
i 
 

 

 

 

 

GEOCHEMICAL AND FLUID INCLUSION STUDIES OF PEGMATITES FROM 

PARTS OF SOUTHWESTERN NIGERIA 

 

 

 

BY 

MATTHEW OYEDELE OYEDOKUN 

B.Sc. (Benin), M.B.A., M.Sc. (Ibadan) 

MATRIC N0:112817 

 

 

 

A thesis in the department of Geology 

Submitted to University of Ibadan, in partial fulfilment of the requirements for the 

award of the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 of the  

 

UNIVERSITY OF IBADAN 

 

 

JUNE, 2019 

 

 

 

 

 



ii 
 

ABSTRACT 

Geochemical assessment of fluid inclusions in minerals has been successfully used in 

the description of genesis and characteristics of different ore-forming fluids. However, 

there are few reported applications of fluid inclusions study in the delineation and 

characterisation of ore-forming fluids in pegmatites from southwestern Nigeria. This 

study was designed to determine the type, origin and characteristics of fluids involved 

in the genesis of pegmatites from parts of southwestern Nigeria.  

 

Systematic geological mapping was carried out in the Olode, Komu and Idiyan areas. 

Forty-eight samples of pegmatite were subjected to petrographic studies. In addition, 

16 whole rock samples of pegmatite and 32 mineral extracts (11 feldspar, 13 

muscovite, 8 biotite) were analysed for major, trace and rare-earth elements using 

inductively coupled plasma optical emission spectrometry technique. Fluid inclusion 

study was carried out on pegmatitic quartz using microthermometry. Descriptive 

statistics and geochemical variation plots were used for data evaluation. 

 

Identified lithological units were quartz muscovite schist, sillimanite quartzite, granite 

gneiss and amphibolite. The pegmatites contained mainly albite, microcline, quartz, 

biotite and muscovite. Major oxides concentration (%) for pegmatite and mineral 

extracts were: SiO2 (35.22 – 82.17%), Al2O3 (0.73 – 34.81%), Fe2O3 (0.1 – 19.79%), 

MnO (0.004 – 1.693), MgO (0.01 – 8.55%), CaO (0.01 – 2.61), Na2O (0.09 – 10.16%) 

and K2O (0.08 – 12.66%), respectively. The concentration (ppm) for Be, Zn, Nb, Sn, 

Cs, W and Ta ranged as 1.00 – 384.00, 30.00 – 3800.00, 0.60 – 330.00, 1.00 – 319.00, 

0.70 – 475.00, 17.20 – 933.00 and 0.32 – 107.00, respectively. Elevated concentrations 

of Sn were observed in muscovite extracts while elevated concentrations of W were 

observed in whole pegmatite. Plots of Ta vs K/Cs, K/Rb vs Rb, K/Rb vs Ba, Ta vs 

K/Cs, Rb vs Ba and Ta vs Cs + Rb showed that the pegmatites were unmineralised to 

mineralised muscovite class pegmatites. Three types (I, II and III) of aqueous primary 

to pseudo-secondary inclusions were observed. Type I were two-phase liquid (L)-

vapor (V); (L+V; L>V); ~2-100 μm occurring as isolated inclusions, clusters and trails. 

Type II inclusion was three-phase: Liquid+ Vapor + Solid (L+V+S), ~2 – 15 μm and 

they occurred as isolated individuals and in trails. Type III were monophase (liquid) at 

room temperature and occurred as isolated inclusions, clusters and in trails that also 
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contained types I and II. Type I inclusion has salinity of 0.7-21.9wt% NaCleq. All 

inclusions homogenised into the liquid phase at temperature of total homogenisation 

(Th) of 80.1-335.1°C. Temperature-pressure modelling revealed type II inclusion with 

Th of 350°C as the earliest fluid trapped and were associated with late magmatic-

hydrothermal fluids and type II inclusion were trapped at 250°C. Type I inclusion was 

trapped at 160-250°C, indicating dilution and interaction of ore-forming fluid with 

meteoric water while Type III inclusion was trapped at a much lower temperature of 

<50 °C based on Th values. 

 

The pegmatites of Southwestern Nigeria are characterised by aqueous fluid inclusions 

of primary and pseudo-secondary types and they are of magmatic to meteoric origins. 

 
Keywords:    Aqueous Primary inclusions, Ore-forming fluid, Magmatic origin 
Word count: 479 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Introduction 
With the increase in technological advancement, and the search for new rare 

metal deposits all over the world, it becomes justified that a thorough study be carried 

out on the pegmatites of southwestern Nigeria with the intent of unravelling their 

origin, composition and their economic potential. This will add to the knowledge of the 

inventory of rare metal mineralisation in Nigeria for economic development. 

Pegmatites are coarse grained igneous rocks mostly of granitic origin, 

composed essentially of quartz, feldspar, mica, which is similar to typical granite. 

However, they could also be mineralised with garnet, tantalite, niobite, columbite, 

tourmaline, lepidolite, and other economically viable minerals. For these minerals 

which pegmatites host, they have become a well sought after and much more explored 

rock type. These exploration activities have been further boosted by the current drive 

towards technological advancement and exploration of specialty metals such as 

tantalite, columbite, tin and a host of other rare metals. Gem mineralisation such as 

aquamarine, emerald, rubellite, topaz and other valued gemstones are known to be 

associated with pegmatites. 

Pegmatites are generally crystalline, most times intrusive igneous rocks which 

are composed of interlocking crystals with the crystal size one of the most striking 

features observable in a hand specimen of a pegmatite which can sometimes grow 

beyond 5 cm in size.  

Pegmatites size varies from veinlets of few centimetres to massive intrusive 

bodies which could extend for several kilometres. Nature of pegmatite bodies also 

varies; some occur as dike-like tubular intrusions while some occur as oval, lenticular 

or pipe-like bodies, lenses, veins, and dikes which are either simple or complex. 

Pegmatites are known to serve as hosts to a wide range of economic deposits, 

such as gemstones, metallic and non-metallic (industrial) minerals. Gemstones; 
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precious and semi-precious stones such as ruby, opal, emerald, aquamarine, etc., which 

are used for their aesthetic values in jewellery, ornamental stones, etc. Tantalum (Ta) 

and Columbium/Niobium (Nb): these are rare metals that invariably occur together. 

They are used in vacuum tube synthetic rubber, dental and surgical instruments, 

abrasive, computer and electronics. Lithium (Li) is the lightest of all metals and does 

occur as native in nature. It is used as alloy of aluminium, magnesium and zinc for 

light aeroplane metals, ceramic and glass industries etc., while feldspar are used in 

ceramics industries, and also in the production of fillers in paints, as well as insulating 

materials in the electrical industry. 

 Pegmatites, depending on composition, texture and mineralogy, may be simple or 

complex (zoned). Generally, in unzoned/simple pegmatites which are the most common 

pegmatite type, mineralogical composition and texture are uniform within the pegmatite 

with no major variation along the strike. Simple pegmatite show uniformity in grain size 

from wall with no segregation of minerals; they also possess simple mineralogy of 

quartz, feldspars and mica; they may contain schorl, garnet as accessory minerals and 

they are common in metamorphic terranes. 

 Zoned pegmatites are pegmatites with noticeable textural, mineralogical or 

compositional dis-uniformity, though zones may not be well developed in certain areas. 

In zoned pegmatites, different zones which are mappable, non-uniform and differ in 

texture, grain size and mineralogical composition can be identified; and they are 

characterised by a core which is surrounded by other outer zones.  In zoned pegmatite, 

grain size increases inwards towards the core of the pegmatite from the outer zones, 

indicating progressive grain size increase during progressive fractionation of the 

pegmatite. Furthermore, in zoned pegmatites, from the outer zones through intermediate 

zones to the pegmatite core, zones may change from an aplitic/granitic texture through 

graphic/heterogeneous texture in the intermediate zones to large sized coarse grains in 

the pegmatite core. 

