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Abstract
A sensitive investor seeks to diversify assets and optimal portfolio which provide

the maximum expected returns at a given level of risk. Optimal portfolio problems

of an investor with logarithmic utility have been studied. However, there is scarce

information on other utility functions, such as power utility function, which cap-

tures the concept of diversification of portfolios. This study was therefore designed

to consider the general expected utility of a sensitive investor in a financial market.

Two models were derived from the Itô’s integral with respect to power utility

function. The extension of the Itô’s integral by forward integral with its lofty

properties was used to diversify the investors portfolio. A filtration was built

and used as a set of information for the investor. A semimartingale was used to

enlarge the investors information. A probability function was defined to capture

the activity of an insider in the market and penalty function was established to

punish such an insider. A priority Mathematical software was used to compute the

investors varying rates of volatility.

The models derived were:

U ′ (Sβ1γ1+yφ(T ))Sβ1γ1+yφ(T )|M(y)| = Syβ1γ1+yφ(T )|M(y)|

and ndist = (1 − C1C2)(ρkt + πt), respectively, where U ′(x) = dU(x)
dx

is satisfied if

supy∈(−δ,δ){E[Sβ1γ1y+yφ(T )|M(y)|p] <∞} for some p > 1

0 < E[U ′ (Sβ1γ1+yφ(T ))Sβ1γ1+yφ(T )] <∞

Sβ1γ1+yφ(T ) = Sβ1γ1+yφ(T )Nβ1γ1(y),

where

Nβ1γ1(y) := s0 exp

∫ T

0

[µ(s)− r(s)− σ2(s)β1(s)γ1(s)]ds+

∫ t

0

σ(s)dW (s)

for all β1γ1, φ ∈ AG such that AG is the set of admissible portfolios with diversi-

fication and φ bounded, then there was existence of δ > 0 and y ∈ (−δ, δ), where

W (t) is the Brownian motion (representing the fluctuation of the risky asset), on

a filtered probability space (Ω,F , {Ft}t ≥ 0, P ) and the coefficients r(t), µ(t), σ(t)

are G = {Gt}0≤t≤T adapted with Gt ⊃ Ft for all [0, T ], T > 0 a fixed final time.
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The Itô’s integral is adapted to the filtration F = {Gt}0≤t≤T . The forward in-

tegral showed that when an investor buys a stochastic amount α units of this

asset at some random time τ1 and keeps all these units up to a random time

τ2 : τ1 < τ2 < T , and eventually sells them at a subsequent time, the profits re-

alised would be αW (τ2)−αW (τ1) expressed as forward integration of the portfolio

φ(t) = αI(τ1, τ2](t), t ∈ [0, T ] with respect to the Brownian motion W (t) i.e.∫ T

0

φ(t)d−W (t) = lim
∆j→0

∑
j

φ(tj)×∆W (tj) =

∫ τ2

τ1

dW (t) = αW (τ2)− αW (τ1)

The filtration G = {Gt}0≤t≤T outlined the information flow of the investor. The

semimartingale integral
∫ T

0
φ(t)dW (t) =

∫ T
0
φ(t)d−W (t) gives a decomposition

W (t) = Ŵ (t)+A(t), 0 ≤ t ≤ T , where
∫ T

0
φ(t)dW (t) =

∫ T
0
φ(t)dŴ (t)+

∫ T
0
φ(t)dA(t);

for Gt = Ft ∨ αW (T0); 0 ≤ t ≤ T i.e. Gt is the result created by Ft and the fi-

nal value W (T0), where Ŵ (t) is a Gt-Brownian motion and A(t) is a continuous

Gt-adapted finite variation process. The probability of detecting and punishing an

insider was λ1 = 1 and λ2 showed the penalty on an insider observation. The

varying rates of volatility σ = 1, 0.5, s0 = 100, µ = 1, revealed that the expected

return is more when volatility σ = 1, thereby yielding optimal portfolio.

The optimal portfolio of a sensitive investor was established using power utility

function and showed higher investors return as the investor diversified his invest-

ment.

Keywords: Power utility function,Diversification, Itô-integral, Semimartingale.

Word count: 464
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Chapter 1

INTRODUCTION

1.1 Background

The present economic situation in Nigeria means that reliance on a single source

of income can no longer satisfy the needs of an average middle class family. Thus,

the need to explore multiple streams of income is on the front burner of many

Nigerian homes. Possible means of achieving multiple streams of income, but better

means is to invest in an asset and even better means is to invest in multiple assets.

In economics, we know that man’s needs are insatiable, thus man always seeks for

means to increase his expected financial returns.

A person who seeks to put finances into the acquisition of an asset in other

to get higher returns is called an investor. Generally, investors are classified into

three categories, namely: risk neutral, risk averse and risk seeking. Risk-averse is

someone who avoid taking risk thus so conservative, risk-taker on the contrary is

ready to take more risk hoping to gain more return and risk neutral also called

risk-indifferent who is neither risk-averse nor risk-taker. The investors attitude to

risk determines his investment preference, for example, a risk averse investor would

prefer to put his money into a bank account, invest in bonds or put his money

into a fixed deposit. Also, the expected returns of an investor is determined by his

attitude to risk. The expected returns of a risk seeking investor is always higher

than that of a risk averse investor. However, the risk averse investor has a chance

of getting his expected returns through diversification.

A sensitive investor is an investor who has the means and seeks to diversify

investment. He or she desires the most favorable portfolio which provides maximum

expected returns at a specified level of risk. A portfolio is a group of assets. Thus,

the investor considered in this study is one who wants to be engage in both small

and multiple investment. Many financial institutions such as banks, insurance,

commercial institutions, real estates and public sectors who opt for higher returns

at acceptable risk levels are in these category of investors and are referred to as

sensitive investors. This is because some banks are into hostel and residential
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developing contracts with universities and big organisations to be managed before

handing over.

Risks occur as a result of data that are uncertain. Risk is also seen as the

likelihood of actual future returns varying from the expected returns. However,

from the context of security and investment analysis, risk is also the likelihood

that real cash flows will be different from the estimated cash flows Moyer et al.

(2006). Risk and expected returns are intrinsic part of investments and are treated

concurrently. A sensitive investor seeks and resorts to diversification so as to spread

investment and reduce risk. A diversified portfolio or group of assets has a smoother

risk behavior, that is, it is a much more robust investment option Derman (1994).

Diversification aims to reduce the unsystematic risk in an investment portfolio

which occur as a result of mismanagement, poor forecasting accuracy or wrongful

planning process and decision making. Diversification helps to reduce the volatility

of portfolio performance. This is because holding diverse assets implies that the

price of diverse assets does not change in the same direction, at the same time or

at the same rate. Thus, diversified portfolio is more robust with less variation in

expected return.

Good portfolio management entails active investment and paying close attention

to market trends against spontaneous shift in the economy and changes to the

political landscape as well as factors that may affect some organisations. This

enables monitoring transactions that could affect the price of assets in other to take

decisions that might boost higher returns and hedge against loss. For example, the

risk of exchange rate variance significantly affect the utilities and portfolio choices

of both domestic and foreign investors. As a result, the variance and correlations in

returns are unpredictable Mandelbrot (1963), therefore, there is the need to hedge

risk against any unforeseen circumstances.

In the business environment, good investment performance is primarily deter-

mined by the quality of the investment decisions, which are invariably made in an

environment of uncertainty concerning technology, market-places, competitors, le-

gal issues, and so on. Sub-optimal decisions can hamper a business, and sometimes

cause serious damage. In many cases, sub-optimal decisions are made because the

right information is not available or because there is not enough data. However, in

2



some cases the fault lies in the method used to arrive at the decision Manganelli et

al. (2014). Therefore, what determines an investors success are well-considered de-

cisions and good risk management as well as exhaustive research on every possible

scenario and options available for increasing investors profit.

Many studies have considered optimal portfolio with logarithmic utility. How-

ever, logarithmic utility which considers present investment opportunities does not

fully capture the concept of diversification, therefore, we can say it is short-sighted

or myopic. However, power utility considers future investment opportunities and

is thus a more robust option than logarithmic utility.

1.2 Motivation for the study

Generally, an investor desires maximum expected returns on his investment. Thus,

investors are always and will always be on the lookout for means that guarantee

greater return on investments while hedge against risks. Many studies have consid-

ered investors portfolio using logarithmic utility. However, logarithmic utility does

not keep an eye on future investment opportunities and is thus myopic. Thus, it

does not adequately take care of diversification of assets which is the crux of the

matter for a sensitive investor.

The sensitive investor makes use of the information he or she has to hedge

against future risks. This motivates us to look at a different utility which adequately

takes care of the concept of diversification of assets for the sensitive investor.

1.3 Statement of problem

The Optimal portfolio problems of a sensitive investor is the subject matter of this

research work. Optimal portfolio problems of an investor with logarithmic utility

have been studied. Logarithmic utility does not capture the concept of diversifica-

tion. Hence, it is referred to as myopic. However, there is scarce information on

other utility functions, such as power utility function, which captures the concept

of diversification of portfolios. This study was therefore designed to consider the

general expected power utility of a sensitive investor in a financial market.
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1.4 Research aim and objectives

This research studied a sensitive investors portfolio which yields maximum ex-

pected returns by considering a general expected utility of a sensitive investor.

The objectives are:

1. To provide measures of reducing risk in investment via diversification and

specification of small scale investors

2. To provide multiple assets diversification with restrictions for investors on

the quantity of assets to be held due to transaction cost and risks.

3. To provide characteristics of optimal portfolio of a sensitive investor with

insurance cover

4. To provide effective risk management of portfolio investment through assets

diversification for large scale investors under insurance cover

5. To provide measures of curbing information asymmetry in the market.

1.5 Research methodology

A model was derived from the Itô’s integral with respect to power utility function.

The extension of the Itô’s integral by forward integral with its lofty properties was

used to diversify the investors portfolio. A filtration was built and used as a set of

information for the investor. A semimartingale was used to enlarge the investors

information. A probability function was defined to capture the activity of an insider

in the market and penalty function was established to punish such an insider. A

priority Mathematical software was used to compute the investors varying rates of

volatility. The filtration, N = {Nτ}0≥T is slightly bigger than F = {Fτ}0≤τ≤T of

D(τ). A sensitive investors business logistics is $(x,w) = I{τ1<x≤τ2} and considered

as a buy-and-hold strategy that is, we assume D(τ) is the risky assets price at time

τ , if an investor purchases the fluctuating amount α units of such asset at time

τ1 of unpredictable process and eventually decide to keep them to a certain time

τ : τ1 < τ2 < T , and sell them at a subsequent time, the profit realised would be

αD(τ2)− αD(τ1)

$(τ) = αI(τ1, τ2](τ), τ ∈ [0, T ]
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with respect to D(τ) ∫ T

0

$(τ)d−D(τ) = αD(τ2)− αD(τ1),

where τ1, τ2 are bounded random times.

In as much as$(t) is forward integrable with respect toD(t), then
∫ T

0
$(t)dD(t)

is a semimartingale integral and∫ T

0

$(t)dD(t) =

∫ T

0

$(t)d−D(t), (1.1)

where $ is adapted to Nt ⊃ Ft, and such that D(t) is a semimartingale with

respect to Nt filtration and with a decomposition

D(t) = D̂(t) + A(t), 0 ≤ t ≤ T, (1.2)

where D̂(t) is a Nt- Brownian motion and A(t) is a continuous Nt-adapted finite

variation process. If A(t) has the form

A(t) =

∫ t

0

α(s)ds, (1.3)

then the process α(.) is the information drift. In general, if a relation of the form

(1.2) holds, then we define∫ T

0

$(t)dD(t) =

∫ T

0

$(t)dD̂(t) +

∫ T

0

$(t)dA(t). (1.4)

Let T ≤ T0 and

Nt = Ft ∨ ωD(T0); 0 ≤ t ≤ T (1.5)

that is, Nt is the ω-algebra produced by Ft and the final value D(T0), where T0 is

the final time. Then

D̂(t) := D(t)−
∫ t

0

D(T0)−D(s)

T0 − s
ds; 0 ≤ t ≤ T (1.6)

is an Nt- Brownian motion, as such (1.2) is established with

A(t) :=

∫ t

0

D(T0)−D(s)

T0 − s
ds; 0 ≤ t ≤ T. (1.7)

By (1.4), we get∫ T

0

$(t)dD̂(t) +

∫ T

0

$(t)dA(t) = lim
∆τj→0

∑
j

$(tj)∆D(tj)

5



=

∫ τ2

τ1

dD(s) = D(τ2)−D(τ1)

=

∫ T

0

$(t)d−D(t)

and

∫ ∞
0

$(s)d−D(s) = lim
δ→0

∫ ∞
0

$(s)
D(s+ δ)−D(s)

δ
ds

Given that $ is cáglád and continuous on the left with right limits, then

∫ s

0

$(s)d−D(s) = lim
∆sj→0

∑
j

$(sj)×∆D(sj)

We have this as

$(s) =
∑
j=1

$(sj)I(sj, sj+1](s)

then

∫ ∞
0

$(s)d−D(s) = lim
δ→0

∫ ∞
0

$(s)
D(s+ δ)−D(s)

δ
ds

=
n∑
j=1

$(sj) lim
δ→0

∫ sj+1

sj

D(s+ δ)−D(s)

δ
ds

=
n∑
j=1

$(sj) lim
δ→0

1

δ

∫ sj+1

sj

(∫ s+δ

s

)
dsdD(s)

=
n∑
j=1

$(sj) lim
δ→0

1

δ

∫ sj+1

sj

δdD(s)

=
n∑
j=1

$(sj)(D(sj+1)−D(sj)).

Assuming optimal sensitive investors portfolio ν∗(t) exists, then ν∗(t) = β1γ2

equally exists implying that if the investor diversify his investment by leasing to

yield huge fund, where $ = ω(t)ν∗(t). Our analysis have shown that the higher

the drift and volatility, the more the expected return which represents a positive

investment. It is also observed that the expected return on the utility function of

an investor investing α = 2p − 1 of his money when the probability of realising a

positive expected return is more than 0.5.
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1.6 Structure of the study

The structure of this thesis is highlighted as follows. In Chapter One, we present

the introduction. In Chapter Two, we present the literature review. Chapter Three

consists of relevant mathematical preliminaries for this study. The lofty properties

of forward integral, which is an anticipating integral couple with its techniques and

the implications of using this model were presented. In Chapter Four, the varia-

tional method of a sensitive investor’s optimal portfolio were presented. Finally, in

Chapter five, we present our conclusions and further research focus.
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Chapter 2

REVIEW OF LITERATURE
The choice of portfolio is a classical issue in mathematical finance, where the

principal intention of any investor is to seek for the best quantity of money to

invest in the risky assets for a benefit. The establishment of optimal portfolio con-

stitute some difficulties for market partakers since they operate in an unpredictable

environment.

Harry Markowitz (1952), initiated the mean-variance (MV) model, developed

the choice of portfolio problem as an optimisation problem, that is made up of

minimising the variance (an investors risk measure) of the final value for a wished

amount of expected return. He considered highest expected return with a minimum

variance in return, which is not always the case.

Michaud (1989), observed that the mean-variance optimised portfolios are diffi-

cult to comprehend and made it difficult for investors to practice easily. However,

in the actual sense, the Markowitz formulation fail to consider the investors con-

sumption.

Another interesting area of study in the sense of portfolio optimisation is con-

cerned with the utility theory as well as expected utility maximisation, where the

likes, preferences and desires of investors are expressed by the utility function. In

this sense, investors goal is to maximise the expected value of the utility function..

The general continuous-time issue of optimal consumption and choice guideline

of portfolio was considered first by Merton (1971), and established the concept

for dynamic portfolio selection under unpredictable scenario. Mertons concept of

dynamic programming inspired a partial differential equations (PDE) of nonlinear

which is complex and a general issue considering the process controlling the volatil-

ity; this appearance makes it challenging to determine the best approach for the

portfolio and ideal consumption. However, Merton (1967) clearly proffer a PDE

based solution under a consistent risky asset volatility.

Up to date, researchers have developed and sustained huge interest on portfolio

optimisation problems with stochastic volatility. Fleming et al. (2003) resolved

the long standing issue of both the consumption and the choice of portfolio simul-
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taneously, where the driven stochastic volatility is related to the diffusion process.

In contrast Goll and Kallsen (2003), obtained clear results for portfolios exhibiting

log-optimal in a complete market with semimartingale specification of the price

process.

Kramkov et al. (1999) considered arbitrage-free model where relevant results

for the problem of optimal investment was established. Chacko and Viceira (2005),

achieved more promising result for an incomplete market driven by the CIR model

(1985). Bae et al. (2015), established a time-varying volatility model of a stock

market through the process of regime switching method and a constant interaction

influence.

However, an issue synonymous with that of Merton was resolved by Brennan

(2000),(2001),(2002) and Wachter, (2003). Liu, (2007) introduced a clear solution

to the problem choice of portfolio dynamics, where the risky assets return are

controlled by a “quadratic process”, which takes the form of Markovian diffusion

process as well as a consistent relative risk aversion (CRRA) of investors utility

function. Coulon (2009), numerically solved the Merton model with a robust finite

difference method. He admitted that the condition of convergence were looked

upon, and the method proposed needed to be recast for the time-discretisation to

converge. The revisiting of the portfolio choice problem and optimal consumption

of an investor with access to a risk-free asset and with a consistent expected return

and stochastic volatility. His intention was double, first he determined a detailed

portfolio dynamics solution as well as the issue of selection, when the returns of

the risky assets is volatile and controlled by priority process of Ornstein-Uhlenbeck,

for an investor under (CRRA). Secondly, he computed several numerical test with

the aid of the obtained solution to be able to resolve the optimal amount that

is sensitive as well as the consumption and several variables in the model. The

risky asset expected return, investors risk-averse, the force of mean-reverting, the

long-term mean together with diffusion coefficient of the stochastic influence of

Brownian motion was also considered.

Russo et al. (1993),(1995),(2000) considered the forward backward stochastic

integral and introduced a larger class of gaussian finite variation process as well as

approximating the integrator. Kreps (1981) introduced the exclusion of arbitrage
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behavior as a requisite and sufficient criterion for economic balance. Alexander et

al. (2004), (2006) considered the European pricing and hedging of options spread of

assets correlation as the return of each assets marginal distribution exhibit normal

distribution mixture. Becker (1980) established a constant variance elasticity as the

main behavior of stock price than lognormal model. Bingham (2004) considered the

risk-neutral model as the most efficient numiraire for pricing option. Brigo(2002),

(2003), (2004). considered the densities of log-normal allowing several means as

well as hyperbolic-sine type processes.

Elliot, (1991) introduced the incomplete market as a result of incomplete infor-

mation which generated unequal martingale measure, and thought of minimising

the martingale measure P̂ to preserving the structure of the market. The use of

the non restrictiveness in making speculations over µ and σ for price, and the

choice of σ and µ be made strong to abate arbitrage, and introduced µ = 1
2

where

σ = 1, which implies knowing the maximal stock price in advance was introduced

by Imkeller et al. (2001).

Two investors with logarithmic utility functions comprised of one who make

his portfolio decisions based on the available information while, the other possesses

additional information was considered by Amendinger et al. (2003). It was ob-

served that unequal information between investors in the market does not forster

unity and discourages both local and foreign investors as a result, Corcuera et al.

(2004), established equal information for every trader in the market due to defor-

mation of insiders knowledge. He obtained, a semimartingale decomposition of the

process and observed that the slow vanishing of the process confirms no arbitrage

and shows the finiteness of the insiders additional utility. Leon et al. (2003), estab-

lished a vital observation of an investor possessing extra information of the future

development of the market known as an insider of the market. Ackerman et al.

(2015), introduced insider trading laws and regulations of investors in the market.

Karatzas et al. (1996), established a penalty function f(x) := −Cxγ, 0 < γ < 1

and C > 0 where C is relative to the crime, γ , represents the law and enforcement

agencies.

Heston et al. (1993), studied a stochastic volatility with simulation showing

assets price relevance for explaining returns. Applebaum et al. (2009), introduced
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a purely discontinuous model process since the returns of assets are usually defined

as increments of log stock prices, that is log L̂t − logLt−1 where

L̂t = L0 exp(Xt)

with X = (Xt)t≥0 as the corresponding return process. Kaur et al. (1994), estab-

lished the dominance of an investment that guaranteed a higher return with higher

risk over an investment with high utility rate and lower risk.

Anderson et al. (2013), obtained Optimal returns in real estate investment as

much effort of the brokers. The brokers through the media highlight those features

that satisfies the customers. Such as the architecture and high technological design,

urban planning, quality of the luxury. During marketing process however, strategies

that require long time payment with higher price than the normal market price

would be initiated. Amunuay et al. (2016), considered some parameter λ in the

Black-Scholes equation which depends on the interest rate ρ and volatility σ while

λ changes as the value of ρ and σ equally varies. Meilling Deng (2015), studied

sufficient conditions for stochastic permanence, extinction, global attractiveness

and stability in a stochastic competitive model with Markov switching.

Qiang Li (2015) considered a risk-averse firm which procures some kind of com-

modity from the spot market as a major input for production. Nualart et al. (2004)

introduced a restrictions on the integrands in Itô stochastic integral for the fact

that the measurability condition which prescribes that the integrand is independent

on the future increments of the integrator.

Ali et al. (2016) introduced the traditional portfolio selection problem geared

by establishing four constraints such as collinearity meant to decrease the portfolio

risk, active stock to regulate risk, as well as to increase the un-expected return

which is the course of inefficient market and finally to control the net risk of the

portfolio.

Cox-Ross et.al (1985), considered logarithmic utility, where the optimal size of

money on stock absolutely rely on the model parameter. The optimal portfolio

with logarithmic Utility disregards the differences between the present value and

influence of the future of an economy, as a result, it is myopic. Because,the size

of wealth owned in stock appears to be the same throughout the periods of time,

even at the random change of variables of the market. Furthermore, power utility

11



functions would consider future investment opportunities. For example, if the cur-

rent interest rate of the risky assets is presumed higher than the future, a sensitive

investor might be receptive to the risky assets investment to take advantage of its

unpredictable drop in the future. In this respect, we look at the general expected

utility function which maximise a sensitive investors portfolio. Our model is built

from Biagini et al. (2008) and Nualart et al. (2003) whose aim was to take undue

advantage of the more acquired information to maximise the expected logarithmic

utility from the final amount, we are using forward integral which is an anticipating

integral to maximise the general expected utility from the final wealth of a sensitive

investor whose intention is to diversify investment with the information he or she

has.
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Chapter 3

METHODOLOGY

3.1 Introduction

Relevant mathematical tools used in this study were discussed in this chapter.

Firstly, we consider the background of stochastic calculus consisting of definitions

and some concepts of a financial market. Thereafter, we discuss utility functions

with emphasis on power utility functions. We conclude this chapter by discussing

the forward integral.

3.2 Some background of stochastic calculus

The procedures for valuation of derivatives is centered on a vital specification of

a stochastic process for the underlying assets. Stochastic calculus is essential in

the analysis of such processes. Here we discuss some important ideas on stochastic

analysis and market theory that show the modern approach to the mathematical

modelling and pricing of contingent claims. Wilmott (1998) and Tan (2006).

Definition 3.2.1 Measurable space (Ω, β)

A pair (Ω, β) comprising a sample space Ω and a σ-algebra of subsets of the sample

space Ω, is called a measurable space and a member of β is a measurable set.

Definition 3.2.2 A measure µ

Let a measurable space be (Ω, β). Then a map µ : β → R∗+ = [0,∞) ∪ {∞} is

called a measure provided that

(i) µ(φ) = 0.

(ii) µ(
∞⋃
n=1

An) =
∞∑
n=1

µ(An) for any pairwise disjoint sequence of members of β.

Definition 3.2.3 A measure space

Let (Ω, β) be a measurable space and µ a measure on β. Then the triplet (Ω, β, µ)

is a measure space.

Remark 3.2.3.1
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1. A measure space (Ω, β, µ) such that µ(Ω) < ∞ is finite and µ is a finite

measure

2. We assume all measure spaces are finite.

Definition 3.2.4 A complete measure space

Given (Ω, β, µ) a probability space where ñ ∈ β and m̂ ∈ β, µ ˆ(m) = 0 and ñ ∈ m̂,

that is, all subsets of a set when measured gives zero and are measurable, then µ

is called complete and (Ω, β, µ) is called a complete measure space.

Definition 3.2.5 Space of random variable

A random variable assigns to each elementary event ω a real value (or vector of

values). In our context the random variables mostly stand for payments or values

of financial products depending on the state of the world.

A random variable X is a F -measurable function defined on a probability space

(Ω,F ,P) mapping its sample space Ω into the real line R:

X : Ω→ R.

Since X is F -measurable we have

X−1 : β → F .

A random variable X is F -measurable if the value of X is completely determined

by the information in F . Formally speaking, a map X : Ω → R defined on a

probability space (Ω,F ,P) is called F -measurable if

X−1(U) = {ω ∈ Ω : X(ω) ∈ U} ∈ F

for all open sets U ∈ R. A probability space is a triplet (Ω, β, µ) comprising of a

set Ω, a σ-algebra β of subsets of Ω and a measure µ on the measurable space such

that µ(Ω) = 1.

Remark 3.2.5.1

Let (Ω, β, µ) be a probability space. Then Ω consists of the set of sure outcomes.

The members of Ω are called sample points or an elementary event, while a member

of β is the event. If A ∈ β, then µ(A) means event A will occur.

Definition 3.2.6 Filtration

From our remark above (Ω, β, µ) and F(β) = {βt : t ∈ [0,∞)} a collection of sub

σ-algebra of β satisfying:
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(i) β0 contains all the µ-null members of β.

(ii) βs ⊆ βt for t ≥ s ≥ 0;

(iii) F(β) is right-continuous for βt+ = βt, t ≥ 0 where

Bt+ =
⋂
s>t

βs

then F(β) = {βt : t ∈ [0,∞)} is called a filtration of β and (Ω, β, µ,F(β)) is the

stochastic basis or a filtered probability space.

A filtration or information flow on a probability space (Ω,F ,P) is an increasing

family of σ-algebras Ft t ∈ [0,∞) such that Fs ⊆ Ft if s ≤ t. Ft then is the current

knowledge or information at t, and does grow as time progresses. Suppose the set

of possible events is F , in that sense Ft ⊆ F . We denote the filtration (Ft)t∈[0,∞)

by the symbol F.

A probability space which is equipped with a filtration F is called a filtered

probability space and denoted by (Ω,F ,F,P). One can intuitively say that The

probability of the occurrence of a random event will changes as more information

is revealed with time.

Filtration explicitly explain the flow of information which explains those things

that are known based on the present information from those things regarded as

random at a specific time t.

A rational investor would automatically ascertain if event A ∈ F has occurred

or not based on the available information Ft. Assuming the value of X is explic-

itly unveiled at time t or X is totally known by the information F , then X is

F -measurable random variable.

Definition 3.2.7 Adapted process

A stochastic process (Xt)t∈[0,∞) is said to be Ft-adapted with respect to the infor-

mation structure (F t)t∈[0,∞) if for each t ∈ [0,∞) , the value of Xt is revealed at

time t, the random variable Xt is Ft-measurable. An adapted process is also called

a non-anticipated process.

3.2.1 Stochastic processes

A stochastic process is a set of random variables indexed by t. A family {Xt :

t ≥ 0} of R-valued random variables parameterised by time t ∈ [0,∞) stated on a
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probability space (Ω,F ,P) is a stochastic process Shreve (2004). However, t can

either be discrete or continuous. In any occurrence of ω ∈ Ω randomness, there is

a trajectory part t → Xt(ω) which assume function of time as well as the sample

path of the process. We assume this sample paths are right continuous. The index

t is the time, we consider the fact that events become less unpredictable as several

information on that events becomes available as time progresses Schwert (1989).

It becomes vital to describe how several information about the event is unveiled.

However, achieving this is by introducing the idea of a filtration in which other

important concept such as past information, predictability and adaptiveness of

the process Francesco et al. (2014) and Fouque et al. (2000). A filtration is the

information or knowledge of a stochastic process at a certain time.

3.2.2 Markov processes

A Markov process is a special type of stochastic process where only the present

value of a variable is necessary for predicting the future. The past history of

the variable and the way the present emerged from the past is irrelevant Howard

(1971), Kemeny (1974) and Schonbucher (1999). A Markov process is a stochastic

process for which the future does not rely on the past, but only the present. It

is the building block of many stochastic processes, such as some path-dependent

stochastic processes.

Definition 3.2.2.1

A stochastic process (Xt) t ≥ 0 defined on a probability space (Ω,F ,P) is called a

Markov process if:

P (Xt ≤ x|xu) = P (Xt ≤ x|Xs)

for 0 ≤ u ≤ s ≤ t. A sequence with the Markov property is a Markov chain in the

sense of discrete-time. Diffusion is often used in finance.

A diffusion process is equally a Markov process whose paths are consistent with

time Dumas (1998). It generalises the Brownian motion, which accommodate wider

class of events to be studied. Another interesting example of a Markov process is

the Poisson process, in that predicting the future should not affect the price of

assets a week ago, neither a month ago or a year ago. The necessary information

needed is the price now. Because predictions are unpredictable it is best expressed
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in the form of probability distributions Cont (2004). The Markov property entails

that the probability distributions of the price at the future time does not dependent

on the specific path the price followed in the past.

