2.14066 |2.21542 |0.00700 |0.02511 |0.01705 |0.03205
183. 1 0.02676 | 0.05613 | 2.10815 |2.18450 | 0.00390 | 0.00044 |0.01545 |0.00113
184. | 0.02504 | 0.05388 |2.12415 |2.18434 |0.00218 | 0.02695 | 0.00054 | 0.00096
185.10.03238 | 0.06588 |2.08602 |2.15989 |0.00953 |0.00931 |0.03758 |0.02348
186. | 0.02549 | 0.04439 |2.14598 |2.15532 |0.00264 |0.01218 |0.02238 | 0.02804
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187.10.02555 |0.07672 | 2.13199 |2.16480 |0.00270 |0.02014 |0.00838 |0.01856
188. [ 0.02808 | 0.05653 | 2.10896 |2.18121 |0.00522 |0.00003 |0.01464 |0.00216
189. 1 0.02450 | 0.03749 | 2.11527 |2.17750 |0.00165 | 0.01907 |0.00833 |0.00586
190. | 0.01987 |0.08411 | 2.13121 |2.20759 |0.00366 | 0.02753 |0.00760 |0.02421
191. ] 0.02289 | 0.07038 |2.11483 |2.17173 |0.00143 | 0.01380 | 0.00877 |0.01163
192.] 0.02809 | 0.06210 |2.12661 |2.16016 |0.00523 |0.00552 |0.00301 |0.02320
193. 0.02039 | 0.07103 |2.14428 |2.18238 |0.00246 |0.01445 | 0.02067 | 0.00099
194. | 0.02389 | 0.06171 |2.11615 |2.18594 |0.00104 | 0.00514 |0.00745 |0.00256
195.10.02038 | 0.03698 | 2.12787 |2.19295 |0.00246 | 0.01959 |0.00427 |0.00958
196. | 0.02657 | 0.06768 | 2.10991 |2.16846 |0.00372 |0.01104 |0.01369 |0.01491
197.10.02467 | 0.05276 | 2.12858 |2.19087 |0.00181 | 0.00380 |0.00497 |0.00749
198.10.02119 | 0.04529 | 2.11572 |2.19921 |0.00166 |0.01128 |0.00787 |0.01583
199. 1 0.02130 | 0.03274 |2.12013 |2.20098 | 0.00154 |0.02383 | 0.00347 |0.01760
200. ] 0.02262 | 0.03470 |2.12964 |2.16614 |0.00022 | 0.02186 | 0.00603 |0.01723
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Figure 8: Histogram of posterior mean of parameters 7, | v, 5, M, V;, ~N(y,, V;)for N=200
and T=10



Table 9: The second stage of hierarchical Bayesian Estimation:

1y, 7,0V, ~N(u ,Y,) When N=200, T=15, h=25, S, ~N(0,0.25) &, ~ B(0,1)

o B, B2 B,(3) Precision (h)
Mean 0.12762977 | 0.02278219 | 2.07172861 | 1.96920079 | 188.20921407
Standard
deviation | 0.003484823 | 0.01429229 | 0.01264774 | 0.014603830 | 7.877382659
Numerical
Standard
Error 0.000110199 | 0.00045196 | 0.00039995 | 0.000461814 | 0.249104712

The posterior estimates of variance covariance matrix for V, :

- - — -1
Vyil/ya}/ahaVyaluyNW(V7:|:V7VVj| )

Mean
0.00506  0.00000 —0.00000 —0.00000
0.00000 0.00506 —0.00000 0.00000
—0.00000 -0.00000 0.00506 —0.00002
—0.00001 0.00000 —0.00002 0.00507

Standard deviation

0.00050 0.00036
0.00036 0.00052
0.00036 0.00035
0.00036 0.00036

0.00036
0.00035
0.00051
0.00035

0.00036
0.00036
0.00035
0.00050

Numerical Standard Error

0.00002
0.00001
0.00001
0.00001

0.00001
0.00002
0.00001
0.00001

0.00001
0.00001
0.00002
0.00001

0.00001
0.00001
0.00001
0.00002
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Table 10: Posterior mean and Posterior Standard deviation for the first stage of
hierarchical Bayesian Estimates: y,/ y;,h, iV, ~ N(y,,V:) When N=200, T=15,
By, ~N(0,025) 5, ~ B(0, 1)

