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ABSTRACT 

Emergence of infectious diseases has renewed research interests in disease transmission 

modelling. Susceptible-Exposed-Infected-Recovered (S-E-I-R) model has been used for 

such studies. A major assumption of infectious disease modelling using S-E-I-R is that the 

population is closed to migration. However, this was violated with the outbreak of Ebola 

virus of 2014 that spread across national boundaries. This study was therefore designed to 

formulate a modified S-E-I-R model which incorporates migration and to ascertain its 

effects on control of the spread of infectious diseases during outbreaks.  

Migration rate was introduced into the susceptible population of S-E-I-R non linear 

differential equations to model disease transmission. The equilibrium points of the 

modified model and basic reproduction number were investigated using the next 

generation matrix. The local stability was analysed and global stability of disease free 

equilibrium was conducted by applying the Lyapunov function. Furthermore, the 

sensitivity analysis of the parameters was studied to determine their sensitivity to 

reproduction number by finding the derivative of each parameter with respect to 

reproduction number. Consequently, optimal control of the model was considered using 

Pontryagin maximum principle to determine the best control strategy to stem out the effect 

of the disease. Effect of environmental noise in the model was also studied by applying the 

stochastic differential equation. The current and the modifiedS-E-I-R(with migration) 

models were both demonstrated on numerical simulation and on 2014 Ebola Virus 

outbreak data in West Africa retrieved from the WHO website to analyse the effect of 

migration on the disease transmission.   
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The equilibrium points of the model were 0=E  and 𝑆 =
(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
, while 

the basic reproduction number was, 𝑅଴ = 
௔ஃఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
 where S = susceptible,  

E= Exposed, 𝜇 = natural death rate , Ʌ= migration rate, a = transmission rate,  

 recovery rate, e = disease induced death rate and 𝛿 = progression into infected. The =ط

parameter estimates gave a = 0.000025, b = 0.48941, c = 1.963907, δ = 0.0498,  

µ = 0.002165, Ʌ =1034, e = 0.05019. The system was asymptotically stable with R0 < 1. 

Migration and disease transmission rates were most sensitive. The reproduction number 

(2. 027),revealed persistence of the disease over model without migration (1.88). The 95% 

confidence interval of 1.9399 R0 2.0346 accommodated the value of R0.  

The formulated model predicted persistence of the infectious diseases as a result of 

migration into susceptible population. In view of this development, stringent migration 

controls should be deployed during infectious diseases outbreaks to enable early 

containment. 

Keywords:  Susceptible population, Disease transmission dynamics, Stochastic model, 

Persistence infectious disease, Ebola virus             

Word count: 407 
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CHAPTER ONE 

INTRODUCTION 

1.0  BACKGROUND OF THE STUDY 

The emergence and continuing re-emergence of infectious diseases has renewed 

curiousity research in infectious diseases modelling. Infectious diseases such as Ebola 

cause change in the population of any community, region or country. Infectious diseases 

remain the foremost reason of morbidity and deaths in the world today, with diseases like 

HIV, Tuberculosis expected to cause about 10 per cent of the deaths witnessed every year. 

The just witnessed 2014 Ebola virus outbreaks in some parts of West Africa led to a 

significant record number of cases and deaths within a short time. Just like in the year 2003 

SARS epidemic in which new pathogens were formed and in the Swine flu pandemic of 

2009 and also in 2013 where the world witnessed the MERS-CoV epidemic. Mathematical 

models are known to be necessary and appropriate instruments in examining the extent and 

how to control the spread of infectious diseases. A careful study of the transmission 

characteristics of these diseases in the world and most especially in the developing 

countries will lead to a better knowledge in decreasing the spread and the passing of these 

contagious diseases. However,mathematical models are continuously in use to investigate 

the diffusion patterns of infections and to ascertain the would-be effect of control strategies 

in controlling the various havocs of morbidity and mortality caused by these diseases. 

Applications of mathematical models include determining optimal control strategies in 
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opposition to sprouting infections, such as Lassa fever, Swine flu or Ebola, Tuberculosis or 

alongside HIV, Malaria, and Dengue fever and predicting the effect of vaccination 

strategies in opposition to these infections. Modelling of the spread of infectious diseases 

was used in the United Kingdom elaborately during the outbreak of swine flu pandemic to 

monitor the degree of the passage into individuals and the potential impact of management 

measures such as the closures of schools and also the use of vaccination. The formulation 

of models sheds light on the assumptions, parameters and variables, furthermore, models 

give theoretical results like thresholds number, reproduction and contact numbers, stability 

analysis, and replacement numbers. Mathematical model and computer numerical 

simulation are important investigational tools to build, test and examine these theories, 

assess quantitative speculations, answer specific questions, determine how parameters 

change in values due to their sensitivities, and estimate main parameters from data used. 

Mathematical models such as S-E-I-R are also used to compare, plan, implement, evaluate, 

analyse and optimize detection,therapy, prevention, and control of various programs to 

curb the effect of the spread. In the last few years, several efforts have been made to 

formulate real life mathematical models for the infectious diseases. Infectious diseases are 

the root cause of death in most of the developing countries. These models have important 

roles to play in illustrating the forceful evolution of infectious diseases into mankind lives. 

It enables the effective study of the spread and growth of infectious diseases possible. The 

spread of epidemics can be modelled by using deterministic compartmental models where 

the population amongst where the disease is sprouting can be divided into several classes 

of individuals such as susceptible (S), exposed (E), infected (I) and removed (R). In 

studying the spread of infectious diseases, two approaches readily come to mind: 
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deterministic approach and stochastic approach. Many works have been done on 

deterministic approach of studying the spread of infectious diseases. Another addition is 

the modelling of transmission dynamics of the diseases in a stochastic manner. This can 

shed more lights into the transmission of new infections under a random nature. In 

nature,various systems show stochasticity in themselves or they are subjected to random 

perturbation.Time to time there may be a need to inculcate such randomness into the 

modelling. However,in a stochastic approach, a better solution is to present the stochastic 

models based on deterministic one.The unconventional nature of the spread and growth of 

epidemic is interestingly random because of the unexpected mode of person-to-person 

contact and population involved is subject to an incessant variety of commotion. Because 

of the uncertainty in the spread of the disease, emerging infectious diseases are a global 

problem. At the inception of the disease outbreak, those that will be infected will be small 

in number, and due to the random variation which alone can make an outbreak of epidemic 

to cease, it is imperative to incorporate this variation in the study and analysing models for 

emerging infectious diseases. Stochastic epidemic models are concerned or take care of the 

randomness in infectious contacts occurring in the latent and infectious periods. A model 

that is stochastic in nature is formulated in terms of its random variables whose 

probabilistic dynamics depend on solution of differential or difference equation. It is used 

to model the inherent variability present in the process due to demography or the 

environment. Stochastic models are particularly important when the variability is large. 

Various methods or approaches have been used towards introducing stochastic 

implications of nature into epidemiology models. Some of the approaches are the 

Continuous Time Markov Chain (CTMC), Discrete Time Markov Chain (DTMC) and 
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Stochastic Differential Equation (SDE). Models of stochastic differential equation are 

referred to as SDE epidemic models in which significant uncertainty is present. Stochastic 

epidemic model is the one that allows some random fluctuation affecting the spread of the 

diseases. Due to environmental noise, the deterministic models have some constraints in 

the mathematical modelling of the spread of a deadly contagious disease, as a result, many 

authors like Cai et al (2013), Britton and Giardina (2014), Rachah and Torres (2015), Hu 

and Shen (2015) have started to think about the consequences of environmental noise in 

epidemic disease models, which entails perturbation of the parameters and also 

perturbation around the endemic equilibrium of the epidemic models or perturbation on the 

state variables. 

A population is a group of individuals of the same species who live together in the 

same habitat. Also, it is an association of species of living things among whose members 

interbreeding occurs. A population is aggregation of all the organisms, of identical group, 

who live in the same environmental area, and have the tendency of inter breeding. United 

States Census Bureau estimated the world population in the year 2012 to be 7.185 billion 

which is expected to surpass 10 billion in the year 2055. In the future, the world’s 

population is expected to reach its maximum after which it will decrease due to economic 

reasons, fitness concerns, land exhaustion and ecological hazards. However, the population 

keeps on changing due to the dynamics. Population dynamics is the study of short and long 

terms in the sizes and age composition of population in a community and the biological and 

environmental processes affecting these changes. These population dynamics include birth 

and death. One of the causes of death in human population is disease (National vital 

statistics reports 2007). The Oxford English Dictionary defines a disease as "a condition of 
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some parts or whole body, in which its activities are bothered.” It is a gloomy corporeal 

condition and a departure from its present state of sound health, which is caused by 

structural physical changes. This definition encompasses a wide range of ailments from 

Aids to Arthritis, from Ebola to Dengue fever, from the common cold to cancer. Diseases 

can either be infectious or non-infectious. Infectious diseases as Ebola, HIV can be passed 

between individuals, whereas non-infectious diseases such as Arthritis develop over an 

individual’s life span. Infectious diseases are those diseases that are passed from one 

person to another person by direct or indirect or unprotected contact. It is an illness caused 

by infectious agents. It is a disease caused by the entrance into the body of persons (as 

bacteria or viruses) which develop and multiply. Although, such a description of 

dynamical behaviour of the disease allows us to understand the behaviour of infection 

within an individual and may even show some lights on its potential spread and 

transmission.   

 

1.1  JUSTIFICATION AND MOTIVATION FOR THE STUDY  

Due to the extensive analysis on the SIR and SIRS models, some diseases like 

Ebola, however, spend some time inside the host before the hosts start manifesting the 

infection. In view of this, epidemic models that will incorporate the activities or role of 

incubation periods in the spread of the diseases that are more than the SIR and SIRS 

models need to be looked into to examine this phenomenon. 

Following the recent outbreak of Ebola virus in Liberia, Sierra- Leonne and Guinea 

which extended to Nigeria through migration, we deemed it fit to review the existing 

models of Ebola virus disease and to evolve another model that will take into account of the 
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exposed individuals and migration into the susceptible population as well as extending the 

deterministic model to stochastic model by using the stochastic differential equation to see 

how the exposed individuals will behave in the presence of environmental fluctuation since 

our primary concern is the fate of the exposed individuals in the face of an epidemic taking 

into consideration of those that will recover upon treatment. 

Also, we want to look at the introduction of treatment and if possible vaccines and 

other measures which we believe will curtail the diseases to the barest minimum. 

 

1.2  STATEMENT OF THE PROBLEM 

Zach (2012) model did not consider those who are exposed to the disease on the 

assumption that once an individual is infected, the individual automatically becomes 

infected. In this model, those that are latently infected to the disease, get infected but are 

not yet infectious are considered. Because, it is possible for an individual to be infected 

with disease and recovers from the impact of the disease. In addition, he considered a 

constant population but this model considered migration when the population is not 

constant which will be of great importance to the developing countries with less tight 

security at their borders, in order to put control measures in place. 

 

1.3  AIM AND OBJECTIVES OF THE STUDY  

General objective 

The aim and general objective of this study is to formulate and analyse an epidemic 

model for infectious diseases. 
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Specific objectives 

The specific objectives of this study are to:   

• Formulate a deterministic model for the outbreak of the diseases and determine the 

equilibrium points of the model. 

• Compute the Basic Reproduction Number, Ro of the model, and perform the 

stability analysis of the model. 

• Determine the existence of bifurcation in the model and perform the sensitivity 

analysis of the parameters. 

• Perform the optimal control system of the model. 

• Extend the deterministic model to stochastic one. 

• Perturb the exposed individuals in the stochastic model. 

• Construct the conditions for the existence of the model . 

1.4 DEFINITION OF TERMS  

1.4.1 Epidemic 

This is defined as the occurrence of infectious disease in a community that spreads 

rapidly and affecting a large number of individuals, then dies out. Mosby’s dental 

dictionary (2008), defines epidemic as spreading widely and rapidly of infectious diseases 

among individuals in a single location or region. Illnesses termed epidemic are those that 

occur beyond expectations which can be traced to a single source. It can also be related to 

tragic events of large proportion such as the outbreak of Ebola in Liberia, Guinea and 

Sierra-Leonne which resulted in death of thousands of people. 

The dynamics of an epidemic is as follows: initially, there are a few infectious 

individuals that are affected in a large susceptible population. If one of these affected 
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individuals passes the disease successfully to other individuals, the disease is likely to take 

off. 

1.4.2 Endemic 

This can be defined as the presence of an infectious disease in a region, community, 

or country over a long period of time, though definite, at a low infectious level. That is, it is 

a situation in which a disease is always present in a region. If an infectious disease remains 

in a population for a period of time, it is likely to stabilise fluctuation around the 

equilibrium. This equilibrium is referred to as the Endemic level of infection. 

1.4.3 Epidemic model 

An epidemic model is defined as a model that describes the transmission of 

infectious disease through individuals. 

The modelling of these infectious diseases is an important tool to examine the 

process or how the disease spreads,transmits and to assess the expected cause of an 

outbreak in the future and to examine important ways or methods to control the outbreak 

(Daley and Gam, 2005). 

There are two types of epidemic model namely: Deterministic model and 

Stochastic model. 

1.4.4 Deterministic epidemic model 

According to Brauver and Chavez (2001), deterministic or compartmental models 

are used when we are dealing with huge population. The people in the populace are 

assigned to diverse sub groups or compartments or class each in place of an identified stage 

of the epidemic. The rates at which individuals move from one subgroup to the other are 

articulated mathematically as derivatives, hence the model can be formulated by using 
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differential equations. Now, it is presumed that the size of the population in a partition can 

be obtained by finding the derivative with respect to time and that the process of the 

epidemic is deterministic in nature. 

1.4.5 Stochastic epidemic model 

It is a mechanism to describe the probability distribution of potential results of the 

epidemic to play a part in the chance variation in one or more inputs over time. These 

stochastic models rely on the likelihood variation in the risk of disease exposure and other 

illness dynamics (Trotter and Phillippe, 2001). 

1.4.6  Markov process 

It is a development in which its future behavior cannot be accurately predicted from 

its past behaviour and which involves random chance. The progress of an epidemic is an 

illustration of Markov process. The next state of the epidemic depends only on the existing 

state and does not rely on the sequence of past behaviour that came before it. This process 

will be characterized by a state space, and transition matrix which relates to the probability 

of a particular transition with an initial state of the state space. 

1.4.7 Spatial epidemiology 

This describes the depiction and the way geographic variations play important role 

in disease spread in the areas of demographic environment,behavioural, socio-economic 

analysis,infectious and genetic risk factors. It is a sub field of health geography which 

examines the study of the space distribution of health implications. Specifically, spatial 

epidemiology can be described by the examination of disease spread with the geographic 

variations. 
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1.4.8  Equilibrium points of the model  

Equilibrium points are the points when there is no change in the system of equation. 

That is, when the equations in the subgroup are equal. They are also set of points in the 

system to decide whether there is a presence of disease in the system or not. If there is no 

disease in the system, it is called disease-free equilibrium, if there is a presence of disease 

then the points are endemic points. 

1.4.9  Basic reproduction number 

It is known or described as the anticipated cases of newly created or fresh cases of 

infections from one individual that is infectious in a population that is wholly susceptible 

through the entire length of the infection period denoted by, 𝑅଴. It defines the dynamical 

behaviour of the model,whether the disease dies out or it persists in the system. If 𝑅଴ < 1, 

the infection in one individual cannot reinstate itself so the pathogen dies out (stable 

disease free population). If 𝑅଴ > 1, the number of infectious persons increases and the 

disease persists and if 𝑅଴ = 1, there is an equilibrium: the endemic and the disease-free 

being equal. 

1.4.10  Stability analysis of the model 

The stability of the model is in two ways: Local and global stability. The stability 

nature of the system depends on the nature of the eigenvalues. 

1.4.11  Local stability of the disease free equilibrium 

For a given equilibrium point, the local stability can be instituted by analysing the 

Jacobian matrix alongside its eigenvalues. If all the eigenvalues at the equilibrium point 

have the real-part being negative values then the system is referred to be asymptotically 

stable locally. 
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1.4.12  Global stability of the disease free equilibrium 

For an equilibrium point to be asymptotically stable globally, the first derivative of 

Lyapunov function L(E,I) of the model must be negative at the equilibrium. 

1.4.13  Bifurcation 

It is the point at which at least one point of the eigenvalues is zero. For forward 

bifurcation to occur the basic reproduction number has to be less than 1, while in the 

neighbourhood of 1, coexistence is possible with the equilibra of the endemic and the 

disease free, before the reproduction number is greater than 1 and this will make the 

backward bifurcation to exist.It shows how small dynamical change in an output of a 

parameter can cause changes in the behaviour of the whole system. 

1.5  SOURCES OF DATA 

Simulated data and real live data of Ebola 2014 are used. 

1.6  VARIOUS MODELS OF AN INFECTIOUS DISEASE 

Model is a way of representing the behaviour of a situation to facilitate us deduces 

what is the best to do about the system. Models are hence tools for representing a situation 

to understand it and for interpretation about it. 

Mathematical model is an overt mathematical description of the basic dynamics of 

a system. These models are supportive in the control strategies and prevention mechanism 

of sprouting infectious diseases like Ebola, SARS,Influenza, HIV/AIDS.They are also 

functional in the careful study of the progress and spread of these drug resistant diseases. 

THE S - I MODEL(Susceptible - Infected). In this model, the prone population 

(Susceptible) is infected and the infected population remain infected until they die for 

example, plant infection, HIV. 
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THE S - I -S MODEL (Susceptible - Infected - Susceptible) In this model, the 

susceptible population are infected with the disease and the infected population return to 

the susceptible class on recovery because the infected individuals have no permanent 

immunity against reinfection for example, sexually transmitted diseases like Gonorrhea, 

Syphilis. 

THE S - I - R MODEL (Susceptible - Infected - Recovered) This is a model that 

describes individuals that are born into the Susceptible population and they are able to be 

infected after which the infected population move into the infected group and the infected 

population move into the recovered group and are assumed to be immune for life. 

THE S -E - I - R MODEL (Susceptible - Exposed - Infected - Recovered) In this 

model, the Susceptible individuals move into the exposed class, but not yet infectious after 

which they become infected and are treated, the recovered individuals move into the 

recovered group. 

THE S-E-I-R-S MODEL (Susceptible - Exposed - Infected - Recovered - 

Susceptible) In this model, the Susceptible individuals are exposed to the infection, has a 

latent period of being infected, those that are infected proceed to the Infected group, after 

the infected individuals are recovered either dead or alive, they later proceed to the 

Recovered group and the living has no permanent immunity to the diseases and they 

progress into the susceptible class again. 

1.7  FACTORS THAT CAN LEAD TO EMERGENCE OF INFECTIOUS 

DISEASES 

Here are a number of factors that can lead to the sprouting of infectious diseases: 

these are Population growth, global climate change, increased use of antibiotic for humans 
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and animals, industrial agriculture, human-animal contact, war and social disruption, 

relocation of animals, increase in number of day care and so on. 

 

1.8 MODES OF TRANSMISSION OF INFECTIOUS DISEASES 

These are some of the modes by which infectious diseases are being transmitted: 

(a) Through Contact: This is sub-divided into four namely : direct, indirect, fomites 

and body secretion as in blood, urine, saliva.Diseases spread by contact are 

sexually transmitted diseases for example, Syphilis, Gonorrhea, AIDS. 

(b) Through Airbone : This is in some particle aerosol as in tuberculosis, measles and 

so on. 

(c)  Through Food and water: This is as in contamination e.g Cholera, histeriosisand so

  on. 

(d)  Through Vector: This is as in Yellow fever, Dengue fever, Trypanosomiasis. 

Reservoirs of Infectious diseases. 

These are some known reservoirs: 

(i)  Humans: these are AIDS, Syphilis, Gonorrhea, Typhoid. 

(ii) Animals: these are in Ebola, Rabies, Plague. 

(iii) Soil: these are in Tetanus, Histoplasmosis. 

(iv) Water: these are in Pseudomonous infection. 
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CHAPTER TWO 

LITERATURE REVIEW 

Infectious diseases are diseases that cause misery, sickness in the body of humans 

and death in humans and animals worldwide. Effective study of the spread, prevention and 

control are therefore important tasks both from human and an economic point of view. 

2.1  REVIEW OF LITERATURE ON DETERMINISTIC MODEL 

Lajmonovich and Yorke (1976) ascertained the occurrence of the stability of the unique 

equilibrium that is endemic using a class of deterministic SIS models and a complete 

analysis of the global dynamics of the disease by giving the global Lyapunov function. 

Hethcote and Tudor(1980) studied endemic infectious diseases using a system of Volterra 

integration equations that are non linear and of convolution type. They looked at the 

models of the parameters with the introduction of vital dynamics, immunization and 

infectious period. After determining the threshold criteria and the asymptotic behaviour, 

they reached a conclusion that with a delay in the model the thresholds variable and the 

asymptotic behaviour of the model do not change. 

Anderson and May (1991) did a study on the dynamic modeling of infectious 

diseases as an improvement on the Hethcote and Tudor (1980) and concluded that they 

occur in two different temporal patterns: Epidemic and Endemic. 

 Greenhalgh (1992) painstakingly examined models of SEIR type that could 
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incorporate death rate with density dependence, while Cooke and Drisssche (1996) 

initiated a research of SEIRS models with two delays. 

 Herwaarden and Grasmen(1995) specified that, in a deterministic system, there was 

an endemic situation which can disappear due to the stochastic fluctuations in the 

corresponding stochastic model. 

Astacioet al (1996) used the S-E-I-R model which was a modification to the S - I - 

R to model the 1976 outbreak of Ebola in Yambuktu and 1995 outbreak in Kikwit, Zaire. 

They assumed a constant population and did not consider the idea of quarantine of the 

infected individuals. 

In the works of Greenhalgh(1997), he introduced Hopf bifurcation in the model 

which is SEIRS in nature with a density dependent contact rate and death rate. 

Li and Muldoney (1995) and Li et al (1999), both studied global scenario of the 

dynamics of SEIR models with an incidence rate that is non- linear and with an incidence 

rate that is standard respectively. Hal et al (2001) worked on SEIR model to find the global 

dynamics of the disease having a vertical transmission and a bilinear incidence rate. 

Alum (2001) studied the effects of the period of infection within SIR models and he 

discovered that less spread distribution wave seem to have two fundamental 

epidemiological consequences. It was discovered that the disease reduced in its persistence 

and showed an unstable behaviour in the model that has a finite population. 

Grenfell and Hutscher (2003), in their lecture notes on modeling the dynamics of 

infectious diseases used three areas namely (i) childhood disease dynamics and 

vaccination, (ii) Spatio-temporal disease dynamics and (iii) evolution of diseases with 

multiple strains. They used mathematical techniques to analyse the bifurcation theory of 
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Ordinary Differential Equations (ODEs), wavelet analysis and stochastic simulation. 

Hisashi(2003) used a simple S-I model to check the presence of bifurcation in the 

model. It showed a backward one for a disease caused by the transmission of a vector: 

protozoan parasite Trypanosonacruiz. He introduced the birth rate into the host population 

in the model and showed that there was an occurrence of backward bifurcation with an 

endemic state that was steady depending on the parameters, and that existence of death 

induced by the disease formed an essential role for the occurrence of a backward 

bifurcation. 

Chowellet al(2005) used epidemic modeling and data of Ebola outbreak to 

ascertain the average number of newly created infections produced by an indicator index 

when there was no control management intervention put in place. The SEIR epidemic 

model was used to model the cause of the outbreak and also to look at the rate of 

transmission of the disease after control interventions were put in place. They performed 

uncertainty analysis of the effective reproductive number 𝑅଴ to see how sensitive the 

model is to other disease-related parameters. They discovered that the control measures put 

in place reduced the final size of the epidemic by a factor of 2 relative to the final size with 

a delay of two weeks with the implementation,however the exposed stage did not consider 

those who recovered at this stage. 

Hohleet al (2005) introduced the use of spatial study by using a multi group 

epidemic in the SEIR model by extending the works on Monte Carlo Markov 

Chain(MCMC) estimation of parameters by O’Neill and Roberts (1999). They extended 

the deterministic SEIR epidemic model to stochastic SEIR model to reflect the 

transmission experiments and for the estimation of the parameters by maximum likelihood 
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and Bayesian inference. 

Bubniakova (2007) used the deterministic modelling approach to study the 

dynamical behaviour of infectious diseases. He modified three (3) models S-I, S-I-R and 

S-E-I-R 

Legrandet al (2007) modified the S-E-I-R model and developed a S-E-I-H-F-R 

model to study the spread and transmission of Ebola virus to include those at hospital and 

funeral but assumed homogeneous population which according to them was too simple 

which may not be effective in countries where the structure of the community favours 

infection in households and recovered individuals were not returned in to the population 

Zhang et al (2007) also studied and introduced a saturating contact rate in the SEIR 

model while considering its global dynamics. 

Also, in the book of Allen(2008),the three approaches DTMC, CTMC and SDE 

were compared using SIR epidemic model. 

Jiang and Yang(2009) studied the dynamics of an SIS epidemic model with the 

introduction of birth pulses and a varying population. They conducted a research about the 

presence and stability of two periodic solutions namely the endemic and the infection-free 

using discrete maps,the bifurcation theorem and the center manifold theorem and 

discovered that the numerical results and bifurcation diagrams agreed with the theoretical 

analysis. 

Neilan (2009) presented three different models with optimal control problem which 

describe population dynamics of diseases using systems of differential equation. She 

introduced quadratic growth function in the first model and in the second model, three 

control strategies viz: sanitation, antibiotic treatment and vaccination were proposed. The 



 
 

18 

third model showed a control function that represents vaccination in a three parabolic 

partial differential equations. 