3.2.3 Brownian motion

The Brownian motion is another example of stochastic process often used for mod-

elling of stock price fluctuations. The paths of a Brownian motion are continuous

but very erratic. There are some interesting properties of Brownian motion. A

Brownian motion is also a Markov process. This implies that the future value of

the probability distribution process depends solely on its present value and does

not dependent on the past values.

Therefore, only the present process values information is required in making

prediction about the future. Also, even though a Brownian motion is continuous, it

is no where differentiable. Furthermore, a Brownian motion does not have parts of

bounded variation, i.e. a Brownian motion can assume any real value irrespective

of how big or non-positive the values are. ψ = {ψ ≥ 0} with its definition on

(Ω,F , θ) is Brownian satisfying the following:

(i) The trajectory of ψ are θ-a.s are incessant and unending.

(ii) θ(ψ0 = 0) = 1.

(iii) 0 ≤ s ≤ t, ψ − ψs has similar distribution with ψt−s.

(iv) For 0 ≤ s ≤ t, ψ − ψ does not dependent on {ψ ≤ s}.

(v) For each t̃ > 0, ψ has equal distribution as normal random variable with

variance ť.

3.2.4 Martingale

Martingales are necessary and useful in the stochastic process study. A stochastic

process in the theory of probability is a martingale if its sample path does not have

any trend. That is, a stochastic process whose future movements are uncertain.

It implies a fair game modelling, martingale strategy requires a gambler to

double his bet after losing. In line with this martingale strategy, a gambler can
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regain his earlier losses as well as his initial amount of wealth couple with an initial

bet Musiela (2005). Therefore, the strategy of martingale implies that after several

gambling, gains or lose nothing and have a constant wealth on the average.

Furthermore, martingale is absolutely a random process such that, observing

the process history, the expected value of the process at a later time is its present

value. i.e. E(Mt) = E(M0) ∀t ≥ 0 It is equally seen as a constant on average shown

from our third condition below: the easiest forecast of unknown future value Mt

relying on the current time s information, Fs, is the value Ms known at time s.

Therefore, the expected value of a martingale M at some time T (based on the

initial information at time 0) equals its initial value M0

E[MT |F0] = M0

Definition 3.2.4.1

A process (Mt)t≥0 defined on a probability space (Ω,F ,P) is a martingale with

respect to {Ft}t ≥ 0 filtration, such that Ft ⊂ F satisfying the following conditions:

1. Mt is adapted to {Ft}t≥0 i.e. Mt is Ft-measurable for all t

2. E[|Mt|] <∞, for all t ≥ 0.

3. E[Mt|Fs] = Ms for all 0 ≤ s ≤ t P - a.s. replacing the equality by

≤(respectively)≥, then Mt becomes a supermartingale (respectively sub-

martingale).

i.e. sighting the future value based on the current information is not more than

the current value.

As the time goes, a submartingale gains or grows on the average. A super-

martingale is a stochastic process with the (downward) trend of negativity. A

supermartingale does not gain on average as time goes. A supermartingale and a

submartingale is also a martingale.

However, the random process that models the principle of randomness in the

real sense is a martingale. unarguably, a martingale means there should be no

future outcome prediction of events.

In this sense, assuming a stochastic process is a martingale, then its best future

values prediction is its present value. To ensuring the conditional expectation
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existence, the finite mean condition is necessary. Remembering the Markov process

definition earlier stated, whereby history is not necessary. An important example

of both a Markov process and a martingale is Brownian motion, which plays a key

role in stochastic calculus as well as in mathematical finance.

Definition 3.2.4.2

A portfolio consisting riskless and risky asset is a pair φ = (H0
t , Ht) of stochastic

processes on a filtered probability space (Ω,F ,Ft t∈T , P ) where H0
t and Ht are

respectively the sizes of risky and riskless asset in possession by an investor at time

t ∈ [0, T ]. The general worth of this portfolio at a specific time t is

Vt(φ) = H0
t S

0
t +HtSt

We express the essential nature of strategies in which the choice made on the

proportion of different parts of the portfolio does not change its worth, in other

words, alterations in the portfolio worth would only be the change on the asset

value no external withdrawals or additions to the portfolio are made.

Definition 3.2.4.3 A self-financing tamed strategy is a pair φ of adapted process

(H0
t )0≤t≤T and (Ht)0≤t≤T satisfying

1. ∫ T

0

|H0
t |dt+

∫ T

0

(Ht)
2dt <∞

a.s.

2.

H0
t S

0
t +HtSt = H0

t S
0
0 +H0S0 +

∫ t

0

H0
udS

0
u +

∫ t

0

HudSu

a.s. ∀, t ∈ [0, T ]

Definition 3.2.4.4

A strategy φ = ((H0
t , Ht))0≤t≤T is admissible assuming it is self-financing and sup-

posing the discounted wealth process Vt(φ) = H0
t S

0
t +HsSt of the similar portfolio

is positive, for all t, and such that supt∈[0,T ]Vt is square integrable.

Proposition 3.2.4.1

Let φ = (φ)0≤t≤T = (H0
t , Ht) be an adapted process with values in R2, satisfying∫ T

0

|H0
t |dt+

∫ T

0

(Ht)
2dt <∞
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a.s. Let Vt(φ) = H0
t S

0
t + HtSt and Vt(φ). Then φ defines a self-financing strategy

if and only if

Vt(φ) = V0(φ) +

∫ t

0

HudSu

a.s. for all t ∈ [0, T ].

Remark 3.2.4.1

The subject we are dealing with implies that the total alterations in the portfolio

make up are done without cost. In pricing option, we require self-funding strategies

replicating the option. Firstly, we construct an equal probability measure under

which the discounted price of assets are martingale.

3.2.5 Some notions of financial market

Financial market is where diverse people and organisations transact financial secu-

rities, commodities, and different items of worth that are exchangeable at affordable

cost and price that agree with the principle of supply and demand.

Securities involves stock and Banks, while commodities equally involves metals

of higher worth and produce of agriculture.

Economically, a market denotes the group of willing and determined buyers

and sellers of items or services and the tradings between them Copland (1992). In

an economy however, a security market is used to generate money, transfer real

assets in financial assets, ascertain prices that stabilise demand and supply as well

as create an environment of investment, a conglomeration of short and long term

investments, Brigham and Houston (2007), Brigham and Ehrhardt (2008).

Consequently, financial market is a market that facilitates fund generation or assets

investment. It also entails handing of several risks. It can be divided into the

following subgroups:

1. Capital market

2. Money market

3. Insurance market

4. Foreign exchange market

5. Derivative market
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6. Commodity market

Assets are financial products that are traded in the market. While the economist

categorically carry out research for some companies having share price, the financial

mathematician study the share price and uses vital mathematical tools such as

stochastic calculus to achieve a fair value of derivatives on stock Carr et al. (2002)

and Cont 2001.

We further give vital notions of financial markets where assets are traded

on a continuous basis to a fixed time horizon T . A filtered probability space

(Ω,F , {Ft}t ∈ T, P ) that is complete is our market model. where Ω is the set of

scenarios, the set of the parts of Ω is the set of events that may occur while P

measures their occurrence.

Financial products traded in the market is an asset. Some of the basic assets

or underlying assets traded in the market are:

1. A stock is the contract that permit its owner certain privileges of receiving

future dividends and final liquidation price, however, the amount of these

payments at execution time is unpredictable Fama (1965).

To acquire stock, means an investor automatically owns part of a company’s

assets and earnings French (1980). A shareholder purchase stock with the

motive of receiving a compensation in either dividends or capital gains form.

The stocks price is presumed to be log-normally distributed and thus can be

a minimum zero and a maximum of infinity.

2. Bond: Its a contract that pays its owner a known amount, known as the

face value at a known future date. A bond can as well periodically pay its

owner fixed cash dividends known as coupons or called a zero-coupon bond

otherwise.

3. Commodities: These are physical objects, typically natural resources or goods

such as:

1. soft commodities: cocoa,coffee and sugar

2. grains and oil-seeds: barley,corn,cotton,palm Oil etc.
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3. metals: copper, nickel,tin,etc.

4. precious metal: gold, platinum,silver, etc

5. livestock: cattle, etc.

6. Energy: crude Oil, fuel Oil,etc.

7. Index(e.g. S and P 500;FT-SEE 100) Simon (2001).

8. Interest rate (e.g. LIBOR).

Another important component of interest in the financial market are contingent

claims or derivatives since their evolution solely relies on the primary assets of the

market evolution Simon (2001).

Definition 3.2.6.1

A contingent claim with maturity T > 0 is an arbitrary Ft-measurable random

variable X.

Remark 3.2.6.1

A financial contract whose value at expiration depends on the price(s) of assets

underlying is a contingent claim. Some examples of contingent claims are:

1. Forwards and Futures: This is an agreement binding two counterparts, in

which one agrees to buy an asset from the other at some specified time in the

future, referred to as the delivery date, for some specified price.

The terms of the market contract necessitate the need to purchase the asset

at the delivery date. The amount paid for the asset is referred to as the

delivery price and is set when the contract is entered into. The main difference

between forward and futures contracts is that futures are traded through an

exchange whereby the parties do not interact directly and counterpart risk,

the risk that either party will default, is assumed by the exchange.

Forwards are traded in what is referred to as the over-the-counter(OTC)market,

whereby counterparts interact directly with one another Stout (1999). OTC

market is non-regulated and contracts are non-standardized,there is always

the possibility of a credit-risk. The foreign exchange movements are effec-

tively hedge with forwards.
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2. Swaps: A swap is a contract binding two investors in agreement to make

exchange in the future for several financial assets(either cash-flows) at a

known date based on the agreed formula that rely on the underlying as-

sets value. For instance accuracy swaps(exchange currencies) and interest

rate swaps(exchange fixed for floating interest payments).

3. Options: These are particular derivatives, characterized by non-negative pay-

offs. That is, option provides its owners with the possibility of endless profit

at a limited loss risk Gerber (1994) and Co et al. (2000). At a fundamental

level option is partition into two types: such as call options and put options.

Options are the most common types of derivatives Britten et al. (2000).

However, options are of two types: standard options, also known as vanillas,

there are actively traded at the exchange; as well as exotic options, which are

meant to satisfy the needs of their writers clients. There do not have active

market, therefore their value is achieved by using a model to determine the

premium.

Definition 3.2.6.2

An option is a financial contract that grants its holder the right, without any

obligation to buy (or sell) a specific underlying asset on or before a given date

T ≥ 0 in the future (expiry date) for an agreed price K ≥ 0, called the exercise or

strike price. Accordingly, one distinguishes between a call option (the right to buy)

and a put option (the right to sell), and between an European option (exercise only

at time T )and an American option(exercise at time t ∈ [0, T ]).

The time-dependent stock price underlying the option is denoted by S = S(t) =

St for t ≥ 0 and is assumed to yield dividend. Usually, underlying asset is not

transferable at the exercised of option, rather a cash flow of the money achieved.

The more flexible the option, the more expensive it will be. there are options not on

the underlying assets, but also on other derivatives. The range of possible options

is essentially unlimited.

3.2.6 Some examples of options

1. European Option: which may be exercised by its holder only at maturity

date T .
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2. American Option: which may be exercised by its holder any time up to

maturity date t ≤ T . An American derivative type is a contract whose

cash flows is usually influenced by the owner of the derivative. The owner

influences the flow of cash through the exercise strategy.

3. Bermudan Option: which may be exercised at maturity or at specific dates

before maturity. Bermudan option is intermediate between a European option

and an American option.

4. Asian Option: The payments promised by this option depend on the aver-

age primitive asset price. They are useful tools for hedging those volatile

assets. Several averages are usually used in the Asian type of contracts e.g.

arithmetic, geometric, weighted-arithmetic, e.t.c.

5. Israeli Option: An Israeli option is also a plain vanilla option which consists

some features that enable the seller of the option terminate the contract but

must pay the early exercise payoff and the penalty fee.

6. Russian Option: This pays the owner of the option the maximum price gained

by the underlying asset over the life of the option, discounted at some rate

λ > 0 Scheikman (2003). It is also called reduced regret

7. Barrier Option: This is a path-dependent option where payoff rely on whether

the underlying asset price hits a specific value during the option’s lifetime.

h = (XT −K)+
1infXt>B

8. Basket Option: The payoff of the option depends on the values of more

than one risky underlying asset, which typically do not evolve independently.

The payoff function of the basket option on underlying assets Si is given

by h = (
∑
wis

i − K)(+), where wi denotes weighted or share of the ith

underlying asset in basket.

9. Path-dependent Option: This is an option whose payoff do not only rely

on the stock price value at maturity but equally on the past history of the

underlying asset price.
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10. Lookback Option: These are path-dependent options whose payoff rely on

the max or min of the underlying asset price attained over a certain period of

time known as the lookback period. lookback option can be broadly classified

into: fixed strike and floating strike.

11. Perpetual option: A perpetual option is an American option with infinite time

horizon. For pricing perpetual options in B-S model, we only need to modify

the B-S model by removing the time-derivative term to obtain a steady-state

equation.

12. Passport option: It is call option on the trading account, that is, the owner

receives the positive part of the value of his trading account.

13. The Rainbow option: It involved several risky underlying. It is equally syn-

onymous to the basket option rather its underlying assets weight rely on their

performance. It pays a fixed amount or nothing at all, depending on the price

of the underlying assets at maturity. They have discontinuous payoffs.

14. Shout option: A shout option entitles the holder to alter certain features of

the contract during the life of the contract according to some pre-specified

conditions. the time of modification, known as the reset time, may be chosen

optimally by the holder or may be automatic upon fulfillment of some certain

preset requirements. In practice the terms which may be reset are the strike

and maturity of the option.

15. Tokyo option: This is also referred to as knockout barrier option consisting

region of caution. The option usually moves further from the safety position

into the caution status after the barrier first hit. But if the barrier hit while

still in the caution state, the option vanishes Fujita and Minura, (2002).

16. Spread option: The payoff of this option rely on the difference of two under-

lying assets. They are typically with multi-asset option and are widely used

in the commodity markets.

17. Quanto option: This option is a financial derivative comprised of underlying

assets in one currency and payoff in another one. Options are not only on
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underlying assets, but also on other derivatives. Options are used for several

purposes. The two most important are: speculating and hedging. Partici-

pants in the option market are: hedgers, speculators and arbitrageurs.

18. Hedgers: Often the future fluctuations of underlying assets price is not known

in advance today. Therefore, traders are more careful to avoid future risk

occurrence. These traders are hedgers and this lofty strategy is known as

hedging.

19. Speculators: Since the intention of hedgers are to avoid risk, speculators

are traders in the financial market with the motive of making profit. If a

speculator is not sure of profit, he forfeit the option.

20. Arbitrageurs: The inefficiencies of financial market existence are unfortu-

nately taking undue advantage off by these set of traders to make riskless

profit through this opportunities. Depending on when options are exercised,

they are classified into three groups: European, Bermudan and American

options Glasserman,(2003).

21. Pricing: this explains option from the perspective of the owner; it based on

the problem of finding if it does exist, the fair price of a derivative at any

time t < T . However, an important question is about the existence of a

deterministic function given the value of the derivative.

22. Hedging: This means the writer will minimise the risk related to the derivative

he wish to transact and seeks for a deterministic hedging strategy. To proffer

a reasonable solution to both problems, it is necessary to find a suitable

model for the market which suit the data of the underlying assets. Rebonato

(2004), Renault (1996) and Rubinstein (1994). The basic assumptions below

are necessary for modelling procedure:

1. trading takes place continuously in time

2. the riskless interest rate r is known and constant over time.

3. the assets are perfectly divisible i.e. part of the assets can be trade on

4. Riskless arbitrage opportunities are excluded
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5. the assets take the part of geometric Brownian motion(GBM) Trading in

financial market involves the use of a portfolio of assets to formulate a hedging

strategy

Definition 3.2.7.1

Let (Ω,F ,P) be a probability space. A probability measure Q on (Ω,F) is totally

continuous with respect to P if ∀ A ∈ F P (A) = 0→ Q(A) = 0. Delbaen (1995)

Theorem 3.2.7.1

Q is absolutely continuous in relation with P supposing and assuming there exists

a positive random variable Z on (ω,A) such that ∀A ∈ A, Q(A) =
∫
A Z(w)dP (w).

Z is called density of Q Relative to P and represented as dQ
dP

Definition 3.2.7.2

Let Q and P be two probability measures on (ω,A), while P and Q are equal

assuming each one of them is absolutely uniform with respect to the other. Fur-

thermore, a probability measure Q is similar with a given probability measure P

as explained by the theorem below

Girsanov’s Theorem (1960)

Let (Ω,F , {Ft}t ≥ 0, p) be a probability space with (F t)0≤t≤T the natural filtration

of the standard Brownian motion (Bt)0≤t≤T . Let (φt)0≤t≤T be an adapted process

satisfying the equation below
∫ T

0
φ2
sds < +∞ a.s. in the sense that the equation

(Lt)0≤t≤T expressed as Lt = exp(−
∫ t

0
φsdBs − 1

2

∫ t
0
φ2
sds) is a martingale. Then,

with the probability P (L) and density LT relative to P , the process (Wt)0≤t≤T de-

fined by Wt = Bt +
∫ t

0
φsds is a Brownian motion. As a result, the stochastic

integral does not vary even with the change of measure of similar probability.

Proposition 3.2.7.1

If the hypothesis of our previous Theorem are meet, then set (Ht)0≤t≤T to be an

adapted process such that
∫ T

0
H2
sds <∞ P a.s. Let the processes

Xt =

∫ t

0

HsdBs +

∫ t

0

Hsφsds

under P and

Yt =

∫ t

0

HsdWs

under P (L) withWt = Bt+
∫ t

0
φsds and P (L) our earlier stated measure of probability

in the previous Theorem. Then Xt = Yt. Our result on the representation of a
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Brownian martingale in terms of stochastic integral is next.

Theorem 3.2.7.2 Musiela (2004) and Girsanov (1960)

On the probability space (Ω,F ,P), set (Bt)0≤t≤T to be a standard Brownian motion

and (F t)0≤t≤T its natural filtration. Furthermore, Let (Mt)0≤t≤T be a square-

integrable martingale, with respect to (F t)0≤t≤T . Then There exists a fitted process

(Ht)0≤t≤T in the sense that E(
∫ T

0
H2
sds) < +∞ and

∀t ∈ [0, T ] Mt = M0 +

∫ t

0

HsdBs

a.s.

Definition 3.2.7.3

An option is replicable if there is an admissible strategy φ = ((H0
t , Ht))0≤t≤T in

such a way that at any time T its worth is equivalent to the option payoff Vt(φ) = h.

Remark 3.2.7.1

For an option to be replicable, h ought to be square integrable with respect to

Q. This necessary condition is fulfilled when h is represented as h = g(ST ), with

g(x) = (x−K)+. Our next result states the option price.

Theorem 3.2.7.3 Lamberton et al. (1996)

In the Black-Scholes model, any option defined by a positive Ft- measurable random

variable h, and square-integrable in respect of the probability measure Q, can be

replicated and the worth at time t of any replicating portfolio is represented as

Vt = EQ(e−r(T−t))h|Ft. The expression EQ(e−r(T−t))h|Ft defines the option value

at time t. If h is square integrable with respect to Q, then there is an acceptable

strategy replicating the option.

3.2.7 The Black-Scholes model

The classical option pricing theory of Black-Scholes, (1973) is based on a continuous-

time model with one risky asset with price St at time t and a riskless asset with

price S0
t at time t satisfying the ordinary differential equation (ODE)

dS0
t = rS0

t , t ≥ 0,

where r > 0 is the riskless interest rate. To model the stock price we fix a prob-

ability space (Ω,F ,P) with filtration (F t)t≥0 satisfying the usual conditions, that
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is, it is right continuous and complete. Let (Bt)t≥0 be a standard Brownian motion

on a probability space. With the drift µ and the volatility σ the stock price is

determined by the following stochastic differential equation(SDE):

dSt = St(µdt+ σdBt), t ≥ 0

Applying Itô’s formula yield the explicit representation of the unique solution of

the SDE.

St = S0 exp((µ− σ2

2
)t+ σBt), t ≥ 0

The classical option pricing theory is based on portfolio investment replication of

any option through the underlying stock and bond. In a complete market, there

exists a unique probability measure Q equivalent to the measure P under which the

discounted stock price St := exp(−rt)St is a martingale Lamberton and Lapeyre,

(1996).

3.2.8 Methods of valuation of option

1. An European option stated by a positive Ft-measurable random variable

h(ST ), the payoff function can be replicated and the value at time t in Lam-

berton and Lapeyre, (1996) is given by

V (St, t) = EQ(e−r(T−t)h(ST )|Ft)

where EQ represent the expectation under Q, an equivalent martingale mea-

sure (EMM) to P that is, Q ∼ P such that, the discounted process is a

Q-martingale. our previous equation is called the right-neutral valuation

method of European options.

2. However, the Black-Scholes model is based on the assumption that the asset

pays no dividends. Then the price V = V (S, t) of an European option satisfies

the backward parabolic PDE.

∂V

dt
+
σ2

2
S2∂

2V

∂
S2 + rS

∂V

∂S
− rV = 0

V (S, T ) = h(S), (S, t) ∈ (0,∞)× [0, T ]

this equation is called the Black-Scholes equation for the valuation of deriva-

tive prices.
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3. Merton (1973) and (1976) extended the Black-Scholes equation to options on

dividend paying shares, given by:

∂V

dt
+
σ2

2
S2∂

2V

∂
S2 + (r − d)S

∂V

∂S
− rV = 0

V (S, T ) = h(S), (S, t) ∈ (0,∞)× [0, T ]

where S is the spot price of the underlying asset, T is the maturity date, r

is the risk-free interest rate and d is the dividend yields.

3.3 Utility function

Utility function is the measure of the well being of a consumer for all combinations

of goods consumed and their welfare as well as their preferences over some set of

goods and services.

The concept is important in financial mathematics, and the rational theory of

choice in economics and games theory, because it represents the satisfaction derived

by the consumer of a good. However, a good is something that satisfy human wants

Mark Schroder (1999). some examples of utility functions are:

1. Logarithmic utility function: η(x) = log(x)

2. Power utility function: η(x) = xc

c
, c ≤ 1

3. exponential utility function: η(x) = 1− exp−αx

4. Quadratic utility function: η(x) = x− βx2

The logarithmic utility is the limit of x(1−c)

c
as c tends to zero. The utility x(1−c)

c
is

equivalent to the power utility, such that they generate similar preferences.

Logarithmic utility function is not in the family of utility functions with con-

sistent relative risk aversion.

In power utility, the parameter c is the risk- aversion. x(1−c)

c
for c > 0 indicating

the investors risk tolerance. The logarithmic utility corresponds to a risk-neutral

investor. In this case, η′′ is zero.

Example 3.3.1

For instance we have η(x) = ln(x) the first derivative of that equation is η′(x) = 1
x

and the second derivative is η′′(x) = − 1
x2
< 0 for the interval 0 < x <∞ However,
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if η(x) = (ln x)2 then η′(x) = 2 lnx
x

and η′′(x) = 2(1−lnx)
x2

this function is not concave

on its whole domain. It is concave only for x such that ln x ≥ 1,

Example 3.3.2

Let η(x) = 1− exp−bx where b > 0, then η′(x) = b exp−bx and η′′(x) = −b2 exp−bx.

Since b > 0 then −b2 < 0 and thus η′′(x) ≤ 0 for all x Hence η(x) is concave.

The function η(x) is monotone increasing since η′(x) > 0 for all x. Therefore if

0 ≤ x1 < x2 then η(x1) < η(x2).

A good investor is subject to rational decision making for instance, supposing an

investor is faced with the choice of two different investment products and assumed

further that the set of outcomes resulting from investing in either of the products

is {e1, e− 2, · · · en}.

We set the probability of the first product of investment outcome as Pi for

{i = 1, 2, · · · , n}. Supposing the outcome ei did not emerge from first product

investment, then Pi = 0. In the same vain we represent the value of the second

products probability by qi.

The investor decides ranking the outcomes in order of desirability, with the most

desirable outcome as eα and the least as eµ. For either of the possible outcomes, a

utility is assigned.

The utility function η(ei) range is [0, 1]. That is, η(eα) = 1 as well as η(eµ) = 0.

The values of η(ei) for which i 6= α, µ lies in the open interval (0, 1). Assigned as

follows.

He might reason that between the choice of receiving the outcome ei with assur-

ance or be involved in a random experiment and receive the most desirable outcome

eα with the probability η and the least desirable outcome eµ with 1−η probability.

Assuming η = 1, it means the investor will definitely undertake the random

experiment to receiving the certainty eα, which they consider more desirable in the

stead of ei. Supposing η = 0, this means that the investor will not participate since

its results gives the least desirable outcome. They would prefer the sure outcome

ei.

Furthermore, as η reduces from 1 to 0 there will be a value of 0 < η < 1 in which

he changes his mind from taking part in the random experiment to undertake the

outcome ei with assurance. In this case, η is η(ei). This probability is known as
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the utility of the outcome ei.

This particular point of probability in which the investors behaviour or the

mind of an investor changes is unique. Then a cognitive investor that initially

accepted the sure outcome ei can not at a lesser probability of receiving eα decide

to undertake in the random experiment.

Therefore, two outcomes of unequal desirability are compared with utility func-

tion. The outcome ei is synonymous to receiving eα with the η(ei) probability

or receiving eµ with 1 − η(ei) probability. The decision between two different

investment, if the investment on the first product is similar to receiving eα with

probability
∑n

i=1 Piη(ei) while the second investment is synonymous to receiving eα

with the probability
∑n

i=1 qiη(ei). The investor chooses the first product whenever

he observed that
n∑
i=1

Piη(ei) >
n∑
i=1

qiη(ei)

or chooses the second if otherwise.

So far, we have discuss the outcomes or consequences ei of choosing investment

decision. Consequently, these outcomes is seen as receiving different amount of

money for an investment of which most of them is non-positive.

Therefore, the utility function represented by η(x) is the investor’s utility of

receiving an amount x. Utility functions are like personality traits to each investor.

Next, we give some vital properties of utility function. One property of utility

function is that the amount of extra utility received by an investor when x increased

to x+ ∆x does not increase. that is, η(x+ ∆x)− η(x) is a non-increasing function

of x. It is also concave on an open interval (a, b) if for every x, y ∈ (a, b) and for

every λ ∈ [0, 1], we have

h(λx+ (1− λ)y ≥ λh(x) + (1− λ)hy)

An investor whose utility function is concave is said to be risk-averse, while an

investor with a linear utility function of the form η(x) = ax + b with a > 0 is

known as risk-neutral.

Definition 3.3.1

The value of a utility function is known as expected utility. In our earlier discussion

on choosing between two possible investment, an investor with the greater utility
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is preferable.
n∑
i=1

Piη(ei) >
n∑
i=1

qiη(ei)

The above equation highlighted that supposing the investment choice results in

outcomes {e1, e2, · · · en} with respective probabilities Pi for i = 1, 2, · · · , n and the

second investment choice produces a similar outcomes with qi for i = 1, 2, · · · , n

probabilities then a sensitive investor pick the first investment whenever

n∑
i=1

Piη(ei) >
n∑
i=1

qiη(ei)

. Assuming X is the set of outcomes of a random variable with probabilities Pi for

i = 1, 2, · · · , n, Y represents the outcomes with qi for i = 1, 2, · · · , n, thus the first

investment is preferable whenever

E[η(X)] > E[ηY ]

3.4 Forward Integral

This section discusses the concept and application of forward integral equations to

the optimal portfolio problem of a sensitive investor. For instance, we assume risky

assets price at a specific time τ is D(τ) and also assume that an investor acquires

a stochastic amount α of valuables at unpredictable periods τ1, and hold it till a

random time τ : τ1 < τ2 < ξ, and eventually puts it on sale. The profit obtained is

αD(τ2)− αD(τ1)

This expresses an exact scenario of the achieved result with a portfolio driven by

forward integration.

ϕ(τ) = αI(τ1, τ2](τ), τ ∈ [0, ξ],

in relation with the Brownian motion, i.e.,∫ ξ

0

ϕ(τ)d−D(τ) = αD(τ2)− αD(τ1).

Assuming in a financial market on [0, ξ] (τ > 0) between capital placement of two

opportunities:
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(1) An asset that is riskless per unit of price L0(τ) at τ given by

d L0(τ) = λ L0(τ)dτ,  L0(0) = 1,

(2) A risky asset with unit price  L1(τ) at time τ given by

dL1(τ) =  L1(τ) [ϑdτ + ωdD(τ)] ,  L1(0) > 0.

λ, ϑ, and ω > 0 are constant.Let

ν(τ) be a portfolio and fraction of money L(τ) invested in the risky at τ , then the

evolution of the wealth process Lν(τ) = L(τ), τ ≥ 0, of a self-funding portfolio ν

is

dL(τ) = (1− ν(τ))L(τ)λdτ

+ν(t)L(τ)[ϑdτ + ωdD(τ)]

=  L(τ) [λ+ (ϑ− λ)ν(τ)dτ + ν(τ)ωdD(τ)] ,

L(0) = s > 0

(3.1)

ν is the portfolio of all F-adapted set Hν such that∫ ξ

0

ν2(τ)dτ <∞ p.a.s.