Posterior Mean Posterior Standard Deviation
fnd. |8 Po @ | A A Bo B@ | AG
1 ]0.12664 | 0.02063 | 2.07747 | 1.96528 | 0.00162 | 0.00017 | 0.00793 | 0.00280
2 | 0.13151 | 0.03941 | 2.05431 | 1.96944 | 0.00324 | 0.01860 | 0.01522 | 0.00135
3 10.12076 | 0.02073 | 2.09496 | 1.98969 | 0.00751 | 0.00007 | 0.02541 | 0.02160
4 10.12739 | 0.00711 | 2.08454 | 1.96156 | 0.00087 | 0.01369 | 0.01499 | 0.00652
5 10.12866 | 0.026359 | 2.06392 | 1.97134 | 0.00038 | 0.05546 | 0.00562 | 0.00325
6 |0.12679 | 0.01215 | 2.08543 | 1.96936 | 0.00147 | 0.03296 | 0.01589 | 0.00127
7 10.12884 | 0.01486 | 2.07987 | 1.95382 | 0.00056 | 0.00595 | 0.01033 | 0.01426
8 |0.12744 | 0.00499 | 2.06320 | 1.97724 | 0.00082 | 0.01582 | 0.00633 | 0.00915
9 10.12690 | 0.02209 | 2.08132 | 1.96322 | 0.00136 | 0.00128 | 0.01178 | 0.00486
10 | 0.12735 | 0.01465 | 2.08248 | 1.96116 | 0.00091 | 0.00615 | 0.01294 | 0.00692
11 |0.12991 | 0.02545 | 2.06405 | 1.96002 | 0.00164 | 0.00464 | 0.00548 | 0.00806
12 | 0.12496 | 0.04345 | 2.06577 | 1.98130 | 0.00330 | 0.02264 | 0.00377 | 0.01321
13 | 0.13262 | 0.03563 | 2.05652 | 1.94791 | 0.00434 | 0.01482 | 0.01302 | 0.02017
14 | 0.12754 | 0.02048 | 2.07125 | 1.97256 | 0.00072 | 0.00033 | 0.00170 | 0.00447
15 |0.12788 | 0.01331 | 2.06189 | 1.97401 | 0.00039 | 0.00749 | 0.00765 | 0.00592
16 |0.12928 | 0.02030 | 2.06677 | 1.97396 | 0.00100 | 0.00050 | 0.00276 | 0.00587
17 |0.12645 | 0.00108 | 2.04446 | 2.00832 | 0.00181 | 0.02189 | 0.02507 | 0.04023
18 |0.12276 | 0.00457 | 2.08454 | 1.97895 | 0.00551 | 0.01623 | 0.01500 | 0.01086
19 |0.12664 | 0.01255 | 2.05422 | 1.98966 | 0.00162 | 0.00825 | 0.01531 | 0.02157
20 | 0.12558 | 0.00774 | 2.05822 | 1.98777 | 0.00268 | 0.01306 | 0.11318 | 0.01968
21 | 0.13309 | 0.02950 | 2.04762 | 1.95652 | 0.00482 | 0.00869 | 0.02191 | 0.01156
22 1 0.12188 | 0.01997 | 2.07358 | 1.99075 | 0.00639 | 0.00084 | 0.00403 | 0.02266
23 1 0.12278 | 0.01306 | 2.08596 | 1.99415 | 0.00549 | 0.00775 | 0.01642 | 0.02606
24 ]0.13564 | 0.01569 | 2.04453 | 1.95010 | 0.00737 | 0.00511 | 0.02501 | 0.01798
25 ]0.12726 | 0.00131 | 2.07626 | 1.96276 | 0.00100 | 0.02213 | 0.00672 | 0.00532
26 | 0.13005 | 0.02602 | 2.05224 | 1.97403 | 0.00178 | 0.00520 | 0.01729 | 0.00594
27 10.12900 | 0.02162 | 2.08275 | 1.95854 | 0.00073 | 0.00081 | 0.01321 | 0.00955
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28 [ 0.12919 | 0.01805 | 2.08277 | 1.94527 | 0.00091 | 0..00274 | 0.01323 | 0.02281
29 [0.12937 | 0.01083 | 2.07151 | 1.96527 | 0.00110 | 0.00991 | 0.00197 | 0.00281
30 | 0.13383 | 0.01529 | 2.06111 | 1.94259 | 0.00556 | 0.00551 | 0.00843 | 0.02549
31 |0.12908 | 0.00799 | 2.05862 | 1.97004 | 0.00081 | 0.02881 | 0.01091 | 0.00195