 Also, in zoned pegmatites, mineralogical variations change from wall to core 

with the wall having a more complex mineralogy which becomes simpler towards the 

core, and silica content in the different mineralogical zones increasing towards the zones. 

In rare metal/rare element enriched pegmatites, different mineralogical zones may 

contain different elemental concentration of rare metals and rare elements (Okunlola and 

Ocan, 2009). 
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 Pegmatites commonly occur in groups/swarms, which usually appear to be 

related to co-genetic large plutons of granitic rock in the area. Based on their distribution 

with respect to a related pluton, three pegmatite groups: interior, marginal and exterior 

have been recognised (figures 1.1-1.3) with the least fractionated end of the pluton 

which has the least complex structural and mineralogical characteristics located within 

the pluton (interior pegmatites);  an intermediate section which lies at the pluton margin 

(marginal pegmatites), while the third group (exterior pegmatites) lies outside the 

granitic pluton in the metamorphic country rocks (Černý et al., 1981; Černý, 1991b).  

 Exterior pegmatites which are complex structurally, texturally and 

mineralogically, tend to be more common in LCT intrusive—pegmatite system while in 

NYF pegmatites, interior pegmatites are more common (figure 1.4, Simmons et al., 

1987, 1999a, Cerny 1991b). 

 Regional zoning is believed to develop due to the ability of fluid rich in volatiles 

to travel great distances at lower temperatures and therefore greater distances from the 

source pluton due to the greater amount of volatiles they contain and their lower 

viscosity (Černý, 1991a and b). Regional zoning is common in LCT pegmatites and it is 

influenced by the nature, structure of the host rock, and the vertical level of exposure of 

the pegmatite. From the related granitic pluton, the mineralogical complexity increases 

outwards, the degree of fractionation increases while there is a decrease in the number of 

related associated exterior pegmatites. The sequence is: 

• barren to Be-rich 

• Be-Nb rich 

• Li-Cs-Ta-Sn-rich 

 With an increase in complexity and degree of evolution of the pegmatite, there is 

a decrease in the number of pegmatite with one of lepidolite, albite-spodumene or albite, 

usually present in the most fractionated regional zones (figure 1.2, Cerny, 1986).  The 

proposed explanation for this type of zoning is that the more fractionated melts are richer 

in volatiles. They are therefore less viscous and the volatile-rich fluids remain fluid to 

lower temperatures and can therefore travel greater distances from the source pluton.  
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Figure 1.1: Interior to marginal LCT pegmatites (after Cerny 1991b) 
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Figure 1.2: Regional zoning of LCT pegmatites around a parental pluton (Cerny 1991b) 
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Figure 1.3: Schematic vertical section through a zoned fertile granite-pegmatite.1: fertile 
granites with leucocratic and pegmatitic cupolas, 2: barren to beryl-baring pegmatites, 3: 
beryl type, columbite to phosphate-bearing pegmatites; 4: complex spodumene (or 
petalite) bearing pegmatites (with Sn, Ta and Cs mineralisation), 5: faults, Letters A 
through D, progressively deeper levels of erosion showing the types of pegmatites 
exposed (from Cerny, 1986) 
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Figure 1.4: Relationship between parent granite plutons and surrounding pegmatites 
showing A) Exterior pegmatites which occurs in a pegmatite aureole surrounds a granitic 
pluton; B) Marginal pegmatites; C) Interior pegmatites (adapted from Ashworth, 2014) 
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1.2: Formation and classification of pegmatite 

 There are two different proposed models of pegmatite genesis, fractional 

crystallisation and anatexis, but fractional crystallisation of a granitic pluton to form 

pegmatitic melts is the most widely accepted model of pegmatite formation (Cameron et 

al., 1949; Jahns, 1953; Jahns and Burnharn, 1969;  Cerny, 1991b). Based on this model, 

as the granite crystallizes, the earlier formed minerals are alkali feldspar, sodic 

plagioclase, quartz and minor muscovite, or biotite and the silicate minerals incorporate 

Si, Al, K, Na, and minor amounts of Fe and H20 from the melt thereby depleting the melt 

in these constituents and enriching the residual melt in incompatible elements, volatiles 

and fluxes such as H2O, B, F, CO2, Li and P. The residual melt therefore has lower 

viscosity and crystallisation temperature compared to the parent granitic magma, and the 

melt becomes enriched in rare elements such as Ta, Nb, Cs, Zr, U REE and Sn (Cameron 

et al., 1949; Simmons, 2007; London, 2008; London and Morgan, 2012). 

 Two main models exist for crystallisation of pegmatites: fractional crystallisation 

(Cameron et al., 1949; Jahns, 1953; Jahns and Burnharn, 1969; Cerny 1991b) and 

constitutional zone refining (Morgan and London 1999). The Jahns, (1953) and Jahns 

and Burnham’s 1969 theory which explained that aqueous fluid interacting with silicate 

melt is a necessary condition for formation of pegmatite was until recently the most 

widely accepted theory. However, this has been challenged by experiments of London et 

al., (1989) who cited a lack of supporting evidence, in particular the low solubility of Al 

in aqueous fluids. In addition, London, (2008) and London and Morgan, (2012) also 

cited experimental evidence showing that rapid crystallisation of undercooled melt 

results in the formation of a boundary layer highly enriched in volatile components.  

 Fractional crystallisation, however, produces the same effect by the exclusion of 

incompatible elements as the pegmatite solidifies. The concentration increase is more 

gradual in fractional crystallisation, but the concentrations of incompatible elements 

increase exponentially near the final stage of crystallisation (figure 1.2).  

 London proposed that this process is the mechanism for concentrating fluxes and 

other incompatible elements into the final products of crystallisation and he refers to this 

process as constitutional zone refining (CZR). This process allows for the concentration 

of incompatible elements into the boundary layer without having an initially aqueous 

vapor-saturated melt. One of the notable differences in the two models is that the Jahns 

and Burnham model requires aqueous vapor saturation and the London model does not. 
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 The second proposed model for pegmatite genesis is anatexis with the abyssal 

and muscovite classes of pegmatites proposed to have been formed by anatexis (Cerny 

and Ercit 2005, Cempirek and  Novak, 2006; Grew, 2002), while the rare element class 

pegmatitic melts are possibly formed by anatexis of rocks with an appropriate 

composition.  

 It was also proposed by Simmons et al. (1995, 1996) that in an orogenic 

environment, partial melting of  migmatites around plutons could produce melts of 

similar composition as late-stage melts which are products of fractional crystallisation, 

thereby implying that pegmatitic melts could be directly produced from low-degree 

partial melts. 

Classification of pegmatite 

 Different pegmatite classification schemes have been employed over time such as 

the pegmatite classification studies by Fersman, (1924) and Landes, (1933). But 

presently, the widely accepted classification scheme is that of Cerny, (1991a) which has 

been modified over the years to produce other classification other schemes by Cerny and 

Ercit, (2005) and Cerny et al., (2012).  

 Cerny’s classification scheme of 1991 was based on several factors which 

includes emplacement depth of the pegmatite, minor elemental composition as well as 

metamorphic grade and he classified pegmatites into 5 major classes which are: 

1. Abyssal (high metamorphic grade, high to low pressure),  

2. Muscovite (high pressure, intermediate temperature),  

3. Muscovite-Rare Element (high pressure, lower temperature),  

4. Rare-Element (low temperature and pressure), and 

5.  Miarolitic (shallow level). 

 The pegmatite classes were further subdivided with the exception of the 

muscovite class into LCT and NYF families based on Li, Cs, Ta, Nb, Y and F elemental 

concentration while the Rare-Element pegmatite class was subdivided  based on 

mineralogical or geochemical characteristics into different types and subtypes.  

