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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study 

According to statistical literature for example Chatfield (2003), time series is defined as a 

set of observations of a random process made sequentially over time. It is usually based on 

an underlying real-valued discrete-time stochastic process ,  
t

X t  and the available data

{ }
t

X , t = 1, 2,…, n which is a subset of all possible series from which 
t

X  could have been 

selected. These observations however, may be affected by four different forms of variation 

usually referred to as the components of time series namely the Trend (
t

T ), the seasonal  

(
t

S ), the Cyclical ( )
t

C  and the Irregular ( )
t

I  variations. Hence, the entire methods and 

techniques employed in formulating and estimating models for the purpose of studying 

these variations and various statistical analyses of the observed data are generally referred 

to as time series analysis. Usually the process begins with a preliminary data-analysis such 

as graphical illustration of the series, generally referred to as the ‘time plot’ and then the 

inspection of the autocorrelation function (ACF) and the partial autocorrelation function 

(PACF) plots. After which analysis of the data can be done using either the frequency 

domain method or time-domain method. 

 

According to Subba Rao and Gabr (1984), the study of time series analysis and modeling 

has been well developed for the past three decades. The frequency domain as well as time 

domain techniques have been examined and applied in the analysis and modeling linear 

time series and a great number of studies have examined the analysis of linear time series 

models usually designed to model the covariance structure of the series. These are either 

the Autoregressive (AR) or the Moving Average (MA) models, which can be combined to 

have the Autoregressive Moving Average (ARMA) models. The series is said to be an 

autoregressive process (AR) of order   if it satisfies the relation: 
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X X e
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

                             (1.1) 

where {
t

e } are independent and identically distributed (   ) random variables with mean 

zero and variance 
2 . 

This implies that
1

1

( ,..., )
p

t t t p i t i
i

E X X X X
  



 . So, the past values of 
t

X  would have 

a linear influence on the conditional mean of 
t

X . Then the parameters are estimated using 

the conventional least squares method. 

On the other hand, 
t

X is said to follow a moving average of order  , if it satisfies the 

relation: 

1

q

t j t j
j

X e




                  (1.2) 

where {
t

e } are     random variables with zero mean and variance 1. 

In general, a time series is said to be linear and have a moving average of order   

representation if: 

    
t j t j

j

X e





                      (1.3) 

where {
t

e } are independent and identically distributed  random variables with finite 

variance. 

 

Similarly, the general Autoregressive Moving Average process, ARMA (   ) is a linear 

stochastic model given by the relation: 

      
1 1

p

t i t i t j t j
i j

X X e e 


 
 

              (1.4) 

where 
t

X  is being expressed in terms of its own past values and a disturbance.  

The ARMA model assumes that 
t

X  is the result of a linear filter that transforms the past 

innovations , 0,1,...,
t i

e i


  . That is, 
t

X  is linear, which is an assumption based on the 

Wold's decomposition theorem (Wold; 1938).  
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In most cases, the assumption of linearity in time series is found dubious due to the fact 

that a lot of physical real-life phenomena would not be adequately explained by linear 

models. As a result, there is the need for models that would take the nonlinear nature of 

such phenomena into consideration and models with higher order spectra. Volterra (1930) 

and Wiener (1958) presented presented a good background study that led to the 

development of nonlinear models. However, the Wiener’s representation looks too 

complex and the statistical analysis procedures involved were cumbersome. As a result, 

some other authors like Ozaki and Oda (1977), Jones (1978), Haggan and Ozaki (1980) 

and Tong and Lim (1980) presented some more specific types of non-linear models. Also, 

Campbell and Walker (1977) made important contributions which led to further 

development of nonlinear time series models. They made us to realize nonlinear models 

can be categorized into two namely, models which are nonlinear in mean and also models 

which are non-linear in variance (heteroskedastic). For example, the following are three 

nonlinear time series models: 

(i) Exponential Autoregressive Models:  

The exponential autoregressive models were proposed by Ozaki (1980) and Haggan and 

Ozaki (1981). They examined the problem of numerical evaluation and simulations of the 

parameters by minimizing the sum of squares of the penalty function; 

2
1

1

( ) { ( )}
n

t tn t

t m

Q X X 

 

           (1.5) 

The first order Exponential autoregressive model is defined as: 

2

1 1{ exp( )}t t t tX X X e                   (1.6) 

for all 2t   and tX , being an initial variable. 

 

 

(ii) Threshold autoregressive (TAR) processes 

These models were first examined by Tong with the idea of a piecewise linearized 

autoregressive model obtained by introduction of a local threshold dependence on the 

amplitude tX . 



4 
 

Tong and Lim (1980) considered the estimation of the parameters of the threshold model 

using the maximum likelihood method of estimation. The first order threshold 

autoregressive is; 

1 1

1

( ) ,       2
m

j

t t t t t

j

X a H H X e t 



                       (1.7) 

 where tX , is an initial variable and 
1 1( ) 1( ),1( )j t t jH X X F    is an indicator function 

and 1,...., mF F are disjoint regions. 

(iii) Random coefficient autoregressive (RCA) models 

This nonlinear model is studied by Aase (1984). He defined the model by allowing 

random additive perturbations of the coefficients of the AR models. Hence, a d -

dimensional RCA model of order p is given by:  

                        
1

( )        
p

t i ti t i t

i

X a b X e t



                 (1.8) 

where , 1,...,ia i p are deterministic d d matrices and 1{ ( )} {[ ,..., ]}t t tpb p b b is a 

d pd zero matrix process where ( ) 'ib p s independent and identically distributed and also 

independent of te . 

 

It should be noted that nonlinear time series are obtained through nonlinear dynamic 

equations. Hence, they display features and attributes that one cannot express as linear 

processes for example time-changing variance, higher-moment structures, asymmetric 

cycles, breaks and thresholds.  

 

Moreover, in most cases many time series processes usually characterized by a seasonal 

component that occurs at every ‘ ’ observations. That is, at every length of season. For 

example, the amount of rainfall and temperature in the months of a year usually vary from 

one month to another with similar pattern over the years. So, a farmer for example would 

need to understand the seasonality of these weather conditions for proper planning in 

planting and harvesting of his farm produce. Similarly, companies and organizations that 

sell items like sunscreen, Christmas light and decorative items, and so on would see sales 

jump up at some period of the year and drastic fall at other times. Hence, there is need for 
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them to understand the seasonality behaviour of their business for proper planning, 

staffing and other decision making in order to maximize profit as well as minimize cost of 

production. So, fitting a non-seasonal time series model in such situations would result in 

a poor and bias estimate of the parameters of such series. Therefore, it is very important to 

remember the effects of seasonality when modeling and analyzing data from such series. 

 

In addition, quite a number of studies in time past have considered seasonal time series 

models and these examined the performance of the series only at the peak of seasons. 

However, less attention has been given to a seasonal nonlinear time series model that 

would study the performance of a time series before the peaks are reached, at the peaks 

and after the peaks of seasons.  

 

 

1.2 Statement of the problem 

The concept of seasonality has been widely discussed and examined in relation to linear 

time series models such as Beaulieu and Miron (1993), Ghysels et al. (1994), Harvey and 

Scott (1994), Hylleberg (1992), Hylleberg et al. (1993), Osborn and Rodrigues (1998), 

Xinghua et al., (2012), Eleazar et al. (2016). These include the linear Seasonal 

Autoregressive (SAR) and the pure Seasonal Autoregressive Integrated Moving Average 

(SARIMA) models. However, little or no attention has been given to the development of a 

seasonal model particularly the mixed seasonal autoregressive integrated moving average 

bilinear model (a nonlinear type) when it is applied to real seasonal time series data. It is 

our belief that when a mixed seasonal nonlinear model is fitted, it would help us to 

examine the behaviour of the series before the peaks are reached, at the peaks as well as 

after the peaks of the season and would equally perform better than a linear model. 

Therefore in this study, our intention is to fit mixed nonlinear seasonal time series model 

to a real series with a view to tracking the total behavior of the seasonal time series for 

adequate planning.  
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1.3 Aim and Objectives of the study  

The main aim of this study is to develop a seasonal nonlinear time series model (Mixed 

seasonal autoregressive integrated moving average one-dimensional bilinear 

(MSARIMAODBL)) that would study the performance of a series before, at and after the 

peak of seasons.  

The specific objectives are to: 

i. specify the MSARIMAODBL model with its associated subsets namely;  

         Pure SARIODBL, Mixed SARIODBL and Pure SARIMAODBL. 

ii. derive the stationarity condition required for each specified model. 

iii. estimate the parameters of the MSARIMAODBL models. 

iv. validate the models using real life data as well as simulated data. 

v. compare the performance of the specified models and also with the  

 existing linear seasonal models. 

vi. forecast based on the optimal model. 

 

  

1.4 Justification of the study 

Bearing it in mind that many time series processes exhibit both the seasonal and non-

seasonal behaviour coupled with the fact that they are nonlinear in nature, it is expedient 

to obtain a model that would be able to capture and explain each of these behavior in the 

series. Since a pure seasonal time series model studies the series only at the peak of 

seasons and a nonseasonal time series model studies the series only along a trend line, 

none of these is suitable to model the series effectively. Hence, a mixed seasonal time 

series model that would study the series before the peaks, at and after the peaks is 

inevitable in such situations. So, this study proposes a nonlinear seasonal model known as 

the mixed seasonal autoregressive integrated moving average one-dimensional bilinear 

time series model that is capable of attaining stationarity for nonlinear seasonal time 

series. One major advantage of this model is that it would avail us the opportunity to track 

the total behaviour of the series in and out of season.  
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1.5 Some useful definitions 

 

1.5.1 Convergence absolutely almost surely 

Given a sequence }1,{ nX n  of random vectors, all of the same order     defined 

on some probability space, then 
1n

nX  is said to converge absolutely almost surely if: 

p…1,2,=i           )(
1


n

inX            (1.9) 

 

1.5.2    Convergence in the mean 

Given a sequence }1,{ nX n  of random vectors of the same order     defined on some 

probability space, then 
1n

nX  converges in the mean if; 

0)()(lim
1






m

n

iin
m

XXE      (1.10) 

  for every          and any there exists a random vector X , E denotes 

the expectation value. 

 

1.5.3 Cauchy-Schwartz inequality: 

The Cauchy-Schwartz inequality is one of the most important inequalities in Mathematics. 

The inequality form for sums was published by Augustin-Louis Cauchy in 1821, while its 

corresponding integral form was first proved by Viktor Bunyakovsky in 1859. The 

modern proof of the integral form of the inequality was given by Hermann Amandus 

Schwarz in 1888. The inequality can be expressed in different ways. For example, 

222 ),( YXYXCov   

Similarly, the inequality states the relationship between any two vectors X and Y of an 

inner product space as: 
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YYXXYX ,,,
2

  

where    ,  is the inner product such as the dot product. 

If the two vectors are linearly dependent, squaring both sides and referring to the norms of 

the vectors, then inequality is given by: 

YXYX ,          (1.11) 

 

1.5.4 The Kronecker product  

In Mathematics, matrix functions are of two categories namely the Kronecker matrix 

products and the non-Kronecker or ordinary matrix products. Neudeker (1969). According 

to Huamin and Feng (2013) the Kronecker product is named after Leopold Kronecker 

(1823–1891), a German mathematician. This product (usually represented by ⊗) is an 

operation on any two matrices of arbitrary sizes which result in a block matrix. So, given 

any matrices A  and B , the Kronecker product of A  and B  is given by: 





















BaBaBa

BaBaBa

BaBaBa

BA

mnmm

n

n

pXqmXn









21

22221

11211

 

vwrswsqvrp baBA   )1(,)1()(  

Given a matrix F, if we represent the (   )th
 element of F by (F)ij or (F)i,j, if the element of 

F are  not indicated specifically otherwise and a column vector, C. The i
th

 component of C 

written (C)i or (C)i1 as in the case where the elements of C are implicitly represented. With 

respect to this given notation, then; 

1

)1(,)1(, )()( 

  r

vsjuriuvijuvij kBAbaBA         (1.12) 

Some of the properties of the kronecker product include: 

(i) Bilinearity and associativity 

 CABACBA  )(  

 CBCACBA  )(  



9 
 

 )()()( BAkkBABkA   

)()( CBACBA            (1.13) 

(ii) Non-commutativity 

Generally speaking, BA and AB are not the same, but are permutation 

equivalent. That is; 

QABPBA )(              (1.14) 

(iii) The mixed-product property: 

Given matrices A, B, C and D such that AC and BD exist, then; 

)()())(( BDACDCBA               (1.15) 

This is referred to as the mixed-property because it mixes the conventional matrix product 

with the Kronecker product. 

 

(iv) The inverse property:  if each of A and B are invertible, the inverse of A ⊗ B also 

exists. Hence; 

111)(   BABA                      (1.16) 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The theory of time series analysis began early with stochastic processes, which refers to 

the evolution of some system over time usually represented by a variable which is subject 

to irregular variation. The initial actual application of autoregressive models to time series 

data can be attributed to the study carried out by Yule and Walker in the 1920s and 1930s. 

They also presented the moving average process to deduce periodic fluctuations in a 

series, for example fluctuations due to seasonality. Herman Wold then later introduced the 

Autoregressive Moving Average (ARMA) models for stationary time series. However, he 

was unable to obtain a likelihood function to derive maximum likelihood (ML) estimation 

of the parameters. This challenge was later overcame by Box and Jenkins (1970)  in their 

book titled “Time series Analysis” which contains the specification, estimation, 

diagnostics and forecasting  for individual series. Moreover the conventional and 

commonly used Box-Jenkins models for forecasting and seasonal adjustment can be traced 

back to these models. 

According to Hyndman (2010), we have a seasonal fluctuation when a series is affected by 

seasonal factor which is usually of a fixed and known period, which can be quarterly, 

monthly, weekly or daily. Hence, sometimes we refer to seasonal series as periodic time 

series.  Seasonality can be detected using some graphical techniques such as a run 

sequence plot and seasonal subseries plot. We can also use the Multiple box plots as an 

alternative to the seasonal subseries plot to detect seasonality. The autocorrelation 

function plot can also help in identifying seasonality. 

A pure seasonal ARMA model, usually denoted by           , is  given by: 

         ...... 221221 tQstQststPstPststt eeeeXXXX           (2.1) 
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This can be written in operator form: 

t

s

Qt

s

P eBXB )()(                             (2.2) 

where )( s

P B and )( s

Q B are seasonal autoregressive and moving average operators 

respectively. 

 

2.2    Stochastic process 

 

A stochastic or random process is defined as a collection of some random variables that 

would take values in a set S, usually referred to as the state space. This group of random 

variables is usually denoted by another set T, known as the index set. In general, it can be 

described by an n-dimensional probability distribution              . The two most 

common index sets are the set of natural numbers = {0,1,2,…} which usually represent 

discrete time and the positive real numbers 


= [0, ∞) which represents continuous time. 

Usually, the first set are random variables {X0, X1, X2, …} while the second is is such that 

{ tX , t ≥ 0}. 

If 


 = (     ) then, tX  is said to be a discrete time stochastic process, but if 


= [0, 

∞), then tX  is a continuous time process. The joint distribution is stable with respect to 

time and is given by: 

1 2 1 2
{ , ,..., } { , ,..., }

n nt t t t k t k t kp X X X p X X X    

The autocovariances are given by: 

( , ) ( )( )k t t k t t kCov X X E X X            (2.3) 

and the autocorrelations: 

1

02

( , )

[ ( ) ( )]

t t k k
k

t t k

Cov X X

Var X Var X









 



          (2.4) 

 

while the sample autocorrelation function (SACF) is given by: 
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1

2

1

( )( )

,     0,1,2,...

( )

n

t t k

t k
k n

t

t

X X X X

r k

X X



 



 

 







      (2.5) 

But, for uncorrelated observations, the variance of    is given by: 

1
var( )kr

n
          (2.6) 

We also refer to a discrete parameter random variable as a Markov process. Hence, a time 

series tX  is referred to as a stochastic process if it is generated in time with respect to 

some probabilistic laws and the future values are only partially predicted by the past 

values. However, in situations where predictions can be done exactly, we refer to it as 

deterministic. 

 

2.3    Stationary process 

Stationarity in time series is a concept which describes a situation in which statistical 

properties such as mean, autocorrelation, variance, and so on remain the same over a long 

period of time. So, when the statistical properties of a process do not change over time, it 

is said to be. It may be difficult to tell if a model is stationary or not by mere looking at its 

graph. However, a hypothesis test can be enployed. This includes: 

i. Test of unit root tests. 

ii. KPSS test (a complement to the unit root tests). 

iii. A run sequence plot, 

iv. The Priestley-Subba Rao (PSR) Test or Wavelet-Based Test. 

A stationary process with mean reverting property fluctuates around the mean, which acts 

as an attractor and crosses the mean line in a large number of ways. Stationarity can be of 

two types namely Strict stationarity or Weak stationarity. 

 

2.3.1 Strict stationarity 

A stochastic process tX  satisfies the strict stationarity condition if for any positive integer 

  at any points 1 2, ,..., nt t t  and n , the joint distribution of 
1 2

{ , ,..., }
nt t tX X X  is 

http://onlinelibrary.wiley.com/doi/10.1111/1467-9892.00200/abstract
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equivalent to the joint probability distribution of 
1 2

{ , ,..., }
nt k t k t kX X X   . The process is 

referred to as a stationary process of order  , if  n  and any points 1 2, ,..., nt t t and 

n , then the joint moments (up to order  ) of 
1 2

{ , ,..., }
nt t tX X X  is equivalent to the 

joint moments of 
1 2

{ , ,..., }
nt k t k t kX X X  

 which implies that: 

1 2 1 2

1 2 1 2
{( ) ( ) ...( ) } {( ) ( ) ...( ) }n n

n n

k kk k k k

t t t t h t h t hE X X X E X X X  
1 2, ,..., nk k k    

such that 1 2 ... nk k k m    .   

One of the major assumptions upon which most forecasting techniques in statistics are 

based is that the series can be approximated to attain stationarity (i.e., "stationarized") 

after mathematical transformations. If a series is not stationary, we can render it stationary 

via differencing. In otherwords, given the series ,
t

X  we can obtain a new set of series: 

1 ttt XXY       (2.7) 

The differenced series tY  then contains one less point than the original one. It should be 

noted that this can be done more than once. 

 

2.3.2 Weak stationarity 

If the first and second moments of a series do not change over time, then it is said to be 

weakly stationary. That is: 

1
( ) ( )

t t
E X E X 


  T  

0
( )

t
Var X    

( , )
t t k k

Cov X X 


  

This type of stationarity is also referred to as covariance stationary 

 

2.4    Autocovariance and autocorrelation function 

In Statistics, the autcovariance function expresses the covariance of a stochastic process 

with itself at pairs of time intervals. Mathematically; 

                        cov( , )k t t kX X          (2.8) 
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   {( )( )}      0,1,2,...t t kE X X k      

where  is the expected value of tX  for all t. 

Autocorrelation or serial correlation is defined as the dependence or association in any 

statistical relationship that relays information about the behaviour of a phenomenon with a 

delayed copy of itself as a function of delay. It helps in capturing re-occuring patterns or 

detecting missing fundamental frequency in a signal due to its harmonic frequencies. It 

also helps in showing relationship between the values of time series process at two 

different times in relation to the times or the time lag. Given the set of autocorrelation 

coefficients described by following autocovariance matrix: 

 

0 1 1

1 0 2

1 2 0

p

p

k

p p

  

  


  





 

 
 
 
 
  
 

                                             (2.9) 

 

The autocorrelation function (ACF) matrix is given as: 

      

1 1

1 2

1 2

1

1
       ( 1 1)   1,2,..., 1

1

k

k

k i

k k

where i k

 

 
 

 





 

 
 
       
 
 
 

     (2.10) 

 

The partial autocorrelation function (PACF) is defined as the degree of relationship 

between the random variables of a time series process with its own lagged values. It is 

different from the autocorrelation function in that the autocorrelation function does not 

control for other lags. Given two series tY  and t kY  , we refer to the value tY  , t kY  as the 

partial autocorrelation   function (PACF).  

We define the Toeplits matrix as: 

1 1

1 2

1 2

1

1
     

1

k

k

k

k k

 

 


 





 

 
 
 
 
 
 

    (2.11) 
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Then, the partial autocorrelation kk is given by: 

           
*

k
kk

k





       (2.12) 

where *

k is k  with the last column substituted by 1 2( , ,..., )k    

 

 

 

2.5  Methods of estimating autocovariance function  

 We can estimate the covariance functions using any of the following methods. 

 

2.5.1 Maximum likelihood estimator. 

The estimate of the autocovariance k  using the maximum likelihood method is; 

1

1
( )( )      0,1,2,... 1

N k

k t t k

t

C X X X X k N
N







            (2.13) 

For the mean deleted data;  

* *

1

1 N k

k t t k

t

C X X
N







  . 

In real analysis, 
4

N
k   and kC  give a good estimate of k since kC  is an unbiased 

estimate of k as N  , ( ) (1 )[ var( )]k k

k
E C x

N
   , kC is positive definite. 

 

Alternative Estimator 

Another method of estimating the ACF is given by: 

1

1
( )( )

N k

k t t k

t

C X X X X
N k







  

            (2.14) 

This has a smaller bias than kC but in general, kC has a smaller mean square error. 

However, kC  is not often used in modeling as it is semi-positive definite. 
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2.5.2 Jackknife Estimator 

The Jackknife estimator, originally proposed by Quenouille (1949) is a procedure for 

correcting bias. It was later redefined and given its current name by John Tukey in 1958 

and described its use in constructing confidence limits for a large class of estimators. To 

estimate k , the series is split into two equal parts and the sample autocovariance function 

(SACF) estimated for each part as well as for the entire series. Then,  

1 2

1
2 ( )

2
k k k kC C C C        (2.15) 

       where, kC is the SACF for the entire series 

        
1kC is the SACF for the first part of the series 

      
2kC is the SACF for the second half series. 

 

2.6 The general linear process (GLP) 

This is a class of linear models known as “linear time series models” usually designed to 

model the dynamic behavior of a series. They include the Autoregressive (AR), Moving 

Average (MA) and the Autoregressive Moving Average (ARMA) models. Several authors 

such as Hannan (1980), Box and Jenkins (1970), and so on have considered them in their 

study according to literature. A time series { }tX  is said to be a general linear process 

(g.l.p) if; 

0

0

 ( 1)t j t j

j

X






             (2.16) 

where { }t is a white noise process with ( )tE  = 0, 
2 2( )
t

E   t  and ( ) 0t jE  

t j  . (2.16) can be written as: 

1

 t t j t j

j

X






          (2.17) 

1 1 1 1 2 2 3 3 ...t t t t tX                  (2.18) 

From (2.16) and (2.17), we have; 

1

2

1 1 2 2 3( ) ...t t t t tX                 

1 1 2 2 3 3 ...t t t t tX X X X           
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Hence, we can write the g.l.p as: 

1 1 2 2 3 3 ...t t t t tX X X X          

0

t j t j

j

X






           (2.19) 

Using the backward shift operator; k

t t kB X X  , equation  (2.16) becomes; 

0 0

( )j j

t j t j t

j j

X B B 
 

 

      

( ) tB           (2.20) 

From (2.19), 
0

( )j

t j t

j

B X




   ( )t tB X   

Multiplying (2.20) by ( )B , we have; 

( ) ( ) ( )t tB X B B     

( ) ( )t tB B     

( ) ( ) 1tB B            (2.21) 

1
( )

( )
B

B
 


 and this has established relationship between ( )B  and ( )B . 

 

 

2.7 Autoregressive process AR( ) 

A stochastic process tX  is said to be an autoregressive model of order    AR( ) where 

specific lagged values of tX  are used as predictor variables if it satisfies the relation: 

1 1 2 2 ...t t t p t p tX X X X e                    (2.22) 

where 1 2, ,...,t t t pX X X    are past values (lags) and te  is a white noise. 

{ }tE X 
 

Using the backward shift operator: k

t t kB X X  , equ ation 2.22 is written as: 

2

1 2(1 ... )p

p t tB B B X e                          (2.23) 

       ( ) t tB X e   

where: 



18 
 

2

1 2( ) 1 ... p

pB B B B       
 

and ( ) 0B   is the characteristic equation. 

The Autoregressive model predicts future behaviour based on past behaviour. It can be 

used for forecasting when there exists some relationship between values in a series and the 

preceeding and succeeding values. 

 

 

2.7.1    Estimation of Autoregressive model AR ( ). 

Given the autoregressive process of order 1, AR (1):  

1t t tX X e             (2.24) 

In lag-operator form, we have:  

(1 ) t tB X e                (2.25) 

and the characteristic polynomial; 

( ) (1 )B B    

If ( ) (1 ) 0B B    , the only characteristic root is: 

1
,   0 


          (2.26) 

The AR(1) process is regarded as a stationary process if and only if 1  or −1 <   < 1. 

When   = 1, this corresponds to a non-stationary explosive random walk process having 

a zero drift, 
1t t t

X X e


  . If AR (1) equation recursively applied, the random walk 

process becomes: 

1 2
...

t t t t
X e e e

 
        (2.27) 

Then, 

Var
2

0

( )
t

t

X 




        (2.28) 

For AR (2) process 1 1 2 2t t t tX X X e     , the characteristic polynomial is given by: 

2

1 2
( ) (1 )B B B      
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Then the solutions to ( ) 0B  are: 

2

1 1 2

1

4

2

  


 
  and 

2

1 1 2

2

4

2

  


 
  

The AR(2) is stationary if and only if ||
1

 || < 1 and ||
2

 || < 1  

 ||
1 2

 || = |
2

 | < 1 and ||
1 2

  || = |
1

 | < 2 

 −1 < 
2

  < 1 and −2 < 
1

  < 2. 

For real values of 
1

  and 
2

 , 
2

1 2
4  ≥ 0  

−1 < 
2

  ≤ 
1

  < 1 and 
1

  + 
2

  < 1; 
2

  − 
1

  < 1. 

In general, for autoregressive model of order  , 

( )
t t

B X e   

where 2

1 2
( ) 1 ... p

p
B B B B         

1( ) ( )
t t t

X B e B e    . 

Then, by algebraic factorization, we can factorise;  

1 2
( ) (1 )(1 )...(1 )

p
B G B G B G B      

Such that; 

1 1 1 1

1 2
( ) ( ) (1 ) (1 ) ...(1 )

p
B B G B G B G B          

By partial fractions we have; 

1( )
(1 )

p

i
i

i

k

B
G B

 



                                 (2.29) 

                                  
1 1 1

1 1 2 2
(1 ) (1 ) ... (1 )

p p
k G B k G B k G B          

For convergence of 1( ) ( )B B  , we must have 1B  and for stationarity ( ) 0B 

must lie outside the unit circle. 