32 10.13596 | 0.04959 | 2.06265 | 1.93748 | 0.00768 | 0.02878 | 0.00689 | 0.03060
33 | 0.12300 | 0.00304 | 2.07760 | 1.98757 | 0.00526 | 0.02385 | 0.00805 | 0.01948
34 | 0.12742 | 0.04052 | 2.07277 | 1.96596 | 0.00084 | 0.01970 | 0.00322 | 0.00212
35 10.12624 | 0.02744 | 2.09453 | 1.96643 | 0.00202 | 0.00663 | 0.02499 | 0.00165
36 | 0.13092 | 0.02064 | 2.04431 | 1.97698 | 0.00265 | 0.04146 | 0.02523 | 0.00889
37 10.12524 | 0.02404 | 2.07434 | 1.97721 | 0.00302 | 0.00323 | 0.00480 | 0.00912
38 10.13556 | 0.0189 | 2.05787 | 1.94030 | 0.00729 | 0.00189 | 0.01167 | 0.02778
39 | 0.12253 | 0.04347 | 2.07628 | 1.98940 | 0.00574 | 0.02266 | 0.00674 | 0.02131
40 | 0.13000 | 0.04191 | 2.07913 | 1.96086 | 0.00173 | 0.02118 | 0.00958 | 0.00727
41 |0.12801 | 0.00936 | 2.07351 | 1.96605 | 0.00025 | 0.01145 | 0.00397 | 0.00206
42 1 0.12159 | 0.04748 | 2.08969 | 1.98390 | 0.00667 | 0.02665 | 0.02014 | 0.01588
43 | 0.13333 | 0.01217 | 2.06105 | 1.95721 | 0.00506 | 0.00869 | 0.00848 | 0.01083
44 | 0.12576 | 0.03832 | 2.07058 | 1.97861 | 0.00250 | 0.01751 | 0.00100 | 0.01058
45 10.12346 | 0.02466 | 2.06926 | 1.99249 | 0.00481 | 0.00385 | 0.00020 | 0.02440
46 |0.12992 | 0.02929 | 2.05651 | 1.97276 | 0.00165 | 0.00848 | 0.01306 | 0.00467
47 10.12136 | 0.01438 | 2.07922 | 1.98365 | 0.00690 | 0.00643 | 0.00966 | 0.01556
48 |0.12685 | 0.01631 | 2.06457 | 1.97911 | 0.00142 | 0.00449 | 0.00491 | 0.01102
49 10.12303 | 0.01590 | 2.09786 | 1.97453 | 0.00523 | 0.00491 | 0.02835 | 0.00644
50 |0.12415 | 0.04042 | 2.07280 | 1.98415 | 0.00412 | 0.01961 | 0.00323 | 0.01606
51 [0.13058 | 0.02466 | 2.06491 | 1.96226 | 0.00231 | 0.00329 | 0.00464 | 0.00582
52 | 0.13583 | 0.01302 | 2.06694 | 1.93568 | 0.00756 | 0.00778 | 0.00259 | 0.03240
53 |0.13582 | 0.01446 | 2.05163 | 1.95112 | 0.00754 | 0.00634 | 0.01796 | 0.01696
54 10.13090 | 0.01935 | 2.06128 | 1.95399 | 0.00263 | 0.00145 | 0.00825 | 0.01409
55 |0.12854 | 0.01182 | 2.06182 | 1.96867 | 0.00027 | 0.00898 | 0.00770 | 0.00058
56 |0.13027 | 0.01939 | 2.08186 | 1.94606 | 0.00199 | 0.00142 | 0.01232 | 0.02202
57 10.12269 | 0.03774 | 2.07522 | 1.98320 | 0.00557 | 0.01693 | 0.00563 | 0.01511
58 | 0.12412 | 0.03659 | 2.06330 | 1.99651 | 0.00415 | 0.01578 | 0.00620 | 0.02842
59 10.12801 | 0.04125 | 2.06571 | 1.96928 | 0.00025 | 0.02044 | 0.00383 | 0.00119
60 |0.13246 | 0.01966 | 2.05928 | 1.95292 | 0.00418 | 0.001152 | 0.01021 | 0.01516
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61 |0.12610 | 0.03193 | 2.09726 | 1.95734 | 0.00216 | 0.01112 | 0.02777 | 0.01074
62 | 0.12462 | 0.01015 | 2.07515 | 1.98006 | 0.00364 | 0.01065 | 0.00563 | 0.01197