 Cerny and Ercit, (2005) revised the classification scheme of Cerny, (1991a), they 

proposed changes on NYF pegmatite classification and produced a petrogenetic 

classification of pegmatites (table 1.1-1.2). 

 Martin and De Vito, (2005) also addressed the relationship of pegmatites to 

tectonic regime. They explained that the LCT and NYF classes cannot be based on 
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depth-zone classification and they concluded that pegmatites are of two main types, 

those of anatectic origin and those formed by fractional crystallisation of more primitive 

felsic plutons. They suggested that the nature/type of  parent magma as well as 

derivatives of rare element enriched magmas are determined by the tectonic setting and 

they proposed that orogenic suites (compressional tectonic settings) produce LCT 

pegmatites while extensional tectonic settings (anorogenic suites) produces NYF 

pegmatites. In addition, they discussed pegmatites with ‘mixed’ LCT and NYF 

signatures and ‘hybrid’ pegmatites which are overprinted by fluids from the wall rocks. 

 

1.3: Pegmatites of Nigeria 

Several studies have been carried out on pegmatites in different areas of 

Nigeria. Raeburn (1927), who was one of the earliest workers of the Precambrian 

pegmatite of Nigeria, observed that the pegmatites of Calabar were characterised by 

the presence of tinstone and tourmaline. Jacobson and Webb (1946) in their study of 

pegmatite in the Central part of Nigeria, concluded that they are of the complex 

category and that the rare-metals bearing pegmatite of Nigeria are confined to a 400 

km long NNE – SSW trending belt stretching from Ago-Iwoye in Southwestern 

Nigeria to Wamba area in Central Nigeria (figure 1.5-1.7). 

Earlier workers such as Jacobson and Webb, (1946) concentrated their work on 

the geology of pegmatites around plateau tin fields which shows petrographic 

similarities in the leucogranites of Central and Southwest Nigeria around Wamba and 

Odoshin near Egbe. They suggested that the formation of the Southwest Nigeria 

pegmatite is analogous to the pegmatites of Central Nigeria around Wamba. Wright 

(1970) postulated that widespread pegmatite and aplite development marked the 

closing stages of the older granite emplacement and further adduced that 

mineralisation was due to Na rich hydrothermal solutions emanating from the mantle.  

Matheis and Caen Vachette (1983); and Matheis (1987) dated the Egbe granites 

to be 100 Ma older than the 350 Ma recorded for the mineralised pegmatites of the 

area  and postulated that the initial Sr ratios values obtained does not support cogenetic 

origin for the granites and the pegmatites, and the rare metal rich pegmatites of 

Southwest Nigeria are products of partial melting of rocks and leaching of the 

basement units  with external fluid supply than truly a pegmatitic phase of proximal 

older granite. 
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Kuster, (1990) opined that the evolution of rare metal pegmatites of central 

Nigeria is related to the late tectonic granite magmatism which is characterised by 

multiphase intrusion and structurally controlled emplacement. Ekwueme and Matheis, 

(1995) suggested that the pegmatites appears to have been emplaced along major fault 

lineaments with albitisation and attendant rare metal mineralisation which may have 

been due to late stage fluids available at the close of Pan African Orogeny. 
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Table 1.1: Pegmatite classification table: Modified from Cerny et al., (2012). 

Class Subclass Type Subtype Family  

Abyssal HREE 

LREE 

U 

  NYF 

  B Be   LCT 

Muscovite     

Muscovite-Rare 

Element 

REE   LCT 

Li    

Rare Element REE allanite-monazite 

euxenite 

gadolinite  

 NYF 

 Li beryl 

 

complex 

beryl-columbite 

beryl-columbite-

phosphate 

spodumene 

petalite 

lepidolite 

elbaite 

amblygonite 

 

 

 

LCT 

Miarolite REE topaz-beryl 

gadolinite-

fergusonite 

 NYF 

 Li beryl-topaz 

spodumene 

petalite 

lepidolite  

 LCT 
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TABLE 1.2: Petrogenetic component of pegmatitie classification: Modified from Cerny et at. (2012), rare elements; MI, miarolitic; 

*peraluminous, A/CNK>1: subaluminous, A/CNK-1: metaluminous, A/CNK<1 at A/NK>1; subalkaline, A/NK-1; peralkaline, A/NK<1, where A 

=A1203, CNK = Ca0+Na20 + K20, and NK = Na20+K20 (all in molecular values; Cerny 1991a). 

Family Pegmatite subclass Geochemical 

signature 

Pegmatite  

bulk composition 

Associated granite Granite bulk 

composition* 

Source lithologies 

LCT REL-Li 

mL-Li 

Li, Rb,  

Cs, Bc,  

Sn,Ga, Ta>Nb, 

 (B, P, F) 

Peraluminous 

 To 

 subaluminous 

Synoroganic to late- 

orogenic 

 (toanorogenic); 

largely heterogeneous 

Peraluminous S, 1 or 

 mixed S+1 types 

Undepleted upper to  

middle-crust supracrustal  

rocks and basement gneiss 

NYF REL- 

REE MI- REE 

Nb>Ta, Ti  

Y, Sc, REE, Zr, Y, Th, 

F 

Subaluminous   

to metaluminous 

(to subalkaline) 

Syn-, late, post-to  

mainly anorogenic;  

quasi-homogeneous 

Peraluminous to  

subaluminous  

and metaluminous 

 A and 1 types 

Depleted middle to 

 lower crustal granulite, 

 or juvenile granitoid rocks 

Mixed  Cross-bred: LCT and

NYF 

Mixed Metaluminous to 

 moderately  

peraluminous 

Post orogenic  to  

anorogenic heterogeneous 

Subaluminous to  

slightly peraluminous 

Mixed protoliths or  

assimilation of  

supracrustal rocks by  

NYF granite 
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However, studies by Ekwueme and Schlag, (1989); Ekwueme and Matheis, 

(1995) and Garba, (2002), show that pegmatites in Nigeria are not restricted to the 

“Tin Province” or “Pegmatite belt of Nigeria”, but also occur in the southeastern part 

of Nigeria. These pegmatites are also to extend into northeastern Brazil (Garba, 2002; 

Ekwueme and Matheis, 1995).  

Furthermore, Garba, (2003) delineated some newly discovered rare element 

pegmatites in Nigeria while Okunlola, (2005) defined 7 broad fields of the 

Precambrian rare-metals pegmatites of Nigeria namely: Anka-Birnin Gwari, 

Nasarawa-Keffi, Ijero-Aramoko, Ibadan-Oshogbo, Oke Ogun, Lema-Share and Kabba-

Isanlu (figure 1.6-1.7) with rare metal enrichment  increasing northwards, from  the 

Ibadan-Oshogbo fields to the most enriched Lema-Ndeji field (Okunlola, 2017). 

 Okunlola, (2005) in his studies of metallogeny of Nb – Ta mineralisation in 

Precambrian basement pegmatites of Nigeria noted that rare metal pegmatites are not 

confined to an older tin belt only. He also noted that low to moderate degree of Na- 

metasomatism (albitisation) control rare metal mineralisation in some Nigerian 

pegmatites, this shows lower degree of evolution and thus in effect means lower 

mineralisation compared to other highly mineralised pegmatites in other parts of the 

world. 

 Nigerian pegmatites have also been associated with gemstone 

mineralisation with over ten varieties of gemstones documented mainly around the 

Ibadan-Osogbo and Oke-Ogun pegmatite fields (Okunlola and Ogedengbe, 2003; 

Okunlola and Omitogun, 2014) as well as some of the pegmatite fields in the northern 

central part of the country (Okunlola and Ocan 2009).  

Okunlola, (2017) also explained that using geochemical signatures, structural 

characteristics and petrographic variations, Nigerian pegmatites can be classified into 3 

main sub types—Beryl type, Albite type and complex (table 1.3 and 1.4) and some of 

the pegmatites variably comparable to that of Tanco (Canada), Homestead and 

Wodgna (Australia) pegmatites, while some overlap with the Buck Noumas rare 

pegmatite fields of South Africa.  