 

 

2.8 The Moving Average MA ( ) process 

A stochastic process tX  is said to be a Moving Average process of order  , denoted by 

MA ( ), if it satisfies the difference equation: 
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1 1 2 2 ...t t t q t q tX e e e e         , for every t           (2.30) 

where: 
1 2, ..., q   are constants and te is a purely random process with mean zero and  

variance 2 . 

Similarly, by the backward shift operator, then; 

2

1 2(1 ... )q

t q tX B B B e      
         (2.31) 

( )t tX B e 
 

where: 
2

1 2( ) 1 ... q

qB B B B        .  

The characteristic equation of (2.30) is ( ) 0B  . It can be shown that for any values of 

1 1 2 2 ...t t t q t q tX e e e e         , MA(q) is stationary. Therefore, no stationarity 

condition is required. But for the expression 1( )t te B X  , we say that; 

1 1 1 1 1

1 1 2( ) 1 ... ) (1 ) (1 ) ...(1 )q

q qB B B PB P B P B             
 

and the partial fraction; 

1( ) ( )K B    

1

       (1 )
q

i i

i

T PB


 
 

Hence, for the convergence of 1( ) ( )K B   , we must have 1B  . 

1    1,2,...,iP i q    . 

where 1( 1,2,..., )iP i q  are the roots of the characteristic equation.  

Hence, for the invertibility condition of the MA( ), all the roots of ( )B must lie outside 

the unit circle. 

 

2.9 The Autoregressive Moving Average (ARMA) process 

Independent Autoregressive AR ( ) and the Moving Average MA( ) models are 

sometimes unrealistic by themselves. They can however be combined to form the 
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extremely useful ARMA (   ) models.  Therefore, the ARMA (   ) is a stochastic 

process satisfying the relation: 

1 1 2 2 1 1 2 2[ ... ] [ ... ]t t t p t p t t t q t qX X X X e e e e                  
    (2.32) 

Alternatively, we can write (2.32) as: 

( ) ( )t tB X B e 
         (2.33) 

This implies that { }tX  is the sum of an autoregressive and the moving average processes. 

Given te  and the   starting values of { }tX , the whole series can be iteratively formed and 

the series will be stationary given  that the autoregressive part is stationary. 

Another practical importance of the mixed ARMA (   ) models is the fact that when two 

independent ARMA processes are summed up, the resulting process is also ARMA. That 

is, if tX  and tY  are two independent ARMA series given by: 

1 1 2 2( , )   ,     ( , )t tX ARMA p q Y ARMA p q 
 

And their sum: 

3 3( , )t t tZ X Y ARMA p q  
 

where: 3 1 2p p p   and 3 1 2 2 1max( ,  )q p q p q    

This implies that mixed models are much more applicable to real-world series than the 

individual AR and MA models. 

 

Forecasting for the ARMA models 

For one-step forecast situation, we have: 

1 1 2 1 1 1 1 2 1 1... ...n n n p n p n n n q n qX X X X e e e e                    
      (2.34) 

The optimal forecast is then given by: 

,1 1 2 1 1 1 1 2 1 1... ...n n n p n p n n n q n qf X X X e e e e                     (2.35) 

A step forecast error given by: 

,1 1 ,1 1n n n nX f e    
    (2.36) 
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Then to obtain the optimal forecast, we use 1{ }n

t t n qe    which can be estimated by starting 

with 0,1 0f  and then forming the te recursively by: 

                           1,1      1,2,...,t t te X f t n  
 

 

 

2.9.1 Estimation of Autoregressive Moving Average ARMA (   ) process 

We would recall that the AR process admits an MA ( )  structure, however they do 

impose restrictions on the decay structures of the coefficients
i

 . Similarly, the MA 

requires some finite terms, but never impose any conditions to restrict the coefficients. 

According to autocorrelation pattern, the AR processes do allow many non-zero 

coefficients, but usually with a fixed decay pattern, the MA permits a few coefficients 

appart from zero with arbitrary values. According to Anderson (1977), the ARMA 

processes do combine the properties, then make it possible to denote them in a reduced 

form with fewer number of parameters. 

The simplest ARMA process, the ARMA(1,1) is written as: 

1 1 1 1t t t t
X X e e 

 
    

Writing this in the backward operator form, we have: 

1 1
(1 ) (1 )

t t
B X B e                   (2.37) 

where
1

 < 1 for the process to be stationary and 
1
 < 1 for it to be invertible. 

Also, we assume that 
1 1

  . If the two parameters are identical, multiplying (2.37) by 

1

1
(1 )B  , we have a white noise process; 

t t
X e  

Furthermore, the Autocorrelation Function (ACF) of the ARMA (1,1) can be obtained 

equation (2.37) is multiplied by 
t k

X


and expectations are taken on both sides. Then; 

1 1 1 1
( ) ( )

k k t t k t t k
E e X E e X   

   
           (2.38) 

If k >1, 
t

e becomes uncorrelated with the history of the series. Hence, 

1 1k k
  


     (2.39) 
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If k = 0, 2[ ]
t t

E e X   

and 2

1 1 1 1 1 1 1 1
[ ] [ ( )] ( )

t t t t t t
E e X E e X e e    

   
      

Substituting these into (2.37), for k = 0, then; 

2 2

0 1 1 1 1 1
( )              (2.40) 

Taking k = 1 in (2.38); 

1
[ ] 0

t t
E e X


 , 

2

1 1
( )

t t
E e X 

 
  

and 
2

1 1 0 1
           (2.41) 

solving (2.40) and (2.41) simultaneously, we have; 

2

2 1 1 1

0 2

1

1 2

1

 
 



 



    (2.42) 

Dividing (2.41) by the expression above, we have the first autocorrelation coefficient; 

1 1 1 1

1 2

1 1 1

( )(1 )

1 2

  


 

 


 
 

It can be recalled that if 
1 1

  , the autocorrelation becomes zero, then the operators 

1
(1 )B and 

1
(1 )B cancel out and this results in a white noise process.  

The rest of the autocorrelation coefficients is obtained by dividing (2.39) by 
0
 which 

gives: 

1 1
,   1

k k
k  


      (2.43) 

This means that from the first coefficient, the ACF of an ARMA (1,1) decays 

exponentially, depending on the value of 
1

  of the AR part. 

 

 

 

2.10   The Autoregressive Integrated Moving Average, ARIMA (     ) process 

The generalized ARMA model also known as the Autoregressive Integrated Moving 

Average (ARIMA) model is often employed in some cases of non-stationarity of the data. 

Both are usually fitted in time series analysis either for better understanding of the series 

or in order to forecast future values. The Autoregressive (AR) part of ARIMA indicates 

that there is regression of the variable of interest on its own lagged, prior values while the 

Moving Average (MA) part shows that the regression error is a linear combination of error 
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terms whose values occurred simultaneously with some other events in the past. The 

integrated part (denoted by “I") shows that the original values are substituted for by the 

difference between present and previous values. This is sometimes done more than once 

before stationarity is acchieved.  

Non-seasonal ARIMA models are usually denoted by ARIMA (p,d,q), where p is the 

order of the autoregressive model, d is the number of times differencing is carried out 

before stationarity is achived and q is the moving average process order. By general 

definition we have; 

( ) ( ) ( )d

t t tB X B X B e         (2.44) 

where: 

 
2

1 2( ) 1 ... p

pB B B B          is the autoregressive operator. 

  
2

1 2( ) 1 ... q

qB B B B        is the moving average operator. 

 ( ) ( )dB B  is the genearalised autoregressive non-stationary operator. 

Since ( ) ( )dB B   

2

1 2( ) ( )(1 ) 1d p d

p dB B B B B B     

        

Then (2.44) may be written as: 

1 1 1 1... ...t t p d t p d t q t q tX X X e e e                    (2.45) 

 

2.11    Model Identification. 

After examining the stationarity and seasonality status of a model, then we consider the 

identification of the order of p and q. This is usually done in time domain model using 

the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) 

plots. The sample autocorrelation function plots as well as the sample partial 

autocorrelation plots are then compared with the theoretical pattern of the ACF and PACF 

plots after identifying the order. 

The ACF plot of the moving average process usually cut off after a particular lag q, while 

the PACF of the autoregressive model cuts off at a particular lag p and its ACF decays 
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exponentially to zero. However, for the ARMA (   ) model, neither the ACF nor the 

PACF cuts off at   and  . So, to determine the cut-off points, we compare the coefficients 

of the ACF and the PACF with the value 
2

n
  such that any coefficient greater or less 

than this critical value is significantly greater than zero. 

Usually, since the sample autocorrelation and PACF are random variables which do not 

give similar picture as that of the theoretical function, model identification usually 

becomes more difficult especially in mixed models. Hence, in recent years information-

based techniques which would help in automating the model identification process are 

used. These include the Final Prediction Error (FPE), Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC) and others. 

From prediction error point of view, the model becomes better as the order increases since 

degrees of freedom of the model increases except for the fact that there will be need for 

more computation time and memory for higher orders. The parsimony principle is to 

choose the model with the smallest degree of freedom or number of parameters, given that 

all the models are true representation of the data. Therefore, to examine the order of a 

model, we would not depend on the prediction error alone but also incorporate a penalty 

any time the order increases. We can also obtain the plot of the prediction error as a 

function of the dimension of the model and then obtain the minimum in the curve visually 

or carry out an F-test to obtain an appropriate value of the model order. 

Final Prediction Error (FPE) Criterion 

According to Akaike (1970) The FPE is defined as the mean squared prediction error 

when a model is fitted to a given set of data and is applied to another independent 

observation, to make a one-step ahead prediction. Based on the final prediction error, the 

parameters in each model will be estimated for the minimum final prediction error to be 

attained for the model and then a model with the minimum final prediction error is 

selected. 

For example, given a T-realization 1{ ,... }TY Y  of an AR(p) process satisfying the relation: 

1 1 ...t t p t p tY Y Y v         (2.46) 
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and another AR(p) process tX which is independent of tY but having the same statistical 

structure such that: 

1 1 ...t t p t p tX X X u         (2.47) 

where the white noise processes tu and tv  have the same distribution but are independent 

of each other. Then a one-step predictor of 1TX  is given by: 

1 ,1 , 1...T p T p p T pX X X          (2.48) 

where ,1 ,,...,p p p   are the estimates obtained by fitting the AR(p) model to the 

observations 1{ ,... }TY Y . Since tX  and ,1 ,{ ,..., }p p p  are independent, Akaike (1969) has 

shown that, for large T, the mean square prediction error is: 

2 2

1 1( ) (1 )T T

p
E X X

T
                (2.49) 

2 2( ) (1 )p

p
E

T
        (2.50) 

for large T.  

Hence, 
1 2(1 ) p

p

T
 is a less biased estimate of 

2 than 
2

p .  

The corresponding estimate of the asymptotic mean square error of 1TX  is given by: 

1 2(1 )(1 ) p

p p

T T
   

which is asymptotically equivalent to; 

2(1 2 ) p

p

T
 . 

Hence, the final prediction error (FPE) is given by: 

2( ) (1 2 ) p

p
FPE p

T
       (2.51) 

Which is an unbiased and consistent estimator of the mean square error of the one-step 

ahead predictor; 1TX  . 
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If the mean of the process is unknown, accoding to Akaike (1970a), the final prediction 

error (FPE) becomes: 

2 1
( ) (1 2 )p

p
FPE p

T



                                 (2.52) 

 

2.12    Diagnostic checking 

This is a procedure by which a specified model is examined and verified in order to 

ascertain its correctness through the nature of its residuals ( )
t

e . According to Box and 

Jenkins (1976), this can be done by observing the autocorrelation function plots of the 

residuals so as to detect whether large correlation values exist. If all the autocorrelations 

and partial autocorrelations values are small, then the model is regarded adequate and can 

then be used for forecasting. If there are some large autocorrelation values,   and/or   

would be adjusted and the model re-estimated. Therefore, every necessary information 

from the data would be obtained through the model. In otherwords, the residuals must be 

small, leaving no systematic or predictable patterns in them.  

If the residuals of the specified model resemble a white noise process, then it is correctly 

specified. In general, we expect that the residuals would be almost uncorrelated with each 

other for their sample autocorrelation function to be ( )
k

e and distributed approximately 

normally about zero and variance
1N 
. 

Box and Jenkins proposed a diagonistic method such that the first k autocorrelations

( )
e

k , k
 are observed under the null hypothesis (H0): 

ˆ ˆ ˆ
(1) (2) ... ( ) 0

e e e
K       

with test statistic;  

2 2

ˆ
1

ˆ ( )   ( )
K

e
i

Q N k k p d 


    
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where
2

ˆ
ˆ ( )

e
k is the k

th
 order sample autocorrelation of the estimated residuals, N is the 

sample size, and K is chosen such that it is sufficiently large. Then we reject H0 if the Q is 

greater than the tabulated critical value. 

 

2.13      Forecast in probability models 

Forecasting is a technique in time series analysis for predicting future events through a 

sequence of time by analyzing the trends of the past based on historical data and 

assumming that future trends will follow similar pattern. The forecast error is defined as 

the absolute difference in the actual value and the forecast value for the corresponding 

period.  

Smoothing methods may be employed when a series shows no significant effects of trend, 

cyclical, or seasonal components. In this situation, the aim is to smooth out the irregular 

component of the series by applying an averaging technique such as the moving averages 

method. It is one of the most commoly used smoothing techniques. It is such that the 

forecast is the average of the last “x” number of observations, where “x” is some suitable 

number.  

 

Recently in literature, Artificial Neural Networks (ANNs) have also been employed in 

time series forecasting. Although they can be used to model linear and nonlinear 

phenomena, they could not model both structures equally well. Hence, the hybrid 

methodology integrating ARIMA and ANN models were introduced by Cagdas  et al., 

(2009). They proposed a different approach combining Elman’s Recurrent Neural 

Networks (ERNN) with the ARIMA models. This hybrid approach was then applied to the 

Canadian Lynx data and was found to have optimum forecasting accuracy. 

 

Ahmed et al. (2017) demonstrated how the inefficiency of the conventional neural 

networks in identifying the behavior and pattern of nonlinear or dynamic series with 

moving average components, thereby resulting in low forecasting capability. According to 

them, this gingered the idea that leads to the development of new models such as the Deep 

Learning neural networks with or without hybrid methodologies as in Fuzzy Logic. 

https://www.sciencedirect.com/science/article/pii/S0893965909001475#!
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Benkachcha et al. (2015) proposed two other methods of investigating variability in 

seasonal time series using ANN namely; a multilayer perceptron model and a causal 

method based on artificial neural networks using the components of decomposed time 

series as input variables. They discovered that ANNs yielded almost the same accuracy 

whether the original time series is decomposed or not. 

 

However in most cases, prediction errors are inevitable and almost all forecasting methods 

have errors in predicted results. One of the commonly used forecasting methods is the 

least square method. It performs calculations with time series data and has a seasonal 

trend, with time series calculated data error possibility. Prediction errors will often occur 

(Ismail and Shabri 2014), these prediction errors can be computed using the Mean 

Absolute Deviation method and Mean Absolute Percentage Error. 

 

 

2.14    Measures of performance of models 

Durig the process of building a proper time series model, one has to consider the principle 

of model parsimony which says the model with smallest possible number of parameters is 

always to be selected in order to provide an adequate representation of the underlying time 

series data (Chatfield 1996). Hence, having a set of suitable models, the simplest one shall 

be considered, still maintaining an accurate description of inherent properties of the time 

series. The idea of model parsimony is similar to the famous Occam’s razor principle, 

discussed by Hipel and McLeod (1994). An important aspect of this principle is that when 

one is faced with a number of competing andadequate explanations, pick the most simple 

one. It also provides considerable inherent informations when applied to logical analysis. 

More importantly, the more complicated the model is, the more possibilities will arise for 

departure from the actual model assumptions. So, the more the increase in the number of 

model parameters, the more the risk of over-fitting. An over fitted time series model may 

describe the training data very well, but it may not be suitable for future forecasting. As 

potential overfitting affects the ability of a model to forecast well, parsimony is often used 
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as a guiding principle to overcome this issue. Hence, it can be said that, while making time 

series forecasts, keen attention should be given to select the most parsimonious model 

among all others. 

 

Moreover, we examine the criteria needed to measure the performance of the forecast 

values in relation to the existing models. These include: 

 Mean Absolute Error (MAE) 

The MAE measures the difference between two continuous variables X and Y explaining 

similar phenomenon. For example, comparisons of predicted against observed or a 

particular technique of measurement against another. In a scatter plot of n points, with 

coordinates (xi, yi), the MAE is the average vertical distance between each point and 

the identity line or the average horizontal distance between each point and the identity 

line. 

The MAE is mathematically written as: 

1 1

n n

i i i
i i

y x e

MAE
n n

 



 
 

          (2.53) 

It can also be expressed as the sum of the Quantity Disagreement (QD) and the Allocation 

Disagreement (AD). Quantity Disagreement is the absolute value of the Mean Error while 

Allocation Disagreement is the difference between the MAE and the Quantity 

Disagreement. The Mean Error is therefore defined as: 

1

n

i i
i

y x

ME
n








                                (2.54) 

 

Mean Percentage Error (MPE) 

The mean percentage error (MPE) is a measure of the average of percentage errors by 

which forecasts of a model differ from actual values of the quantity being forecast.  
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Mathematically, 

0     ,
%100

1




 


t

n

i t

tt A
A

FA

n
MPE     (2.55) 

where tA  is the actual value of the quantity, tF  is the forecast, and n is the number of 

times the variable is forecast. 

Due to the fact that actual values are used in the formula, positive and negative forecast 

errors can cancel each other. Hence, equation (2.55) can be used to measure bias in the 

forecasts. 

 

Mean Absolute Percentage Error (MAPE) 

This method of prediction is also referred to as as the mean absolute percentage 

deviation (MAPD). It is a measure of prediction accuracy of a forecasting method. It 

expresses the accuracy as a percentage, and is given by: 

0     ,
%100

1




 


t

n

t t

tt A
A

FA

n
MAPE    (2.56) 

where tA is the actual value and tF  is the forecast value. 

As shown above, the difference between At and Ft is divided by the Actual value tA  and 

the absolute value is summed for every forecasted point with respect to time and then 

divided by the number of fitted points n. 

2.15    Autoregressive bilinear models 

The strictly stationary stochastic process
t

X  is said to be an autoregressive bilinear 

time series model if: 

1 1 1

p m n

t i t i ij t i t j
i i j

X X b X e
  

  

            (2.57) 

where: 
i

 are the parameters of the linear autoregressive components 
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ij

b are the nonlinear bilinear components. 

2.16    Autoregressive Moving Average Bilinear models 

A strictly stationary stochastic process
t

X  is said to be an autoregressive moving average 

bilinear time series model if: 

1 1 1 1

p q m n

t i t i j t j ij t i t j
i j i j

X X e b X e 
   

   

            (2.58) 

where: 
i

 are the parameters of the linear autoregressive components 

j
 are the parameters of the linear moving average components 

ij
b are the nonlinear bilinear components. 

 

2.17     Autoregressive Integrated bilinear models 

The strictly stationary stochastic process
t

X  is referred to as an autoregressive integrated 

bilinear time series model if: 

1 1

( ) ( )  
m n

d

t p t ij t i t j

i j

B X B X b X e  

 

        (2.59) 

where:  

2

1 2
( ) ( )(1 ) 1 ....  d p d

p d
B B B B B B    


         

The expanded form of (2.59) is written as: 

1 1 2 2 11 1 1.... ....t t t p d t p d t t mn t m t n tX X X X b X e b X e e                    

    (2.60) 

where: 
i

 are the parameters of the linear autoregressive integrated components 

             
ij

b are the nonlinear bilinear components. 

 

2.18 Autoregressive integrated moving average bilinear models 

The strictly stationary stochastic process
t

X  is said to be an autoregressive integrated 

moving average bilinear time series process if it satisfies the relation: 
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1 1 1 1 11 1 1.... ... ....t t p d t p d t q t q t t mn t m t n tX X X e e b X e b X e e                       

where: 
i

 are the parameters of the linear autoregressive integrated components. 

           
j

 are the parameters of the linear moving average components. 

            
ij

b are the nonlinear bilinear components. 

 

 

2.19   Related literature on Bilinear Time Series Models 

Many researchers for example, Hannan (1962,1970), Box and Jenkins (1970) and many 

others  have actually used the linear time series models to explain the covariance structure 

in the time series and apply them to different fields of life. In fact, many real-life 

stationary phenomena can be explained by stationary linear time series models, for 

example the ARMA (   ) models (Priestely, 1978, 1980). However, many nonlinear 

phenomena like frequency modulations (Tong, 1990), limit cycles as well as animal 

population cycles (Oster and Ipaktchi, 1978) cannot be adequately examined by linear 

models, and as a result second-order properties, such as covariances and spectra, can no 

longer adequately characterize the properties of the series . Hence, second-order 

properties, such as covariances and spectra, can no longer adequately characterize the 

properties of the series. So, we would need to consider non-linear models in order to 

obtain a better outcome because for any nonlinear time series, any statistical inferences 

relating to analysis for nonlinear time series model, would reveal the nonlinear 

characteristics of the data more excellently than those employing linear approximation. 

Usually, nonlinear dynamic equations are used to generate nonlinear time series. They 

possess features such as time-changing variance, asymmetric cycles, higher-moment 

structures, thresholds and breaks that linear processes will not be able to examine.  

 

Bilinear models is one of the major class of nonlinear time series models which have been 

widely discussed by different authors in literature (Mohler, 1973, Ruberti, Isidori and 

d'Alessandro, 1974 and Subba, 1992). It is a class of time series model, which assumes 

both linear and non-linear components of autoregressive moving average processes. Its 

linear part of is the aggregation of autoregressive and moving average processes, while the 
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non-linear part is the product of the two processes. One interesting thing about the bilinear 

model is that despite the fact that it is nonlinear, it has a structural theory which is similar 

to those obtained in linear systems (Ruberti, Isidori and d'Alessandro, 1974).  Following 

Granger and Anderson (1978a), Subba (1981), Subba and Gabr (1984), a time series is 

said to be a bilinear process usually denoted by BL (       ) if: 

1 1 1 1

p q m k

t i t i j t j ij t j t k t
i j i j

X a X c e b X e e
   

   

                (2.61) 

where: }{ t  is a set of i.i.d random variables, usually but not always having zero mean 

and variance 2 . 

              i  are the autoregressive components of order               

              j  are the moving average components of order               

              ijb  are the bilinear components. 

 

Poskitt and Tremayne, (1986) in a paper titled ‘The selection and use of linear and bilinear 

time series models’ considered problems usually encountered when linear and bilinear 

processes are used to model time series phenomena. The paper gives some explanation on 

reasons why bilinear models may prove to be useful for modelling non-Gaussian time 

series. Explanation was also given on the effects of adopting a Bayesian stance in the use 

of model selection criteria when addressing the issue of determining suitable 

parameterizations. They illustrated the idea using a familiar data set and their 

ramifications for forecasting are explored. It showed clearly that the one-step ahead 

forecasts with the minimum mean squared error are generated by combining the two 

classes of models under consideration. 

 

Pham (1985) introduced an extension of the linear Markovian repsentation called the 

bilinear Markovian representation, and is shown to provide representations of all-diagonal 

bilinear time series models. Some of its properties are also given. 

 

https://www.sciencedirect.com/science/article/pii/0169207086900336#!
https://www.sciencedirect.com/science/article/pii/0169207086900336#!
https://www.sciencedirect.com/science/article/pii/0304414985902169?via%3Dihub#!
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Jian Liu and Peter Brockwell (1988) derived the necessary condition for the general 

bilinear time series equations to be strictly stationary. This was shown to reduce to the 

conditions given by Pham and Tran (1981) and Bhaskara Rao et al. (1983) in the special 

cases which they considered. Under this specified condition, they constructed a solution 

which is proven to be causal, stationary and ergodic. It is moreover the unique causal 

solution and the unique stationary solution of the defining equations. In the special case 

when the defining equations contain no non-linear terms, our condition reduces to the 

well-known necessary and sufficient condition for existence of a causal stationary 

solution. 

 

John and Todd (1991) in a paper titled ‘parameter estimation for a bilinear time series 

model’ presented a direct approach to estimating the parameters of a bilinear time series 

model. They made us realize that the approach depends on the expressions for certain 

higher-order statistics of the signals that satisfy the bilinear model. According to them, the 

expressions are usually linear in most of the model parameters and can be evaluated from 

an over-determined set of equations. Results of an experiment that employs their 

technique and demonstrates its good properties are also included in the paper. 

 

Cathy (1992) propose a Bayesian approach to bilinear time series analysis as an extension 

of the study of Broemeling and Shaaraw (1988) on linear time series. They derived both 

the predictive and marginal posterior distributions of the bilinear parameters, by which 

they made inferences about the parameters and for a future observation using the 

conjugate prior for parameters of the model. They illustrated this approach using the Wolf 

sunspot numbers from Box and Jenkins (1976) and made comparison with a linear time 

series. 

Jian Liu (1992) obtained the proof of the inequality: 

ρ(A⊗A+B⊗B) ≥ρ(A⊗A), 

where ρ(M) is the spectral radius of any given square matrix M, i.e. max{|eigenvalues| 

of M}, and M⊗N is the Kronecker product of any two matrices M and N. he then used the 

inequality to show that stationarity of the bilinear model: 
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and this implies the stationarity of the linear ARMA model; 

 
 
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ij

jtjititt eYeY
1

 for r= 1 and q= 1. 

In addition, it shows that stationarity of the bilinear model with bij = 0 for i < j, also 

implies stationarity of its linear part, given that the stationarity condition stated by 

Bhaskara Rao et.al is met. The conclusion reached was that stationarity of the subdiagonal 

bilinear models, implies that the linear component models cannot be extended to the 

general non‐subdiagonal bilinear models. Finally, they demonstrated the last observation 

using an example where p = m = 1, r = 0 and q = 2. 

 

Subba Rao et al. (1992) in a paper titled ‘identification of bilinear time series’ showed 

how the Yule-Walker difference equations for higher order moments and cumulants 

derived for certain types of bilinear time series models BL(       ) could be used for 

tentative identification of the model. They used the canonical correlation analysis carried 

out between the observations and the linear combination of higher powers of the 

observations for idfentification. They further illustrated the method using real and 

simulated data. 