Assuming ν ∈ Hν , then the result L(τ) = Ls(τ), τ ∈ [0, ξ], of (3.1) leads us to the

above equation

L(τ) = s exp

{∫ τ

0

ων(s)dD(τ) +

∫ τ

0

[λ+ (ϑ+ λ)ν(s)
1

2
ω2ν2(s)]ds

}
(3.2)

Then the portfolio ν∗ν that guarantees highest profit

E[logLsν(ξ)] (ξ > 0) (3.3)

over all ν ∈ HF is given by

ν∗F(s) =
ϑ− λ
ω2

, s ∈ [0, ξ] (3.4)

then the value function is:

V (s)
ν = sup

ν∈HF

E[logLsν(ξ)]

= E[logLsν∗F (ξ)]

= log s+

(
λ+

(ϑ− λ)2

2ω2

)
ξ, s > 0

(3.5)
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But, an investor could be receptive to possessing another information other than

Fs̄? specifically, if G = {Gs, s ≥ 0} is one of such filtration in the sense that

Fs ⊆ Gs, s ∈ [0, ξ] (ξ > 0),

Gs := Fs ∨ σ(B(ξ0)) (ξ0 > ξ) (3.6)

Which implies that the investor is aware of the value of B(ξ0) which is also similar

to knowing L1(ξ0)) in addition to the initial information Ft at any time s ∈ [0, ξ].

This is to aid a sensitive investor hedge against any risk by diversifying.

Definition 3.4.1

A measurable stochastic process $ = $(s), s ∈ [0, ξ], is forward integrable in

relation with the Brownian motion assuming I(s), s ∈ [0, ξ], exists in the sense

that

sup
s∈[0,ξ]

∣∣∣∣∫ t

0

$(s)
B(s+ ε)−B(s)

ε
ds− I(t)

∣∣∣∣→ 0, ε→ 0 (3.7)

in probability. Then, for any s ∈ [0, ξ],

I(s) =

∫ s

0

$(s)d−B(s)

is forward integrable of $ relating to the Brownian motion B(s) on [0, ξ].

Lemma 3.4.1

Assuming $ holds as stated in Definition (3.4.1) then∫ ξ

0

$(s)d−B(s) = lim
∆t→0

Jn∑
j=1

$(sj − 1)(B(j1)−B(sj − 1))

a likelihood intersection. Taking limit within the partitions of 0 = τ0 < τ1 <

· · · τJn = ξ of τ ∈ [0, ξ] with ∆s := max j = 1, · · · , Jn(τj − τj−1)→ 0 as n→∞.

Proof

set $ as

$(s) =
Jn∑
j=1

(sj − 1)χ(sj−1, sl](s), t ∈ [0, ξ],

a simple stochastic process, however, a Cáglád process $ on s ∈ [0, ξ] can equally

be estimated point-wise and consistently in B .

35



then ∫ ξ

0

$(s)d−B(s ) = lim
ε→0+

∫ ξ

0

ϕ(s)
B(s+ ε)−B(s)

ε
ds

=
Jn∑
j=1

$(sj − 1) lim
ε→0+

∫ sl

sj−1

B(s+ ε)−B(s)

ε
ds

=
Jn∑
l=1

$(sj − 1) lim
ε→0+

1

ε

∫ sj

sj−1

∫ s+ε

s

dB(u)ds

=
Jn∑
j=1

ϕ(sj − 1) lim
ε→0+

1

ε

∫ sl

sj−1

∫ u

u−ε
ds dB(u)

=
Jn∑
j=1

$(sj − 1)(B(sj)−B(sj−1)),

Remark 3.4.1

When $ is F -adapted, Riemann sum are roughly Itô integral of $ with respect

to B̃. Consequently, a non-anticipating form of the forward integral is also an

extension of the Itô integral. However, effort has been made to extend this concept

to a sensitive investors settings. We presents this in lemma 3.4.2

Lemma 3.4.2

furthermore, supposing D(τ) is Nτ -semimartingale and $(τ) is Nτ -measurable on

τ ∈ [0, ξ]. Then ∫ ξ

0

$(τ)dD(τ) =

∫ ξ

0

$(τ)d−D(τ),

Proof

Since D is a semimartingale with respect to N and $ is N-predictable, by Itô

Proske, F. (2007) we have∫ ξ

0

$(τ)d−D(τ) = lim
ρ→0+

∫ ξ

0

$(τ)
D(τ + ρ)−D(τ)

ρ
dτ

= lim
ρ→0+

∫ ξ

0

1

ρ

∫ τ

τ−ρ
$(τ)d(τ)dD(τ)

=

∫ ξ

0

$(τ)dD(τ),
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since

$ρ(τ) :=
1

ρ

∫ τ

τ−ρ
$(τ)dτ, τ ∈ [0, ξ],

approaching $ in probability and consistently in τ .

�

3.4.1 Itô formula for forward Integral in One Dimensional Case

We now discuss Itô formula for forward integral. In this context, it is vital to

introduce a notation that is synonymous to the classical notation for Itô process.

Definition 3.4.2

Let D be a forward stochastic process and further expressed as

L(τ) = x+

∫ τ

0

ϕ(s)ds+

∫ τ

0

v(s)d−D(s), τ ∈ [0, ξ] (3.8)

(x constant), where ∫ ξ

0

|ϕ(τ)|dτ <∞, p− â.ŝ. (3.9)

and ṽ is a forward stochastic process. the short form of (3.9) is

d−L(τ) = ϕ(τ)dτ + v(τ)d−D(τ) (3.10)

Theorem 3.4.1 Proske, F. (2007)

(The one-dimensional Itô formula for forward integrals). Now let

d−L(t) = ϕ(t)dt+ v(t)d−D(t)

be a forward process. We set ϕ ∈ C1,2([0, ξ]× R) and define

ς(t) = ϕ(t, L(t)), t ∈ [0, ξ].

Then ς(t), t ∈ [0, ξ], is a forward process and

d−ς(t) =
∂ϕ

∂t
(t, L(t))dt+

∂ϕ

∂L
(t, L(t))d−L(t) +

1

2

∂2ϕ

∂L2
(t, L(t))v2(t)dt

Theorem 3.4.2 Proske, F. (2007)

(The multidimensional Itô formula for forward integrals). Let

d−Li(t) = ϕ(t)dt+
m∑
j=1

Vij(t)d
−Dj(t) (i = 1, · · · , n)

be n forward processes driven by m independent Brownian motions.

D1, · · · , Dn.
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Let f ∈ C1,2([0, ξ]× Rn) and define ς(t) := f(t, L(t)), t ∈ [0, ξ].

ς is a forward process and

d−ς(t) =
∂f

∂t
(t, L(t))dt+

n∑
i=1

∂f

∂L1

(t, L(t))d−Li(t)

+
1

2

n∑
i=1

n∑
k=1

∂2f

∂Li∂Lk
(t, L(t))(V ξ)ik(t)dt.

As in the classical case, we can use Itô formula for forward integrals to solve forward

stochastic differential equations. We show this by an example.

Example 3.4.1

Let ϑ(τ), and ω(τ), τ ∈ [0, ξ] be measurable process, then

(1) ω is forward integrable.

(2) p-a.e.

∫ ξ

0

(|ϑ(τ)|+ ω2(τ))dτ <∞

τ ∈ [0, ξ] ς(τ), is the unique solution of

d−ς(τ) = ϑ(τ)ς(τ)dτ

+ω(τ)ς(τ)d−D(τ), τ ∈ [0, ξ]

ς(0) = F

(3.11)

where F is a random variable of Fτ -measurable, then

ς(τ) = F exp

{∫ τ

0

(ϑ(s)− 1

2
ω2(s) +

∫ τ

0

ω(s)d−D(s)

}
.

Applying Itô forward integrals concept for F (x) = ex, x ∈ R, then

dL(τ) = (ϑ(τ)− 1

2
ω2(τ))dτ + ω(τ)d−D(τ) (3.12)

ς is a unique solution, assume ς is another solution. Then Consider

υ(s) := ς−1(s)ς(s)s ∈ [0, ξ] (3.13)

then by the two-dimensional It ô formula for forward integral processes, we have

d−υ(s) = ς(t)d−ς−1(s) + ς−1(s)d−ς(s) + d−ς−1(s)d−ς(s)

= ς−1(s)ς(s) [(−ϑ(s) + ω2(s))ds− ω(s)d−D(s)

+ ϑ(s)ds+ ω(s)d−D(s) + (−ω(s))ω(s)ds] = 0.

Since ς(0) = ς(0) = F , it follows that υ(s) = 1, s ∈ [0, ξ], which proves uniqueness.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, we discuss some important applications of forward integral and

its relation with a sensitive investor in a financial market.

4.2 Specification of optimal portfolio of small scale
investors

In this section, we discuss how a small scale investor such as a low or average

income earner can also maximise portfolio. Consider two securities in a financial

market:

1. A non-risky asset (e.g., a Bank account), where the price L0(τ), τ ∈ [0, ξ] per

unit at time (τ) is given by the differential equation

dL0(τ) = λL0(τ)dτ, L0(0) = 1

and

2. A risky assets (e.g., a stock), where the price L1(τ), τ ∈ [0, ξ] per unit at

time τ is given by the stochastic differential equation

dL1(τ) = ϑ(τ)L1(τ)dτ + ω(τ)L1(τ)d−D(τ) L1(0) > 0,

λ(τ), ϑ(τ) are constant coefficients and ω(τ), τ ∈ [0, ξ] are deterministic functions

on assumption that

E[{
∫ ξ

0

(|λ(τ)|+ |ϑ(τ)|+ ω2(τ))}dt <∞, p− a.s.

where ω(τ) is cáglád.

Let (ν0(τ), ν1(τ)), τ ∈ [0, ξ] denotes portfolios. Then, its value at time τ is repre-

sented as

X(τ) = ν0(τ)L0(τ) + ν1(τ)L1(τ).
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However, it is self financing assuming

dX(τ) = ν0(τ)dL0(τ) + ν1(τ)dL1(τ).

From

X(τ) = ν0(τ)L0(τ) + ν1(τ)L1(τ).

we make ν0(τ) the subject

ν0(τ) =
X(τ)− ν1(τ)L1(τ)

L0(τ)

and substituting in our self financing equation of

dX(τ) = ν0(τ)dL0(τ) + ν1(τ)dL1(τ)

and using

dL0(τ) = λL0(τ)dτ, L0 = 1

and

dL1(τ) = ϑ(τ)L1(τ)dτ + ω(τ)L1(τ)dD(τ), L1(0) > 0

then

dX(τ) = (X(τ)− ν1(τ)L1(τ))
dL0(τ)

L0(τ)
+ ν1(τ)dL1(τ)

= λ(τ)X(τ)dτ + ν1(τ)L1(τ)(ϑ(τ)− λ(τ))dτ + ω(τ)dD(τ)

since ω(τ) 6= 0 for a.a. written as

dX(τ) = λ(τ)X(τ)dτ + ω(τ)ν1(τ)L1(τ)(α(τ)dτ + dD(τ))

where α = ϑ(τ)−λ(τ)
ω(τ)

Set ν1(τ) = β1γ1 the part payment or fraction of money

invested on stock. Then a sensitive investor have desirable return when he diversify

his investment on portfolio that is, where ω(τ) (β1(τ)γ1(τ)) is cáglád, Nτ -adapted

and forward integrable stochastic process such that∫ ξ

0

{|ϑ(τ)| − r(τ)|β1(τ)γ1(τ)|+ ω2(τ)β2
1(τ)γ2

1(τ)}dτ <∞

a.s. holds, then the wealth

X(τ) = Xβ1(τ)γ1(τ)

of a sensitive investor at τ would satisfy
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d−X(τ) = X(τ)[{λ(τ) + (ϑ(τ)− λ(τ))β1(τ)γ1(τ)}dτ

+ω(τ)β1(τ)γ1(τ)d−D(τ)], X0 = x0.
(4.1)

By Itô formula, we have

X(τ) = exp

∫ s

0

[λ(τ) + (ϑ(τ)− λ(τ))β1(τ)γ1(τ)− 1

2
ω2(τ)β2

1(τ)γ2
1(τ)]dτ

+

∫ s

0

ω(τ)β1(τ)γ1(τ)d−D(τ)

(4.2)

considering β∗1γ
∗
1 ∈ AN in the sense that

sup
β1γ1∈AN

H[η(Xβ1(ξ)γ1(ξ))] = H[η(Xβ1
∗(ξ)γ1(ξ))].

We defined the family of admissible portfolios as AN and:

Definition 4.2.1

1. β1γ1 ∈ AN is cáglád and N-adapted

2. for all β1γ1 ∈ AN.

H[

∫ ξ

0

|ϑ(τ)− λ(τ)||β1(τ)γ1(τ)|+ ω2(τ)(β1(τ)γ1(τ))2]dτ <∞

3. β1γ1 ∈ AN, then (β1γ1)ω is forward integrable and cáglád with respect to the

Brownian motion D

4. for all β1γ1 ∈ AN, we have 0 < H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)] < ∞. where η′(x) =

d
dx
η(x).

5. for all β1γ1, $ ∈ AN, there exists υ > 0, with $ bounded , then β1γ1 + j$ ∈

AN for all j ∈ (−υ, υ), the equation

η′(Xβ1γ1+j$(ξ))Xβ1γ1+j$(ξ)|Nβ1γ1+j$(ξ)|j∈(−υ,υ)

is uniformly integrable, where

Nβ1γ1(τ) :=

∫ τ

0

[ϑ(s)− λ(s)− ω2(s)β1γ1(s)]ds+

∫ t

0

ω(s)dD(s), τ ∈ [0, ξ]
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6. A buy-hold sell strategy $, that is

$(t) = αI(τ, τ + f ](t), t ∈ [0, ξ]

with 0 ≤ τ < τ + f ≤ ξ and α Nt-measurable, belonging to AN. Then the

portfolio β1γ1 ∈ AN is optimal if

H[η(Xβ1γ1+j$(ξ))] = H[η(Xν1(ξ))]

for all $ ∈ AN bounded and j ∈ (−υ, υ) with υ > 0 given in (5).

Definition 4.2.2

Assume $ is a forward integrable stochastic process and N a random variable.

Then the product N$ is forward integrable stochastic process and∫ ξ

0

N$(t)d−D(t) = N

∫ ξ

0

$(t)d−D(t, ) (4.3)

where $ = X(t)ν(t)∗ such that ν∗1 = β1γ1. Firstly, supposing β1γ1 is optimal,

then for all $ ∈ AN bounded implies

0 =
d

dj
H[η(Xβ1γ1 + j$(ξ))]|j=0

0 = H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)β1γ1(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.4)

Now fix τ, f : 0 ≤ τ < τ+f ≤ ξ and choose $(s) = αI(τ, τ+f ](τ), τ ∈ [0, ξ], where

α is an arbitrary bounded and Nτ -measurable random variable. (4.4) becomes

0 = H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)β1γ1(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.5)

since this holds for all α, we conclude that

H[Fβ1γ1(ξ)(Nβ1γ1(τ + f)−Nβ1γ1(τ))|Nτ ] = 0

where

Fβ1γ1(ξ) =
η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)]
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and

Nβ1γ1(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)β1γ1(s)]ds]

+

∫ τ

0

[ω(s)d−Ds], τ ∈ [0, ξ]

(4.6)

that is,

H[Fβ1γ1(ξ)

∫ τ+f

τ

ϑ(s)− λ(s)− ω2(s)β1γ1(s)ds+

∫ τ+f

τ

ω(s)d−D(s)|Nτ ] = 0 (4.7)

by the application of Bayes Theorem,

HQβ1γ1
[Nβ1γ1(τ + f)−Nβ1γ1(τ)|Nτ ]

0 = H[Fβ1γ1(ξ)|Nτ ]−H[Fβ1γ1(ξ)(Nβ1γ1(τ + f)−Nβ1γ1(τ))|Nτ ]
(4.8)

since Nβ1γ1(τ) is Nτ -adapted, this gives

HQβ1γ1
[Nβ1γ1(τ + f)|Nτ ] = Nβ1γ1(τ)

Hence Nβ1γ1(τ) is an (Nτ , Qβ1γ1)-martingale.

Let the probability measure Qβ1γ1 on Nτ be

dQβ1γ1 = Fβ1γ1(ξ)dm

and set HQβ1γ1
(τ) to

represent Qβ1γ1 expectation, then

H[Fβ1γ1(ξ)(Nβ1γ1(τ + f)−Nβ1γ1(τ))|Nτ ] = 0

written as

HQβ1γ1
[Nβ1γ1(τ + f)−Nβ1γ1(τ)|Nτ ] = 0.

Therefore, what we have just proved is invariably stated as Nβ1γ1(τ), τ ∈ [0, ξ],

is a (N, Qβ1γ1)-martingale, that is a martingale with respect to the filtration N

under the measure Qβ1γ1 Conversely, assuming Nβ1γ1 is a

N, Qβ1γ1-martingale, then

HQβ1γ1
[Nβ1γ1(τ + f)−Nβ1γ1(τ)Nτ ] = 0

for all τ, f therefore 0 ≤ τ < τ + f ≤ ξ. Equivalently,

HQβ1γ1
[Nβ1γ1(τ + f)−Nβ1γ1(τ)α] = 0.
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for all α bounded Nτ -measurable. Thus,

0 = H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)β1γ1(s)]dt

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.9)

holds. Taking linear combination, it is valid for all step processes $ ∈ AN of cáglád.

Referencing assumption (1) and (5) of definition (4.2.1)

0 = H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)β1γ1(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.10)

holds with boundedness of all $ ∈ AN. Since

j → H[η(Xβ1γ1+j$(ξ))], j ∈ (−ν, ν)

maximum is obtain at j = 0. Thus,

0 =
d

dj
H[η(Xβ1γ1+j$(ξ))]|j=0

Definition 4.2.3

If the stochastic process β1γ1 ∈ AN is optimal for the problem

sup
β1γ1∈AN

H[η(Lβ1γ1(ξ))] = H[η(L∗β1γ1(ξ))]

then the stochastic process

Nβ1γ1(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)β1γ1(s)]ds

+

∫ τ

0

ω(s)d−D(s)]

(4.11)

is an (N, Qβ1γ1)-martingale . Conversely, if the function

g(j) := H[η(Xβ1γ1+j$(ξ))], j ∈ (−ν, ν), is concave for each $ ∈ A and Nβ1γ1(τ),

τ ∈ [0, ξ] is an (N, Qβ1γ1)-martingale, then β1γ1 ∈ A is optimal for the problem

sup
β1γ1∈AN

H[η(Lβ1γ1(ξ))] = H[η(L∗β1γ1(ξ))]

U(τ) : ν1 → λ(τ) + (ϑ(τ, ν)− λ(τ))ν − 1

2
ω2(τ)ν2

λ(τ) + ϑ(τ, ν)ν − λ(τ)ν − 1

2
ω2(τ)ν2
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ϑ(τ, ν)× 1 + ν × ϑ′(τ, ν)− λ(τ)× 1 + ν × 0− 1

2
ω2(τ)× 2ν + 0× ν2

ϑ(τ, ν)× 1 + ϑ′(τ, ν)ν − λ(τ)− ω2(τ)ν

upon differentiation, we have

ϑ′(τ, ν) + ϑ′′(τ, ν)ν + ϑ′(τ, ν)× 1− ω(τ)

ϑ′′(τ, ν)ν + 2ϑ′(τ, ν)− ω2(τ) ≤ 0.

we equally have the following result.

Theorem 4.2.1

1. β1γ1 ∈ AN is optimal for the equation below

sup
β1γ1∈AN

H[η(Lβ1γ1(ξ))] = H[η(L∗β1γ1(ξ))]

only if

Nβ1γ1(s) := Nβ1γ1(s)−
∫ s

0

d[Nβ1γ1 , ςβ1γ1 ](τ)

ςβ1γ1(τ)
, s ∈ [0, ξ]

is an (N,m)-martingale. In this regard

ς(s) := HQβ1γ1

[
dm

dQβ1γ1

|Ns
]

= (H[Fβ1γ1(ξ)|Ns])−1, s ∈ [0, ξ]

with

Fβ1γ1(ξ) =
η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)]

and (4.6), (4.9),(4.10) respectively.

2. However, assuming an optimal portfolio β1γ1 ∈ A exists, then

Z(τ) =

∫ τ

0

ω(s)d−D(s)

is a semimartingale of (N,m)

3. Supposing an optimal β1γ1 ∈ A exists such that ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

then D(t) is an (N,m)-semimartingale
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Proof

1. If β1γ1 ∈ AN is optimal, then by Definition 4.2.3,

Nβ1γ1 is a (N, Qβ1γ1)-martingale with

Fβ1γ1(ξ) =
η′(Xβ1γ1(ξ))Xβ1γ1(ξ)

H[η′(Xβ1γ1(ξ))Xβ1γ1(ξ)]

and (4.6), (4.9),(4.10) respectively. Thus,

dm(w) = Nβ1γ1(τ)dQβ1γ1(w)

on Nξ
Nβ1γ1(τ) = F−1

β1γ1

And by Girsanov,we have that

Nβ1γ1(τ) := Nβ1γ1(τ)−
∫ τ

0

d[Nβ1γ1 , ς](s)

ς(s)
, τ ∈ [0, ξ]

is an (N,m)-martingale with ς(τ) an (N, Qβ1γ1)-martingale stated as

ς(τ) := HQβ1γ1
[
dm

dQβ1γ1

]|Nτ = H[(Fβ1γ1(ξ))
−1 Fβ1γ1(ξ)

H[Fβ1γ1(ξ)|Nτ |Nτ ]
]

= (H[Fβ1γ1(ξ)|Ñτ ])−1τ ∈ [0, ξ]

conversely, if Nβ1γ1 is an (N, Qβ1γ1)-martingale,

then Nβ1γ1 is an (N,mβ1γ1)-martingale,thus β1γ1 is optimal by Definition 4.2.3

2. is derived from (1)

3. By (2) recall that

Z(τ) =

∫ τ

0

ω(s)d−D(s)

is a semimartingale of (N,m). Then assuming ω 6= 0 for

a.a(t, w) ∈ [0, ξ]× Ω

holds, we obtain∫ τ

0

ω−(s)dZ(s) =

∫ τ

0

ω−(s)ω(s)d−D(s) = D(s)

is a martingale of (N,m) also.
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Theorem 4.2.1 explicitly represents the connection between β1γ1 optimal as well as

the decomposition of the semimartingale D with respect to N. We prove this in

the context of portfolio diversification.

Theorem 4.2.2

1. Given that β1γ1 is optimal for

sup
β1γ1∈AN

H[η(Xβ1γ1(ξ))] = H[η(X∗β1γ1(ξ))]

Then D is a semimartingale with respect to N with a decomposition

dD(τ) = dD̂(τ) + [ω(τ)β1γ1(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[Nβ1γ1 , ς](τ)

ωτς(τ)

where D̂ is a (N,m)-Brownian motion

2. In reverse, assume D is a semimartingale with respect to (N,m) with a de-

composition dD(τ) = dD̂(τ) + dA(τ) and A is a N-adapted finite variation

process. Assuming α(τ)dτ = dA(τ) = for some N-adapted process α. That

is, dA(τ) is absolutely continuous with respect dτ , where D̂ is a (N,m)-

Brownian motion then the solution β1γ1 ∈ AN of

ω(τ)β1γ1 +
1

ω(τ)ς(τ)

d [Nβ1γ1 , ς] (τ)

dτ

= α(τ) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then, β1γ1 is optimal for

sup
β1γ1∈AN

H[η(Xβ1γ1(ξ))] = H[η(X∗β1γ1(ξ))]

since the quadratic variation Nβ1γ1 is continuous absolutely.

[Nβ1γ1 , Nβ1γ1 ](τ) =

∫ τ

0

ω2(s)ds

from

N̂β1γ1(τ) := Nβ1γ1(τ)−
∫ τ

0

d[Nβ1γ1 , ς](s)

ς(s)
, τ ∈ [0, ξ]
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this implies d[Nβ1γ1 , ς](τ) is continuous absolutely with respect to dτ . Thus,

d[Nβ1γ1 , ς](τ)

ω(τ)ς(τ)
=

1

ω(τ)ς(τ)

d[Nβ1γ1 , ς](τ)dτ

dτ

Proof

Assuming β1γ1 is optimal, by Theorem 4.2.2, the equation below

ω−1(τ)dN̂β1γ1(τ) = dD(τ) + ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)β1γ1(τ))dτ

−d[Nβ1γ1 , ς](τ)

ς(τ)
]

(4.12)

τ ∈ [0, ξ] is an N,m-martingale. Since the quadratic variation of the expression

below ω−1(τ)dN̂β1γ1(τ) τ ∈ [0, ξ], is τ, τ ∈ [0, ξ], it follows that

dD̂(τ) := ω−1(τ)dN̂β1γ1(τ), τ ∈ [0, ξ]

is a N,m-Brownian motion and we have

dD(τ) = dD̂(τ) + [ω(τ)β1(τ)γ1(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[Nβ1γ1ς](τ)

ωτς(τ)

1. Supposed the decomposition of D is N,m-semimartingale ,

dD(τ) = dD̂(τ) + dA(τ),

with reference to (2), we set ν to be

ν = α(τ) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then,

ω−1(τ)dN̂β1γ1(τ) = dD(τ) + ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)β1(τ)γ1(τ))dτ

−d[Nβ1γ1 , ς](τ)

ς(τ)
]

(4.13)

τ ∈ [0, ξ]

dD(τ)− dA(τ) = dD̂(τ)

therefore

dD̂(τ) = ω−1(τ)dN̂β1γ1(τ), τ ∈ [0, ξ],

is an (N,m)-martingale. Thus, β1γ1 is optimal.
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For example, Supposing

η(s) = log(x), x > 0

1. We define a∗ as

ν∗(s) =
ϑ(s)− λ(s)

ω2(s)
+
a∗(s)

ω(s)

and set

D(s) =
ϑ(s)− λ(s)

ω(s)
.

Then,

D̂(t) := D(t)−
∫ t

0

a∗(s)ds

is (N,m) Brownian motion

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
(D(s) + a∗(s))2}ds] (4.14)

2. Assuming D(s) is Ns-measurable ξ ≥ 0. Then,

H[

∫ ξ

0

D(s)a∗(s)ds] = 0

and the similar value is

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s)

+
1

2
[D(s)2 + (a∗(s))2]}ds]

(4.15)

Proof

In as much as ν∗ is admissible, therefore, an equivalent optimal value function

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s)

+
1

2
(B(s) + a∗(s))2}ds]

(4.16)

is finite. We prove that

H

[∫ ξ

0

D(s)a∗(s)ds

]
= 0.

Suppose D(s) is N -adapted, then by A(t) := D(t)− D̂(t), we have

H

[∫ ξ

0

D(s)a∗(s)ds

]
= H

[∫ ξ

0

D(s)(dD(s)− dD̂(s))

]
= H

[∫ ξ

0

D(s)dD(s)

]
−H

[∫ ξ

0

D(s)dD̂(s)

]
= 0.

(4.17)
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From

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[D(s)2 + (a∗(s))2]}ds].

Suppose

(a∗(s)) = β1γ1.

This equally means that our mode of investment can be diversified

1

2
(β1γ1 +D(s))2 = (β1γ1 +D(s))(β1γ1 +D(s))

β2
1γ

2
1 + β1γ1D(s) + β1γ1D(s) +D(s)2

1

2
[β2

1γ
2
1 + 2β1γ1D(s) +D(s)2]

1

2
[D(s)2 + β2

1γ
2
1 + β1γ1D(s)].

Hence, from

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[D(s)2 + (a∗(s))2]}ds]

we have,

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[(D(s)2 + (2β2

1γ
2
1) + (2β1γ1D(s))]}ds]

since ν is admissible, then the corresponding optimal value function in (4.24) is

finite. Consequently, if D(s) is Ns-measurable, 0 ≤ s ≤ ξ. Then

H[

∫ ξ

0

β1γ1D(s)ds] = 0

By A(t) := D(t)− D̂(t) being an Nt-Brownian motion, therefore,

H[

∫ ξ

0

D(s)β1γ1ds] = H[

∫ ξ

0

D(s)
(
dD(s)− dD̂(s)

)
]

= H[

∫ ξ

0

D(s)dD(s)]−H[

∫ ξ

0

D(s)dD̂(s)] = 0

1. Given η(x) = 1
h
xh, x > 0, where h ∈ (0, 1), we have

η′(Xβ1γ1+h$(ξ))Xβ1γ1+h$(ξ)|M(h)| = Xβ1γh1 +h$(ξ)|M(h)

and condition (4) in our earlier Definition is satisfied if

sup
h∈(−δ,δ)

H[(Xh
β1γ1+h$(ξ)|M(h)|)p̂] <∞
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for p̂ > 1, then set

Xβ1γ1+h$(ξ) = Xβ1γ1(ξ)N(h).