 Smieszek(2009) examined the configuration and the quality of contacts between 

hosts shape. He evaluated the importance of characteristics of contact for constructing 

mathematical models for the spread of the disease to ascertain the effectiveness of 

interventions on the epidemics. 

Bunomo and Lacitignola (2011) modified S-I model to include vaccinated group 

with a non linear incidence rate and an inadequate vaccine that serves as a preventive 

measure which was given to susceptible individuals to study the backward bifurcation of 

the model. They introduced a recruitment parameter rate of the susceptible and got the 

conditions for the backward bifurcation. 

Wang et al(2011) introduced a function which is a treatment function that is 

saturated into the epidemic S-I-R model and a bi-linear prevalence rate with 

density-dependent demographics. They performed global qualitative and bifurcation 

analysis, they found that the system showed that the moment basic reproduction number is 

under the turning point values, the disease can be removed and also, existence of backward 

bifurcation in the model was established. 

Zach (2012) instituted,developed and examined a mathematical model to analyse 

the spread of Ebola virus disease from S-I-R model, assumed constant population and did 

not consider exposed stage and failed to include those that may be treated as in the case of 

2014. 

Evans (2012) applied social network and analysis together with the data mining 

method to showcase a model on negative social response (NSR) in a community which 
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demonstrates a strain that is associated with a disease. He developed a meta-model that 

showed the relationship between the spread and NSR to an outbreak of a disease over a 

network. He used a S-I-R model and a social influence model. 

 Althaus (2014) modified S-I-R model for the outbreak of Ebola virus in 2014 in 

West Africa to study the spread of infection in the countries that were affected by the virus 

when there were no control measures in place using an SEIR model. The study showed 

actual time estimates of the disease transmission parameters during the outbreak and 

assumed closed population and those that were not affected by the disease at the exposed 

stage were not considered. He however estimated the reproduction number for the outbreak 

of 2014 Ebola virus in some parts of West Africa as between 1.5 and 2.5 

Fasinaet al (2014) analysed epidemiological data of 2014 Ebola virus disease 

outbreak in Nigeria. Their model divided the population into five categories: susceptible, 

exposed, infectious and symptomatic individuals, hospitalised individuals and those 

individuals separated from isolation centre after recovery or those that died as a result of 

the disease. The model developed was S-E-I-H-P from S-E-I-R 

Jianjunet al (2015) used S-I-R model for two regions which can be connected by 

transportation to study the effect of vertical transmission, impulsive display on the spread 

of the disease. The model showed the evolvement of the disease. In the study, it was 

concluded that the approach of controlling the activities of the infected individuals using 

transportation provides an important basis of preventing the spread and control of the 

disease and did not consider those who may be exposed to the infection as a result of the 

transportation. 

Njankou (2015) did a work on six compartmental mathematical models 
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wereformulated to gain an insight into the role of media campaign on Ebola transmission 

as a mean of controlling the spread using two different approaches with a conclusion that 

media campaigns should be spaced out for them to be effective. 

In the work of Andrea (2016), the optimal treatment of infectious disease was 

investigated using the SIS epidemic model. The model was transformed to SEIV 

incorporating the cost of treatment of the entire population. Five different cost functions 

were considered. 

Bohm 𝑒𝑡 𝑎𝑙 (2016) incorporated individual specific immunity in a heterogenous 

population and exploring the best optimal control system viz : vaccination, tretament and 

chemoprophylaxis intervention on a SIS models. They concluded that the continuation of 

chemoprophylaxis and treatment provided the strongest effect. 

Bonjakjian(2016) used SEIR model to explore the potential impact of vaccination 

and quarantine on the spread of Ebola in West Africa. However, in the model, birth rate 

variable was not included in the model. 

In the works of Akinyemiet al (2018), they discussed about the stability analysis of 

infectious diseases by introducing a migration rate into a population that is dynamic, the 

model exhibited two equilibria and it was discovered that the system is locally and globally 

stable when the reproduction number is less than 1. 

 

2.2  REVIEW OF LITERATURE ON STOCHASTIC MODEL 

Mckendrick (1926) was the first person to propose the study of stochastic epidemic 

in 1926 in Kermacck and Mckendrick (1927) which in 1928 and 1931, Reed and Frostr and 

Greenwood proposed the use of discrete time stochastic models to solve generations of 
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infective respectively. 

Jacquez and O’Neill(1991) compared the deterministic threshold results and the 

stochastic threshold results of a population that is divided into two namely: susceptible 

population and infected population. They used S-I model with recruitment,also with death 

due to the disease and discovered that basic reproduction number,𝑅଴,has an important role 

to play for both versions though, the threshold results were different. For the deterministic 

model, no epidemic occurred when 𝑅଴ < 1 and epidemic occurred when 𝑅଴ > 1. In the 

study, the stochastic model showed that, when 𝑅଴ < 1, no epidemic occurred and when 

𝑅଴ > 1, a probability of finite value that is less than 1 that an epidemic will occur was 

discovered and eventuated in an endemic quasi-equilibrium. Also, Jacquez and O’Neill 

(1991) compared the reproduction number in deterministic and stochastic models and 

found out that the reproduction number plays much the same role in defining thresholds for 

epidemic take off in both models. 

Mao et al(2002) showed that with the introduction of a sufficiently small noise 

explosion in the population dynamics, the impact of the disease could be reduced. 

To better understand the stochastic models, Nasell (2002) extended the stochastic 

models to infer that stochastic models have a better and a reasonable approach in 

describing the spread of the epidemics for a sufficiently large array of reasonable values of 

the parameter when compared with their counterpart deterministic models. 

Imhof and Walcher (2005)analysed a variant deterministic chemostat model and 

compared it with a stochastic chemostat model. By studying the two models, they proved 

that the stochastic model went into extinction while there was a persistence showing with 

the deterministic model. 
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Frank (2007) considered problems associated with modeling of stochastic energy 

infections. He proposed solution to the problem that an epidemic died out when no 

asymptomatic cases observed. He looked at the effect on the behaviour of a household 

model and the delay length between discovering time of infection in a household and 

implementation of an intervention. He also developed a model for an emerging strain of 

influenza in humans to look for the risk that the disease poses. 

Dalalet al (2007) discovered that stochastic models had solutions that are positive 

in nature.They did a survey on the asymptotic behaviour of the models by analysing the 

stability of the models. In the works of Tornatoreet al (2005), the nature of the stability of a 

disease free equilibrium of a stochastic SIR model was studied while in the works of 

Beretta et al(1998), stochastic perturbation around the endemic equilibrium that is positive 

was considered. 

Britton(2009) used a stochastic epidemic model to study the effects of vaccination 

on a small and large community. He made use of S-I-R model. He did a survey paper on 

stochastic epidemic models. He assumed that the population is homogeneous and closed. 

Jiet al (2011) accounted for the effect and nature of environment that is randomly 

fluctuating by doing a study on the various group of epidemic model that are of SIR type 

using stochastic perturbation. The states variables were perturbed. 

Mitchell (2011) developed a semi -markov discrete time multi-state models that 

can be used to study HPV persistence and proposed a maximum likelihood estimator of 

HPV persistence using a semi-markov two -state discrete-time model for incident 

infectious. Anderson and Britton (2001) did a Maximum Likelihood Estimation (MLE) 

process and Monte-Carlo Markov Chain(MCMC) methods to study the spread of the 
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disease. 

Yuan and Allen (2012) considered the problem arising from multi group SEIR 

model of Guo and Li (2008) and SIR model of Guoet al (2006) by using stochastic 

perturbation around their endemic equilibrium. 

O’Neill and Wen (2012) studied the application of the different criteria and 

computational methods inside the epidemic models by setting up effective scheme to 

identify a feasible criterion for specific epidemic data sets. 

In their study of infectious disease,Caiet al(2013) did a careful study of the 

dynamics of an epidemic model globally which is of SIRS type and introduced a dependent 

ratio of incidence rate into the population with a resultant stochastic differential equation 

(SDE) version. The study showed that, the reproduction number 𝑅଴  of the disease 

indicates whether or not an endemic outbreak would occur. When 𝑅଴ ≤ 1 it revealed that 

the disease free dynamic occurred and the endemic steady state that was globally stable 

occurred when 𝑅଴ > 1. Random fluctuations were introduced in the stochastic model to 

reduce the outbreak of the disease which provided good control strategies on the disease 

dynamics. 

Ndanguzaet al (2013) used onset and death data of Ebola outbreak in the 

Democratic Republic of Congo DRC in 1995, to analyse the spread of the disease. They 

used Markov Chain Monte Carlo (MCMC) algorithm and Least squares estimation to 

analyse the two sets of the data. They discovered that the model fitted well in to the onset 

data of Ebola virus at 99.95% and that of the death data at 98.6% confidence interval. 

In the papers of Hamidrezaet al (2013), they considered diffusion model in social 

network in stochastic information. They used discrete time markov model. 
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Caiet al (2013) investigated how environment fluctuations affect the dynamics of 

the disease by using a stochastic SIRS epidemic model and discovered that fluctuation 

introduced in the model can reduce the outbreak of the disease which provided useful way 

of controlling and regulating the disease transmission by perturbing the state variables. 

Fabio et al (2013) used two different approaches to SIS epidemiological model 

namely: one with a differential equation and the other one on discrete time markov chain 

and compared the two scenarios and found out that the stochastic model and the ODE 

model are at variance. While, Rachah and Torres (2015) used SIR epidemic model to 

model the 2014 Ebola outbreak in West Africa and introduced vaccination to the 

susceptible as part of the control system and concluded that vaccination was a very 

efficient factor in reducing the number of infected individuals. 

 Britton andGiardina (2014) used stochastic epidemic S-I-R model for the spread 

of infectious diseases and performed parameter estimation for the stochastic epidemic 

models. They assumed a closed population and no immune individuals. 

Hu and Shen (2015) extended the deterministic SIS classical model to a stochastic 

SIS discussed by Gray et al (2011), by introducing two random perturbation namely: the 

cure and transmission parameters and discovered that the stochastic SIS is weaker than the 

deterministic which allows infectious I(t) go extinct and in the deterministic SIS model, I(t) 

did not go extinct. 

Chuang (2015) studied the global dynamics of a stochastic SIS model by using 

stochastic differential equation. He discovered that the stochastic prevalence of disease is 

bigger than that of deterministic disease prevalence that is noise may increase severity of 

disease. 
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In the paper of Xu (2015) also presented the stochastic SIS epidemic model 

developed by Gray et al (2011) and found the stochastic reproduction number 𝑅଴
௦. He 

discussed that the disease was recurrent when 𝑅଴
௦ ≥ 1. 

Britton (2009) studied the effect of vaccination on the stochastic epidemic model 

by using SIR epidemic model and Swishchuket al (2016) studied different types of 

stochastic stability for the deterministic epidemic models while Britton and Giardina 

(2016) analysed the general stochastic epidemic model using SIR model and found the 

reproduction number (𝑅଴) by introducing the critical vaccination coverage under a closed 

population with homogeneous mixing in continuation of the work of Britton ( 2009). 

Kitengeso (2016), introduced the development of a stochastic model to capture and 

minimize the transmission dynamics of measles in order to show the strength of stochastic 

methods in the analysis vis-a-viz deterministic methods and also to show the importance of 

vaccination in the control of the spread of measles. He used SDE on SEIR with control 

strategy. The study shows the effectiveness of stochastic analysis. 

Meng  𝑒𝑡𝑎𝑙 (2016) proposed a stochastic model in studying the dynamics in 

heterogeneous population of infectious disease using temporal spatial surveillance data. 

They perturbated the infected group and used stochastic model to quantify the significant 

role of the heterogeneity in the disease spread dynamics analysis. 

Rachah and Torres (2017) used a continuous time model to study the effect of 

Ebola spread in the SEIR model. They dealt with classical derivatives and integer order 

system. They introduced vaccination as a control system with vital dynamics effects on the 

population. 
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CHAPTER THREE 

METHODOLOGY 

 The objective of this work is to formulate a model that will best describe the recent 

outbreak. Mathematical models can be employed to project and explain how these 

infectious diseases spread and progress to showcase the expected outcome of an outbreak 

of the epidemic and to help in the area of public health intervention. We are going to make 

use of the last model reviewed by Zach (2012) to develop our model. 

The model from Zach (2012). 

 
ௗௌ(௧)

ௗ௧
= −𝑎𝑆(𝑡)𝐼(𝑡) + 𝑐𝑅(𝑇)               (1) 

 
ௗூ(௧)

ௗ௧
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡)      (2) 

 
ௗோ(௧)

ௗ௧
= 𝐼(𝑡)ط − 𝑐𝑅(𝑇)                         (3) 

 
ௗ஽(௧)

ௗ௧
= 𝑒𝐼(𝑡)                                        (4) 

where 

a = the rate of infection 

 the rate of recovery = ط

c = the rate of susceptibility 

e = the rate of death. 
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3.1  DISCUSSION OF THE MODEL 

The model we are considering used epidemic model SIR. The model divides the 

population into the groups of Susceptible, Infected and the Recovered. The Susceptible 

group is expressed by S(t) , Infected by I(t) and the Recovered by R(t). 

Zach (2012) assumed a closed population which we are not going to assume. We 

assume that the population is dynamic. The infection is assumed to spread through contact 

between the susceptible and the infected.The model assumed the population of susceptible 

and that of the infected are distributed randomly over an area. But with what happened in 

the outbreak of Ebola virus in 2014, which violated the closed population assumption 

which made the virus extended to Nigeria, migration plays important role in the 

transmission of infectious diseases. The exposed population will be introduced into the 

model.  

3.2  THE GENERAL S-E-I-R MODEL WITHOUT THE DYNAMICS 

The general S-E-I-R model without incorporating migration and other vital 

dynamics is given below: 

 
ௗௌ∗(௧)

ௗ௧
= −𝑎𝑆(𝑡)𝐼(𝑡) + 𝑐𝑅(𝑡) 

 
ௗா∗(௧)

ௗ௧
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝛿𝐸(𝑡) 

 
ௗூ∗(௧)

ௗ௧
= 𝛿𝐸(𝑡) −  𝐼(𝑡)ط

 
ௗோ∗(௧)

ௗ௧
= 𝐼(𝑡)ط − 𝑐𝑅(𝑡) 

which will be regarded as system 1. 

In the course of the epidemic, the susceptible (S)comes in contact with the 

infected(I)at a constant rate of "a" which will reduce the susceptible population, which 
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signifies that there is a negative constant ’a’ which expresses the product of susceptible (S) 

and the infected (I) in the two populations and defines the rate at which susceptible become 

infected. There will be a similar relationship between the infected and the recovered too. 

3.3  THE GENERAL S-E-I-R MODEL WITH THE VITAL DYNAMICS 

With the vital dynamics to be introduced into the S-E-I-R model which will 

accommodate the migration into the susceptible population, and the disease induced and 

natural death rates will be studied via the diagram in Figure 1. The schematic diagram 

showing the flow of the virus in an individual where infection occurs at a(S,I),latency to 

infectious at 𝛿𝐸 and the recovered from infected group move to recovered group at طI.  
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 Figure 1 The schematic diagram of the flow of the virus.   
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We will build the model for infectious diseases based on the Zach Yarus model by 

slightly modifying the model. 

To create a robust equation that will describe the susceptible population in relation 

to time, we introduced a migration rate into the susceptible class which is denoted by Λ, 

that is the population is assumed dynamic. Also, the susceptible becomes infected at the 

rate of "a" and the population of susceptible is reduced as infected come into contact with 

the susceptible. 

We also looked at those that will die natural death in the susceptible group not as a 

result of the epidemic but other natural death which also reduce the susceptible group. This 

will be expressed as  

 
ௗௌ∗(௧)

ௗ௧
= Λ − 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡). 

 We looked at the susceptible before they are infected, they will also be exposed to the 

infection but not yet infectious so we introduced the exposed group into the model which 

will be that the susceptible individuals will be reduced by the natural death of the 

susceptible. Those that will be exposed to the infection and recover will exit the group and 

move to the recovered group. This can be written as  

 
ௗா∗(௧)

ௗ௧
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝐸(𝑡) − 𝐸(𝑡)ط − 𝛿𝐸(𝑡). 

The equation that describes the infected population is adding what was removed from the 

exposed group. Those that eventually recovered from this group upon treatment or after the 

control measures have been put in place will exit the group and be moved into recovered 

group. Also, those that died naturally and those that died as a result of the infection will 

leave the group. Thus, the equation becomes  

 
ௗூ∗(௧)

ௗ௧
= 𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡). 
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The population of the infected group is reduced in three ways; those that recovered , those 

that died naturally and those that are killed by the disease. 

The recovery group comprises of those that recovered after being infected and 

those that are recovered upon exposure.However, this group will be reduced by those that 

died naturally from the recovered group,and this will be written as  

 
ௗோ∗(௧)

ௗ௧
= 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡). 

 The assumptions are: 

(i)  There are births and deaths, immigration and emigration during the period of 

epidemic. 

(ii)  Only susceptible individuals can get exposed. 

(iii)  Exposed individuals get infected but not yet infectious for some time. 

(iv) The recovered individuals that are not killed by the disease move into the 

susceptible class again. 

(v)  It is a dynamic population. 

So, from Zach (2012) model, our own model will now be  

 
ௗௌ∗(௧)

ௗ௧
= Λ − 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡)                    (5) 

 
ௗா∗(௧)

ௗ௧
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝐸(𝑡) − 𝐸(𝑡)ط − 𝛿𝐸(𝑡)                        (6) 

 
ௗூ∗(௧)

ௗ௧
= 𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡)                                   (7) 

 
ௗோ∗(௧)

ௗ௧
= 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡)                                (8) 

 
ௗ஽

ௗ௧
= 𝑒𝐼(𝑡)                                                                                (9) 

 where 

Λ= the migration rate at which the susceptible class is being populated 
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a= the rate at which the infection spreads 

 the rate of recovery from the infection =ط

c= the rate at which recovered humans progress back to the susceptible class 

e= rate of death caused by the disease 

𝜇= death rate caused by natural phenomenon 

𝛿= progress rate of the exposed class into the infected compartment. 

Equations 5-9 will be regarded as system 2. Since the ninth differential equation is 

independent of equations 5-8 then it suffices to consider equations 5-8 which will be 

regarded as system 3. So our system 3 will now be  

 𝑑𝑆∗(𝑡)

𝑑𝑡
= Λ − 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡)                                                                (5) 

𝑑𝐸∗(𝑡)

𝑑𝑡
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝐸(𝑡) − 𝐸(𝑡)ط − 𝛿𝐸(𝑡)                                                            (6) 

𝑑𝐼∗(𝑡)

𝑑𝑡
𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡)                                                                            (7) 

 
ௗோ∗(௧)

ௗ௧
= 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡)                                                  (8). 

 In system 3, 

N=S+E+I+R 

of those that are living. 

Taking the differential equation with respect to time 

 

 
ௗே(௧)

ௗ௧
=

ௗௌ∗(௧)

ௗ௧
+

ௗா∗(௧)

ௗ௧
+

ௗூ∗(௧)

ௗ௧
+

ௗோ∗(௧)

ௗ௧
 

substituting,  

 
ௗே(௧)

ௗ௧
= Λ − 𝑎𝑆𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝐸(𝑡)ط + 𝑐𝑅(𝑡) + 𝑎𝑆𝐼(𝑡) − 𝜇𝐸(𝑡) −
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𝐸(𝑡)ط − 𝛿𝐸(𝑡) + 𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) 

 

 −𝜇𝐼(𝑡) + 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡) 

This will be reduced to  

 
ௗே(௧)

ௗ௧
= Λ − 𝜇(𝑆 + 𝐸 + 𝐼 + 𝑅) − 𝑒𝐼 

 = Λ − 𝜇𝑁 − 𝑒𝐼 

if e ≈ 0, that is, in the long run if control measures and intervention are put in place and the 

disease induced death is reduced to the minimum, the population is assumed to be 

 

 
ௗே

ௗ௧
= Λ − 𝜇𝑁 

 

i.e 

 
ௗே

ௗ௧
+ 𝜇𝑁 = Λ 

solving the ODE becomes,  

 𝑒ఓ௧ ௗே

ௗ௧
+ 𝑁𝑒ఓ௧ = Λ𝑒ఓ௧ 

 

 𝐼. 𝐹 = 𝑒∫  ఓௗ௧ = 𝑒ఓ௧ 

 

 
ௗ(௘ഋ೟ே)

ௗ௧
= Λ𝑒ఓ௧ 

 

 𝑒ఓ௧𝑁 = Λ ∫  𝑒ఓ௧ 
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 𝑒ఓ௧𝑁 =
Λ

ఓ
𝑒ఓ௧ + 𝐶ଵ 

where 𝐶ଵ is a constant of integration 

 𝑁(𝑡) =
Λ

ఓ
+ 𝑐ଵ𝑒ିఓ௧ 

as t→ ∞, the total population in that community reaches a constant value. 

 𝑁(𝑡) =
Λ

ఓ
 

Thus, the size of the population may vary in time, but without the disease over time, the 

size of the population returns to the steady state of 
Λ

ఓ
. 

3.4  EQUILIBRIUM POINTS OF THE SYSTEM(MODEL) 

At equilibrium, we set  

 
ௗௌ∗

ௗ௧
=

ௗா∗

ௗ௧
=

ௗூ∗

ௗ௧
=

ௗோ∗

ௗ௧
= 0 

that is, when there is no change in the number of susceptible class, exposed class, infected 

class and the recovered class over time then,  

 
ௗௌ∗

ௗ௧
=

ௗா∗

ௗ௧
=

ௗூ∗

ௗ௧
=

ௗோ∗

ௗ௧
= 0 

If the rate of change is zero that means the system is at equilibrium. The work is to find out, 

at what points the system 3is at equilibrium? 

 

 
ௗௌ∗

ௗ௧
= Λ − 𝑎𝑆𝐼 − 𝜇𝑆 + 𝑐𝑅 = 0 

 

 
ௗா∗

ௗ௧
= 𝑎𝑆𝐼 − (𝜇 + ط + 𝛿)𝐸 = 0 

 

 
ௗூ∗

ௗ௧
= 𝛿𝐸 − ط) + 𝑒 + 𝜇)𝐼 = 0 
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ௗோ∗

ௗ௧
= 𝐼ط + 𝐸ط − (𝑐 + 𝜇)𝑅 = 0 

from equation 7,  

 𝛿𝐸 − ط) + 𝑒 + 𝜇)𝐼 = 0 

therefore,  

 𝐼 =
ఋா

(௕ା௘ାఓ)
                                                                                          (10) 

 

substitute I in equation 6  

 𝑎𝑆 ቀ
ఋா

௕ା௘ାఓ
ቁ − (𝜇 + ط + 𝛿)𝐸 = 0 

 

 𝐸 ቀ
௔ఋௌ

௕ା௘ାఓ
− (𝜇 + ط + 𝛿)ቁ = 0 

therefore,  

 𝐸 = 0 

or  

 
௔ఋௌ

௕ା௘ାఓ
− (𝜇 + ط + 𝛿) = 0 

 

 𝐸 = 0 

or  

 𝑆 =
(ఓା௕ାఋ)(طା௘ାఓ)

௔ఋ
 

These are the stationary points. 

Now, when E=0, I=0 substituting I=0, E=0 in equation (8)  
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𝐼ط  + 𝐸ط − (𝑐 + 𝜇)𝑅 = 0 

therefore,  

 −(𝑐 + 𝜇)𝑅 = 0 

R=0 substituting R=0, I=0 in equation(5)  

 Λ − 𝑎𝑆𝐼 − 𝜇𝑆 + 𝑐𝑅 = 0 

 

 Λ − 𝜇𝑆 = 0 

it implies  

 𝑆 =
Λ

ఓ
 

Now, we have values for S, E, I, R when E=0 

Let  

 𝑃∗
଴ = (𝑆଴,  𝐸଴,  𝐼଴,  𝑅଴) = (

Λ

ௌ
, 0,  0,  0) 

This is the disease-free point because at this point, there is no infection because I=0 

Let  

 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) 

be the values for S,E,I,R when 

 

 𝑆 =
(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
 

substituting S in equation(6) 

 

 𝑎𝑆𝐼 − (𝜇 + ط + 𝛿)𝐸 = 0 
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 𝑎 ቀ
(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
ቁ 𝐼 − (𝜇 + ط + 𝛿)𝐸 = 0 

 

 (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)𝐼 = 𝛿(𝜇 + ط + 𝛿)𝐸 

ط)  + 𝑒 + 𝜇)𝐼 = 𝛿𝐸 

therefore,  

 𝐸 =
ூ(ା௘ାఓط)

ఋ
                                                                                      (11) 

substituting E in equation (8) we have 

𝐼ط  + 𝐸ط − (𝑐 + 𝜇)𝑅 = 0 

𝐼ط  + ط ቀ
ା௘ାఓط

ఋ
ቁ 𝐼 − (𝑐 + 𝜇)𝑅 = 0 

 (𝑐 + 𝜇)𝑅 = ط ቀ1 +
(ା௘ାఓط)

ఋ
ቁ 𝐼 

 𝑅 = ط ቀ
ఋା(طା௘ାఓ)

ఋ(௖ାఓ)
ቁ 𝐼                                                                              (12) 

substitute equation (12) and the value of S into equation (5)  

 Λ − 𝑎𝑆𝐼 − 𝜇𝑆 + 𝑐𝑅 = 0 

 Λ − ቀ
(ఓାطାఋ)(طା௘ାఓ)

ఋ
ቁ 𝐼 − 𝜇 ቀ

(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
ቁ + 𝑏𝑐 ቀ

ఋା(طା௘ାఓ)

ఋ(௖ାఓ)
ቁ 𝐼 = 0 

 𝐼 ቀ𝑏𝑐
ఋା(طା௘ାఓ)

ఋ(௖ାఓ)
ቁ − ቀ

(ఓାطାఋ)(طା௘ାఓ)

ఋ
ቁ = 𝜇 ቀ

(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
− Λቁ 

 𝐼 ቀ
(ା௘ାఓط)(ାఋطఓା)(௖ାఓ)ି(ା௘ାఓطఋା)௖ط

ఋ(௖ାఓ)
ቁ =

ఓ(ఓାطାఋ)(طା௘ାఓ)ି௔Λఋ

௔ఋ
 

therefore,  

 𝐼 =
(௖ାఓ)(ఓ(ఓାطାఋ)(طା௘ାఓ)ି௔Λఋ

௔ط௖((ఋାطା௘ାఓ)ି(௖ାఓ)(ఓାطାఋ)(طା௘ାఓ)                                                 
      (13) 

Since 𝐼 ≠ 0, it shows there is a presence of infection in the system. It is at endemic point. 