  

Abdelouahab Bibi (2006) considered some bilinear time series models having time 

varying coefficients. Under the study, he aim to examine the structure of usual time series 

analysis tools, particularly the sample autocovariance function which was developed for 

analyzing stationary linear time series. He used appropriately defined Markovian 

representations to obtain a necessary and sufficient condition for the existence of a unique 

solution with Bounded First and Second order Moments (BFSM). Moreover, he provided 

a more explicit and sufficient condition for the existence of a BFSM solution and then 

obtained expression for the autocovariance function. He equally showed the existence of a 

weak time-varying ARMA representation of the bilinear model with time varying 

coefficients and that of higher order moments. Several sub-groups of the model were 
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discovered to be quasi-stationary and finally obtained the asymptotic distributions of the 

sample mean and sample covariances  under the assumption.  

 

Sarma and Singh (2007) expressed a bilinear time series model in the form of Akaike's 

Markovian representation in order to use the Kalman recursive estimation approach. They 

showed the equivalence of the Akaike's Markovian representation of autoregressive 

moving average models of order p and q (ARMA(p,q)) and bilinear models. This 

facilitates the use of the maximum likelihood method of estimation to obtain the 

parameters bilinear models, which otherwise is an unwieldy problem. They further said 

that the approach can easily be extended to take into consideration the case of missing 

observations. 

 

Christian Francq (2007) stated that in general, any purely non-deterministic stationary 

process )( tX  with finite variance can be represented as an infinite moving average in 

terms of its innovation process. A property usually employed in the estimation and 

prediction of linear time series but may give poor results when the innovations are not 

independent especially in practical situations. The class of models is usually enlarged so 

as to ensure improvement in the quality of fit and forecasts. In this study he aimed to 

address the problem using ARMA models with bilinear white noise. He consider the 

probabilistic and the statistical properties (namely the stationarity, invertibility, moments, 

prediction, identification, estimation, tests) of this class of models. Then, applicability is 

examined through simulations and sunspot numbers. 

 

Chikezie, (2007) considered the estimation of the parameters of the nonlinear bilinear 

seasonal ARIMA time series model which was followed by some numerical illustrations. 

In this study, it was discovered that the closeness of the estimated values confirmed that 

the entire procedure of minimizing error (the nonlinear least square method) as well as the 

Newton-Raphson iterative procedure employed are adequate. 

 

Ojo, (2011) developed the Generalized and subset bilinear time series models which are 

adequate in achieving stationarity for all non-linear series. These were developed to admit 
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error process of      possible subsets with the goal of achieving a better generalized 

bilinear model. Using the robust nonlinear least-square method and Newton-Raphson 

iterative method, the parameters of the models are estimated. He then proposed an 

algorithm for fitting Error Process Included (EPI) generalized and subset generalized 

bilinear models. He adopted the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) in order to obtain the optimum model order. According to 

him, the EPI made the generalized bilinear model a better model using the residual 

variance and then fitting models for all possible subsets listed to have the best model is not 

necessary. Finally, he justified the concept using real life data. 

 

Ojo, (2012) compare new time-series methods for evaluating the death rate of an emerging 

and re-emerging disease based on One-Dimensional Integrated Autoregressive Bilinear 

Time Series Model and Generalized Integrated Autoregressive Bilinear Time Series 

Model. He estimated the parameters of the models using Newton-Raphson iterative 

method and investigated the statistical properties of the derived estimates. He then 

proposed an algorithm for fitting the two models. The Akaike Information Criterion (AIC) 

was used in model order determination while the Residual variance was used to see which 

model performed better. He then illustrated the approach with real life data and concluded 

that One-Dimensional Integrated Autoregressive Bilinear Time Series Model performed 

better than the Generalized Integrated Autoregressive Bilinear Time Series Model in the 

estimation of death rate of a disease. 

Omekara, (2016) studied in details the invertibility, stationarity and covariance nature of 

pure diagonal bilinear time series models. In his study, he transformed the pure diagonal 

bilinear time series model into the vector form and then examined the conditions for 

process to be stationary and invertibile. He also obtained the covariance structure of the 

pure diagonal bilinear time series model and proved that for every pure diagonal bilinear 

process there is an ARMA process having identical covariance structure. 

 

Mohammed and Wissam (2016) studied the periodic integer-valued bilinear time series 

model and dealt with the study of some probabilistic and statistical properties of a periodic 

integer-valued diagonal bilinear model. They showed the existence of a periodically strict 
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stationary integer-valued process, stated the sufficient conditions for periodical 

stationarity in the first and second orders, as well as the closed-form of the periodic 

autocovariance function. They also obtained the closed-forms of the mean and the second 

moment as well as the Yule-Walker estimations of the underlying parameters and then 

provided a simulation study. 

Anthony (2018) examined two bilinear time series models namely the Bilinear 

Autoregressive (BAR) and Bilinear Moving Average (BMA) models under certain 

conditions obtained from the general bilinear autoregressive moving average time series 

model and then showed that the models exist for                 and           

       respectively. 

 

 

2.20   Related literature on Seasonal time series models 

Seasonality as related to time series is defined as a regular movement or changes that re-

occurs at every “ ” time period, where “ ” denotes the number of time periods until the 

pattern is repeated again. For instance, when     , we have monthly data, when     

we have quarterly data and so on.  

Pure seasonal ARIMA time series models on the other hand, are usually denoted by 

ARIMA (P, D, Q)s, where P,D and Q are the seasonal autoregressive, differencing, and 

moving average terms respectively. The general seasonal ARIMA model, usually denoted 

by SARIMA (p, d, q) × (P, D, Q)s, incorporates both non-seasonal and seasonal factors in 

a multiplicative model. Where; 

           p  is the order of the non-seasonal AR,  

          d  is the non-seasonal differencing,  

          q  is the order of the non-seasonal MA,  

          P is the order of the seasonal AR, 

          D is the seasonal differencing,  

          Q is the order of the seasonal MA,  

The model could be written more formally as: 
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( ) ( ) ( ) ( )s s

t tB B X B B e       (2.63) 

where:   

         1( ) 1 ... p

pB B B      are the non-seasonal AR components 

           θ(B) = 1 + θ1B + ... + θqB
q
 are the non-seasonal MA components. 

           Φ(B
s
) = 1 - Φ1B

s
 - ... - ΦPB

Ps
 are the seasonal AR components  

           Θ(B
s
) = 1 + Θ1B

s
 + ... + ΘQB

Qs
 are the seasonal MA components. 

Seasonal Differencing 

When     12 for example, a seasonal difference is given by: 

12

t t t-12(1-B )X  = X -X       (2.64) 

The differences from the previous year could be as much as that for each month resulting 

in a stationary series. 

Similarly when     4, for quarterly data, a seasonal difference is given by: 

4

t t t-4(1-B )X  = X  - X    (2.65) 

This procedure usually eliminates seasonal trend and seasonal random walk type of 

nonstationarity. 

George et al. (1979) revealed that, as a result of the practice-theory iteration extended over 

many decades and examined by many different investigators, a class of stochastic models 

capable of representing nonstationary and seasonal time series has evolved. They further 

investigated and showed that when these models are applied to forecasting and 

intervention analysis, they have worked well. They equally showed how a fitted model can 

then determine appropriate techniques for smoothing and seasonal adjustment of a 

particular time series. Using the shipments-order-inventories series, they illustrated how 

multivariate models allow the analysis of complex relationships, more accurate forecasts 

and have the potential for improving smoothing and seasonal adjustment methods. 

Billy and Lester, (2003) examined the theory behind the basis for modeling univariate 

traffic condition data streams as seasonal autoregressive integrated moving average 

processes. This was based on the Wold decomposition theorem and the assertion that a 



41 
 

one-week lagged first seasonal difference applied to discrete interval traffic condition data 

would result in a weakly stationary transformation. In addition, they presented empirical 

results using actual intelligent transportation system data and found them to be consistent 

with the theoretical hypothesis. They concluded by stating the effects of their assertions 

and findings in relation to the present intelligent transportation systems research, 

deployment and operations. 

Xinghua Chang et al. (2012) applied statistical approaches from time series analysis to 

investigate precipitation trend by presenting a seasonal ARIMA time series model 

incorporating seasonal characteristics using the monthly precipitation data in Yantai, 

China for the period of 1961-2011. They built a Seasonal ARIMA (1, 0, 1) (0, 1, 1)12 and 

found that the model is a true representation of the data and modeling of the stochastic 

seasonal fluctuation was successfully carried out except for some extreme values which 

were affected by environmental factors like temperature, geographical location and 

changes in climate. Forecast values based on this model indicated that there would be a 

decline in precipitation for the next three years. 

Wiredu Sampson et al. (2013) opined that fluctuations in rainfall pattern would directly or 

indirectly affect various sectors like agricultural, insurance and other allied fields that play 

major roles in the development of any economy. In their study, they applied the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) time series model to rainfall 

pattern of Navrongo municipality. They used the Akaike Information Criterion (AIC), the 

corrected Akaike Information Criterion (AICc) and the Bayesian Information Criterion 

(BIC) in selecting the optimum model and was considered as the best. Seasonal ARIMA 

(1, 0, 0) (0, 1, 1)12 and (0, 0, 1)(0, 1, 1)12 were the top two competing models with the least 

values of AIC, AICc and BIC. The duo was again compared based on their in-sample and 

out-of-sample forecast performances. ARIMA (0, 0, 1)(0, 1, 1)12 performed better than 

ARIMA (1, 0, 0)(0, 1, 1)12 in the forecast performances. Hence, it was identified to be the 

optimum model for the rainfall data. A global suitability check for the model with the 

Ljung-Box procedure showed that the model was suitable for forecasting the rainfall data. 
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Akintunde et al. (2017) considered forecast comparison of two independent time series 

models namely the Seasonal Autoregressive Integrated Moving Average (SARIMA) and 

the Self Exciting Threshold Autoregressive (SETAR) models. The study was based on the 

established nonlinearity of the financial and economic time series data as it applies to the 

rate of inflation in Nigeria. The in-samples and out sample forecast performances for 

SETAR were compared with that of SARIMA model and SETAR was found to perform 

better. 

 

Adubisi et al. (2017) examined the pattern and growth of money in circulation in Nigeria 

using the Box-Jenkins procedure involving three modelling stages. They considered the 

appropriate model which fits the monthly record of Nigeria money in circulation for the 

period of January 2000 to December 2016 using figures provided by Central Bank of 

Nigeria. The results showed that the seasonal ARIMA (2, 1, 0) (0, 1, 1)12 model was the 

most suitable model for the series with the smallest information criteria. 

 

Mohammad Valipour (2015) examined the ability of the SARIMA and ARIMA models 

for long‐term runoff forecasting in the United States using the Akaike Information 

Criterion (AIC) to check the fitted SARIMA and ARIMA models. The MINITAB 

software was employed to create all necessary stages for determining the parameters 

involved.  He forecasted the amount of runoff for 2011 in each US state using the data 

from 1901 to 2010 with respect to the average value of all stations in individual state in 

the first stage.  The outcome of the study showed that the SARIMA model was more 

accurate than the ARIMA model. He also forecasted the amount of runoff for 2001 to 

2011 in the second stage using the average annual runoff data from 1901 to 2000. 

SARIMA model with periodic term equal to 20, R
2
=0.91, and Mean Bias Error (MBE) = 

1.29 mm emerged the optimum model in this stage. Moreover, a trend was observed 

between annual runoff data in the United States every 20 years or almost a quarter 

century. 

Xiaosheng Li, et al. (2013) carried out a research on applications of SARIMA model in 

forecasting outpatient amount. A time series model forecasting the monthly outpatient 

amount was built in order to understand the trend of 2002–2012 outpatient amounts and to 
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provide a scientific statistical foundation for the optimization of medical treatment 

resource allocation. The yearly outpatient data from January 2002 to December 2012 was 

obtained and SPSS18.0 software was used to verify the outpatient amount in July 2012 to 

December 2012 in relation to the seasonal autoregressive integrated moving average 

(SARIMA) model. Results showed that the SARIMA model perfectly fits the variation 

trend of the outpatient amounts and devoid of external intervention factor, the outpatient 

amount in the hospital will be on the increase. 

 

2.21    Summary 

Critical scrutiny of the existing literatures in the previous sections on both linear and 

nonlinear seasonal time series models reveals that a lot has been done in the examination 

of the performance of a time series at different length of seasons ( ). However, the 

seasonal linear models only reveal the performance of the models at regions before and 

after the peaks of season while the seasonal nonlinear models do that only at the peaks of 

season. But, little or no attention has been paid to consideration of a seasonal model that 

would examine the performance of the series before the peaks are reached, at the peaks 

and after the peaks at the same time. This poses a course for concern. So, this study 

considers a nonlinear seasonal model that would enable us to track the behaviour of a 

seasonal time series in and out of season. 
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CHAPTER THREE 

METHODOLOGY 

3.1     Introduction:  

Having identified a challenge as a result of the perusal of literatures in chapter two, the 

development of statistical techniques involved in addressing the challenge is considered a 

necessity. So, in this chapter we consider the formulation of models and statistical 

procedures for estimating their parameters as well as testing their validity. 

3.2     Seasonal Autoregressive (SAR) model. 

A stochastic process 
t

X  is regarded as a Seasonal Autoregressive (SAR) model of order 

 , if the following relation is satisfied: 

1 2 2
....

t t s t s P t Ps t
X X X X e

  
                   (3.1) 

where: 

 ....1)()( 2

21

P

P

s BBBBB   is the seasonal autoregressive operator. 

 

3.3 Seasonal Autoregressive Moving Average (SARMA) model. 

A stochastic process 
t

X   is said to be a Seasonal Autoregressive Moving Average model 

of order     is given by: 

1 2 2 1 2 2
.... ....

t t s t s P t Ps t s t s Q t Qs t
X X X X e e X e

     
           (3.2) 

where: 

2

1 2
( ) ( ) 1 ....  s P

P
B B B B B       is the seasonal autoregressive operator. 

 ....1)()( 2

21

Q

Q

s BBBBB   is the seasonal Moving-Average operator. 
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3.4     Estimation of SAR and SARMA models 

Estimation of seasonal autoregressive (SAR) model 

Estimation of the parameters of autoregressive processes can be compared in many ways 

to the sampling theory approach in univariate regression models. According to Grahn 

(1995), different methods based on the least squares procedure are commonly used to 

estimate the parameters of the autoregressive models. With additional assumption of 

normality, Whittle (1951) also proved that the maximum likelihood estimator is consistent 

and asymptotically normal. In the absence of normality, the least squares estimators 

usually have equivalent asymptotic distribution as the maximum likelihood estimators. 

Given the first-order seasonal autoregressive process of period k which satisfies the 

stochastic difference equation:  

1

0

, 1, 2,...,
k

t it i t k t
i

Y Y e t k k  





         (3.3) 

where, 
1     ( 1)mod

0    ,          
it

if i t k

otherwise

  


 

and 
1 2
, ,....,

k
Y Y Y  are initial conditions and { }

t
e  is a set of independent normal (0, 

2 ) 

random variables, Walker (1964). The absolute value of parameter   is assumed to be 

strictly less than one. The parameters
i

  ,                , are the seasonal intercepts 

associated with the various periods. The first-order stationary autoregressive process with 

nonzero mean is a special case of (3.3) obtained when k = 1. 

{ }
t

Y  can be expressed in another more useful form by making use of the double 

subscripts notation
ij

Y , where                    . The variable 
ij

Y  represents the 

sampled value for period   of the     cycle and satisfies the stochastic difference equation: 

, 1ij i i j ij
Y Y e 


      (3.4) 

               and                  . The observations for     period form a realization 

from a first-order autoregressive process with a nonzero intercept and parameter p . 

Consider a realization of nk  observations from (3.4), the least squares estimator of p  is 

such that: 
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1
1

0 , 1 1
0 2

1
1 2

, 1 1
0 2

[( 1) ] ( )( )

ˆ

[( 1) ] ( )

k n

ij i ij j i
i j

k nOLS

i j i
i j

n k Y Y Y Y

n k Y Y







 





 

  



 





    (3.5) 

where 1

0
2

( 1)
n

i ij
j

Y n Y



    

and 1

1 , 1
2

( 1)
n

i i j
j

Y n Y




   , 0,1,2,...,i   

Conditioning on the initial k observations, the maximum likelihood estimator of   is the 

same as the least squares estimator of p  in (3.5). The estimator ˆ
OLS

 can lie outside the 

stationary region ( 1,1) even when the observed series is stationary. 

Sawa (1978) gave a method for calculating the exact moments of the least squares 

estimator of the parameter of a stationary autoregressive series of order one but no closed 

form expressions are given. However, the mean of ˆ
OLS

  can be obtained exactly if the 

series is random, i.e.,  = 0 . The result is as shown by the following lemma. 

Lemma 3.1. Given
ij

Y , a sequence of independent ( 2,
i

  ) random variables, the 

expectation of ˆ
OLS

 in (3.5) is; 

1ˆ( ) ( 1)
OLS

E n     (3.6) 

The least squares estimator has a downward bias in the case of independent observations 

with unknown means. If we have a random series with known means, the least squares 

estimator of   is given as: 

 
1

, 1
0 2*

1
2

, 1
0 2

( )( )

( )

k n

ij i i j i
i j

k nOLS

i j i
i j

Y Y

Y

 







 




 

 









    (3.7) 

The method of obtaining the mean of ˆ
OLS

 may not be effective in obtaining the mean of
*

OLS
 , however Sawa's method can be used to achieve that. 
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Estimation of the seasonal Autoregressive moving average (SARMA) model 

The seasonal ARMA model is usually denoted by ARMA ( , )
s

P Q and of the form: 

( ) ( )s s

t t
B X B e    (3.8) 

 where 2

1 2
( ) 1 ...s s s Ps

P
B B B B       , 

 and 2

1 2
( ) 1 ...s s s Qs

Q
B B B B       are the seasonal autoregressive 

operator and the seasonal moving average operators respectively, with seasonal period of 

length s . It should be noted that similarly to ARMA (   ), the ARMA ( , )
s

P Q  model is 

causal only when the roots of ( )sz  lie outside the unit circle, and satisfies the 

invertibility condition when the roots of ( )
s

z  are outside the unit circle. For example, 

the simplest case of seasonal ARMA(1, 1)12, is; 

12 12(1 ) (1 )
t t

B X B e   , 

12 12t t t t
X X e e

 
     

                                        
12 12t t t t

X X e e
 

                     (3.9) 

Comparing (3.9) with ARMA (1,1):  

1 1t t t t
X X e e 

 
    

implies that the seasonal ARMA presents the series as a form of its past values at lag equal 

to the length of the period (    ), while the non-seasonal ARMA presents the series in 

terms of its past values at lag 1. Just as in the non-seasonal ARMA case, |Φ| < 1 and |Θ| < 

1 are the respective required conditions for series to be stationary and invertible. 

When P  = 0, Q  = 1,      then; 

1 12t t t
X e e


   

2 2

1
(0) (1 )

e
    

2

1
(12) ,

e
   

( ) 0s  for s = 1, 2, . . . , 11, 13, 14, . . .. 

When 1P  , 0Q  , 12s  ,  then; 

1 12t t t
X X e


   
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2

2

1

(0)
(1 )

e


 


 

2

1

2

1

(12 ) ,
1

i

ei








 

( ) 0s  for other s . 

 

3.5   Seasonal Autoregressive Integrated (SARI) model 

In general, a pure seasonal autoregressive integrated (SARI) model of order   is defined 

as; 

tDPstDPststt eXXXX   ....221
 , 

where  ....1)()( 2

21

P

P

s BBBBB   is the seasonal autoregressive 

operator. 

 

3.6   Seasonal Autoregressive Integrated Moving Average (SARIMA) model 

The seasonal autoregressive integrated moving average (SARIMA) model of order   and 

  is generally given by: 

1 2 2 1 2 2
.... ...

t t s t s P D t Ps D t s t s Q t Qs t
X X X X e e e e

       
          

where:  ,i=1,2,...,P
i

 are the seasonal autoregressive components. 

 ,i=1,2,...,Q
i

 are the seasonal moving average components. 

 

 

3.7   Behaviour of ACF and PACF of seasonal linear Time Series Model 

Given a multiplicative seasonal ARMA process: 

( ) ( ) ( ) ( )s s

P p t Q q t
B B X B B e       (3.10) 

The autocorrelation function (ACF) of the process is a combination of the ACF which 

corresponds to the nonseasonal and seasonal components. If we represent by 
i

r  the ACF 

coefficients of the nonseasonal ARMA ( ,p q ) process:  

( ) ( )
p t q t

B X B e        (3.11) 
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and 
si

R , the ACF coefficients in the lags s, 2s, 3s, ... of the seasonal ARMA ( , )P Q  

process:  

( ) ( )s s

P t Q t
B X B e        (3.12) 

and 
j

  the AC coefficients of the combined process, then we have; 

1

1

( )

1 2

j si si j si j
i

j

si si
i

r R r r

r R





 






 









    (3.13) 

Suppose      and 0
j

r  for large lag values (such as when j ≥ 8), the denominator of 

(3.13) gives the unit and the autocorrelation function such that: 

(i) In small lags (e.g j = 1, ..., 6) only the regular part is observed, this implies:  

j j
r  

(ii) In seasonal lags basically the seasonal part is observed. Hence;  

12 12 24 0 24 36 12
( ) ( )

i i i i i
R r r R r r    . 

Also assuming 
12

0
i

r  that for i ≥ 1, with 
0

r = 1 the expression becomes: 

12 12
( 1,2,...).

i i
R i   

(iii) Interaction between the regular and seasonal part is observed around the seasonal 

lags. This is reflected in the re-occurence of the regular part of the autocorrelation function 

on the two sides of each seasonal lag. In particular, if the regular nonseasonal part is a 

moving average of order q , on both sides of each non-null seasonal lag there will be q

coefficients not equal to zero. On the otherhand, if the regular part is an autoregressive 

process of order p , a decrease will be observed as a result of the structure of the AR on 

the two sides of the seasonal lags. 

The partial autocorrelation function of a multiplicative seasonal process is a bit ambigous 

due to the fact that it is a function of the partial autocorrelation functions of the regular or 

nonseasonal and seasonal parts (3.11) and (3.12) and also on the sample autocorrelation of 

the regular part as follows. 

(i) In the first lags the PACF of the nonseasonal structure is observed while in the 

seasonal lags, the PACF of the seasonal structure is seen.  
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(ii) At the right hand side of each seasonal coefficient (lags 1, 2,...js js  ) the PACF 

of the regular part will appear. If the seasonal coefficient is positive the regular 

PACF is inverted. However, if it is negative the PACF takes its own sign.  

(iii) On the left hand side of the seasonal coefficients (lags 1, 2js js  ), we notice the 

ACF of the nonseasonal part. 

 

3.8    Nonlinearity Test 

Of great importance is the examination of the nonlinearity behaviour of a set of data 

before fttting a nonlinear time series model. In time domain, different methods have been 

employed in detecting nonlinearity. For example Subba Rao et al. (1980) and Hinnich 

(1982) used the bispectrum test which is based on the principle that the squared modulus 

of the normalized bispectrum is constant when the series is linear. The hypothesis uses the 

non-centrality paremeter 
i
  of the marginal distributions 

2 2

2
( )

N i
   of the squared moduli 

and also Hjellvik et al. (1998).  

 

Granger and Newbold (1976) proved that for a linear and normal time series tX ; 

22 )}({)( tktk XX         (3.14) 

where (.)k is the lag   autocorrelation. Non-satisfaction of this condition would indicate 

nonlinearity of some degree, as shown by Granger and Andersen (1978b).  

Yasumasa (1997) defined two types of nonlinearity and proposed statistics to detect them 

as follows. Given { tX }, a strictly stationary process with zero mean and finite variance. If 

the spectral distribution function of tX  is absolutely continuous with the density function 

f  and 








 ,)(ln df  

 then by the Wold decomposition theorem,  







0i

itit ZX                                             (3.15) 

where 2

i and { tZ } is a set of mutually orthogonal random variables. Moreover; 
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





0i

itit XZ           (3.16) 

 If { tZ } is independent and identically distributed random variables, then { tX } is a linear 

process. 

  

According to Yajima, (1994), if tX  is a linear process, the following properties are 

satisfied. 

1
1

( )  
t t i t i

i

E X X 


 


      (3.17) 

2 2 2

1
( )

t t t
E Z EZ 


      (3.18) 

where t  is a σ-field generated by },{ tsX s  }.  

 

Hence, for the two types of nonlinearity, if (3.17) is not satisfied and the conditional mean 

of tX  given 1tX , 2tX ,… is some nonlinear function of 1tX , 2tX ,…, then tX  is called 

a process with nonlinear conditional mean (NCM). If (3.18) is not satisfied and the 

conditional variance of the innovation process tZ  given 1tX , 2tX ,… depends on the 

values of 1tX , 2tX ,…. Then, we refer to tX  as a process with heteroscedastic 

conditional variance (HCV).  

 

Keenan’s Nonlinearity Test 

This is based on Tukey’s (1949) test for non-aditivity to generate a time-domain statistic. 

It is a test based on the relationship of Volterra expansions with polynomials. That is, a 

time series 
t

X ,               can be explained by a second-order Volterra expansion of 

the form: 

                                  
,

p

t i t i ij t i t j
i i j

X c e c e e


  
 

        (3.19) 

which will be linear if the last term on the right-hand side of (3.19) is zero. We should 

note that the general bilinear time series model is a special case of (3.19). Keenan’s test 
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usually regress 
t

X  on
1

{1, ,..., }
t t M

X X
 

, then calculate the fitted values ˆ{ }
t

X  and the 

residuals ˆ{ }
t

e ,               and its sum of squares 
2ˆ ˆ ˆ{ , }
t

e e e . It further 

regresses 
2ˆ
t

X  on 
1

{1, ,..., }
t t M

X X
 

 and calculate the residuals, ˆ{ }
t
 for         

      and lastly regresses 
1

ˆ ˆ ˆ( ,..., )
M n

e e e


 on 
1

ˆ ˆ ˆ( ,..., )
M n

  


 to obtain ̂  and F̂  via; 

2

0
1

ˆˆ ˆ
n

t
t M

  
 

   
 
   where 

0
̂ is the regression coefficient       (3.20) 

and 
2

ˆ( 2 2)ˆ
ˆˆ ˆ{ , }

k

n M
F

e e





 



                                        (3.21) 

 

The F-test 

Tsay (1986) later modified Keenan’s test to obtain the F-test by substituting the 

aggregated quantity 
2ˆ
t

X  with the disaggregated variables ˆ ˆ
t i t j

X X
 

,              . The 

F-test regresses 
t

X on 
1

{1, ,..., }
t t M

X X
 

, and calculates fitted values ˆ{ }
t

X  and the 

residuals ˆ{ }
t

e ,               with the regression model; 

t t t
X W e      (3.22) 

 

where 
1

(1, ,..., )
t t t M

W X X
 

 and 
0 1

( , ,..., )T

M
      

It further regresses the vector 
t

  on 
t

W , where 
t

 is the multivariate regression model; 

t t t
W H       (3.23) 

where 
t

  is an 
1

( 1)
2

m M M  dimensional vector given by vech ( )T T

t t t
U U  with 

1
( ,..., )

t t t M
U X X

 
 . 