From the Holders inequality,

H[(Xh
β1γ1+h$(ξ)|M(h)|)p̂] ≤ (H[(Xβ1γ1(ξ))

hp̂ã1b̃1 ])
1

ã1 b̃1

(H[(N(h))hp̂ã1b̃2 ])
1

ã1 b̃2 (H[(|M(h)|)p̂ã2 ])
1
ã2

where ã1, ã2 : 1
ã1

+ 1
ã2

= 1 and b̃1, b̃2 : 1
b̃1

+ 1
b̃2

= 1. Choosing

ã1 = 2
2−p̂ , ã2 = 2

p̂
and also b̃1 = 2−p̂

hp̂
, b̃2 = 2−p̂

2−p̂−hp̂ for some p̂ ∈ (1, 2
h+1

). Hence,

H[(Xh
β1γ1+h$(ξ)|M(h)|)p̂] ≤ (H[(Xβ1γ1(ξ))

2])
hp̂
2

(H[(N(h))
2hp̂

2−p̂−hp̂ ])
2−p̂−hp̂

2 (H[(|M(h)|2)])
p̂
2 .

supposing Nβ1γ1(ξ) in

Nβ1γ1(t) = x exp{
∫ τ

0

[λ(τ) + (ϑ(τ)− λ(τ))β1(τ)γ1(τ)

−1

2
ω2(τ)(β1(τ)γ1(τ))2]dτ +

∫ τ

0

ω(τ)β1(τ)γ1(τ)d−D(τ)

(4.18)

satisfies

H[(Nβ1γ1(ξ))
2] <∞.

Then, item (4) and item (5) of definition (4.2.1) is valid if

sup
h∈−(δ,δ)

H[(N(h))
2hp̂

2− p̂− xp̂
] <∞

however,

sup
h∈−(δ,δ)

H[(N(h))
2hp̂

2− p̂− xp̂
] <∞

holds if for example

H exp{k
∫ s

0

[|ϑ(τ)− λ(τ)|+ |β1γ1(τ)|dτ}] <∞ ∀ k > 0

however,

H[(Nβ1γ1(ξ))
2] <∞

is equally verify for k > 0

H exp{k(

∫ ξ

0

[|ϑ(τ)− λ(τ)|+ |β1γ1(τ)|dτ ])}

+|
∫ ξ

0

β1γ1(τ)ω(τ)dD(τ)| <∞
(4.19)
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Example 4.2.1

U(x) =
1

c
xc; x ∈ [0,∞),

where c ∈ (−∞, 1)− {0} is a constant. Assuming ω 6= 0 for a.a (t, w).

Let Ft ⊂ Gt be a filtration. Assume ν∗ ∈ A is an optimal portfolio for the problem

φG := sup
ν∈A

E[
1

c
(X(ν)(ξ))

c].

Then, there exists an G-adapted process α(s) such that D̂(t) := D(t)− A(t)

holds and hence, the optimal sensitive investor portfolio is.

Let the (modify) market price of risk, θ(t), by

θ(t) =
ϑ(t)− λ(t)

ω(t)
+ α(t).

Assume that

E[exp(
1

2

∫ ξ

0

θ2(t)dt)] <∞

and define

H0(t) = exp(−
∫
θ(s)dD̂(s)− 1

2

∫ t

0

(θ2(s) + r(s))ds)

X∗(t) = H−1
0 (t)E[H

c
c−1

0 (ξ)]−1E[H
c
c−1

0 (ξ)/Gt]

Let ψ(t) be the unique Gt-adapted process such that∫ ξ

0

ψ2(t)dt <∞

a.s. and

E[H
c
c−1

0 (ξ)]−1H
c
c−1

0 (ξ) = 1 +

∫ ξ

0

ψ(t)dD̂(t).

Then,

ν∗(t) = ω−1(t)

[
ψ(t)

H0(t)
+X∗(t)θ(t)

]
is the sensitive investors optimal portfolio and X∗(t) = X∗ν (t)

is the similar investors optimal value process. However, if the utility function is of

the form,

U(x) =
xγ∗

γ

where γ∗ is ϑ− λ and γ is 1− c then, the Optimal portfolio is

ν(t) =
ϑ− λ

(1− c)ω2
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0.09− 0.04

(1− 0.8)× (0.04)

at all times t where c < 1

0.09− 0.04

0.2× 0.04
=

0.05

0.008
= 6.25

i.e. 25% of his money is invested in S and 75% in the risk-free asset, we have that

when ϑ = 9, ω = 20%, λ = 4%c = 0.8,

4.3 Multiple assets diversification with restric-
tions for investors

The present day world have subjected both the low and high income earners to

multiple streams of investment for a better multiple streams of income in return.

As a result, a sensitive investor splits his investment network on different assets to

avoid less return as expected from assets. we defined

H : Rn → 〈β, γ〉,⊆ R

where

〈 ˆβ, γ̂〉 = 〈(β1β2), (γ1γ2), · · · 〉 =
n∑
i=1

βiγi

where
∑n

i=1 νiβiγi and νi is a confine placed before investors on the size of assets

to be held due to costs of transactions. νi = 1 if assets i is chosen in the portfolio,

and 0 otherwise Mark Schroder, and Costis Skiadas, (1999).

Definition 4.3.1

AN is admissible portfolios expressed as

1. all
∑n

i=1 βiγi ∈ AN is cáglád and N-adapted i.e. N-measurable

2.
∑n

i=1 βiγi ∈ AN.

H[

∫ ξ

0

|ϑ(τ)− λ(τ)|| (βi(τ)γi(τ)|+) (
n∑
i=1

vβi(τ)γi(τ))2]dτ <∞

3. βiγi ∈ AN,the product
∑n

i=1 (βiγi)ω is forward integrable and cáglád

4.
∑n

i=1 βiγi ∈ AN, then 0 < H[η′L∑n
i=1(βiγi(ξ))L

∑n
i=1 βiγi

(ξ)] <∞ where η′(l) =

d
dl
η(l).
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5. for all
∑n

i=1 βiγi, $ ∈ AN, there exist δ > 0, with a bounded $, such that∑n
i=1 βiγi + j$ ∈ AN in all j ∈ (−δ, δ) as such, the entire family

η′(L∑n
i=1 βiγi+j$

(ξ))L∑n
i=1 βiγi+j$

(ξ)|N∑n
i=1 βiγi+j

(ξ)|
j∈(−δ,δ)

is consistently integrable, where

N∑n
i=1 βiγi

(τ) :=

∫ s

0

[λ(τ)− λ(τ)− ω2(τ)
n∑
i=1

βiγi(τ)]dτ +

∫ s

0

ω(s)dD(τ),

6. $ portfolio permits buy and keep to a reasonable time of choice before re-

selling, of

$(s) = αI(τ, τ + f ](t), t ∈ [0, ξ]

with 0 ≤ τ < τ + f ≤ ξ and αNτ -measurable belonging to AN. Then∑n
i=1 βiγi ∈ AN is optimal if

H[η(X∑n
i=1 βiγi+j$

(ξ))] = H[η(Lν1(ξ))]

for a bounded $ ∈ AN and j ∈ (−δ, δ) with δ > 0 given in item (5) of

definition (4.3.1).

Definition 4.3.2

Assuming $ is a forward integrable stochastic process and N a random variable.

Then the product N$ is a stochastic process and forward integrable then∫ ξ

0

N$(τ)d−D(τ) = N

∫ ξ

0

$(τ)d−D(τ)

where $ = X(τ)ν(τ)∗ in this sense, ν∗1 =
∑n

i=1 βiγi. Firstly,
∑n

i=1 βiγi is

optimal. For a bounded $ ∈ AN we have

0 =
d

dj
H[η(X∑n

i=1 βiγi+j$
(ξ))]|j=0

0 = H[η′(X(ξ))X∑n
i=1 βiγi

(ξ)

∫ ξ

0

$(τ)[ϑ− λ(τ)− ω2(τ)
n∑
i=1

βiγi(τ)]dτ

+

∫ ξ

0

$(τ)ω(τ)d−D(τ)]

(4.20)

fixing τ, f : 0 ≤ τ < τ + f ≤ ξ and choosing $(s) = αI(τ, τ + f ](s), s ∈ [0, ξ], for

any possible quantity of fluctuating α of Nτ bounded. (4.20) becomes

0 = H[η′(X∑n
i=1 βiγi

(ξ))X∑n
i=1 βiγi

(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)
n∑
i=1

βiγi(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.21)
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it is valid for all α, then

H[F∑n
i=1 βiγi

(ξ)(N∑n
i=1 βiγi

(τ + f)−N∑n
i=1 βiγi

(τ))|Nτ ] = 0

where

F∑n
i=1 βiγi

(ξ) =
η′(X∑n

i=1 βiγi
(ξ))X∑n

i=1 βiγi
(ξ)

H[η′(X∑n
i=1 βiγi

(ξ))X∑n
i=1 βiγi

(ξ)]

and

N∑n
i=1 βiγi

(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)
n∑
i=1

βiγi(s)]ds

+

∫ τ

0

ω(s)d−D(s)]

(4.22)

that is,

0 = H[F∑n
i=1 βiγi

(ξ)(

∫ s+f

s

ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

βiγi(τ)}dτ

+

∫ s+f

s

ω(τ)d−D(τ))|Nτ ]
(4.23)

HQ∑n
i=1

βiγi
[N∑n

i=1 βiγi
(τ + f)−N∑n

i=1 βiγi
(τ)|Nτ ]

0 = H[F∑n
i=1 βiγi

(ξ)|Nτ ]−H[F∑n
i=1 βiγi

(ξ)(N∑n
i=1 βiγi

(τ + f)−N∑n
i=1 βiγi

(τ))|Nτ ]

(4.24)

since N∑n
i=1 βiγi

(τ) is Nτ -adapted, this gives

HQ∑n
i=1

βiγi
[N∑n

i=1 βiγi
(τ + f)|Nτ ] = N∑n

i=1 βiγi
(τ).

Hence, N∑n
i=1 βiγi

(τ) is an (Nτ , Q∑n
i=1 βiγi)

-martingale.

Let the probability measure Q∑n
i=1 βiγi

on Nτ be

dQ∑n
i=1 βiγi

= F∑n
i=1 βiγi

(ξ)dm

and HQ∑n
i=1

βiγi
(τ) an expectation of Q∑n

i=1 βiγi
So,

H[F∑n
i=1 βiγi

(τ)(N∑n
i=1 βiγi

(τ + f)−N∑n
i=1 βiγi

(τ))|Nτ ] = 0

written as

HQ∑n
i=1

βiγi
[N∑n

i=1 βiγi
(τ + f)−N∑n

i=1 βiγi
(τ)|Nτ ] = 0
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N∑n
i=1 βiγi

(τ), τ ∈ [0, ξ], is a (N, Q∑n
i=1 βiγi

)-martingale, that is, a martingale with

respect to the filtration N under the probabilityQ∑n
i=1 βiγi

it can equally be stated

as follows that suppose N∑n
i=1 βiγi

is a (N, Q∑n
i=1 βiγi

)-martingale. Then,

HQ∑n
i=1

βiγi
[N∑n

i=1 βiγi
(τ + f)−N∑n

i=1 βiγi
(τ)Nτ ] = 0

for all τ, f and then 0 ≤ τ < τ + f ≤ ξ. similarly,

HQ∑n
i=1

βiγi
[N∑n

i=1 βiγi
(τ + f)−N∑n

i=1 βiγi
(τ)α] = 0

for all bounded Nτ -measurable α, therefore

0 = H[η′(X∑n
i=1 βiγi

(ξ))X∑n
i=1 βiγi

(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)
n∑
i=1

βiγi(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.25)

holds, taking linear combination

0 = H[η′(Xβiγi(ξ))Xβiγi(ξ)

∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)
n∑
i=1

βiγi(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.26)

remain valid for all cáglád step processes $ ∈ AN from assumption (1) and (5) of

definition (4.2.3) we have (4.26)

still holds for all bounded $ ∈ AN. Provided the function

j → H[η(X∑n
i=1 βiγi+j$

(ξ))], j ∈ (−δ, δ)

maximum is achieve at j = 0. Thus,

0 =
d

dj
H[η(X∑n

i=1 βiγi+j$
(ξ))]|j=0

Definition 4.3.3

A stochastic process
∑n

i=1 βiγi ∈ AN is optimal as far as the stochastic processs

N∑n
i=1 βiγi

(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)
n∑
i=1

βiγi(s)]ds

+

∫ τ

0

ω(s)d−D(s)], τ ∈ [0, ξ]

(4.27)

is an N, Q∑n
i=1 βiγi

-martingale. By the application of theorem of Girsanov, it is

equally stated as follows

56



Theorem 4.3.1

1. The process
∑n

i=1 βiγi ∈ AN for

sup∑n
i=1 βiγi∈AN

H[η(L∑n
i=1 βiγi

(ξ))] = H[η(L∗∑n
i=1 βiγi

(ξ))]

is optimal if

N∑n
i=1 βiγi

(τ) := N∑n
i=1 βiγi

(τ)−
∫ τ

0

d[N∑n
i=1 βiγi

, υ∑n
i=1 βiγi

](s)

υ∑n
i=1 βiγi

(s)

for τ ∈ [0, ξ] is a (N,m)-martingale in the sense that,

υ∑n
i=1 βiγi

(τ) := HQ∑n
i=1

βiγi

[
dm

dQ∑n
i=1 βiγi

|Nτ
]

= (H[F∑n
i=1 βiγi

(ξ)|Nτ ])−1, τ ∈ [0, ξ]

2. However, If an optimal portfolio
∑n

i=1 βiγi ∈ A exists, hence the process

ς(s) =

∫ τ

0

σ(s)d−D(s)

is a (N ,m)-semimartingale

3. supposed
∑n

i=1 βiγi ∈ A of optimal value exists and σ 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

then D(τ) is an (N,m)-semimartingale

Proof

1. If
∑n

i=1 βiγi ∈ AN

is optimal, by Definition 4.3.3, then N∑n
i=1 βiγi

is a (N, Q∑n
i=1 βiγi

)-martingale

with

F∑n
i=1 βiγi

(ξ) =
η′(X∑n

i=1 βiγi
(ξ))X∑n

i=1 βiγi
(ξ)

H[η′(X∑n
i=1 βiγi

(ξ))X∑n
i=1 βiγi

(ξ)]

and (4.22). By applying theorem of Girsanov,

N̂∑n
i=1 βiγi

(τ) := N∑n
i=1 βiγi

(τ)−
∫ τ

0

d[N∑n
i=1 βiγi

, ς](s)

ς(s)
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is a (N,m)-martingale

ς(τ) := HQ∑n
i=1

βiγi
[

dm

dQ∑n
i=1 βiγi

]|Nτ

= H[(F∑n
i=1 βiγi

(ξ))−1
F∑n

i=1 βiγi
(ξ)

H[F∑n
i=1 βiγi

(ξ)|Nτ |Nτ ]
]

= (H[F∑n
i=1 βiγi

(ξ)|Nτ ])−1, τ ∈ [0, ξ]

conversely, if N∑n
i=1 βiγi

is a (N, Qβiγi)-martingale then N∑n
i=1 βiγi

is a (N,mβiγi)-martingale thus
∑n

i=1 βiγi is optimal by Definition 4.3.3

2. is the direct value of (1)

3. By (2) its obvious that

Z(s) =

∫ s

0

ω(τ)d−D(τ)

is a (N,m)-semimartingale. supposing ω 6= 0 for

a.a(τ, w) ∈ [0, ξ]× Ω

its valid, then∫ s

0

ω−(τ)dZ(τ) =

∫ s

0

ω−(τ)ω(τ)d−D(τ) = D(τ)

is (N,m)-semimartingale also.

Theorem 4.3.1 gives a clear connection between
∑n

i=1 βiγi optimal portfolio and

decomposition of semimartingale D with respect to N. we prove this in the context

of portfolio diversification.

Theorem 4.3.2

1. Given that
∑n

i=1 βiγi is optimal, then the decomposition of semimartingale

D with respect to N is

dD(τ) = dD̂(τ) + [ω(τ)
n∑
i=1

βiγi(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[N∑n
i=1 βiγi

, ς](τ)

ωτς(τ)

where D̂ is Brownian motion of (N,m)-Brownian motion
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2. In reverse, assume the semimartingale D with respect to (N,m) decomposes

as dD(τ) = dD̂(τ)+dA(τ), where D̂ is (N,m) Brownian and N-adapted finite

variation process A. Assume dA(τ) = α(τ)d(τ) for some N-adapted process

α that is, dA(t) is absolutely continuous with respect to d(t) then there is a

solution
∑n

i=1 βiγi ∈ AN of the form

ω(τ)
n∑
i=1

βiγi +
1

ω(τ)ς(τ)

d
[
N∑n

i=1 βiγi
, ς
]

(τ)

dτ

= α(τ) +
ϑ(τ)− λ(τ)

ω(τ)

in this sense
∑n

i=1 βiγi proves optimal for

sup
βiγi∈AN

H[η(X∑n
i=1 βiγi

(ξ))] = H[η(X∗∑n
i=1 βiγi

(ξ))]

since quadratic variation of N̂∑n
i=1 βiγi

is absolutely continuous that is,

[N∑n
i=1 βiγi

, N∑n
i=1 βiγi

](τ) =

∫ τ

0

ω2(s)ds

from

N̂∑n
i=1 βiγi

(τ) := N∑n
i=1 βiγi

(τ)−
∫ τ

0

d[N∑n
i=1 βiγi

, ς](s)

ς(s)
, τ ∈ [0, ξ]

then d[N∑n
i=1 βiγi

, ς](τ) is absolutely continuous with respect to dτ .

d[N∑n
i=1 βiγi

, ς](τ)

ω(τ)ς(τ)
=

1

ω(τ)ς(τ)

d[N∑n
i=1 βiγi

, ς](τ)dτ

dτ

Proof

Assuming
∑n

i=1 βiγi is optimal, by Theorem 4.3.1,

ω−1(τ)dN̂∑n
i=1 βiγi

(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

βiγi(τ))dτ

−
d[N∑n

i=1 βiγi
ς](τ)

ς(τ)
]

(4.28)

τ ∈ [0, ξ] is an (N,m)-martingale and ω−1(τ)dN̂∑n
i=1 βiγi

(τ)

for τ ∈ [0, ξ], is τ, τ ∈ [0, ξ] a quadratic variation then

dD̂(τ) := ω−1(τ)dN̂∑n
i=1 βiγi

(τ), τ ∈ [0, ξ]
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is an (N,m)-Brownian motion and

dD(τ) = dD̂(τ) + [ω(τ)
n∑
i=1

βi(τ)γi(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[N∑n
i=1 βiγi

, ς](τ)

ωτς(τ)

in effect

1. Assume D is a (N,m)-semimartingale with a decomposition

dD(τ) = dD̂(τ) + dA(τ)

with referencing to (2). Set ν

ν = α(τ) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then,

ω−1(τ)dN̂∑n
i=1 βiγi

(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

βi(t)γi(τ))dτ

−
d[N∑n

i=1 βiγi
, ς](τ)

ς(τ)
]

(4.29)

τ ∈ [0, ξ]

= dD(τ)− dA(τ) = dD̂(τ)

consequently

dD̂(τ) = ω−1(τ)dN̂∑n
i=1 βiγi

(τ), τ ∈ [0, ξ],

is a (N,m)-martingale then
∑n

i=1 βiγi is optimal from Theorem 4.3.2

For example, Assuming

U(s) = log(x), x > 0

1. We define a∗ as

ν∗(τ) =
ϑ(τ)− λ(τ)

ω2(τ)
+
a∗(τ)

ω(τ)

and let

D(τ) =
ϑ(τ)− λ(τ)

ω(τ)
.

Then,

D̂(s) := D(s)−
∫ τ

0

a∗(t)dt

is a (N ,m)-Brownian motion and

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(τ) +
1

2
(D(τ) + a∗(τ))2}dτ ] (4.30)
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2. Assume that D(τ) is Fτ -measurable, ξ ≥ 0. Then,

H[

∫ ξ

0

D(τ)a∗(τ)dτ ] = 0

and the similar value is

HF,N
ξ = expx0 +H[

∫ ξ

0

{λ(s)

+
1

2
[D(s)2 + (a∗(s))2]}ds]

(4.31)

Proof

Since ν∗ is admissible, the corresponding optimal value function

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s)

+
1

2
(D(s) + a∗(s))2}ds]

(4.32)

is finite. We prove

H

[∫ ξ

0

D(τ)a∗(τ)dτ

]
= 0

by saying that if D(s) is F -adapted, then by D̂(t) := D(t)− A(t)

H

[∫ ξ

0

D(s)a∗ds

]
= H

[∫ ξ

0

D(s)
(
Dd(s)− dD̂(s)

)]
= H

[∫ ξ

0

D(s)dD(s)

]
−H

[∫ ξ

0

D(s)dD̂(s)

]
= 0.

(4.33)

From

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(τ) +
1

2
[D(τ)2 + (a∗(τ))2]}dτ ]

Let

(a∗(s)) =
n∑
i=1

βiγi.

This equally means that our mode of investment can be diversified

1

2

n∑
i=1

(βiγi +D(s))2 =
n∑
i=1

(β1γ1 +D(s))
n∑
i=1

(βiγi +D(s))

n∑
i=1

β2
i γ

2
i +

n∑
i=1

βiγiD(s) +
n∑
i=1

βiγiD(s) +D(s)2.

Hence, from

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[D(s)2 + (a∗(s))2]}ds]

61



we have

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[(D(s)2 +

n∑
i=1

(β2
i γ

2
i ) +

n∑
i=1

(2βiγiD(s))]}ds]

is finite. As a result, D(s) is Ns-measurable, 0 ≤ t ≤ ξ . Therefore,

H[
∫ ξ

0

∑n
i=1 βiγiD(s)ds] = 0 By D̂(τ) := D(τ) − A(τ) being Nt-Brownian motion,

we have

H[

∫ ξ

0

D(s)
n∑
i=1

βiγids] = H[

∫ ξ

0

D(s)
(
dD(s)− dD̂(s)

)
]

= H[

∫ ξ

0

D(s)dD(s)]−H[

∫ ξ

0

D(s)dD̂(s)] = 0

1. Given U(x) = 1
y
xy, x > 0 where y ∈ (0, 1) we have

η′(X∑n
i=1 βiγi+y$

(ξ))X∑n
i=1 βiγi+y$

(ξ)|M(y)| = Xy∑n
i=1 βiγi

+ y$(ξ)|M(y)

and condition (4) in our earlier Definition is satisfied if

sup
y∈(−δ,δ)

H[(Xy∑n
i=1 βiγi+y$

(ξ)|M(y)|)p] <∞

for p > 1 set

X∑n
i=1 βiγi+y$

(ξ) = X∑n
i=1 βiγi

(ξ)N(y)

where

N∑n
i=1 βiγi

(y) := exp

∫ ξ

0

[ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

βiγi(τ)]dτ +

∫ t

0

ω)dD(τ).

From the Holders inequality, we have

H[(Xy∑n
i=1 βiγi+y$

(ξ)|M(y)|)p̂] ≤ (H[(X∑n
i=1 βiγi

(ξ))yp̂ä1b1 ])
1

ä1b1

(H[(N(y))yp̂ä1b2 ])
1

ä1b2 (H[(|M(y)|)p̂ä2 ])
1
ä2

where ä1, ä2 : 1
ä1

+ 1
ä2

= 1 and b1, b2 : 1
b1

+ 1
b2

= 1. Then, we set

ä1 = 2
2−p , ä2 = 2

p̂
and also b1 = 2−p̂

yp̂
, b2 = 2−p̂

2−p̂−yp̂ for some p̂ ∈ (1, 2
y+1

). Hence,

H[(Xy∑n
i=1 βiγi

+ y$(ξ)|M(y)|)p̂] ≤ (H[(X∑n
i=1 βiγi

(xi))2])
yp
2

(H[(N(y))
2yp̂

2−p̂−yp̂ ])
2−p̂−yp̂

2 (H[(|M(y)|2)])
p̂
2
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if N∑n
i=1 βiγi

(ξ) in

N(s) = x exp{
∫ s

0

λ(τ) + (ϑ(τ)− λ(τ))
n∑
i=1

βi(τ)γi(τ)

−1

2
ω2(τ)(

n∑
i=1

βi(τ)γi(τ))2]dτ +

∫ s

0

ω(τ)
n∑
i=1

βi(τ)γi(τ)d−D(τ)

(4.34)

satisfies

H[(N∑n
i=1 βiγi

(ξ))2] <∞

Then the condition (4) and (5) of our earlier definitions holds if

sup
y∈−δ,δ

H[(N(y))
2yp

2− p− xp
] <∞

however

sup
y∈−δ,δ

H[(N(y))
2yp

2− p− xp
] <∞

holds if for example

H exp{k
∫ τ

0

[|ϑ(τ)− λ)|+ |
n∑
i=1

βiγi(τ)|dτ}] <∞ ∀ k > 0

however,

H[(N∑n
i=1 βiγi

(ξ))2] <∞

is equally verify for all k > 0

H exp{k(

∫ ξ

0

[|ϑ(τ)− λ(τ)|+ |
n∑
i=1

βiγi(τ)|dτ)}

+|
∫ ξ

0

n∑
i=1

βiγi(τ)ω(τ)dD(τ)| <∞
(4.35)

4.4 Characteristics of optimal portfolio of a sen-
sitive investor with insurance cover

Effective portfolio management entails effective investing, monitoring the market

trends against spontaneous shift in the economy and changes to the political sce-

nario as well as issues that may influence some organisations. The risk of exchange

rate variance significantly affect the utilities and portfolio choice of both domestic

and foreign investors Jorion (1995), Hull (1987). As a result, the variance and

correlations in returns are unpredictable. There is a need to hedge risk against

any unforeseen circumstances. In this model, ϕ represents any sudden shocks from
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the economy and political decision and policies, while I represents insurance cover

such as retirement savings, pensions, gratuities and large financial institutions that

could stand as a cover for investors in the market Johnson (1987). We defined the

family of admissible portfolios as AN and:

Definition 4.4.1

1. I − ϕβiγi ∈ AN is cáglád and N-adapted

2. for all I − ϕβiγi ∈ AN.

H[

∫ ξ

0

|ϑ(τ)− λ(τ)||I − ϕβi(τ)γi(τ)|+ ω2(τ)(I − ϕβi(τ)γi(τ))2]dτ <∞

3. I − ϕβiγi ∈ AN,then (I − ϕβiγi)ω is forward integrable and cáglád with

respect to D

4. for all I−ϕβiγi ∈ AN, we have 0 < H[η′(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)] <∞ where

η′(x) = d
dx
η(x).

5. for all I − ϕβiγi, $ ∈ AN, there exists υ > 0, with $ bounded, then

I − ϕβiγi + j$ ∈ AN for all j ∈ (−υ, υ) the equation

η′(XI−ϕβiγi+j$(ξ))XI−ϕβiγi+j$(ξ)|NI−ϕβiγi+j$(ξ)|j∈(−υ,υ)

is uniformly integrable, where

NI−ϕβiγi(τ) :=

∫ τ

0

[ϑ(s)− λ(s)− ω2(s)I − ϕβiγi(s)]ds+

∫ τ

0

ω(s)dD(s)

for τ ∈ [0, ξ]

6. A buy-hold sell strategy $, that is,

$(t) = αI(τ, τ + f ](t), t ∈ [0, ξ]

with 0 ≤ τ < τ + f ≤ ξ and α Nt-measurable, belonging to AN.

Then, the portfolio I − ϕβiγi ∈ AN is optimal if

H[η(XI−ϕβiγi+j$(ξ))] = H[η(Xν1(ξ))]

for all $ ∈ AN bounded and j ∈ (−υ, υ) with υ > 0 given in (5).
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Definition 4.4.2

Suppose $ is a forward integrable stochastic process and N random variable. Then,

the product N$ is forward integrable stochastic process and∫ ξ

0

N$(t)d−D(t) = N

∫ ξ

0

$(t)dD−D(t) (4.36)

where $ = X(t)ν(t)∗ such that ν∗1 = I − ϕβiγi. Firstly, supposing

I − ϕβiγi is optimal. Then, for all $ ∈ AN bounded implies

0 =
d

dj
H[η(XI−ϕβiγi + j$(ξ))]|j=0

0 = H[η′(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)

∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)I − ϕβiγi(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.37)

Now fix τ, f : 0 ≤ τ < τ+f ≤ ξ and choose $(s) = αI(τ, τ+f ](τ), τ ∈ [0, ξ], where

α is a bounded and arbitrary Nτ -measurable random variable. (4.45) becomes

0 = H[η′(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)I − ϕβiγi(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.38)

since it holds for all α,we conclude, that

H[FI−ϕβiγi(ξ)(NI−ϕβiγi(τ + f)−NI−ϕβiγi(τ))|Nτ ] = 0

where

FI−ϕβiγi(ξ) =
η′(XI−ϕβiγi(ξ))XI−ϕβ1γ1(ξ)

H[η(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)]

and

NI−ϕβiγi(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)I − ϕβiγi(s)]ds]

+

∫ τ

0

[ω(s)d−Ds], τ ∈ [0, ξ]

(4.39)

that is,

HFI−ϕβiγi(ξ)

∫ τ+f

τ

ϑ(s)− λ(s)− ω2(s)I − ϕβiγi(s)ds

+

∫ τ+f

τ

ω(s)d−D(s)|Nτ = 0

(4.40)

by application of Bayes Theorem,
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HQI−ϕβiγi
[NI−ϕβiγi(t+ f)−NI−ϕβiγi(t)|Nt ]

0 = H[FI−ϕβiγi(ξ)|Nt ]−H[FI−ϕβiγi(ξ)(NI−ϕβiγi(t+ f)−NI−ϕβiγi(t))|Nt ]
(4.41)

since NI−ϕβiγi(t) is Nt-adapted, this gives

HQI−ϕβiγi
[NI−ϕβiγi(t+ f)|Nt ] = NI−ϕβiγi(t)

Hence, NI−ϕβiγi(t) is an Nt, QI−ϕβiγi-martingale.