At the disease-free point, there is no need of using drug because there is no 
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infection at this point. The migration rate into the susceptible class should be more than the 

natural death rate that is,   Λ > 𝜇. 

 

3.5  COMPUTATION OF THE BASIC REPRODUCTION NUMBER, 𝑹𝟎 

By the use of next generation matrix, 

 𝐺 = 𝐹𝑉ିଵ 

where F is the matrix of the newly created infection, V is the matrix of transferred 

infection. 

𝑉ିଵ is the inverse of matrix V 

so,  

 𝐹௜ = ൮

𝑎𝑆𝐼
0
0

൲ 𝑖 = 1,2,3 

 𝑉௜ =

⎝

⎜
⎛

(𝜇 + ط + 𝛿)𝐸

ط) + 𝑒 + 𝜇)𝐼 − 𝛿𝐸

(𝑐 + 𝜇)𝑅 − 𝐼ط − 𝐸ط

⎠

⎟
⎞

𝑖 = 1,2,3 

 𝐹 =

⎝

⎜
⎜
⎛

 ப௙భ

ఋா
ቚ

௉೚
 ப௙భ

ఋூ
ቚ

௉೚
 ப௙భ

ఋோ
ቚ

௉೚

 ப௙మ

ఋா
ቚ

௉೚
 ப௙మ

ఋூ
ቚ

௉೚
 ப௙మ

ఋோ
ቚ

௉೚

 ப௙య

ఋா
ቚ

௉೚
 ப௙య

ఋூ
ቚ

௉೚
 ப௙య

ఋோ
ቚ

௉೚

⎠

⎟
⎟
⎞

=

⎝

⎜
⎛

0
௔Λ

ఓ
0

0 0 0
0 0 0

⎠

⎟
⎞

 

 

 𝑓ଵ = 𝑎𝑠𝐼, 𝑓ଶ = 𝑓ଷ = 0 

Obtaining the derivative of V with respect to E, I and R respectively, we have 
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 𝑉 =

⎝

⎜
⎛

(𝜇 + ط + 𝛿) 0 0

−𝛿 ط) + 𝑒 + 𝜇) 0

ط− ط− (𝑐 + 𝜇)

⎠

⎟
⎞

, 

 

 |𝑉| = (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)(𝑐 + 𝜇) 

Let 𝑉௖௙ be the cofactor, 

That is, 

 

 𝑉௖௙ = ൮

𝑔ଵଵ 𝑔ଵଶ 𝑔ଵଷ

𝑔ଶଵ 𝑔ଶଶ 𝑔ଶଷ

𝑔ଷଵ 𝑔ଷଶ 𝑔ଷଷ
൲ 

so,  

 Vୡ୤𝑔ଵଵ = ቮ
ط) + 𝑒 + 𝜇) 0

ط− (𝑐 + 𝜇)ቮ = ط) + 𝑒 + 𝜇)(𝑐 + 𝜇)      (14) 

 

 Vୡ୤𝑔ଵଶ = − อ
−𝛿 0

ط− (𝑐 + 𝜇)อ = 𝛿(𝑐 + 𝜇)                                  (15) 

 

 Vୡ୤𝑔ଵଷ = ቮ
−𝛿 ط) + 𝑒 + 𝜇)

ط− ط− ቮ = 𝛿)ط + ط) + 𝑒 + 𝜇))             (16) 

 

 Vୡ୤𝑔ଶଵ = − อ
0 0

ط− (𝑐 + 𝜇)อ = 0                                              (17) 
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 Vୡ୤𝑔ଶଶ = ቮ
(𝜇 + ط + 𝛿) 0

ط− (𝑐 + 𝜇)ቮ = (𝜇 + ط + 𝛿)(𝑐 + 𝜇)      (18) 

 

 Vୡ୤𝑔ଶଷ = − ቮ
(𝜇 + ط + 𝛿) 0

ط− ቮط− = 𝜇)ط + ط + 𝛿                                   (19) 

 

 Vୡ୤𝑔ଷଵ = อ
0 0

ط) + 𝑒 + 𝜇) 0 อ = 0                                                          (20) 

 

 Vୡ୤𝑔ଷଶ = − อ
(𝜇 + ط + 𝛿) 0

−𝛿 0 อ = 0                                                      (21) 

 

 Vୡ୤𝑔ଷଷ = ቮ
(𝜇 + ط + 𝛿) 0

−𝛿 ط) + 𝑒 + 𝜇)ቮ = (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)   (22) 

 therefore,  

 𝑉௖௙ = ቌ

𝑚ଵ 𝑚ଶ 𝑚ଷ

𝑚ସ 𝑚ହ 𝑚଺

𝑚଻ 𝑚଼ 𝑚ଽ
ቍ 

 

 𝐴𝑑𝑗𝑉௖௙ = ቌ

𝑚ଵ 𝑚ସ 𝑚଻

𝑚ଶ 𝑚ହ 𝑚଼

𝑚ଷ 𝑚଺ 𝑚ଽ
ቍ 

 

 Vିଵ =
஺ௗ௝(௏೎೑)

|௏|
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 =

⎝

⎜
⎜
⎛

ଵ

ఓାطାఋ
0 0

ఋ

(ఓାطାఋ)(طା௘ାఓ)

ଵ

(ା௘ାఓط)
0

((ା௘ାఓط)ఋା)ط

(ఓାطାఋ)(طା௘ାఓ)(௖ାఓ)

ط

(௖ାఓ)(ା௘ାఓط)

ଵ

௖ାఓ

⎠

⎟
⎟
⎞

 

 

 𝐺 = 𝐹𝑉ିଵ 

 

 =

⎝

⎜
⎛

0
௔Λ

ఓ
0

0 0 0
0 0 0

⎠

⎟
⎞

⎝

⎜
⎜
⎛

ଵ

ఓାطାఋ
0 0

ఋ(௖ାఓ)

(ఓାطାఋ)(௕ା௘ାఓ)

ଵ

(ା௘ାఓط)
0

((ା௘ାఓط)ఋା)ାط

(ఓାطାఋ)(طା௘ାఓ)

ط

(௖ାఓ)(ା௘ାఓط)

ଵ

(௖ାఓ)

⎠

⎟
⎟
⎞

 

 

 𝐺 =

⎝

⎜
⎛

௔Λఋ(௖ାఓ)

ఓ(ఓାطାఋ)(௕ା௘ାఓ)

௔Λ

ఓ(طା௘ାఓ)
0

0 0 0
0 0 0

⎠

⎟
⎞

 

The dominant eigenvalue of G is the basic reproduction number denoted by 𝑅଴.  i.e 

|𝐺 − 𝜆𝐼| = 0 where I is the identity matrix. 

 

 ተተ

(
௔Λఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
− 𝜆)

௔Λ

ఓ(طା௘ାఓ)
0

0 −𝜆 0
0 0 −𝜆

ተተ = 0 

 

 ቀ
௔Λఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
− 𝜆ቁ (−𝜆)(−𝜆) = 0 
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therefore,  

 𝜆ଵ =
௔Λఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
    `𝜆ଶ = 𝜆ଷ = 0 

The dominant eigenvalue is 

 

 𝜆ଵ = 𝑅଴ =           
௔Λఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
 

Therefore, the basic reproduction number of the model is given as 

 

 𝑅଴
∗ =

௔Λఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
                                                                 (23). 

3.6  THE STABILITY ANALYSIS OF THE MODEL 

 The stability of the model is investigated in two ways: Locally and globally. 

3.6.1  Local stability of disease free equilibrium: 

Theorem:The stability of the disease-free equilibrium of system (3) is 

asymptotically local if 𝑅଴
∗ < 1 otherwise it is not stable. 

Proof: The matrix of the Jacobian of system (3) at 𝑃∗
଴ 

 𝐽 =

⎝

⎜⎜
⎛

−𝑎𝐼 − 𝜇 0 −𝑎𝑠 𝑐

𝑎𝐼 −(𝜇 + ط + 𝛿) 𝑎𝑠 0

0 𝛿 ط)− + 𝑒 + 𝜇) 0

0 ط ط −(𝑐 + 𝜇)
⎠

⎟⎟
⎞

 

at 𝑃∗
଴ = (𝑆଴, 𝐸଴, 𝐼଴, 𝑅଴) = (

Λ

ఓ
, 0,0,0) 

 therefore,  
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 𝐽(𝑃∗
଴) =

⎝

⎜
⎜
⎜
⎛

−𝜇 0
ି௔Λ

ఓ
𝑐

0 −(𝜇 + ط + 𝛿)
௔Λ

ఓ
0

0 𝛿 ط)− + 𝑒 + 𝜇) 0

0 ط ط −(𝑐 + 𝜇)
⎠

⎟
⎟
⎟
⎞

    (24) 

 

 The characteristic equation of equation (24) is  

 |𝐽(𝑃∗
଴) − 𝜆𝐼| = 0 

 

 

ተ

ተ

−(𝜇 + 𝜆) 0
ି௔Λ

ఓ
𝑐

0 (−(𝜇 + ط + 𝛿) − 𝜆)
௔Λ

ఓ
0

0 𝛿 ط)−) + 𝑒 + 𝜇) − 𝜆) 0

0 ط ط (−(𝑐 + 𝜇) − 𝜆)
ተ

ተ

= 0 

 

(−𝜇 − 𝜆)(−(𝑐 + 𝜇) − 𝜆) ൬(−(𝜇 + ط + 𝛿) − 𝜆)(−(ط + 𝑒 + 𝜇) − 𝜆) −
𝑎Λ𝛿

𝜇
൰ = 0 

 

 𝜆ଵ = −𝜇,        𝜆ଶ = −(𝑐 + 𝜇), 

 

 ቀ𝜆ଶ + ط) + 𝑒 + 𝜇 + 𝜇 + ط + 𝛿)𝜆 + (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇) −
௔Λఋ

ఓ
ቁ = 0 

 

 ቀ𝜆ଶ + ط2) + 𝑒 + 2𝜇 + 𝛿)𝜆 + (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)(1 −
௔Λఋ

ఓ
)ቁ = 0 
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 𝜆ଶ + ط2) + 𝑒 + 2𝜇 + 𝛿)𝜆 + (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)(1 − 𝑅଴
∗) = 0     (25) 

 If 𝑅଴ < 1, then by Descarte’s rule of signs, there is no sign change, hence, there are no 

positive roots of equation (25). 

Furthermore, if 𝜆 is replaced by −𝜆 in equation (25)  

 𝜆ଶ − ط2) + 𝑒 + 2𝜇 + 𝛿)𝜆 + (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)(1 − 𝑅଴) = 0    (26) 

 If 𝑅଴
∗ < 1, then equation (26) has two signs change, hence there are exactly two negative 

roots of equation (26) Therefore, 𝑃∗
଴ is asymptotically stable locally if 𝑅଴

∗ < 1. The result 

follows immediately that 𝑃଴ is unstable if 𝑅଴
∗ > 1. 

 

3.6.2  Global stability of the disease-free equilibrium 

We make use of Lyapunov function which says  

 𝐿∗(𝐸, 𝐼) = (𝜇 + ط + 𝛿)𝐼 + 𝛿𝐸                                                                       (27) 

 Obtain the derivative of equation (27) along the solutions of equations (6) and (7) 

 

 𝐿∗
′ = (𝜇 + ط + 𝛿)𝐼′ + 𝛿𝐸′ 

 

 = (𝜇 + ط + 𝛿)൫𝛿𝐸 − ط) + 𝑒 + 𝜇)𝐼൯ + 𝛿൫𝑎𝑆𝐼 − (𝜇 + ط + 𝛿)𝐸൯ 

 

 = (𝜇 + ط + 𝛿)𝛿𝐸 − (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)𝐼 + 𝛿𝑎𝑆𝐼 − (𝜇 + ط + 𝛿)𝛿𝐸 

 

 = 𝛿𝑎𝑆𝐼 − (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)𝐼 

 

 = ൫𝛿𝑎𝑆 − (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)൯𝐼 
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 = (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇) ቀ
ఋ௔ௌ

(ఓାطାఋ)(طା௘ାఓ)
− 1ቁ 𝐼 

 

 At the disease free,  

 𝑆 = 𝑆଴ =
Λ

ఓ
 

= (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇) ቆ
𝛿𝑎Λ

𝜇(𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)
− 1ቇ 𝐼 

therefore, 𝐿∗′ = (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)(𝑅଴
∗ − 1)𝐼,    𝐿∗′ < 0  whenever 𝑅଴

∗ < 1  and 

𝐼 > 0  furthermore, 𝐿∗′ = 0  whenever 𝑅଴
∗ = 1  and or 𝐼 ≥ 0,    𝐿∗′ ≤ 0  if 𝑅଴

∗ ≤ 1  and 

𝐼 ≥ 0. 

 

3.7  THE EXISTENCE OF BIFURCATION IN THE MODEL 

3.7.1  The local stability of the endemic equilibrium 

We made use of bifurcation and the center manifold theorem in Buonomo and 

Lacitignola (2011) to show whether or not the stability of the endemic equilibrium of 

system 3 exists. 

Let a = a* be the bifurcation parameter 

Let us consider a system of ordinary differential equation with parameter𝑎∗ 

 

 
ௗ௙∗

ௗ௫
= 𝑓∗(𝑥, 𝑎∗), 𝑓∗: 𝑅௡ × 𝑅 → 𝑅௡, 𝑓∗ ∈ 𝐶ଶ(𝑅௡ × 𝑅).                      (𝑃) 

Without any loss of generality, we assume that 𝑥∗′ = 0 is an equilibrium point for P 

So from Buonomo and Lacitignola (2011), 
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Theorem A: Assume: 

(1) 𝐴ଵ
∗ = 𝐷௫𝑓∗(0,0)is the linearization matrix of system (P) around the equilibrium 

𝑥∗′ = 0 with 𝑎∗ evaluated at 0. Zero is a simple eigenvalue of 𝐴ଵ
∗  and all other 

eigenvalues of 𝐴ଵ
∗  are of negative parts that are real; 

(2) Matrix 𝐴ଵ
∗  with a (non negative) right eigenvector 𝜔 and a left eigenvector v 

which is equivalent to eigenvalue of value zero. Let 𝑓௞ denotes the kth component of f, 

and  

 
𝐴ଵ

∗ = ∑  ସ
௞,௜,௝ୀଵ 𝑉௞𝑤௜𝑤௝

பమ௙ೖ

ப௫೔ ப௫ೕ
(0,0)

𝐵ଵ
∗ = ∑  ସ

௞,௜,ୀଵ 𝑉௞𝑤௜
பమ௙ೖ

ப௫೔ ப௫ೌ
(0,0)

 

Where ωi,, ωj are the right eigenvectors and Vkthe left eigenvector. Then the local 

dynamics of system (P) around 𝑥∗′ = 0 can be found totally by A*
1 and B*

1. 

(i)  If 𝐴ଵ
∗ > 0, 𝐵ଵ

∗ > 0., when 𝑎∗ < 0,  with |𝑎∗| < 1,  then the point at which 

𝑥∗′ = 0 is asymptotically stable locally and it shows a positive equilibrium that is not 

stable; when 0 < 𝑎∗ < 1, 𝑥∗′ = 0  is unstable it shows a local equilibrium that is 

asymptotically stable which is negative. 

(ii)  If 𝐴ଵ
∗ < 0, 𝐵ଵ

∗ < 0 , when 𝑎∗ < 0,  with |𝑎∗| < 1  then the point at which 

𝑥∗′ = 0 is not stable ; when 0 < 𝑎∗ < 1, 𝑥∗′ = 0 is asymptotically stable locally and it 

shows a positive equilibrium that is not stable. 

(iii)  If 𝐴ଵ
∗ > 0, 𝐵ଵ

∗ < 0, when 𝑎∗ < 0, with |𝑎∗| < 1, then the point at which 

𝑥∗′ = 0 is not stable and it shows an asymptotically locally stable negative equilibrium 

when 0 < 𝑎∗ < 1, then the point at which 𝑥∗′ = 0 is stable and there appears a positive 

equilibrium. 
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(iv)  If 𝐴ଵ
∗ < 0, 𝐵ଵ

∗ > 0, when 𝑎∗ moves from negative point to positive point, 

then the point at which 𝑥∗′ = 0  loses its stability from stable point to unstable. 

Consequently, a negative equilibrium that is unstable becomes a positive one and 

asymptotically stable equilibrium locally. 

Proof 

Let 𝑎∗ be the bifurcation parameter. 

The bifurcation nature around the disease free equilibrium is now investigated as 

follows, if 𝑎 < 𝑎∗ then stability is achievedand the stability is lost if 𝑎 > 𝑎∗. 

Recall that,  

 𝑅଴
∗ =

௔ஃఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
 

By considering the case  

 𝑅଴
∗ = 1 

 
௔ஃఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
= 1 

therefore,  

 𝑎 = 𝑎∗ =
ఓ(ఓାطାఋ)(طା௘ାఓ)

ஃఋ
 

It is now shown that the system of equations in (5) to (8) has a simple zero eigenvalue. By 

taking the Jacobian of equations (5) to (8) at the disease free equilibrium, we have that  

 𝐽 =

⎝

⎜⎜
⎛

−𝑎𝐼 − 𝜇 0 −𝑎𝑆 𝑐

𝑎𝐼 −(𝜇 + ط + 𝛿) 𝑎𝑆 0

0 𝛿 ط)− + 𝑒 + 𝜇) 0

0 ط ط −(𝑐 + 𝜇)
⎠

⎟⎟
⎞

 

at the disease free 𝑃∗
଴ 
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 𝐽(𝑃∗
଴) =

⎝

⎜
⎜
⎜
⎛

−𝜇 0
ି௔∗ஃ

ఓ
𝑐

0 −(𝜇 + ط + 𝛿)
௔∗ஃ

ఓ
0

0 𝛿 ط)− + 𝑒 + 𝜇) 0

0 ط ط −(𝑐 + 𝜇)
⎠

⎟
⎟
⎟
⎞

      (28) 

 

The characteristic polynomial of equation (28)  

 |𝐽(𝑝∗
଴) − 𝜆𝐼| = 0 

 

 

ተ

ተ

−𝜇 − 𝜆 0
ି௔∗ஃ

ఓ
𝑐

0 (−(𝜇 + ط + 𝛿) − 𝜆)
௔∗ஃ

ఓ
0

0 𝛿 ط)−) + 𝑒 + 𝜇) − 𝜆) 0

0 ط ط (−(𝑐 + 𝜇) − 𝜆)
ተ

ተ

= 0 

 Evaluating using the first column gives  

(−𝜇 − 𝜆)(−(𝑐 + 𝜇) − 𝜆) ൤൫1 − (𝜇 + ط + 𝛿) − 𝜆)(−(ط + 𝑒 + 𝜇) − 𝜆൯ −
𝑎∗Λ𝛿

𝜇
൨ = 0 

 

 𝜆ଵ = −𝜇,            𝜆ଶ = −(𝑐 + µ) 

 

 ቂ((𝜇 + ط + 𝛿) + 𝜆)((ط + 𝑒 + 𝜇) + 𝜆) −
௔∗ஃఋ

ఓ
ቃ = 0 
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𝜆ଶ + [𝜇 + ط + 𝛿 + ط + 𝑒 + 𝜇]𝜆 + (𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)

−
𝜇(𝜇 + ط + 𝛿)(ط + 𝑒 + 𝜇)Λ𝛿

Λ𝛿𝜇
= 0 

 

 𝜆ଶ + (2𝜇 + ط2 + 𝛿 + 𝑒)𝜆 = 0 

 

 𝜆(𝜆 + (2𝜇 + ط2 + 𝛿 + 𝑒)) = 0 

 

 𝜆ଷ = 0,        `𝜆ସ = −(2𝜇 + ط2 + 𝛿 + 𝑒) 

so the eigenvalues are  

 𝜆ଵ = −𝜇.        𝜆ଶ = −(𝑐 + 𝜇),        𝜆ଷ = 0      𝜆ସ = −(2𝜇 + ط2 + 𝛿 + 𝑒) 

Hence we have 𝜆ଷ = 0 to be simple zero eigenvalue while other eigenvalues are negative. 

Hence, when 𝑎 = 𝑎∗ (when 𝑅଴
∗ = 1), the disease free equilibrium in the assumption of 

theorem A is then verified. 

We now obtain the right eigenvector denoted by 𝜔 

associated with the 𝜆ଷ = 0. Thus,  

 𝜔 = (𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝜔ସ)் 

 

 

⎝

⎜
⎜
⎜
⎛

−𝜇 0
ି௔∗Λ

ఓ
𝑐

0 −(𝜇 + ط + 𝛿)
௔∗Λ

ఓ
0

0 𝛿 ط)− + 𝑒 + 𝜇) 0

0 ط ط −(𝑐 + 𝜇)
⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛

𝜔ଵ

𝜔ଶ

𝜔ଷ

𝜔ସ

⎠

⎟
⎞

=

⎝

⎜
⎛

0
0
0
0

⎠

⎟
⎞

 

we have,  
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 −𝜇𝜔ଵ −
௔∗ஃ

ఓ
𝜔ଷ + 𝑐𝜔ସ = 0 

 

 −(𝜇 + ط + 𝛿)𝜔ଶ +
௔∗ஃ

ఓ
𝜔ଷ = 0 

 

 𝛿𝜔ଶ − ط) + 𝑒 + 𝜇)𝜔ଷ = 0 

 

𝜔ଶط  + 𝜔ଷط − (𝑐 + 𝜇)𝜔ସ = 0 

therefore,  

 𝜔ଷ =
ఓ(ఓାطାఋ)ఠమ

௔∗ஃ
 

then from  

𝜔ଶط  + 𝜔ଷط − (𝑐 + 𝜇)𝜔ସ = 0, 

 

𝜔ଶط  +
ఠమ(ାఋطఓା)ఓط

௔∗ஃ
− (𝑐 + 𝜇)𝜔ସ = 0 

then,  

 𝜔ସ =
((ାఋطఓା)௔∗ஃାఓ)ط

௔∗ஃ(௖ାఓ)
𝜔ଶ 

and from  

 −𝜇𝜔ଵ −
௔∗ஃ

ఓ
𝜔ଷ + 𝑐𝜔ସ = 0, 

then,  

 𝜔ଵ =
௖

ఓ
𝜔ସ −

(ఓାطାఋ)

ఓ
𝜔ଶ 

substituting 

 𝜔ଶ 𝑎𝑛𝑑 𝜔ସ 
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we have,  

 𝜔ଵ =
௖ط

ఓ
ቀ

௔∗ஃାఓ(ఓାطାఋ)

௔∗ஃ(௖ାఓ)
−

(ఓାطାఋ)

ఓ
ቁ 𝜔ଶ 

so that,  

 𝜔 = (𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝜔ସ)் 

 

will now be,  

 𝜔 = ቀ
௖ط

ఓ
ቀ

௔∗Λାఓ(ఓାطାఋ)

௔∗Λ(௖ାఓ)
ቁ −

(ఓାطାఋ)

ఓ
ቁ 𝜔ଶ, 𝜔ଶ,

ఓ(ఓାطାఋ)

௔∗Λ
𝜔ଶ,

ቀ
((ାఋطఓା)௔∗Λାఓ)ط

௔∗Λ(௖ାఓ)
𝜔ଶቁ

்

 

where  𝜔ଶ > 0 is a free right eigenvector. 

Similarly,left eigenvector denoted by V defined thus:  

 𝑉 = (𝑉ଵ, 𝑉ଶ, 𝑉ଷ, 𝑉ସ) 

 

 (𝑉ଵ, 𝑉ଶ, 𝑉ଷ, 𝑉ସ)

⎝

⎜
⎜
⎜
⎛

−𝜇 0
ି௔∗ஃ

ఓ
𝑐

0 −൫𝜇 + ط + 𝛿൯
௔∗ஃ

ఓ
0

0 𝛿 −൫ط + 𝑒 + 𝜇൯ 0

0 ط ط −(𝑐 + 𝜇)
⎠

⎟
⎟
⎟
⎞

= (0, 0, 0, 0) 

solving this, we have, 𝑉ଵ = 0, and 𝑉ସ = 0 then,  

 −(𝜇 + ط + 𝛿)𝑉ଶ + 𝛿𝑉ଷ + 𝑏𝑉ସ = 0 

therefore,  

 𝑉ଷ =
(ఓାطାఋ)

ఋ
𝑉ଶ 

let  𝑉ଶ be a positive free variable, then,  
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 𝑉 = (𝑉ଵ, 𝑉ଶ, 𝑉ଷ, 𝑉ସ) 

will now be,  

 𝑉 = ቀ0, 𝑉ଶ,
(ఓାطାఋ)

ఋ
𝑉ଶ, 0ቁ 

where,  𝑉ଶ > 0 is a free left eigenvector. 