Furthermore, Okunlola, (2017) explained that in some areas, mineralogical 

zonation are present, though they are complex; they are can be defined and in some 

pegmatites (for example, Keffi area; Okunlola and Ocan, 2009); they control 

mineralisation.  
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Table 1.3:  Classification of granitic pegmatites 

Class Family Typical minor 
element 

Metamorphic 
environment 

Relation to 
granite 

Abyssal - U, Th, Zr, Nb, Ti, Y, 
REE, Mo. Poor to 
moderate 
mineralisation.  

(Upper 
amphibolite) Low-
to-high P granulite 
facies 4-9kb, 700-
800oC 

None. 
Segregations 
of anatectic 
melt. 

Muscovite - Li, Be, Y, REE, Ti, U, 
Th, Nb>Ta. 

Poor to moderate 
mineralisation. 

High-P, 
Barrovian 
amphibolite 
facies. Kyanite-
sillimanite. 

5-8kb, 650-580oC 

None 
(anatectic 
bodies) to 
marginal and 
exterior. 

Rare 
element 

LCT Li, Rb, Cs, Be, Ga, 
Sn, Hf, Nb><Ta, B, P, 
F. 

Poor to abundant 
mineralisation. 

Low-P, 
Abukuma 
amphibolite to 
upper 
greenschist 
facies.  

(andalusite-
sillimanite), 2-
4kb, 650-500oC  

Interior to 
marginal 
exterior 

NYF Y, REE, Ti, U, Th, Zr, 
Nb>Ta,F. Poor to 
abundant 
mineralisation 

Variable Interior to 
marginal 

Miarolitic NYF Be, Y, REE, Ti, U, Th, 
Zr, Nb>Ta, F, Poor 
Mineralisation. 

Shallow to 
subvolcanic.  

1-2kb. 

Interior to 
marginal 

 

 Major pegmatite class for southwest Nigeria  in red colour 

 LCT: Lithium caesium tantalum, NYF: niobium yttrium fluorine. Original Source: 
Cerny (1991 a) 
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Figure 1.5: General geology of Nigeria showing the preconceived pegmatite zone 
(adapted from Akintola et al., 2012). 
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 Figure 1.6 Geological map of the Nigeria, showing locations of rare-metal and barren pegmatite (Garba, 2003) 
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Figure 1.7: General geology of Nigeria showing pegmatite zones (Okunlola, 2005). 
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1.4:  Fluid inclusion studies 

1.4.1: Background 

Fluid inclusions are minute quantities of fluid with size which are usually 5 – 

30 µm, trapped in cavities within minerals (Van der Kerkhof and Hein., 2001).  They 

are vacuoles within minerals which are fluid filled.  Fluid inclusion studies in rocks 

and minerals were developed about 1000 years ago and they were first described in the 

11th century though they were observed much earlier by ancient Greek and Roman 

scientists (Roedder, 1984; Leeder et al., 1987).  

However, the use of fluid inclusions in the study of geological systems was 

pioneered by Henry Sorby in the 1800s. Sorby, (1858) reasoned that ‘bubbles’ within 

fluid inclusions in minerals are a result of differential thermal heating. He explained 

that systematic increment of the temperature of the inclusions will lead to the 

disappearance of the bubbles and temperatures at which the bubbles disappear may be 

used to estimate temperature at which the mineral was formed. 

Today, various types of fluid inclusions in minerals have become an invaluable 

tool in the study of metamorphic and igneous petrology, ore deposits as well as in 

petroleum geology and if adequately studied, it can provide adequate information on 

the composition, temperature, pressure and density of ore forming fluid in geological 

systems:    

1. Temperature of mineral crystallisation: fluid inclusions are useful in 

determination of the trapping temperature of inclusions at different levels of 

certainty depending on the study method employed and the type of fluid 

inclusion assemblage (FIA) present. Minimum temperature of trapping of 

inclusions can be obtained with the temperature of total homogenisation and 

sometimes, true temperature of trapping of the inclusions may be obtained. 

 

2. Pressure of mineral crystallisation: pressure conditions during mineral 

crystallisation can also be obtained from fluid inclusion studies. Inclusions can 

also be useful in determination of true pressure of entrapment in certain cases 

while in some circumstances, pressure corrections are applied to derive true 

pressure at the time of crystallisation. 
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3. Fluid composition: composition of fluids (aqueous or carbonic) can be 

determined from fluid inclusion studies. Salinity of inclusions can be 

determined as well as the presence of organics. Other measurements that can be 

obtained include concentration of organics; identity and concentration of major 

and minor ion ratios, identity and concentration of dissolved components and 

gases, identity and composition of available solids as well as isotopic 

composition of fluids. 

 

4. True temperature and pressure at the time of precipitation can also be obtained 

from fluid inclusion studies through the use of independent geothermometers 

such as stable isotope method. 

 

Fluid inclusions occur in all geological environments in different rock forming 

minerals, but they are best studied using quartz, fluorite, halite, calcite, apatite, 

dolomite, sphalerite, barite, topaz and cassiterite. In ore deposit studies (porphyry 

deposits, skarn and hydrothermal deposits), fluid inclusions are best studied in 

large euhedral crystals in vugs, alterations and veins; in igneous rocks, apatite is 

used in carbonitite, phenocrysts of volcanic rocks can be studied while quartz is 

also used. 

 In pegmatites, minerals which can be used for fluid inclusion studies are quartz, 

beryl and tourmaline; quartz is from veins and pods can also be used for study in 

metamorphic rocks, while in sedimentary rocks; diagenetic fluids which are well 

preserved in pods, vugs, veins and diagenetic cement can be used for fluid 

inclusion studies. 

 

1.4.2: Classification of fluid inclusions 

Classification of fluid inclusion may be based on the timing of entrapment of the 

inclusions and also by the type and number of phases present in the inclusion at room 

temperature. Based on petrographic criteria (timing of entrapment in relation to 

mineral paragenesis), fluid inclusions can be classified into primary, secondary and 

pseudo-secondary inclusions. Primary inclusions are inclusions which were formed 

during mineral growth within the growth zone and they can be identified by their 

relationship to the growth zones in minerals. They commonly occur along grain 

boundaries or parallel to growth zonation they range in size and can be of different 
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shapes (figure 1.8); hence, primary inclusions are good indicators of the conditions of 

crystallisation of their host minerals.  

Secondary inclusions are inclusions which are developed after crystal growth. 

After crystallisation of a mineral, minute cracks or deformational planes may form in 

the crystal trapping fluids present during the healing, thereby providing a record of 

fluids which are present after crystal growth. Sometimes, inclusions are trapped before 

crystal growth is completed and these inclusions bear all characteristics of secondary 

inclusions and are termed pseudosecondary inclusions but they terminate at a growth 

zone boundary while secondary inclusions may appear to cut across different growth 

zones of a crystal (figure 1.8). 

The second classification scheme is based on the type and number of phases 

(solid, liquid and vapor) which are observed at room temperature in the inclusion 

(table 1.4). Inclusions are classified into: 

1. Monophase liquid (L) inclusions: these are inclusions with 100% liquid content 

2. Liquid-rich, two phase (L+V) inclusions: these are inclusions which contain a 

liquid phase and a vapor phase with a liquid phase occupying a larger percentage 

(>50%) while the present but smaller vapour phase occupies <50% of the total 

inclusion volume. 

3. Vapor rich, two phase (V+L) inclusions: these are inclusions in which the 

vapor phase dominates and occupies between 50-80% of the volume of the inclusion 

with the liquid phase occupying less than 50% of the inclusion volume. 

4. Monophase vapor (V) inclusions: these are inclusions which are entirely filled 

with vapor phase without a visible liquid phase. 