63 | 0.12405 | 0.03216 | 2.08444 | 1.98375 | 0.00422 | 0.01134 | 0.01487 | 0.01566
64 | 0.12450 | 0.00424 | 2.06604 | 2.00409 | 0.00376 | 0.01656 | 0.00349 | 0.03600
65 |0.12885| 0.01483 | 2.07886 | 1.95943 | 0.00058 | 0.00597 | 0.00934 | 0.08653
66 | 0.12789 | 0.00017 | 2.08879 | 1.95171 | 0.00037 | 0.02098 | 0.01929 | 0.01637
67 | 0.13054 | 0.00869 | 2.05103 | 1.97297 | 0.00226 | 0.01211 | 0.01851 | 0.00488
68 |0.13373 | 0.02868 | 2.06771 | 1.95491 | 0.00546 | 0.00787 | 0.00180 | 0.01317
69 |0.13401 | 0.01100 | 2.07398 | 1.94162 | 0.00574 | 0.00980 | 0.00444 | 0.02646
70 10.12832 | 0.04466 | 2.06339 | 1.97984 | 0.00048 | 0.02385 | 0.00615 | 0.01175
71 10.12928 | 0.03224 | 2.06530 | 1.97063 | 0.00101 | 0.01143 | 0.00421 | 0.00254
72 1 0.12648 | 0.05196 | 2.07468 | 1.97700 | 0.00178 | 0.03114 | 0.00513 | 0.00891
73 10.12345 | 0.00942 | 2.08403 | 1.98074 | 0.00482 | 0.01138 | 0.01443 | 0.01265
74 | 0.13450 | 0.02611 | 2.04986 | 1.94995 | 0.00623 | 0.00529 | 0.00197 | 0.01813
75 10.12152 | 0.01739 | 2.08577 | 1.98245 | 0.00674 | 0.00341 | 0.01627 | 0.01436
76 1 0.13053 | 0.00234 | 2.06481 | 1.94695 | 0.00226 | 0.01846 | 0.00470 | 0.02113
77 10.13042 | 0.01516 | 2.07952 | 1.95241 | 2.14850 | 0.00565 | 0.00993 | 0.01567
8 10.12116 | 0.01970 | 2.07850 | 1.99673 | 0.00710 | 0.00110 | 0.00895 | 0.02864
79 10.12511 | 0.01209 | 2.06312 | 1.98004 | 0.00316 | 0.00871 | 0.00641 | 0.01195
80 |0.13210 | 0.02390 | 2.04404 | 1.96474 | 0.00383 | 0.00309 | 0.02549 | 0.00334
81 |0.12587 | 0.00606 | 2.09316 | 1.96726 | 0.00239 | 0.01475 | 0.02362 | 0.00082
82 [0.13087 | 0.00666 | 2.06190 | 1.95366 | 0.00259 | 0.01414 | 0.00764 | 0.04428
83 [0.12698 | 0.02987 | 2.06542 | 1.97708 | 0.00128 | 0.00905 | 0.00412 | 0.00899
84 |0.12435 | 0.00884 | 2.07144 | 1.99038 | 0.00392 | 0.01196 | 0.00189 | 0.02229
85 |0.13415 | 0.02472 | 2.06349 | 1.94905 | 0.00588 | 0.00391 | 0.00605 | 0.01903
86 | 0.12754 | 0.01251 | 2.06621 | 1.96780 | 0.00072 | 0.00829 | 0.00333 | 0.00028
87 10.12615 | 0.02093 | 2.07781 | 1.97487 | 0.00211 | 0.00012 | 0.00826 | 0.00678
88 |0.12929 | 0.02691 | 2.07193 | 1.96451 | 0.00101 | 0.00610 | 0.00239 | 0.00357
89 10.12402 | 0.01986 | 2.05619 | 1.99565 | 0.00424 | 0.00094 | 0.01335 | 0.02756
90 | 0.12656 | 0.02885 | 2.07378 | 1.97458 | 0.00170 | 0.00804 | 0.00423 | 0.00649
91 |0.13453 | 0.0015 | 2.07027 | 1.92731 | 0.00626 | 0.01923 | 0.00073 | 0.04077
92 10.13029 | 0.05225 | 2.05640 | 1.95012 | 0.00202 | 0.03147 | 0.01313 | 0.01796
93 10.13599 | 0.02239 | 2.07352 | 1.92407 | 0.00772 | 0.00156 | 0.00397 | 0.04401
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94 |0.12684 | 0.01958 | 2.06532 | 1.97923 | 0.00143 | 0.00123 | 0.00421 | 0.01114