Let the probability measure QI−ϕβiγi on Nt be

dQI−ϕβiγi = FI−ϕβiγi(ξ)dm

and set HQI−ϕβiγi
(t) to represent

QI−ϕβiγi expectation then

H[FI−ϕβiγi(ξ)(NI−ϕβiγi(t+ f)−NI−ϕβiγi(t))|Nt ] = 0

written as

HQI−ϕβiγi
[NI−ϕβiγi(t+ f)−NI−ϕβiγi(t)|Nt ] = 0

therefore, NI−ϕβiγi(t), t ∈ [0, t], is an

(N, QI−ϕβiγi)-martingale that is a martingale with respect to the filtration N un-

der the probability measure. QI−ϕβiγi Conversely, assumingNI−ϕβiγi is an N, QI−ϕβiγi-

martingale, then

HQI−ϕβiγi
[NI−ϕβiγi(s+ f)−NI−ϕβiγi(s)Ns ] = 0

for all τ, f therefore 0 ≤ τ < τ + f ≤ ξ. Equivalently,

HQI−ϕβiγi
[NI−ϕβiγi(τ + f)−NI−ϕβiγi(τ)α] = 0

for all α bounded Nt-measurable. Then,

0 = H[η′(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)I − βiγi(s)]dt

+

∫ τ+f

τ

ω2(s)d−D(s)α]

(4.42)
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holds. taking linear combination, it is valid for all step processes

$ ∈ AN of cáglád. Referencing assumption (1) and (5)

0 = H[η′(I −Xϕβiγi(ξ))XI−ϕβiγi(ξ)

∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)I − ϕβiγi(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.43)

holds with boundedness of all $ ∈ AN. Since

j → H[η(XI−ϕβiγi+j$(ξ))], j ∈ (−ν, ν)

maximum is obtain at j = 0. Thus,

0 =
d

dj
H[U(XI−ϕβiγi+j$(ξ))]|j=0

Definition 4.4.3

I − βiγi ∈ AN is optimal in relation with the equation

sup
I−ϕβiγi∈AN

H[η(XI−ϕβiγi(ξ))] = H[η(X∗I−ϕβiγi(ξ))]

if

NI−ϕβiγi(s) := exp

∫ s

0

[ϑ− λ(s)− ω2(s)I − ϕβiγi(s)]ds

+

∫ s

0

ω(t)d−D(s)]

(4.44)

is a (N, QI−ϕβiγi)-martingale. Conversely, it is also stated as follows

Theorem 4.4.1

1. I − ϕβiγi ∈ AN is optimal for the equation below

sup
I−ϕβiγi∈AN

H[η(XI−ϕβiγi(ξ))] = H[η(X∗I−ϕβiγi(ξ))]

only if

N̂I−ϕβiγi(s) := NI−ϕβiγi(s)−
∫ s

0

d[NI−ϕβiγi , ςI−ϕβiγi ](τ)

ςI−ϕβiγi(τ)
, s ∈ [0, ξ]

is a (N,m)-martingale. In this regard,

ς(s) := HQI−ϕβiγi

[
dm

dQI−ϕβiγi
|Ns
]

= (H[FI−ϕβiγi(ξ)|Ns])−1, s ∈ [0, ξ]
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2. However, Assuming an optimal portfolio I − ϕβiγi ∈ A exists, then

Z(s) =

∫ s

0

ω(τ)d−D(τ)

is a semimartingale of (N ,m)

3. Supposing an optimal I − ϕβiγi ∈ A exists such that ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

then, D(τ) is an (N ,m)-semimartingale

Proof

1. If I − ϕβiγi ∈ AN is optimal, then by Definition 4.4.3, NI−ϕβiγi is a

(N, QI−ϕβiγi)-martingale with

FI−ϕβiγi(ξ) =
η′(XI−ϕβiγi(ξ))XI−ϕβ1γ1(ξ)

H[η′(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)]

and (4.47) and by Girsanov, we have

N̂I−ϕβiγi(τ) := NI−ϕβiγi(τ)−
∫ τ

0

d[NI−ϕβiγi , ς](s)

ς(s)
, τ ∈ [0, ξ]

is a (N,m)-martingale with

ς(τ) := HQI−ϕβiγi
[

dm

dQI−ϕβiγi
]|Nτ = H[(FI−ϕβiγi(ξ))

−1 FI−ϕβiγi(ξ)

H[FI−ϕβiγi(ξ)|Nτ |Ns ]
]

= (H[FI−ϕβiγi(ξ)|Ñτ ])−1s ∈ [0, ξ]

conversely, if NI−ϕβiγi is a (N, QI−ϕβ1γ1)-martingale

then NI−ϕβiγi is a (N,mI−ϕβ1γ1)-martingale and hence I−ϕβiγi is optimal by

Definition 4.4.3

2. is derived from (1)

3. By (2) recall that

Z(τ) =

∫ τ

0

ω(s)d−D(s)

is a (N ,m)-semimartingale. Then Assuming ω 6= 0 for

a.a(s,D) ∈ [0, ξ]× Ω̂
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holds, we obtain that∫ s

0

ω−(τ)dZ(τ) =

∫ s

0

ω−(τ)ω(τ)d−D(τ) = D(τ)

is a (N ,m)-martingale also.

Theorem 4.4.1 indicate a clear connection between the optimal portfolio I − ϕβiγi
and the decomposition of the semimartingale D with respect to N. we prove this

in the context of portfolio diversification.

Theorem 4.4.2

1. Given that I − ϕβiγi is optimal for

sup
I−ϕβiγi∈AN

H[η(XI−ϕβiγi(ξ))] = H[η(X∗I−ϕβiγi(ξ))].

Then, D is a semimartingale with respect to N with a decomposition

dD(τ) = dD̂(τ) + [ω(τ)I − ϕβiγi(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[NI−ϕβiγi , ς](τ)

ωτς(τ)

where D̂ is a (N,m)-Brownian motion

2. in reverse, assume D is a semimartingale with respect to (N,m) with a decom-

position dD(τ) = dD̂(τ) + dA(τ). And N-adapted finite variation process A

and α in N. Assuming α(τ)dτ = dA(τ) = i.e. dA(τ) is absolutely continuous

with respect to dτ then the solution I − ϕβiγi ∈ AN for

ω(τ)I − ϕβiγi +
1

ω(τ)ς(τ)

d [NI−ϕβiγi , ς] (τ)

dτ

= α(τ) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then, I − ϕβiγi is optimal for

sup
I−ϕβiγi∈AN

H[η(XI−ϕβiγi(ξ))] = H[η(X∗I−ϕβiγi(ξ))]

since the quadratic variation NI−ϕβiγi is continuous absolutely.

[NI−ϕβiγi , NI−ϕβiγi ](τ) =

∫ τ

0

ω2(s)ds
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from

N̂I−ϕβiγi(τ) := NI−ϕβiγi(τ)−
∫ τ

0

d[NI−ϕβiγi , ς](s)

ς(s)
, τ ∈ [0, ξ]

this implies d[NI−ϕβiγi , ς](τ) is continuous absolutely with respect to dτ . As such,

d[NI−ϕβiγi , ς](τ)

ω(τ)ς(τ)
=

1

ω(τ)ς(τ)

d[NI−ϕβiγi , ς]τdτ

dτ

Proof

Assuming I − ϕβiγi is optimal, by Theorem 4.4.2, the equation below

ω−1(τ)dN̂I−ϕβiγi(τ) = dD(τ) + ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)I − ϕβiγi(τ))dτ

−d[NI−ϕβiγi , ς](τ)

ς(τ)
]

(4.45)

τ ∈ [0, ξ] is a (N,m)-martingale. as much as the process of the quadratic

variation ω−1(τ)dN̂I−ϕβiγi(τ) τ ∈ [0, ξ], is τ, τ ∈ [0, ξ] it implies that

dD̂(τ) := ω̃−1(τ)dN̂I−ϕβiγi(τ), τ ∈ [0, ξ]

is a (N,m)-Brownian motion and

dD(τ) = dD̂(τ) + [ω(τ)I − ϕβi(τ)γi(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[NI−ϕβiγiς](τ)

ωτς(τ)

follows

1. Supposing the decomposition of D is a semimartingale of (N,m)

dD(τ) = dD̂(τ) + dA(τ)

with reference to (2). Set ν to be

ν = α(t) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then,

ω−1(τ)dN̂I−ϕβiγi(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)I − ϕβi(τ)γ1(τ))dτ

−d[NI−ϕβiγi , ς](τ)

ς(τ)
]

(4.46)

τ ∈ [0, ξ]

dD(τ)− dA(τ) = dD̂(τ)
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therefore

ω−1(τ)dN̂I−ϕβiγi(τ), τ ∈ [0, ξ],

is a (N,m)-martingale in this manner, I − ϕβiγi
is optimal via Theorem 4.4.2

For example, If

η(s) = log(x), x > 0

1. We define a∗ as

ν∗(s) =
ϑ(s)− λ(s)

ω2(s)
+
a∗(s)

ω(s)

and set

D(s) =
ϑ(s)− λ(s)

ω(s)
.

Then,

D̂(t) := D(t)−
∫ t

0

a∗(s)ds

is (N ,m) Brownian motion

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
(D(s) + a∗(s))2}ds] (4.47)

2. Assuming D(s) is Ns-measurable s ≥ 0. Then,

H[

∫ ξ

0

D(s)a∗(s)ds] = 0

and the corresponding value is

HF,N
ξ = expx0 +H[

∫ ξ

0

{λ(s)

+
1

2
[D(s)2 + (a∗(s))2]}ds]

(4.48)

Proof

In as much as ν∗ is admissible, then the corresponding optimal value function

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s)

+
1

2
(D(s) + a∗(s))2}ds]

(4.49)

is finite. It remains to prove

H

[∫ ξ

0

D(s)a∗(s)ds

]
= 0
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If D(s) is N -adapted, then D̂(t) := D(t)− A(t)

H

[∫ ξ

0

D(s)a∗ds

]
= H

[∫ ξ

0

D(s)
(
dD(s)− dD̂(s)

)]
= H

[∫ ξ

0

D(s)dD(s)

]
−H

[∫ ξ

0

D(s)dD̂(s)

]
= 0.

(4.50)

From

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[D(s)2 + (a∗(s))2]}ds]

Let

(a∗(s)) = I − ϕβiγi.

This equally means that our mode of investment can be diversified

1

2
(I − ϕβiγi +D(s)2) = (I − ϕβiγi +D(s))(I − ϕβiγi +D(s))

I − ϕβ2
i γ

2
i + I − ϕβiγiB(s) + I − ϕβiγiD(s) +D(s)2

1

2
[I − ϕβ2

i γ
2
i + 2I − ϕβiγiD(s) +D(s)2]

1

2
[D(s)2 + I − ϕβ2

i γ
2
i + 2I − ϕβiγ1D(s)].

Hence, from

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[D(s)2 + (ω∗(s))2]}ds]

we have

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s) +
1

2
[(B(s)2 + (I − ϕβ2

i γ
2
i ) + (2I − ϕβiγiD(s))]}ds]

since ν is admissible, then the similar optimal value function in the previous equa-

tion is finite. Consequently if D(s) is Ns-adapted, 0 ≤ t ≤ ξ . Then,

H[

∫ ξ

0

I − ϕβiγiD(s)ds] = 0

By D̂(t) := D(t)− A(t) being an Nt-Brownian motion, therefore,

H[

∫ ξ

0

D(s)I − ϕβiγids] = H[

∫ ξ

0

D(s)
(
dD(s)− dD̂(s)

)
]

= H[

∫ ξ

0

D(s)dD(s)]−H[

∫ ξ

0

D(s)dD̂(s)] = 0
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1. Given η(x) = 1
h
xh, x > 0 where h ∈ (0, 1) we have

η′(XI−ϕβiγi+h$(ξ))XI−ϕβiγi+h$(ξ)|M(h)| = XI−ϕβiγhi +h$(ξ)|M(h)

and condition (4) in our earlier Definition is satisfied if

sup
h∈(−δ,δ)

H[(Xh
I−ϕβiγi + h$(ξ)|M(h)|)p̂] <∞

for p̂ > 1 then set

XI−ϕβiγi+h$(ξ) = XI−ϕβiγi(ξ)N(h).

From the Holders inequality,

H[(Xh
I−ϕβiγi+h$(ξ)|M(h)|)p̂] ≤ (H[(XI−ϕβiγi(ξ))

hp̂ã1b̃1 ])
1

ã1 b̃1

(H[(N(h))hp̂ã1b̃2 ])
1

ã1 b̃2 (H[(|M(h)|)p̂ã2 ])
1
ã2

where ã1, ã2 : 1
ã1

+ 1
ã2

= 1 and b̃1, b̃2 : 1
b̃1

+ 1
b̃2

= 1 Choosing ã1 = 2
2−p̂ ,

ã2 = 2
p̂

and also b̃1 = 2−p̂
hp̂
, b̃2 = 2−p̂

2−p̂−hp̂ for some p̂ ∈ (1, 2
h+1

). Hence,

H[(Xh
I−ϕβiγi+h$(ξ)|M(h)|)p̂] ≤ (H[(XI−ϕβiγi(ξ))

2])
hp̂
2

(H[(N(h))
2hp̂

2−p̂−hp̂ ])
2−p̂−hp̂

2 (H[(|M(h)|2)])
p̂
2

supposing NI−ϕβiγi(ξ) in

N(t) = x exp{
∫ s

0

[λ(τ) + (ς(τ)− λ(τ))βi(τ)γi(τ)

−1

2
ω2(τ)(I − ϕβi(τ)γi(τ))2]dτ +

∫ s

0

ω(τ)I − ϕβi(τ)γi(τ)d−D(τ)

(4.51)

satisfies

H[(NI−ϕβiγi(ξ))
2] <∞.

Then, (4) and (5) of our earlier definitions is valid if

sup
h∈−δ,δ

H[(N̂(h))
2hp̂

2− p̂− xp̂
] <∞

however

sup
h∈−δ,δ

H[(N̂(h))
2hp̂

2− p̂− xp̂
] <∞

holds if for example

H exp{k
∫ s

0

[|ϑ(τ)− λ(τ)|+ |I − ϕβiγi(τ)|dτ}] <∞ ∀ k > 0
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however,

H[(N̂I−ϕβiγi(ξ))
2] <∞

is equally verify for k > 0

H exp{k(

∫ ξ

0

[|ϑ(τ)− λ(τ)|+ |I − ϕβiγi(τ)|dτ ])}

+|
∫ ξ

0

I − ϕβiγi(τ)ω(τ)dD(τ)| <∞
(4.52)

4.5 Assets diversification for large scale investors
under insurance cover

A sensitive investor spread his investment network on different assets to reduce risk

and more return on investment. we defined

H : Rn → 〈β, γ〉,⊆ R

where

〈 ˆβ, γ̂〉 = 〈(β1β2), (γ1γ2), · · · 〉 =
n∑
i=1

I − βiγi

where
∑n

i=1 (I − νiβiγi) and νi is a confine placed before investor’s on the size

of assets to be held due to costs of transactions. νi = 1 if assets i is chosen

in the portfolio, and 0 otherwise. Large investor’s engage in effective portfolio

management, paying close attention to market trends against spontaneous shift in

the economy and changes to the political landscape as well as factors that may

affect some organisations . This is to enable efficient monitoring of transactions

of assets, the risk of exchange rate variance significantly affect the portfolio choice

of both domestic and foreign investors as stated by Jorion (1995)and Hull (1987).

As a result, the variance and correlations in returns are unpredictable. Therefore,

there is a need to hedge risk against any unforeseen circumstances. In this model, ϕ

represents any sudden shocks from the economy and political decision and policies,

while I represents insurance cover such as retirement savings, pensions, gratuities

and large financial institutions for a backup Johnson (1987).

Definition 4.5.1

AN is admissible portfolios expressed as

1. all
∑n

i=1 (I − ϕβiγi)) ∈ AN is cáglád and N-adapted
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2.
∑n

i=1 I − ϕβiγi ∈ AN.

H[

∫ ξ

0

|ϑ(τ)− λ(τ)|| (I − ϕβi(τ)γi(τ)|) +
n∑
i=1

((I − vϕβi(τ)γ1(τ))2]dτ <∞

3. I − ϕβiγi ∈ AN,the product (
∑n

i=1 I − ϕβiγi)ω is forward integrable and

cáglád

4.
∑n

i=1 I − ϕβiγi ∈ AN, then 0 < H[η′(L∑n
i=1 I−ϕβiγi(ξ))L

∑n
i=1 I−ϕβiγi(ξ)] < ∞

where η′(l) = d
dl
η(l).

5. for all
∑n

i=1 I − ϕβiγi, $ ∈ AN, there exist δ > 0, with a bounded $, such

that
∑n

i=1 I − ϕβiγi + j$ ∈ AN in all j ∈ (−δ, δ) as such, the entire family

η′(L∑n
i=1 I−ϕβiγi+j$(ξ))L∑n

i=1 I−ϕβiγi+j$(ξ)|N∑n
i=1 I−ϕβiγi+j$(ξ)|

j∈(−δ,δ)

is uniformly integrable, where

N∑n
i=1 I−ϕβiγi(τ) :=

∫ s

0

[λ(τ)−λ(τ)−ω2(τ)
n∑
i=1

I−ϕβiγi(τ)]dτ+

∫ s

0

ω(s)dD(τ),

6. $ portfolio permits buy-low and sell-high strategy, i.e.

$(s) = αI(τ, τ + f ](t), t ∈ [0, ξ]

with 0 ≤ τ < s + f ≤ ξ and α Nτ -measurable belonging to AN. Then,∑n
i=1 I − ϕβiγi ∈ AN is optimal if

H[η(X∑n
i=1 I−ϕβiγi+j$(ξ))] = H[η(Xν1(ξ))]

for a bounded $ ∈ AN and y ∈ (−δ, δ) with δ > 0 given in (5)of definition

(4.5.1).

Definition 4.5.2

Assuming $ is a forward integrable stochastic process and N a random variable,

then the product N$ is a stochastic process and forward integrable thus,∫ ξ

0

N$(τ)d−D(τ) = N

∫ ξ

0

$(τ)d−D(τ)

where $ = X(τ)ν(τ)∗ in this sense, ν∗1 =
∑n

i=1 I − ϕβiγi. Firstly,
∑n

i=1 I − ϕβiγi
is optimal. For a bounded $ ∈ AN we have

0 =
d

dj
H[η(X∑n

i=1 I−ϕβiγi+j$(ξ))]|j=0
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0 = H[η′(X(ξ))X∑n
i=1 I−ϕβiγi(ξ)∫ ξ

0

$(τ)[ϑ− λ(τ)− ω2(s)
n∑
i=1

I − ϕβiγi(τ)]dτ

+

∫ ξ

0

$(τ)ω(τ)d−D(τ)]

(4.53)

fixing τ, f : 0 ≤ τ < τ + τ ≤ ξ and choosing $(s) = αI(τ, τ + f ](s), t ∈ [0, ξ], for

any stochastic amount α of Nτ bounded. equation (4.53) becomes

0 = H[η′(X∑n
i=1 I−ϕβiγi(ξ))X

∑n
i=1 I−ϕβiγi(ξ)∫ τ+f

τ

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − ϕβiγi(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.54)

this holds in all α, then

H[F∑n
i=1 I−ϕβiγi(ξ)(N

∑n
i=1 I−ϕβiγi(τ + f)−N∑n

i=1 I−ϕβiγi(τ))|Nτ ] = 0

where

F∑n
i=1 I−ϕβiγi(ξ) =

η′(X∑n
i=1 I−ϕβiγi(ξ))X

∑n
i=1 I−ϕβiγi(ξ)

H[η′(X∑n
i=1 I−ϕβiγi(ξ))X

∑n
i=1 I−ϕβiγi(ξ)]

and

N∑n
i=1 I−ϕβiγi(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − ϕβiγi(s)]ds

+

∫ τ

0

ω(s)d−D(s)]

(4.55)

that is,

0 = H[F∑n
i=1 I−ϕβiγi(ξ)

∫ s+f

s

α(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − ϕβiγi(τ)dτ

+

∫ s+f

s

ω(τ)d−D(τ)|Nτ ]
(4.56)

HQ∑n
i=1

I−ϕβiγi
[N∑n

i=1 I−ϕβiγi(τ + f)−N∑n
i=1 I−ϕβiγi(τ)|Nτ ]

0 = H[F∑n
i=1 I−ϕβiγi(ξ)|Nτ ]

−H[F∑n
i=1 I−ϕβiγi(ξ)(N

∑n
i=1 I−ϕβiγi(τ + f)

−N∑n
i=1 I−ϕβiγi(τ))|Nτ ]

(4.57)

since N∑n
i=1 I−ϕβiγi(τ) is Nτ -adapted, this gives

HQ∑n
i=1

I−ϕβiγi
[N∑n

i=1 I−ϕβiγi(τ + f)|Nτ ] = N∑n
i=1 I−ϕβiγi(τ).
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Hence, N∑n
i=1 I−ϕβiγi(τ) is an (Nτ , Q∑n

i=1 I−ϕβiγi)-martingale.

Let the probability measure Q∑n
i=1 I−ϕβiγi on Nτ be

dQ∑n
i=1 I−ϕβiγi = F∑n

i=1 I−ϕβiγi(ξ)dm

and HQ∑n
i=1

I−ϕβiγi
(τ) an expectation of Q∑n

i=1 I−ϕβiγi So,

H[F∑n
i=1 I−ϕβiγi(ξ)(N

∑n
i=1 I−ϕβiγi(τ + f)−N∑n

i=1 I−ϕβiγi(τ))|Nτ ] = 0

written as

HQ∑n
i=1

I−ϕβiγi
[N∑n

i=1 I−ϕβiγi(τ + f)−N∑n
i=1 I−ϕβiγi(τ)|Nτ ] = 0

N∑n
i=1 I−ϕβiγi(τ), τ ∈ [0, ξ], is an (N, Q∑n

i=1 I−ϕβiγi)-martingale of the filtration

N under Q∑n
i=1 I−ϕβiγi measure it can equally be stated as follows that suppose

N∑n
i=1 I−ϕβiγi is a (N, Q∑n

i=1 I−ϕβiγi)-martingale, then

HQ∑n
i=1

I−ϕβiγi
[N∑n

i=1 I−ϕβiγi(τ + f)−N∑n
i=1 I−ϕβiγi(τ)Nτ ] = 0

for all τ, f and then 0 ≤ τ < τ + f ≤ ξ. Similarly,

HQ∑n
i=1

I−ϕβiγi
[N∑n

i=1 I−ϕβiγi(τ + f)−N∑n
i=1 I−ϕβiγi(τ)α] = 0

for α Nτ -measurable. Therefore,

0 = H[η′(X∑n
i=1 I−ϕβiγi(ξ))X

∑n
i=1 I−ϕβiγi(ξ)∫ τ+f

τ

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − ϕβiγi(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.58)

holds. taking linear combination

0 = H[η′(XI−ϕβiγi(ξ))XI−ϕβiγi(ξ)∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)
n∑
i=1

I − ϕβiγi(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.59)

remain valid for all cáglád step processes $ ∈ AN from assumption (1)

and (5) we have (4.59) still holds for a bounded $ ∈ AN. Provided the function

y → H[η(X∑n
i=1 I−ϕβiγi+j$(ξ))], j ∈ (−δ, δ)
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maximum is attained at j = 0. Thus,

0 =
d

dj
H[U(X∑n

i=1 I−ϕβiγi+j$(ξ))]|j=0

Definition 4.5.3

A stochastic process
∑n

i=1 I−ϕβiγi ∈ AN is optimal as far as the stochastic process

N∑n
i=1 I−ϕβiγi(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − ϕβiγi(s)]ds

+

∫ τ

0

ω(s)d−D(s)], τ ∈ [0, ξ]

(4.60)

is a (N, Q∑n
i=1 I−ϕβiγi)-martingale. By the application of

Girsanov’s theorem, it is equally stated as follows

Theorem 4.5.1

1. The process
∑n

i=1 I − ϕβiγi ∈ AN for

sup∑n
i=1 I−ϕβiγi∈AN

H[η(X∑n
i=1 I−ϕβiγi(ξ))] = H[η(X∗∑n

i=1 I−ϕβiγi
(ξ))]

is optimal if

N̂∑n
i=1 I−ϕβiγi(τ) := N∑n

i=1 I−ϕβiγi(τ)−
∫ τ

0

d[N∑n
i=1 I−ϕβiγi , υ

∑n
i=1 I−ϕβiγi ](s)

υ∑n
i=1 I−ϕβiγi(s)

for τ ∈ [0, ξ] is a (N,m)-martingale. In that sense,

υ∑n
i=1 I−ϕβiγi(τ) := HQ∑n

i=1
I−ϕβiγi

[
dm

dQ∑n
i=1 I−ϕβiγi

|Nτ
]

= (H[F∑n
i=1 I−ϕβiγi(ξ)|Nτ ])

−1

t ∈ [0, ξ]

2. However, if an optimal portfolio
∑n

i=1 I−ϕβiγi ∈ A exists, hence the process

ς(s) =

∫ τ

0

ω(s)d−D(s)

is a (N ,m)-semimartingale

3. supposed
∑n

i=1 I − ϕβiγi ∈ A of optimal value exists and ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

then D(τ) is a (N,m)-semimartingale
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Proof

1. If
∑n

i=1 I − ϕβiγi ∈ AN is optimal, by Definition 4.5.3, then

N∑n
i=1 I−ϕβiγi is a (N, Q∑n

i=1 I−ϕβiγi)-martingale with

F∑n
i=1 I−ϕβiγi(ξ) =

η′(X∑n
i=1 I−ϕβiγi(ξ))X

∑n
i=1 I−ϕβiγi(ξ)

H[η′(X∑n
i=1 I−ϕβiγi(ξ))X

∑n
i=1 I−ϕβiγi(ξ)]

and (4.55) respectively, By applying theorem of Girsanov,

N̂∑n
i=1 I−ϕβiγi(τ) := N∑n

i=1 I−ϕβiγi(τ)−
∫ τ

0

d[N∑n
i=1 I−ϕβiγi , ς](s)

ς(s)

is a martingale with respect to (N,m)

ς(τ) := HQ∑n
i=1

I−ϕβiγi
[

dm

dQ∑n
i=1 I−ϕβiγi

]|Nτ

= H[(F∑n
i=1 I−ϕβiγi(ξ))

−1
F∑n

i=1 I−ϕβiγi(ξ)

H[F∑n
i=1 I−ϕβiγi(ξ)|Nτ |Nτ ]

]

(4.61)

= (H[F∑n
i=1 I−ϕβiγi(ξ)|Nt])

−1, τ ∈ [0, ξ]

conversely, if N∑n
i=1 I−ϕβ1γ1 is a (N, QI−ϕβiγi)-martingale, then

N∑n
i=1 I−ϕβ1γ1 is a (N,mI−ϕβiγi)-martingale and hence∑n

i=1 I − ϕβiγi is optimal by Definition 4.5.3

2. is derived from (1)

3. By (2) its obvious that

Y (t) =

∫ t

0

ω(τ)d−D(τ)

is a (N,m)-semimartingale. supposing ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

its valid, then∫ s

0

ω−(τ)dY (τ) =

∫ s

0

ω−(τ)ω(τ)d−D(τ) = D(τ)

is an (,m)-semimartingale also.

79



Theorem 4.5.1 furnishes a clear connection between
∑n

i=1 I − ϕβiγi optimal

portfolio and decomposition of semimartingale D with respect to N. we prove this

in the context of portfolio diversification.