5. Multiphase solid (S+L+V) and multi-solid (S+L+V) inclusions: these 

inclusions essentially contain at least one solid crystalline phase/daughter minerals 

which is usually less than 50% of the inclusion volume and in, liquid and vapour 

phases. 

6. Immiscible liquid (L1+L2+V) inclusions: these inclusions contain two 

immiscible liquids; an aqueous phase and a CO2 rich phase in addition to a vapour 

phase. 

7. Glass inclusions: these are inclusions which contain over 50% of glass. 
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Figure 1.8: Sketch of fluid inclusion classification (Goldstein and Reynolds, 1994) 
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Table 1.4: Fluid inclusion classification scheme based upon phases observed at room 
temperature L=liquid, V= vapour, S=solid, GL=glass (adopted from: Shepherd et al., 
1985) 
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1.4.3: Methods of study of fluid inclusions 

Fluid inclusion studies begin with samples selection for production of doubly 

polished wafers of between 90 and120µm. Fluid inclusion petrography involves the 

determination of the textural relationship of fluid inclusions and the host rock/mineral. 

It involves observation of different types, generations and populations of inclusions to 

ensure that fluid inclusions which will be analysed will be representative of the 

processes which were prevalent during fluid genesis. Different fluid generations can be 

present in a mineral to be studied due to interaction of minerals with different fluids 

throughout its geological history. Petrography is therefore used to differentiate 

between these different set of fluid types and generations; and it provides adequate 

information on types of fluids present in minerals, the type of fluid inclusion 

assemblages (FIA) present, abundance of each inclusion type and their 

relationship/chronology. Fluid inclusion petrography is therefore a very important 

aspect of fluid inclusion study as it is the key which determines if and how the study 

should be carried out (Roedder, 1981; 1984; Touret, 2001). 

 There are various methods involved in the study of fluid inclusions. Fluid 

inclusion analysis involves destructive and non-destructive methods. Destructive 

methods of analysis includes mechanical crushing, decrepitometry, gas and mass 

spectrometry, crush and leach analysis for bulk analysis; and EPMA/SIMS and LA-

ICPMS for single inclusions. Non-destructive analysis methodology includes optical 

microscopy, microthermometry, Raman spectrometry, laser induced breakdown 

spectrometry, Fourier Transform Infra-Red etc. 

 

1.5: Justification 

Over the years, different researches have been carried out on pegmatites of Nigeria. 

These studies have been focused on appraisal of the pegmatites for their economic 

potential and suitability of their constituents for industrial applications with little or no 

focus on pegmatite genesis. Hence, the study is aimed at determining the fluid 

characteristics of pegmatites in selected areas of southwestern Nigeria. 

 

1.6: Aim and Objectives of the Study  

1.6.1: Aim 

The study is aimed at unravelling the origin and economic mineralisation potential of 

pegmatites from selected parts of southwestern Nigeria.  
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1.6.2: Objectives 

i. Determination of the mineralisation potential of the pegmatites. 

ii. Determination of the fluid characteristics of the pegmatite. 

iii. Determination of the origin of pegmatites in the study area 

 

1.7 Scope 

To achieve the objectives of the study, the following scope were covered; 

i. systematic geologic mapping of the study areas, with detailed study of field 

relationship and lithological associations between the pegmatites and host 

rocks. 

ii. petrographic studies and geochemical analyses of pegmatites and mineral 

extracts. 

iii. fluid inclusion study using pegmatitic quartz 

iv. determination  of the genesis of the pegmatites 

 

1.8: Location and accessibility 

The study areas are assessible from different areas. Gonandoya, Abuja Leather, 

Owode, Idiyan, Omoba, and Balogun-Ojo within the Oke-Ogun pegmatite field while 

Gbayo, Coco and Falansa are located with the Ibadan-Oshogbo pegmatite field. 

 Komu, Okeho and Igbojaye can be accessed through the Ibadan-Iseyin road 

network. Owode and Idiyan can be accessed through the Eleyele – Eruwa road 

network from Ibadan. Gbayo, Coco and Falansa are easily accessible through the road 

network in the ancient city of Ibadan through Olomi - Olode road (figure 1.9 – 1.11).  

 

1.9: Climate, topography, relief and drainage 

Climate in the study areas is of the typical tropical climate with high 

temperatures, high humidity with rains from March to October and with temperatures 

at the peak towards the end of the harmattan period which runs from January to March. 

(Online Nigeria, 2003). 

Average temperatures range 24°C to 25°C during the rainy season with 800-

1500mm of rain in different areas. The study areas are mostly drained by rivers with 

dendritic drainage pattern and vegetation in the study area is characterised by rain 

forest.  
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Figure 1.9: Topographical map of Ikomu area. 
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Figure 1.10: Topographical map of Olode area. 
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Figure 1.11: Topographical map of Igangan area. 
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CHAPTER TWO 

GEOLOGY OF NIGERIA AND REVIEW OF RELATED 
PREVIOUS WORKS 

2.1: Regional Geology of Nigeria 

Nigeria lies within the boundaries of Latitudes 4oN and 15oN and Longitudes 

3oE and 14oE.it is located within the Pan African mobile belt, which is between the 

West African and Congo Cratons (figure 2.1). Geologically, Nigeria is made up: 

i. The Basement Complex, 

ii. Younger Granites, and 

iii. Sedimentary Basins. (Obaje, 2009). 

The basement complex bears imprints of the 600 Ma Pan-African orogeny 

(figure 2.2). It lies within the reactivated region which was produced by the collision 

or active Pharusian continental margin and the passive continental margin of the West 

African craton (Burke and Dewey, 1972; Dada, 2006). These rocks are believed to be 

results of over four major orogenic cycles (Liberian, eburnean, Kibaran and Pan-

African orogeny) between 2700-600 Ma which produced tectonic activities such as 

metamorphism, deformation and fluid remobilisation.  

The Liberian, Eburnean and Kibaran orogenic cycles were characterised by 

deformation, structural events (isoclinal folding) alongside large-scale regional 

metamorphism, after which large scale migmatisation occurred. The fourth orogeny 

involved regional metamorp0hism, migmatisation, granitisation and gneissification 

which lead to the evolution of syntectonic granites and homogeneous gneisses (Abaa, 

1983). The late stage of the Pan-African Orogeny was typified by the emplacement of 

different suites of granitic rocks and granodiorites as well as contact metamorphism 

while fracturing and faulting marked the end of the orogenic episode (Gandu et al., 

1986; Olayinka, 1992). 

Within the basement complex of Nigeria, there are four distinguishable major 

petro-lithological units (Figure 8) namely: 

1. The Migmatite–Gneiss Complex (MGC), 
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2. The Schist Belt (Metasedimentary and Metavolcanic rocks), 

3. The Older Granites (Pan African granitoids), 

4. Undeformed Acid and Basic Dykes. 
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Figure 2.1: Generalised geological map of Nigeria within the framework of the 
Geology of West Africa (Adapted from Wright, 1985). 
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2.1.1 The Migmatite-Gneiss Complex 

This is the most widespread of the units in the Nigerian basement. The 

migmatite- gneiss complexes comprised of an heterogeneous assemblage of rocks 

which include migmatites, ortho-gneisses, para-gneisses, as well as metamorphosed 

basic and ultrabasic rocks. The mineralogy of these rock units have been reworked by 

geological processes which are associated with the Pan-African which led to the 

recrystallisation of a large  percentage of the constituent minerals by partial melting. 

Age of the migmatite gneiss complex ranges from Pan-African to Eburnean with the 

rocks displaying metamorphic assemblage which ranges from medium to upper 

amphibolite facies. 