95 |0.12885 | 0.01372 | 2.07573 | 1.94746 | 0.00057 | 0.00703 | 0.00619 | 0.02062
96 | 0.12716 | 0.00190 | 2.06196 | 1.97450 | 0.00110 | 0.01882 | 0.00758 | 0.00641
97 10.12532 | 0.01283 | 2.08338 | 1.97125 | 0.00294 | 0.00800 | 0.01383 | 0.00316
98 10.13233 | 0.03610 | 2.04661 | 1.96140 | 0.00405 | 0.01529 | 0.02293 | 0.0066
99 |10.13213 | 0.02155 | 2.05533 | 1.95527 | 0.00386 | 0.00077 | 0.01421 | 0.01285
100 | 0.12105 | 0.01937 | 2.09288 | 1.99391 | 0.00722 | 0.00142 | 0.02334 | 0.02584
101 | 0.12741 | 0.02732 | 2.07689 | 1.96203 | 0.00085 | 0.00651 | 0.00735 | 0.00602
102 | 0.12391 | 0.01502 | 2.08091 | 1.98095 | 0.00435 | 0.00576 | 0.01137 | 0.01283
103 | 0.13180 | 0.01505 | 2.06959 | 1.95446 | 0.00352 | 0.00578 | 0.00050 | 0.01362
104 | 0.13061 | 0.03712 | 2.06790 | 1.95932 | 0.00234 | 0.01638 | 0.00164 | 0.00873
105 | 0.12898 | 0.04709 | 2.05643 | 1.97090 | 0.00070 | 0.00262 | 0.01311 | 0.00289
106 | 0.12465 | 0.01040 | 2.05962 | 1.99513 | 0.00362 | 0.01040 | 0.00991 | 0.02707
107 | 0.13454 | 0.02551 | 2.04298 | 1.95827 | 0.00626 | 0.00470 | 0.02656 | 0.00981
108 | 0.12360 | 0.03309 | 2.08964 | 1.97155 | 0.00467 | 0.01227 | 0.02009 | 0.00346
109 | 0.13375 | 0.03377 | 2.05955 | 1.94987 | 0.00548 | 0.01295 | 0.00999 | 0.01821
110 | 0.12451 | 0.00495 | 2.10044 | 1.97278 | 0.00375 | 0.01586 | 0.03089 | 0.00469
111 |0.13102 | 0.04760 | 2.05663 | 1.95635 | 0.00275 | 0.02679 | 0.01290 | 0.01173
112 1 0.13283 | 0.02712 | 2.06431 | 1.96099 | 0.00456 | 0.00631 | 0.00522 | 0.00709
113 10.12864 | 0.03612 | 2.07259 | 1.96715 | 0.00036 | 0.01531 | 0.00469 | 0.00093
114 | 0.13001 | 0.02360 | 2.05478 | 1.97632 | 0.00174 | 0.00279 | 0.01476 | 0.00823
115 | 0.12686 | 0.01404 | 2.08175 | 1.97299 | 0.00140 | 0.00677 | 0.01221 | 0.00490
116 |0.12841 | 0.03278 | 2.06328 | 1.97978 | 0.00013 | 0.01197 | 0.00626 | 0.01169
117 |0.12751 | 0.00215 | 2.07732 | 1.97654 | 0.00075 | 0.02296 | 0.00777 | 0.00845
118 | 0.12799 | 0.01371 | 2.05153 | 1.99098 | 0.00027 | 0.00709 | 0.01801 | 0.02289
119 |0.13077 | 0.01448 | 2.06930 | 1.95600 | 0.00249 | 0.00632 | 0.00023 | 0.01208
120 | 0.13803 | 0.01967 | 2.04050 | 1.95757 | 0.00976 | 0.00113 | 0.02903 | 0.01051
121 | 0.12388 | 0.00734 | 2.10592 | 1.95512 | 0.00438 | 0.02816 | 0.03637 | 0.01296
122 1 0.13524 | 0.03286 | 2.04770 | 1.96489 | 0.00696 | 0.01205 | 0.02184 | 0.00319
123 | 0.13159 | 0.03867 | 2.05750 | 1.95451 | 0.00332 | 0.01786 | 0.01203 | 0.01357
124 1 0.13127 | 0.03958 | 2.06111 | 1.96189 | 0.00300 | 0.01877 | 0.00842 | 0.00619
125 10.12845 | 0.03433 | 2.06816 | 1.96353 | 0.00017 | 0.01352 | 0.00137 | 0.00455
126 | 0.12513 | 0.00880 | 2.07973 | 1.97250 | 0.00313 | 0.01200 | 0.01019 | 0.00441