Theorem 4.5.2

1. Given that
∑n

i=1 I−ϕβiγi is optimal, then the decomposition of semimartin-

gale D with respect to N is

dD(τ) = dD̂(τ)+[ω(τ)
n∑
i=1

I−ϕβiγi(τ)−ϑ(τ)− λ(τ)

ω̃(τ)
]dτ+

[N∑n
i=1 I−ϕβiγi , ς](τ)

ω̃τ ς(τ)

where D̂ is a (N,m)-Brownian motion

2. in reverse, assume the semimartingale D with respect to (N,m) decomposes

as dD(τ) = dD̂(τ) + dA(τ). where D̂ is (N,m)-Brownian motion and N-

adapted A finite variation process. Assume dA(τ) = α(τ)d(τ) and for N-

adapted process α that is, dA(τ) is absolutely continuous with respect to

d(τ) then there is a solution
∑n

i=1 I − ϕβiγi ∈ AN of the form

ω(τ)
n∑
i=1

I − ϕβiγi +
1

ω(τ)ς(τ)

d
[
N∑n

i=1 I−ϕβiγi , ς
]

(τ)

dτ

= α(τ) +
ϑ(τ)− λ(τ)

ω(τ)

in this sense
∑n

i=1 I − ϕβiγi proves optimal for

sup
I−ϕβiγi∈AN

H[η(L∑n
i=1 I−ϕβiγi(ξ))] = H[η(X∗∑n

i=1 I−ϕβiγi
(ξ))]

since quadratic variation of N̂∑n
i=1 I−ϕβiγi is absolutely continuous that is,

[N̂∑n
i=1 I−ϕβiγi , N̂

∑n
i=1 I−ϕβiγi ](τ) =

∫ τ

0

ω2(s)ds

from

N̂∑n
i=1 I−ϕβiγi(τ) := N∑n

i=1 I−ϕβiγi(τ)−
∫ τ

0

d[N∑n
i=1 I−ϕβiγi , ς](s)

ς(s)
, τ ∈ [0, ξ]

then d[N∑n
i=1 I−ϕβiγi , ς](τ) is absolutely continuous with respect to dτ .

d[N∑n
i=1 I−ϕβiγi , ς](τ)

~ω(τ)ς(τ)
=

1

~ω(τ)ς(τ)

d[N∑n
i=1 I−ϕβiγi , ς](τ)dτ

dτ
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Proof

Assuming
∑n

i=1 I − ϕβiγi is optimal, by Theorem 4.5.2,

ω̃−1(τ)dN̂∑n
i=1 I−ϕβiγi(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − ϕβiγi(τ))dτ

−
d[N∑n

i=1 I−ϕβiγi , ς](τ)

ς(τ)
]

(4.62)

τ ∈ [0, ξ] is a (N,m)-martingale and ω−1(τ)dN̂∑n
i=1 I−ϕβiγi(τ) τ ∈ [0, ξ],

then

dD̂(τ) := ω−1(τ)dN̂∑n
i=1 I−ϕβiγi(τ), τ ∈ [0, ξ]

is a (N,m)-Brownian motion and

dD(τ) = dD̂(τ) + [ω(τ)
n∑
i=1

I −ϕβi(τ)γi(τ)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[N∑n
i=1 I−ϕβiγi , ς](τ)

ωτς(τ)

holds

1. Assume D is a (N,m)-martingale with a decomposition

dD(τ) = dD̂(τ) + dA(τ)

with referencing to (2). Set ν

ν = α(τ) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then,

ω−1(t)dN̂∑n
i=1 I−ϕβiγi(τ) = dD(τ) + ω−1(t)[(ϑ(τ)− λ(τ)

−ω2(τ)
n∑
i=1

I − ϕβi(t)γi(τ))dτ

−
d[N∑n

i=1 I−ϕβiγi , ς](τ)

ς(τ)
]

(4.63)

τ ∈ [0, ξ]

= dD(τ)− dA(τ) = dD̂(τ)

consequently

ω−1(τ)dÑ∑n
i=1 I−ϕβiγi(τ), τ ∈ [0, ξ],

is a (N,m)-martingale then
∑n

i=1 I − ϕβiγi is optimal from Theorem 4.9
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For example,

U(s) = (x), x > 0

1. We define a∗ as

ν∗(s) =
ϑ(s)− λ(s)

ω2(s)
+
a∗(s)

ω(s)

and set

D(s) =
ϑ(s)− λ(s)

ω(s)
.

Then,

D̂(τ) := D(τ)−
∫ τ

0

a∗(s)ds

is a (N ,m)-Brownian and

HF,N
ξ = log ι0 +H[

∫ ξ

0

{λ(τ) +
1

2
(Dτ) + a∗(τ))2}dτ ] (4.64)

2. Assume that D(s) is Ns-measurable, ξ ≥ 0. Then

H[

∫ ξ

0

D(s)a∗(s)ds] = 0

and the similar value is

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s)

+
1

2
[D(s)2 + (a∗(s))2]}ds]

(4.65)

Proof

Since ν∗ is admissible, then the corresponding optimal value function

HF,N
ξ = log x0 +H[

∫ ξ

0

{λ(s)

+
1

2
(D(s) + a∗(s))2}ds]

(4.66)

is finite. We prove

H

[∫ ξ

0

D(τ)a∗(τ)dτ

]
= 0

by saying that if D(s) is F -adapted, then by D̂(t) := D(t)− A(t)

H

[∫
D(s)a∗ds

]
= H

[∫ ξ

0

D(s)Dd(s)− dD̂(s))

]
= H

[∫ ξ

0

D(s)dD(s)

]
−H

[∫ ξ

0

D(s)dD̂(s)

]
= 0.

(4.67)
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From

HF,N
ξ = logX0 +H[

∫ ξ

0

{λ(τ) +
1

2
[D(τ)2 + (a∗(τ))2]}dτ ]

Let

(a∗(s)) =
n∑
i=1

I − ϕβiγi.

This equally means that our mode of investment can be diversified

1

2
(
n∑
i=1

I − ϕβiγi +D(s))2 = (
n∑
i=1

I − ϕβiγi +D(s))(
n∑
i=1

I − ϕβiγi +D(s))

ñ∑
i=1

I − ϕβ2
i γ

2
i +

n∑
i=1

I − ϕβiγiD(s) +
n∑
i=1

I − ϕβiγiĎ(s) +D(s)2

Hence, from

HF,N
ξ = logX0 +H[

∫ ξ

0

{λ(s) +
1

2
[D(s)2 + (a∗(s))2]}ds]

we have

HF,N
ξ = log x0 +H

∫ ξ

0

{λ(s) +
1

2
[(D(s)2 + (

n∑
i=1

I − ϕβ2
1γ

2
1)}

{+
n∑
i=1

I − 2(ϕβiγiD(s))}ds]

is finite. As a result, D(s) is Ns-measurable, 0 ≤ t ≤ ξ . Therefore, H[
∫ ξ

0

∑n
i=1 I −

ϕβiγiD(s)ds] = 0 By D̂(τ) := D(τ)− A(τ) being Nt-Brownian motion, we have

H[

∫ ξ

0

D(s)
n∑
i=1

I − ϕβiγids] = H[

∫ ξ

0

D(s)
(
dD(s)− dD̂(s)

)
]

= H[

∫ ξ

0

D(s)dD(s)]−H[

∫ ξ

0

D(s)dD̂(s)] = 0

1. Given η(x) = 1
h
xh, x > 0

where h ∈ (0, 1) we have

η′(X∑n
i=1 I−ϕβiγi+h$(ξ))X∑n

i=1 I−ϕβiγi+h$(ξ)|M(h)| = X∑n
i=1 I−ϕβiγhi +h$(ξ)|M(h)

and condition (4) in our earlier Definition is satisfied if

sup
h∈(−δ,δ)

H[(Xh∑n
i=1 I−ϕβiγi+h$

(ξ)|M(h)|)p] <∞
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for p > 1 set

X∑n
i=1 I−ϕβiγi+h$(ξ) = X∑n

i=1 I−ϕβiγi(ξ)N(h)

where

N∑n
i=1 I−ϕβiγi(h) := exp

∫ ξ

0

[ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − ϕβiγi(τ)]dτ +

∫ ξ

0

ω)dD(τ).

From the Holders inequality, we have

H[(Xh∑n
i=1 I−ϕβiγi+h$

(ξ)|M(h)|)p̂] ≤ (H[(X∑n
i=1 I−ϕβiγi(ξ))

hp̂a1b1 ])
1

a1b1

(H[(N(h))hp̂a1b2 ])
1

a1b2 (H[(|M(h)|)p̂a2 ])
1
a2

where a1, a2 : 1
a1

+ 1
a2

= 1 and b1, b2 : 1
b1

+ 1
b2

= 1, then we can choose a1 = 2
2−p

a2 = 2
p̂

and also b1 = 2−p̂
hp̂
, b2 = 2−p̂

2−p̂−hp̂ for some p̂ ∈ (1, 2
h+1

). Hence,

H[(Xh∑n
i=1 I−ϕβiγi+h$

(ξ)|M(h)|)p̂] ≤ (H[(X∑n
i=1 I−ϕβiγi(ξ))

2])
hp
2

(H[(N(h))
2hp̂

2−p̂−hp̂ ])
2−p̂−hp̂

2 (H[(|M(h)|2)])
p̂
2

if N∑n
i=1 I−ϕβiγi(ξ) in

N(s) = x exp{
∫ s

0

λ(τ) + (ϑ(τ)− λ(τ))
n∑
i=1

I − ϕβi(τ)γi(τ)

−1

2
ω2(τ)(

n∑
i=1

I − ϕβi(τ)γi(τ))2]dτ +

∫ s

0

ω(τ)
n∑
i=1

I − ϕβi(τ)γi(τ)d−D(τ)

(4.68)

satisfies

H[(N∑n
i=1 I−ϕβiγi(ξ))

2] <∞.

Then the condition (4) and (5) of our earlier definitions holds if

sup
h∈−δ,δ

H[(N(h))
2hp

2− p− xp
] <∞

however

sup
h∈−δ,δ

H[(N(h))
2hp

2− p− xp
] <∞

holds if for example

H exp{k
∫ s

0

[|ϑ(τ)− λ)|+ |
n∑
i=1

I − ϕβiγi(τ)|dτ}] <∞ ∀ k > 0

however,

H[(N∑n
i=1 I−ϕβiγi(ξ))

2] <∞
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is equally verify for all k > 0

H exp{k(

∫ ξ

0

[|ϑ(τ)− λ(τ)|+ |
n∑
i=1

I − ϕβiγi(τ)|dτ)}

+|
∫ ξ

0

n∑
i=1

I − ϕβiγi(τ)ω(τ)dD(τ)| <∞
(4.69)

The next section leads us to another interesting part of a sensitive investors optimal

portfolio who undergo budgetary constraints with consumption in mind.

4.6 Optimal portfolio of a sensitive investor with
budget constraint and consumption

We discuss optimal portfolio of a sensitive investor with consideration of investors

consumption and budget constraints. Since in the portfolio framework, the more

the consumption, the shorter the portfolio. Therefore, We denote ϕ as the con-

straint subject to investors budget and c is the consumption of the investor, while

I represents some financial institutions aid where the investor can easily run for aid

Øksendal (2006), Mark Schroder (1999) and Samuelson (1969). Thus, we defined

AN as the set of admissible portfolio for the investor and explicitly expressed in the

definition below:

Definition 4.6.1

1. I − (ϕβiγi − c) ∈ AN is cáglád and N-adapted

2. for all I − (ϕβiγi − c) ∈ AN.

H[

∫ ξ

0

|ϑ(τ)−λ(τ)||I−(ϕβi(τ)γi−c)(τ)|+ω2(τ)(I−(ϕβi(τ)γi(τ))2−c)]dτ <∞

3. I−(ϕβiγi−c) ∈ AN,then (I − (ϕβiγi − c))ω is forward integrable and cáglád

in respect of D

4. for all I−(ϕβiγi−c) ∈ AN, we have 0 < H[η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)] <

∞ where η′(x) = d
dx
η(x).

5. for all I − (ϕβiγi − c), $ ∈ AN, there exists υ > 0, with $ bounded , then

I − (ϕβiγi − c) + j$ ∈ AN for all j ∈ (−υ, υ) the equation

η′(XI−(ϕβiγi−c)+j$(ξ))XI−(ϕβiγi−c)+j$(ξ)|NI−(ϕβiγi−c)+j$(ξ)|
j∈(−υ,υ)
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is uniformly integrable, where

NI−(ϕβiγi−c)(τ) :=

∫ τ

0

[ϑ(s)−λ(s)−ω2(s)I−(ϕβiγi(s)−c)]ds+

∫ τ

0

ω(s)dD(s)

for τ ∈ [0, ξ]

6. A buy-hold sell strategy $, that is

$(t) = αI(τ, τ + f ](t), t ∈ [0, ξ]

with 0 ≤ τ < τ + f ≤ ξ and α Nt-measurable, belonging to AN. Then the

portfolio I − (ϕβiγi − c) ∈ AN is optimal if

H[η(XI−(ϕβiγi−c)+j$(ξ))] = H[η(Xν1(ξ))]

for all $ ∈ AN bounded and j ∈ (−υ, υ) with υ > 0 given in (5).

Definition 4.6.2

Assume $ is a forward integrable stochastic process and N a random variable,

then the product N$ is forward integrable stochastic process and implies∫ ξ

0

N$(t)d−D(t) = N

∫ ξ

0

$(t)dD−D(t) (4.70)

where $ = X(t)ν(t)∗ such that ν∗1 = I − (ϕβiγi − c). Firstly, supposing I −

(ϕβiγi − c) is optimal. Then for all $ ∈ AN bounded implies

0 =
d

dj
H[η(XI−(ϕβiγi−c) + j$(ξ))]|j=0

0 = H[η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγ1−c)(ξ)∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)I − (ϕβiγi(s)− c)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.71)

Now we fix τ, f : 0 ≤ τ < τ + f ≤ ξ and choose $(s) = αI(τ, τ + f ](τ), τ ∈ [0, ξ],

where α is a bounded and arbitrary Nτ -measurable random variable. Our equation

(4.71) becomes

0 = H[η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)

∫ τ+f

τ

[~ϑ− λ(s)− ω2(s)I − (ϕβiγi(s)− c)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.72)
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because it holds for all α, we conclude, that

H[FI−(ϕβiγi−c)(ξ)(NI−(ϕβiγi−c)(τ + f)−NI−(ϕβiγi−c)(τ))|Nτ ] = 0

where

FI−(ϕβiγi−c)(ξ) =
η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)

H[η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)]

and

NI−(ϕβiγi−c)(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)I − (ϕβiγi(s)− c)]ds]

+

∫ τ

0

[ω(s)d−Ds], τ ∈ [0, ξ]

(4.73)

that is,

H[FI−(ϕβiγi−c)(ξ)

∫ τ+f

τ

ϑ(s)− λ(s)− ω2(s)I − (ϕβiγi(s)− c)ds

+

∫ τ+f

τ

ω(s)d−D(s)|Nτ ] = 0

(4.74)

by application of Bayes Theorem,

HQI−(ϕβiγi−c)
[NI−(ϕβiγi−c)(t+ f)−NI−(ϕβiγi(t)− c)|Nt ]

0 = H[FI−(ϕβiγi−c)(ξ)|Nt ]−H[FI−(ϕβiγi−c)(ξ)(NI−(ϕβiγi−c)(t+ f)]

−NI−(ϕβiγi(t)− c))|Nt
(4.75)

since NI−(ϕβiγi(t)− c) is Nt-adapted, this gives

HQI−(ϕβiγi−c)
[NI−(ϕβiγi−c)(t+ f)|Nt ] = NI−(ϕβiγi−c)(t)

Hence NI−(ϕβiγi(t)− c) is an Nt, QI−(ϕβiγi−c)-martingale.

Let the probability measure QI−(ϕβiγi−c) on Nt be

dQI−(ϕβiγi−c) = FI−(ϕβiγi−c)(ξ)dm

and set HQI−(ϕβiγi−c)
(t)

as QI−(ϕβiγi−c) expectation then

H[FI−(ϕβiγi−c)(ξ)(NI−(ϕβiγ−−c)(t+ f)−NI−(ϕβiγi−c)(t))|Nt ] = 0

written as

HQI−(ϕβiγi−c)
[NI−(ϕβiγi−c)(t+ f)−NI−(ϕβiγi−c)(t)|Nt ] = 0
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therefore, NI−(ϕβiγi−c)(t), t ∈ [0, t], is a

(N, QI−(ϕβiγi−c))-martingale of N under QI−(ϕβiγi−c) Conversely, assuming

N, QI−(ϕβiγi−c)-martingale of NI−(ϕβiγi−c) holds, then

HQI−(ϕβiγi−c)
[NI−(ϕβiγi−c)(s+ f)−NI−(ϕβiγi−c)(s)Ns ] = 0

in all τ, f therefore 0 ≤ τ < τ + f ≤ ξ. Equivalently,

HQI−(ϕβiγi−c)
[NI−(ϕβiγi−c)(τ + f)−NI−(ϕβiγi−c)(τ)α] = 0

for all α bounded Nt-measurable. Then,

0 = H[η′(XI−(ϕβiγi−c)(ξ))XI−ϕβiγi(ξ)

∫ τ+f

τ

[ϑ− λ(s)− ω2(s)I − ($βiγi − c)(s)]dt

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.76)

holds. taking linear combination, it is valid for all step processes $ ∈ AN of cáglád.

Referencing assumption (1) and (5)

0 = H[η′(I −X(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)I − (ϕβiγi − c)(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.77)

holds with boundedness of all $ ∈ AN. As far as the

j → H[η(XI−(ϕβiγi−c)+j$(ξ))], j ∈ (−ν, ν)

maximum is obtain at j = 0. Thus,

0 =
d

dj
H[U(XI−(ϕβiγi−c)+j$(ξ))]|j=0

Definition 4.6.3

I − β1γ1 ∈ AN is optimal in relation with the equation

sup
I−(ϕβiγi−c)∈AN

H[η(XI−(ϕβiγi−c)(ξ))] = H[η(X∗I−(ϕβiγi−c)(ξ))]

if

NI−(ϕβiγi−c)(s) := exp

∫ s

0

[ϑ− λ(s)− ω2(s)I − (ϕβiγi − c)(s)]ds

+

∫ s

0

ω(t)d−D(s)]

(4.78)
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is a (N, QI−(ϕβiγi−c))-martingale. Conversely, it is also stated as follows

Theorem 4.6.1

1. I − (ϕβiγi − c) ∈ AN is optimal for the equation below

sup
I−(ϕβiγi−c)∈AN

H[η(XI−(ϕβiγi−c)(ξ))] = H[η(X∗I−(ϕβiγi−c)(ξ))]

only if

N̂I−(ϕβiγi−c)(s) := NI−(ϕβiγi−c)(s)−
∫ s

0

d[NI−(ϕβiγi−c), ςI−(ϕβiγi−c)](τ)

ςI−(ϕβiγi−c)(τ)

for s ∈ [0, ξ] is a (N,m)-martingale. In this regard,

ς(s) := HQI−(ϕβiγi−c)

[
dm

dQI−(ϕβiγi−c)
|Ns
]

= (H[FI−(ϕβiγi−c)(ξ)|Ns])−1

for s ∈ [0, ξ]

2. However, Assuming an optimal portfolio I − (ϕβiγi − c) ∈ A exists, then

Z(s) =

∫ s

0

ω(τ)d−D(τ)

is (N,m)-semimartingale

3. Supposing an optimal I − (ϕβiγi − c) ∈ A exists such that ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

then D(τ) is an (N,m)-semimartingale

Proof

1. If I − (ϕβiγi − c) ∈ AN is optimal, then by Definition 4.6.3,

NI−(ϕβiγi−c) is a (N, QI−(ϕβiγi−c))-martingale with

FI−(ϕβiγi−c)(ξ) =
η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)

H[η(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)]

and (4.73) respectively, and by Girsanov, we have

N̂I−(ϕβiγi−c)(τ) := NI−(ϕβiγi−c)(τ)−
∫ τ

0

d[NI−(ϕβiγi−c), ς](s)

ς(s)
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for τ ∈ [0, ξ] is a (N,m)-martingale with

ς(τ) := HQI−(ϕβiγi−c)
[

dm

dQI−(ϕβiγi−c)
]|Nτ

= H[(FI−(ϕβiγi−c)(ξ))
−1 FI−(ϕβiγi−c)(ξ)

H[FI−(ϕβiγi−c)(ξ)|Nτ |Ns ]
]

= ( ~H[FI−(ϕβiγi−c)(ξ)|Nτ ])−1s ∈ [0, ξ]

conversely, if NI−(ϕβiγi−c) is a (N, QI−(ϕβiγi−c))-martingale, then NI−(ϕβiγi−c)

is a (N,mI−(ϕβiγi−c))-martingale and hence I − (ϕβiγi− c) is optimal by Def-

inition 4.6.3

2. is derived from (1)

3. By (2) recall that

Z(τ) =

∫ τ

0

ω(s)d−D(s)

is a semimartingale of (N ,m). Then Assuming ω 6= 0 for

a.a(s,D) ∈ [0, ξ]× Ω̂

holds, we obtain∫ s

0

ω−(τ)dZ(τ) =

∫ s

0

ω−(τ)ω(τ)d−D(τ) = D̃(τ)

is a martingale of (N ,m) also.

Theorem 4.6.1 indicate a clear connection between the optimal

I − (ϕβiγi − c) and the decomposition of the semimartingale D with respect to N.

We prove this in the context of portfolio diversification.

Theorem 4.6.2

1. Given that I − (ϕβiγi − c) is optimal for

sup
I−(ϕβiγi−c)∈AN

H[η(XI−(ϕβiγi−c)(ξ))] = H[η(X∗I−(ϕβiγi−c)(ξ))]

Then D is a semimartingale with respect to N with a decomposition

dD(τ) = dD̂(τ)+[ω(τ)I−(ϕβiγi−c)(τ)−ϑ(τ)− λ(τ)

ω(τ)
]dτ+

[NI−(ϕβiγi−c), ς](τ)

ωτς(τ)

where D̂ is a (N,m)-Brownian motion
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2. in reverse, assume D is a semimartingale with respect to the filtration and

probability measure (N,m) with a decomposition dD(τ) = dD̂(τ) + dA(τ)

and N-adapted finite variation process A, for some N-adapted process α.

Assuming α(τ)dτ = dA(τ) = that is, dA(τ) is absolutely continuous with

respect to dτ then the solution I − (ϕβiγi − c) ∈ AN for

ω(τ)I − (ϕβiγi − c) +
1

ω̃(τ)ς(τ)

d
[
NI−(ϕβiγi−c), ς

]
(τ)

dτ

= α(τ) +
ϑ(τ)− λ̆(τ)

ω(τ)
.

Then, I − (ϕβiγi − c) is optimal for

sup
I−(ϕβiγi−c)∈AN

H[η(XI−(ϕβiγi−c)(ξ))] = H[η(X∗I−(ϕβiγi−c)(ξ))]

since the variation of the quadratic N̂I−(ϕβiγi−c) is absolutely continuous.

[N̂I−(ϕβiγi−c), N̂I−(ϕβiγi−c)](τ) =

∫ τ

0

ω2(s)ds

from

N̂I−(ϕβiγi−c)(τ) := NI−(ϕβiγi−c)(τ)−
∫ τ

0

d[NI−(ϕβiγi−c), ς](s)

ς(s)
, τ ∈ [0, ξ]

this implies d[NI−(ϕβiγi−c), ς](τ) is absolutely continuous with respect to dτ . As

such,
d[NI−(ϕβiγi−c), ς](τ)

ω̃(τ)ς(τ)
=

1

ω̃(τ)ς(τ)

d[NI−(ϕβiγi−c), ς]τdτ

dτ

Proof

Assuming I − (ϕβiγi − c) is optimal, by Theorem 4.6.2, the equation below

ω−1(τ)dN̂I−(ϕβiγi−c)(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)I − (ϕβiγi − c)(τ))dτ

−
d[NI−(ϕβiγi−c), ς](τ)

ς(τ)
]

(4.79)

τ ∈ [0, ξ] is (N,m)-martingale. as much as the process of the quadratic variation

ω−1(τ)dN̂I−(ϕβiγi−c)(τ) τ ∈ [0, ξ], is τ, τ ∈ [0, ξ] it implies that

dD̂(τ) := ω−1(τ)dN̂I−(ϕβiγi−c)(τ), τ ∈ [0, ξ]
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is N,m-Brownian motion and

dD(τ) = dD̂(τ) + [ω(τ)I − (ϕβi(τ)γi(τ)− c)− ϑ(τ)− λ(τ)

ω(τ)
]dτ +

[NI−(ϕβiγi−c)ς](τ)

ωτς(τ)

follows

1. Supposing the decomposition of D is (N,m)-semimartingale

dD(τ) = dD̂(τ) + dA(τ)

with reference to (2). Set ν to be

ν = α(t) +
ϑ(τ)− λ(τ)

ω(τ)
.

Then,

ω−1(τ)dN̂I−(ϕβiγi−c)(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)I − (ϕβi(τ)γi − c)(τ))dτ

−
d[NI−(ϕβiγi−c), ς](τ)

ς(τ)
]

(4.80)

τ ∈ [0, ξ]

dD(τ)− dA(τ) = dD̂(τ)

therefore

ω−1(τ)dN̂I−(ϕβiγi−c)(τ), τ ∈ [0, ξ],

is (N,m)-martingale in that manner, I − (ϕβiγi − c)

is optimal via Theorem 4.6.2

1. Given η(x) = 1
h
xh, x > 0 where h ∈ (0, 1) we have

η′(XI−(ϕβiγi−c)+h$(ξ))XI−(ϕβiγi−c)+h$(ξ)|M(h)| = XI−(ϕβiγi−c)h+h$(ξ)|M(h)

and condition (4) in our earlier Definition is satisfied if

sup
h∈(−δ,δ)

H[(Xh
I−(ϕβiγi−c)+h$(ξ)|M(h)|)p̂] <∞

for p̂ > 1 then set

XI−(ϕβiγi−c)+h$(ξ) = XI−(ϕβiγi−c)(ξ)N(h).
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From the Holders inequality,

H[(Xh
I−(ϕβiγi−c)+h$(ξ)|M(h)|)p̂] ≤ (H[(XI−(ϕβiγi−c)(ξ))

hp̂ã1b̃1 ])
1

ã1 b̃1

(H[(N(h))hp̂ã1b̃2 ])
1

ã1 b̃2 (H[(|M(h)|)p̂ã2 ])
1
ã2

where ã1, ã2 : 1
ã1

+ 1
ã2

= 1 and b̃1, b̃2 : 1
b̃1

+ 1
b̃2

= 1 Choosing ã1 = 2
2−p̂

ã2 = 2
p̂

and also b̃1 = 2−p̂
hp̂
, b̃2 = 2−p̂

2−p̂−hp̂ for some p̂ ∈ (1, 2
h+1

). Hence

H[(Xh
I−(ϕβiγi−c)+h$(ξ)|M(h)|)p̂] ≤ (H[(XI−(ϕβiγi−c)(ξ))

2])
hp̂
2

(H[(N(h))
2hp̂

2−p̂−hp̂ ])
2−p̂−hp̂

2 (H[(|M(h)|2)])
p̂
2

supposing NI−(ϕβiγi−c)(ξ) in

N(t) = x exp{
∫ s

0

[λ(τ) + (ς(τ)− λ(τ))βi(τ)γi(τ)

−1

2
ω2(τ)(I − (ϕβi(τ)γi − c(τ))2]dτ +

∫ s

0

ω(τ)I − (ϕβi(τ)γi(τ)− c)d−D(τ)

(4.81)

satisfies

H[(NI−(ϕβiγi−c)(ξ))
2] <∞

Then (4) and (5) of our earlier definitions is valid if

sup
h∈−δ,δ

H[(N(h))
2hp̂

2− p̂− xp̂
] <∞

however

sup
h∈−δ,δ

H[(N(h))
2hp̂

2− p̂− xp̂
] <∞

holds if for example

H exp{k
∫ s

0

[|ϑ(τ)− λ(τ)|+ |I − (ϕβiγi − c)(τ)|dτ}] <∞ ∀ k > 0

however,

H[(NI−(ϕβiγi−c)(ξ))
2] <∞

is equally verify for k > 0

H exp{k(

∫ ξ

0

[|ϑ(τ)− λ(τ)|+ |I − (ϕβiγi − c)(τ)|dτ ])}

+|
∫ ξ

0

I − (ϕβiγi − c)(τ)ω(τ)dD(τ)| <∞
(4.82)
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4.7 Large scale investor with budget constraints
and consumption under insurance cover

In this section, we discuss the large scale investors with a similar budget constraints

such as allocation of funds and consumption under which some financial aids from

huge financial institutions are provided as insurance. The essence of this concept

is to encourage large investors such as property developers. As a result, a sensitive

investor splits his investment network on different assets to avoid less return as

expected from assets. we defined

H : Rn → 〈β, γ〉,⊆ R

where

〈 ˆβ, γ̂〉 = 〈(β1β2), (γ1γ2), · · · 〉 =
n∑
i=1

I − (ϕβiγi − c)

where
∑n

i=1 νiI − (ϕβiγi− c) and νi is a confine placed before investors on the size

of assets to be held due to costs of transactions. νi = 1 if assets i is chosen in

the portfolio, and 0 otherwise. We denote ϕ as the constraint subject to investors

budget and c is the consumption of the investor, while I represents insurance cover

Øksendal (2006), Mark Schroder (1999) and Samuelson (1969). Thus, we defined

AN as the set of admissible portfolio for the investor and explicitly expressed in the

definition below:

Definition 4.7.1

AN is the set of admissible portfolios expressed as

1. all
∑n

i=1 I − (ϕβiγi − c) ∈ AN is cáglád and N-adapted

2.
∑n

i=1 I − (ϕβiγi − c) ∈ AN.

H

∫ ξ

0

|ϑ(τ)− λ(τ)|| (I − (ϕβi(τ)γi(τ)− c) |+

n∑
i=1

I − (vϕβi(τ)γi(τ)− c)2 dτ <∞

3. I− (ϕβiγi− c) ∈ AN,the product
∑n

i=1 I− (ϕβiγi − c)ω is forward integrable

and cáglád

94



4.
∑n

i=1 I − (ϕβiγi − c) ∈ AN, then

0 < H[η′(X∑n
i=1 I−(ϕβiγi−c)(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)] <∞

where η′(l) = d
dl
η(l).