 

Nonlinear least square Method 

Consider a group of   data values;                            , and a nonlinear model 

        , such that   also depends on   parameters,             ,    . The 

Nonlinear least squares is a type of least squares analysis used to fit some the set 
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of m observations with nonlinear model in n unknown parameters. In order to find the 

vector   of parameters such that the nonlinear model fits best given the data in the least 

square sense, that is, the sum of square: 





m

i

ieS
1

2       (3.24) 

is minimized, where the in-sample prediction errors ie are given by: 

mixfye iii ,...2,1             ),(    

 Then, the minimum value of S ( minS ) occurs when the gradient is zero. Since the model 

contains   parameters, then there exist   gradient equations: 

2 0     ( 1,2,... )i

i
i

j j

S e
e j n

 

 
  

 
           (3.25) 

where 
j

ie




are functions of   and  . 

 

3.9    Seasonality test 

Several methods have been used in order to detect seasonality in time series analysis. 

These include: 

(i) A run sequence plot. 

(ii) A seasonal subseries. 

(iii) Multiple box plots which can be used as an alternative method to the seasonal 

subseries plot. 

(iv) The autocorrelation function plot. 

However we can categirise them into three major groups, namely the Chi-Square (
2  ) 

Goodness-of-Fit test and the Kolmogorov-Smirnov type statistic. The Harmonic analyses 

based on the Edwards’ type statistic (Edwards, 1961), and the Nonparametric Tests. The 

2  goodness-of-fit test is relatively popular due to the fact that its mathematical theoryis 

simple. The test is based on whether the empirical data can be a sample of a certain 

distribution with sampling error as the only source of variability (McLaren et al. 1994). It 

uses a sample from a population with an unknown distribution function F(x) and a certain 
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theoretical distribution function F0(x). Although no restriction is set on the underlying 

distribution, the hypothetical distribution is usually a uniform distribution. For seasonality 

studies, the frequency Oi, i = 1, 2,…, k is the observed value at the i
th

 season, while the 

frequency Ei, i = 1, 2,…, k is the expected cell frequency at the i
th

 season. Under the null 

hypothesis that there is no seasonal effect (i.e., F0(x) is a uniform distribution), then 

1 2
...

K
E E E   and the statistic: 

2

1

( )k
i i

i
i

O E
T

E

 
  

 
        (3.26) 

 is asymptotically distributed as 
2  with ν = k − 1 degrees of freedom. 

 

The Hegy Tests 

HEGY (1990) presented a factorization of the seasonal differencing polynomial 

4

4
(1 )B   , then provided a procedure for testing seasonal unit roots, which consists 

the procedures in estimating the following regression via OLS: 

4 1 1, 1 2 2, 1 3 3, 2 4 3, 1t t t t t t
X y y y y    

   
         (3.27) 

where 2 3

1
(1 )

t t
y B B B X    , 2 3

2
(1 )

t t
y B B B X      and 2

3
(1 )

t t
y B X   .  

If 
t

X is a univariate stochastic process given by; 

4t t t
X X u


       (3.28) 

where 
t

u , is a stationary process with zero mean and constant variance. 

If  = 1 in (3.28), then 
1 2
,

t t
y y  and 

3t
y  have unit roots only at   = 0,  , and 

2


, 

respectively. Therefore, the unit root found at   = 0 in
t

X  which implies acceptance of 

the null hypothesis; 

H0: 1
0  . 

Similarly, when 
2

0  , this implies the existence of a unit root at   . When both 

3 4
0   , these result in complex unit roots at 

2


  .  
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3.10 Pure seasonal autoregressive integrated one-dimensional Bilinear Time Series 

(PSARIODBL) Model. 

Recall that a pure seasonal autoregressive integrated model of order P is generally given 

by: 

tDPstDPststt eXXXX   ....221
 , 

where  ....1)()( 2

21

P

P

s BBBBB   is the seasonal autoregressive 

operator. 

Hence, we then define the pure seasonal autoregressive integrated one-dimensional 

bilinear (PSARIODBL) time series model as:  

1 1

1

( ) ( )  
m

s D d

t P s t i t i t

i

B X B X b X e 



          (3.29) 

where  ....1)1)(()( 2

21

DP

DP

Dss BBBBBB 

 is the seasonal 

autoregressive integrated operator. 

1ib are the nonlinear one-dimensional bilinear components. 

The expanded form of (3.29) is written as: 

1 2 2 11 1 1 1 1.... ....t t s t s P D t Ps D t t m t m t tX X X X b X e b X e e                    (3.30) 

 

 

3.10.1 Vector form of the pure seasonal autoregressive integrated one-dimensional 

bilinear time series (PSARIODBL) model specified model: 

According to Akaike (1974), the properties of a process are more easily examined when 

the model represented in the vector form due to the Markovian nature of the model.  

Consider: 

1 2 2 11 1 1 1 1.... ....t t s t s P D t Ps D t t m t m t tX X X X b X e b X e e                   (3.31) 

 

1 1 1 2 2 1 1 11 2 2 1 1 2 1.... ....t t s t s P D t Ps D t t m t m t tX X X X b X e b X e e                        

2 1 2 2 2 2 2 11 3 3 1 1 3 2.... ....t t s t s P D t Ps D t t m t m t tX X X X b X e b X e e                       

 

1 1 1 2 2 1 1 1 11 2 1

1 1 2 1

.... ....

             

t p t s p t s p P D p t Ps D p t p t p

m t i m t p t p

X X X X b X e

b X e e

                  

      

      

 
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Let:   

1 2 3 1 11 21 31 1
.... ....

1 0 0 .... 0 0 1 0 0 .... 0

   ,   0 1 0 .... 0 0 0 1 0 0

0 1 .... 0 0 .... 0

0 0 0 .... 1 0 0 0 0 1

P D P D m

m m

b b b b

B

  



       
   
   
     
   
   
   
   

 

and the vectors: 

1 2 1
1 1

( .... ),   (1 0 0 .... 0) and (1 0 0 .... 0) t t t t p
p p

X X X X CH   
 

   X

 

where    represents the transpose of a matrix H,              . 

Hence, (3.31) in vector form is given by: 

t-1 t-1 t
e Ce

t t s
   X X X     (3.32) 

 
t t

X H   X                    (3.33) 

 

3.10.2     Stationarity and Convergence of the PSARIODBL 

Following Rao et al. (1983) and Sangodoyin et al.  (2010), a sufficient condition necessary 

for the existence of strictly stationary process and convergence satisfying the pure seasonal 

one-dimensional bilinear model (3.33) can be achieved through the following theorem. 

Theorem: 

Let  ,
t

e t be a set of independent and identically distributed random variables defined 

on the probability space  PF,,  such that; 0 
t

E(e )  and 
2 2

t
E( e ) σ   . Let   and 

be matrices as defined above such that; 

2[( ] 1                                       (3.34) 

And C be any column vector with components          .Then the series of random 

vectors; 

1 i 1

( )
u

t i t u
u

e Ce
 

 

   

converges absolutely almost surely and also in the mean  t  . On the other hand, if: 
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1 i 1

( ) ,    
u

t t t i t u
u

X Ce e Ce t
 

 

                        (3.35) 

Then for every t , tX  is a strictly stationary process satisfying the pure seasonal 

bilinear model: 

t-1 t-1 t
e Ce   

t t s
  X X X  

On the otherhand, if  ,
t

X t  is a stationary process satisfying the pure seasonal 

bilinear relation; 

t-1 t-1 t
e Ce   

t t s
  X X X  

  t  , for some sequences  ,
t

e t  of independent and identically distributed 

random variables with 
22

0 σ) and E( e)E(e
tt

 and for the matrices ,B and  C of 

respective orders             and    , such that  

2[( ] 1       

Then; 

1 1

( ) ,
u

t t t i t u
u i

X Ce e Ce
 

 

    Zt    (3.36) 

Proof: 

The proof shall be established via; 

Step 1: For almost sure convergence, we prove that; 

1 1

( )          1,2,...,  
u

t i t u
u j j

E e Ce i P
 

 

 
     

 
      (3.37) 

1 1

( )
u

t i t u
u i

e Ce
 

 

   is absolutely convergent almost surely and also in the 

mean. 

 

Step 2: 

We establish (3.37) for i=1 and it should be noted that  

 , 1    1,2,...t Z u and n P     

2

0
1 1

(( ) ) ( ) ( )
P m

t i t u n n j j t u n j j t u
j j

E e Ce E C e B c e k
   

 

        
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where    is a constant depending on ,B,C and 
2 only. 

Step 3: 

Similarly if    , this implies that there exists some      such that: 

1
( )

2

1
1 1

( )
u-u

t i t u
i

E e Ce k P
 



    
 
    (3.38) 

However, it should be noted that:  

1

1 11 1

( ) ( ( )( )
u u

t i t u t i t i t u
i i

E e Ce E e e Ce


    
 

               
   

1

1
1 1

                                               ( (  )) ((  ) )
p u

t i n t i t u n
n i

E e e Ce


  
 

         

 
1

1
1 1

                                               ( ( )) (( ) )
p u

t i n t i u n
n i

E e E e Ce


 
 

 
     

 
   

In the above step, we have considered the fact that  
1

1

( )
u

t i
i

e





   and ( )
t i t u

e Ce
 

  

are independently distributed. Hence by step 2 and application of the Cauchy-Schwartz 

inequality, 

 
1

1
1 1

  ( ( )) (( ) )
p u

t i n t i t u n
n i

E e E e Ce


  
 

 
    

 
   is not greater than  

1
2 21

0
1 1 1

                                               ( ( )
p u

t i
n i n

k E e



 

       
   

   

Now for any n=1,2,…,P 

2
1 1 1

1 ;1
1 1 11

( ( ) (( ( )) ( ( )))
u u u

t i t i t i n n
i i in

e e e
  

  
  

           
  
    

1

1 ;1
1

 ( (  ) ( ))
u

t i t i n n
i

e e


 


               (3.39) 

Hence; 

2
1 1

1 ;1
1 11

( ) ( ( ) ( ))
u u

t i t i t i n n
i in

E e E e e
 

  
 

           
  
   

1

1 ;1
(( [( ) ( )]) )u

t t n n
E e e                                                        

2 1

1 ;1
(( [( 2 )]) )u

t t n n
E e e         
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2 1 1

1 ;1
(( ) )u u

n n
k            (3.40) 

Therefore;
1

( )
2

1

1

( )
u-u

t j t i
i i

E e Ce k P
 



    
 
   for any suitable choice of   .  

Step 4: 

Since 1  , 

1 1

( )            1,2,...
u

t i t u
u i i

E e Ce i P
 

 

       
 

   

 

Thus (3.37) is satisfied. 

It is then obvious that the vector-valued stochastic process  ,
t

X t  given by: 

1 1

( ) ,   
u

t t t i t u
u i

X Ce e Ce t
 

 

      is strictly stationary. 

Hence; 

2( ) 1       

is a sufficient condition for the pure seasonal one-dimensional bilinear model (3.36) to be 

stationary. 

So, if we desire a real-valued process 
t

X conforming to the bilinear model:  

1 2 2 11 1 1 1 1.... ....t t s t s P D t Ps D t t m t m t tX X X X b X e b X e e                 

t   under the assumptions on te , a sufficient condition  for its existence is given by: 

2 2 2 1          (3.41) 

Thus, the proof is established. 

 

 

3.11 Mixed Seasonal Autoregressive Integrated One-dimensional  Bilinear 

(MSARIODBL) time series model. 

We then define the mixed seasonal autoregressive integrated One-dimensional Bilinear 

Time Series Model (MSARIODBL) as follows:  

1 1
1

( ) ( ) ( )
m

s D d

t p t P s i t i t
i

B X B X B b X e 
 



                   (3.42)  
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where: 2

1 2
( ) ( )(1 ) 1 .... ,d p d

p d
B B B B B B     


       is the non-

seasonal autoregressive integrated operator. 

 ....1)1)(()( 2

21

DP

DP

Dss BBBBBB 

 is the seasonal 

autoregressive integrated operator. 

1i
b are the nonlinear one-dimensional bilinear components. 

The expanded form of equation (3.42) is written as: 

1 1 2 2 1 2 2

11 1 1 1 1

.... ....

       ....

t t t p d t p d t s t s P D t Ps D

t t m t m t t

X X X X X X X

b X e b X e e

  
         

   

       

   
      

(3.43) 

 

3.11.1 Vector form of the mixed seasonal autoregressive integrated one-dimensional 

bilinear time series model: 

In a similar manner, we shall express mixed seasonal autoregressive integrated one-

dimensional bilinear time series in the state space form as in Akaike (1974).  

Given: 

1 1 2 2 1 2 2

11 1 1 1 1

.... ....

         ....

t t t p d t p d t s t s P D t Ps D

t t m t m t t

X X X X X X X

b X e b X e e

  
         

   

       

   
     

(3.44) 

1 1 2 2 3 1 1 1 2 2 1

1 11 2 2 1 1 2 1

.... ....

             ....

t t t p d t p d t s t s

P D t Ps D t t m t m t t

X X X X X X

X b X e b X e e

  
          

         

       

    
 

2 1 3 2 4 2 1 2 2 2 2

2 11 3 3 1 1 3 2

.... ....

         ....

t t t p d t p d t s t s

P D t Ps D t t m t m t t

X X X X X X

X b X e b X e e

  
          

         

      

    
 

 

1 1 2 2 3 2 1 1 1 2 2 1

1 1 11 2 1 1 1 2 1

.... ....

           ....

t p t p t p p d t p d t s p t s p

P D p t Ps D p t p t p m t i m t p t p

X X X X X X

X b X e b X e e

  
               

                 

      

    
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Let us define the matrices: 

1 2 3 1 1 2 3 1
.... ....

1 0 0 .... 0 0 1 0 0 .... 0 0

 ,    ,  0 1 0 .... 0 0 0 1 0 .... 0 0

0 1 .... 0 0 0 1 .... 0 0

0 0 0 .... 1 0 0 0 0 .... 1 0

p p P D P D
    



   
       

   
   
     
   
   
   
   

 

and     

11 21 31 1
....

1 0 0 .... 0

0 1 0 0

.... 0

0 0 0 1

m

m m

b b b b

B 

 
 
 
 
 
 
 
 

 

and the vectors: 

1 2 1
1 1

( .... ),   (1 0 0 .... 0)t t t t p
p p

X X X X H   
 

  X and (1 0 0 .... 0) C
 

where    stands for the transpose of a matrix H,  

With these notations, (3.44) can be written in the vector form as: 

1 t-1 t-1 t
e Ce

t t t s


 
   X X X X       (3.45) 

Hence;     

 
t t

X H  X                   (3.46) 

 

 

3.11.2 Stationarity and convergence of the mixed seasonal autoregressive integrated 

one-dimensional bilinear time series model. 

In the same vein, following Rao et.al (1983) and Sangodoyin et al. (2010), a sufficient 

condition necessary for process satisfying the mixed seasonal one-dimensional bilinear model 

(3.45) to be stationary and convergent can be achieved via the proceeding theorem. 

Theorem: 

Given  ,
t

e t , a set of independent and identically distributed random variables defined on 
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the probability space  PF,,  such that; . 0
22

 σ)and E( e)E(e
tt

 

Let , ,   and   be matrices as defined above such that; 

2[( 2 ] 1            

And C be any vector with components          . Therefore, the series of random vectors 

1 i 1

( )
v

t i t v
v

e Ce
 

 

   

converges absolutely almost surely and also in the mean for all fixed t .  

On the other hand, if: 

1 1

( ) ,    
v

t t t i t v
v i

X Ce e Ce t
 

 

      

Then for every t , tX  is a strictly stationary process conforming to the mixed seasonal 

bilinear model: 

1 t-1 t-1 t
e Ce   

t t t s


 
   X X X X  

Conversely; 

If  ,
t

X t  is a stationary process conforming to the mixed seasonal bilinear model; 

1 t-1 t-1 t
e Ce   

t t t s


 
   X X X X  

  t  , for some sequences  ,
t

e t  of independent and identically distributed 

random variables with 0
t

E(e )  , 
2 2

t
E( e ) σ   and for the matrices , ,  B  and 

 C of respective orders                  and     with: 

2[( 2 ] 1            

Then, 

1 1

( ) ,    
v

t t t i t v
v i

X Ce e Ce
 

 

    t                (3.47) 

Proof: 

Similar to the procedures employed in the previous proof, we shall establish the proof as 

follows: 

Step 1: For almost sure convergence; 
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1 1

(  )          1,2,...,
v

i i t v
v j j

E e Ce i p
 

 

 
       

 
    (3.48) 

1 1

( )
v

t i t v
v i

e Ce
 

 

   absolutely converges almost surely and in the mean. 

Step 2: 

We establish (3.48) for i=1 and it should be noted that for all , 1t v  and 

1,2,...i p  

((  ) )
t i t v n

E e Ce
 

    

2

0
1 1 1

( ) ( ) ( )
p P m

n j j t v n j j t v n j j t v
j j j

E C e C e B c e k
  

  

        

 

Step 3: 

Similarly if    , hence there exists some      such that: 

1
( )

2

1
1 1

( )
v-v

t i t v
i

E e Ce k p 
 



     
 
      (3.49) 

However, it should be noted that:  

1

1 11 1

( ) ( ( )( )
v v

t i t v t i t i t v
i i

E e Ce E e e Ce  


    
 

                
   

1

1
1 1

                                               ( ( )) (( ) )
p v

t i n t i t v n
n i

E e e Ce 


  
 

       

 
1

1
1 1

                                               ( ( )) (( ) )
p v

t i n t i t v n
n i

E e E e Ce 


  
 

 
     

 
   

In the above step, we have used the fact that  
1

1

( )
v

t i
i

e





   and ( )
t i t v

e Ce
 

   are 

independently distributed. By step 2 and application of the Cauchy-Schwartz inequality, 

we have; 

 
1

1
1 1

  ( ( )) (( ) )
p v

t i n t i t v n
n i

E e E e Ce 


  
 

 
     

 
    

1
2 21

0
1 1 1

                                              ( ( )
p v

t i
n i n

k E e



 

        
   

   
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Now for any n=1,2,…,p 

2
1 1 1

1 ;1
1 1 11

( ( ) (( ( )) ( ( )))
v v v

t i t i t i n n
i i in

e e e  
  

  
  

            
  
    

1

1 ;1
1

( ( ) ( ))
v

t i t i n n
i

e e 


 


              (3.50) 

Hence; 

2
1 1

1 ;1
1 11

( ) ( ( ) ( ))
v v

t i t i t i n n
i in

E e E e e  
 

  
 

            
  
   

  1

1 ;1
(( [( ) ( )]) )v

t t n n
E e e        

2 1

1 ;1
(( [( 2 2 2 )]) )v

t t t n n
E e e e           

2 1 1

1 ;1
(( 2 ) )v v

n n
k                                      (3.51) 

Therefore; 

1
( )

2

1
1 1

( )
v-v

t i t v
i

E e Ce k p 
 



     
 
   for any suitable choice of   .  

Step 4: 

Since 1  , 

1 1

( )            1,2,...
v

t i t v
v i i

E e Ce i p
 

 

       
 

   

Thus (3.48) is proven. 

Then, it is evident that the vector-valued process  ,
t

X t  described as: 

1 1

( ) ,   
v

t t t i t v
v i

X Ce e Ce t
 

 

      is strictly stationary.  

Hence; 

2( 2 ) 1            

is the sufficient condition that the model is strictly stationary. 

This implies that if we desire a real-valued process
t

X satisfying the mixed seasonal 

autoregressive integrated one-dimensional bilinear model: 

ttmtmtt

DPstDPststdptdpttt

eeXbeXb

XXXXXXX









111111

2212211

....         

........ 
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t   under the assumptions on te , a sufficient condition for its existence is; 

2( 2 ) 1                (3.52) 

Thus, the proof is established. 

 

 

3.12 Pure seasonal autoregressive Integrated Moving Average one-dimensional 

Bilinear Time Series (PSARIMAODBL) Model. 

We then define the pure seasonal autoregressive integrated moving average one-

dimensional Bilinear Time Series Model (PSARIMAODBL) as follows: 

1 2 2 1 2 2

11 1 1 1 1

.... ...

       ....

t t s t s P D t Ps D t s t s

q t Qs t t i t i t t

X X X X e e

e b X e b X e e

      

    

       

    
      

(3.53) 

 

 

3.12.1 Vector form of the specified Pure Seasonal Autoregressive Integrated Moving 

Average One-Dimensional Bilinear Time Series (SARIMABL) Model. 

Similarly, we shall consider the vector form of the process due to the Markovian nature of 

the model. Akaike (1974). Therefore, given the process; 

1 2 2 1 2 2

11 1 1 1 1

.... ....

        ....

t t s t s P D t Ps D t s t s q t Qs

t t m t i t t

X X X X e e e

b X e b X e e

       

   

        

   
 

1 1 1 2 2 1 1 1 1 2 2 1

1 11 2 2 1 1 2 1

.... ....

            ....

t t s t s P D t Ps D t s t s

Q t Qs t t m t i t t

X X X X e e

e b X e b X e e

            

       

       

    

2 1 2 2 2 2 2 1 2 2 2 2

2 11 3 3 1 1 3 2

.... ....

           ....

t t s t s P D t Ps D t s t s

q t Qs t t m t i t t

X X X X e e

e b X e b X e e

            

       

       

    
 

 

1 1 1 2 2 1 1 1 1 1 2 2 1

1 11 2 1 1 1 2 1

.... ...

           ....

t p t s p t s p P D p t Ps D p t s p t s p

q t Qs p t p t p m t i p t p t p

X X X X e e

e b X e b X e e

                    

             

       

    
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Let: 

1 2 3 1 1 2 3 1
.... ....

1 0 0 .... 0 0 1 0 0 .... 0 0

,          , 0 1 0 .... 0 0 0 1 0 .... 0 0

0 1 .... 0 0 0 1 .... 0 0

0 0 0 .... 1 0 0 0 0 .... 1 0

P D P D Q Qs   
            
   
   
      
   
   
   
   

 

and 

11 21 31 1
....

1 0 0 .... 0

 0 1 0 0

.... 0

0 0 0 1

m

m m

b b b b

B 

 
 
 
 
 
 
 
 

 

And the vectors: ( .... ) 
1 2 1

1

X X X X
t t t t p

p

    


X , (1 0 0 .... 0)
1
H

p



 and (1 0 0 .... 0)C  . 

where 'H  is the transpose of H  and               With these notations, (3.53) can be 

expressed in the vector form as: 

           
t-s t-1 t-1 t

e e +Ce
t t s
  X X X                          (3.54)         3.54) 

 

 
t t

X H   X              (3.55) 

 

 

 

3.12.2  Stationarity and convergence of the Pure Seasonal Autoregressive Integrated 

Moving Average One-Dimensional Bilinear Time Series (PSARIMAODBL) 

Similarly, following Rao et al. (1983) and Sangodoyin et al. (2010), a sufficient condition 

necessary for the stochastic process conforming to the pure seasonal autoregressive integrated 

moving average one-dimensional bilinear model (3.53) can be achieved through the following 

theorem. 
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Theorem: 

Consider a sequence of independent and identically distributed random variables  ,
t

e t  

defined on the probability space  PF,, such that; . 0
22

 σ)and E( e)E(e
tt

 

Let ,    and   be matrices as defined above such that; 

2[( ( 2 )] 1        

And C be any column vector with components          . Hence; 

1 1

( )
w

t is t i t w
w i

e e Ce
  

 

    

converges absolutely almost surely and in the mean for every fixed t in .  

Moreover, if: 

1 i 1

( ) ,    
w

t t t is t i t w
w

X Ce e e Ce t
  

 

       

Then for all Zt , there exists a strictly stationary process tX  satisfying the pure seasonal 

autoregressive integrated moving average one-dimensional bilinear model:  

t-s t-1 t-1 t
e e Ce   

t t s
   X X X                        (3.54) 

Conversely; 

If  ,
t

X t  is a stationary process conforming to the mixed seasonal bilinear model 

t-s t-1 t-1 t
e e Ce   

t t s
   X X X  

  Zt , for some sequences  ,
t

e t  of independent and identically distributed 

random variables with 
22

0 σ) and E( e)E(e
tt

 and for matrices , ,B  and  C of 

orders              and     respectively with:  

2[( ( 2 )] 1        

Then; 

1 1

( ) ,    
w

t t t is t i t w
w i

X Ce e e Ce
  

 

     for every  t         (3.55) 
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Proof: 

Similar to the procedures employed in the previous proof, we shall establish the proof as 

follows: 

Step 1: To establish almost sure convergence condition, we prove that; 

1 1

( ) ,       1,2,...,
w

t is t i t w
w j j

E e e Ce i p
  

 

 
      

 
         (3.56) 

1 1

( )
w

t is t i t w
w i

e e Ce
  

 

    is absolutely convergent almost surely as well 

as in the mean. 