244




127 | 0.12698 | 0.01062 | 2.05287 | 1.97944 | 0.00129 | 0.01018 | 0.01666 | 0.01135
128 | 0.12904 | 0.01682 | 2.06801 | 1.95771 | 0.00077 | 0.00399 | 0.00152 | 0.01037
129 | 0.12679 | 0.00290 | 2.08011 | 1.95532 | 0.00147 | 0.01791 | 0.01057 | 0.00127
130 | 0.13366 | 0.02088 | 2.06063 | 1.95567 | 0.00538 | 0.00007 | 0.00890 | 0.01241
131 |0.12999 | 0.00072 | 2.05759 | 1.97318 | 0.00172 | 0.02008 | 0.01194 | 0.00509
132 | 0.13137 | 0.02118 | 2.07394 | 1.94951 | 0.00310 | 0.00037 | 0.00439 | 0.01857
133 | 0.12439 | 0.02410 | 2.09669 | 1.96134 | 0.00387 | 0.00329 | 0.02714 | 0.00674
134 | 0.12269 | 0.02879 | 2.08780 | 1.97387 | 0.00557 | 0.00798 | 0.01825 | 0.00578
135 | 0.13165 | 0.02908 | 2.05410 | 1.96744 | 0.00337 | 0.00827 | 0.01544 | 0.00064
136 | 0.12659 | 0.01438 | 2.07489 | 1.96487 | 0.00167 | 0.00642 | 0.00534 | 0.00321
137 10.13195 | 0.02109 | 2.06154 | 1.95815 | 0.00368 | 0.00027 | 0.00799 | 0.00993
138 | 0.13015 | 0.01092 | 2.06656 | 1.96133 | 0.00188 | 0.00988 | 0.00297 | 0.00675
139 | 0.12681 | 0.00923 | 2.06371 | 1.96801 | 0.00145 | 0.01157 | 0.00583 | 0.00007
140 | 0.12825 | 0.01051 | 2.05781 | 1.97324 | 0.00013 | 0.01029 | 0.01173 | 0.00515
141 | 0.12924 | 0.03348 | 2.07549 | 1.95658 | 0.00097 | 0.01267 | 0.00594 | 0.01150
142 | 0.13068 | 0.00748 | 2.08399 | 1.93110 | 0.00240 | 0.01332 | 0.01445 | 0.03698
143 | 0.13327 | 0.01766 | 2.03928 | 1.95363 | 0.00499 | 0.00314 | 0.03025 | 0.01445
144 | 0.13193 | 0.00416 | 2.05760 | 1.96101 | 0.00366 | 0.01665 | 0.01194 | 0.00707
145 |0.12401 | 0.01193 | 2.08014 | 1.98643 | 0.00425 | 0.00887 | 0.01060 | 0.01834
146 | 0.12544 | 0.02880 | 2.09146 | 1.97319 | 0.00282 | 0.00799 | 0.00219 | 0.00510
147 | 0.12611 | 0.05948 | 2.06820 | 1.97500 | 0.00216 | 0.03866 | 0.00133 | 0.00691
148 | 0.13109 | 0.00727 | 2.06845 | 1.96225 | 0.00281 | 0.01353 | 0.00109 | 0.00583
149 | 0.12916 | 0.03471 | 2.05184 | 1.98255 | 0.00089 | 0.01390 | 0.01770 | 0.01446
150 |0.12900 | 0.01539 | 2.06777 | 1.96125 | 0.00072 | 0.00542 | 0.00177 | 0.00683
151 | 0.12439 | 0.03870 | 2.08048 | 1.98485 | 0.00387 | 0.01789 | 0.01094 | 0.01676
152, | 0.12046 | 0.02142 | 2.08191 | 1.99656 | 0.00780 | 0.00060 | 0.01236 | 0.02847
153 | 0.13553 | 0.03069 | 2.04375 | 1.95738 | 0.00726 | 0.00987 | 0.02579 | 0.01070
154 | 0.12420 | 0.01630 | 2.06360 | 1.99175 | 0.00406 | 0.00450 | 0.00594 | 0.02366