5. for all
∑n

i=1 I − (ϕβiγi − c), $ ∈ AN, there exist δ > 0, with a bounded $,

such that
∑n

i=1 I− (ϕβiγi−c)+j$ ∈ AN in all j ∈ (−δ, δ) as such, the entire

family

η′(X∑n
i=1 I−(ϕβiγi−c)+j$(ξ))X∑n

i=1 I−(ϕβiγi−c)+j$(ξ)|N∑n
i=1 I−(ϕβiγi−c)+j$(ξ)|

j∈(−δ,δ)

is uniformly integrable, where

N∑n
i=1 I−(ϕβiγi−c)(τ) :=

∫ s

0

[λ(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − (ϕβiγi − c)(τ)]dτ

+

∫ s

0

ω(s)dD(τ),

6. $ portfolio permits buy-hold sell strategy, of

$(s) = αI(τ, τ + f ](t), t ∈ [0, ξ]

with 0 ≤ τ < s + f ≤ ξ and Nτ -measurable process α belonging to AN.

Then
∑n

i=1 I − (ϕβiγi − c) ∈ AN is optimal if

H[η(X∑n
i=1 I−(ϕβiγi−c)+j$(ξ))] = H[η(Lν1(ξ))]

for a bounded $ ∈ AN and y ∈ (−δ, δ) with δ > 0 given in (5).

Definition 4.7.2

Assuming $ is a forward integrable stochastic process and N a random variable,

then the product N$ is forward integeable stochastic process. Thus,∫ ξ

0

N$(τ)d−D(τ) = N

∫ ξ

0

$(τ)d−D(τ)

where $ = X(τ)ν(τ)∗ in this sense, ν∗1 =
∑n

i=1 I−(ϕβiγi−c). Firstly,
∑n

i=1 I−

(ϕβiγi − c) is optimal. For a bounded $ ∈ AN we have

0 =
d

dj
H[η(X∑n

i=1 I−(ϕβiγi−c)+j$(ξ))]|j=0
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0 = H[η′(X(ξ))X∑n
i=1 I−(ϕβiγi−c)(ξ)∫ ξ

0

$(τ)[ϑ− λ(τ)− ω2(s)
n∑
i=1

I − (ϕβiγi − c)(τ)]dτ

+

∫ ξ

0

$(τ)ω(τ)d−D(τ)]

(4.83)

fixing τ, f : 0 ≤ τ < τ + τ ≤ ξ and choosing $(s) = αI(τ, τ + f ](s), t ∈ [0, ξ], for

any stochastic amount α of Nτ bounded. Our equation (4.83) becomes

0 = H[η′(X∑n
i=1 I−(ϕβiγi−c)(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)∫ τ+f

τ

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − (ϕβiγi − c)(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.84)

this holds in all α, then

H[F∑n
i=1 I−(ϕβiγi−c)(ξ)(N

∑n
i=1 I−(ϕβiγi−c)(τ + f)−N∑n

i=1 I−(ϕβiγi−c)(τ))|Nτ ] = 0

where

F∑n
i=1 I−(ϕβiγi−c)(ξ) =

η′(X∑n
i=1 I−(ϕβiγi−c)(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)

H[η′(X∑n
i=1 I−(−c)ϕβiγi(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)]

and

N∑n
i=1 I−(ϕβiγi−c)(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − (ϕβiγi − c)(s)]ds

+

∫ τ

0

ω(s)d−D̂(s)]

(4.85)

that is,

0 = H[F∑n
i=1 I−(ϕβiγi−c)(ξ)(

∫ s+f

s

α(τ)− λ(τ)− ω̃2(τ)
n∑
i=1

I − (ϕβiγi − c)(τ)}dτ

+

∫ s+f

s

ω(τ)d−D(τ))|Nτ ]

(4.86)

HQ∑n
i=1

I−(ϕβiγi−c)
[N∑n

i=1 I−(ϕβiγi−c)(τ + f)

−N∑n
i=1 I−(ϕβiγi−c)(τ)|Nτ ]

0 = H[F∑n
i=1 I−(ϕβiγi−c)(ξ)|Nτ ]−H[F∑n

i=1 I−(ϕβiγi−c)(ξ)(N
∑n
i=1 I−(ϕβiγi−c)(τ + f)

−N∑n
i=1 I−(ϕβiγi−c)(τ))|Nτ ]

(4.87)
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since N∑n
i=1 I−(ϕβiγi−c)(τ) is Nτ -adapted, this gives

HQ∑n
i=1

I−(ϕβiγi−c)
[N∑n

i=1 I−(ϕβiγi−c)(τ + f)|Nτ ] = N∑n
i=1 I−(ϕβiγi−c)(τ).

Hence, N∑n
i=1 I−(ϕβiγi−c)(τ) is an (Nτ , Q∑n

i=1 I−(ϕβiγi−c))-martingale.

Let the probability measure Q∑n
i=1 I−(ϕβiγi−c) on Nτ be

dQ∑n
i=1 I−(ϕβiγi−c) = F∑n

i=1 I−(ϕβiγi−c)(ξ)dm

and HQ∑n
i=1

I−(ϕβiγi−c)
(τ) an expectation of Q∑n

i=1 I−(ϕβiγi−c) So,

H[F∑n
i=1 I−(ϕβiγi−c)(ξ)(N

∑n
i=1 I−(ϕβiγi−c)(τ + f)−N∑n

i=1 I−(ϕβiγi−c)(τ))|Nτ ] = 0

written as

HQ∑n
i=1

I−(ϕβiγi−c)
[N∑n

i=1 I−(ϕβiγi−c)(τ + f)−N∑n
i=1 I−(ϕβiγi−c)(τ)|Nτ ] = 0

N∑n
i=1 I−(ϕβiγi−c)(τ), τ ∈ [0, ξ], is a (N, Q∑n

i=1 I−(ϕβiγi−c))-martingale, that is, N-

filtration under the probability measure Q∑n
i=1 I−(ϕβiγi−c) measure it can equally be

stated as follows that supposeN∑n
i=1 I−(ϕβiγi−c) is a (N, Q∑n

i=1 I−(ϕβiγi−c))-martingale.

Then,

HQ∑n
i=1

I−(ϕβiγi−c)
[N∑n

i=1 I−(ϕβiγi−c)(τ + f)−N∑n
i=1 I−(ϕβiγi−c)(τ)Nτ ] = 0

in all τ, f and then 0 ≤ τ < τ + f ≤ ξ. Similarly,

HQ∑n
i=1

I−(ϕβiγi−c)
[N∑n

i=1 I−(ϕβiγi−c)(τ + f)−N∑n
i=1 I−(ϕβiγi−c)(τ)α] = 0

for Nτ -measurable process α. therefore

0 = H[η′(X∑n
i=1 I−(ϕβiγi−c)(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)∫ τ+f

τ

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − (ϕβiγi − c)(s)]ds

+

∫ τ+f

τ

ω(s)d−D(s)α]

(4.88)

holds. taking linear combination

0 = H[η′(XI−(ϕβiγi−c)(ξ))XI−(ϕβiγi−c)(ξ)∫ ξ

0

$(s)[ϑ− λ(s)− ω2(s)
n∑
i=1

I − (ϕβiγi − c)(s)]ds

+

∫ ξ

0

$(s)ω(s)d−D(s)]

(4.89)
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remain valid for all cáglád step processes $ ∈ AN from assumption (1)

and (5) we have (4.89) still holds for a bounded $ ∈ AN. Provided the function

y → H[η(X∑n
i=1 I−(ϕβiγi−c)+j$(ξ))], j ∈ (−δ, δ)

its maximum is attained at j = 0. Thus,

0 =
d

dj
H[U(X∑n

i=1 I−(ϕβiγi−c)+j$(ξ))]|j=0

Definition 4.7.3

A stochastic process
∑n

i=1 I − (ϕβiγi − c) ∈ AN is optimal as far as the stochastic

process

N∑n
i=1 I−(ϕβiγi−c)(τ) := exp

∫ τ

0

[ϑ− λ(s)− ω2(s)
n∑
i=1

I − (ϕβiγi − c)(s)]ds

+

∫ τ

0

ω(s)d−D(s)], τ ∈ [0, ξ]

(4.90)

is N, Q∑n
i=1 I−(ϕβiγi−c)-martingale. By the application of Girsanov’s theorem, it is

equally stated as follows

Theorem 4.7.1

1. The process
∑n

i=1 I − (ϕβiγi − c) ∈ AN for

sup∑n
i=1 I−(ϕβiγi−c)∈AN

H[η(L∑n
i=1 I−(ϕβiγi−c)(ξ))] = H[η(L∗∑n

i=1 I−(ϕβiγi−c)(ξ))]

is optimal if

N̂∑n
i=1 I−(ϕβiγi−c)(τ) := N∑n

i=1 I−(ϕβiγi−c)(τ)

−
∫ τ

0

d[N∑n
i=1 I−(ϕβiγi−c), υ

∑n
i=1 I−(ϕβiγi−c)](s)

υ∑n
i=1 I−(ϕβiγi−c)(s)

, τ ∈ [0, ξ]
(4.91)

is a (N,m)-martingale. in this sense,

υ∑n
i=1 I−(ϕβiγi−c)(τ) := HQ∑n

i=1
I−(ϕβiγi−c)

[
dm

dQ∑n
i=1 I−(ϕβiγi−c)

|Nτ
]

= (H[F∑n
i=1 I−(ϕβiγi−c)(ξ)|Nτ ])−1 t ∈ [0, ξ]

(4.92)

2. However, If an optimal portfolio
∑n

i=1 I − (ϕβiγi − c) ∈ A exists, then the

process

ς(s) =

∫ τ

0

ω(s)d−D(s)

is a (N,m)-semimartingale
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3. supposed
∑n

i=1 I − (ϕβiγi − c) ∈ A of optimal value exists and ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ὼ

then D(τ) is an (N,m)-semimartingale

Proof

1. If
∑n

i=1 I − (ϕβiγi − c) ∈ AN is optimal, by Definition 4.7.3, then

N∑n
i=1 I−(ϕβiγi−c) is a (N, Q∑n

i=1 I−(ϕβiγi−c))-martingale with

F∑n
i=1 I−(ϕβiγi−c)(ξ) =

η′(X∑n
i=1 I−(ϕβiγi−c)(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)

H[η′(X∑n
i=1 I−(−c)ϕβiγi(ξ))X

∑n
i=1 I−(ϕβiγi−c)(ξ)]

and (4.85). By applying theorem of Girsanov,

N̂∑n
i=1 I−(ϕβiγi−c)(τ) := N∑n

i=1 I−(ϕβiγi−c)(τ)−
∫ τ

0

d[N∑n
i=1 I−(ϕβiγi−c), ς](s)

ς(s)

is (N,m)-martingale

ς(τ) := HQ∑n
i=1

I−(ϕβiγi−c)
[

dm

dQ∑n
i=1 I−(ϕβiγi−c)

]|Nτ

= H[(F∑n
i=1 I−(ϕβiγi−c)(ξ))

−1
F∑n

i=1 I−(ϕβiγi−c)(ξ)

H[F∑n
i=1 I−(ϕβiγi−c)(ξ)|Nτ |Nτ ]

]

(4.93)

= (H[F∑n
i=1 I−(ϕβiγi−c)(ξ)|Nt])−1, τ ∈ [0, ξ]

conversely, if N∑n
i=1 I−(ϕβiγi−c) is a (N, QI−(ϕβiγi−c))-martingale, then

N∑n
i=1 I−(ϕβiγi−c) is a (N,mI−(ϕβiγi−c))-martingale and hence∑n

i=1 I − (ϕβiγi − c) is optimal by Definition 4.7.3

2. is derived from (1)

3. By (2) it is clear that

Y (t) =

∫ t

0

ω(τ)d−D(τ)

is a (N,m)-semimartingale. supposing ω 6= 0 for

a.a(s, w) ∈ [0, ξ]× Ω

its valid, then∫ s

0

ω−(τ)dY (τ) =

∫ s

0

ω−(τ)ω(τ)d−D(τ) = D(τ)

is (N,m)-semimartingale also.
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Theorem 4.7.1 furnishes a clear connection between
∑n

i=1 I−(ϕβiγi−c) optimal

portfolio and decomposition of semimartingale D with respect to N. we prove this

in the context of portfolio diversification.

Theorem 4.7.2

1. Given that
∑n

i=1 I − (ϕβiγi − c) is optimal, then the decomposition of semi-

martingale D with respect to N is

dD(τ) = dD̂(τ) + [ω(τ)
n∑
i=1

I − (ϕβiγi − c)(τ)− ϑ(τ)− λ(τ)

ω̃(τ)
]dτ

+
[N∑n

i=1 I−(ϕβiγi−c), ς](τ)

ω̃τ ς(τ)

where D̂ is a (N,m)-Brownian motion

2. in reverse, assume the semimartingale D with respect to (N,m) decomposes

as dD(τ) = dD̂(τ) + dA(τ), where D̂ is (N,m) Brownian motion and N-

adapted process A of finite variation. Assume dA(τ) = α(τ)d(τ) for some

N-adapted process α that is, dA(τ) is absolutely continuous with respect to

d(τ) then there is a solution
∑n

i=1 I − (ϕβiγi − c) ∈ AN of the form

ω(τ)
n∑
i=1

I − (ϕβiγi − c) +
1

ω(τ)ς(τ)

d
[
N∑n

i=1 I−(ϕβiγi−c), ς
]

(τ)

dτ

= α(τ) +
ϑ(τ)− λ(τ)

ω(τ)

in this sense
∑n

i=1 I − (ϕβiγi − c) proves optimal for

sup
I−(ϕβiγi−c)∈AN

H[η(X∑n
i=1 I−(ϕβiγi−c)(ξ))] = H[η(X∗∑n

i=1 I−(ϕβiγi−c)(ξ))]

since the quadratic variation of N̂∑n
i=1 I−(ϕβiγi−c) is absolutely continuous that is,

[N̂∑n
i=1 I−(ϕβiγi−c), N̂

∑n
i=1 I−(ϕβiγi−c)](τ) =

∫ τ

0

ω2(s)ds

from

N̂∑n
i=1 I−(ϕβiγi−c)(τ) := N∑n

i=1 I−(ϕβiγi−c)(τ)−
∫ τ

0

d[N∑n
i=1 I−(ϕβiγi−c), ς](s)

ς(s)
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for τ ∈ [0, ξ] then d[N∑n
i=1 I−(ϕβiγi−c), ς](τ) is absolutely continuous in

connection with dτ .

d[N∑n
i=1 I−(ϕβiγi−c), ς](τ)

~ω(τ)ς(τ)
=

1

~ω(τ)ς(τ)

d[N∑n
i=1 I−(ϕβiγi−c), ς](τ)dτ

dτ

Proof

Assuming
∑n

i=1 I − (ϕβiγi − c) is optimal, by Theorem 4.7.2

ω−1(τ)dN̂∑n
i=1 I−(ϕβiγi−c)(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − (ϕβiγi − c)(τ))dτ

−
d[N∑n

i=1 I−(ϕβiγi−c), ς](τ)

ς(τ)
]

(4.94)

τ ∈ [0, ξ] is (N,m)-martingale and ω−1(τ)dN̂∑n
i=1 I−(ϕβiγi−c)(τ) τ ∈ [0, ξ],

is τ, τ ∈ [0, ξ] a quadratic variation then

dD̂(τ) := ω−1(τ)dN̂∑n
i=1 I−(ϕβiγi−c)(τ), τ ∈ [0, ξ]

is (N,m)-Brownian motion and

dD(τ) = dD̂(τ) + [ω(τ)
n∑
i=1

I − (ϕβi(τ)γi(τ)− c)− ϑ(τ)− λ(τ)

ω(τ)
]dτ

+
[N∑n

i=1 I−(ϕβiγi−c), ς](τ)

ωτς(τ)

holds

1. Assume D is an (N,m)-semimartingale with a decomposition

dD(τ) = dD̂(τ) + dA(τ)

with referencing to (2). Set ν

ν = α(τ) +
ϑ(τ)− λ(τ)

ω(τ)

Then

ω−1(t)dN̂∑n
i=1 I−(ϕβiγi−c)(τ) = dD(τ)

+ω−1(τ)[(ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − (ϕβi(τ)γi − c)(τ))dτ

−
d[N∑n

i=1 I−(ϕβiγi−c), ς](τ)

ς(τ)
]

(4.95)
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τ ∈ [0, ξ]

dD(τ)− dA(τ) = dD̂(τ)

consequently

ω−1(τ)dN̂∑n
i=1 I−(ϕβiγi−c)(τ), τ ∈ [0, ξ],

is a (N,m)-martingale then
∑n

i=1 I − (ϕβiγi − c) is optimal from Theorem

4.7.2

1. Given η(x) = 1
h
xh, x > 0

where h ∈ (0, 1) we have

η′(X∑n
i=1 I−(ϕβiγi−c)+h$(ξ))X∑n

i=1 I−(ϕβiγi−c)+h$(ξ)|M(h)|

= X∑n
i=1 I−(ϕβiγi−c)h+h$(ξ)|M(h)

(4.96)

and condition (4) in our earlier Definition is satisfied if

sup
h∈(−δ,δ)

H[(Xh∑n
i=1 I−(ϕβiγi−c)+h$(ξ)|M(h)|)p] <∞

for p > 1. We set

X∑n
i=1 I−(ϕβiγi−c)+h$(ξ) = X∑n

i=1 I−(ϕβiγi−c)(ξ)N(h)

where

N∑n
i=1 I−(ϕβiγi−c)(h) := exp

∫ ξ

0

[ϑ(τ)− λ(τ)− ω2(τ)
n∑
i=1

I − (ϕβiγi − c)(τ)]dτ

+

∫ t

0

ω)dD(τ).

From the Holders inequality, we have

H[(Xh∑n
i=1 I−(ϕβiγi−c)+h$(ξ)|M(h)|)p̂] ≤ (H[(X∑n

i=1 I−(ϕβiγi−c)(ξ))
hp̂a1b1 ])

1
a1b1

(H[(N(h))hp̂a1b2 ])
1

a1b2 (H[(|M(h)|)p̂a2 ])
1
a2

where a1, a2 : 1
a1

+ 1
a2

= 1 and b1, b2 : 1
b1

+ 1
b2

= 1. Then we can choose a1 = 2
2−p

a2 = 2
p̂

and also b1 = 2−p̂
hp̂
, b2 = 2−p̂

2−p̂−hp̂ for some p̂ ∈ (1, 2
h+1

). Hence,

H[(Xh∑n
i=1 I−(ϕβiγi−c)+h$(ξ)|M(h)|)p̂] ≤ (H[(X∑n

i=1 I−(ϕβiγi−c)(ξ))
2])

hp
2

(H[(N(h))
2hp̂

2−p̂−hp̂ ])
2−p̂−hp̂

2 (H[(|M(h)|2)])
p̂
2
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if N∑n
i=1 I−(ϕβiγi−c)(ξ) in

N(s) = x exp{
∫ s

0

λ(τ) + (ϑ(τ)− λ(τ))
n∑
i=1

I − (ϕβi(τ)γi − c)(τ)}

−1

2
ω2(τ)(

n∑
i=1

I − (ϕβi(τ)γi(τ)− c))2dτ

+

∫ s

0

ω(τ)
n∑
i=1

I − (ϕβi(τ)γi(τ)− c)d−D(τ)

(4.97)

satisfies

H[(N∑n
i=1 I−(ϕβiγi−c)(ξ))

2] <∞.

Then, the condition (4) and (5) of our earlier definitions holds if

sup
h∈−δ,δ

H[(N(h))
2hp

2− p− xp
] <∞

however

sup
h∈−δ,δ

H[(N(h))
2hp

2− p− xp
] <∞

holds if for example

H exp{k
∫ s

0

[|ϑ(τ)− λ)|+ |
n∑
i=1

I − (ϕβiγi − c)(τ)|dτ}] <∞ ∀ k > 0

however,

H[(N∑n
i=1 I−(ϕβiγi−c)(ξ))

2] <∞

is equally verify for all k > 0

H exp{k(

∫ ξ

0

[|ϑ(τ)− λ(τ)|+ |
n∑
i=1

I − (ϕβiγi − c)(τ)|dτ)}

+|
∫ ξ

0

n∑
i=1

I − (ϕβiγi − c)(τ)ω(τ)dD(τ)| <∞
(4.98)

Example 4.7.1

If the expected value of the investors utility is given as

ζ̂

1 + α
− 1− ζ̂

1− α
= 0

then

ζ̂(1− α) = (1− ζ̂)(1 + α)

ζ̂ − αζ̂ = 1 + α− ζ̂ − αζ̂
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ζ̂ − αζ̂ + αζ̂ = 1 + α− ζ̂

ζ̂ + ζ̂ − αζ̂ + α̂ζ̂ = 1 + α

2ζ̂ = 1 + α

α = (2ζ̂ − 1)

when ζ̂ = 0.5 α = 0. Thus, if ζ̂ > 1
2

the investor will distribute 100(2ζ̂ − 1)% of his

capital. if 0 ≤ ζ̂ ≤ 1
2
,then E[U(X)] is the greatest value when α = 0, i.e. when no

investment is made by the investor. But, when ζ̂ = 0.6 α = 0.2, similarly when

ζ̂ = 0.7 α = 0.4, when ζ̂ = 0.8 α = 0.6 when ζ̂ = 0.9 α = 0.8

4.8 Concept of equivalent martingale measure

In this section, equivalent market measure (EMM) and its relation to the non-

existence of arbitrage were established. It is shown that any EMM is equal to

the risk of market price and denotes the price of risk-neutral on the derivatives

Delbaen (2006). Regularities conditions which assures the reality of market price

were imposed on the drift parameter (µ) volatility (σ), and the interest (r)rate .

However, if the amount of securities have similar number of underlying stochastic

process that is, Ñ = d̂ ≤ ∞ then it is a complete market and establish a unique

measure of martingale. (Monteiro et al. (2008)).

The underlying stochastic is Brownian. Considering a financial market with deter-

ministic non risky asset Bt = ert, r ≥ 0, and d̂ ≥ 1 following Sit = Si0e
W i
t . The

non-risk account is used for reduction. The set of information is (Ft)t ∈ [0, T ]. Let

(Ω,F ,P) be the space of probability with filtration F := {Ft} t ≥ 0 generated by

random variables Ss, for s ≤ t for all p-zero.

Considering the risky assets price St = S0e
W
t , t ∈ [0, T ] with

Wt =

∫ t

0

(µs −
σ2

2
)ds+

∫ t

0

S2
t σsdWt t ∈ [0, T ], (4.99)

where, dWt t ∈ [0, T ], is a Brownian motion. The average return rate µt and σt

are adapted and measurable obeying the integrability conditions

∫ t

0

|µt|dt <∞,
∫ t

0

σ2
t dt <∞
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a.s. By Itô, we have that St satisfies:

dst = µtstdt+ σtstdWt t ∈ [0, T ], (4.100)

The bond βt, t ∈ [0, T ] price, moves according to dβt = rtβtdt, β0 = 1, where rt is

positive satisfying the integrability condition
∫ t

0
rtdt <∞ ,a.s that is,

βt = exp

∫ t

0

rsds. (4.101)

An investor commence its business with x ≥ 0 of the description above. Let αt

represents the size of riskless assets and βt on stocks owned by the investor at t.

The couple φt = (αt βt), t ∈ [0, T ] is called a portfolio or trading strategy, and

we assume that αt and βt are adapted and measurable then

∫ t

0

|βtµt|dt <∞
∫ t

0

β2
t S

2
t σ

2
t dt <∞

∫ t

0

|αt|rtdt <∞ a.s. (4.102)

Then x = α0 + β0S0 the portfolio value) is

Vt(φ) = αtβt + βtSt (4.103)

The gain Gt(φ) the investor realises through the portfolio φ up to t is

Gt(φ) =

∫ t

0

αsdβs +

∫ t

0

βsdSs (4.104)

Then the portfolio φ is self-funding when there is no fresh investment nor with-

drawal. Automatically the value equals initial investment in addition to the gain:

V φ
t = x+

∫ t

0

αsdβs +

∫ t

0

βsdSs (4.105)

We add some criteria on the portfolio to prevent arbitrage opportunities.

Definition 4.8.1 P and γ are measures of two probability on (Ω,F) Then:

i γ and P are equivalent if γ is completely continuous for P vice versa with P

and γ i.e. γ ≡ P only if γ is utterly continuous in honor of P and vice versa.

Remark 4.8.1: if γ is entirely continuous with regards to P then by the Randon-

Nikodym theorem, there is a unique Z ∈ L1(Ω,F , P ) which is nonnegative almost

everywhere and

γ(A) =

∫
A

Z(W )dp(W ) ∀ A ∈ F
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Function Z is Randon-Nikodym derivative of γ in relation with P and is often

denoted by dγ
dP

= Z(W ). is a condition.

Definition 4.8.2

If υ and % are equal then, υ(A) = 0 whenever %(A) = 0 hence, there is a strict

positive function Z ∈ L1(Ω,F , %) such that

υ(A) =

∫
A

Z(W )d%(W ) ∀ ∈ F

and

%(A) =

∫
A

1

Z
(W )υd(W ) ∀ A ∈ F

υ on (Ω,F) takes equal measures of martingale if:

1. υ is identical with %

2. The price reduction S̃(t) = e−rts(t) t ∈ [0, T ] is a υ-martingale.

Is a condition.

Notation: Let all equal martingale measure set be f(P ).

Definition 4.8.3 (Existence of EMM):

We prove that arbitrage opportunities are prevented in the market if there is an

identical measures of martingale γ ∈ f(P ) 6= φ,

for which the assets price St is a martingale.

Theorem 4.8.1(change of measures)

A probability measure γ is equal with P if asset price S∈ l2loc exists for

dγ

dP
|FWt = Zt

and

dzt = −ZtStdWt t ∈ [0, T ]

where W S is defined as

dW s
t = dWt − %Ssdt

Is a (Ω,F , γ,FWt ) Brownian

Proof :

the existence of a d-dimensional process of the martingale representation theorem

S̃∈ l2loc FWt such that
dγ

dP
|FWt = Zt
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and

dzt = −ZtS̃tdW̃t

= −ZtS̃t(A−1)dWt

= −ZtStdWt

(4.106)

where

St = (A−1)∗S̃t

.

Zt = exp

(
−
∫ t

0

SsdWs −
1

2

∫ t

0

< %Ss,Ss > ds

)
(4.107)

where < S̃t, A
−1dWt >=< ( ~A−1)∗S̃tdWt >. and Wt = AW̃ , % = A∗A W̃ S̃

t takes

the form dW̃
(S̃t)
t = dW̃t − S̃tdt, t̃ ∈ [0, T̀ ].

Is Brownian S̃t = A∗St, upon A multiplication, we have dW S
t := AdW̃ s̃

t = dWt −

%Stdt is a γ-Brownian motion

Remark 4.8.2

We define a d-dimensional Brownian motion Wt t ∈ [0, T ] on the probability

space (Ω̂, F̃ ,P ,Ft). Let S ∈ l2loc be a process of d-dimensional and an exponential

martingale associated with the asset price S be define as

Zs
t = exp

(∫ t

0

SsdWs −
1

2

∫ t

0

|Ss|2ds
)

2 t ∈ [0, T ] (4.108)

And note that (”.”) represents a product of scalar in Rd. by the Itô formula we

have

dZs
t = −Zs

t StdWt (4.109)

then ZS is martingale. Since ZS is positive.

Eγ[Z
s
t ] ≤ E[Zs

0 ] = 1 t ∈ [0, T ].

And (Zs
t )t ∈ [0, T ] is a strict martingale if Eγ[Z

s
T ] = 1.

which implies the price S̃(t) is martingale relative to γ i.e. γ ∈ f(P ). hence one of

the similar measure γ ∈ f(P ) and a martingale exists, showing that the risky-assets

driven by Brownian motion is arbitrage-free.
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Lemma 4.8.1

Assume that Zs
t in (4.108) is a p-martingale and γ is a measure of probability by

dγ
dP

= Zs
t . Then the process (Mt)T≥0 is a martingale of γ.

Proof

Since ZS is strictly positive and adapted, then M is adapted and so is MZS. Since

ZS isP -martingale, and M is integrable of γ if MZS is p-integrable:

Eγ[|Mt|] = Ep[|Mt|ZS
T ] = Ep[Ep[|MtZ

S
T |Ft]]

= Ep[|Mt|Ep[ZS
T |Ft]]

Eγ[|Mt|ZS
t ] Similarly for S ≤ t we have

Ep[MtZ
S
T |FS] = EP [Ep|MtZ

S
T |Fs]

Ep[|MtZ
S
t |Fs] Then by

Eγ[X|Ft] =
Ep[XZs

T |Ft]
EP [Zs

T |Ft]
with X = Mt we have

Eγ[Mt|Fs] =
Ep[MtZ

S
T |Fs]

EP [ZS
T |Fs]

=
EP [MtZ

s
T |Fs]

Zs
s

(4.110)

Remark 4.8.3

From the above Lemma, The process

(Zγ
t )−1 = exp

(∫ t

0

SsdWs +
1

2

∫ t

0

|Ss|2ds
)
, t ∈ [0, T ] (4.111)

Is a γ-martingale ZS(Zs)−1 is obviously a P -martingale for all integrable random

variable X, we have

Ep[X] = Ep[X(ZS
T )−1ZS

T ] = Eγ[X(ZS
T )−1] (4.112)

And so dp
dγ

= (ZS
T )−1 to be precise p, γ possesses equal measures since their inverse

have strictly positive densities.