This unit makes up a large area of the Nigerian basement (Rahaman and Ocan, 

1978) and they  record three major geological events (Rahaman and Lancelot, 1984); 

i. the earliest, at 2,500 Ma, which involved crust forming processes and crustal 

growth by sedimentation and orogeny; 

ii. this was followed by the Eburnean, 2,000 ± 200 Ma, marked by the Ibadan type 

granite gneisses 

iii. Pan-African event of 900 to 450 which led to structural overprinting of the 

older rocks and resetting of geochronological clocks in the older basement 

rocks and also giving rise to granite gneisses, migmatites and other similar 

lithological units. 

 

2.1.2 The Schist Belt (Metasedimentary and Metavolcanic Rocks) 

The Schist Belts comprises of low grade, metasedimentary rocks which are 

more prominent in the western side of Nigeria (figure 2.2 - 2.3). These N–S trending 

rocks are as wide as 300km and they have been infolded into the migmatite gneiss 

rocks complex. Lithologically, the schist belt of Nigeria contains different lithologies 

which vary from fine to coarse grained clastics, phyllites, pelitic schists, carbonate 

rocks, banded iron formation and metavolcanics rocks of mafic composition 

(amphibolite).  

Different workers over the years have suggested different origins for the schists 

belts of Nigeria. Rahaman (1976) and Grant (1978) suggested several depositional 

basins were involved in the evolution while Oyawoye (1972) and McCurry (1976) 

suggested they are relicts of a single supracrustal cover. Furthermore, Olade and 

Elueze (1979) also considered the schist belts to be fault-controlled rift-like structures 
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while Grant (1978), Holt (1982) and Turner (1983) suggested different ages for the 

sediments based lithological on structural information while Ajibade et al., (1979) 

proposed that the schist belt contains series of rocks which have similar deformation 

history.  

Detailed absolute age determination of the schist belts of Nigeria has remained 

indefinite though the relative ages of the intrusive older granites cross-cuts the 

schistose rocks and provided a lower age limit of 750 Ma.  Rb/Sr dating also provided 

an age of 1,040 ± 25 Ma as obtained by Ogezi, (1977) and this was accepted as 

metamorphic age for the Maru Belt phyllites. Finally, the metasedimentary rocks are 

considered Upper Proterozoic in age.  

The schist belts have been mapped and studied over the decades in detail in the 

following localities: Maru, Anka, Zuru, Kazaure, Kusheriki, Zungeru, Kushaka, Iseyin 

Oyan, Iwo, and Ilesha where they are known to be generally associated with gold 

mineralisation. 

 

2.1.3 The Older Granites (Pan African Granitoids) 

Falconer, (1911) introduced the term “Older Granite” as a means of 

distinguishing between the deep-seated granites which are commonly concordant or 

semi discordant with the Basement Complex and the tin bearing Mesozoic younger 

granites of North Central Nigeria which occurs as highly discordant granites. It is 

believed that they are 450-750Ma in age and comprises of believed are pre tectonic, 

syn-tectonic and post tectonic rocks which cross-cut the older lithologies. 

They are representative of a varied and extensive magmatic cycle which is 

associated with the Pan-African orogeny with varying composition such as tonalities, 

granodiorites, diorites, syenites and true granites. Rahaman, (1981) noted that they are 

high level intrusions with anatexis playing an integral role in their evolution. 

Generally, they generally lack any form of associated mineralisation which might be 

due to the role thermal effects may have played in remobilisation of mineralizing fluids 

(Obaje, 2009). 
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Figure 2.2: Geological Map of Nigeria (NGSA, 2004). 
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Figure 2.3: Geological map of Nigeria showing the Schist belt (After Woakes et al., 
1987). 
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The older granites also encompass various petrologicaly important groups 

which were formed at the same time (Dada, 2006); they occur within the basement 

complex as the most visible product of the Pan-African orogeny with different levels 

of addition of materials which may be as high as 70% in some places (Rahaman, 

1988). Within the schist belts, various types of granitoids such as biotite granites, 

charnokites, anorthoites and serpentinites outcrop.  

Rahaman, (1988) on the basis of texture, emplacement period and 

mineralogical variations discarded the earlier classification of members of the Older 

Granites suite. In its place, based on textural characteristics, he proposed six members 

of the Older Granite suite as follows: 

1. Migmatitic granite; 

2. Granite gneiss; 

3. Early pegmatites and fine-grained granite; 

4. Homogeneous to coarse porphyritic granite; 

5. Slightly deformed pegmatite aplites and vein quarz; and 

6. Undeformed pegmatites, two-mica granites and vein quartz. 

 

The older granites occur majorly as intrusives associated with the schist belt; 

and the migmatite gneiss complex rocks. They outcrop at Akwanga, Bauchi, Abuja, 

Ado-Ekiti, Zaria and Obudu areas. 

 

2.1.4 Undeformed Acid and Basic Dykes 

These are late to post-tectonic rocks which are of Pan African rocks age and cross-cut 

the Migmatite-Gneiss Complex rocks, the Schistose rocks and the Older Granites. 

They occur as two groups of intrusive rocks which are: 

a. Felsic dykes associated with granitoids of Pan African age on the terrain 

such as the tourmaline, muscovite and beryl bearing pegmatites, microgranites, aplites 

and syenite dykes (Dada, 2006), 

b. Basic dykes such as dolerites as well as the less common felsite, basaltic and 

lamprophyric dykes which are regarded as the youngest units in the Nigerian 

basement. 

Geochronological studies have revealed ages of 535-580Ma from Rb-Sr 

isotopic studies on whole rocks for the felsic dykes (Matheis and Caen-Vachette, 1983; 

Dada, 2006); an age of 500Ma has been suggested for the basic dykes (Grant, 1970).  
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2.2 Review of related previous works  

All over the world, pegmatites have received tremendous attention, which is 

mostly due to the gemstones, industrial minerals and rare-earth elements they host 

which play significant roles in technological and economic advancement. However, 

most of the studies carried out have been focused towards the rare metal and rare earth 

economic mineralisation potential of pegmatites, with less research on delineating 

pegmatite genesis using fluid inclusion approach. 

Globally, authors who used results from the analyses of mineral extracts to 

investigate pegmatites.  Jiang, (1998) similarly carried out radiogenic isotope studies 

of tourmaline and opined that stable and radiogenic isotopic studies of tourmaline is a 

powerful tools for tracing the origin of hydrothermal fluids and for determination of 

the period of tourmalinisation and associated other hydrothermal alteration, 

mineralisation or metamorphism. 

Quemeneur and Lagache, (1999), did a comparative study of two pegmatite 

fields in Brazil using results data from the chemical analyses of micas and feldspars. 

Results indicated that crystallisation mode of the pegmatite fields occurred in a 

homogenous melt. Scares et al., (2000) studied and tourmaline from pegmatite of 

Brazil using electron microprobe and Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AES) analytical methods and concluded that there are indicative of 

crystal fractionation as the main magmatic differentiation process for the formation of 

these pegmatites. 

Beurlen et al., (2008) using petrography, scanning electron microscopy-energy 

dispersive x-ray spectroscopy and U-Pb dating reported that the mineralised 

pegmatites of the BPP region could have been sourced from associated pegmatitic 

granite. 

Raslan and Ali, (2011) opined that the main mineralizing event in the rare 

metal pegmatite of Egypt was magmatic with later hydrothermal alteration coupled 

with local remobilisation of high-field-strength elements. This inference was drawn 

from the data obtained from heavy mineral analysis, field emission scanning, and X-

ray micro analyses of the whole rock pegmatite.  

Fredriksson, (2017) studied the rare-element pegmatite bodies of Altim and 

Tamanduá; in North-eastern Brazil. The two pegmatite bodies were found to have 

clearly different elemental compositions with high Zn concentration observed in the 

Altim pegmatite which clearly denotes the two pegmatites as two different formations. 
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Fluid inclusion study revealed the two pegmatites have different fluid characteristics 

with low–moderate salinity aqueous-carbonic fluid inclusion in the Tamanduá and 

moderate–high salinities in the Altim pegmatite. Laser ablation on fluid inclusions 

revealed Nb and Ta concentrations of 0.1 – 3.2 ppm. 