 

Step 2: 

We establish (3.56) for  =1 and it should be noted that  , 1t w   and 

1,2,...i p  

0
(( ) )

t is t i t w n
E e e Ce k

  
    

where    depends on , ,B,C  and 
2  

 

Step 3: 

Similarly if    , then there exists some      such that: 

1
( )

2

1
1 1

( )
w-w

t is t i t w
i

E e e Ce k 
  



     
 
  

However, it should be noted that:  

1 1

( )
w

t i t w
i

E e Ce
 



   
 
                                                      

1

1 1

( ( )( )
w

t i t i t w
i

E e e Ce


  


     
  
  

1

1
1 1

                                               ( ( )) (( ) )
p w

t i n t i t w n
n i

E e e Ce


  
 

       

 
1

1
1 1

                                                  ( ( )) (( ) )
p w

t i n t i t w n
n i

E e E e Ce


  
 

 
     

 
   
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In the above step, we have used the fact that  
1

1

( )
w

t i
i

e





   and 

( )
t i t w

e Ce
 

  are independently distributed. So, by step 2 and application of the 

Cauchy-Schwartz inequality, 

 
1

1
1 1

  ( ( )) (( ) )
p w

t i n t i t w n
n i

E e E e Ce


  
 

 
    

 
   is not greater 

than 

1
2 21

0
1 1 1

  ( ( )
p w

t i
n i n

k E e



 

       
   

   

Now for any n=1,2,…,p 

2
1 1 1

1 ;1
1 1 11

( ( ) (( ( )) ( ( )))
w w w

t i t i t i n n
i i in

e e e
  

  
  

           
  
     

 
1

1 ;1
1

( ( ) ( ))
w

t i t i n n
i

e e


 


           (3.57) 

Hence; 

2
1 1

1 ;1
1 11

( ) ( ( ) ( ))
w w

t i t i t i n n
i in

E e E e e
 

  
 

           
  
   

                                    1

1 ;1
(( [( ) ( )]) )w

t t n n
E e e       

2 1

1 ;1
(( [( 2 2 2 )]) )w

t t t n n
E e e e       

2 1 1

1 ;1
(( 2 ) )w m

n n
k                       (3.58) 

Therefore; 

1
( )

2

1
1 1

( )
w-w

t i t w
i

E e Ce k P
 



    
 
   for any suitable choice of   .  

Step 4: 

Since 1  , 

1 1

( )
w

t i t w
w i i

E e Ce
 

 

     
 

    1,2,...i p   

Thus (3.56) is established. 

It is then obvious that the vector-valued stochastic process; 
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1 1

( ) ,   
w

t t t i t w
w i

X Ce e Ce t
 

 

      is strictly stationary. 

Hence; 

2( 2 ) 1        

is a sufficient condition for strict stationarity of the model. 

 

Therefore, if we desire a real-valued process
t

X conforming to the mixed seasonal 

autoregressive integrated one-dimensional bilinear model: 

1 2 2 1 2 2

11 1 1 1 1

.... ....

        ....

t t s t s P D t Ps D t s t s

q t Qs t t m t i t t

X X X X e e

e b X e b X e e

      

    

       

    
 

t   under the stated assumptions on te , a necessary and sufficient condition for its 

existence is given by: 

2( 2 ) 1                (3.57) 

Thus, the proof is established. 

 

 

3.13 Mixed seasonal Autoregressive Integrated Moving Average One-Dimensional 

Bilinear (MSARIMAODBL) time series model. 

We define the Mixed Eeasonal Autoregressive Integrated Moving Average One-

Dimensional Bilinear Time Series Model (MSARIMAODBL) as follows:  

        

1 1 1 2 2 1 1

1 2 2 11 1 1 1 1

.... ....

      .... .... ....   (3.58)

t t p d t p d t s t s P D t Ps D t

q t q t s t s q t Qs t t m t i t t

X X X X X X e

e e e e b X e b X e e

  



         

       

       

         

                               

   

                      

3.13.1 Vector form of the MSARIMAODBL time series model. 

Similarly, we shall consider the state space form because of the Markovian nature of the 

model Akaike (1974).  
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Given:   

1 1 1 2 2 1 1

1 2 2 11 1 1 1 1

.... ....

   .... .... ....

t t p d t p d t s t s P D t Ps D t

q t q t s t s q t Qs t t m t i t t

X X X X X X e

e e e e b X e b X e e

  



         

       

       

         
 

1 1 2 2 3 1 1 1 2 2 1

1 1 2 2 3 1 1 1 2 2 1

1 11 2 2 1 1 2 1

.... ....

            .... ....

            ....

t t t p d t p d t s t s

P D t Ps D t t q t q t s t s

Q t Qs t t m t i t t

X X X X X X

X e e e e e

e b X e b X e e

  

  

          

           

       

       

       

    

 

2 1 3 2 4 2 1 2 2 2 2

2 1 3 2 4 2 1 2 2 2 2

2 11 3 3 1 1 3 2

.... ....

         .... ....

         ....

t t t p d t p d t s t s

P D t Ps D t t q t q t s t s

q t Qs t t m t i t t

X X X X X X

X e e e e e

e b X e b X e e

  

  

          

           

       

      

       

    

 

 

1 1 2 2 3 2 1 1 1 2 2 1

1 1 1 2 2 3 1 1 1

2 2 1 1 11 2

.... ....

           ....

          ....

t p t p t p p d t p d t s p t s p

P D p t Ps D p t p t p q t q p t s p

t s p q t Qs p t p t p

X X X X X X

X e e e e

e e b X e

  

  

               

                

        

      

     

   
1 1 1 2 1

....
m t i p t p t p

b X e e
       
  

 

 

Let the matrices: 

1 2 3 1 1 2 3 1

11 21 31 1

.... ....

1 0 0 .... 0 0 1 0 0 .... 0 0

,   ,   0 1 0 .... 0 0 0 1 0 .... 0 0

0 1 .... 0 0 0 1 .... 0 0

0 0 0 .... 1 0 0 0 0 .... 1 0

....

1 0 0 .... 0

0 1 0 0

.... 0

0 0 0 1

p p P D P D

m

m m

b b b b

B

    



   



       
   
   
     
   
   
   
   






 
 
 
 
 
 
 

 

1 2 3 1 1 2 3 1
.... ....

1 0 0 .... 0 0 1 0 0 .... 0 0

    and     0 1 0 .... 0 0 0 1 0 .... 0 0

0 1 .... 0 0 0 1 .... 0 0

0 0 0 .... 1 0 0 0 0 .... 1 0

q q Q Qs
    



 
       

   
   
     
   
   
   
   
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And the vectors: 

1 2 1
1 1

( .... ),   (1 0 0 .... 0)t t t t p
p p

X X X X H   
 

  X
and

(1 0 0 .... 0) C
where    denotes for the transpose of a matrix H,     

           

Therefore, (3.58) in the state space form is: 

1 t-1 t-s t-1 t-1 t
e e e Ce

t t t s
 

 
     X X X X       (3.59) 

Hence; 

 
t t

X H  X                    (3.60) 

 

 

3.13.2   Stationarity and convergence of the mixed seasonal autoregressive Integrated  

Moving Average one-dimensional Bilinear Time Series model.  

As in the previous sections, following Rao et al. (1983) and Sangodoyin et al. (2010), a 

sufficient condition necessary for the existence of strictly stationary process and 

convergence conforming to the mixed seasonal autoregressive integrated moving average 

one-dimensional bilinear time series model can be achieved through the following 

theorem. 

 

Theorem: 

Let  ,
t

e t be a sequence of independent and identically distributed random variables 

defined on the probability space  PF,,  such that; 0
t

E(e )   and 
2 2

t
 E( e ) σ    

Let , , ,     and   be matrices as defined above such that; 

2 1
[( 2 2 (

2

1
)] 1

2

      



       

   

 

And C, any column vector with components          . Then, the vectors; 

r

1 i 1

(  )
t i t is t i t r

r

e e e Ce 
   

 

      
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would converge absolutely almost surely and in the mean for all fixed t in .  

Moreover, suppose: 

r

1 i 1

( ) ,    
t t t i t is t i t r

r

X Ce e e e Ce t 
   

 

        

Then for every t , tX  is a strictly stationary process conforming to the mixed seasonal 

bilinear model: 

1 t-1 t-s t-1 t-1 t
e e e Ce   

t t t s
 

 
     X X X X  

Conversely; 

If  ZtX t ,  is a stationary process conforming to the mixed seasonal bilinear model 

1 t-1 t-s t-1 t-1 t
e e e Ce   

t t t s
 

 
     X X X X  

  Zt , for some sequences  ,
t

e t  of independent and identically distributed 

random variables with 
22

0 σ) and E( e)E(e
tt  and for some matrices 

, , , ,  B   and  C of orders                      and     

respectively with   

2 1
[( 2 2 (

2

1
)] 1 

2

      



       

   

     

(3.61) 

Proof: 

Similar to the procedures employed in the previous proof, we shall establish the proof via 

the succeeding steps: 

Step 1: For almost sure convergence, we prove that; 

1 1

( ) ,      1,2,...,  
x

t i t is t i t x
x i j

E e e e Ce i p 
   

 

         
 

         (3.62) 

1 1

( )
x

t i t is t i t x
x i

e e e Ce 
   

 

      is absolutely convergent almost surely as 

well as in the mean. 
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Step 2: 

We establish (3.62) for  =1 and  , 1t x   and 1,2,...i p , we have; 

0
(( ) )

t i t is t i t x n
E e e e Ce k 

   
      

where    is a function of   , , ,B,C   and 
2  

 

Step 3: 

Similarly if    , then there exists some      such that: 

1
( )

2

1
1 1

( )
x-x

t i t is t i t x
i

E e e e Ce k  
   



       
 
  

However, it should be noted that:  

1 1

( )
x

t i t is t i t x
i

E e e e Ce 
   



      
 
             

1

1 1

( ( )( )
x

t i t is t i t i t is t i t x
i

E e e e e e e Ce   


      


         
  


1

1
1 1

( ( )) (( ) )
p x

t i t is t i n t i t is t i t x n
n i

E e e e e e e Ce   


      
 

         

 
1

1
1 1

 ( ( )) (( ) )
p x

t i t is t i n t i t is t i t x n
n i

E e e e E e e e Ce   


      
 

 
         

 
   

In the above step, we have used the fact that;
1

1

( )
x

t i t is t i
i

e e e 


  


     and 

( )
t i t is t i t x

e e e Ce 
   

    are independently distributed.  

 

Therefore by step 2 and the Cauchy-Schwartz inequality, 

 
1

1
1 1

  ( ( )) (( ) )
p x

t i t is t i n t i t is t i t x n
n i

E e e e E e e e Ce   


      
 

 
         

 
   is not 

greater than;  

1
2 21

0
1 1 1

  ( ( )
p x

t i t is t i
n i n

k E e e e 


  
 

          
   

   

Now for any n=1,2,…,p 
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2
1

1 1

( ( )
x

t i t is t i
i n

e e e 


  


        
  
  

1 1

1 ;1
1 1

(( ( )) ( ( )))
x x

t i t is t i t i t is t i n n
i i

e e e e e e   
 

     
 

          
1

1 ;1
1

( ( ) ( ))
x

t i t is t i t i t is t i n n
i

e e e e e e   


     


                    (3.63) 

Hence; 

2
1

1 1

( )
x

t i t is t i
i n

E e e e 


  


        
  


1

1 ;1
1

( ( ) ( ))
x

t i t is t i t i t is t i n n
i

E e e e e e e   


     


         
1

1 ;1
(( [( ) ( )]) )x

t i t is t t i t is t n n
E e e e e e e    

   
         

2 2 2

2 2 1

1 ;1

(( [( 2 2 2 2

2 2 2 2 2

2 )]) )

t t t

t t t t t t

x

t t n n

E e e e

e e e e e e

e e

      

  


          

          

  

2

1 1

1 ;1

1
(( 2 2 (

2

1
)) )

2

x x

n n
k

     

 

        

  

 

Therefore; 

1
( )

2

1
1 1

( )
x-x

t i t is t i t x
i

E e e e Ce k p  
   



       
 
  

for any suitable choice of   .  

Step 4: 

Since 1  , 

1 1

( )
x

t i t is t i t x
x i i

E e e e Ce 
   

 

       
 

    1,2,...i p   

Thus (3.62) is established. 

It is then obvious that the vector-valued stochastic process  ,
t

X t  defined by: 

1 1

( ) ,   
x

t t t i t is t i t x
x i

X Ce e e e Ce t 
   

 

        



76 
 

is strictly stationary.  

Hence; 

2 1
(( 2 2 (

2

1
     )) 1

2

      



       

   

 

is a sufficient and necessary condition for strict stationarity of the mixed SARIMA 

bilinear model. 

So, if we desire a real-valued process
t

X conforming to the mixed seasonal autoregressive 

integrated one-dimensional bilinear model: 
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t   under the assumptions on te , a sufficient condition for its existence is given by: 
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(( 2 2 (

2
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     )) 1                                                                     (3.64)            

2

      



       

   

 

Thus, the proof is established. 

 

3.14  Estimation of parameters of the mixed seasonal autoregressive integrated  

moving average one-dimensional bilinear time series model. 

Due to the fact that the process of parameter estimation of the models is similar to that of 

the full model, we shall report the estimation of the parameters of the one-dimensional 

case for the mixed seasonal autoregressive integrated moving average model. Suppose that  

   are generated by equation (3.58), the sequence of random deviates {     could be 

determined from the relation: 
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To estimate the unknown parameters we shall minimize the error by obtaining the first and 

second order partial derivatives of (3.65) with respect to the individual parameters; 

1 2 1 1 2 1 2
, .... ;  ,  .... ;   ,  .... ;  

p P D q
     

 
     

1 2
, ....

Q
   and 

1i
b as follows: 

1

1
1 1 1

q Q m
t t i t is t

t i i i i t i
i i i

i i i i

e e e e
X b X

   
  

 
  

   
     

   
                (3.66) 

1

1 1
1 1 1

 
q Q m

t t i t s t

t is i i i t
i i i

i i i i

e e e e
X b X   

 
  

   
     

   
           (3.67) 

1

1 1
1 1

Q m
t t is t

t i i i t
i i

i i i

e e e
e b X

  
 

 
 

  
    

  
                        (3.68) 

1

1
1 1

q m
t t i t

t is i i t i
i i

i i i

e e e
e b X  

 
 

  
   

  
                     (3.69) 

1

1 1
1 1

1 1 1 1

 
q Q

t t i t s t

t i t i i i t i
i i

i i i i

e e e e
X e b X

b b b b
   

  
 

   
     

   
                  (3.70) 

  And the second derivatives; 
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Proceeding as in Subba Rao (1981), we can note that maximizing the likelihood function 

of                  is the same as minimizing the function; 

          
 

 

   

 

The first and second-order derivatives of      are solved to obtain the components of: 
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When minimising V( )  with respect to  , the normal equations are non-linear in  . The 

solutions of these equations require the application of Newton Raphson algorithm which 

iterative equation is given as follows: 

1

1
( ) ( ) 

k k k k
H G   


                    (3.88) 

And can be adopted to obtain the (k+1)
th

 iteration 
1

ˆ( )
k



 of the estimates from the k

th
 

estimate ˆ( )
k
 . 

By the iterative equations (3.88) which usually converge, the estimates shall be obtained 

with a good set of initial values of the parameters. This can be achieved by fitting the best 

full seasonal autoregressive moving average bilinear model. 

 

3.15   Implication of estimation technique 

Bearing in mind that a nonseasonal bilinear time series model is generally denoted by 

            while the pure seasonal form is denoted by             . These have 

been examined in existing literature. For example, Chikezie (2007) worked on the pure 

seasonal              at   =1, 2, 3, 4, 6 and 12 with simulated data illustration. This 

study however, has extended this to              using both real-life and simulated data 

and further to the mixed seasonal one-dimensional bilinear                     time 

series model with numerical application using both real-life and simulated data. 

 

3.16 Criteria for selecting optimum models 

Residual variance 

In statistical analysis, the residual of an observed value is defined as the difference 

between the observed value and the estimated value of the quantity of interest (for 

example, a sample mean). Residual variance on the otherhand, also known as unexplained 

variance is that part of the variation which cannot be attributed to specific causes. It can 

generally be grouped into two. That is, the part related to random, everyday, free-will 

differences in a population or sample and the part that emanates from some un-identified 
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systematic conditions. The latter gives rise to a bias and if not detected would result in a 

false conclusion. 

Akaike's Information Criterion (AIC) 

Given several statistical models, the Akaike’s information criterion (AIC) compares the 

quality of a set of models with each other and ranks them from best to worst. The “best” or 

“optimum” model will be the one that neither under-fits nor over-fits the model. So, it best 

represents the model. It is a weighted estimation error based on the unexplained variation 

of a given time series with a penalty term when the optimal number of parameters to 

represent the system is exceeded. It was developed by Hirotsugu Akaike (1970) and 

proposed in Akaike (1974). In general; 

2 2ln( )AIC k L                     (3.89) 

where k is number of parameters and L represents the likelihood function. 

The errors are usually assumed to be normally and independently distributed. If n is the 

number of observations and RSS is the residual sum of squares, then the AIC is given by: 

2 ln( )
RSS

AIC k n
n

                     (3.90) 

Increasing the number of free parameters usually results in better goodness of fit 

irrespective of the number of free parameters in the data generating process. Therefore, it 

does not encourage overfitting of parameters and it is often recommended as criterion for 

comparing models in time series forecasting. 

The optimum model is the one with the minimum value of AIC. However, AIC won’t say 

anything about absolute quality. That is, if all of our models are poor, it will choose the 

best of the bad bunch. Therefore in model selection, we consider carrying out a hypothesis 

test to identify the relationship between the variables of the model and the outcome of 

interest.  
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The Bayesian Information Criterion  

The Bayesian Information Criterion (BIC) or Schwartz criterion proposed by Schwartz 

(1978) is another criterion used in selecting an optimum model among a finite set of 

models. It is defined by the formula: 

2ln ln( )
( )

L k n
BIC

n

 
             (3.91) 

where    the number of observations 

              number of free parameters to be estimated  

              maximized the likelihood function for the estimated model. 

When the model errors are assumed to be normally distributed, the BIC becomes: 

ln
ln( ) ( )

RSS n
BIC k

n n
                  (3.92) 

Just as it was said concerning the AIC, a model with a lower BIC is preferred when 

comparing two different models. However, the BIC penalizes free parameters more 

strongly than the AIC. 

 

 

3.17 Monte Carlo simulation technique 

The Monte Carlo approach is a process of deducing conclusions from simulated data. It 

involves generating free data sets with the aid of computerized mathematical technique, 

and then stating the values for all independent variables and the parameters. Values are 

then generated for the error terms for specified sample sizes. With these values, estimates 

are then calculated for the dependent variable at each sample point. The experiments are 

then repeated as many times as desired. This is referred to as replications, thereby the 

experimenter obtains a large number of estimates from the replication. According to 

Kennedy (1998), there are four stages in a Monte Carlo study namely; 

(i)    Constructing a model of data generating process 

(ii)   Creation of sets of data 

(iii)  Using estimator with the artificial data sets in estimating the model parameters. 

(v)   Analysis of results. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1    Exploratory Data Analysis (EDA):  

Monthly Meteorological Rainfall data from 1984 to 2016 recorded in Lagos were obtained 

from the Nigerian Meteorological Agency (NMA). The data were subjected to 

Exploratory Data Analysis (EDA) via time plot, ACF plot, PACF plot, Density curve plot, 

Seasonal trend plot and the Normal QQ plot. For the purpose of In-sample forecast, we 

used the monthly data from 1984 to 2014 (amounting to 372 monthly data points) which 

also serves as Out-sample forecast if 2015 and 2016 data are not available and we have 

considered the specified models at different length/period of seasons (s=1,2,3,4,6 and 12). 

The results are as follows.    

 

4.1.1 Time plot of the monthly rainfall between 1984-2014 

It can be inferred from figure 4.1 that there is spurious differences among the monthly 

rainfall recorded within the thirty-one years due to non-predictable amount of downpour 

in the so called seasons. Also, it is to be noted that higher, constant and predictable 

downpour were experienced in Junes of the last 10 years (i.e, Junes of 2005 to 2014) while 

it varies from 1984 to 2004 but recorded the highest measured in June 1988 followed by 

June 1990. It can also be deduced visually that there exists non-constant, non-predictable 

measure of rainfall in each month and the same month succeeding year.                
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Figure 4.1: Time plot of the monthly rainfall measured in Lagos between 1984-2014. 
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4.1.2 Descriptive Statistics 

From table 4.1, it is shown clearly that the Skewness of the measured rainfall data is 

positively skewed and less than three (<3) which suggested that it is within the scope of 

normality. That is, the area under the normality curve should be approximately equal 1. 

Furthermore, the kurtosis of positive 1.640177 suggested it is not heavily tailed from the 

normal curve as indicated in the modals Density curve in Figure 4.2.   
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Table 4.1: Major descriptive statistics. 

Minimum 1st Quarter   Median Mean 3rd Quarter     Maximum 

0.00 40.05 106.80 128.40 188.40 619.50 

Skewness= 1.202361 

kurtosis= 1.640177 
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Figure 4.2: Modals Density curve  
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4.1.3 Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) 

The ACF and PACF of the original data {Xt}, t =1, 2, ... , 372, are as shown in Figure 4.3 

and Figure4.4. They both show a seasonal fluctuation. Concentrating on the ACF of the 

original data, we note a slow decreasing trend in the ACF and it peaks at seasonal lags, h = 

1s, 2s, 3s, 4s, where s = 12. This indicates a nonstationary behaviour and suggests a 

seasonal difference (Wang, 2008; Momani and Naill, 2009). 
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Figure 4.3 ACF plot for the rainfall data 
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Figure 4.4: PACF for the rainfall data 
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4.1.4: The normal QQ plot 

Looking at the Normal QQ plot in figure 4.5, the points fall along a line in the middle of 

the graph, but curve off in the extremities. This shows that the data have more extreme 

values than would be expected and hence truly came from a Normal distribution. 
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Figure 4.5: Normal QQ plot 
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4.2    Seasonality test (Hegy Test) 

The famous HEGY test is carried out to test the seasonality effect because of the 

aforementioned seasonal pattern noticed in Figure 4.3.  

Hypothesis: 

H0: πi = 0 

H1: πi   0 

Level of significance,   = 0.05 

Test statistic: The testing procedure for seasonal unit roots involves estimating via OLS 

the following regression: 

 

 

Decision: Since the calculated value 0.0105 < 0.05, we reject the null hypothesis 

Conclusion: the monthly seasonal effect reveals that seasonal effect is present. Hence, 

seasonal effect is present in the meteorological rainfall measured for the years considered. 

 

4.3    Keenan’s Nonlinearity test.   

The Keenan’s (1985) Nonlinearity test was carried out and the result is as follows. 

Hypotheses: 
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Test Results:  

  Test statistic = 9.0113  

  Critical value =  2.80615  
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 

  

         
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Decision: since the test statistic value (9.0113) is > the critical value (2.80615), we do not 

accept the null hypothesis. 

Conclusion: the series is nonlinear. 

 

 

 4.4   Fitted pure seasonal autoregressive integrated models  

Here, we first fitted different models with different orders of  , for the linear Pure 

seasonal Autoregressive integrated time series at the different length of seasons 

(s=1,2,3,4,6 and 12). Optimum models are selected based on the Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC), as well as the residual variances. 

Model with minimum AIC, BIC and residual variance is the optimum model in each case. 

They are (0,0,0)(3,2,0)1, (0,0,0)(3,2,0)2, (0,0,0)(3,2,0)3, (0,0,0)(3,2,0)4, (0,0,0)(3,2,0)6 and 

(0,0,0)(3,2,0)12 as shown in table 4.2 and table 4.3. This shows that optimum models are 

obtained when the seasonal order   =3 in each case. 
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Table 4.2: Fitted pure seasonal autoregressive integrated models. 

s/n MODEL AIC BIC Residual variance 

1 (0,0,0)(1,2,0)1 11.30858 10.31911 25.4513 

2 (0,0,0)(2,2,0)1 11.08261 10.10368 25.1056 

3 (0,0,0)(3,2,0)1 10.94843 9.980037 25.0034 

4 (0,0,0)(4,2,0)1 11.87543 10.56843 25.67432 

1 (0,0,0)(1,2,0)2 11.58023 10.59077 25.6724 

2 (0,0,0)(2,2,0)2 11.45904 10.48011 24.8903 

3 (0,0,0)(3,2,0)2 11.36895 10.40056 24.3702 

4 (0,0,0)(4,2,0)2 11.88665 10.76540 25.7543 

1 (0,0,0)(1,2,0)3 11.85232 10.86285 25.9856 

2 (0,0,0)(2,2,0)3 11.65839 10.67946 25.7805 

3 (0,0,0)(3,2,0)3 10.850004 9.881645 24.6045 

4 (0,0,0)(4,2,0)3 11.92346 10.99854 26.0852 

1 (0,0,0)(1,2,0)4 12.00422 11.01476 26.29220 

2 (0,0,0)(2,2,0)4 10.92725 9.94832 24.2516 

3 (0,0,0)(3,2,0)4 10.70965 9.741258 24.1784 

4 (0,0,0)(4,2,0)4 12.3462 11.7632 26.6378 

1 (0,0,0)(1,2,0)6 11.04643 10.05696 24.8044 

2 (0,0,0)(2,2,0)6 10.93671 9.957778 24.1034 

3 (0,0,0)(3,2,0)6 10.56727 9.598878 24.0087 

4 (0,0,0)(4,2,0)6 11.65832 10.37559 24.9348 

1 (0,0,0)(1,2,0)12 10.95411 9.964642 24.3171 

2 (0,0,0)(2,2,0)12 10.52465 9.54572 23.9995 

3 (0,0,0)(3,2,0)12 10.38454 9.416143 23.6734 

4 (0,0,0)(4,2,0)12 10.87652 10.21784 24.6372 
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The parameters of each of these optimum models are then estimated as follows. 

Fitted Pure Seasonal autoregressive Integrated model at s=1:         

1 1 2 2 3 3
ˆ

t t t t
X X X X

  
    

where  
1          

2           3                

AIC=10.94843,  

BIC=9.980037 

Residual Variance = 25.0034 

 

Fitted Pure Seasonal autoregressive Integrated model at s=2:   

1 2 2 4 3 6
ˆ

t t t t
X X X X

  
    

1             
2             3                  

AIC=11.36895 

BIC=10.40056 

Residual Variance = 24.3702 

Fitted Pure Seasonal autoregressive Integrated model at s=3: 

1 3 2 6 3 9
ˆ

t t t t
X X X X

  
    

1             2             3                  

AIC=10.85004 

BIC=9.881645 

Residual Variance = 24.6045 

Fitted Pure Seasonal autoregressive Integrated model at s=4: 

1 4 2 8 3 12
ˆ

t t t t
X X X X

  
    

1          2           3          

AIC= 10.70965 

BIC= 9.741258 

Residual Variance = 24.1784 
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Fitted Pure Seasonal autoregressive Integrated model at s=6: 

1 6 2 12 3 18
ˆ

t t t t
X X X X

  
    

1             
2            3          

AIC= 10.56727 

BIC= 9.598878 

Residual Variance = 24.0087 

   Fitted Pure Seasonal autoregressive Integrated model at s=12: 

1 12 2 24 3 36
ˆ

t t t t
X X X X

  
    

1           
2           3           

AIC= 10.38454 

BIC= 9.416143 

Residual Variance = 23.6734 
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Table 4.3: Fitted optimum pure seasonal autoregressive integrated models 

S/N Model AIC BIC Residual variance 

1 (0,0,0)(3,2,0)1 10.94843 9.980037 25.0034 

2 (0,0,0)(3,2,0)2 11.36895 10.40056 24.3702 

3 (0,0,0)(3,2,0)3 10.850004 9.881645 24.6045 

4 (0,0,0)(3,2,0)4 10.70965 9.741258 24.1784 

5 (0,0,0)(3,2,0)6 10.56727 9.598878 24.0087 

6 (0,0,0)(3,2,0)12 10.38454 9.416143 23.6734 
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4.5 Fitted Pure Seasonal Autoregressive Integrated One-Dimensional 

Bilinear Models (Order one) 

The nonlinear parameters of the model are estimated as follows. 