Example 4.8.1

If N = d ≤ ∞ with constant coefficients. In this regard the market price is uniquely

determine by

Sit =
µit − rt
σit

, i = 1, · · · , d (4.113)
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And we have S = µ−r
σ

by Theorem 4.6.1, the process

dW̃ s := dWt − dt, t ∈ [0, T̈ ]

is Brownian with γ measure as shown below

dγ

dp
= E

(
exp−S̃WT −

S2

2
T

)
(4.114)

Since the exponential martingale has unitary mean, then the evolution of the risky

asset is

dSt = rStdt+ σStdW
s
t

furthermore the discounted price process St = e−rtSt is a γ-martingale and

St = e−r(T−t)Eγ[ST |FW̃t ]t ∈ [0, T ]

Example 4.8.2

If the weight of the risky assets S in the portfolio ν̂ that maximises H[η(X(T ))] is

ν̂(t) =
ϑ− ρ
σ2

at time t if ρ = 5%, ϑ = 8%, and σ = 20%, then an investor should put

0.08− 0.05

0.04
= 0.75 or75%

liquid cash on S and 25% riskless asset, at all times. If

η(x) = xγ

then,

ν̂(t) =
ϑ− r

(1− γ)σ2

at all times t where γ < 1 we have that when ϑ = 0.2, σ = 0.3, ρ = 0.05, γ = 0.7

we have
0.2− 0.05

0.3× 0.548
=

0.15

0.1644
= 0.91

which implies that 9% of his money is in S, while 91% on risk-free asset. When the

risk-aversion is between 2 to 7, the proportion held on contingent claim decreases

but, when the risk-aversion is between 0.2 to 1.6,the proportion held in the risky

assets increases. The quantity of owned stock reduces as the unwillingness to take
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risk increases. It make sense to leave a significant amount of money on the risky

assets.

It is obvious that the best of portfolios rely largely on the drift of the stock ϑ

and the investors risk averse γ. that is, the bigger the value of γ(reluctant in risk),

the smaller the Optimal investment on securities. However, if ϑ = 80% = 0.8, r =

75% = 0.75, σ2 = 10% = 0.01 and γ = 90% = 0.9 then

0.8− 0.75

0.1× 0.01
= 50%

Definition 4.8.4

A risky assets S, such that H∗γ(S2) < ∞ is achievable under a tame,self-funding

that is tamed business deal φ in the sense that V φ(T ) = S

THEOREM 4.8.2

If any risky assets S satisfies H∗γ(S2) <∞ is attainable, then the associated market

model is complete. Let S be a risky assets such that H∗γ(S2) <∞

Proof :

Let S be a risky asset such that H∗γ(S2) <∞ We consider the martingale

f(τ) = Hγ?e
−rξS/ατ ∈ [0, ξ] (4.115)

By the martingale Representation Theorem,

f(τ) = Hγ?(f(τ) +

∫ a

0

g(τ)dW̃ττ ∈ [0, ξ] (4.116)

Since f is γ?-martingale, we have Hγ?(f(τ)) = f(0), the dynamics of the risky

assets, S is given by

ds(τ) = rτsτdτ + στsτdW̃τ τ ∈ [0, ξ] (4.117)

However,

dD(τ) = rτDτdτ,

D(0) = 1
(4.118)

then the strategy

φ(τ) = (ατ , βτ )

=

(
f(τ)− g(τ)

στ
,
g(τ)D(τ)

(στSτ )

) (4.119)
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is the Tame self-financing strategy that replicates the contingent claim. To see

this, observe that the gain process of the strategy is.

Gφ
(a) =

∫ a

0

α(τ)dD(τ)

+

∫ a

0

β(τ)ds(τ) =

∫ a

0

(
f(τ)− g(τ)

ατ

)
dD(τ)

+

∫ a

0

g(τ)D(τ)

στSτ
ds(τ) =

∫ a

0

f(τ)dD(τ)−
∫ a

0

g(τ)

ατ
dD(τ) +

∫ a

0

g(τ)D(τ)

στSτ
rτSτdτ

+

∫ a

0

g(τ)D(τ)

στsτ
στSτdWτ

=

∫ a

0

f(τ)dD(τ)−
∫ a

0

g(τ)

στ
dD(τ) +

∫ a

0

g(τ)D(τ)

στSτ
rτSτdτ +

∫ a

0

g(τ)D(τ)

στSτ
στSτdWτ

=

∫ a

0

f(τ)dD(τ)−
∫ a

0

g(τ)

στ
dD(τ) +

∫ a

0

g(τ)

στ
dD(τ) +

∫ a

0

g(τ)D(τ)dWτ

=

∫ a

0

f(τ)dD(τ) +

∫ a

0

g(τ)D(τ)dWτ

(4.120)

Recall that

f(τ) := Hγ∗(f(τ) +

∫ τ

0

g(s)dW̃τ (4.121)

but Hγ∗f(t) = f(0). Thus, substituting (4.116) and (4.117) into (4.119), we have

=

∫ a

0

(
(0) +

∫ a

0

g(τ)dW̃τ

)
dD(τ) +

∫ a

0

g(τ)D(τ)dW̃τ ,

= f(0)

∫ a

0

dD(τ) +

∫ a

0

g(τ)dW̃τdD(τ) +

∫ a

0

g(τ)D(τ)dW̃τ ,

= f(0)(D(a)−D(0) +

∫ a

0

g(τ)

∫ a

s

dD(τ)dW̃τ +

∫ a

0

g(τ)B(τ)dW̃τ

(4.122)

By Fubinis

= f(0) (D(a)−D(0)) +

∫ a

0

g(τ) (D(a)−D(s)) dW̃τ +

∫ a

0

g(τ)D(τ)dW̃τ

= f(0) (D(a)−D(0)) +D(a)

∫ a

0

g(τ)dW̃τ −D(s)

∫ a

0

g(τ)dW̃τ +

∫ a

0

g(τ)dW̃τ

= f(0) (D(a)−D(0)) +D(a)

∫ a

0

g(τ)dW̃τ

= f(0)D(a)− f(0)D(0) +D(a)

∫ a

0

g(τ)dW̃τ

(4.123)

clearly,φ is a tame strategy moreover, the value of all the traded assets (or self-

financing strategies) (4.122)is determined uniquely by its initial value (4.123) below

and must have the same market price

V φ
(0) = f(0)D(0) = f(0)
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Let Mτ = D(a)
∫ a

0
g(τ)dW̃τ H[Mτ ] = 0, as τ → ∞ by convergence theorem Thus

M is a martingale i.e.

[D(a)

∫ τ

0

g(τ)dW̃τ ] = D(a)

∫ τ

0

g(τ)dτV φ
(ξ) = f(ξ)D(ξ) = S(ξ) (4.124)

Showing that φ is self-financing and replicates S. This shows that S is attainable.

4.9 Measures to curb any trace of information
asymmetry

This section proffers measures in curbing investors undue advantage of information

to have more gains than others in the market: An investor is defined as a dishonest

investor haven possessed more than necessary information than others for profit

making. We considered the optimal penalty for such investor and the effort of the

regulatory agencies to curbed any traces of such. We reveal that the activities of

a dishonest investor is curb Biagini et al. (2005). It is also observed that as time

progresses, the effectiveness of the government and market regulatory bodies as

well as onward review of law weight reduces insiders activities. However, a trace of

insider trading activity shows the weakness of the regulatory agencies at α = 1.9

before the decline at α = 5 due to reshuffling of the regulatory agencies staff in

avoiding corruption.

4.10 Insider free-market

A space of probability with a filtration F := {Ft} such that t is between interval

[0, T ] and for T lies between the interval ∈ (0,∞). An investor with a limited

resource takes his decisions from the filtration

F := {Ft ⊂ F}

for {0 ≤ t ≤ T} resulting from the market, while a sensitive investors information

flow is

Ht ⊂ F , 0 ≤ t ≤ T

and Ht ⊃ Ft A sensitive investors portfolio are stochastic processes adapted to

H. Where Ht := Ft ∨ σH, for t ∈ [0, T, ] an enlarged filtration of F denoting a

sensitive investor information flow. An investor with limited resources relied on Ft,
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while, the sensitive investors information flow is H random variable representing

his financial strength, diversification, risk tolerance and future potential price of

asset denoted as τ ≥ T . It implies the discounted stock process X = (Xt)t∈[0,τ ]

value is continuous and (P,H, )-semimartingale W with W0 = 0 and a predictable

process π such that E[
∫ T

0
π2
t dWt] ≤ ∞, then dSt = St(dWt + πtdWt) ∀ t ∈ [0, T ]

and S0 > 0. By Itôs formula, we have St = S0e
∫ t
0(πs− 1

2)dWs+Wt a H-martingale

W̃t = Wt −
∫ t

0
ρHs dWs, t ∈ [0, T ]. Then from sensitive investors context, the stock

price is

dSt = St[dW̃t + (ρHt + πt)dWt] (4.125)

By Itôs ,

St = S0e
∫ t
0 (πs+ρHs − 1

2
)dWs+W̃t (4.126)

however, for ordinary investor, a bounded and Ft -measurable random variable

which is duplicated is a complete market. Furthermore, it is the aggregate of a

stochastic integral and constant relative to S. Consequently, a measure Qord of

probability identical with P on (Ω,FT ) for S a (Qord,F)-martingale is an arbitrage

free market.

Definition 4.10.1

An utility function U : (0,∞)→ R satisfies:

1. continuous differentiability on (0,∞), strictly concave, and increasing

2. obeys Inadas law limj↓0 ξ
′(x) =∞ and

lim
j→∞

ξ′(x) = 0 (4.127)

Examples of these are: U(x) = xc, 0 < c < 1 and

U(x) = log(x)

Definition 4.10.2

A penalty function f : (0,∞) → R where f is convex Example is: f(x) = −cxϕ,

explain as penalty proportional to flaunting market laws where c > 0 , 0 < ϕ < 1

and (x) the utility. Thus let f(x) = c(x− G̃)+ where (G̃, ) is the maximum mean

gain while C a penalty known as law weight. That is, if an abnormal gains is

noticed, he would pay a fine of C.
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Definition 4.10.3

set x > 0 an initial wealth and H a general information,then:

1. An R-valued process π = (π)[0,T ] is an H-portfolio if it is an H-adapted

predictable process and
∫ T

0
π2
t dWt, pa.s.

2. H-portfolio π, is self-financing if the discounted wealth process V (x, π) agrees

with the following equation

Vt(x, π) = x +
∫ t

0
πsdss, ∀ t ∈ [0, T ], below Ht(π) =

∫ t
0
πsdss is the gain

process

3. an admissible H-portfolio π which is self-financing and

E[U(VT (x, π)) + (−f)(HT (π))] < ∞, where ξ is the utility, and f a penalty

function. All the admissible set of portfolios are: AH(X ,T ). changing variable

nt = πt
St
Vt

and the wealth

Vt(x, n). Then

Vt(x, n) = ntVt(x, n)(dSt)/St. By (4.125)

and Itô’s formula,

VT (x, n) = xe
∫ T
0 ntdW̃t+

∫ T
0 nt(ρHt +πt)dWt− 1

2

∫ T
0 n2

tdWt (4.128)

An ordinary investors problem becomes

max
n∈AF (x,T )

E [U(VT (x, n))]

while,a sensitive investors problem becomes

max
n∈AH(x,T )

E[U(VT (x, n))− f (HT (n))],

then ξ(x) = log(x) and f(x) = C2(x),where C2 > 0 is set to be constant known as

the severity of the law or penalty and C1 the probability to be caught and face a

punishment, this probability is irrespective of the volume traded. Thus a sensitive

investors problem becomes

max
n∈AH(x,T )

E[log(VT (x, n))− C1C2(HT (n))]

Where we define HT (n) := HT
π
v

the relative gain process.
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Theorem 4.10.1

For ρl ∈ (Ω,A,U). Then, nord(t) = πt, is the favorable strategy for uninformed

investors and the largest utility is

E
[
log(VT (x, nord))

]
= log x+

1

2
E

[∫ T

0

π2
t dWt

]
. (4.129)

while, the fair strategy for a sensitive investors is given by

ns = (1− C1C2)(πt + ρHt ), t ∈ [0, T ]

The greatest expected utility is

E [log(VT (x, ns)− C1C2HT (ns))]

= log x+
(1− C1C2)2

2
E

[∫ T

0

(ρHt
2

+ π2
t )

]
dWt

(4.130)

α is the government regulatory efficiency. αC1 = 1, represent the probability of

observing any abnormal trading but if the Law and enforcement agency is zero

αC1 = 0, we have insider trading, this means the regulatory agency strength are

ineffective

Proof : from (4.128),

log(VT (x, n)) = log x+

∫ T

0

nt dW̃

∫ T

0

nt(ρ
H
t + πt)dwt −

1

2

∫ T

0

n2
tdWt

and as HT (n) =
∫ T

0
nt

(dSt)
St

With (4.125), we have

HT (n) =

∫ T

0

ntdW̃t +

∫ T

0

nt(ρ
H
t + πt)dWt

then

log((VT ))− αC1C2HT (n) = log x+ (1− αC1C2)

∫ T

0

nt(ρ
H
t + πt)dWt

If αC1C2 = 0 , then a sensitive investors highest expected utility is

log(VT ) = log x+

∫ T

0

nt(ρ
H
t + πt)dwt

However, if αC1C2 = 1 then this means a sensitive investors information platform

changes to ρHt ⊂ ρKt (represented as an undue access to information)Where

K(K) = Kt : t ∈ [0,∞) 0 ≤ t ≤ T
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where Kt ⊂ F and

Kt ⊃ Ht ⊃ Ft

Then we have

log(VT (x, n))− αC1C2HT (n) = log x+ (1− αC1C2)

∫ T

0

ntdw̃t

+(1− αC1C2)

∫ T

0

nt(ρ
K
t + πt)dWt

−1

2

∫ T

0

ntdWt

(4.131)

and

log(VT (x, n))− αC1C2HT (n) = log x+ (1− αC1C2)

∫ T

0

ntdW̃t

+

∫ T

0

[
((1− αC1C2))(ρKt + πt)

]2
dWt

−1

2

∫ T

0

[
(1− αC1C2)(ρKt + πt)− nt

]2
dWt

(4.132)

If E[
∫ T

0
n2
tdWt] <∞ then

∫ T
0
ntdWt is a martingale with zero expectations,

E [log(VT (x, n))− αC1C2HT (n)] =

log x+
1

2
E

[∫ T

0

[
(1− αC1C2)(ρKt + πT )

]2
dWt

]
−1

2
E

[∫ T

0

[
(1− αC1C2)(ρKt + πt)− nt

]2]
dWt

(4.133)

In this sequel, we have best expected utility of a sensitive investor to be

ns = (1− αC1C2)(ρKt + πt), ∀ t ∈ [0, T ]

thus ns ∈ AK

Remark 4.10.1

Case 1

probability to be caught is zero αC1 = 0, we will have insider transaction that is,

nst = (1− αC1C2)(ρKt + πt) = ρKt + πt − αC1C2ρ
K
t − αC1C2πt (4.134)

Substituting αC1 = 0 into (4.131) we have nst = ρKt + πt, ∀ t ∈ [0, T ] that is, from

the maximal expected utility of a sensitive investors equation

E [log(VT (x, ns)− αC1C2HT (ns))] = log x

+
(1− αC1C2)2

2
E

[∫ T

0

((ρKt )2 + π2
t )

]
dWt

(4.135)
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expanding

=
1

2
E

∫ T

0

ρK
2

t dWt −
(αC1C2)2

2
E

∫ T

0

ρK
2

t dWt

+
1

2
E

∫ T

0

π2
t dWt −

(αC1C2)2

2
E

∫ T

0

π2
t dWt

(4.136)

Setting C2 = 0 and ρKt = 0, and similarly from the first integral

of (4.132), We have on expansion

1

2
E

∫ T

0

πt(1− αC1C2)(ρKt + πt)×

(1− αC1C2)(ρKt + πt)dWt

= πt[(ρ
K
t + πt − αC1C2ρ

K
t − αC1C2πt)×(

(ρKt + πt − αC1C2ρ
K
t − αC1C2πt)

)
dWt

= πt[ρ
K2

t + ρKt πt − αC1C2ρ
K2

t − αC1C2πtρ
K
t +

πtρ
K
t + π2

t π − αC1C2πtρ
K
t

−αC1C2π
2
t + αC1C2πtρ

K
t + αC1C2π

2
t ]

(4.137)

Substituting C2 = 0 and ρKt = 0, into (4.134), we have 1
2
E
∫ T

0
π2
t dWt that is,

E [log(VT (x, π)− αC1C2KT (π))] = log x+
1

2
E

[∫ T

0

π2
t

]
dWt

setting αC1C2KT (π) = 0 We will have our equation that is, = E
∫ T

0
π2
t dWt

Case 2 If the probability to be caught is one that is, αC1 = 1, and if there is a

subsequent change in time for the punishment, precisely, C2 =
(ρKt )

(πt+ρKT )
we have

ns = nord

Example 4.8.1

From case 1 were α denotes the regulatory agency efficiency in curbing information

asymmetry. If αC1 = 0, the probability of catching insider is zero in that case we

have insider trading as in case 1, but if αC1 = 1 this means the regulatory agency

are effective Given ns = (1− αC1C2)(ρKt + πt) on expansion we have

ns = ρKt + πt − αC1C2ρ
K
t − αC1C2πt (4.138)

if αC1 = 1 we substitute into (4.138) we have

ns = ρKt + πt − C2ρ
K
t − C2πt (4.139)
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if C2 =
(ρKt )

(πt+ρKt )
the penalty weight, we substitute into (4.139)and we have

ns = ρKt + πt −
(ρKt )

(πt + ρKt )
× ρKt −

(ρKt )

(πt + ρKt )
× πt

ns =
((πt + ρKt )(ρKt + πt)− ρK

2

t − πtρKt )

(πt + ρKt )

(4.140)

on expansion we have

ns =
(πtρ

K
t + π2

t + ρK
2

t + πtρ
K
t − ρK

2

t − πtρKt )

(πt + ρKt )

ns =
(πtρ

K
t + π2

t )

(ρKt + πt)
→ (πt(ρ

K
t + πt))

(ρKt + πt)

(4.141)

thus ns = πt But nord = πt (honest investor) thus ns = nord You will agree with me

that our dishonest investors term (ρKt + πt) has varnished living only honest terms

as πt and this shows that when α = 1, there is efficiency of the regulatory agency

in the market.

4.11 Simulations

Wt is Brownian given by σWt and l = W (T0), T0 > T , where ({Wt}){t≥0} and the

drift µ(t) then,

nst = (1− αC1C2)
µ(t)− r(t)
σ2(t)

+
1

σ(t)

W (T0)−W (T )

T0 − t

we take

C1(t) =
1− (T0 − t)α

C2

, α > 1

and C2 > 1 − (T0 − t)α, ∀ t for T0 = T < 1, then a finite Utility is achieve For

Wt and T ≤ T0 ≤ 1, market coefficient µ(t) = 0.00090 and σ(t) = 0.0040 ∀ t

while r(S) = 0.1, and the varying-time probability of being punished after a catch

C1(t) = 1− (T0 − t)α where α is the effectiveness of the law. A bigger α means a

more effective regulatory agency. while, C2 is penalty weight. We see several results

for honest and dishonest trader, when α = 1.9 and C2 ∈ [4, 5, 6] we observed that

the dishonest trader controls more of his transactions at a higher penalty as well

as strong strength of the enforcement agency, at C1 ∈ [0.3845, 0.3885] considering

a more effective regulatory agency, for example:α = 5 with C1 ∈ [0.51, 0.523],even

with fewer penalties the dishonest traders controls more of his/her trade as shown

below on the table: At the regularity condition of α = 0.9, nordt = 19.3125, T0 =

0.3885, σ2
t = 0.0016 t = 0.3845
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C1 = 0.2433, C2 = 4 C1 = 0.9732, C2 = 5 C1 = 0.1622, C2 = 6
nst1 = 58.4539, C2 = 4 nst2 = 16.1798, C = 5 nst3 = 0.5164, C = 6

Table 4.1: The low efficiency of market regulators

Similarly at regularity of T0 = 0.523, α = 5, nordt = 19.3125, σ2
t = 0.0016, t =

0.51
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C1 = 0.2499, C2 = 4 C1 = 0.1999, C2 = 5 C1 = 0166, C2 = 6
nst1 = 7.735× 10−08, nst2 = 9.66× 10−08, nst3 = 7.76× 10−09,

Table 4.2: The table indicating the effectiveness of the market regulators
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Figure 4.1: The graph of an investor when volatility is 0.5 and drift is 1
Figure represents the low return rate of investor due to inability to take risk

capable of generating huge return. It is obvious this investor is at the loss end.
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Figure 4.2: The graph of an investor when volatility is 0.8 and drift is 1
Figure 4.2 shows the trend of an investor who’s risk appetite is low. On the
graph, The investor is not prone to risk, and the part where the investment

return outgrown the risk volatility is meager. Such investor goes to the market
with the motive of no huge return mentality.
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Figure 4.3: The graph of an investor when volatility is 1 and drift is 1
Figure 4.3 shows the result of a sensitive investor who resort to taking more risk
by diversifying with the huge rate of return. The trajectory of the return increases
significantly and out weight the risk a sensitive investor undergone.
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Figure 4.4: This graph indicates the varying rate of risk averse investor
Figure 4.4 indicates the varying rate of risk averse investors behaviour on the risky
assets, the proportion of investment on the risky assets at some period is on the
increase due to low cost of transaction and positive turn out, At some point in the
interval, he refrain from further investing due to high volatility of risky assets.
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Figure 4.5: This graph indicates huge investment on the risky assets, and lower
risk aversion
It is observed that at a lower level of risk-aversion, the proportion held in stock
is relatively high to compensate for the decrease on the proportion held in the
bond. Similarly, it is equally observed that at a higher level of risk-aversion, the
proportion held in stock witnessed a drastic decrease due to higher payoff on the
bond
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Figure 4.6: This graph indicates the higher risk aversion due to high transaction
cost of the risky assets
Figure 4.6 shows the higher risk aversion due to high transaction cost of the risky
assets with gradual decrease on the risky assets investment. However, at a specific
time, the investment on the risky assets increases due to positive trend in its return.
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Figure 4.7: Indicating a neutral level of both the risky assets and risk averse
It is observed that at the middle of the risk-aversion, the proportion held on stock
and the risk-free assets(bond)are the same showing a risk-free market

127



6.pdf

 

Figure 4.8: Indicates the return of the utility function of an investor distributing
100(2p− 1)% of his capital in an investment

Figure 4.8 shows the trend of investors possibility for investment, when ζ̂ = 0.5 α =
0 Thus if ζ̂ > 1

2
the investor will distribute 100(2ζ̂ − 1)% of his capital. that is,

when 0 ≤ ζ̂ ≤ 1
2
,then E[U(X)] is the greatest value when α = 0, that is, when no

investment is made by the investor. But, when ζ̂ = 0.6 α = 0.2, similarly when
ζ̂ = 0.7 α = 0.4, when ζ̂ = 0.8 α = 0.6 when ζ̂ = 0.9 α = 0.8 the trajectory
of the graph increases showing the investors possibility of investing with a positive
return.
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Chapter 5

SUMMARY AND
CONCLUSIONS

5.1 Introduction

Generally, maximising the general expected utility of a sensitive investor in a finan-

cial market was studied. A sensitive investor is one who has the financial means

and desires to diversify his assets, and seeks for an optimal portfolio which provides

the maximum expected returns at a given level of risk.

The present economic situation in Nigeria means that reliance on a single source

of income can no longer satisfy the needs of the average middle class family. Thus,

the need to explore multiple streams of income is on the front burner of many

Nigerian homes. A possible means of achieving multiple streams of income, but an

even better means is to invest in an asset and an even better means is to invest

in multiple assets. From economics we know that man’s needs are insatiable, thus

man always seeks for means to increase his expected financial returns.

A sensitive investor seeks and resorts to diversification so as to spread the risk

of loss. A diversified portfolio or group of assets has a smoother risk behavior, that

is, it is a much more robust investment option Derman (1994).

Diversification aims to reduce the unsystematic risk in portfolio which occur

by miss-management, poor forecasting accuracy or wrongful planning processes

and decision making. Diversification helps to reduce the volatility of portfolio

performance. This is because holding diverse assets implies that the price of diverse

assets does not change in the same direction, at the same time or at the same rate.

Thus, diversified portfolio is more robust with less variation in expected return.

The optimal portfolio with logarithmic utility fail to consider thorough assess-

ment of the present from the future values of economic influences, therefore, it

is short-sighted. However, power utility considers future investment opportunities.

For instance, if the dynamics of the current rate of interest of the risky assets would

be probably higher than the future, a sensitive investor may consider investing in

the risky assets, to its advantage of the potential increase in its price now as a

result of its speculated drop in the future. In this respect, we looked at the power
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utility which maximises expected return of a sensitive investor.

We equally put into consideration of regular checkmating of our portfolio in

the sense that combining several business choices of expected zero return into in-

vestment with positive expected return is a good measure to achieving desirable

portfolio.

An indispensable concept of “buy-low”,sell-high strategy was used in this study

for instance, if you owned above 40% of your money in the risky assets, you could

transfer some into riskless assets, and if you owned above 60% on the riskless assets,

you move some of the capital to risky assets. The significant of this, is to know the

best size of money held in the available assets at each trading period. Furthermore,

It sounds wise to shuffle your capital between the two assets no matter the size.

Our Empirical results show that when volatility σ = 1, t = 1, S0 = 100, µ = 1, the

expected return in investment is more than when σ = 0.5. Moreover if r = 0.05,

and µ = 0.08 σ = 0.04 then an investor should consider putting 75% of its money

on the risky assets

5.2 Contribution to knowledge

The contribution to knowledge of this study are enumerated below:

1. The optimal portfolio of a sensitive investor was established using power

utility function and showed higher investors return as the investor diversify

his investment.

2. Two models were derived from the Itô’s integral with respect to power utility

function.

3. The extension of the Itô’s integral by forward integral with its lofty properties

was used to diversify the investors portfolio.

4. A filtration was built and used as a set of information for the investor.

5. A semimartingale was used to enlarge the investors information.

6. A probability function was defined to capture the activity of an insider in the

market and penalty function was established to punish such an insider.
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7. A priority Mathematical software was used to compute the investors varying

rates of volatility.

5.3 Recommendations

Optimal portfolio of a sensitive investor in a financial market indicates some direc-

tions for further research. The Brownian motion was the driving force of the asset

price. Thus, an obvious extension is to consider the problem using Lêvy process

which initiate the modeling of assets price with jumps. Another possible extension

is to consider the variance and correlation of returns on foreign exchange rate and

its effect on the utilities and portfolio choice of an investor.
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APPENDICES

Appendix (I) MATLAB code for

%BPATH1 Brownian path simulation
clf()
randn(’state’,100) %set the state of randn
T = 1; N = 500; dt = N; sigma = 0.5;
dW = zeros(1,N); %preallocats arrays ...
W = zeros(1,N); % for efficiency
t = [0:0.002:1];
E = 100*exp(sigma*t);
dW(1)= sqrt(dt)*randn; %first approximation outside the loop ...
W(1)= dW(1); %since W(0) = 0 is not allowed
for j = 2:N

dW(j)= sqrt(dt)*randn; % general increment
W(j)= abs(W(j-1) + dW(j));

end
plot([0,t], [1,E],’b-’)
hold on
plot(t, [1,W], ’r--’) %plot W against t
hold off
%xlabel(’t’, ’Fontsize’, 16)
%ylabel(’W(t)’,’Fontsize’,16,’Rotation’,0)
xlabel(’t’,’FontSize’,16)
ylabel’W(t)’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,\\
’right’
legend(’Expectation of S_t, @ Sigma = 0.5’,’Brownian path’,2)

Appendix (II) MATLAB code for

%BPATH1 Brownian path simulation
clf()
randn(’state’,100) %set the state of randn
T = 1; N = 500; dt = N; sigma = 1;
dW = zeros(1,N); %preallocats arrays ...
W = zeros(1,N); % for efficiency
t = [0:0.002:1];
E = 100*exp(sigma*t);
dW(1)= sqrt(dt)*randn; %first approximation outside the loop ...
W(1)= dW(1); %since W(0) = 0 is not allowed
for j = 2:N

dW(j)= sqrt(dt)*randn; % general increment
W(j)= abs(W(j-1) + dW(j));

end
plot([0,t], [1,E],’b-’)
hold on
plot(t, [1,W], ’r--’) %plot W against t
hold off
%xlabel(’t’, ’Fontsize’, 16)
%ylabel(’W(t)’,’Fontsize’,16,’Rotation’,0)
xlabel(’t’,’FontSize’,16)
ylabel’W(t)’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,\\
’right’
legend(’Expectation of S_t, @ Sigma = 1’,’Brownian path’,2)
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