  Swanson and Veal, (2010) studied the pegmatites of Spruce Pine District, 

USA to delineate the mineralogy and petrogenesis. They reported that pegmatites are 

associated with granodiorites they have similar mineralogy to the granodiorite. The 

pegmatites varied from zoned to unzoned pegmatite and that the pegmatites crystalized 

at 20-30km based on feldspar thermobarometry and experimental petrology. 

Beurlen et al., (2014) studied the petrogenesis and mineralisation style in the 

Borborema Pegmatite Province, Brazil. They reported liquidos temperature of 580°C 

and solidus temperature of 400°C with pressure of 3.8kbar as crystallisation conditions. 

They surmised that the pegmatite crystallised from a peraluminous melt which was 

saturated in an aqueous-carbonic fluid of low to medium salinity, peralkaline flux 

enriched fluid fraction. Based on mineral chemistry studies, the pegmatites are 

classified as complex-spodumene of lepidolite subtype pegmatite. 

Ollila, (1987) also studied the pegmatites of Damaran Orogeny in Namibia. He 

reported that with respect to Nb, Li, Ta, Be and Sn; the pegmatites are mineralized. 

Fluid inclusion results from the study revealed that fluid pressure at crystallisation did 

not exceed 2kb. He surmised that pegmatites crystallised from residual fraction of 

volatile rich granitic melts during the waning stages of the orogeny. 

Deveau et al., (2015) conducted a study on the genesis of LCT pegmatites of 

French Massif Central using Li isotopes in the mica extracts. They reported 7Li 

values, of -3.6 to +3.4‰  with Li concentration increasing with increasing degree of 

magmatic evolution of the pegmatite, hence they surmised that partial melting of rare 

element bearing protoliths is responsible for the isotopic fractionation rather than 

fractionation crystallisation. 

Vapnik and Moroz, (2000) studied the fluid characteristics of inclusions in 

emerald from Jos, North Central Nigeria using microthermometry and Raman 

Spectrometry. They reported the occurrence of primary and pseudosecondary 

inclusions of two types, an highly saline type I inclusion with up to 45% NaCl wt% eq. 

which contained a low density volatile phase as well as daughter minerals and type II 



39 
 

inclusions which are volatile free and occur with water bearing CO2 inclusions. They 

concluded that emerald mineralisation occurred at 400-450°C and 0.2-0.3kbar. 

Levasseur, (1997) in his fluid inclusion study of the rare element pegmatite 

south platte district, Colorado reported concentric zoning with fluorite, Y, Nb and REE 

enrichment in the pegmatites relative to the associated granite. He reported the 

presence of four different fluid types in the pegmatites; three sets of aqueous inclusions 

with salinity of 0-12, 18-24 and 26-30 wt.% eq. and also, a low salinity, CO2 bearing 

fluid. He concluded that low salinity fluids were responsible for rare element 

mineralisation at temperatures of 349-500C, while the other fluid types postdate the 

mineralisation. 

Furthermore, Gagnon et al., (2004) also carried out a study to delineate the 

origin of hydrothermal fluids in the same NYF pegmatite studied by Levasseur, (1997) 

with microthermometry and laser ablation ICP-MS. They also reported the presence of 

four different fluid types in the pegmatites and homogenisation temperatures of 93-

149°C. Though the properties of these inclusions could not be detected by 

microthermometry, LA-ICPMS however revealed detectable differenced in Ca 

concentration in some inclusions while the lower salinity inclusions are characterized 

by a Na + K+ Sr + Ba solution. 

   Esmail and Moharem, (2009) carried out a study of fluid characteristics of 

radioactive mineralized pegmatites in Egypt using microthermometry on pegmatitic 

quartz and fluorite. They reported that at least two stages of late magmatic 

hydrothermal alteration was involved; the first stage involved high temperature, low 

saline fluids while the second stage involved low temperature, highly saline fluids. 

They surmised that fluid mixing lead to a pH change which remobilised the metals and 

lead to precipitation of REEs and radioactive minerals. 

 Whitworth and Rankin, (1989) studied the spodumene bearing pegmatites of 

southeast Ireland with the aim of evaluating the evolution of the pegmatites from 

inclusions trapped in quartz. Petrography and microthermometry revealed two 

different fluid types. Type I inclusions with low to moderate salinities which 

homogenized at 400°C and type II inclusions which were more saline and 

homogenized at temperatures below 250°C. Based on pressure temperature modelling, 

they concluded that type I fluids are associated with magmatic/hydrothermal fluids 

from the associated granite. 
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Ackerman et al., (2007) also carried out a thermobarometric and fluid 

evaluation of pegmatites from the Bohemian Massif, Czech Republic using fluid 

inclusions on quartz, fluorite, titanite and apatite. Two fluid types were identified; an 

early aqueous-carbonic fluid and a late aqueous fluid; the barren pegmatites are 

associated withH2O-CO2 low salinity fluids of 2-6 wt % eq while fluids associated 

with Li mineralized pegmatites are more saline and contain H2O–CO2/N2–H3BO3–

NaCl.  They reported P-T conditions of 600-640 °C and 420-580Mpa for barren 

pegmatites and 500-570 C and 310-430MPa for Li mineralized pegmatite. 

Zarasvandi et al., (2014) also carried out a fluid investigation of the Farsesh 

barite deposit, Iran using microthermometry. They identified two types of 

primary/pseudo-primary inclusions with low salinity values of 4.2-20 eq wt% NaCl 

which homogenized into the liquid phase at low homogenisation temperature of 125-

200°C and they concluded that the barite deposited precipitated from hydrothermal 

basinal fluids of low to medium salinity. 

Shafaroudi and Karimpour, (2015) examined the evolution of the Sechangi 

lead-zinc deposit of Eastern Iran using mineralogical, fluid and sulfur isotopic 

characteristics. Microthermometry results revealed homogenisation temperatures of 

151-352°C with salinity of 0.2-16.5 wt. %NaCl eq. They surmised that ore forming 

fluids are low-medium temperature and low-medium salinity with fluid mixing playing 

an important role in mineralisation. 

 Sasmaz and Yavuz, (2007) also carried out a study to investigate the genesis 

and physiochemical conditions of fluorite mineralisation in syenites of Yildizeli-Sivas, 

Turkey using geochemical method and microthermometry. They reported that fluorites 

in the study area have characteristics which are typical of primary crystallisation and 

remobilization based on REE geochemistry and they were formed from fluids at 

temperatures of 161-243°C.  

Oyebamiji, (2013) studied the compositional characteristics of pegmatite 

bodies in Oro, southwestern Nigeria with a view to elucidating the rare metal 

mineralisation characteristics. He surmised that the pegmatites in the areas are 

mineralized. 

Taylor and Friedrichsen, (1983) studied the stable isotopic characteristics of the 

Landsverk pegmatite, Norway. They reported light 18O values which are characteristic 
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of meteoric-hydrothermally altered rocks and δD values in one fluid inclusion which 

supports evidence of the presence meteoric water in the area.  

Garba and Akande, (1992) studied the origin and significance of the carbonic 

inclusion associated with gold mineralisation in Bin Yauri, northwestern Nigeria.  

They reported that fluid immiscibility of low salinity CO2 rich hydrothermal fluids lead 

to selective entrapment and loss of H2O phase during gold mineralisation which lead to 

increased oxidation effects. The fluids are believed to have originated from dewatering 

of subducted metasedimentary rocks along the Anka fault system. 

Sirbescu and Nabalek, (2003) examined the petrogenesis of the Tin Mountain 

pegmatite in South Dakota, USA. They reported the presence of Dawsonite in primary 

inclusions within pegmatitic quartz and this confirmed using SEM-EDS and Raman 

spectroscopy. They explained that the presence of the mineral is evidence of carbonate 

ions in pegmatite evolution and carbonates, as well borate minerals play important 

roles in pegmatite formation. 