To solve for the coefficients 𝐴ଵ
∗  and 𝐵ଵ

∗ in the theorem A,  

 
𝐴ଵ

∗ = ∑  ସ
௞,௜,௝ୀଵ 𝑉௞𝑤௜𝑤௝

பమ௙ೣ

ப௫೔ ப௫ೕ
(𝐸଴, 𝑎∗)

𝐵ଵ
∗ = ∑  ସ

௞,௜,ୀଵ 𝑉௞𝑤௜𝑤௝
பమ௙ೣ

ப௫೔ ப௫೛
(𝐸଴, 𝑎∗)

 

 

 We now consider the non-zero components of V in the system 3  

 
ௗௌ∗(௧)

ௗ௧
= Λ − 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡) = 𝑓ଵ                          (29) 

 
ௗா∗(௧)

ௗ௧
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝐸(𝑡) − 𝐸(𝑡)ط − 𝛿𝐸(𝑡) = 𝑓ଶ                          (30) 

 
ௗூ∗(௧)

ௗ௧
= 𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡) = 𝑓ଷ                          (31) 

 

 
ௗோ∗(௧)

ௗ௧
= 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡) = 𝑓ସ                          (32) 

 Let S = 𝑥ଵ, E = 𝑥ଶ, I = 𝑥ଷ, R = 𝑥ସ 

 𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ)் 

 

 
ௗ௑

ௗ௧
= 𝐹(𝑥), 𝐹 = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ)் 

so,  

 
ௗ௫భ

ௗ௧
= 𝑓ଵ = Λ − 𝑎𝑥ଵ𝑥ଷ − 𝜇𝑥ଵ + 𝑐𝑥ସ 
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ௗ௫మ

ௗ௧
= 𝑓ଶ = 𝑎𝑥ଵ𝑥ଷ − (𝜇 + ط + 𝛿)𝑥ଶ 

 

 
ௗ௫య

ௗ௧
= 𝑓ଷ = 𝛿𝑥ଶ − ط) + 𝑒 + 𝜇)𝑥ଷ 

 

 
ௗ௫ర

ௗ௧
= 𝑓ସ = 𝑥ଷط + − 𝑥ଶط (𝑐 + 𝜇)𝑥ସ 

when k = 2, for i = 1,2,3,4 and j = 1,2,3,4 and when k = 3, for i = 1,2,3,4 and j = 1,2,3,4 the 

sum  

 
𝐴 = ∑  ସ

௞,௜,௝ୀଵ 𝑉௞𝑤௜𝑤௝
பమ௙ೣ

ப௫೔ ப௫ೕ
(𝐸଴, 𝑎∗)

 

may be computed explicitly as  

𝐴ଵ
∗ = 𝑉ଶ𝜔ଵ

ଶ
∂ଶ𝑓ଶ

∂𝑥ଵ
ଶ + 𝑉ଶ𝜔ଵ𝜔ଶ

∂ଶ𝑓ଶ

∂𝑥ଵ𝑥ଶ
+ 𝑉ଶ𝜔ଵ𝜔ଷ

∂ଶ𝑓ଶ

∂𝑥ଵ𝑥ଷ
+ 𝑉ଶ𝜔ଵ𝜔ସ

∂ଶ𝑓ଶ

∂𝑥ଵ𝑥ସ
+ 𝑉ଶ𝜔ଶ𝜔ଵ

∂ଶ𝑓ଶ

∂𝑥ଶ𝑥ଵ

+ 𝑉ଶ𝜔ଶ
ଶ

∂ଶ𝑓ଶ

∂𝑥ଶ
ଶ + 𝑉ଶ𝜔ଶ𝜔ଷ

∂ଶ𝑓ଶ

∂𝑥ଶ𝑥ଷ
+ 𝑉ଶ𝜔ଶ𝜔ସ

∂ଶ𝑓ଶ

∂𝑥ଶ𝑥ସ
+ 𝑉ଶ𝜔ଷ𝜔ଵ

∂ଶ𝑓ଶ

∂𝑥ଷ𝑥ଵ

+ 𝑉ଶ𝜔ଷ𝜔ଶ

∂ଶ𝑓ଶ

∂𝑥ଷ𝑥ଶ
+ 𝑉ଶ𝜔ଷ

ଶ
∂ଶ𝑓ଶ

∂𝑥ଷ
ଶ + 𝑉ଶ𝜔ଷ𝜔ସ

∂ଶ𝑓ଶ

∂𝑥ଷ𝑥ସ
 

 

 +𝑉ଶ𝜔ସ𝜔ଵ
பమ௙మ

ப௫ర௫భ
+ 𝑉ଶ𝜔ସ𝜔ଶ

பమ௙మ

ப௫ర௫మ
+ 𝑉ଶ𝜔ସ𝜔ଷ

பమ௙మ

ப௫ర௫య
+ 𝑉ଶ𝜔ସ

ଶ பమ௙మ

ப௫ర
మ + 

 

𝑉ଷ𝜔ଵ
ଶ

∂ଶ𝑓ଷ

∂𝑥ଵ
ଶ + 𝑉ଷ𝜔ଵ𝜔ଶ

∂ 𝑓ଷ

∂𝑥ଵ𝑥ଶ
+ 𝑉ଷ𝜔ଵ𝜔ଷ

∂ଶ𝑓ଷ

∂𝑥ଵ𝑥ଷ
+ 𝑉ଷ𝜔ଵ𝜔ସ

∂ଶ𝑓ଷ

∂𝑥ଵ𝑥ସ
+ 𝑉ଷ𝜔ଶ𝜔ଵ

∂ଶ𝑓ଷ

∂𝑥ଶ𝑥ଵ

+ 𝑉ଷ𝜔ଶ
ଶ

∂ଶ𝑓ଷ

∂𝑥ଶ
ଶ  
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+𝑉ଷ𝜔ଶ𝜔ଷ

∂ଶ𝑓ଷ

∂𝑥ଶ𝑥ଷ
+ 𝑉ଷ𝜔ଶ𝜔ସ

∂ଶ𝑓ଷ

∂𝑥ଶ𝑥ସ
+ 𝑉ଷ𝜔ଷ𝜔ଵ

∂ଶ𝑓ଷ

∂𝑥ଷ𝑥ଵ
+ 𝑉ଷ𝜔ଷ𝜔ଶ

∂ଶ𝑓ଷ

∂𝑥ଷ𝑥ଶ
+ 𝑉ଷ𝜔ଷ

ଶ
∂ଶ𝑓ଷ

∂𝑥ଷ
ଶ

+ 𝑉ଷ𝜔ଷ𝜔ସ

∂ଶ𝑓ଷ

∂𝑥ଷ𝑥ସ
 

 

 +𝑉ଷ𝜔ସ𝜔ଵ
பమ௙య

ப௫ర௫భ
+ 𝑉ଷ𝜔ସ𝜔ଶ

பమ௙య

ப௫ర௫మ
+ 𝑉ଷ𝜔ସ𝜔ଷ

பమ௙య

ப௫ర௫య
+ 𝑉ଷ𝜔ସ

ଶ பమ௙య

ப௫ర
మ  

therefore, 

 

𝐴ଵ
∗ = 𝑉ଶ𝜔ଵ

ଶ
∂ଶ𝑓ଶ

∂𝑥ଵ
ଶ + 2𝑉ଶ𝜔ଵ𝜔ଶ

∂ଶ𝑓ଶ

∂𝑥ଵ ∂𝑥ଶ
+ 2𝑉ଶ𝜔ଵ𝜔ଷ

∂ଶ𝑓ଶ

∂𝑥ଵ ∂𝑥ଷ
+ 2𝑉ଶ𝜔ଵ𝜔ସ

∂ଶ𝑓ଶ

∂𝑥ଵ ∂𝑥ସ

+ 𝑉ଶ𝜔ଶ
ଶ

∂ଶ𝑓ଶ

∂𝑥ଶ
ଶ + 2𝑉ଶ𝜔ଶ𝜔ଷ

∂ଶ𝑓ଶ

∂𝑥ଶ ∂𝑥ଷ
+ 2𝑉ଶ𝜔ଶ𝜔ସ

∂ଶ𝑓ଶ

∂𝑥ଶ ∂𝑥ସ
+ 𝑉ଶ𝜔ଷ

ଶ
∂ଶ𝑓ଶ

∂𝑥ଷ
ଶ

+ 2𝑉ଶ𝜔ଷ𝜔ସ

∂ଶ𝑓ଶ

∂𝑥ଷ ∂𝑥ସ
+ 𝑉ଶ𝜔ସ

ଶ
∂ଶ𝑓ଶ

∂𝑥ସ
ଶ + 𝑉ଷ𝜔ଵ

ଶ
∂ଶ𝑓ଷ

∂𝑥ଵ
ଶ + 2𝑉ଷ𝜔ଵ𝜔ଶ

∂ଶ𝑓ଷ

∂𝑥ଵ ∂𝑥ଶ

+ 2𝑉ଷ𝜔ଵ𝜔ଷ

∂ଶ𝑓ଷ

∂𝑥ଵ ∂𝑥ଷ
+ 2𝑉ଷ𝜔ଵ𝜔ସ

∂ଶ𝑓ଷ

∂𝑥ଵ ∂𝑥ସ
+ 𝑉ଷ𝜔ଶ

ଶ
∂ଶ𝑓ଷ

∂𝑥ଶ
ଶ

+ 2𝑉ଷ𝜔ଶ𝜔ଷ

∂ଶ𝑓ଷ

∂𝑥ଶ ∂𝑥ଷ
+ 2𝑉ଷ𝜔ଶ𝜔ସ

∂ଶ𝑓ଷ

∂𝑥ଶ ∂𝑥ସ
+ 𝑉ଷ𝜔ଷ

ଶ
∂ଶ𝑓ଷ

∂𝑥ଷ
ଶ

+ 2𝑉ଷ𝜔ଷ𝜔ସ

∂ଶ𝑓ଷ

∂𝑥ଷ ∂𝑥ସ
+ 𝑉ଷ𝜔ସ

ଶ
∂ଶ𝑓ଷ

∂𝑥ସ
ଶ  

But,  

 
பమ௙మ

ப௫భ
మ =

பమ௙మ

ப௫భ ப௫మ
=

பమ௙మ

ப௫భ ப௫ర
=

பమ௙మ

ப௫మ
మ =

பమ௙మ

ப௫మ ப௫య
=

பమ௙మ

ப௫మ ப௫ర
=

பమ௙మ

ப௫య
మ =

பమ௙మ

ப௫య ப௫ర
=

பమ௙మ

ப௫ర
మ  
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=
∂ଶ𝑓ଷ

∂𝑥ଵ
ଶ =

∂ଶ𝑓ଷ

∂𝑥ଵ ∂𝑥ଶ
=

∂ଶ𝑓ଷ

∂𝑥ଵ ∂𝑥ଷ
=

∂ଶ𝑓ଷ

∂𝑥ଵ ∂𝑥ସ
=

∂ଶ𝑓ଷ

∂𝑥ଶ
ଶ =

∂ଶ𝑓ଷ

∂𝑥ଶ ∂𝑥ଷ
=

∂ଶ𝑓ଷ

∂𝑥ଶ ∂𝑥ସ
=

∂ଶ𝑓ଷ

∂𝑥ଷ
ଶ

=
∂ଶ𝑓ଷ

∂𝑥ଷ ∂𝑥ସ
=

∂ଶ𝑓ଷ

∂𝑥ସ
ଶ = 0 

and 

 
பమ௙మ

ப௫భ ப௫య
= 𝑎 

so,  

 𝐴ଵ
∗ = 2𝑉ଶ𝜔ଵ𝜔ଷ

பమ௙మ

ப௫భ ப௫య
 

 

 = 2𝑉ଶ𝜔ଵ𝜔ଷ𝑎 

 

 =
ଶ

ఓ
ቀ

ఓ(ఓାطାఋ)

௔∗Λ
ቁ 𝜔ଶ ቀ

((ାఋطఓା)௔∗Λାఓ)௖ط

௔∗Λା(௖ାఓ)
− (𝜇 + ط + 𝛿)ቁ 𝜔ଶ𝑉ଶ𝑎 

 

 =
ଶ(ఓାطାఋ)మ

௔∗Λ
𝜔ଶ

ଶ𝑉ଶ𝑎 ቀ
((ାఋطఓା)௔∗Λାఓ)௖ط

(௔∗Λା(௖ାఓ))(ఓାطାఋ)
− 1ቁ 

Let,  

 𝐴∗ =
((ାఋطఓା)௔∗Λାఓ)௖ط

(௔∗Λା(௖ାఓ))(ఓାطାఋ)
 

therefore,  

 𝐴ଵ
∗ =

ଶ(ఓାطାఋ)మ

௔∗Λ
𝜔ଶ

ଶ𝑉ଶ𝑎(𝐴∗ − 1) 

The sign of coefficient 𝐴ଵ
∗  is completely determined by 𝐴∗, thus If 

(i) 𝐴∗ > 1, then 𝐴ଵ
∗  is positive. 

(ii) 𝐴∗ < 1, then 𝐴ଵ
∗  is negative. 

Similarly, we compute the sum for B in the theorem explicitly. Recall that,  
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 𝐵ଵ
∗ = ∑  ସ

௞,௜,ୀଵ 𝑉௞𝑤௜
பమ௙ೖ

ப௫೔ ப௔
(𝐸଴, 𝑎∗) 

for k=2, when i = 1,2,3,4 and j =1,2,3,4 and for k = 3, when i = 1,2,3,4 

Remember (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ) = (
ஃ

ఓ
, 0,0,0) 

 𝐵 = 𝑉ଶ𝜔ଵ
பమ௙మ

ப௫భ பೌ
+ 𝑉ଶ𝜔ଶ

பమ௙మ

ப௫మ பೌ
+ 𝑉ଶ𝜔ଷ

பమ௙మ

ப௫య பೌ
+ 𝑉ଶ𝜔ସ

பమ௙మ

ப௫ర பೌ
 

 

 +𝑉ଷ𝜔ଵ
பమ௙య

ப௫భ பೌ
+ 𝑉ଷ𝜔ଶ

பమ௙య

ப௫మ பೌ
+ 𝑉ଷ𝜔ଷ

பమ௙య

ப௫య பೌ
+ 𝑉ଷ𝜔ସ

பమ௙య

ப௫ర பೌ
 

But,  

 
பమ௙మ

ப௫భ பೌ
=

பమ௙మ

ப௫మ பೌ
=

பమ௙మ

ப௫ర பೌ
=

பమ௙య

ப௫భ பೌ
=

பమ௙య

ப௫మ பೌ
=

பమ௙య

ப௫య பೌ
=

பమ௙య

ப௫ర பೌ
= 0 

and 

 
பమ௙మ

ப௫య பೌ
=

ஃ

ఓ
 

therefore,  

 𝐵ଵ
∗ = 𝑉ଶ𝜔ଷ

பమ௙మ

ப௫య பೌ
 

 

 = 𝑉ଶ𝜔ଷ
ஃ

ఓ
 

 

 =
ఓ(ఓାطାఋ)

௔∗ஃ
𝜔ଶ𝑉ଶ

ஃ

ఓ
 

This implies,  

 𝐵ଵ
∗ =

(ఓାطାఋ)ఠమ௏మ

௔∗
> 0 

Which is always positive. 
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Then from the theorem A, 

(i) If 𝐴ଵ
∗ > 0  and 𝐵ଵ

∗ > 0 , there exists a backward bifurcation in the system. 

(ii) If 𝐴ଵ
∗ < 0  and 𝐵ଵ

∗ > 0, there exits a forward bifurcation in the system. 

3.8 SENSITIVITY ANALYSIS OF THE MODEL 

“Sensitivity analysis is often used to study how the variation in the output of a 

model can be apportioned, qualitatively or quantitatively, to different services of variation, 

and of how the given model depends on the information feeds into it"( Saltelli et al, 2008). 

In this section, we shall take a critical look at the parameters to know which one will make 

our model to be in an endemic state. The parameters that keep the model in a stable disease 

free will be left alone but the ones that make the reproduction number greater than one will 

be the one the policy makers have to be concerned with and to find the necessary control 

measures that will minimize the spread of the disease. The parameters with negative value 

will reduce the reproduction and make it to be less than 1, but, the ones with positive values 

will increase the reproduction number. So we look for the most positive parameters which 

will be the most sensitive ones that the policy makers need to check and control in order to 

bring the reproduction number to be less than 1. 

To check the sensitivity of the parameters as given by Arriola and Hyman (2005), 

we make use of the reproduction number  

 𝑅଴
∗ =           

௔ஃఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
 

and each parameter will be tested. Let p represent each parameter,  

 𝑅௣ =
௣

ோబ
∗ .

போబ
∗

ப௣
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So for parameter Λ, 

 𝑅ஃ =
ஃ

ோబ
∗ .

போబ
∗

பஃ
=

ஃ

ோబ
∗ .

ோబ
∗

ஃ
= 1. 

For parameter a,  

 𝑅௔ =
௔

ோబ
∗ .

போబ
∗

ப௔
=

௔

ோబ
.

ஃఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
=

௔

ோబ
∗ .

ଵ

௔
𝑅଴

∗ = 1. 

 For parameter ط,  

 𝑅௕ =
ط

ோబ
∗ .

போబ
∗

ப௕
= −

௔ஃఋ(ା௘ାఓط)(ାఋطఓା)ఓط

௔ஃఋఓ(ఓାطାఋ)(طା௘ାఓ)
ቀ

ଵ

(ఓାطାఋ)
+

ଵ

(ା௘ାఓط)
ቁ 

 

 = − ቀ
௕

(ఓାطାఋ)
+

௕

(ା௘ାఓط)
ቁ < 1. 

For parameter c,  

 𝑅௖ =
௖

ோబ
∗ .

போబ
∗

ப௖
= 0. 

For parameter 𝛿, 

𝑅ఋ =
ఋ

ோబ
∗ .

போబ
∗

பఋ
=

ఓ(ఓାطାఋ)(طା௘ାఓ)௔ஃ

௔ஃఓ(ఓାطାఋ)(طା௘ାఓ)
ቀ1 −

ఋ

(ఓାطାఋ)
ቁ =

(ఓାطାఋିఋ)

ఓାطାఋ
=

ఓାط

ఓାطାఋ
< 1. 

For parameter 𝜇, 

 𝑅ఓ =
ఓ

ோబ
∗ .

போబ
∗

பఓ
= −

ఓ(ఓାطାఋ)(طା௘ାఓ)௔ஃఋ

௔ஃఋఓ(ఓାطାఋ)(طା௘ାఓ)
ቀ

ଵ

ఓ
+

ଵ

(ఓାطାఋ)
+

ଵ

(ା௘ାఓط)
ቁ 

 = − ቀ1 +
ఓ

ఓାطାఋ)
+

ఓ

ା௘ାఓط
ቁ < 1. 

For parameter e,  

 𝑅௘ =
௘

ோబ
∗ .

போబ
∗

ப௘
= −

௘

(ା௘ାఓط)
< 1. 

From the sensitivity analysis, the most sensitive parameters are Λ and awhich are the rate 

at which the susceptible population is being populated and the transmission rate 

respectively. 
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3.9  OPTIMAL CONTROL OF THE MODEL 

This section is to seek an optimal control strategy U throughout the length of 

0 ≤ 𝑡 ≤ 𝑡௙where 𝑡௙  is the final time for the infection to exit, such that the number of 

infected individual I and exposed individual E are minimized while minimising the cost of 

control U. Let 𝑈ଵ be the cost of the treatment of infected and exposed individuals and 𝑈ଶ 

be the cost of the vaccine for them. From the system 3, the model now becomes  

 
ௗௌ∗(௧)

ௗ௧
= Λ − (1 − 𝑈ଵ − 𝑈ଶ)𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡) 

 

 
ௗா∗(௧)

ௗ௧
= (1 − 𝑈ଵ − 𝑈ଶ)𝑎𝑆(𝑡)𝐼(𝑡) − 𝑈ଵ𝐸(𝑡) − 𝑈ଶ𝐸(𝑡) − 𝜇𝐸(𝑡) − 𝛿𝐸(𝑡) 

 

 
ௗூ∗(௧)

ௗ௧
= 𝛿𝐸(𝑡) − 𝑈ଵ𝐼(𝑡) − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡) 

 

 
ௗோ∗(௧)

ௗ௧
= 𝑈ଵ𝐼(𝑡) + 𝑈ଵ𝐸(𝑡) + 𝑈ଶ𝐸(𝑡) − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡) 

The objective function now is  

 𝐽(𝑈ଵ, 𝑈ଶ) = ∫  
௧೑

଴
(𝑚ଵ𝐼(𝑡) + 𝑚ଶ𝐸(𝑡) − 𝑚ଷ𝑈ଵ

ଶ − 𝑚ସ𝑈ଶ
ଶ)𝑑𝑡                 (33) 

 

Where 𝑚௜, i= 1...4 are the weights to balance the effects of the control measures. 

thus, the optimal control of the model is hereby sought as follows 

𝑈∗ = (𝑈ଵ
∗, 𝑈ଶ

∗) 

such that 𝐽(𝑈ଵ
∗, 𝑈ଶ

∗) = min௨భ,௨మ
ൣ𝐽(𝑈ଵ, 𝑈ଶ)|௨భ,௨మ

ɛ 𝑈൧ 

𝑈 = ൣ(𝑢ଵ, 𝑢ଶ|௨భ,௨మ
: [0, 𝑡௙] → (0,1)൧ is Lebesque measurable. 
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3.9.1  Analysis of the Optimal control problem of infectious diseases. 

Let H be the Hamiltonia function and using maximum principle given by 

Pontryagin as cited in Fleming and Rishell (1975) to derive necessary conditions for the 

optimal control problem, 

 

𝐻 = 𝑚ଵ𝐼(𝑡) + 𝑚ଶ𝐸(𝑡) − 𝑚ଷ𝑈ଵ
ଶ − 𝑚ସ𝑈ଶ

ଶ

+ 𝜆ଵ[Λ − (1 − 𝑈ଵ − 𝑈ଶ)𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆 + 𝑐𝑅(𝑡)]

+ 𝜆ଶ[(1 − 𝑈ଵ − 𝑈ଶ)𝑎𝑆(𝑡)𝐼(𝑡) − (𝑈ଵ + 𝑈ଶ + 𝜇 + 𝛿)𝐸(𝑡)]

+ 𝜆ଷ[𝛿𝐸(𝑡) − (𝑈ଵ + 𝑒 + 𝜇)𝐼(𝑡)]

+ 𝜆ସ[𝑈ଵ𝐼(𝑡) + 𝑈ଵ𝐸(𝑡) + 𝑈ଶ𝐸(𝑡) − (𝑐 + 𝜇)𝑅(𝑡)] 

Where𝜆௜ , i= 1...4 are the adjoints or the co-state variables. 

3.9.2  The Adjoint conditions  

The adjoint conditions for the system 3 are given thus  

 
ௗఒభ

ௗ௧
= −

ௗு

ௗௌ∗
= (𝜆ଵ − 𝜆ଶ)(1 − 𝑈ଵ − 𝑈ଶ)𝑎𝐼(𝑡) + µ𝜆ଵ                                (34) 

 

 
ௗఒమ

ௗ௧
= −

ௗு

ௗா∗
= 𝜆ଶ(𝑈ଵ + 𝑈ଶ + 𝜇 + 𝛿) − 𝜆ସ(𝑈ଵ + 𝑈ଶ) − 𝜆ଷ𝛿 − 𝑚ଶ      (35) 

 

 
ௗఒయ

ௗ௧
= −

ௗு

ௗூ∗
= (𝜆ଷ(𝑈ଵ + 𝑒 + 𝜇) − 𝜆ସ𝑈ଵ − 𝑚ଵ  + (𝜆ଵ − 𝜆ଶ)(1 − 𝑈ଵ −

𝑈ଶ)as)                                                                                                                                               (36) 

 

 
ௗఒర

ௗ௧
= −

ௗு

ௗோ∗
= 𝜆ସ(𝑐 + 𝜇) − 𝜆ଵ𝑐                                                                (37) 
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with the boundary conditions at the final time 

 

 𝑡௙: 𝜆ଵ(𝑡௙) = 0, 𝜆ଶ(𝑡௙) = 0, 𝜆ଷ(𝑡௙) = 0, 𝜆ସ(𝑡௙) = 0                       (38). 

 

 

3.9.3  The Optimality conditions 

 
பு

ப௎భ
= −2𝑚ଷ𝑈ଵ + 𝜆ଵ𝑎𝑆(𝑡)𝐼(𝑡) − 𝜆ଶ𝑎𝑆(𝑡)𝐼(𝑡) − 𝜆ଶ𝐸(𝑡) − 𝜆ଷ𝐼(𝑡) + 𝜆ସ𝐼(𝑡) +

𝜆ସ E(t)                  (39). 

 

At the absolute minimum, the slope of the function is zero. Then, 

𝑢ଵ
∗ =

(𝜆ଶ − 𝜆ଵ)𝑎𝑆(𝑡)𝐼(𝑡) + (𝜆ଶ − 𝜆ସ)𝐸(𝑡) + (𝜆ଷ − 𝜆ସ𝐼(𝑡)

−2𝑚ଷ
 

∂𝐻

∂𝑈ଶ
= −2𝑚ସ𝑈ଶ + 𝜆ଵ𝑎𝑆(𝑡)𝐼(𝑡) − 𝜆ଶ𝑎𝑆(𝑡)𝐼(𝑡) − 𝜆ଶ𝐸(𝑡) + 𝜆ସ𝐸(𝑡) 

at 
பு

ப௎మ
= 0, 

𝑈ଶ
∗ =

(𝜆ଶ − 𝜆ଵ)𝑎𝑆(𝑡)𝐼(𝑡) + (𝜆ଶ − 𝜆ସ)𝐸(𝑡)

−2𝑚ସ
 

 

 𝑈ଵ
∗ = 𝑚𝑖𝑛

[ଵ,௠௔௫(଴,(ఒమିఒభ)௔ௌ(௧)ூ(௧)ା(ఒమିఒర)ா(௧)ା(ఒయିఒర)ூ(௧))]

ିଶ௠య
                        (40) 

 

 𝑈ଶ
∗ = 𝑚𝑖𝑛

[ଵ,௠௔௫(଴,(ఒమିఒభ)௔ௌ(௧)ூ(௧)ା(ఒమିఒర)ா(௧))]

ିଶ௠య
                                            (41) 

 

So for the control system, the conditions have been set for 𝑈ଵ and 𝑈ଶ. 
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3.10  THE STOCHASTICITY OF THE MODEL 

Allen (2008) introduced the different methods of formulating stochastic epidemic 

models that relate to their deterministic models directly. Three main methods were 

introduced: 

(1) Discrete Time Markov Chain (DTMC) 

(2) Continuous Time Markov chain (CTMC) 

(3) Stochastic Differential Equation (SDE). 