155 |0.12745 | 0.00038 | 2.06063 | 1.97567 | 0.00081 | 0.02042 | 0.00891 | 0.00758
156 | 0.12622 | 0.02978 | 2.05849 | 1.97030 | 0.00205 | 0.00897 | 0.01105 | 0.00221
157 | 0.12817 | 0.01588 | 2.05511 | 1.98280 | 0.00096 | 0.00496 | 0.01443 | 0.01471
158 |0.12853 | 0.03488 | 2.08371 | 1.95784 | 0.00026 | 0.01406 | 0.01416 | 0.01024
159 | 0.12832 | 0.02274 | 2.09403 | 1.94160 | 0.00056 | 0.00192 | 0.02449 | 0.02648
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160 | 0.12963 | 0.02199 | 2.07084 | 1.98181 | 0.00135 | 0.00117 | 0.00130 | 0.01372
161 | 0.12986 | 0.01386 | 2.07796 | 1.97322 | 0.00158 | 0.00697 | 0.00842 | 0.00513
162 | 0.12385 | 0.01273 | 2.08226 | 1.98589 | 0.00441 | 0.03354 | 0.01272 | 0.01780
163 | 0.11992 | 0.02468 | 2.07938 | 2.00646 | 0.00834 | 0.00383 | 0.00984 | 0.03837
164 | 0.12818 | 0.00677 | 2.08336 | 1.96776 | 0.00087 | 0.01403 | 0.01381 | 0.00032
165 | 0.12870 | 0.02520 | 2.08301 | 1.94665 | 0.00043 | 0.00439 | 0.01346 | 0.02143
166 | 0.12623 | 0.03283 | 2.06216 | 1.97704 | 0.00204 | 0.01202 | 0.00737 | 0.00895
167 |0.13252 | 0.02036 | 2.06069 | 1.94672 | 0.00425 | 0.00045 | 0.00884 | 0.02136
168 | 0.12322 | 0.00506 | 2.08061 | 1.99715 | 0.00505 | 0.01575 | 0.01107 | 0.02906
169 |0.12539 | 0.02769 | 2.06748 | 1.97514 | 0.00288 | 0.00687 | 0.00205 | 0.00705
170 |0.12683 | 0.00857 | 2.06905 | 1.98255 | 0.00144 | 0.01223 | 0.00049 | 0.01446
171 | 0.12988 | 0.01523 | 2.06073 | 1.95993 | 0.00161 | 0.00558 | 0.00880 | 0.00815
172 1 0.12521 | 0.03396 | 2.08185 | 1.97095 | 0.00305 | 0.01315 | 0.01231 | 0.00286
173 1 0.12732 | 0.01413 | 2.06809 | 1.97358 | 0.00095 | 0.00668 | 0.00145 | 0.00549
174 | 0.12870 | 0.03988 | 2.04954 | 1.99231 | 0.00042 | 0.01906 | 0.01999 | 0.02422
175 10.13322 | 0.01413 | 2.05964 | 1.94975 | 0.00495 | 0.00667 | 0.00990 | 0.01833
176 | 0.13141 | 0.00334 | 2.08002 | 1.95030 | 0.00313 | 0.01746 | 0.01048 | 0.01778
177 10.12998 | 0.01131 | 2.06232 | 1.97480 | 0.00171 | 0.00949 | 0.00721 | 0.00671
178 |0.12554 | 0.02336 | 2.09254 | 1.96265 | 0.00273 | 0.00255 | 0.02300 | 0.00543
179 10.12973 | 0.01520 | 2.06567 | 1.96446 | 0.00146 | 0.00560 | 0.00387 | 0.00362
180 | 0.13028 | 0.01588 | 2.06114 | 1.96916 | 0.00200 | 0.00492 | 0.00840 | 0.00107
181 | 0.12713 | 0.02258 | 2.06739 | 1.97353 | 0.00114 | 0.00177 | 0.00215 | 0.00544