Fitted pure Seasonal autoregressive integrated bilinear model of order one at s=1.         

1 1 2 2 3 3 11 1 1
ˆ

t t t t t t
X X X X b X 

    
     

1          
2           3           11b             

AIC= 9.7823,  

BIC= 8.5624 

Residual Variance = 0.00947 

Fitted Pure Seasonal autoregressive integrated bilinear model of order one at s=2:         

1 2 2 4 3 6 11 1 1
ˆ

t t t t t t
X X X X b X 

    
     

1             
2             3           11b               

AIC= 10.8023,  

BIC= 9.9025, 

Residual Variance = 0.01047 

Fitted pure Seasonal autoregressive integrated bilinear model of order one at s=3:         

1 3 2 6 3 9 11 1 1
ˆ

t t t t t t
X X X X b X 

    
     

1             
2             3           11b          

AIC= 9.8296,  

BIC= 8.9032, 

Residual Variance = 0.06241 

Fitted Seasonal autoregressive integrated bilinear model of order one at s=4:         

1 4 2 8 3 12 11 1 1
ˆ

t t t t t t
X X X X b X 

    
     

1          2           3          11b          

AIC= 10.3892,  

BIC= 9.5369, 

Residual Variance = 0.089241 
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Fitted Pure Seasonal autoregressive integrated bilinear model of order one at s=6:     

1 1 2 12 3 18 11 1 1
ˆ

t t t t t t
X X X X b X 

    
     

1             
2            3          11b               

    AIC= 9.9578,  

 BIC= 8.8034 

     Residual Variance = 0.097241 

Fitted Seasonal autoregressive integrated bilinear model of order one at s=12:         

1 12 2 24 3 36 11 1 1
ˆ

t t t t t t
X X X X b X 

    
     

1           
2           3          11b                 

    AIC= 9.99478,  

 BIC= 8.9652 

    Residual Variance = 0.097241 
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From table 4.4, it is observed that the least AIC, BIC and residual variance with respective 

values 9.7823, 8.5624 and 0.00947 are obtained when the length of season     (in bold 

print). This means that the model, (0,0,0)(3,2,0,1,1)1 performs best while the model 

(0,0,0)(3,2,0,1,1)2 with the highest AIC value of 10.8023, BIC value of 9.9025 and residual 

variance 0.01047 performs most poorly among the estimated models. 
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Table 4.4: Fitted optimum pure seasonal autoregressive integrated one- 

   dimensional bilinear models (Order one) 

S/N Model AIC BIC Residual variance 

1 (0,0,0)(3,2,0,1,1)1 9.7823 8.5624 0.00947 

2 (0,0,0)(3,2,0,1,1)2 10.8023 9.9025 0.01047 

3 (0,0,0)(3,2,0,1,1)3 9.8296 8.9032 0.06241 

4 (0,0,0)(3,2,0,1,1)4 10.3892 9.5369 0.089241 

5 (0,0,0)(3,2,0,1,1)6 9.9578 8.8034 0.097241 

6 (0,0,0)(3,2,0,1,1)12 9.99478 8.9652 0.127241 
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4.6 Fitted MIXED Seasonal Autoregressive Integrated models 

Similarly, the linear Mixed Seasonal Autoregressive Integrated models are fitted at 

different orders of the non-seasonal parameter, p and the seasonal parameter P at the 

different length of seasons (s = 1, 2, 3, 4, 6 and 12). Optimum models are selected based 

on the Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), as well as 

the residual variances. Model with minimum AIC, BIC and residual variance is the 

optimum model in each case. They are (2,0,0)(3,2,0)1, (3,0,0)(3,2,0)2, (3,0,0)(3,2,0)3, 

(1,0,0)(3,2,0)4, (3,0,0)(3,2,0)6 and (2,0,0)(2,2,0)12 as printed in bold figures in table 4.5 and 

presented in table 4.6. 
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Table 4.5: Mixed seasonal autoregressive integrated models are fitted at different orders p 

and P. 

s/n MODEL AIC BIC Residual variance 

1 (1,0,0)(1,2,0)1 11.21465 10.23572 23.023 

2 (2,0,0)(1,2,0)1 10.94843 9.980038 22.2064 

3 (3,0,0)(1,2,0)1 10.9167 9.95884 22.2001 

4 (1,0,0)(2,2,0)1 10.94843 9.980038 22.2202 

5 (2,0,0)(2,2,0)1 10.97537 10.01751 22.2223 

6 (3,0,0)(2,2,0)1 10.88026 9.932929 22.2209 

7 (1,0,0)(3,2,0)1 10.9167 9.95884 22.20008 

8 (2,0,0)(3,2,0)1 10.88026 9.932929 22.0145 

9 (3,0,0)(3,2,0)1 10.89343 9.956636 22.0195 

1 (1,0,0)(1,2,0)2 11.52478 10.54585 25.0891 

2 (2,0,0)(1,2,0)2 11.42977 10.46137 25.894 

3 (3,0,0)(1,2,0)2 11.42062 10.46276 25.0035 

4 (1,0,0)(2,2,0)2 11.3443 10.37591 24.8927 

5 (2,0,0)(2,2,0)2 11.30734 10.34948 24.6729 

6 (3,0,0)(2,2,0)2 11.21947 10.27215 24.6060 

7 (1,0,0)(3,2,0)2 11.21602 10.25816 24.2461 

8 (2,0,0)(3,2,0)2 11.20385 10.25652 24.2441 

9 (3,0,0)(3,2,0)2 11.19589 10.2591 24.1074 

10 (4,0,0)(3,2,0)2 11.75678 10.3623 24.3212 

1 (1,0,0)(1,2,0)3 11.21465 10.23572 26.5789 

2 (2,0,0)(1,2,0)3 11.66298 10.69459 27.36048 

3 (3,0,0)(1,2,0)3 11.57961 10.62175 26.7803 

4 (1,0,0)(2,2,0)3 11.48644 10.51805 26.5389 

5 (2,0,0)(2,2,0)3 11.48316 10.5253 26.5050 

6 (3,0,0)(2,2,0)3 10.85683 9.909505 23.070 

7 (1,0,0)(3,2,0)3 10.83393 9.87607 23.0450 

8 (2,0,0)(3,2,0)3 10.83579 9.888459 23.0089 

9 (3,0,0)(3,2,0)3 10.62372 9.68693 22.8999 
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10 (4,0,0)(3,2,0)3 10.99674 9.87652 23.0075 

1 (1,0,0)(1,2,0)4 11.77003 10.7911 26.6292 

2 (2,0,0)(1,2,0)4 11.77457 10.80617 26.7805 

3 (3,0,0)(1,2,0)4 11.75334 10.79548 26.6111 

4 (1,0,0)(2,2,0)4 10.92394 9.95554 25.3901 

5 (2,0,0)(2,2,0)4 10.92913 9.971267 25.3930 

6 (3,0,0)(2,2,0)4 10.9345 9.987172 25.3938 

7 (1,0,0)(3,2,0)4 10.70556 9.747698 24.1110 

8 (2,0,0)(3,2,0)4 10.70973 9.762399 24.1779 

9 (3,0,0)(3,2,0)4 10.71502 9.778229 24.1787 

1 (1,0,0)(1,2,0)6 11.04854 10.0696 25.0780 

2 (2,0,0)(1,2,0)6 11.05081 10.08241 25.0698 

3 (3,0,0)(1,2,0)6 11.05591 10.09805 25.0728 

4 (1,0,0)(2,2,0)6 10.93478 9.966379 24.7834 

5 (2,0,0)(2,2,0)6 10.93799 9.980128 24.7888 

6 (3,0,0)(2,2,0)6 10.94314 9.995814 24.7890 

7 (1,0,0)(3,2,0)6 10.65797 9.610109 25.8008 

8 (2,0,0)(3,2,0)6 10.76969 9.622367 25.8008 

9 (3,0,0)(3,2,0)6 10.5957 9.637975 25.8019 

10 (4,0,0)(3,2,0)6 10.7890 9.837626 25.9452 

1 (1,0,0)(1,2,0)12 10.95872 9.97979 25.8013 

2 (2,0,0)(1,2,0)12 10.95562 9.987229 25.5723 

3 (3,0,0)(1,2,0)12 10.96085 10.00299 25.5745 

4 (1,0,0)(2,2,0)12 10.93478 9.966379 24.7834 

5 (2,0,0)(2,2,0)12 10.52747 9.569606 25.1490 

6 (3,0,0)(2,2,0)12 10.52802 9.580692 25.1495 

7 (1,0,0)(3,2,0)12 11.39911 10.441252 25.1089 

8 (2,0,0)(3,2,0)12 11.39293 10.445602 25.1066 

9 (3,0,0)(3,2,0)12 11.39531 10.458516 25.1202 
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The parameters of the optimum models at the different length of seasons are estimated as 

follows. 

Fitted Mixed Seasonal autoregressive integrated model at s=1:         

1 1 2 2 1 1 2 2 3 3
ˆ

t t t t t t
X X X X X X 

    
      

1          
2          

1          
2              

3               

AIC=10.88026,  

BIC=9.932929 

Residual Variance = 22.0145 

Fitted Mixed Seasonal autoregressive integrated model at s=2:         

1 1 2 2 3 3 1 2 2 4 3 6
ˆ

t t t t t t t
X X X X X X X  

     
       

1         2          3         1          
2              

3           

AIC=11.19589,  

BIC=10.2591 

Residual Variance = 24.1074 

Fitted Mixed Seasonal autoregressive integrated model at s=3:         

1 1 2 2 3 3 1 3 2 6 3 9
ˆ

t t t t t t t
X X X X X X X  

     
       

1         2          3          1             

2              

3               

AIC=10.62372,  

BIC=9.68693 

Residual Variance = 22.8999 

Fitted Mixed Seasonal autoregressive integrated model at s=4:         

1 1 1 4 2 8 3 12
ˆ

t t t t t
X X X X X

   
     
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1         
1          

2           3               

AIC=10.70556,  

BIC=9.740698, 

Residual Variance = 24.1110 

Fitted Mixed Seasonal autoregressive integrated model at s=6:         

1 1 2 2 3 3 1 6 2 12 3 18
ˆ

t t t t t t t
X X X X X X X  

     
       

1         2          3          1             

2           3           

AIC=10.5957,  

BIC=9.637975, 

Residual Variance = 25.8019 

Fitted Mixed Seasonal autoregressive integrated model at s=12:         

1 1 2 2 1 12 2 24
ˆ

t t t t t
X X X X X 

   
     

1              2               1          2         

AIC=10.52747,  

BIC=9.569606 

Residual Variance = 25.1490 
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Table 4.6: Optimum mixed seasonal autoregressive integrated models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s/n MODEL AIC BIC Residual variance 

1 (2,0,0)(3,2,0)1 10.88026 9.932929 22.0145 

2 (3,0,0)(3,2,0)2 11.19589 10.2591 24.1074 

3 (3,0,0)(3,2,0)3 10.62372 9.68693 22.8999 

4 (1,0,0)(3,2,0)4 10.70556 9.740698 24.1110 

5 (3,0,0)(3,2,0)6 10.5957 9.637975 25.8019 

6 (2,0,0)(2,2,0)12 10.52747 9.569606 25.1490 
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4.7 Fitted Mixed Seasonal Autoregressive Integrated One-dimensional Bilinear 

Models (Order one) 

The initial parameters obtained from the linear mixed seasonal autoregressive integrated 

models above are then used as initial parameters for fitting the nonlinear bilinear models 

in table 4.7 and the parameters of the fitted model are as presented as follows. 

The parameters of the mixed SARI one-dimensional bilinear models are estimated as 

follows: 

Fitted Mixed Seasonal autoregressive integrated bilinear model of order one at s=1:      

   
1 1 2 2 1 1 2 2 3 3 11 1 1

ˆ
t t t t t t t t

X X X X X X b X  
      

       

 
1          2          1          

2             

3           .10070b11 
 

AIC= 7.0064,  

BIC= 6.6015 

Residual Variance = 0.000893 

Fitted Mixed Seasonal autoregressive integrated bilinear model of order one at s=2:      

1 1 2 2 3 3 1 2 2 4 3 6 11 1 1
ˆ

t t t t t t t t t
X X X X X X X b X   

       
      

1  

       2          3         1          
2             

3           11b          

AIC= 9.2019,  

BIC=8.8052 

Residual Variance = 0.00563 

Fitted Mixed Seasonal autoregressive integrated bilinear model of order one at s=3:        

1 1 2 2 3 3 1 3 2 6 3 9 11 1 1
ˆ

t t t t t t t t t
X X X X X X X b X   

       
      

1  

       2          3          1          2            

3           11b          

AIC= 8.6201,  
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BIC=7.8062 

Residual Variance = 0.02289 

Fitted Mixed Seasonal autoregressive integrated bilinear model of order one at s=4:        

 
1 1 1 4 2 8 3 12 11 1 1

ˆ
t t t t t t t

X X X X X b X 
     

      

1         
1          

2           3             

11b         

AIC= 7.9876 

BIC=6.9011 

Residual Variance = 0.000998 

Fitted Mixed Seasonal autoregressive integrated bilinear model of order one at  s=6:        

1 1 2 2 3 3 1 6 2 12 3 18 11 1 1
ˆ

t t t t t t t t t
X X X X X X X b X   

       
        

1         
2          3          

1          
2             

3           11b         

AIC=  8.7843 

BIC=9.0990 

Residual Variance = 0.005967 

Fitted Mixed Seasonal autoregressive integrated bilinear model of order one at s=12:         

1 1 2 2 1 12 2 24 11 1 1
ˆ

t t t t t t t
X X X X X b X  

     
      

1              2               1          2            

11b                            

AIC= 8.6902 

BIC=7.6598 

Residual Variance = 0.00837 
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Table 4.7:  Fitted mixed seasonal autoregressive integrated one-dimensional  

            Bilinear models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s/n MODEL AIC BIC Residual variance 

1 (2,0,0)(3,2,0,1,1)1 7.0064 6.6015 0.000893 

2 (3,0,0)(3,2,0,1,1)2 9.2019 8.8052 0.00563 

3 (3,0,0)(3,2,0,1,1)3 8.6201 7.8062 0.02289 

4 (1,0,0)(3,2,0,1,1)4 7.9876 6.9011 0.000998 

5 (3,0,0)(3,2,0,1,1)6 8.7843 9.0990 0.005967 

6 (2,0,0)(2,2,0,1,1)12 8.6902 7.6598 0.00837 
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4.8    Fitted pure seasonal autoregressive integrated moving average models 

In this section, we introduced the Moving average component. In a similar manner, linear 

pure seasonal autoregressive integrated moving average models of different orders of 

seasonal autoregressive parameter P and the seasonal moving average, Q at the different 

length of seasons (s=1,2,3,4,6 and 12) are obtained as shown in table 4.8. Optimum 

models (in bold prints in table 4.8) are selected based on the Akaike Information Criteria 

(AIC), Bayesian Information Criteria (BIC), as well as the residual variances. These 

optimum models are (0,0,0)(1,2,2)1, (0,0,0)(3,2,2)2, (0,0,0)(3,2,3)3, (0,0,0)(3,2,3)4, 

(0,0,0)(1,2,3)6 and (0,0,0)(1,2,3)12. Their estimated parameters are then used as initial 

parameters for fitting the nonlinear, pure seasonal autoregressive integrated moving 

average one-dimensional bilinear time series models.  The optimum models are presented 

in tables 4.9. 
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Table 4.8:  Fitted Pure Seasonal Autoregressive Integrated Moving Average (SARIMA )  

                   models. 

s/n MODEL AIC BIC Residual variance 

1 (0,0,0)(1,2,1)1 10.65373 9.674799 24.6728 

2 (0,0,0)(1,2,2)1 10.35153 9.383136 23.0089 

3 (0,0,0)(1,2,3)1 10.35532 9.397454 24.6783 

4 (0,0,0)(2,2,1)1 10.60387 9.635475 25.8245 

5 (0,0,0)(2,2,2)1 10.35856 9.400698 22.8747 

6 (0,0,0)(2,2,3)1 10.35964 9.41231 24.6109 

7 (0,0,0)(3,2,1)1    10.59500 9.637143 26.1208 

8 (0,0,0)(3,2,2)1 10.35793 9.410607 24.7731 

9 (0,0,0)(3,2,3)1 10.3636 9.426809 25.7054 

1 (0,0,0)(1,2,1)2 10.92497 9.946036 24.7719 

2 (0,0,0)(1,2,2)2 10.46178 9.493385 23.7429 

3 (0,0,0)(1,2,3)2 10.62359 9.413852 26.0128 

4 (0,0,0)(2,2,1)2 10.89146 9.923061 25.8418 

5 (0,0,0)(2,2,2)2 10.43718 9.479317 22.9153 

6 (0,0,0)(2,2,3)2 10.38495 9.437624 24.8610 

7 (0,0,0)(32,1,)2 10.78385 9.825993 26.2398 

8 (0,0,0)(3,2,2)2 10.33298 9.385657 24.5390 

9 (0,0,0)(3,2,3)2 10.35229 9.415497 25.6823 

1 (0,0,0)(1,2,1)3 11.05652 10.07759 25.0049 

2 (0,0,0)(1,2,2)3 10.4536 9.485208 23.7002 

3 (0,0,0)(1,2,3)3 10.45927 9.50141 24.5634 

4 (0,0,0)(2,2,1)3 10.80178 9.833388 25.6180 

5 (0,0,0)(2,2,2)3 10.31755 9.359688 22.8141 
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6 (0,0,0)(2,2,3)3 10.32517 9.377848 24.5310 

7 (0,0,0)(3,2,1)3 10.22412 9.266262 25.6510 

8 (0,0,0)(3,2,2)3 10.22299 9.275668 24.4169 

9 (0,0,0)(3,2,3)3 10.19405 9.257262 24.9835 

1 (0,0,0)(1,2,1)4 11.02538 10.04645 25.01008 

2 (0,0,0)(1,2,2)4 10.35003 9.381636 23.6211 

3 (0,0,0)(1,2,3)4 10.39528 9.437422 24.5341 

4 (0,0,0)(2,2,1)4 10.26358 9.295181 24.6714 

5 (0,0,0)(2,2,2)4 10.25819 9.300327 22.7858 

6 (0,0,0)(2,2,3)4 10.17048 9.223154 24.2812 

7 (0,0,0)(3,2,1)4 10.26265 9.304785 25.8075 

8 (0,0,0)(3,2,2)4 10.26147 9.314143 24.3989 

9 (0,0,0)(3,2,3)4 10.07154 9.134746 23.3284 

1 (0,0,0)(1,2,1)6 10.31826 9.339328 24.1721 

2 (0,0,0)(1,2,2)6 10.20121 9.232814 23.3004 

3 (0,0,0)(1,2,3)6 9.82435 8.866489 23.8799 

4 (0,0,0)(2,2,1)6 10.31223 9.343837 24.8451 

5 (0,0,0)(2,2,2)6 10.06034 9.102483 22.3298 

6 (0,0,0)(2,2,3)6 10.41788 9.238844 25.8838 

7 (0,0,0)(3,2,1)6 10.11734 9.159476 25.2785 

8 (0,0,0)(3,2,2)6 10.04366 9.096329 24.1006 

9 (0,0,0)(3,2,3)6 10.21244 9.189762 25.1457 

1 (0,0,0)(1,2,1)12 10.16622 9.187286 23.8995 

2 (0,0,0)(1,2,2)12 9.778136 8.80974 23.0021 

3 (0,0,0)(1,2,3)12 9.732754 8.774892 23.4271 

4 (0,0,0)(2,2,1)12 10.0044 9.036002 23.9845 

5 (0,0,0)(2,2,2)12 9.795466 8.837605 22.2783 



115 
 

6 (0,0,0)(2,2,3)12 10.745778 9.798451 25.2091 

7 (0,0,0)(3,2,1)12 10.00265 9.044785 25.1066 

8 (0,0,0)(3,2,2)12 10.01142 9.064091 24.1001 

9 (0,0,0)(3,2,3)12 11.817427  10.880635 25.4252 
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The estimates of the parameters of the optimum models are presented as follows: 

Fitted pure Seasonal autoregressive Integrated Moving Average model at s=1:         

1 1 1 1 2 2
ˆ

t t t t
X X  

  
    

1         
1           

2              

AIC=10.35153,  

BIC=9.383136 

Residual Variance = 23.0089 

Fitted pure Seasonal autoregressive Integrated Moving Average model at s=2:    

1 2 2 4 3 6 1 2 2 4
ˆ

t t t t t t
X X X X  

    
      

1         
2          

3           1           
2              

AIC=10.33298,  

BIC=9.385657 

Residual Variance = 24.5390 

Fitted pure Seasonal autoregressive Integrated Moving Average model at s=3:         

1 3 2 6 3 9 1 3 2 6 3 9
ˆ

t t t t t t t
X X X X   

     
       

1          
2          

3           1             

2            

 3              

AIC=10.19405,  

BIC=9.257262 

Residual Variance = 24.9835 

Fitted pure Seasonal autoregressive Integrated Moving Average model at s=4:         

1 4 2 8 3 12 1 4 2 8 3 12
ˆ

t t t t t t t
X X X X   

     
       

1          2          
3          1             

2          3              

AIC= 10.07154,  
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BIC= 9.134746 

Residual Variance = 23.3284 

Fitted pure Seasonal autoregressive integrated Moving Average model at s=6:         

1 6 1 6 2 12 3 18
ˆ

t t t t t
X X   

   
     

1                
1               

2             3              

AIC=  9.82435,  

BIC=  8.866489 

Residual Variance = 23.8799 

Fitted pure Seasonal autoregressive integrated Moving Average model at s=12:         

1 12 1 12 2 24 3 36
ˆ

t t t t t
X X   

   
     

1                1               
2              3          

AIC=  9.732754,  

BIC=  8.774892 

Residual Variance = 23.4271 
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Table 4.9: Fitted optimum pure SARIMA models 

s/n MODEL AIC BIC Residual variance 

1 (0,0,0)(1,2,2)1 10.35153 9.383136 23.0089 

2 (0,0,0)(3,2,2)2 10.33298 9.385657 24.5390 

3 (0,0,0)(3,2,3)3 10.19405 9.257262 24.9835 

4 (0,0,0)(3,2,3)4 10.07154 9.134746 23.3284 

5 (0,0,0)(1,2,3)6 9.82435 8.866489 23.8799 

6 (0,0,0)(1,2,3)12 9.732754 8.774892 23.4271 
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4.9      Fitted Pure Seasonal Autoregressive Integrated Moving Average One-

Dimensional Bilinear (PSARIMAODBL) models (Order one). 

Using the obtained parameters in the previous section as initial parameters for the 

nonlinear Mixed SARIMA one-dimensional bilinear part, we have the following results 

presented in table 4.10. 

Fitted Pure Seasonal autoregressive integrated moving average one-dimensional bilinear 

model at s=1:         

 

1         1           
2             11b              

AIC= 8.1082 

BIC=7.8602 

Residual Variance = 0.000893 

Fitted Pure Seasonal autoregressive integrated moving average one-dimensional bilinear 

model at s=2: 

1 2 2 4 3 6 1 2 2 4 11 1 1
ˆ

t t t t t t t t
X X X X b X  

      
       

1         2          
3           1           2          11b  

              

AIC= 8.2908 

BIC=7.5690 

Residual Variance = 0.0061982 

Fitted Pure Seasonal autoregressive integrated moving average one-dimensional bilinear 

model at s=3: 

1 3 2 6 3 9 1 3 2 6 3 9 11 1 1
ˆ

t t t t t t t t t
X X X X b X   

       
        

1          2          
3           1           2             

3             11b              

AIC= 8.6448 

BIC=7.8743 

Residual Variance = 0.0063002 

1 1 1 1 2 2 11 1 1
ˆ

t t t t t t
X X b X  

    
   
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Fitted Pure Seasonal autoregressive integrated moving average one-dimensional bilinear 

model at s=4. 

 

 

1          
2          

3          
1           

2          3  

           
11b           

 AIC= 8.1645 

BIC=7.5409 

Residual Variance = 0.0057496 

Fitted Pure Seasonal autoregressive integrated bilinear model of order one at s=6: 

1 6 1 6 2 12 3 18 11 1 1
ˆ

t t t t t t t
X X b X   

     
      

1                1               
2             3              11b                

AIC= 7.7450 

BIC=7.2803 

Residual Variance = 0.0053793 

Fitted Pure Seasonal autoregressive integrated bilinear model of order one at s=12: 

1 12 1 12 2 24 3 36 11 1 1
ˆ

t t t t t t t
X X b X   

     
      

1                1               
2              3            

11b            

AIC= 7.5026 

BIC=6.7859 

Residual Variance = 0.0053004 

From table 4.10, the AIC values of the nonlinear pure SARIMA one-dimensional models 

vary between 7.60 and 8.70, the BIC values vary between 6.60 and 7.90 while the residual 

variances vary between 0.000893 and 0.0063. These show significant smaller differences 

from those obtained for the linear models in table 4.9.  