For DTMC, its underlying assumption is that the time and the state variable are 

discrete. For CTMC, the time is continuous but the state variable is discrete while, SDE is 

based on diffusion process and both the time and the state variables are continuous. 

When the epidemic breaks, it breaks in an infinitesimal time which is a continuous 

process and the process of epidemic is a dynamic process. Initially, the model is a random 

walk model which will be developed into stochastic differential equation model which is 

known as SDE model. Because it is a continuous process, it is Markovian that happens in 

an infinitesimal time. This aspect will be approached in the following manner: 

(1)  As a pure birth process. 

(2)  Formulation of the SEIR model. 

(3)  Extension of SEIR model to stochastic model. 

(4)  Perturbation process. 

(5)  Condition for uniqueness and persistence of the disease. 

(6)  Condition for extinction of the disease. 
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3.10.1  Pure birth process 

To build a stochastic epidemic model, one must be conversant with some notations 

and versed with the ideas of stochastic compartmental models. At this time, we treat the 

compartment as one. After, the compartment models become disease states and their 

members. The movement of members within the compartments is defined on a 

vector-valued process. This process is a Markovian having a continuous time because the 

epidemic happens in an infinitesimal time. 

 For each time 𝑡 ≥ 0, 𝑋ଵ
∗(𝑡), 𝑋ଶ

∗(𝑡), 𝑋ଷ
∗(𝑡), 𝑋ସ

∗(𝑡),are the number of the individuals 

in the compartment respectively where the total number N(t) is the sum of the individuals 

in the compartment that is, 

N(t) =𝑋ଵ
∗(𝑡)+𝑋ଶ

∗(𝑡)+𝑋ଷ
∗(𝑡)+𝑋ସ

∗(𝑡) 

Let us assume that there is just one compartment 𝑋௧
∗ which represents the number 

of individuals at time t and 𝑋଴
∗ is the initial value before the epidemic, for some 𝜆 > 0, 

where 𝜆 is the stochastic rate of the stochastic process and 𝑜(Δ௧) is a function that is 

negligible.  

 𝑃∗(𝑋∗(𝑡 + Δ௧) − 𝑋(𝑡) = 1) = 𝜆Δ௧ + 𝑜(Δ௧)                                     (42) 

 𝑃∗(𝑋∗(𝑡 + Δ௧) − 𝑋(𝑡) = 0) = 1 − 𝜆Δ௧ + 𝑜(Δ௧)                                       (43) 

which can be described as a poisson process for 𝑋∗(𝑡), 𝑡 ≥ 0. 

The time interval between successful jumps or moves of the process can be described as 

exponentially distributed with the parameter 𝜆 so that, 𝜆 = 𝜆(𝑡) depends on t  

𝑃∗(𝑋∗(𝑡 + Δ௧) − 𝑋(𝑡) = 1) = 𝑎𝑋∗(𝑡)Δ௧ + 𝑜(Δ௧)                                               (44) 

where a𝑋∗(𝑡) is the conditional instantaneous stochastic rate at time t of the process. This 

process is described as a pure birth process. 
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For more than one compartment, the times between jumps is also exponentially 

distributed with the parameters as the states of the compartment at the inception of the 

interval. Every component of the Markov jump process is described as a birth and death 

process with intensity rates of the stochastic process depending on all the compartments. A 

stochastic model is formulated as a stochastic process with a collection of random variables 

3.10.2  Formulation of the SEIR model 

Let us consider four (4) subgroup of individuals in the population namely, 

Susceptible (S), Exposed (E), Infected (I) and Recovered (R) and N= S+E+I+R. Within the 

time interval [t,t+Δ௧], the transition states of an infection will be 𝑆 → 𝑆 − 1,  𝐸 → 𝐸 +

1,  𝐸 → 𝐸 − 1,  𝐼 → 𝐼 + 1and for the probability for this to occur for the first stage is 

aSIΔ௧ + 𝑜(Δ௧) and for the second stage, let the movement rate of the exposed subgroup of 

individuals to the infected class be 𝛿, then the probability for the second stage to occur is 

𝛿𝐸Δ௧ + 𝑜(Δ௧) and for the third stage, if the rate at which the infected recovered is assumed 

to be "ط" then the probability for the third stage will be ط𝐼Δ௧ + 𝑜(Δ௧). 

At a glance, the probabilities of the progression of the infection up to the recovery 

at time interval [t, t+Δ௧] are 

 

 𝑃(𝑆௧ା୼೟
, 𝐸௧ା୼೟

) − (𝑆௧, 𝐸௧) = (−1,1) = 𝑎𝑆𝐼Δ௧ + 𝑜Δ௧                        (45) 

 

 𝑃(𝐸௧ା୼ , 𝐼௧ା୼೟
) − (𝐸௧, 𝐼௧) = (−1,1) = Δ𝐸௧ + 𝑜Δ௧                          (46) 

 

 𝑃(𝐼௧ା୼೟
, 𝑅௧ା୼೟

) − (𝐼௧, 𝑅௧) = (−1,1) = 𝐼Δ௧ط + 𝑜Δ௧                             (47) 
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with the complementary probability 

 

 𝑃(𝑆௧ା୼೟
, 𝐼௧ା୼೟

) − (𝑆௧, 𝐼௧) = (0,0) = 1 − ൫𝑎𝑆𝐼 + Δ𝐸 + 𝐼൯Δ௧ط + 𝑜Δ௧    (48) 

 

The increment of the stages Δ𝑆 = 𝑆௧ା୼೟
− 𝑆௧, 

Δ𝐸 = 𝐸௧ା୼೟
− 𝐸௧ , Δ𝐼 = 𝐼௧ା୼೟

− 𝐼௧ , are (-aSI) Δ௧ , (aSI- 𝛿𝐸)Δ௧  and ( 𝛿𝐸 −  𝐼)Δ௧ط

respectively, which is written as 

Δ𝑆 = (−𝑎𝑠𝐼)Δ௧ + Δ𝜎ଵ 

Δ𝐸 = (𝑎𝑠𝐼 − 𝛿𝐸)Δ௧ − Δ𝜎ଵ + Δ𝜎ଶ 

Δ𝐼 = (𝛿𝐸 − 𝐼)Δ௧ط − Δ𝜎ଶ + Δ𝜎ଷ 

where 𝜎௜, i=1,2,3 are poisson increments with mean zero and conditional variances 

asIΔ௧, 𝛿𝐸Δ௧, طIΔ௧. 

Suppose we let Δ𝜎௜ → 0 and Δ௧ → 0 we have the resulting differential equation 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝑎𝑆(𝑡)𝐼(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝛿𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛿𝐸(𝑡) −  𝐼(𝑡)ط

𝑑𝑅(𝑡)

𝑑𝑡
= 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) 

which follows the deterministic model in system 3. 
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3.10.3  Stochastic SEIR with demography 

Now with demography such as the birth, immigration/ migration and death whether 

natural or disease induced. Their inclusion in the model will make the model more realistic. 

The transition rates are given in the Table1. 
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Transition Rate 

𝑆 → 𝑆 + 1 Λ 

𝑆 → 𝑆 − 1 aSIΔ௧ + Λ − 𝜇𝑆(Δ௧) 

𝐸 → 𝐸 + 1 aSIΔ௧ 

𝐸 → 𝐸 − 1 ( aSI-𝛿𝐸)Δ௧-طEΔ௧-µ𝐸Δ௧ = aSIΔ௧-(𝛿 + ط +𝜇) Δ௧) 

𝐼 → 𝐼 + 1 𝛿𝐸Δ௧ 

𝐼 → 𝐼 − 1 𝛿𝐸Δ௧ -(طIΔ௧- eIΔ௧-𝜇Δ௧) = 𝛿𝐸Δ௧-(ط +e+𝜇)I Δ௧) 

𝑅 → 𝑅 +  Δ௧ (Eط+Iط) 1

𝑅 → 𝑅 −  Δ௧ -(𝜇 +c)RΔ௧ (Eط+ Iط) 1

 

Table 1 The transition rates. 
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Where the migration rate= Λ, natural death rate = 𝜇, disease induced rate = e and 

progress back to the susceptible class =c. 

The corresponding probabilities are 𝑃(𝑆௧ + Δ௧, 𝐸௧ + Δ௧ − (𝑆௧, 𝐸௧ = (1,0) =

𝑃(𝑆௧ + Δ௧, 𝐸௧ + Δ௧) − (𝑆௧, 𝐸௧ = (−1,0) = ΛΔ௧ + 𝑜(Δ௧) second stage also will be 

𝑃(𝑆௧ + Δ௧, 𝐸௧ + Δ௧ − (𝑆௧, 𝐸௧ = (−1,1) = 𝑎𝑠𝐼Δ௧ + 𝑜(Δ௧) 

and for the remaining stages ,the probabilities were formulated and following the 

same procedures as in system 3 above, thus it results to 

 

 
ௗௌ∗(௧)

ௗ௧
= Λ − 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡) 

 

 
ௗா∗(௧)

ௗ௧
= 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝐸(𝑡) − 𝐸(𝑡)ط − 𝛿𝐸(𝑡) 

 

 
ௗூ∗(௧)

ௗ௧
= 𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡) 

 

 
ௗோ∗(௧)

ௗ௧
= 𝐼(𝑡)ط + 𝐸(𝑡)ط − 𝑐𝑅(𝑡) − 𝜇𝑅(𝑡) 

which is the same as the deterministic model and have the same deterministic rates. 

 

3.10.4  Extension of the model to stochastic differential equation SEIR written as 

SDE SEIR 

In the formulation of the stochastic differential equation, it takes various forms but 

the most prominent are to either perturb the states variables or the parameters or the 

transmission coefficient or the state variables using their deviation.To describe the 
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variability in the model, it is reasonable to add a noise term for example, 

ௗ௑∗௧

ௗ௧
= 𝑎(𝑋∗(𝑡), 𝑡) + 𝜎(𝑋∗(𝑡), 𝑡)𝜔(𝑡) in which 𝜔(𝑡)denotes the noise term and 

𝜎(. ) is a function representing the interaction between the noise and the present state. That 

is, the stochastic epidemic models via stochastic differential equation will make the 

parameters in deterministic models change randomly. Allowing environmental noise to 

play a part in the stochastic model may indicate the severity of the diseases. Adding 

stochastic to a model gives the model flexibility to fit the real data. 

To extend the model to SDE model, let (Ω, F,(𝐹௧)௧ ≥ 0,P ) represents a complete 

probability space having a filtration (𝐹௧)௧ ≥ 0  which satisfies increasing and right 

continuity condition and  𝐹଴ in P-null sets)and Bi(t) to be an n-dimensional independent 

standard Brownian motion i.e. Bi(t), 1 ≤ 𝑖 ≤ 𝑛. 

If a parameter is to be estimated, it will be an average value of the parameter plus an 

error term. The parameters in the exposed class were perturbed only to see the behavioural 

change of the exposed individuals in the presence of environmental noise. That is,𝑎ො = 𝑎 +

𝜎ଵ,𝜇̂ = 𝜇 + 𝜎ଶ, 𝑏෠ = ط + 𝜎ଷ, 𝛿መ = 𝛿 + 𝜎ସ so I =1,2,3,4. 

The error term,𝜎௜𝑑𝑡, 0 ≤ 𝑖 ≤ 4 is assumed to follow a normal distribution having 

a value of mean zero and variance 𝜎௜
ଶ𝑑𝑡 that is,𝜎୧𝑑 ≈ 𝑁෡(0, 𝜎௜

ଶ𝑑𝑡) 

These errors are presented as N-dimensional noise. 𝐵𝑡 = (𝐵ଵ(𝑡), . . . , 𝐵ே(𝑡)) 

𝜎௜𝑑𝑡 = Σ௝ୀଵ
ସ 𝜎௜௝𝑑𝐵௝(𝑡),0 ≤ 𝑖 ≤ 4 

Where𝑑𝐵௝(𝑡) = 𝐵௝(𝑡 + 𝑑𝑡) − 𝐵௝(𝑡), 𝜎௜௝ are all real numbers such that  

𝜎௜
ଶ = Σ௝ୀଵ

ே 𝜎௜
ଶ𝑗, 0 ≤ 𝑖 ≤ 4𝜎ଶ = Σ௜ୀଵ

ସ 𝜎௜
ଶ. 

In this model, since we are interested in the behaviour of the exposed, we make 
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random perturbation of the parameters of the exposed class other than the disease induced 

death rate. The parameters are 𝑎, 𝜇,  .𝑎𝑛𝑑 𝛿 ط

The system 3 will now be 

𝑑𝑆∗(𝑡) = (Λ − 𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) + 𝑐𝑅(𝑡))𝑑𝑡 − 𝜎ଵ𝑎𝑆(𝑡)𝐼(𝑡)𝑑𝐵ଵ −

𝜎ଶ𝜇𝑆(𝑡)𝑑𝐵ଶ(𝑡)                                                                                                             (49) 

𝑑𝐸∗(𝑡) = (𝑎𝑆(𝑡)𝐼(𝑡) − 𝜇𝐸(𝑡) − 𝐸(𝑡)ط − 𝛿𝐸(𝑡))𝑑𝑡 + 𝜎ଵ𝑎𝑆(𝑡)𝐼(𝑡)𝑑𝐵ଵ(𝑡) −

𝜎ଶ𝜇𝑆(𝑡)𝑑𝐵ଶ(𝑡) − 𝜎ଷط𝐸(𝑡)𝑑𝐵ଷ(𝑡) − 𝜎ସ𝛿𝐸(𝑡)𝑑𝐵ସ(𝑡)         (50) 

𝑑𝐼∗(𝑡) = (𝛿𝐸(𝑡) − 𝐼(𝑡)ط − 𝑒𝐼(𝑡) − 𝜇𝐼(𝑡))𝑑𝑡 + 𝜎ସ𝛿𝐸(𝑡)𝑑𝐵ସ − 𝜎ଷط𝐼(𝑡)𝑑𝐵ଷ(𝑡) −

𝜎ଶ𝜇𝐼(𝑡)𝑑𝐵ଶ                                                                                                   (51) 

𝑑𝑅∗(𝑡) = 𝐼(𝑡)ط) + 𝐸(𝑡)ط − 𝜇𝑅(𝑡) − 𝑐𝑅(𝑡))𝑑𝑡 + 𝜎ଷط𝐸(𝑡)𝑑𝐵ଷ(𝑡) + 𝜎ଷط𝐼(𝑡)𝑑𝐵ଷ𝑡 −

𝜎ଶ𝜇𝑅(𝑡)𝑑𝑏ଶ(𝑡)                                                                                        (52) 

 

where 𝜎௜, i =(1,2,3,4), the intensity of the white noise and 𝐵௜, i =1,2,3,4 are the 

standard independent Brownian motion. 

 

3.10.5 Uniqueness of the solution to the stochastic SEIR model 

We present the following theorem, which gives the uniqueness of the system 3 which is 

motivated by Yang and Mao (2010), Cai et al (2013), Rao (2014), Yang (2016), Miao et al 

(2017) and Wang et al (2017) and adapted for stochastic SEIR model of system 3.  

Theorem:  𝐿𝑒𝑡(𝑆∗
ᇱ(0), 𝐸∗

ᇱ(0), 𝐼∗
ᇱ(0), 𝑎𝑛𝑑 𝑅∗

ᇱ(0))்ɛ 𝑅ା
ସ  be the stochastic differential 

equation if and only if𝑃൫(𝑆∗
ᇱ(𝑡), 𝐸∗

ᇱ(𝑡), 𝐼∗
ᇱ(𝑡), 𝑅∗

ᇱ(𝑡))்ɛ 𝑅ା
ସ  ⍱ 𝑡 ≥ 0൯ = 1. 

We can prove the uniqueness of the solution to stochastic 3 as thus:  
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Proof 

Let the values of the system U satisfy local Lipschitz continuity condition and let 

there be a unique solution[0, 𝑇௘
ᇱ] where 𝑇௘

ᇱ is the explosion time. 

Assume 𝑘଴
ᇱ ≥ 0 is large enough so that 𝑆ᇱ(0), 𝐸ᇱ(0), 𝐼ᇱ(0),and 𝑅ᇱ(0) lie in the 

interval [
ଵ

௞బ
ᇲ , 𝑘଴

ᇱ ] for every 𝑘ᇱ ≥ 𝑘଴
ᇱ  is the stopping time 

Say, 𝑇௞
′ = 𝑖𝑓 ൬𝑡 ɛ [0, 𝑇௘

′ ]: 𝑚𝑖𝑛 ቀ𝑆∗
′ (𝑡), 𝐸∗

′ (𝑡), 𝐼∗
′ (𝑡), 𝑅∗

′ (𝑡) ≤
ଵ

௞′ቁ൰ 

or max ቀ൫𝑆∗
′ (𝑡),  𝐸∗

′ (𝑡),  𝐼∗
′ (𝑡),  𝑅∗

′ (𝑡)൯ ≥ 𝑘 ′ቁ  with the assumption that 𝑘଴
′ ≥ 0 

such that [
ଵ

௞బ
′ , 𝑘଴

′ ] for every integer k ≥ 𝑘଴ as the stopping time. Let inf 𝜙 = ∞, 𝑇௞ be 

increasing and let 𝑇∞= lim௞→∞𝑇௞, 0 ≤ 𝑇∞ ≤ 𝑇௘ almost everywhere (a.e) 

If 𝑇∞ = ∞ 𝑎. 𝑒 𝑡ℎ𝑒𝑛,  𝑇௘ = ∞ and the solution remains in 𝑅ା
ସ  for all 𝑡 ≥ 0 

Suppose 𝑇∞ ≠ ∞ 𝑎. 𝑒 then there are constants 𝑇 > 𝑜 and e ɛ (0, 1) such that 

𝑃(𝑇∞ ≤ 𝑇) > 𝑒. 

Hence, there is an integer 𝑘ଵ
′ ≥ 𝑘଴

′  such that 𝑃൫𝑇௞
′ ≤ 𝑇 ′൯ ≥ 𝑒⍱𝑘 ′ ≥ 𝑘ଵ

′  

Let x be defined as set of the variables that is, (S,E,I,R) and V: 𝑅ା
ସ → 𝑅 such that 

𝑉(𝑥) = ቀ𝑆 − 𝑝 − 𝑝𝑙𝑜𝑔
ௌ

௣
ቁ + (𝐸 − 1 − 𝑙𝑜𝑔𝐸) + (𝐼 − 1 − 𝑙𝑜𝑔𝐼) + (𝑅 − 1 − 𝑙𝑜𝑔𝑅)  

where p is a positive constant. 

By Ito’s formula, the diffusion matrix is defined as 

𝐴(𝑥) = (𝐴௜,௝(𝑥))ଵஸ௜,௝ஸଵ,𝐴௜,௝(𝑥) = Σ௥ୀଵ
ௗ 𝜎௥

௜(𝑥)𝜎௥
௝
(𝑥) 

The differential operator L is given by 

𝐿 = Σ௥ୀଵ
௟ ط

௜
(𝑥)

∂

∂𝑥𝑖
+

1

2
Σ௝ୀଵ

௟ 𝐴௜,௝(𝑥)
∂ଶ

∂𝑥𝑖 ∂𝑥𝑗
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If L acts on V, V ɛ𝐶ଶ൫𝐸௟  𝑋 𝑅ା;  𝑅൯ then 

𝐿𝑉(𝑥) = Σ௥ୀଵ
௟ ط

௜
(𝑥)

∂𝑣

∂𝑥𝑖
+

1

2
Σ௝ୀଵ

௟ 𝐴௜,௝(𝑥)
∂ଶ𝑣

∂𝑥𝑖 ∂𝑥𝑗
 

where   𝑉௫ = (
ப௩

ப௫
, . . . .

ப௩

ப௫௜
𝑎𝑛𝑑 𝑉௫௫ = ቀ

பమ௩

ப௫௜ ப௫௝
ቁ

௟௫௟
 

By Ito’s formula we have, 

𝑑𝑉(𝑋(𝑡)) = 𝐿𝑉(𝑋(𝑡))𝑑𝑡 + Σ௥ୀଵ
ௗ 𝑉௫(𝑋(𝑡))𝜎௜(𝑋(𝑡))𝑑𝐵௥(𝑡) 

So from system 3, 

𝐿𝑉ଵ = Λ − 𝜇𝑆 − 𝜇𝐸 − 𝑒𝐼 − 𝜇𝐼 − 𝜇𝑅 + 𝑝(𝑎𝐼 + 𝜇 −
Λ

𝑆
−

𝑐𝑅

𝑆
− 𝑎𝑆 −

𝐸ط

𝑅
+ 𝛿 + 𝑐

+ 𝑝Σ௝ୀଵ
ே (𝐸𝜎ଵ + 𝜎ଶ)ଶ + Σ௝ୀଵ

ே (𝑆𝜎ଵ − 𝜎ଷ)ଶ + 𝜎ସ
ଶ 

Let 𝛼𝛽 ≤ 𝜇 then there is a constant 𝐶ଵ so that 

𝐿𝑉ଵ(𝑥) ≤ 𝐶ଵ + Σ௝ୀଵ
ே (𝐸𝜎ଵ + 𝜎ଶ)ଶ + Σ௝ୀଵ

ே (𝑆𝜎ଵ − 𝜎ଷ)ଶ 

Let us define 𝑉ଶ as function 𝑉ଶ: 𝑅ା
ସ → 𝑅ା by 

𝑉ଶ(𝑥) = (𝑆 + 𝐸 + 𝐼 + 𝑅)ଶ, X=(S,E,I,R) then 

𝐿𝑉ଶ(𝑥) = 2(𝑆 + 𝐸 + 𝐼 + 𝑅)(Λ − 𝜇𝑆 − 𝜇𝐼 + 𝑒𝐼 − 𝜇𝐼 − 𝜇𝑅) + Σ௝ୀଵ
ே (𝑆𝜎ଵ + 𝐸𝜎ଶ + 𝐼𝜎ଷ

+ 𝑅𝜎ସ)ଶ

≤ (𝑆 + 𝐸 + 𝐼 + 𝑅)ଶ + Λଶ + (𝜎ଵ
ଶ + 𝜎ଶ

ଶ + 𝜎ଷ
ଶ + 𝜎ସ

ଶ)(𝑆 + 𝐸 + 𝐼 + 𝑅)ଶ

≤ 𝐶ଶ + 𝐶ଷ(𝑆 + 𝐸 + 𝐼 + 𝑅)ଶ 

where 𝐶ଶ, 𝐶ଷ are positive constants. Let 𝑉(𝑥, 𝑡) = 𝑉ଵ(𝑥) + 𝑉ଶ(𝑥) and C a positive 

constant such that 𝐿𝑉(𝑥) ≤ 𝐶 + 𝐶𝑉(𝑥) 

Let 𝑉(𝑥, 𝑡) = 𝑒ି௖௧(1 + 𝑉(𝑥)) then 

𝐿𝑉(𝑥) = −𝑐𝑒ି௖௧(1 + 𝑉(𝑥)) + 𝑒ି௖௧𝐿𝑉(𝑥) ≤ 0 

Let 𝑋∗
ᇱ(𝑡) = (𝑆∗

ᇱ(𝑡),  𝐸∗
ᇱ(𝑡),  𝐼∗

ᇱ(𝑡),  𝑅∗
ᇱ(𝑡)),  𝑡 ≥ 0, by Ito’s formula we have for any 



 
 

73 

𝑘ᇱ ≥ 𝑘ଵ
ᇱ , 

𝐸𝑉෨(𝑥∗(𝑞), (𝑞)) = 𝑉(𝑥∗(0)) + 𝐸 න  
௤

଴

𝐿𝑉(𝑥∗(0), 𝑣)𝑑𝑥 ≤ 𝑉෨(𝑥∗(0) 

where 𝑞 = (𝑡, 𝑇௞
ᇱ). 

Now, let set Ω௞
ᇱ = (𝑇௞

ᇱ ≤ 𝑇) and by the assertion before that , 𝑃(𝑇௞
ᇱ ≤ 𝑇) ≥ 𝑒 for 

all 𝑘ᇱ ≥ 𝑘ଵ
ᇱ ,then, 𝑃(Ω௞

ᇱ ) ≥ 𝑒  for every 𝜔ᇱ  in Ω௞
ᇱ , 𝑉(𝑥(𝑇௞

ᇱ , 𝜔)) ≥ 𝑑௠  in such a way 

𝑑௠ = 𝑚𝑖𝑛(𝑉(𝑦))௬ has at least a member as 
ଵ

௞
, or k as k → ∞. 

This follows then that, 

𝑒𝑑௠ ≤ 𝐸[𝑉(𝑥(𝑇௞
ᇱ , 𝜔)𝐼Ω௞)] ≤ 𝑒஼்𝑉(𝑥(0)and letting 𝑘 → ∞ 

which is ≠ ∞ > 𝑒஼்𝑉(𝑥(0)) ≥ ∞  which contradicts the earlier claim. 

Therefore, 𝑇ஶ = ∞ , almost everywhere shows that the stochastic model in system 3 is 

unique and has a positive solution. 