182 |0.12130 | 0.03387 | 2.09605 | 1.98180 | 0.00696 | 0.01306 | 0.02651 | 0.01371
183 |0.13035 | 0.03530 | 2.05212 | 1.97411 | 0.00208 | 0.01448 | 0.01741 | 0.00602
184 | 0.12818 | 0.02089 | 2.08333 | 1.95577 | 0.00090 | 0.00086 | 0.01379 | 0.01231
185 | 0.12778 | 0.01393 | 2.07386 | 1.95248 | 0.00212 | 0.00535 | 0.00432 | 0.01201
186 | 0.13040 | 0.02616 | 2.07049 | 1.95248 | 0.00221 | 0.00553 | 0.00095 | 0.01560
187 | 0.13207 | 0.01971 | 2.06729 | 1.93837 | 0.00380 | 0.00109 | 0.00225 | 0.02971
188 |0.12417 | 0.04078 | 2.07512 | 1.98037 | 0.00409 | 0.01997 | 0.00558 | 0.01228
189 | 0.12935 | 0.014814 | 2.05750 | 1.96504 | 0.00108 | 0.00599 | 0.01203 | 0.00304
190 | 0.13113 | 0.03090 | 2.06303 | 1.95077 | 0.00286 | 0.01009 | 0.00650 | 0.01731
191 | 0.13617 | 0.02227 | 2.07180 | 1.92201 | 0.00790 | 0.00146 | 0.00226 | 0.04607
192 1 0.12996 | 0.03670 | 2.05919 | 1.96566 | 0.00168 | 0.01588 | 0.01034 | 0.00242
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193 | 0.12812 | 0.02552 | 2.06573 | 1.97610 | 0.00014 | 0.00471 | 0.00380 | 0.00801
194 | 0.12706 | 0.00127 | 2.06238 | 1.98301 | 0.00121 | 0.01954 | 0.00716 | 0.01492
195 | 0.12554 | 0.03465 | 2.06996 | 1.98359 | 0.00272 | 0.01383 | 0.00041 | 0.01550
196 | 0.13352 | 0.01775 | 2.05920 | 1.96750 | 0.00525 | 0.00305 | 0.01033 | 0.00058
197 10.12362 | 0.02917 | 2.08099 | 1.98254 | 0.00464 | 0.00835 | 0.01145 | 0.01445
198 | 0.12963 | 0.04200 | 2.06776 | 1.95531 | 0.00136 | 0.02119 | 0.00178 | 0.01277
199 | 0.12652 | 0.04082 | 2.07750 | 1.97984 | 0.00175 | 0.02000 | 0.00796 | 0.01175
200 | 0.12311 | 0.02357 | 2.09296 | 1.97400 | 0.00515 | 0.00276 | 0.02342 | 0.00591

247




Frequency

Frequency

Histogram of Posterior Means of delta

-}

10
l

[ I I 1
0.120 0.125 0.130 0135

Posterior mean of deltali)

Histogram of Posterior Means of the Beta-1

10 15 20 25 30
|

5
|

0
L

2.04 2.06 2.08 210

Posterior mean of b1(i)

Freguency

Freguency

Histogram of Posterior Means of the Beta-(0)

10 15 20 25 30
|

5
1

a
|

[ I I I 1
-0.02 0.00 0.02 0.04 0.06

Posterior mean of b0(i)

Histogram of Posterior Means of the Beta-2

15 20 25 30

10
|

]
|

[ I I
1.92 1.94 1.96

1.98 2.00

Posterior mean of b2(i)

Figure 10: Histogram of posterior mean of parameters ¥, | ¥, A, M, Vy ~N(7,, 171) for N=200 and

T=15
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