 

1 4 2 8 3 12 1 4 2 8 3 12 11 1 1
ˆ

t t t t t t t t t
X X X X b X   

       
      
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Table 4.10: Fitted pure SARIMAODBL models (Order one) 

s/n Model AIC BIC Residual Variance 

1 (0,0,0)(1,2,2,1,1)1 8.1082 7.8602          0.000893 

2 (0,0,0)(3,2,2,1,1)2 8.2908 7.5690 0.0061982 

3 (0,0,0)(3,2,3,1,1)3 8.6448 7.8743 0.0063002 

4 (0,0,0)(3,2,3,1,1)4 8.1645 7.5409 0.0057496 

5 (0,0,0)(1,2,3,1,1)6 7.7450 7.2803 0.0053793 

6 (0,0,0)(1,2,3,1,1)12 7.5026 6.7859 0.0053004 
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4.10  Fitted Mixed Seasonal Autoregressive Integrated Moving Average      

 models  

Here, we considered the Mixed Seasonal Autoregressive Integrated Moving Average 

Models. The estimates of the parameters of the linear Mixed Seasonal Autoregressive 

integrated Moving Average time series models of different orders of the nonseasonal 

Autoregressive parameters p, seasonal Autoregressive parameter P , nonseasonal Moving 

average parameters, q and the seasonal Moving Average parameters, Q  at the different 

length of seasons (s=1,2,3,4,6 and 12) are obtained. Optimum models are selected 

considering the Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), 

as well as the residual variances. Their estimates are then used as initial parameters for the 

nonlinear, Mixed Seasonal Autoregressive integrated Moving Average One-Dimensional 

Bilinear time series models.  The various linear mixed SARIMA models and the optimum 

models are presented in tables 4.11 and 4.12  
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Table 4.11:  Fitted mixed SARIMA models 

s/n Model AIC BIC Residual variance 

1 (1,0,1)(1,2,0)1 10.64689 9.678491 22.781 

2 (0,0,1)(1,2,0)1 10.65373 9.674799 22.983 

3 (1,0,0)(0,2,1)1 10.65373 9.674799 23.007 

4 (1,0,1)(0,2,1)1 10.34685 9.378455 22.010 

5 (0,0,1)(0,2,1)1 10.34685 9.378455 22.014 

6 (1,0,0)(1,2,1)1 10.64689 9.678491 22.089 

7 (1,0,1)(1,2,1)1 9.35039 8.39253 21.873 

8 (0,0,1)(1,2,1)1 10.34685 9.378455 22.014 

9 (1,0,0)(2,2,1)1 10.59501 9.63715 22.574 

10 (1,0,1)(2,2,1)1 10.35243 9.405105 22.010 

11 (0,0,1)(2,2,1)1 10.35005 9.392184 22.000 

12 (1,0,0)(2,2,2)1 10.35824 9.410909 23.067 

13 (1,0,1)(2,2,2)1 12.0891 11.329212 24.8971 

14 (0,0,1)(2,2,2)1 10.35648 9.409152 23.0921 

15 (1,0,2)(2,2,2) 1 10.36123 9.43497 23.8897 

16 (2,0,1)(2,2,2) 1 10.29732 9.37106 25.6802 

17 (2,0,2)(2,2,2) 1 11.30613 10.390404 26.7026 

1 (1,0,1)(1,2,0)2 11.1252 10.15681 26.2967 

2 (0,0,1)(1,2,0)2 11.18342 10.20449 26.5605 

3 (1,0,0)(0,2,1)2 11.04304 10.06411 26.0088 

4 (1,0,1)(0,2,1)2 10.66491 9.696517 25.4509 

5 (0,0,1)(0,2,1)2 10.73338 9.764982 25.6121 

6 (1,0,0)(1,2,1)2 10.80936 9.840961 25.6595 

7 (1,0,1)(1,2,1)2 10.60457 9.646711 25.5006 

8 (0,0,1)(1,2,1)2 10.73338 9.764982 24.6236 

9 (1,0,0)(2,2,1)2 10.7506 9.792738 25.6700 

10 (1,0,1)(2,2,1)2 10.60103 9.653704 25.5002 
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11 (0,0,1)(2,2,1)2 10.71173 9.753871 25.6010 

12 (1,0,0)(2,2,2)2 10.3681 9.420772 25.0011 

13 (1,0,1)(2,2,2)2 10.55414 9.617348 25.3496 

14 (0,0,1)(2,2,2)2 10.36412 9.416794 25.3002 

15 (1,0,2)(2,2,2)2 10.31248 9.386221 23.8001 

16 (2,0,1)(2,2,2)2 10.63753 9.711268 26.6721 

17 (2,0,2)(2,2,2)2 11.35065 10.434922 26.7026 

1 (1,0,1)(1,2,0)3 10.64689 9.678491 25.3891 

2 (0,0,1)(1,2,0)3 11.70064 10.72171 26.6782 

3 (1,0,0)(0,2,1)3 11.05494 10.07601 26.0171 

4 (1,0,1)(0,2,1)3 11.05805 10.08966 26.0440 

5 (0,0,1)(0,2,1)3 10.90368 9.935285 25.2410 

6 (1,0,0)(1,2,1)3 10.87284 9.904448 25.2203 

7 (1,0,1)(1,2,1)3 10.87633 9.918464 25.2410 

8 (0,0,1)(1,2,1)3 10.90368 9.935285 24.8745 

9 (1,0,0)(2,2,1)3 10.69443 9.736569 25.4623 

10 (1,0,1)(2,2,1)3 10.6968 9.749472 25.0009 

11 (0,0,1)(2,2,1)3 10.70592 9.345226 25.0021 

12 (1,0,0)(2,2,2)3 10.28252 9.335192 24.3431 

13 (1,0,1)(2,2,2)3 10.28686 9.35007 24.3896 

14 (0,0,1)(2,2,2)3 10.27991 9.332585 24.3001 

15 (1,0,2)(2,2,2)3 10.79085 9.764596 25.6301 

16 (2,0,1)(2,2,2)3 10.6873 9.91077 25.8945 

17 (2,0,2)(2,2,2)3 11.27194 10 .356214 26.8934 

1 (1,0,1)(1,2,0)4 11.77489 10.8065 26.6456 

2 (0,0,1)(1,2,0)4 11.79615 10.81722 26.5682 

3 (1,0,0)(0,2,1)4 11.10639 10.12746 25.7802 

4 (1,0,1)(0,2,1)4 11.11177 10.14337 25.7854 

5 (0,0,1)(0,2,1)4 10.86325 9.894854 24.6492 
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6 (1,0,0)(1,2,1)4 10.84038 9.871989 24.4814 

7 (1,0,1)(1,2,1)4 10.84559 9.887726 24.4879 

8 (0,0,1)(1,2,1)4 10.86325 9.894854 24.7129 

9 (1,0,0)(2,2,1)4 10.25934 9.301478 23.9021 

10 (1,0,1)(2,2,1)4 10.26262 9.315295 23.9785 

11 (0,0,1)(2,2,1)4 10.25859 9.300724 23.7022 

12 (1,0,0)(2,2,2)4 10.24646 9.299138 23.7001 

13 (1,0,1)(2,2,2)4 10.23915 9.302358 23.4056 

14 (0,0,1)(2,2,2)4 10.24516 9.297831 23.7000 

15 (1,0,2)(2.2.2)4 10.65603 9.52977 25.2018 

16 (2,0,1)(2,2,2)4 10.8895 9.7452 26.8945 

17 (2,0,2)(2,2,2)4 11.25281 10.337086 26.6073 

1 (1,0,1)(1,2,0)6 10.95002 9.981624 24.8562 

2 (0,0,1)(1,2,0)6 11.0481 10.06917 25.0783 

3 (1,0,0)(0,2,1)6 11.21908 10.24015 25.2891 

4 (1,0,1)(0,2,1)6 11.22244 10.25405 25.29751 

5 (0,0,1)(0,2,1)6 10.31712 9.348723 23.7132 

6 (1,0,0)(1,2,1)6 10.3178 9.349402 23.7157 

7 (1,0,1)(1,2,1)6 10.32036 9.362498 23.7159 

8 (0,0,1)(1,2,1)6 10.31712 9.348723 23.8745 

9 (1,0,0)(2,2,1)6 10.31016 9.352302 23.7102 

10 (1,0,1)(2,2,1)6 10.31306 9.365736 23.7115 

11 (0,0,1)(2,2,1)6 10.30936 9.351504 23.7100 

12 (1,0,0)(2,2,2)6 10.06382 9.11649 23.2710 

13 (1,0,1)(2,2,2)6 10.23915 9.302358 23.5343 

14 (0,0,1)(2,2,2)6 10.05624 9.108912 23.2303 

15 (1,0,2)(2,2,2) 6 10.8685 9.342329 25.1903 

16 (2,0,1)(2,2,2) 6 11.8936 10.1455 26.9834 

17 (2,0,2)(2,2,2) 6 11.02962 10.113897 26.0045 

1 (1,0,1)(1,2,0)12 10.91086 9.942465 25.7943 

2 (0,0,1)(1,2,0)12 10.95855 9.979618 25.8122 
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3 (1,0,0)(0,2,1)12 10.42466 9.445733 23.7154 

4 (1,0,1)(0,2,1)12 10.38919 9.42079 23.7178 

5 (0,0,1)(0,2,1)12 10.17115 9.202758 23.3451 

6 (1,0,0)(1,2,1)12 10.17122 9.202826 23.3432 

7 (1,0,1)(1,2,1)12 10.32036 9.362498 23.7021 

8 (0,0,1)(1,2,1)12 10.17115 9.202758 23.3067 

9 (1,0,0)(2,2,1)12 10.31016 9.352302 23.7002 

10 (1,0,1)(2,2,1)12 9.991618 9.044292 23.0043 

11 (0,0,1)(2,2,1)12 10.00973 9.051868 23.2891 

12 (1,0,0)(2,2,2)12. 10.06382 9.11649 23.4814 

13 (1,0,1)(2,2,2)12 10.23915 9.302358 23.4569 

14 (0,0,1)(2,2,2)12 9.801701 8.854374 22.7016 

15 (1,0,2)(2,2,2)12 10.820449 9.894191 25.2792 

16 (2,0,1)(2,2,2)12 11.8107 10.884507 26.8891 

17 (2,0,2)(2,2,2)12 11.766747 10.851024 26.7899 
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The estimates of the parameters of these optimum models are as follows: 

Fitted Mixed Seasonal autoregressive Integrated Moving Average model at s=1:         

   
1 1 1 1 1 1 1 1

ˆ
t t t t t

X X X   
   

     

  
1               

1               
1             

1          

AIC=  9.35039,  

BIC=  8.39253 

Residual Variance = 21.873 

Fitted Mixed Seasonal autoregressive Integrated Moving Average model at s=2:         

1 1 1 1 2 2 1 2 2 4 1 2 2 4
ˆ

t t t t t t t t
X X X X      

      
      

1            
1  

       
2          1          

2          

1          
2          . 

AIC=  10.31248,  

BIC=  9.386221 

Residual Variance = 23.8001 

Fitted Mixed Seasonal autoregressive Integrated Moving Average model at s=3:         

1 1 1 3 2 6 1 3 2 6
ˆ

t t t t t t
X X X   

    
      

1              1           2              1               

2          

AIC=  10.27991,  

BIC=  9.332585 

Residual Variance = 24.3001 

Fitted Mixed Seasonal autoregressive Integrated Moving Average model at s=4:         

1 1 1 1 1 4 2 8 1 4 2 8
ˆ

t t t t t t t
X X X X    

     
       

1              1             1           2               

1               

2          
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AIC=  10.23915,  

BIC=  9.302358 

Residual Variance = 23.4056 

Fitted Mixed Seasonal autoregressive Integrated Moving Average model at s=6:         

1 1 1 6 2 12 1 6 2 12
ˆ

t t t t t t
X X X   

    
      

1             
1           

2             
1             

  
2          

AIC=  10.05624,  

BIC=  9.108912 

Residual Variance = 23.2303 

Fitted Mixed Seasonal autoregressive Integrated Moving Average model at s=12:         

1 1 1 12 2 24 1 12 2 24
ˆ

t t t t t t
X X X   

    
      

1             1          
2             1              

2          

AIC=  9.801701,  

BIC=  8.854374 

Residual Variance = 22.7016 
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From the summary presented in table 4.12, it is observed that the AIC values vary between 

9.30 and 10.40, the BIC values vary between 8.30 and 9.40 while the residual variances vary 

between 21.5 and 24.4. These we shall compare with the values of their nonlinear 

counterparts in the next section. 
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Table 4.12:  Fitted optimum Mixed SARIMA models 

s/n Model AIC BIC Residual Variance 

1 (1,0,1)(1,2,1)1 9.35039 8.39253          21.873 

2 (1,0,2)(2,2,2)2 10.31248 9.386221 23.8001 

3 (0,0,1)(2,2,2)3 10.27991 9.332585 24.3001 

4 (1,0,1)(2,2,2)4 10.23915 9.302358 23.4056 

5 (0,0,1)(2,2,2)6 10.05624 9.108912 23.2303 

6 (0,0,1)(2,2,2)12 9.801701 8.854374 22.7016 
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4.11 Fitted Mixed Seasonal Autoregressive Integrated Moving Average One-

Dimensional Bilinear (MSARIMAODBL) models (Order one). 

The parameters of the optimum linear models obtained in the previous section are used as 

initial parameters to fit the nonlinear mixed SARIMAODBL models and presented in 

table 4.13 with their corresponding AIC, BIC as well as residual variances. Then we 

obtained the nonlinear parameters as follows.  

Fitted Mixed Seasonal Autoregressive Integrated Moving Average Bilinear model of order 

one at s=1: 

1 1 1 1 1 1 1 1 11 1 1
ˆ

t t t t t t t
X X X b X    

     
      

1               1               1             1            

11b             

AIC= 7.3076 

BIC = 6.7629 

Residual Variance = 0.0000858 

Fitted Mixed Seasonal Autoregressive Integrated Moving Average Bilinear model of order 

one at s=2: 

1 1 1 1 2 2 1 2 2 4 1 2 2 4 11 1 1
ˆ

t t t t t t t t t t
X X X X b X       

        
        where: 

1            1         
2          1          

2          

1            

2           11b             

AIC= 8.0985 

BIC=7.6786 

Residual Variance =  0.005967 

 

Fitted Mixed Seasonal Autoregressive Integrated Moving Average Bilinear model of order 

one at s=3: 

1 1 1 3 2 6 1 3 2 6 11 1 1
ˆ

t t t t t t t t
X X X b X    

      
       
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1              
1           

2              
1              

2         , 

11b            

AIC= 9.5623 

BIC= 8.7009 

Residual Variance =  0.00936 

Fitted Mixed Seasonal Autoregressive Integrated Moving Average Bilinear model of order 

one at s=4: 

1 1 1 1 1 4 2 8 1 4 2 8 11 1 1
ˆ

t t t t t t t t t
X X X X b X     

       
        

1              1             1           
2               

1              
2         , 

11b            

AIC= 6.5623 

BIC=5.7009 

Residual Variance = 0.000000936 

 

Fitted Mixed Seasonal Autoregressive Integrated Moving Average Bilinear model of order 

one at s=6: 

1 1 1 6 2 12 1 6 2 12 11 1 1
ˆ

t t t t t t t t
X X X b X    

      
       

1             1           
2             1              

2           

11b         

AIC= 9.4002 

BIC= 8.0843 

Residual Variance = 0.04892 

Fitted Mixed Seasonal Autoregressive Integrated Moving Average Bilinear model of order 

one at s=12: 

1 1 1 12 2 24 1 12 2 24 11 1 1
ˆ

t t t t t t t t
X X X b X    

      
       

1             1          2             1               
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2            
11b         

AIC= 8.5892 

BIC= 7.3021 

Residual Variance = 0.056290 
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Table 4.13:  Fitted mixed SARIMAODBL models (Order One) 

s/n Model AIC BIC Residual variance 

1 (1,0,1)(1,2,1,1,1)1 7.3076 6.7629 0.0000858 

2 (1,0,2)(2,2,2,1,1)2 8.0985 7.6786 0.005967 

3 (0,0,1)(2,2,2,1,1)3 9.5623 8.7009 0.00936 

4 (1,0,1)(2,2,2,1,1)4 6.5623 5.7009 0.000000936 

5 (0,0,1)(2,2,2,1,1)6 9.4002 8.0843 0.04892 

6 (0,0,1)(2,2,2,1,1)12 8.5892 7.3021 0.056290 
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4.12     Fitted optimum one-dimensional bilinear models of order    

So far, we have considered and obtained the best model for PARIODBL, MARIODBL, 

PARIMAODBL and MARIMAODBL at order one when             and    as shown 

in table 4.14. There is the need to increase this order which will further reveal if there 

exists a more robust model using the models in table 4.14. 
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Table 4.14:  Optimal one-dimensional bilinear models 

S/N Model AIC BIC     Residual     

    Variance 

1 PSARIODBL (0,0,0)(3,2,0,1,1)1 9.7823 8.5624    0.00947 

2 MSARIODBL (2,0,0)(3,2,0,1,1)1 7.0064 6.6015    0.000893 

3 PSARIMAODBL (0,0,0)(1,2,2,1,1)1 8.1082 7.8602    0.000893 

4 MSARIMAODBL (1,0,1)(2,2,2,1,1)4 6.5623 5.7009    0.000000936 
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4.12.1 Pure Seasonal Autoregressive Integrated one-dimensional Bilinear models of 

order  .     

For the Pure Seasonal Autoregressive Integrated Bilinear models shown in table 4.15, it is 

discovered as shown in table 4.14, that the AIC and the BIC increase as the parameter   

increases from 1 to 2. However, there is a decrease as the parameter increases to 3, after 

which it increases again. Hence, the maximum order of   that can be fitted is     and 

the optimum model is given by (0,0,0)(3,2,0,3,1)1. 

Hence the fitted model (0,0,0)(3,2,0,3,1)1 is: 

1 1 2 2 2 3 11 1 1 21 1 1 31 1 1
ˆ

t t t t t t t t t t
X X X X b X b X b X  

        
      where:   

 
1          

2           3           
11b           

21b         
31b            
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Table 4.15: Pure SARIODBL models of order   

S/N Model AIC BIC Residual variance 

1 (0,0,0)(3,2,0,1,1)1 9.7823 8.5624 0.00947 

2 (0,0,0)( 3,2,0,2,1)1 11.3892 10.5903 0.0678 

3 (0,0,0)( 3,2,0,3,1)1 8.4672 7.9091 0.000043920 

4 (0,0,0)( 3,2,0,4,1)1 11.7865 11.1079 0.096934 
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  4.12.2 Mixed Seasonal Autoregressive Integrated one-dimensional Bilinear      

(MSARIODBL) models of order   

Similarly, for the Mixed Seasonal Autoregressive Integrated one-dimensional Bilinear 

models, it is also discovered as shown in table 4.16, that the AIC and the BIC increase as 

the parameter   increases from 1 to 2. However, there is a decrease as the parameters 

increase to 3, after which it increases again. Hence, the maximum order of   that can be 

fitted is     and the optimum model is given by (2,0,0)(3,2,0,3,1)1. Hence, the fitted 

model (2,0,0)(3,2,0,3,1)1 is: 

1 1 2 2 1 1 2 2 3 3 11 1 1 21 1 1

31 1 1

ˆ

        

t t t t t t t t t t

t t

X X X X X X b X b X

b X

   



        

 

      



where:    
1          2          1          

2           3  

         
11b          

21b         
31b          
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Table 4.16: Fitted MSARIODBL models of order   

S/N Model AIC BIC Residual variance 

1 (2,0,0)(3,2,0,1,1)1 7.0064 6.6015 0.000893 

2 (2,0,0)( 3,2,0,2,1)1 10.7082 9.4606 0.007390 

3 (2,0,0)( 3,2,0,3,1)1 6.8025 6.3803 0.00001936 

4 (2,0,0)( 3,2,0,4,1)1 12.7984 11.9968 0.09894534 
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4.12.3  Pure Seasonal Autoregressive Integrated Moving Average one-dimensional 

Bilinear (PSARIMAODBL) models of order   

For the Pure Seasonal Autoregressive Integrated Moving Average one-dimensional 

Bilinear models, the results are as shown below, it is observed that the AIC and the BIC 

increase as the parameter   increases from 1 to 3 (table 4.17). However, there is a 

decrease as the number of parameters increases to 4, after which it increases again. Hence, 

the maximum order of   that can be fitted is     and the optimum model is given by 

(0,0,0)(1,2,2,4,1)1. Therefore the fitted optimum model is: 

1 1 1 1 2 1 11 1 1 21 2 1 31 3 1

41 4 1
        

t t t t t t t t t t

t t t

X X e e b X e b X e b X e

b X e e

        

 

      

 
 

where:  

1 1 2 11 21 31

41

0.3374, 0.9980, 0.9987, 0.3904, 0.6920, 0.8974,

 0.6702

b b b

b

          


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Table 4.17: Fitted PSARIMAODBL models of order  . 

S/N Model AIC BIC Residual variance 

1 (0,0,0)(1,2,2,1,1)1 8.1082 0.6054 0.000893 

2 (0,0,0)( 1,2,2,2,1)1 10.7922 9.9685 0.08329 

3 (0,0,0)( 1,2,2,3,1)1 11.2187 10.4045 0.04796 

4 (0,0,0)( 1,2,2,4,1)1 7.5007 6.8945 0.000214 

5 (0,0,0)( 1,2,2,5,1)1 11.7891 10.3905 0.073028 
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4.12.4 Mixed Seasonal Autoregressive Integrated Moving Average one-dimensional 

Bilinear (MSARIMAODBL) models of order  . 

The results for the Mixed Seasonal Autoregressive Integrated Moving Average Bilinear 

models of order   is as shown in table 4.18. It is observed that the AIC and the BIC 

increase as the number of parameter   increases from 1 to 3. However, there is a decrease 

as the parameter increases to 4 to 5, after which it increases again at    . However, the 

minimum AIC and BIC still occur at  =1. Hence, the optimum model is given by 

(1,0,1)(2,2,2,1,1)4. 

Since the minimum is obtained at order 1 then, the fitted model is given by: 

1 1 1 1 1 4 2 8 1 4 2 8 11 1 1
ˆ

t t t t t t t t t
X X X X b X     

       
        

where:     

1              1             1           
2               

1             
2          11b           
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Table 4.18: Fitted MSARIMAODBL models of order  . 

S/N Model AIC BIC Residual variance 

1 (1,0,1)(1,2,2,1,1)4 6.5623 5.7009 0.0000000936 

2 (1,0,1)( 1,2,2,2,1)4 10.7193 9.6982 0.0456 

3 (1,0,1)( 1,2,2,3,1)4 10.45003 9.5891 0.044332 

4 (1,0,1)( 1,2,2,4,1)4 8.1901 6.5891 0.63016 

5 (1,0,1)( 1,2,2,5,1)4 6.9043 5.8963 0.000921 

6 (1,0,1)( 1,2,2,6,1)4 11.8790 11.8790 0.06740 
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From the previous section, the optimum one-dimensional models of order   are as 

presented in table 4.19. This reveals the fact that the mixed seasonal autoregressive 

integrated moving average one-dimensional bilinear (MSARIMAODBL)  model of order 

one (1,0,1)(2,2,2,1,1)4 has the least AIC, BIC and residual variance values 6.5623, 5.7009 

and 0.000000936 respectively, followed by the mixed seasonal autoregressive integrated 

one-dimensional bilinear (MSARIODBL) model (2,0,0)( 3,2,0,3,1)1, the pure seasonal 

autoregressive integrated one-dimensional bilinear (PSARIODBL) model  

(0,0,0)( 3,2,0,3,1)1and the pure seasonal autoregressive integrated moving average one-

dimensional bilinear (PSARIMAODBL) model (0,0,0)( 1,2,2,4,1)1 in that order. 
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Table 4.19:  Fitted Optimum one-dimensional bilinear models of order  . 

s/n Model AIC BIC Residual variance 

1 (1,0,1)(1,2,2,1,1)4 6.5623 5.7009 0.000000936 

2 (2,0,0)( 3,2,0,3,1)1 6.8025 6.3803 0.00001936 

3 (0,0,0)( 3,2,0,3,1)1 8.4672 7.9091 0.000043920 

4 (0,0,0)( 1,2,2,4,1)1 7.5007 6.8945 0.000214 
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4.13   Simulation Study 

In order to further establish the performance of our optimal model, simulated data of 

sample sizes n=250, 500 and 1000 are generated using the Monte Carlo technique. The 

results are as follows. 

Given the fitted optimal mixed seasonal one-dimensional bilinear model: 

1 1 1 1 1 4 2 8 1 4 2 8 11 1 1
ˆ

t t t t t t t t t
X X X X b X     

       
        

where:    

 
1              1             1           

2               

1              
2          

11b           

 

The procedure: 

A data set of sample size, n = 250 values are generated for tX and t . The data set is 

subjected to the optimum model above and new set of parameters are estimated using the 

nonlinear least square method. The procedure is repeated 50 times (replicates) with 

different sets of tX and t . Averages are then obtained for each estimate and compared 

with the test values (hypothesized values). The entire procedure is then repeated for 

sample sizes n=500 and n=1000. The results are as presented in tables 4.20, 4.21 and 4.22. 

From the tables, we discover that: 

(i) The parameters of the simulated data compared favourably with the parameters of 

our mixed seasonal bilinear model. 

(ii) As the sample size increases (from n=250 to n=1000), the model further shows 

better performance with non-significance in difference for all the parameters. 
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4.13.1   Simulation results when n=250 and  r=50 

Table 4.20: Results of simulated data when n=250, replication=50 

S/n Parameter Hypothesized 

value 

Mean 

(simulated 

value) 

Standard 

error 

Prob. Remark 

1 
1  0.0835 0.0823 0.6989 0.1820  Not significant 

2 
1  0.1062 0.1065 0.3087 0.0942  Not significant 

3 
1   0.4812  0.4699 0.9310 0.4302 Not Significant 

4 
2   0.4703  0.4629 0.0568 0.0214 Significant 

5 
1   0.6159  0.6002 2.2013 0.0319 Significant 

6 
2  0.6159 0.5946 1.1090 0.0118 Significant 

7 
11b  0.6813 0.6824 0.4801 0.6090 Not Significant 
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4.13.2   Simulation results when n=500 and r=50 

Table 4.21: Results of simulated data when n=500, replication=50 

S/n Parameter Hypothesized 

value 

Mean 

(simulated 

value) 

Standard 

error 

Prob. Remark 

1 
1  0.0835 0.08310 0.6456 0.3892 Not significant 

2 
1  0.1062 0.1068 0.7045 0.3190 Not Significant 

3 
1   0.4812  0.4798 1.3018 0.0597 Not significant 

4 
2   0.4703  0.4686 0.0566 0.6508 Not significant 

5 
1   0.6159  0.6023 0.8766 0.5400 Not significant 

6 
2  0.6159 0.6009 0.6210 0.8334 Not significant 

7 
11b  0.6813 0.6798 0.0045 0.8234 Not significant 
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4.13.3    Simulation results when n=1000 and r=50 

Table 4.22: Results of simulated data when n=1000, replication=50 

s/n Parameter Hypothesized 

value 

Mean 

(simulated 

value) 

Standard 

error 

Prob. Remark 

1 
1  0.0835 0.08341 0.0378 0.3920 Not significant 

2 
1  0.1062 0.1063 0.0256 0.4902 Not significant 

3 
1  -0.4812  0.4810 0.0741 0.2901 Not significant 

4 
2  -0.4703  0.4695 0.0034 0.0892 Not significant 

5 
1  -0.6159  0.6057 0.3802 0.9048 Not significant 

6 
2  0.6159 0.6084 0.7201 0.6930 Not significant 

7 
11b  0.6813 0.6808 0.0894 0.0928 Not significant 
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4.14   In-sample Forecast 

The Ikeja rainfall data from the Nigerian Meterological Agency (NMA) used in obtaining 

the results above ranges from (1984-2004). Furthermore, rainfall data for the same 

location for the year 2015 and 2016 are obtained as shown in columns (i) and (iii) in the 

table 4.23. Then, our optimum model with the minimum residual variance given by 

(1,0,1)(2,2,2,1,1)4 : 

1 1 1 1 1 4 2 8 1 4 2 8 11 1 1
ˆ

t t t t t t t t t
X X X X b X     

       
        

where:     

1              
1             

1           
2              

1             

2            11b           

is the used to obtain the forecast of the year 2015 and 2016. The results are as shown in 

columns (ii) and (iv) in table 4.23.  