 

3.10.6  Condition for the disease extinction 

For the disease to go into extinction depends on the reproduction number 𝑅଴ if it is 

less than unity it will lose stability and the disease will go into extinction. The time to go 

into extinction is given as  

 𝑡௘ =
୪୬଴.ହ

ோబ
                                                                              (53) 

By substituting equation 23 into equation 53 we have  

 𝑡௘ =
୪୬଴.ହ(ఓ(ఓାطାఋ)(طା௘ାఓ))

௔ஃఋ
                                                        (54).
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 
 In this section, results of the numerical simulations of the dynamical behaviour of system 

3 are presented by using Maple 18 and with the parameter values from existing literature. 

The initial conditions are put as 𝑆଴=21950, 𝐸଴=50, 𝐼଴=0, 𝑅଴=0 and the parameters varied 

we have: 

 

Figure 4.1 shows the variation of the susceptible population without the vital dynamics 

such as migration into the population, the figure clearly shows the effect of migration. The 

susceptible population grows high as there is migration into the population. This is evident 

from the sensitivity analysis that the migration rate is highly sensitive   
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Figure 4.1 The variation of the susceptible population without the vital dynamics. 
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In Figure 4.1a,it is seen that the number of susceptible reduced when the transmission rate 

of the disease increased that is more susceptible individuals progress to the exposed and 

infected classes. This is true from the sensitivity analysis which revealed that the 

transmission parameter a, is one of the most sensitive parameters and that accounts for the 

rapid decline of the susceptible population. 
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Figure 4.1a  The variation of susceptible at various levels of transmission rates.   
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The simulation of the stochastic model for the susceptible is also used in Figure 

4.1b to compare with the deterministic model of Figure 4. 1a The stochastic model of the 

susceptible shows an agreement in the shape as well as the rate of change of the 

transmission rate.   
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Figure 4.1b The variation of susceptible at various levels of a using stochastic 

model   
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Figure 4.2aThe variation of exposed humans at various levels of a without the vital 

dynamics   
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 In Figure 4.2a, when the transmission rate is increased, the number of the exposed 

increased because the susceptible individuals come to the exposed class to populate it.   
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Figure 4.2bThe variation of exposed humans at various levels of a   
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In Figure 4.2b, the stochastic graph shows an agreement to what happened in the 

Figure 4.2a of the deterministic one   
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 Figure 4.2cThe variation of the exposed using stochastic model   
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 Figure 4.3aThe variation of infected humans without the vital dynamics   
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In Figure 4.3b, when the rate of progression of the exposed class into the infected 

class was varied from 0.0 to 0.8, it is clear that the number of infected humans varied 

considerably and increased when 𝛿 = 0.8 that means the control measures to combat the 

disease should be increased in order to reduce the infected humans.   
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 Figure 4.3b.  The variation of infected humans while keeping the treatment rate constant   
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In Figure 4.3b, the stochastic variation of infected individuals, the stochastic model 

is in agreement with the deterministic one but with a slight change in shape which is due to 

the random variation which is expected  
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 Figure 4.3c The variation of the infected humans using stochastic model   
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Figure 4.4 shows the variation of recovered population as the control measures are 

intensified. That is, when the rate of recovery varies as the control measures increases, the 

number of recovered individuals increases.   
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Figure 4.4 The variation of recovered humans at various levels of b   
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Figure 4.4a shows the stochastic variation of the recovered individuals as the 

control measures were put in place. It showed that as the control measures are put in place 

the recovered individuals increases which is in agreement with the deterministic 

counterpart   
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Figure 4.4a The stochastic variation of the recovered individuals.   
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To know how the total population will look like if the reproduction number 

𝑅଴ > 1, in the Figure 4.5 below, the infected population increased as the susceptible 

individuals decreased and the exposed decreased. It implies that, efforts must be intensified 

to control the most sensitive parameters so that the reproduction number can be brought 

below 1 so that the disease can die out.   
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t (time in months) 

 Figure 4.5 The variation of the total population when 𝑅଴ > 1 
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 In Figure 4.5a, the stochastic variation of the total population when the basic 

reproduction number is greater than one showed that the recovered is at the minimum 

which increased the number of infected.   
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t (time in months) 

 Figure 4.5a The stochastic variation of the total population when 𝑅଴ > 1 
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We have established that the model of system 2 exhibited two equilibria : disease 

free and the endemic points. In the Figure 4.6 below, the disease free is stable when the 

system is kept below 1 and unstable as it is more than 1. Also, the endemic is unstable a bit 

around 1 and stable when it is more than 1.   
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Figure 4.6 Bifurcation diagram of the model   
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In Figure 4.7, when the control measures were intensified, those that were exposed 

to the disease reduced. 
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 Figure 4.7 The effect of treatment on the exposed individuals.   
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Figure 4.8 shows effect of treatment on the infected individuals, as the rate of 

treatment "b" changes, the number of infected individuals reduces.   
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 Figure 4.8 The effect of treatment on the infected humans.   
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Figures 4.9 and 4.10 are the overview of the total population in the long run of 

deterministic and stochastic models respectively. When the disease is minimized or 

negligible, the susceptible individuals with right information and good control measures 

put in place, will increase and the population will tend to a constant value while the 

exposed and the infected individuals decrease.   
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Figure 4.9 Variation of the total population    
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Figure 4.10 Stochastic variation of the total population   
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 Figure 4.11 shows the effect of optimal control strategy 1, which is the treatment 

of infected individuals. It shows that with the introduction of the control; the effect of the 

disease is reduced   
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Figure 4.11 Optimal control of the model using treatment as a control measure. 
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 The optimal control strategy 2 

In Figure 4.12,the effect of the spread of the infectious disease is reduced as the 

introduction of the optimal control strategy using vaccination as a control measure is 

implemented.   
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Figure 4.12 Optimal control of the model using vaccination as a control measure   
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 The optimal control system using the combination of the two control measures in 

Figure 4.13 shows the optimal control strategy using the combination of the two control 

strategies. This proves more effective than using any one of them singly   
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Figure 4.13 Optimal control strategy using the combination of the two strategies. 
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 The model is applied to a live data of 2014 Ebola virus outbreak in Liberia, 

Sierra-Leonne and Guinea The parameters estimated from the live data were in agreement 

with the ones in the existing literature The parameters are given below with their respective 

values gotten from the least squares estimation method used.   
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Parameters   Values  

a   0.000025  

  0.48941  ط

c   1.963907  

𝛿 0.0498  

𝜇 0.002165  

Λ 1034  

e  0.05019  

𝜎ଵ 0.038 

𝜎ଶ 0.24388 

𝜎ଷ 0.269304 

𝜎ସ 0.630522 

 

Table 2 The parameter values   
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 The variation of total population using the deterministic model with the Ebola data 

of 2014 in Guinea, Sierra Leonne and Liberia is given in the Figures 4.14 and 4.15 below 

using deterministic and stochastic models respectively. 

Figure 4.14 shows that after about 30 days of the outbreak, the susceptible 

population started to decrease and after about 61 days, the recovered individuals started 

increasing, this may be due to the intervention and awareness. This in turn reduced the 

exposed and infected individuals. 

Using the stochastic model however,Figure 4.15 shows after about 25 days the 

susceptible population started decreasing and in about 31 days recovered individuals 

started to increase. The difference may be due to the randomness in the model.   
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Figure 4.14 Variation of total population against time using Ebola data of 2014   
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Figure 4.15 Stochastic variation of total population against time using Ebola data of 2014   
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The simulated 𝑅଴  was constructed using different values of the parameter 

simulated by varying the values of Λ, a and 𝛿 using uniform distribution. Each of the 

parameters was simulated for n = 1000 times. The varying values of the parameters are Λ 

U(500,1500), a   U(0,0.00005), and 𝛿 U(0,0.0996). 

The mean value for the three simulated 𝑅଴ is given by 𝑅଴ = 1.9873 The 95 % 

confidence interval for the 𝑅଴ is 1.9399 ≤ 𝑅଴ ≤ 2.0346 The skewness of 𝑅଴ is 0.6933 

and the measure of kurtosis is 1.5 The 𝑅଴ calculated with the parameters from the data is 

𝑅଴ = 2.027 which is within the interval of the one gotten from the numerical simulation   
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 Figure 4.16 Graphs of Λ(A1) against 𝑅଴,a (a2) against 𝑅଴ and 𝛿(d3) against 𝑅଴ 
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 In Figure 4.17, the histograms were presented which showed that the data is 

skewed positively.   
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 Figure 4.17 Histogram of the migration, transmission and progression rates against 

reproduction number 
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CHAPTER FIVE 

SUMMARY,CONCLUSIONANDRECOMMENDATION 

5.1  SUMMARY 

In this study, a new non linear differential S-E-I-R model has been proposed and 

analysed to study and examine the transmission dynamics of infectious diseases in a 

dynamic population with migration into the susceptible population.The equilibrium points 

of the model were found to be E=0 and  

 𝑆 =
(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
 

by equating the non-linear differential equations of system 3 together. The disease free and 

endemic equilibria were obtained and their stabilities investigated. A numerical study of 

the model has been conducted to see the effect of certain parameters on the spread of 

infectious diseases. Model parameters have been estimated by applying Least squares 

estimation by linearising the non-linear differential equations on the live data of Ebola 

2014. It is observed that if there is an increase in the transmission rate of the infection, there 

would be a sharp decrease of the susceptible population which would in turn increase the 

exposed population and the infected population. However, if efforts and control measures 

are intensified, this would bring about the increase in the recovered individuals and the 

infected population would decrease. It was found out that if 𝑅଴ is reduced to be less than 

unity (1), the disease would die out and the treated infected humans will increase which 

would lead to the eradication of the disease.
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5.2  CONCLUSION 

In this study, a non linear differential model had been proposed and analysed to 

study and examine the spread and transmission of infectious diseases in a dynamic 

population with migration in to the susceptible class. It is assumed that there is no constant 

population, due to the unpredictability nature of infectious diseases on the start of the 

epidemic, and for the fact that migration plays important role in the transmission of 

infectious diseases, migration rate has been introduced in to the model. By doing the 

analysis of the model,the equilibrium points were found to be  

 𝐸 = 0 

or  

 𝑆 =
(ఓାطାఋ)(طା௘ାఓ)

௔ఋ
 

The reproduction number 𝑅଴ is found to be  

 𝑅଴ =
௔ஃఋ

ఓ(ఓାطାఋ)(طା௘ାఓ)
 

by applying next generation matrix method. It is observed that when 𝑅଴ < 1, the disease 

dies out and when 𝑅଴ > 1, the disease persists in the system which is endemic. The model 

has two non-negative equilibria namely the disease free 𝑃଴ and the endemic 𝑃∗. The 

stability analysis of the model revealed that, the disease free equilibrium 𝑃଴ is locally 

asymptotically stable if 𝑅଴ < 1  and unstable if 𝑅଴ > 1 . Analysing the endemic 

equilibrium 𝑃∗ by obtaining the derivative of the Lyapunov function showed that the 

endemic equilibrium is globally stable when 𝑅଴ > 1. The bifurcation of the model was 

examined and it showed that the model of system 3 has forward bifurcation. The sensitivity 

analysis showed that the migration rate (Λ) and transmission rate (a) are the most sensitive 

of all the parameters. In the study also, the optimal control system to reduce the burden of 
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the epidemic on the susceptible population was tested and it was found out that using a 

combination of treatment and vaccination proved to be more effective than using only one 

control of either of the two. The stochasticity of the model showed that the intensity of the 

white noise incorporated in the model made the results as close as possible to the 

deterministic one which is expected.It also showed that the effect of white noise affected 

the stability of the model. The deterministic and stochastic models were tested using both 

the numerical simulation and 2014 Ebola outbreak data outbreak in West Africa. The 

models performed closely as possible in the simulation as well as in the data. The 

reproduction number of the 2014 Ebola outbreak in some parts of West Africa was found to 

be 2.027 which revealed persistence of the disease over model without migration of 1.88. 

The value of the reproduction number of model with migration is within the interval of the 

one found in the simulation which is 1.9399≤ 𝑅଴ ≤2.0346 at 95 percent confidence 

interval. The skewness of 𝑅଴ is 0.6933 and the measure of kurtosis is 1.5. 

The value of the reproduction number with migration is in agreement with what was 

obtained in Althaus (2014) which falls within the interval of 1.5 and 2.5 

 

 5.3 RECOMMENDATION 

Due to the dynamical nature of infectious diseases and the porousity of the borders 

of the developing countries, this research found out that an increase in the transmission rate 

of the infection would bring about a sharp decrease in the susceptible population and in 

turn increase the exposed population that are at risk and infected population , thus, the 

transmission rate of the infection should be controlled by effective treatment, public 

enlightenment, washing of hands regularly, quarantine, vaccination etc to keep the infected 
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population under control. Also,to keep the migration / inflows of individuals into the 

susceptible class in check, immunization of new born against the disease at the hospitals 

should be done, immigrants into the community/ country should be controlled by contact 

tracing, effective treatment / check at the boarders, to prevent the spread of the disease. 

5.4  CONTRIBUTION TO KNOWLEDGE 

 A review of compartmental model S-E-I-R that is useful in infectious modelling 
 
wasanalysed. Since the classical assumption of stable population has been violated, a  
 
robust model that incorporated migration in and out of the population was proposed and  
 
introduced.  The model was extended to stochastic model by using stochastic differential  
 
equation to allow for randomenvironmental fluctuation 
 
5.5 SUGGESTION FOR FURTHER STUDIES 

Due to the deadly nature of infectious diseases and the sporadic nature of its spread, 

it is important for more researches in the study of the spread and control to explore new 

ways/ strategies of its control.Based on the model of this study, we proposed that further 

study should be on   

• The maximum likelihood estimation of the parameters using Weibull distribution 

and other probability distributions in a stochastic epidemic model.  

• Expansion of the model to incorporate the vaccination or immunization of the 

immigrants and new born.  

• Persistence and spatial study of the spread of infectious disease using stochastic 

differential equation.  

• Effective study of stochastic stability on the reproduction number of S-E-I-R 

model.  
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APPENDIX 

Maple code for the variation of susceptible without the dynamics 

restart; 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

      / d      \                                           

      |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

\ dt     /                                           

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = 0, b = 0.5e-2, e = 1.229, mu = 0, c = .23, 

delta = .5, Lambda = 0, equ1)); 

                       / d      \        

                       |--- S(t)| - 0.69 

                       \ dt     /        

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

                      0.6900000000 t + 10. 

D1 := evalf(equ3IVP); 

                      0.6900000000 t + 10. 

plot(D1, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

 susceptible population at value a, a=0 "); 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

      / d      \                                           

      |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

      \ dt     /                                           
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equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .2, b = 0.5e-2, e = 1.229, mu = 0, c = .23, 

delta = .5, Lambda = 0, equ1)); 

                  / d      \                   

                  |--- S(t)| - 0.69 + 0.4 S(t) 

                  \ dt     /                   

 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

         1.725000000 + 8.275000000 exp(-0.4000000000 t) 

D2 := evalf(equ3IVP); 

         1.725000000 + 8.275000000 exp(-0.4000000000 t) 

plot(D2, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a , a "); 

 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

      / d      \                                           

      |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

      \ dt     /                                           

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .4, b = 0.5e-2, e = 1.229, mu = 0, c = .23, 

delta = .5, Lambda = 0, equ1)); 

                  / d      \                   

                  |--- S(t)| - 0.69 + 0.8 S(t) 

                  \ dt     /                   
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equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

        0.8625000000 + 9.137500000 exp(-0.8000000000 t) 

 

D3 := evalf(equ3IVP); 

        0.8625000000 + 9.137500000 exp(-0.8000000000 t) 

plot(D3, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a, a "); 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

      / d      \                                           

      |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

      \ dt     /                                           

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .6, b = 0.5e-2, e = 1.229, mu = 0, c = .23, 

delta = .5, Lambda = 0, equ1)); 

                  / d      \                   

                  |--- S(t)| - 0.69 + 1.2 S(t) 

                  \ dt     /                   

 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

         0.5750000000 + 9.425000000 exp(-1.200000000 t) 

 

D4 := evalf(equ3IVP); 

         0.5750000000 + 9.425000000 exp(-1.200000000 t) 

plot(D4, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of  
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susceptible population at value a , a ") 

plot([D1, D2, D3, D4], t = 0 .. 10, labels = [''time'*no*of*days', 

''Susceptible*Humans*[S]''], labeldirections = ["horizontal", "vertical"], 

linestyle = [dash, dot, longdash], color = [green, blue, black, red], legend = [''a 

= 0'', "a= 0.2", ''a = .4'', ''a = .6'']); 

Maple code for the variation of susceptible population at various levels of a 

restart; 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

      |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = 0, b = 0.5e-2, e = 1.229, mu = 1, c = .23, 

delta = .5, Lambda = 20, equ1)); 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D1 := evalf(equ3IVP); 

plot(D1, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a, a=0 "); 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

      |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .2, b = 0.5e-2, e = 1.229, mu = 1, c = .23, 

delta = .5, Lambda = 20, equ1) 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D2 := evalf(equ3IVP); 

plot(D2, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a , a "); 
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equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

 |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .4, b = 0.5e-2, e = 1.229, mu = 1, c = .23, 

delta = .5, Lambda = 20, equ1));   /                    

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D3 := evalf(equ3IVP); 

plot(D3, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a, a "); 

equ1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t); 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .6, b = 0.5e-2, e = 1.229, mu = 1, c = .23, 

delta = .5, Lambda = 20, equ1)); 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D4 := evalf(equ3IVP); 

plot(D4, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of  

susceptible population at value a , a "); 

plot([D1, D2, D3, D4], t = 0 .. 10, labels = [''time'', ''Susceptible*Humans*[S]''], 

labeldirections = ["horizontal", "vertical"], caption = "Figure 4.1: The variation of 

susceptible population at various levels of a ", linestyle = [dash, dot, longdash], 

color = [green, blue, black, red], legend = [''a = 0'', "a= 0.2", ''a = .4'', ''a = .6'']); 

Maple code for the variation of susceptible population at various levels of a 

restart; 

equ1 diff(S(t), 

t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t)+`&sigma;__1`*a*S(t)*i(t)*dB1+`&sigma
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;__2`*mu*S(t)*dB2;    + &sigma;__1 a S(t) i(t) dB1 + &sigma;__2 mu S(t) dB2 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = 0, b = 0., e = 1.229, mu = 1, c = .23, delta = 

.5, `&sigma;__1` = 0.38e-1, `&sigma;__2` = .24388, dB1 = .5, dB2 = .2, Lambda = 

20, equ1)); 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D1 := evalf(equ3IVP); 

plot(D1, t = 0 .. 500, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a, a=0 "); 

equ1 := diff(S(t), 

t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t)+`&sigma;__1`*a*S(t)*i(t)*dB1+`&sigma

;__2`*mu*S(t)*dB2; 

   + &sigma;__1 a S(t) i(t) dB1 + &sigma;__2 mu S(t) dB2 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .4, b = 0., e = 1.229, mu = 1, c = .23, delta 

= .5, ` &sigma;__1` = 0.38e-1, `&sigma;__2` = .24388, dB1 = .5, dB2 = .2, Lambda = 20, 

equ1)); 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D2 := evalf(equ3IVP); 

plot(D2, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a , a "); 

 

equ1 := diff(S(t), 

t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t)+`&sigma;__1`*a*S(t)*i(t)*dB1+`&sigma

;__2`*mu*S(t)*dB2                                           
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 |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t)                                          

 + &sigma;__1 a S(t) i(t) dB1 + &sigma;__2 mu S(t) dB2 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .6, b = 0., e = 1.229, mu = 1, c = .23, delta 

= .5, `&sigma;__1` = 0.38e-1, `&sigma;__2` = .24388, dB1 = .5, dB2 = .2, Lambda 

= 20, equ1)); 

 |--- S(t)| - 20.69 + 2.271576 S(t) 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D3 := evalf(equ3IVP); 

plot(D3, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of 

susceptible population at value a, a "); 

equ1 diff(S(t), 

t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t)+`&sigma;__1`*a*S(t)*i(t)*dB1+`&sigma

;__2`*mu*S(t)*dB2                                           

  |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t) 

            + &sigma;__1 a S(t) i(t) dB1 + &sigma;__2 mu S(t) dB2 

equ2 := evalf(subs(i(t) = 2, R(t) = 3, a = .8, b = 0., e = 1.229, mu = 1, c = .23, delta 

= .5, `&sigma;__1` = 0.38e-1, `&sigma;__2` = .24388, dB1 = .5, dB2 = .2, Lambda 

= 20, equ1)); 

equ3IVP := evalf(rhs(dsolve({equ2, S(0) = 10}, S(t)))); 

D4 := evalf(equ3IVP); 

plot(D4, t = 0 .. 10, labels = [''time'', ''S''], title = "Figure 1: The variation of  

susceptible population at value a , a "); 

plot([D1, D2, D3, D4], t = 0 .. 10, labels = [''time'', ''Susceptible*Humans*[S]''], 
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labeldirections = ["horizontal", "vertical"], caption = "Figure 1a: The variation of 

susceptible population at various levels of a using stochastic model ", linestyle = 

[dash, dot, longdash], color = [green, blue, black, red], legend = [''a = 0'', "a= 0.4", 

''a = .6'', ''a = .8'']); 

 

Maple code for the stochastic variation of the infected humans 

restart; 

 

equ1 := diff(i(t), 

t)-delta*E(t)+b*i(t)+e*i(t)+mu*i(t)-`&sigma;__4`*delta*E(t)*dB4+`&sigma;__3`

*b*i(t)*dB3+`&sigma;__2`*mu*i(t)*dB2; 

     / d      \                                          

     |--- i(t)| - delta E(t) + b i(t) + e i(t) + mu i(t) 

     \ dt     /                                          

 

        - &sigma;__4 delta E(t) dB4 + &sigma;__3 b i(t) dB3 

 

        + &sigma;__2 mu i(t) dB2 

equ2 := evalf(subs(E(t) = 10, a = 0, b = 0., e = 1.229, mu = 1, c = 0.1e-1, delta = 0., 

`&sigma;__1` = 0.38e-1, `&sigma;__2` = 5.24388, `&sigma;__3` = .269304, 

`&sigma;__4` = .630522, dB1 = 0.5e-1, dB2 = 0.2e-2, dB3 = 0.75e-3, dB4 = .25, 

Lambda = 20, equ1)); 

                  / d      \                   



 
 

143

                  |--- i(t)| + 2.23948776 i(t) 

                  \ dt     /                   

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 4}, i(t)))); 

                     4. exp(-2.239487760 t) 

D1 := evalf(equ3IVP); 

                     4. exp(-2.239487760 t) 

plot(D1, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 13: The variation of 

infected individuals at value of b , b=0 "); 

 

equ1 := diff(i(t), 

t)-delta*E(t)+b*i(t)+e*i(t)+mu*i(t)-`&sigma;__4`*delta*E(t)*dB4+`&sigma;__3`

*b*i(t)*dB3+`&sigma;__2`*mu*i(t)*dB2; 

     / d      \                                          

     |--- i(t)| - delta E(t) + b i(t) + e i(t) + mu i(t) 

     \ dt     /                                          

 

        - &sigma;__4 delta E(t) dB4 + &sigma;__3 b i(t) dB3 

 

        + &sigma;__2 mu i(t) dB2 

equ2 := evalf(subs(E(t) = 10, S(t) = 50, a = 0, b = .2, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .4, `&sigma;__1` = 0.38e-1, `&sigma;__2` = 5.24388, `&sigma;__3` = 

.269304, ̀ &sigma;__4` = .630522, dB1 = 0.5e-1, dB2 = 0.2e-1, dB3 = 0.75e-3, dB4 

= .25, Lambda = 20, equ1)); 
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          / d      \                                  

          |--- i(t)| - 4.630522000 + 2.533917996 i(t) 

          \ dt     /                                  

 

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 4}, i(t)))); 

         1.827415886 + 2.172584114 exp(-2.533917996 t) 

D2 := evalf(equ3IVP); 

         1.827415886 + 2.172584114 exp(-2.533917996 t) 

plot(D2, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 2: The variation of Infected 

population  for value , a "); 

 

equ1 := diff(i(t), 

t)-delta*E(t)+b*i(t)+e*i(t)+mu*i(t)-`&sigma;__4`*delta*E(t)*dB4+`&sigma;__3`

*b*i(t)*dB3+`&sigma;__2`*mu*i(t)*dB2; 

     / d      \                                          

     |--- i(t)| - delta E(t) + b i(t) + e i(t) + mu i(t) 

     \ dt     /                                          

 

        - &sigma;__4 delta E(t) dB4 + &sigma;__3 b i(t) dB3 

 

        + &sigma;__2 mu i(t) dB2 

equ2 := evalf(subs(E(t) = 10, S(t) = 50, a = 0, b = .4, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .6, `&sigma;__1` = 0.38e-1, `&sigma;__2` = 5.24388, `&sigma;__3` = 



 
 

145

.269304, `&sigma;__4` = 0.30522e-1, dB1 = 0.5e-1, dB2 = 0.2e-1, dB3 = .75, dB4 

= .25, Lambda = 20, equ1)); 

          / d      \                                  

          |--- i(t)| - 6.045783000 + 2.814668800 i(t) 

          \ dt     /                                  

 

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 4}, i(t)))); 

         2.147955383 + 1.852044617 exp(-2.814668800 t) 

 

D3 := evalf(equ3IVP); 

         2.147955383 + 1.852044617 exp(-2.814668800 t) 

plot(D3, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 3: The variation of Infected 

population  for value , a "); 

equ1 := diff(i(t), 

t)-delta*E(t)+b*i(t)+e*i(t)+mu*i(t)-`&sigma;__4`*delta*E(t)*dB4+`&sigma;__3`

*b*i(t)*dB3+`&sigma;__2`*mu*i(t)*dB2; 

     / d      \                                          

     |--- i(t)| - delta E(t) + b i(t) + e i(t) + mu i(t) 

     \ dt     /                                          

 

        - &sigma;__4 delta E(t) dB4 + &sigma;__3 b i(t) dB3 

 

        + &sigma;__2 mu i(t) dB2 
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equ2 := evalf(subs(E(t) = 10, S(t) = 50, a = 0, b = .6, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .8, `&sigma;__1` = 0.38e-1, `&sigma;__2` = 5.24388, `&sigma;__3` = 

.269304, `&sigma;__4` = 0.30522e-1, dB1 = 0.5e-1, dB2 = .2, dB3 = .75, dB4 = 

.25, Lambda = 20, equ1)); 

          / d      \                                  

          |--- i(t)| - 8.061044000 + 3.998962800 i(t) 

          \ dt     /                                  

 

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 4}, i(t)))); 

         2.015783693 + 1.984216307 exp(-3.998962800 t) 

 

D4 := evalf(equ3IVP); 

         2.015783693 + 1.984216307 exp(-3.998962800 t) 

plot(D4, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 3: The variation of Infected  

population  for value , a "); 

plot([D1, D2, D3, D4], t = 0 .. 10, labels = [''time''*no*of*days, 

''Infected*Humans*[I]''], labeldirections = ["horizontal", "vertical"], linestyle = 

[dash, dot, longdash], color = [green, blue, black, red], legend = [''delta = 0.'', 

"&delta;= 0.4", ''delta = .6'', ''delta = .8'']); 

Maple code for the effect of treatment on the exposed individuals 

restart; 

equ1 := diff(E(t), t)-a*S(t)*i(t)+(mu+b+delta)*E(t); 

        / d      \                                       
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        |--- E(t)| - a S(t) i(t) + (mu + b + delta) E(t) 

        \ dt     /                                       

equ2 := evalf(subs(i(t) = 2, S(t) = 10, a = .3, b = 0., e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                  / d      \                  

                  |--- E(t)| - 6.0 + 1.5 E(t) 

                  \ dt     /                  

equ3IVP := evalf(rhs(dsolve({equ2, E(0) = 4}, E(t)))); 

                               4. 

D1 := evalf(equ3IVP); 

                               4. 

plot(D1, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 1: The variation of 

proportion of exposed human population  for value , a=0 "); 

equ1 := diff(E(t), t)-a*S(t)*i(t)+(mu+b+delta)*E(t); 

 

        / d      \                                       

        |--- E(t)| - a S(t) i(t) + (mu + b + delta) E(t) 

        \ dt     /                                       

equ2 := evalf(subs(i(t) = 2, S(t) = 10, a = .3, b = .4, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                  / d      \                  

                  |--- E(t)| - 6.0 + 1.9 E(t) 

                  \ dt     /                  
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equ3IVP := evalf(rhs(dsolve({equ2, E(0) = 4}, E(t)))); 

         3.157894737 + 0.8421052632 exp(-1.900000000 t) 

D2 := evalf(equ3IVP); 

         3.157894737 + 0.8421052632 exp(-1.900000000 t) 

plot(D2, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 1: The variation of 

proportion of exposed human population  for value , a "); 

equ1 := diff(E(t), t)-a*S(t)*i(t)+(mu+b+delta)*E(t); 

        / d      \                                       

        |--- E(t)| - a S(t) i(t) + (mu + b + delta) E(t) 

        \ dt     /                                       

equ2 := evalf(subs(i(t) = 2, S(t) = 10, a = .3, b = .6, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                  / d      \                  

                  |--- E(t)| - 6.0 + 2.1 E(t) 

                  \ dt     /                  

 

equ3IVP := evalf(rhs(dsolve({equ2, E(0) = 4}, E(t)))); 

         2.857142857 + 1.142857143 exp(-2.100000000 t) 

 

D3 := evalf(equ3IVP); 

         2.857142857 + 1.142857143 exp(-2.100000000 t) 

plot(D3, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 1: The variation of 

proportion of exposed human population  for value , a "); 
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equ1 := diff(E(t), t)-a*S(t)*i(t)+(mu+b+delta)*E(t); 

        / d      \                                       

        |--- E(t)| - a S(t) i(t) + (mu + b + delta) E(t) 

        \ dt     /                                       

equ2 := evalf(subs(i(t) = 2, S(t) = 10, a = 0., b = .8, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                     / d      \            

                     |--- E(t)| + 2.3 E(t) 

                     \ dt     /            

equ3IVP := evalf(rhs(dsolve({equ2, E(0) = 4}, E(t)))); 

                     4. exp(-2.300000000 t) 

 

D4 := evalf(equ3IVP); 

                     4. exp(-2.300000000 t) 

plot(D4, t = 0 .. 10, labels = [''time'', ''E''], title = "Figure 1: The variation of 

proportion of exposed human population  for value , a "); 

plot([D1, D2, D3, D4], t = 0 .. 10, labels = [(''time'')(no*of*days), 

''ExposedHumans*[E]''], labeldirections = ["horizontal", "vertical"], linestyle = 

[dash, dot, longdash], color = [green, blue, black, red], legend = [''b = 0'', "b= 0.4", 

''b = .6'', ''b = .8'']); 

Maple code for the effect of treatment on the infected humans 

restart; 

equ1 := diff(i(t), t)-delta*E(t)+(b+e+mu)*i(t); 
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          / d      \                                  

          |--- i(t)| - delta E(t) + (b + e + mu) i(t) 

          \ dt     /                                  

equ2 := evalf(subs(S(t) = 20, E(t) = 10, a = .3, b = 0., e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                 / d      \                    

                 |--- i(t)| - 5.0 + 2.229 i(t) 

                 \ dt     /                    

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 0}, i(t)))); 

         2.243158367 - 2.243158367 exp(-2.229000000 t) 

D1 := evalf(equ3IVP); 

         2.243158367 - 2.243158367 exp(-2.229000000 t) 

plot(D1, t = 0 .. 10, labels = [''time'', ''i''], title = "Figure 9: The Effect of treatment 

on the infected  population  for value , b=0 "); 

equ1 := diff(i(t), t)-delta*E(t)+(b+e+mu)*i(t); 

          / d      \                                  

          |--- i(t)| - delta E(t) + (b + e + mu) i(t) 

          \ dt     /                                  

equ2 := evalf(subs(S(t) = 20, E(t) = 10, a = .3, b = .4, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                 / d      \                    

                 |--- i(t)| - 5.0 + 2.629 i(t) 

                 \ dt     /                    



 
 

151

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 0}, i(t)))); 

         1.901863827 - 1.901863827 exp(-2.629000000 t) 

D2 := evalf(equ3IVP); 

         1.901863827 - 1.901863827 exp(-2.629000000 t) 

plot(D2, t = 0 .. 10, labels = [''time'', ''i''], title = "Figure 9: The effect of treatment on 

the infected individuals for value , i"); 

equ1 := diff(i(t), t)-delta*E(t)+(b+e+mu)*i(t); 

          / d      \                                  

          |--- i(t)| - delta E(t) + (b + e + mu) i(t) 

          \ dt     /                                  

equ2 := evalf(subs(S(t) = 20, E(t) = 10, a = .3, b = .6, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                 / d      \                    

                 |--- i(t)| - 5.0 + 2.829 i(t) 

                 \ dt     /                    

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 0}, i(t)))); 

         1.767408978 - 1.767408978 exp(-2.829000000 t) 

D3 := evalf(equ3IVP); 

         1.767408978 - 1.767408978 exp(-2.829000000 t) 

plot(D3, t = 0 .. 10, labels = [''time'', ''i''], title = "Figure 9: the effect of treatment on 

the infected individuals  for value , i"); 

equ1 := diff(i(t), t)-delta*E(t)+(b+e+mu)*i(t); 

          / d      \                                  
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          |--- i(t)| - delta E(t) + (b + e + mu) i(t) 

          \ dt     /                                  

equ2 := evalf(subs(S(t) = 20, E(t) = 10, a = .3, b = .8, e = 1.229, mu = 1, c = 0.1e-1, 

delta = .5, Lambda = 20, equ1)); 

                 / d      \                    

                 |--- i(t)| - 5.0 + 3.029 i(t) 

                 \ dt     /                    

 

equ3IVP := evalf(rhs(dsolve({equ2, i(0) = 0}, i(t)))); 

         1.650709805 - 1.650709805 exp(-3.029000000 t) 

 

D4 := evalf(equ3IVP); 

         1.650709805 - 1.650709805 exp(-3.029000000 t) 

plot(D4, t = 0 .. 10, labels = [''time'', ''i''], title = "Figure 9: The effect of treatment on 

the infected individuals  for value , i"); 

plot([D1, D2, D3, D4], t = 0 .. 10, labels = [(''time'')(no*of*days), 

''Infected*Humans*[i]''], labeldirections = ["horizontal", "vertical"], linestyle = 

[dash, dot, longdash], color = [green, blue, black, red], legend = [''b = 0'', "b= 0.4", 

''b = .6'', ''b = .8'']) 

Maple code for the bifurcation diagram 

restart; 

with(plots); 

print(`output redirected...`); # input placeholder 
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with(DEtools); 

print(`output redirected...`); # input placeholder 

f := 

(a*delta*c(delta*b+b*(b+e+mu))-a*delta*(c+mu)*(b+mu+delta)*(b+e+mu))*i^2

+mu*delta*(c+mu)*(b+mu+delta)*(b+e+mu)*(R[0]-1)*i; 

print(`output redirected...`); # input placeholder 

(a delta c(delta b + b (b + e + mu))- a delta (c + mu) (b + mu + delta) (b + e + mu)) 

i  

 + mu delta (c + mu) (b + mu + delta) (b + e + mu) (R[0] - 1) i 

print(??); # input placeholder 

g := evalf(subs(a = .4, b = 0.5e-2, e = 1.229, mu = 1, c = 0.1e-1, delta = .5, f)); 

print(`output redirected...`); # input placeholder 

EQ1 := g = 0; 

print(`output redirected...`); # input placeholder 

     print(??); # input placeholder 

EQ2 := diff(g, i[m]) = 0; 

print(`output redirected...`); # input placeholder 

 print(??); # input placeholder 

       EQ2 := factor(EQ2); 

print(`output redirected...`); # input placeholder 

print(??); # input placeholder 

BIFpt := solve({EQ1, EQ2}, {i, R[0]}); 

print(`output redirected...`); # input placeholder 
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      {i = 0., R[0] = R[0]},  

print(??); # input placeholder 

BIFdiag := implicitplot(g = 0, R[0] = 0 .. 1, i = -0.1e-1 .. 0., linestyle = solid, color = 

green, thickness = 3); 

print(`output redirected...`); # input placeholder 

PLOT(CURVES(Array(1..25, 1..2, {(1, 1) = .0, (1, 2) = .0, (2,  

print(`output redirected...`); # input placeholder 

display(BIFdiag, BIFdiag1, BIFdiag3, labels = [''Reproduction*Number*[R[0]]'', 

''Infected*Humans*with*the*disease*[I]''], labeldirections = ["horizontal", 

"vertical"], caption = "Figure 6: The bifurcation diagram for infectious disease with 

parameter values   "); 

Maple code for the stochastic variation of the population against time 
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> with(plots): sys := deq; 
fcns := {S(t) , E(t) , i(t) , R(t) }: 
p:= dsolve({sys,S(0) = 21950, i(0) = 50, R(0) = 0, E(0) = 
100},fcns,type=numeric,method=classical): 

 

> odeplot(p, 
[[t,S(t)],[t,E(t)],[t,i(t)],[t,R(t)]],0..30,titlefont = 
["ROMAN", 15], labelfont = ["ROMAN", 20],labels = ["time 
(months) ", "S,E,i,R "], labeldirections = ["horizontal", 
"horizontal"],linestyle=[solid,solid,solid,solid],color=[gr
een,yellow,red,blue],legend = [ "S(t) ","E(t) ","i(t) ","R(t) 
"],legendstyle = [font = ["HELVETICA", 20], location = 
right]);;; 

 
>  

 
 

 
 Maple code for the optimal control using one control strategy 
  
 restart; unprotect(Pi); 

a := 0.318e-3; b := 0.175e-1; e := .576; mu := 0.5e-1; c := 0.1e-1; delta := .8; Lambda 
:= 20; m[1] := .1; m[2] := .2; m[3] := .4; m[4] := .1; u[1][0] := 0; u[2][0] := 0; N := 
0.1e-1; Q := 900; P1[100] := 0; P2[100] := 0; P3[100] := 0; P4[100] := 0; S[0] := 460; 
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E[0] := 30; i[0] := 12; R[0] := 0; h := 0.1e-2; 
  
  
  
 for n from 0 to 100 do S[n+1] := 

S[n]+h*(Lambda-(1-u[1][n]-u[2][n])*a*i[n]*S[n]-mu*S[n]+c*R[n]); E[n+1] := 
E[n]+h*((1-u[1][n]-u[2][n])*a*i[n]*S[n+1]-(u[1][n]+u[2][n]+mu+delta)*E[n]); 
i[n+1] := i[n]+h*(delta*E[n+1]-(u[1][n]+e+mu)*i[n]); R[n+1] := 
R[n]+h*(u[1][n]*i[n+1]+u[1][n]*E[n+1]+u[2][n]*E[n+1]-(c+mu)*R[n]); 
P1[100-n-1] := 
P1[100-n]+h*((P1[100-n]-P2[100-n])*(1-u[1][n]-u[2][n])*a*i[n+1]-mu*P1[100-n
]); P2[100-n-1] := 
P2[100-n]+h*(P2[100-n]*(u[1][n]+u[2][n]+mu+delta)-P4[100-n]*(u[1][n]+u[2][n
])-P3[100-n]*delta-Q); P3[100-n-1] := 
P3[100-n]+h*(P3[100-n]*(u[1][n]+e+mu)-P4[100-n]*u[1][n]-N); P4[100-n-1] := 
P4[100-n]+h*(P4[100-n]*(c+mu)-P1[100-n-1]*c); A[1][n] := 
-(1/2)*((P2[100-n-1]-P1[100-n-1])*a*S[n+1]*i[n+1]+(P2[100-n-1]-P4[100-n-1])*
E[n+1]+(P3[100-n-1]-P4[100-n-1])*i[n+1])/m[3]; A[2][n] := 
-(1/2)*((P2[100-n-1]-P1[100-n-1])*a*S[n+1]*i[n+1]+(P2[100-n-1]-P4[100-n-1])*
E[n+1])/m[4]; u[1][n+1] := min(1, max(0, A[1][n])); u[2][n+1] := 0 end do; 

 S[0] := 460; E[0] := 30; i[0] := 12; R[0] := 0; 
 C1 := [seq(S[n], n = 0 .. 100)]; C2 := [seq(E[n], n = 0 .. 100)]; C3 := [seq(i[n], n = 0 .. 

100)]; C4 := [seq(R[n], n = 0 .. 100)]; 
 with(Statistics); A1 := PointPlot(C1, color = green, thickness = 1, symbol = 

default); 
 %; 
 PLOT(CURVES([[1., 460.], [2., 459.9952446], [3., 459.9922448],  
  
   [4., 459.9892456], [5., 459.9862470], [6., 459.9832489],  
  
   [7., 459.9802514], [8., 459.9772545], [9., 459.9742581],  
  
   [10., 459.9712623], [11., 459.9682671], [12., 459.9652724],  
  
   [13., 459.9622783], [14., 459.9592848], [15., 459.9562918],  
  
   [16., 459.9532994], [17., 459.9503076], [18., 459.9473163],  
  
   [19., 459.9443256], [20., 459.9413354], [21., 459.9383458],  
  
   [22., 459.9353568], [23., 459.9323683], [24., 459.9293804],  
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   [25., 459.9263930], [26., 459.9234062], [27., 459.9204199],  
  
   [28., 459.9174342], [29., 459.9144491], [30., 459.9114645],  
  
   [31., 459.9084805], [32., 459.9054970], [33., 459.9025141],  
  
   [34., 459.8995317], [35., 459.8965499], [36., 459.8935686],  
  
   [37., 459.8905879], [38., 459.8876077], [39., 459.8846281],  
  
   [40., 459.8816490], [41., 459.8786705], [42., 459.8756925],  
  
   [43., 459.8727151], [44., 459.8697382], [45., 459.8667619],  
  
   [46., 459.8637861], [47., 459.8608109], [48., 459.8578362],  
  
   [49., 459.8548621], [50., 459.8518885], [51., 459.8489154],  
  
   [52., 459.8459429], [53., 459.8429709], [54., 459.8399995],  
  
   [55., 459.8370286], [56., 459.8340583], [57., 459.8310885],  
  
   [58., 459.8281192], [59., 459.8251505], [60., 459.8221823],  
  
   [61., 459.8192146], [62., 459.8162475], [63., 459.8132809],  
  
   [64., 459.8103149], [65., 459.8073494], [66., 459.8043844],  
  
   [67., 459.8014200], [68., 459.7984561], [69., 459.7954927],  
  
   [70., 459.7925299], [71., 459.7895676], [72., 459.7866058],  
  
   [73., 459.7836446], [74., 459.7806839], [75., 459.7777237],  
  
   [76., 459.7747641], [77., 459.7718050], [78., 459.7688464],  
  
   [79., 459.7658883], [80., 459.7629308], [81., 459.7599738],  
  
   [82., 459.7570173], [83., 459.7540614], [84., 459.7511060],  
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   [85., 459.7481511], [86., 459.7451967], [87., 459.7422429],  
  
   [88., 459.7392896], [89., 459.7363368], [90., 459.7333845],  
  
   [91., 459.7304327], [92., 459.7274815], [93., 459.7245308],  
  
   [94., 459.7215806], [95., 459.7186309], [96., 459.7156818],  
  
   [97., 459.7127332], [98., 459.7097851], [99., 459.7068375],  
  
   [100., 459.7038904], [101., 459.7009438]],  
  
   COLOUR(RGB, 0., 1.00000000, 0.),  
  
   LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
   SYMBOL(DEFAULT), THICKNESS(1)) 
 with(Statistics); A2 := PointPlot(C2, color = green, thickness = 1, symbol = 

default); 
 print(`output redirected...`); # input placeholder 
  PLOT(CURVES([[1., 30.], [2., 29.97625534], [3., 29.92079927],  
  
    [4., 29.86544579], [5., 29.81019472], [6., 29.75504586],  
  
    [7., 29.69999903], [8., 29.64505403], [9., 29.59021068],  
  
    [10., 29.53546879], [11., 29.48082817], [12., 29.42628864],  
  
    [13., 29.37185001], [14., 29.31751209], [15., 29.26327469],  
  
    [16., 29.20913763], [17., 29.15510073], [18., 29.10116379],  
  
    [19., 29.04732664], [20., 28.99358909], [21., 28.93995095],  
  
    [22., 28.88641204], [23., 28.83297218], [24., 28.77963118],  
  
    [25., 28.72638886], [26., 28.67324504], [27., 28.62019954],  
  
    [28., 28.56725217], [29., 28.51440275], [30., 28.46165110],  
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    [31., 28.40899705], [32., 28.35644041], [33., 28.30398100],  
  
    [34., 28.25161864], [35., 28.19935315], [36., 28.14718435],  
  
    [37., 28.09511206], [38., 28.04313610], [39., 27.99125630],  
  
    [40., 27.93947248], [41., 27.88778446], [42., 27.83619206],  
  
    [43., 27.78469510], [44., 27.73329341], [45., 27.68198682],  
  
    [46., 27.63077514], [47., 27.57965821], [48., 27.52863584],  
  
    [49., 27.47770786], [50., 27.42687410], [51., 27.37613438],  
  
    [52., 27.32548853], [53., 27.27493638], [54., 27.22447775],  
  
    [55., 27.17411247], [56., 27.12384036], [57., 27.07366126],  
  
    [58., 27.02357499], [59., 26.97358138], [60., 26.92368025],  
  
    [61., 26.87387144], [62., 26.82415478], [63., 26.77453009],  
  
    [64., 26.72499721], [65., 26.67555597], [66., 26.62620619],  
  
    [67., 26.57694771], [68., 26.52778036], [69., 26.47870397],  
  
    [70., 26.42971837], [71., 26.38082339], [72., 26.33201887],  
  
    [73., 26.28330464], [74., 26.23468053], [75., 26.18614637],  
  
    [76., 26.13770200], [77., 26.08934725], [78., 26.04108196],  
  
    [79., 25.99290596], [80., 25.94481908], [81., 25.89682116],  
  
    [82., 25.84891204], [83., 25.80109155], [84., 25.75335953],  
  
    [85., 25.70571581], [86., 25.65816024], [87., 25.61069264],  
  
    [88., 25.56331286], [89., 25.51602073], [90., 25.46881609],  
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    [91., 25.42169878], [92., 25.37466864], [93., 25.32772550],  
  
    [94., 25.28086921], [95., 25.23409960], [96., 25.18741652],  
  
    [97., 25.14081980], [98., 25.09430928], [99., 25.04788481],  
  
    [100., 25.00154622], [101., 24.95529336]],  
  
    COLOUR(RGB, 0., 1.00000000, 0.),  
  
    LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
    SYMBOL(DEFAULT), THICKNESS(1)) 
 with(Statistics); A3 := PointPlot(C3, color = green, thickness = 1, symbol = 

default); 
 print(`output redirected...`); # input placeholder 
  PLOT(CURVES([[1., 12.], [2., 12.01646900], [3., 12.02086686],  
  
    [4., 12.02521329], [5., 12.02950845], [6., 12.03375251],  
  
    [7., 12.03794563], [8., 12.04208797], [9., 12.04617970],  
  
    [10., 12.05022099], [11., 12.05421199], [12., 12.05815287],  
  
    [13., 12.06204379], [14., 12.06588492], [15., 12.06967641],  
  
    [16., 12.07341843], [17., 12.07711113], [18., 12.08075468],  
  
    [19., 12.08434923], [20., 12.08789495], [21., 12.09139199],  
  
    [22., 12.09484052], [23., 12.09824069], [24., 12.10159266],  
  
    [25., 12.10489658], [26., 12.10815261], [27., 12.11136091],  
  
    [28., 12.11452164], [29., 12.11763495], [30., 12.12070100],  
  
    [31., 12.12371994], [32., 12.12669192], [33., 12.12961710],  
  
    [34., 12.13249564], [35., 12.13532768], [36., 12.13811338],  
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    [37., 12.14085290], [38., 12.14354638], [39., 12.14619398],  
  
    [40., 12.14879585], [41., 12.15135214], [42., 12.15386300],  
  
    [43., 12.15632857], [44., 12.15874901], [45., 12.16112447],  
  
    [46., 12.16345510], [47., 12.16574105], [48., 12.16798246],  
  
    [49., 12.17017949], [50., 12.17233228], [51., 12.17444098],  
  
    [52., 12.17650573], [53., 12.17852668], [54., 12.18050398],  
  
    [55., 12.18243777], [56., 12.18432820], [57., 12.18617541],  
  
    [58., 12.18797955], [59., 12.18974076], [60., 12.19145919],  
  
    [61., 12.19313497], [62., 12.19476826], [63., 12.19635919],  
  
    [64., 12.19790791], [65., 12.19941456], [66., 12.20087928],  
  
    [67., 12.20230221], [68., 12.20368349], [69., 12.20502326],  
  
    [70., 12.20632167], [71., 12.20757885], [72., 12.20879494],  
  
    [73., 12.20997008], [74., 12.21110441], [75., 12.21219807],  
  
    [76., 12.21325120], [77., 12.21426393], [78., 12.21523640],  
  
    [79., 12.21616875], [80., 12.21706111], [81., 12.21791363],  
  
    [82., 12.21872643], [83., 12.21949965], [84., 12.22023343],  
  
    [85., 12.22092790], [86., 12.22158320], [87., 12.22219946],  
  
    [88., 12.22277681], [89., 12.22331539], [90., 12.22381533],  
  
    [91., 12.22427677], [92., 12.22469983], [93., 12.22508465],  
  
    [94., 12.22543136], [95., 12.22574009], [96., 12.22601097],  
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    [97., 12.22624413], [98., 12.22643970], [99., 12.22659782],  
  
    [100., 12.22671861], [101., 12.22680220]],  
  
    COLOUR(RGB, 0., 1.00000000, 0.),  
  
    LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
    SYMBOL(DEFAULT), THICKNESS(1)) 
 with(Statistics); A4 := PointPlot(C4, color = green, thickness = 1, symbol = 

default); 
 %; 
 PLOT(CURVES([[1., 0.], [2., 0.], [3., 0.04194166613],  
  
   [4., 0.08382980871], [5., 0.1256644821], [6., 0.1674457406],  
  
   [7., 0.2091736385], [8., 0.2508482301], [9., 0.2924695696],  
  
   [10., 0.3340377112], [11., 0.3755527091], [12., 0.4170146174],  
  
   [13., 0.4584234903], [14., 0.4997793819], [15., 0.5410823462],  
  
   [16., 0.5823324373], [17., 0.6235297092], [18., 0.6646742159],  
  
   [19., 0.7057660113], [20., 0.7468051494], [21., 0.7877916840],  
  
   [22., 0.8287256691], [23., 0.8696071584], [24., 0.9104362058],  
  
   [25., 0.9512128651], [26., 0.9919371900], [27., 1.032609234],  
  
   [28., 1.073229051], [29., 1.113796695], [30., 1.154312219],  
  
   [31., 1.194775677], [32., 1.235187123], [33., 1.275546610],  
  
   [34., 1.315854191], [35., 1.356109921], [36., 1.396313852],  
  
   [37., 1.436466038], [38., 1.476566533], [39., 1.516615389],  
  
   [40., 1.556612660], [41., 1.596558400], [42., 1.636452662],  
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   [43., 1.676295499], [44., 1.716086964], [45., 1.755827110],  
  
   [46., 1.795515991], [47., 1.835153659], [48., 1.874740168],  
  
   [49., 1.914275571], [50., 1.953759921], [51., 1.993193271],  
  
   [52., 2.032575674], [53., 2.071907183], [54., 2.111187850],  
  
   [55., 2.150417729], [56., 2.189596872], [57., 2.228725333],  
  
   [58., 2.267803164], [59., 2.306830418], [60., 2.345807148],  
  
   [61., 2.384733406], [62., 2.423609245], [63., 2.462434718],  
  
   [64., 2.501209877], [65., 2.539934775], [66., 2.578609464],  
  
   [67., 2.617233997], [68., 2.655808427], [69., 2.694332806],  
  
   [70., 2.732807186], [71., 2.771231620], [72., 2.809606160],  
  
   [73., 2.847930858], [74., 2.886205767], [75., 2.924430939],  
  
   [76., 2.962606426], [77., 3.000732281], [78., 3.038808555],  
  
   [79., 3.076835301], [80., 3.114812571], [81., 3.152740417],  
  
   [82., 3.190618891], [83., 3.228448045], [84., 3.266227931],  
  
   [85., 3.303958601], [86., 3.341640107], [87., 3.379272501],  
  
   [88., 3.416855834], [89., 3.454390159], [90., 3.491875527],  
  
   [91., 3.529311990], [92., 3.566699600], [93., 3.604038408],  
  
   [94., 3.641328466], [95., 3.678569826], [96., 3.715762539],  
  
   [97., 3.752906657], [98., 3.790002232], [99., 3.827049314],  
  
   [100., 3.864047956], [101., 3.900998209]],  
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   COLOUR(RGB, 0., 1.00000000, 0.),  
  
   LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
   SYMBOL(DEFAULT), THICKNESS(1)) 
  
  
  
  
  
 for n from 0 to 100 do S[n+1] := S[n]+h*(-a*S[n]*i[n]+c*R[n]-mu*S[n]+Lambda); 

E[n+1] := E[n]+h*(a*i[n]*S[n+1]-(mu+delta)*E[n]); i[n+1] := 
i[n]+h*(delta*E[n+1]-(e+mu)*i[n]); R[n+1] := R[n]-h*(c+mu)*R[n] end do; 

 S[0] := 460; E[0] := 30; i[0] := 12; R[0] := 0; 
 B1 := [seq(S[n], n = 0 .. 100)]; B2 := [seq(E[n], n = 0 .. 100)]; B3 := [seq(i[n], n = 0 .. 