Critical look at this shows that the forecast values for the year 2015 are very close 

estimates of the actual values at every month of each of year. Similarly, forecast values for 

the year 2016 give very close estimates of the actual values at each corresponding month 

of each of year. 
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Table 4.23:  In-sample Forecast of 2015 and 2016 

 

 

 

 

 

 

 

 

 

 (i) (ii) (iii) (iv) 

Month 2015 (Actual) 2015 (Forecast) 2016 (Actual) 2016 (Forecast) 

Jan             2.1  0.32 0 0.92 

Feb         141.3  139.82 0 0.47 

Mar         113.9  119.87           71.0  68.53 

Apr           67.5  65.42           91.3  88.67 

May           72.4  75.03         234.8  222.69 

Jun         268.6  273.22         124.9  121.40 

Jul           74.4  73.72         115.6  113.49 

Aug           58.9  60.31           81.5  79.47 

Sep           84.4  76.02         301.1  298.32 

Oct         265.4  249.24         343.9  335.17 

Nov           31.6  30.99           48.5  30.32 

Dec             2.1  1.782           14.2  10.56 
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Table 4.24 shows the summary statsistics of forecast and the original data for the years 

2015 and 2016. The approximate average values for the 24 original and forecast data 

points are respectively 109 and 106 with respective standard error of mean as 21 and 20. 

The observations are also at a close range of 335-355 with a variance of 10189 for the 

original data and 9867 for the forecast. 
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Table 4.24: Summary of forecast and original data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Original  

(approximate value) 

Forecast 

(approximate value) 

Mean 109 106 

Size (N) 24 24 

Standrad Deviation 101 99 

Standard error of mean 21 20 

Sum 2609 2535 

Minimum 00 0.32 

Maximum 344 335 

Range 344 335 

Variance 10189 9867 
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4.15    Graphical illustrations of the AIC and Residual variances 

The following figures show the plots of the AIC and the residual variances of the models 

in order to further establish the performances of the fitted linear models in comparison 

with one another as well as in comparison with the fitted nonlinear models. Also, AIC and 

the residual variances of the fitted nonlinear models are equally examined graphically as 

follows. 

Figure 4.6 reveals that the nonlinear pure SARIODBL model have lower AIC values than 

the linear pure SARI models at all length of seasons represented on the horizontal axis by 

‘value’. 

Figure 4.7 also reveals that the fitted nonlinear mixed one-dimensional SARIODBL 

models have lower AIC values that the existing linear mixed SARI models at every length 

of season.  

It is obvious from Fig.8 that the fitted nonlinear pure one-dimensional SARIMAODBL 

models have lower AIC values that the existing linear pure SARIMA models at every 

length of season.  

Figure 4.9 also reveals that the fitted nonlinear mixed one-dimensional SARIMAODBL 

models have lower AIC values that the existing linear mixed SARIMA models at every 

length of season. 
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Figure 4.6: AIC values of PURE SARI and pure SARIBL 
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Figure 4.7   AIC values of Mixed SARI and Mixed SARIBL 
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Figure 4.8: AIC values of Pure SARIMA and Pure SARIMABL 
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Figure 4.9: AIC values of Mixed SARIMA and Mixed SARIMABL 
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Comparing the performances of the fitted nonlinear pure SARIODBL models and the 

fitted nonlinear mixed SARIODBL models in figure 4.10, it shows that the fitted nonlinear 

mixed one-dimensional SARIODBL models have lower AIC values that the fitted 

nonlinear pure SARIODBL models at every length of season. 

As observed earlier, all the nonlinear One-dimensional Bilinear models perform better 

than their linear counterparts. This is clearly indicated in the resisual variance plots shown 

figures 4.11 to 4.18. Moreover, they reveal that the nonlinear Mixed Seasonal 

Autoregressive Integrated One-Dimensional Bilinear Model shows a better performance 

than the nonlinear Pure Seasonal Autoregressive Integrated One-Dimensional Bilinear 

model. 
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Figure 4.10: AIC values of Pure SARIBL and Mixed SARIBL 
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Figure 4.11: Residual Variance of Pure SARI and Pure SARIBL 
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Figure 4.13: Residual Variance of Mixed SARI and Mixed SARIBL 
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Figure 4.14: Residual Variance of Pure SARIMA and Pure SARIMABL 
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Figure 4.16: Residual Variance of Mixed SARIMA and Mixed SARIMABL 
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Fig. 4.12: Residual Variance of Pure SARIBL and Mixed SARIBL 
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Figure 4.15: Residual Variance of Pure SARIMABL and Mixed SARIMABL 
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Figure 4.18: Residual Variance of Mixed SARIBL and Mixed SARIMABL 
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Figure 4.17: Residual Variance of Pure SARIBL and Pure SARIMABL 
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The performances of the four fitted nonlinear models are examined using the plot of their 

residual variances as shown in fig. 4.19. The mixed seasonal one-dimensional bilinear 

time series (MSARIMAODBL) models have the least residual variance, followed by the 

Mixed SARIODBL then the pure SARIODBL and the pure SARIMAODBL in that order. 
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Figure 4.19: A bar chart showing the residual variances of the four fitted models. 
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CHAPTER 5 

SUMMARY, CONCLUSION AND SUGGESTIONS 

FOR FURTHER RESEARCH 

 

5.1 Summary 

In summary, perusal of existing linear existing literatures on linear seasonal time series 

particularly the seasonal autoregressive integrated moving average (SARIMA) model has 

revealed the performance of a time series before and after the peaks of season. Also, the 

existing nonlinear pure SARIMA first order bilinear studied a series only at the peak of 

seasons. However, we realize that little or no attention has been given to the development 

of a seasonal time series model that would track the behaviour a time series before, at and 

after the peaks of season. Hence, this study developed the mixed SARIMA one-

dimensional bilinear (MSARIMAODBL) time series model that is capable of studying the 

performance of a series before, at and after the peaks of season. The developed model 

gave rise to three other one-dimensional bilinear time series models as subsets as follows. 

(i)   Pure SARI One-Dimensional Bilinear Time series Model, 

(ii)  Mixed SARI One-Dimensional Bilinear Time series Model,  

(iii)  Pure SARIMA One-Dimensional Bilinear Time series Model, 

The stationarity conditions and the estimation of their parameters are considered. Then, 

both real life and simulated data are used to justify the performance of these models at 

different lengths of season. 

 

The results show clearly that at the different lengths of season‘s’: 

• The nonlinear Pure seasonal autoregressive integrated one-dimensional bilinear models 

give better performance than their linear Pure seasonal counterparts. 

• The Mixed Seasonal Autoregressive Integrated models also performed better than their 

pure seasonal counterparts.  
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• Also, the nonlinear Mixed seasonal autoregressive integrated one-dimensional bilinear 

models give better performance than their linear Mixed seasonal counterparts. 

Similarly; 

• The mixed seasonal autoregressive integrated moving average models performed better 

than the pure seasonal autoregressive integrated moving average models. 

• The nonlinear pure seasonal autoregressive integrated one-dimensional bilinear models 

performed better than the nonlinear pure seasonal autoregressive integrated moving 

average one-dimensional bilinear models. 

•  The nonlinear mixed seasonal autoregressive integrated moving average models one-

dimensional bilinear models performed better than the nonlinear mixed seasonal 

autoregressive integrated one-dimensional bilinear models. 

• This optimum model is given by the mixed SARIMAODBL model: 

1 1 1 1 1 4 2 8 1 4 2 8 11 1 1t t t t t t t t t t
X X e X X e e b X e e 

       
         

 

 

5.2 Conclusion 

 

Based on the results above, we conclude that the fitted nonlinear seasonal models perform 

excellently better than their linear counterparts at every length of season under 

consideration. Similarly the fitted mixed seasonal models perform far better than the pure 

seasonal models at all length of seasons. Moreover, the mixed seasonal autoregressive 

integrated moving average one-dimensional bilinear time series model 

(MSARIMAODBL) captures seasonality better and performs best in terms of estimation 

along a trend line and at the peak of seasons when compared with other nonlinear seasonal 

bilinear models at different length of seasons.  

 

Moreover, this study has made us to realize that since a mixed seasonal time series model 

would help us to study the performance of seasonal time series both along a trend line and 

at the peak of seasons, then it is of great importance for everyone or organization who 

engages in businesses or occupations that can easily be affected by seasonal fluctuation. 

For example farmers that produce crops which can only be available for harvest at a 
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particular period of the year or companies that produce and sell items used during festive 

seasons or rainy seasons like umbrella, air-conditioner, Christmas light, and so on. This 

would help in making logical decisions when those items can be made available to end 

users and when they are out of season. 

Furthermore, the fitted models are better substitutes for existing seasonal time series 

models in order to obtain better outcome in seasonal time series analysis. 

 

 

5.3 Contribution to knowledge. 

Due to better performances of the specified models than their existing counterparts in 

literature, they are therefore better substitutes and recommended for better analysis of 

seasonal time series. 

Furthermore, since a mixed seasonal time series model would help us to study the 

performance of seasonal time series both along a trend line and at the peak of seasons, the 

fitted mixed seasonal models are better substitutes for the existing  pure seasonal models 

in seasonal time series analysis.  

         

5.4 Suggestions for further studies. 

The following are therefore suggested for further studies: 

(i) Extension of the mixed seasonal ARIMA One-dimensional Bilinear   

models to the mixed Seasonal Generalised bilinear models. 

(ii) Examination of the Spatial Mixed Seasonal Bilinear time series models. 
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APPENDIX A 

R Code for Rainfall analysis 

x<-ts(LAG, start=c(1984,1), end=c(2014,12), frequency =12) 

  win.graph(width=4.875, height=2.5,pointsize=8) 

  ts.plot(x) 

  ts.plot(x,ylabel) 

ts.plot(x,ylab="Record of rainfall measured at 06 GMT",xlab="YEAR") 

> ts.plot(x,ylab="Record of rainfall measured at 06 GMT in Lagos state",xlab="YEAR") 

>  Month=c('J','F','M','A','M','J','J','A','S','O','N','D') 

> points(window(x,start=c(1984,1)),main="LAGOS STATE RAINFALL 

MEASURED",pch=Month,abline(h=0)) 

qqline(x) 

> qqnorm(x) 

> qqline(x) 

> qqplot(x) 

acf(x) 

> acf(x,main=" Auto-Correlation Function(ACF) for Lagos Rainfall Measured") 

summary(x) 

skewness(x) 

kurtosis(x) 



184 
 

adf.test(x) 

PP.test(x) 

kpss.test(x, "Level") 

white.test(x) 

Box.test(LAG) 

stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,  Q), period = S), 

include.mean = !no.constant, optim.control = list(trace = trc,  

    REPORT = 1, reltol = tol)) 

stats::ari(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S), 

include.mean = !no.constant, optim.control = list(trace = trc,  

    REPORT = 1, reltol = tol)) 

stats::sarima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S), 

include.mean = !no.constant, optim.control = list(trace = trc,  

    REPORT = 1, reltol = tol)) 

stats::mai(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S), 

include.mean = !no.constant, optim.control = list(trace = trc,  

    REPORT = 1, reltol = tol)) 

R> Par <- c(1, 0, 1, 0, 0, 0) 

R> fit <- arima(data, order = c(Par[1], Par[2], Par[3]), 

+ seasonal = list(order = c(Par[4], Par[5], Par[6]))) 

phi<-function(par,x){ 

phi1_AR=c(par[1]i,par[1]ii,par[1]iii) 

Bigphi_AR=c(par[2]i,par[2]ii,par[2]iii) 
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theta_MA=par[3] 

Bigtheta_MA=par[4] 

d= c(0,0,0,0) 

D=c(1,1,1,1)  

z=diff(x, differences=2) 

s=(QTR1:QTR4) 

residual(AR)=e 

 

model<-par[1]i*(z-z[1])+par[1]ii*(z-z[1]-z[2])+par[1]iii*(z-z[1]-z[2]-z[3]-d) 

+par[2]i*(z-z[1]-length(s))+par[2]ii*(z-z[1]*2length(s))+par[2]iii*(z-z[1]*3length(s)) 

+par[3]*(e-e[1])+par[4]*(e-e[1]) + nls( mm ~z + e, data =dat$rainLagos,start = c( xmid = 

0, scal = 1 ),alg = "bilinear", trace = TRUE ) 

BILNEAR<BI(dat,arma=(1,2)*varying, family = gaussian(), trial.size = 1, lambda, 

start = NULL, cov.groups = NULL,hybrid.est = FALSE, offset = NULL, intercept = 

TRUE, save.data = FALSE, 

control = list(tol = 1e-4, maxit = 100, trace = FALSE, restarts = 5, seed = NULL) 

m1 <- cov(dat, PURESARI, h=2,z=NULL,lambda0=0.8, lambda1=0.15, lambda3=1, 

lambda4=0.25, 

 lambda5=1, mu5=0, mu6=0, qm=12,alpha.prior=c(100,30)*diag(2) + 

             matrix(12, 2, 2), prior=0, max.iter=40, 

 initialize.opt=NULL) 
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m2 <- cov(dat, MSAI, h=2,z=NULL,lambda0=0.8, lambda1=0.15, lambda3=1, 

lambda4=0.25, 

 lambda5=1, mu5=0, mu6=0, qm=12,alpha.prior=c(100,30)*diag(2) + 

             matrix(12, 2, 2), prior=0, max.iter=40, 

 initialize.opt=NULL) 

 

m3 <- cov(dat, PUREMSAI, h=2,z=NULL,lambda0=0.8, lambda1=0.15, lambda3=1, 

lambda4=0.25, 

 lambda5=1, mu5=0, mu6=0, qm=12,alpha.prior=c(100,30)*diag(2) + 

             matrix(12, 2, 2), prior=0, max.iter=40, 

 initialize.opt=NULL) 

 

m4 <- cov(dat, PUREMSARIMA, h=2,z=NULL,lambda0=0.8, lambda1=0.15, 

lambda3=1, lambda4=0.25, 

 lambda5=1, mu5=0, mu6=0, qm=12,alpha.prior=c(100,30)*diag(2) + 

             matrix(12, 2, 2), prior=0, max.iter=40, 

 initialize.opt=NULL) 

m5<- cov(dat, MSAIMA, h=2,z=NULL,lambda0=0.8, lambda1=0.15, lambda3=1, 

lambda4=0.25, 

 lambda5=1, mu5=0, mu6=0, qm=12,alpha.prior=c(100,30)*diag(2) + 

             matrix(12, 2, 2), prior=0, max.iter=40, 

 initialize.opt=NULL) 
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regressors <- cbind(x,linearTrend = seq(along = timeseries)/12) 

norm <- tsglm(x, link = "log",model = list(past_obs = c(1, 12)), xreg = regressors, distr = 

"normal") 

 

marcal(c(SARI,MSAI,PURESARI,MSAIMA,PUREMSAIMA),main=" 

",type="o",col="blue") 

lines(marcal(c(MSE,AIC,BiC,RES,), plot = FALSE),lty=2, color= "dashed") 

legend("bottomright", legend = c(SARI,MSAI,PURESARI,MSAIMA,PUREMSAIMA), 

pch=c("o","*"),lty=c(1,2),ncol=1,lwd = 1,col= c("blue", "dashed")) 

 legend("bottomright", legend = c(SARI,MSAI,PURESARI,MSAIMA,PUREMSAIMA), 

lwd = 1,lty = c("green", "dashed"....)) 

function (x, residual(ar),y tau = 0.5, lambda = NULL, weights = NULL,  

    intercept = TRUE, nfolds = 10,  

    foldid = NULL, nlambda = 100, eps = 1e-04, init.lambda = 1)  

{p <- dim(x)[2] 

    if (is.null(order)) { lag <- 1:s:p:q:b:P:Q} 

    p_range <- lag + intercept 

    n <- dim(x)[1] 

    lag_func <- switch(which(c(SARI,MSAI,PURESARI,MSAIMA,PUREMSAIMA),  

       if (is.null(lambda)) { 

        sample_q <- quantile(residual(ar), tau) 
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        inter_only_rho <- sum(check(residual(ar) - sample_q, tau)) 

        lambda_star <- init.lambda 

        searching <- TRUE 

        while (searching) { 

            if (lag == "SARI") { init_fit <- fit(x, s, tau, lambda = lambda_star, weights, 

intercept, Vars)} 

            else (lag == "MSAI"){ 

            else (lag == "PURESARI"){ 

else (lag == "MSAIMA"){ 

else (lag == "PUREMSAIMA"){}}} 

            if (sum(init_fit$coefficients[p_range]) == 0) {searching <- FALSE } 

            else {lambda_star  

<- inter_only_rho/sum(sapply(init_fit$coefficients[p_range],  

   pen_func, 1))}} 

   lambda_min <- eps * lambda_star 

   lambda <- exp(seq(log(max(lambda_min)), log(max(lambda_star)),  

   length.out = nlambda))} 

    models <- list() 

    fit_models <- TRUE 

    lam_pos <- 1 

 if (fit_models == c(SARI,MSARI,PURESARI,MSARIMA,PUREMSARIMA)) {while 

(fit_models) { if (fit_models)} 
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            if (sum(abs(coefficients(models[[lam_pos]])[p_range])) ==  

                0 || lam_pos == length(lambda)) { 

                fit_models <- FALSE 

                lambda <- lambda[1:lam_pos]} 

            lam_pos <- lam_pos + 1} 

     if (sum(abs(coefficients(models[[lam_pos]])[p_range])) ==  0 || lam_pos == 

length(lambda)) { 

                fit_models <- FALSE 

                lambda <- lambda[1:lam_pos] } 

            lam_pos <- lam_pos + 1} } 

    cv_results <- NULL 

    if (criteria == "c(BIC,AIC)") { 

     if (is.null(foldid)) {foldid <- randomly_assign(n, nfolds)} 

        for (i in 1:nfolds) { 

        train_x <- x[foldid != i, ] 

        train_y <- y[foldid != i] 

        test_x <- x[foldid == i, ] 

        test_y <- y[foldid == i] 

        train_weights <- weights[foldid != i] 

        if (lag == c(SARI,MSAI,PURESARI,MSAIMA,PUREMSAIMA)) { 

        cv_models <- lapplyinit_fit <- fit(x, s, tau, lambda = lambda_star,  
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                  weights, intercept, Vars) }} 

        if (cvFunc == "check") {cv_results <- cbind(cv_results, sapply(cv_models, 

model_eval, test_x,    

       test_y, tau = tau)) } 

       else {cv_results <- cbind(cv_results, sapply(cv_models, model_eval, test_x, test_y, 

func = cvFunc))}} 

   cv_results <- apply(cv_results, 1, mean) } 

    if (criteria == "BIC") {cv_results <- sapply(models, bic)} 

    if (criteria == "AIC") {cv_results <- sapply(models, bic, largeP = TRUE) } 

    lambda.min <- lambda[which.min(cv_results)] 

    return_val <- NULL 

    return_val$models <- models 

    return_val$cv <- data.frame(lambda = lambda, cve = cv_results) 

    colnames(return_val$cv)[2] <- criteria 

    return_val$lambda.min <- lambda.min} 
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APPENDIX B 

R Code for Simulation analysis 

X=c(sim(mean),sim(sigma))= ( 0.7662, 191.8901) 

e=c(sim(mean),sim(sigma))= ( 0.3995, 117.371) 

x<-rnorm(0 

phi<-function(par,x){ 

phi1_AR=c(par[1]i,par[1]ii,par[1]iii) 

Bigphi_AR=c(par[2]i,par[2]ii,par[2]iii) 

theta_MA=par[3] 

Bigtheta_MA=par[4] 

d= c(0,0,0,0) 

D=c(1,1,1,1)  

z=diff(x, differences=2) 

s=(QTR1:QTR4) 

residual(AR)=e 

  par[1]i= 0.0835,    e[1] = 0.1062,    par[2]i= -0.4812, par[2]ii= -0.4703,   par[4] = -

0.6159,    = 0.6159, 

                   mm ~z=0.6813.  

model<-par[1]i*(z-z[1])+par[1]ii*(z-z[1]-z[2])+par[1]iii*(z-z[1]-z[2]-z[3]-d) 

+par[2]i*(z-z[1]-length(s))+par[2]ii*(z-z[1]*2length(s))+par[2]iii*(z-z[1]*3length(s)) 
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+par[3]*(e-e[1])+par[4]*(e-e[1]) + nls( mm ~z + e, data =dat$rainLagos,start = c( xmid = 

0, scal = 1 ),alg = "bilinear", trace = TRUE ) 

residual<- model 

e<-rnorm(250, mean(residual),sigma(residual)) 

sim<-rnorm(250,0, residual(initialmodel)) 

X=c(sim(mean),sim(sigma)) 

x<-rep(X,0,50) 

repeat for  

e<-rnorm(500, mean(residual),sigma(residual)) 

sim<-rnorm(500,0, residual(initialmodel)) 

and 

e<-rnorm(1000, mean(residual),sigma(residual)) 

sim<-rnorm(1000,0, residual(initialmodel)) 
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APPENDIX C 

Rainfall data presentation 

Source: Department of Metrological Services 

Register of Rainfall in 19….. 

Station: IKEJA       Station Number:             State: LAGOS 

Latitude: 06°35ᶦᶰ         Longitude: 03°20ᴵᴱ                Altitude: 128.55m 

 

 

 

 

 

Record of rainfall measured at 06 GMT in Nigeria and entered against day preceding 

that on which read, in accordance with the Nigerian instructions in form met. 111/2. 
  

   Date Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

1984 
mm Mm mm Mm Mm Mm Mm mm mm mm mm mm 

0 0 17 87.3 174.3 243.1 129.9 143.7 399.6 116.5 61.9 2.2 

1985 4.6 4 64.3 188.2 238.2 134.1 116.2 110.9 152.6 105 110.9 0 

1986 21.2 30.4 95.6 114.2 210.2 172.3 54.3 3.9 84.2 202.1 52.5 0 

1987 0 35.8 78.7 71.7 139.1 327.3 109.2 419.1 362.1 84.3 48.5 0 

1988 3.1 58 64.5 158.1 108.9 487.4 481.7 129.9 183.4 132.1 32.2 87.3 

1989 0 0 132.1 102.7 229.6 186.9 325.5 107.2 67.2 216.3 1.2 0 

1990 0 6.5 5.8 186 119.7 219.2 567 16.8 183.2 180.6 54.7 71.7 

1991 31.9 6.3 92.9 230.6 201.4 208.3 198.2 34.8 184.9 96.6 33 52.8 

1992 0 0 8.6 95 353.8 231.3 154.6 16.4 152.7 86.2 79.8 5.5 

1993 0 45.7 138.9 134.5 249.4 224.2 183.8 55.2 248.5 139.7 209 46.7 

1994 21.3 9.1 89.1 53 195.1 306.2 73.8 61.4 72.1 161.2 66.4 85 

1995 0 46.3 115.8 178.6 222.6 247.2 223.1 117.3 146.4 202.5 41 48.8 

1996 15.3 188.3 98.7 230.4 131.2 175.5 268.4 170.4 117.4 135.3 43.3 0 

1997 0 0 86.2 171.3 224.1 619.5 99 139.1 225.5 287.9 126.2 41.1 

1998 8.8 13.6 30.8 73.2 114.8 256.9 52.2 29.6 147.7 220.2 92.1 0 

1999 17.4 36.8 51.2 189.4 67.9 338.4 347.9 29.6 113.3 221.7 102.2 26.9 

2000 0.3 12.5 21 77.9 138.8 196.2 103.8 86.3 436.6 133.6 32.8 11.3 

2001 1.6 10 22.2 190.4 265 218 106.5 24.7 255.7 183.8 59.5 54.7 
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2002 44.9 21.5 35.1 336.3 145.9 329.5 346 45.2 188.6 142.7 149.2 9.7 

2003 174.4 53.4 79.1 308.1 157.4 78.1 69.5 18.5 185.2 141 184.8 0 

2004 6.4 45.7 122.8 291.1 306.1 213.9 94.5 68.5 321.2 160.9 50 20.5 

2005 0 93.1 78.2 94.1 185.3 392.3 225.3 15 194.2 94.8 96.4 16.2 

2006 44.2 10.7 121.8 26.4 294.3 264 52.8 65.7 327.6 191.3 95.3 4.6 

2007 0 0 76.1 31.6 253.7 361.7 228 146.1 160.1 120.3 118.3 5.4 

2008 0.8 3.3 69.6 96.8 230 365 442.7 134.3 226.8 98.8 98.9 49 

2009 1.6 16.3 33.9 115.5 154.2 463.2 119 12 84.1 342.7 48.7 0 

2010 37.2 42.4 68 126.9 159.3 368.7 130.8 190.6 235.7 122.8 193.8 76.7 

2011 0 87.2 21.6 74.7 170.6 251.9 476.9 43.7 175.3 209.3 240.5 0 

2012 10.5 122.2 78.1 124.7 134.9 478.8 152.1 34.3 214.1 148.9 123.2 0 

2013 133.7 34.7 121.8 202.3 339.4 108 190.8 12.6 165.3 125.6 249.9 47.9 

2014 90.7 94.9 76.9 164.8 305.7 295.4 326.2 221.5 240.2 178.2 186.4 8.9 

 

 

 

 

 

     