100)]; B4 := [seq(R[n], n = 0 .. 100)]; 
 with(Statistics); D1 := PointPlot(B1, color = red, thickness = 1, symbol = default); 
 %; 
 PLOT(CURVES([[1., 460.], [2., 459.9952446], [3., 459.9904871],  
  
   [4., 459.9857274], [5., 459.9809656], [6., 459.9762017],  
  
   [7., 459.9714356], [8., 459.9666674], [9., 459.9618971],  
  
   [10., 459.9571246], [11., 459.9523500], [12., 459.9475733],  
  
   [13., 459.9427945], [14., 459.9380136], [15., 459.9332306],  
  
   [16., 459.9284455], [17., 459.9236583], [18., 459.9188690],  
  
   [19., 459.9140776], [20., 459.9092842], [21., 459.9044887],  
  
   [22., 459.8996911], [23., 459.8948915], [24., 459.8900898],  
  
   [25., 459.8852860], [26., 459.8804802], [27., 459.8756723],  
  
   [28., 459.8708624], [29., 459.8660505], [30., 459.8612365],  
  
   [31., 459.8564205], [32., 459.8516025], [33., 459.8467824],  
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   [34., 459.8419603], [35., 459.8371362], [36., 459.8323101],  
  
   [37., 459.8274820], [38., 459.8226519], [39., 459.8178198],  
  
   [40., 459.8129857], [41., 459.8081496], [42., 459.8033115],  
  
   [43., 459.7984715], [44., 459.7936295], [45., 459.7887855],  
  
   [46., 459.7839395], [47., 459.7790916], [48., 459.7742417],  
  
   [49., 459.7693899], [50., 459.7645361], [51., 459.7596804],  
  
   [52., 459.7548227], [53., 459.7499631], [54., 459.7451016],  
  
   [55., 459.7402381], [56., 459.7353727], [57., 459.7305054],  
  
   [58., 459.7256362], [59., 459.7207650], [60., 459.7158919],  
  
   [61., 459.7110169], [62., 459.7061400], [63., 459.7012612],  
  
   [64., 459.6963805], [65., 459.6914980], [66., 459.6866136],  
  
   [67., 459.6817273], [68., 459.6768391], [69., 459.6719491],  
  
   [70., 459.6670572], [71., 459.6621634], [72., 459.6572678],  
  
   [73., 459.6523703], [74., 459.6474710], [75., 459.6425698],  
  
   [76., 459.6376668], [77., 459.6327619], [78., 459.6278552],  
  
   [79., 459.6229467], [80., 459.6180363], [81., 459.6131241],  
  
   [82., 459.6082101], [83., 459.6032943], [84., 459.5983767],  
  
   [85., 459.5934573], [86., 459.5885361], [87., 459.5836131],  
  
   [88., 459.5786883], [89., 459.5737617], [90., 459.5688333],  
  
   [91., 459.5639031], [92., 459.5589711], [93., 459.5540374],  
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   [94., 459.5491019], [95., 459.5441646], [96., 459.5392256],  
  
   [97., 459.5342848], [98., 459.5293422], [99., 459.5243979],  
  
   [100., 459.5194518], [101., 459.5145040]],  
  
   COLOUR(RGB, 1.00000000, 0., 0.),  
  
   LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
   SYMBOL(DEFAULT), THICKNESS(1)) 
 with(Statistics); D2 := PointPlot(B2, color = red, thickness = 1, symbol = default); 
 print(`output redirected...`); # input placeholder 
  PLOT(CURVES([[1., 30.], [2., 29.97625534], [3., 29.95253326],  
  
    [4., 29.92883373], [5., 29.90515672], [6., 29.88150222],  
  
    [7., 29.85787020], [8., 29.83426063], [9., 29.81067350],  
  
    [10., 29.78710878], [11., 29.76356644], [12., 29.74004646],  
  
    [13., 29.71654882], [14., 29.69307350], [15., 29.66962047],  
  
    [16., 29.64618971], [17., 29.62278120], [18., 29.59939491],  
  
    [19., 29.57603082], [20., 29.55268891], [21., 29.52936916],  
  
    [22., 29.50607154], [23., 29.48279602], [24., 29.45954259],  
  
    [25., 29.43631122], [26., 29.41310189], [27., 29.38991458],  
  
    [28., 29.36674926], [29., 29.34360591], [30., 29.32048451],  
  
    [31., 29.29738503], [32., 29.27430745], [33., 29.25125175],  
  
    [34., 29.22821791], [35., 29.20520590], [36., 29.18221570],  
  
    [37., 29.15924729], [38., 29.13630065], [39., 29.11337575],  
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    [40., 29.09047257], [41., 29.06759109], [42., 29.04473128],  
  
    [43., 29.02189312], [44., 28.99907659], [45., 28.97628167],  
  
    [46., 28.95350833], [47., 28.93075656], [48., 28.90802633],  
  
    [49., 28.88531761], [50., 28.86263039], [51., 28.83996464],  
  
    [52., 28.81732034], [53., 28.79469747], [54., 28.77209601],  
  
    [55., 28.74951593], [56., 28.72695721], [57., 28.70441983],  
  
    [58., 28.68190377], [59., 28.65940900], [60., 28.63693550],  
  
    [61., 28.61448325], [62., 28.59205223], [63., 28.56964242],  
  
    [64., 28.54725379], [65., 28.52488632], [66., 28.50253999],  
  
    [67., 28.48021478], [68., 28.45791067], [69., 28.43562763],  
  
    [70., 28.41336564], [71., 28.39112469], [72., 28.36890474],  
  
    [73., 28.34670578], [74., 28.32452779], [75., 28.30237074],  
  
    [76., 28.28023461], [77., 28.25811938], [78., 28.23602503],  
  
    [79., 28.21395153], [80., 28.19189887], [81., 28.16986702],  
  
    [82., 28.14785596], [83., 28.12586567], [84., 28.10389613],  
  
    [85., 28.08194732], [86., 28.06001921], [87., 28.03811178],  
  
    [88., 28.01622502], [89., 27.99435890], [90., 27.97251340],  
  
    [91., 27.95068849], [92., 27.92888416], [93., 27.90710038],  
  
    [94., 27.88533714], [95., 27.86359441], [96., 27.84187217],  
  
    [97., 27.82017040], [98., 27.79848908], [99., 27.77682819],  
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    [100., 27.75518770], [101., 27.73356760]],  
  
    COLOUR(RGB, 1.00000000, 0., 0.),  
  
    LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
    SYMBOL(DEFAULT), THICKNESS(1)) 
 with(Statistics); D3 := PointPlot(B3, color = red, thickness = 1, symbol = default); 
 print(`output redirected...`); # input placeholder 
  PLOT(CURVES([[1., 12.], [2., 12.01646900], [3., 12.03290872],  
  
    [4., 12.04931919], [5., 12.06570044], [6., 12.08205251],  
  
    [7., 12.09837544], [8., 12.11466927], [9., 12.13093403],  
  
    [10., 12.14716975], [11., 12.16337647], [12., 12.17955423],  
  
    [13., 12.19570307], [14., 12.21182302], [15., 12.22791412],  
  
    [16., 12.24397640], [17., 12.26000990], [18., 12.27601465],  
  
    [19., 12.29199069], [20., 12.30793805], [21., 12.32385678],  
  
    [22., 12.33974690], [23., 12.35560846], [24., 12.37144148],  
  
    [25., 12.38724601], [26., 12.40302208], [27., 12.41876972],  
  
    [28., 12.43448897], [29., 12.45017986], [30., 12.46584244],  
  
    [31., 12.48147673], [32., 12.49708277], [33., 12.51266060],  
  
    [34., 12.52821025], [35., 12.54373176], [36., 12.55922516],  
  
    [37., 12.57469048], [38., 12.59012776], [39., 12.60553704],  
  
    [40., 12.62091835], [41., 12.63627173], [42., 12.65159721],  
  
    [43., 12.66689482], [44., 12.68216461], [45., 12.69740660],  
  
    [46., 12.71262083], [47., 12.72780733], [48., 12.74296614],  
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    [49., 12.75809730], [50., 12.77320084], [51., 12.78827679],  
  
    [52., 12.80332518], [53., 12.81834606], [54., 12.83333945],  
  
    [55., 12.84830539], [56., 12.86324392], [57., 12.87815507],  
  
    [58., 12.89303887], [59., 12.90789535], [60., 12.92272456],  
  
    [61., 12.93752652], [62., 12.95230127], [63., 12.96704884],  
  
    [64., 12.98176927], [65., 12.99646259], [66., 13.01112884],  
  
    [67., 13.02576805], [68., 13.04038025], [69., 13.05496547],  
  
    [70., 13.06952375], [71., 13.08405513], [72., 13.09855964],  
  
    [73., 13.11303731], [74., 13.12748817], [75., 13.14191226],  
  
    [76., 13.15630961], [77., 13.17068026], [78., 13.18502423],  
  
    [79., 13.19934157], [80., 13.21363230], [81., 13.22789646],  
  
    [82., 13.24213408], [83., 13.25634520], [84., 13.27052984],  
  
    [85., 13.28468805], [86., 13.29881985], [87., 13.31292528],  
  
    [88., 13.32700437], [89., 13.34105715], [90., 13.35508366],  
  
    [91., 13.36908393], [92., 13.38305799], [93., 13.39700588],  
  
    [94., 13.41092762], [95., 13.42482325], [96., 13.43869281],  
  
    [97., 13.45253632], [98., 13.46635382], [99., 13.48014535],  
  
    [100., 13.49391093], [101., 13.50765060]],  
  
    COLOUR(RGB, 1.00000000, 0., 0.),  
  
    LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
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    SYMBOL(DEFAULT), THICKNESS(1)) 
 with(Statistics); D4 := PointPlot(B4, color = red, thickness = 1, symbol = default); 
 %; 
 PLOT(CURVES([[1., 0.], [2., 0.], [3., 0.], [4., 0.], [5., 0.],  
  
   [6., 0.], [7., 0.], [8., 0.], [9., 0.], [10., 0.], [11., 0.],  
  
   [12., 0.], [13., 0.], [14., 0.], [15., 0.], [16., 0.],  
  
   [17., 0.], [18., 0.], [19., 0.], [20., 0.], [21., 0.],  
  
   [22., 0.], [23., 0.], [24., 0.], [25., 0.], [26., 0.],  
  
   [27., 0.], [28., 0.], [29., 0.], [30., 0.], [31., 0.],  
  
   [32., 0.], [33., 0.], [34., 0.], [35., 0.], [36., 0.],  
  
   [37., 0.], [38., 0.], [39., 0.], [40., 0.], [41., 0.],  
  
   [42., 0.], [43., 0.], [44., 0.], [45., 0.], [46., 0.],  
  
   [47., 0.], [48., 0.], [49., 0.], [50., 0.], [51., 0.],  
  
   [52., 0.], [53., 0.], [54., 0.], [55., 0.], [56., 0.],  
  
   [57., 0.], [58., 0.], [59., 0.], [60., 0.], [61., 0.],  
  
   [62., 0.], [63., 0.], [64., 0.], [65., 0.], [66., 0.],  
  
   [67., 0.], [68., 0.], [69., 0.], [70., 0.], [71., 0.],  
  
   [72., 0.], [73., 0.], [74., 0.], [75., 0.], [76., 0.],  
  
   [77., 0.], [78., 0.], [79., 0.], [80., 0.], [81., 0.],  
  
   [82., 0.], [83., 0.], [84., 0.], [85., 0.], [86., 0.],  
  
   [87., 0.], [88., 0.], [89., 0.], [90., 0.], [91., 0.],  
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   [92., 0.], [93., 0.], [94., 0.], [95., 0.], [96., 0.],  
  
   [97., 0.], [98., 0.], [99., 0.], [100., 0.], [101., 0.]],  
  
   COLOUR(RGB, 1.00000000, 0., 0.),  
  
   LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
  
   SYMBOL(DEFAULT), THICKNESS(1)) 
  
 print(??); # input placeholder 
  
  
  
  
  
  
 plots[display](A3, D3, labels = [''time*no*of*days'', 

''Infected*Humans*population*with*Infectious*disease*[I[m]]''], labeldirections 
= ["horizontal", "vertical"]); 

Maple code for the optimal control strategy 2 
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 Maple code for the optimal control using two control strategies 

restart; unprotect(Pi); 
a := .165; b := .27; e := 0.1e-1; mu := 1; c := 0.1e-1; delta := .29; Lambda := 20; m[1] := .1; 
m[2] := .2; m[3] := .4; m[4] := .1; u[1][0] := 0; u[2][0] := 0; N := 0.1e-1; Q := 900; P1[100] 
:= 0; P2[100] := 0; P3[100] := 0; P4[100] := 0; S[0] := 21950; E[0] := 30; i[0] := 0; R[0] := 
0; h := 0.1e-2; 
 
for n from 0 to 100 do S[n+1] := 
S[n]+h*(Lambda-(1-u[1][n]-u[2][n])*a*i[n]*S[n]-mu*S[n]+c*R[n]); E[n+1] := 
E[n]+h*((1-u[1][n]-u[2][n])*a*i[n]*S[n+1]-(u[1][n]+u[2][n]+mu+delta)*E[n]); i[n+1] := 
i[n]+h*(delta*E[n+1]-(u[1][n]+e+mu)*i[n]); R[n+1] := 
R[n]+h*(u[1][n]*i[n+1]+u[1][n]*E[n+1]+u[2][n]*E[n+1]-(c+mu)*R[n]); P1[100-n-1] := 
P1[100-n]+h*((P1[100-n]-P2[100-n])*(1-u[1][n]-u[2][n])*a*i[n+1]-mu*P1[100-n]); 
P2[100-n-1] := 
P2[100-n]+h*(P2[100-n]*(u[1][n]+u[2][n]+mu+delta)-P4[100-n]*(u[1][n]+u[2][n])-P3[1
00-n]*delta-Q); P3[100-n-1] := 
P3[100-n]+h*(P3[100-n]*(u[1][n]+e+mu)-P4[100-n]*u[1][n]-N); P4[100-n-1] := 
P4[100-n]+h*(P4[100-n]*(c+mu)-P1[100-n-1]*c); A[1][n] := 
-(1/2)*((P2[100-n-1]-P1[100-n-1])*a*S[n+1]*i[n+1]+(P2[100-n-1]-P4[100-n-1])*E[n+1]
+(P3[100-n-1]-P4[100-n-1])*i[n+1])/m[3]; A[2][n] := 
-(1/2)*((P2[100-n-1]-P1[100-n-1])*a*S[n+1]*i[n+1]+(P2[100-n-1]-P4[100-n-1])*E[n+1]
)/m[4]; u[1][n+1] := min(1, max(0, A[1][n])); u[2][n+1] := min(1, max(0, A[2][n])) end 
do; 
S[0] := 21950; E[0] := 30; i[0] := 0; R[0] := 0; 
C1 := [seq(S[n], n = 0 .. 100)]; C2 := [seq(E[n], n = 0 .. 100)]; C3 := [seq(i[n], n = 0 .. 100)]; 
C4 := [seq(R[n], n = 0 .. 100)]; 
with(Statistics); A1 := PointPlot(C1, color = green, thickness = 1, symbol = default); 
%; 
PLOT(CURVES([[1., 21950.], [2., 21928.070], [3., 21906.19337],  
 
  SYMBOL(DEFAULT), THICKNESS(1)) 
with(Statistics); A2 := PointPlot(C2, color = green, thickness = 1, symbol = default); 
print(`output redirected...`); # input placeholder 
PLOT(CURVES([[1., 30.], [2., 29.96130], [3., 29.83132155],  
 
 
 
  LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
 
  SYMBOL(DEFAULT), THICKNESS(1)) 
with(Statistics); A3 := PointPlot(C3, color = green, thickness = 1, symbol = default); 
print(`output redirected...`); # input placeholder 
PLOT(CURVES([[1., 0.], [2., 0.0086887770], [3., 0.01732239581],  
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  COLOUR(RGB, 0., 1.00000000, 0.),  
 
  LEGEND("__never_display_this_legend_entry")), STYLE(POINT),  
 
  SYMBOL(DEFAULT), THICKNESS(1)) 
 
for n from 0 to 100 do S[n+1] := S[n]+h*(-a*S[n]*i[n]+c*R[n]-mu*S[n]+Lambda); 
E[n+1] := E[n]+h*(a*i[n]*S[n+1]-(mu+delta)*E[n]); i[n+1] := 
i[n]+h*(delta*E[n+1]-(e+mu)*i[n]); R[n+1] := R[n]-h*(c+mu)*R[n] end do; 
S[0] := 21950; E[0] := 30; i[0] := 0; R[0] := 0; 
B1 := [seq(S[n], n = 0 .. 100)]; B2 := [seq(E[n], n = 0 .. 100)]; B3 := [seq(i[n], n = 0 .. 100)]; 
B4 := [seq(R[n], n = 0 .. 100)]; 
with(Statistics); D1 := PointPlot(B1, color = red, thickness = 1, symbol = default); 
%; 
PLOT(CURVES([[1., 21950.], [2., 21928.070], [3., 21906.13049],  
 
deq1 := diff(S(t), t)-Lambda+a*S(t)*i(t)+mu*S(t)-c*R(t), diff(E(t), 
t)-a*S(t)*i(t)+(mu+b+delta)*E(t), diff(i(t), t)-delta*E(t)+(b+e+mu)*i(t), diff(R(t), 
t)-b*i(t)-b*E(t)+c*R(t)+mu*R(t); 
print(`output redirected...`); # input placeholder 
     / d      \                                             
     |--- S(t)| - Lambda + a S(t) i(t) + mu S(t) - c R(t),  
     \ dt     /                                             
 
       / d      \                                         
       |--- E(t)| - a S(t) i(t) + (mu + b + delta) E(t),  
       \ dt     /                                         
 
       / d      \                                    
       |--- i(t)| - delta E(t) + (b + e + mu) i(t),  
       \ dt     /                                    
 
       / d      \                                      
       |--- R(t)| - b i(t) - b E(t) + c R(t) + mu R(t) 
       \ dt     /                                      
deq := eval(deq1, {Lambda = 1034, a = 0.25e-4, b = 0.98941e-1, c = 0.5e-1, delta = 
0.498e-1, e = 0.5019e-1, mu = 0.2165e-2}); 
print(`output redirected...`); # input placeholder 
/ d      \                                             
|--- S(t)| - 1034 + 0.000025 S(t) i(t) + 0.002165 S(t) 
\ dt     /                                             
 
                / d      \                                        
   - 0.05 R(t), |--- E(t)| - 0.000025 S(t) i(t) + 0.150906 E(t),  
                \ dt     /                                        
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  / d      \                                 
  |--- i(t)| - 0.0498 E(t) + 0.151296 i(t),  
  \ dt     /                                 
 
  / d      \                                                 
  |--- R(t)| - 0.098941 i(t) - 0.098941 E(t) + 0.052165 R(t) 
  \ dt     /                                                 
ic1 := S(0) = 80000, i(0) = 0, R(0) = 10, E(0) = 50; 
print(`output redirected...`); # input placeholder 
          S(0) = 80000, i(0) = 0, R(0) = 10, E(0) = 50 
dsol1 := dsolve({deq, ic1}, numeric); 
%; 
proc(x_rkf45)  ...  end; 
 

Maple code for the deterministic variation using data 

 
dsol1 := dsolve({deq, ic1}, numeric, output = array([0, 1, 2, 3,  
 
  4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,  
 
  21, 22, 23, 24, 25, 26, 27, 28, 29, 3031, 32, 33, 34, 35, 36,  
 
  37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])) 
 
dsol1 := dsolve({deq,ic1}, numeric, 
output=array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56
,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,8
5,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100])); 
 
with(plots): sys := deq; 
fcns := {S(t) , E(t) , i(t) , R(t) }: 
p:= dsolve({sys,S(0) = 80000, i(0) =0, R(0) = 10, E(0) = 
50},fcns,type=numeric,method=classical): 
/ d      \                                             
|--- S(t)| - 1034 + 0.000025 S(t) i(t) + 0.002165 S(t) 
\ dt     /                                             
 
                / d      \                                        
   - 0.05 R(t), |--- E(t)| - 0.000025 S(t) i(t) + 0.150906 E(t),  
                \ dt     /                                        
 
  / d      \                                 
  |--- i(t)| - 0.0498 E(t) + 0.151296 i(t),  
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  \ dt     /                                 
 
  / d      \                                                 
  |--- R(t)| - 0.098941 i(t) - 0.098941 E(t) + 0.052165 R(t) 
  \ dt     /                                                 
odeplot(p, [[t,S(t)],[t,E(t)],[t,i(t)],[t,R(t)]],0..200,titlefont = ["ROMAN", 15], labelfont = 
["ROMAN", 20],labels = ["time (no of days) ", "S,E,i,R "], labeldirections = ["horizontal", 
"horizontal"],linestyle=[solid,solid,solid,solid],color=[green,yellow,red,blue],legend = [ 
"S(t) ","E(t) ","i(t) ","R(t) "],legendstyle = [font = ["HELVETICA", 20], location = 
right]);;; 
 
 
 
 
 

Maple code for the stochastic variation using data 

>  
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>  

 

R CODE FOR THE HISTOGRAM 

library(moments) 

set.seed(1234) 

#Simulate Ro using simulated values of the parameters 

par(mfrow = c(2, 3)) 

#Simulate Ro varying the recruiment rate at which the susceptible class is being 

populated  

a1 = 0.000025 

b1 = 0.48941 

d1 = 0.0498 

e1 = 0.05019 

u1 = 0.002165 

A1 = sort(runif(1000, 500,1500)) 

Ro1 = (a1*A1*d1)/(u1*(u1+b1+a1)*(b1+e1+u1)) 

Ro1 
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m1 = mean(Ro1) 

#Simulate Ro varying the rate of infection 

a2 = sort(runif(1000, 0, 2*a1)) 

b2 = 0.48941 

d2 = 0.0498 

e2 = 0.05019 

u2 = 0.002165 

A2 = 1034 

Ro2 = (a2*A2*d2)/(u2*(u2+b2+a2)*(b2+e2+u2)) 

Ro2 

m2 = mean(Ro2) 

 

 

#Simulate Ro varying the rate at which the exposed class is being populated 

a3 = 0.000025 

b3 = 0.48941 

d3 = 0.0498 

d3 = sort(runif(1000,0,2*d1)) 

e3 = 0.05019 

u3 = 0.002165 

A3 = 1034 

Ro3 = (a3*A3*d3)/(u3*(u3+b3+a3)*(b3+e3+u3)) 

Ro3 
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m3 = mean(Ro3) 

sRo = c(m1, m2, m3) 

mn = mean(sRo) 

sdRo= sd(sRo) 

skewness(sRo) 

kurtosis(sRo) 

LCI = mn - 1.96*sdRo 

UCI = mn + 1.96*sdRo 

mn 

LCI 

UCI  

 

plot(Ro1, A1) 

plot(Ro2, a2) 

plot(Ro3,d3) 

hist(Ro1, xlab = "Ro") 

hist(Ro2,  xlab = "Ro") 

hist(Ro3,  xlab = "Ro") 

#Simulate Ro with the parameters gotten from data 

a = 0.000025 

b = 0.48941 

d = 0.0498 

e = 0.05019 
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u = 0.002165 

A = 1034 

Ro = (a*A*d)/(u*(u+b+a)*(b+e+u)) 

Ro 

 