 Arribas et al., (1995) studied the gold alunite deposits of Spain using a 

combined approach of geology, geochronology, fluid and isotopic characteristics. 

Based on results from fluid and isotopic studies, an hydrothermal system characterized 

by an early acidic wall rock alteration and late gold mineralisation was inferred. They 

also reported that the presence of a significant magmatic fluid and salinity values in 

inclusions which are higher than 40% wt. eq. NaCl. 

Akcay et al., (1995) in their study of the fluid characteristics and chemistry of 

tourmalines from the Sb-Hg+ W deposit of Niode massif, Turkey reported that 

tourmalinasation is a common feature of associated granitic rocks. Fluid 

characterization of the tourmaline revealed salinity measurements of 5.5-10.5 wt. % 

eq. NaCl which may be indicative of a magmatic origin for the tourmaline. 
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CHAPTER THREE 

METHODOLOGY 
3.1 Field methods, mapping and sampling 

The study involved systematic geological mapping of selected areas within the 

Ibadan-Oshogbo and Oke-Ogun pegmatite field to delineate the geology and obtain 

representative samples of pegmatites. Geological mapping involved observation of the 

pegmatites and the associated lithologies as well as basic pegmatite mineralogy. 

 

3.2 Sample preparation 

From the systematic mapping exercise, 58 samples of pegmatites were 

collected; samples with very low degree of alteration were selected for thin section and 

geochemical analysis. Thin sections were prepared at the Department of Geology, 

University of Ibadan while doubly polished wafer were prepared at Wagner 

Petrographic, Utah, United States of America. 

 

3.3: Geochemical analysis 

Pegmatite samples from five areas (Komu Olode gbayo Idiyan and Owode) in 

the Oke-Ogun and Ibadan-Oshogbo pegmatite fields were collected. Unaltered samples 

of pegmatites were selected and 48 samples comprising of 16 whole rock samples, 11 

feldspars extracts, 13 muscovite extracts and 8 biotite extracts were pulverised at the 

petrological laboratory of the Department of Geology, University of Ibadan and 

thereafter analysed at Activation Laboratories, Ontario, Canada for major, trace and 

rare-earth elemental concentrations using Inductively Coupled Plasma Optical 

Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) techniques. 
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3.4: Fluid inclusion study 

3.4.1: Sample preparation and instrumentation 

The doubly polished wafers were studied at the Geofluids Research Laboratory 

(figure 3.1); National University of Ireland, Galway to develop a fluid inclusion 

paragenetic classification using transmitted light microscopy with a Nikon Eclipse 

E200 polarising microscope. Microthermometric analyses were carried out using a 

Linkam THMGS 600 heating-freezing stage, mounted on an Olympus transmitted 

plane polarised light microscope (figure 3.2 - 3.3) equipped with a long working 

distance objective lenses with up to 100x magnification. 
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Figure 3.1: Pictures of the doubly polished wafers of pegmatite samples 
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Figure 3.2:  Transmitted Plane Polarised Light Microscope fitted with an incident UV 
light attachment used for microthermometric analysis of fluid inclusions at Geofluids 
Research Laboratory, National University of Ireland, Galway 
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Figure 3.3: Transmitted Plane Polarised Light Microscope fitted with a stage mounted 
Linkam heating and cooling stage used for microthermometric analysis of fluid 
inclusions at Geofluids Research Laboratory, National University of Ireland, Galway 
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3.4.2: Fluid inclusion petrography and microthermometry 

 Fluid inclusion petrography involves the determination of the types and 

generation of fluid inclusion in the doubly polished wafers as well as their properties. 

Microthermometry is a non-destructive fluid inclusion study analytical method. It is 

the most common method and it is used in the determination of physical and 

compositional properties of the inclusions. It involves cooling and heating of the 

inclusions in other to determine fluid composition, salinity and density through the 

observation of subtle phase changes. Inclusions were subjected to cooling up to -100°C 

and phase changes were measured during progressive heating. After all low 

temperature measurements were obtained,  heating was carried out up to temperatures 

of 450°C to determine the homogenisation temperature. Measurements obtained during 

microthermometry for the study are the temperature of last melting (TLM) and the 

temperature of homogenisation (Th). 

 

3.4.3 Fluid Inclusion Microthermometry  

Aqueous fluid inclusions were subjected to cooling/freezing and heating to 

observe and record the temperature at which phase changes occur. Temperature of first 

ice melting (TFM) and temperature of last ice melting (TLM) were recorded by 

cooling the inclusions to temperatures in excess of -110°C and the  heating..  

 The TFM is equivalent to the eutectic melting point of an aqueous saline 

solution. TFM values below -20.8ºC are indicative of other salt components in 

the solution (e.g. Ca or Mg).  

 TLM values are used to estimate the salinity of the fluid. The TLM values are 

indicative of the type of salts available in the aqueous solution and TLM is 

reported as equivalent weight % of NaCl.  

Subsequent heating of the two-phase (liquid + vapour) aqueous fluid inclusion, 

allows for measurement of the temperature of homogenisation (TH). This is the 

temperature at which liquid and vapour phases homogenise to the single phase and 

yields a minimum fluid trapping temperature for an aqueous fluid inclusion. Isochores 

were thereafter constructed using the program FLUIDS of Bakker, (2003). 

Two samples were collected from the same pegmatite (i.e. two samples from 

each of five pegmatites), therefore the microthermometric data is presented as a series 

of paired samples to reflect this. TH and salinity data for each sample pair is presented 
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as frequency distribution histogram (frequency versus TH) and bivariate plots (TH 

versus salinity). 

The microthermometric data includes temperature of last ice melting (TLM), 

temperature of total homogenisation (TH) and salinity (equivalent weight % NaCl). 
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CHAPTER FOUR 
RESULTS AND DISCUSSION 

RESULTS 

4.1 Geological setting of the study areas 

Pegmatite samples from different areas were used for the study.  The geological 

settings of the areas are described below: 

 

4.1.1: Geology of Olode-Falansa-Coco area 

The geology of the study area comprises  the geology of Ibadan, Oke-Ogun and 

Ibarapa zones. The geology of Olode-Falansa area comprises of rock types; granite 

gneiss, sillimanite quartzite, medium grained granite and pegmatite. The granite gneiss 

was observed to occupy the eastern half of the area. Granite gneiss in the Olode area 

are characterised by alternating bands of felsic and mafic minerals, they are medium to 

coarse grained and are closely associated with pegmatites in the area (figure 4.1-4.3).  

N-S trending sillimanite quartzites also outcrop in the area with gradational 

contact with the granite gneisses and granites. The granites in the Olode area are low 

lying in some areas and are massive outcrops in other areas, they are medium grained. 

 In the Olode area, pegmatites occur as NE-SW trending outcrops of various 

shapes, sizes and length. They are composed of quartz, plagioclase, orthoclase and 

muscovites, while tourmaline, beryl, garnets are associated accessory minerals (figure 

4.4- 4.6). 
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Figure 4.1: Field picture showing pegmatite in Olode area 
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Figure 4.2: Field picture showing granite in Olode area 
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Figure 4.3: Field picture showing pegmatite in Olode area 
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Figure 4.4: Photomicrograph of section of pegmatite from Falansa in transmitted light 
showing presence of Microcline (Mc) in abundance and Muscovite (Ms). 
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Figure 4.5: Photomicrograph section of pegmatite from Falansa in transmitted light 
showing presence of Microcline (Mc) and Quartz (Qz). 
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Figure 4.6:  Photomicrograph of a section of pegmatite from Coco in transmitted light 
 showing presence of Microcline (Mc), Muscovite (Ms) in abundance and Quartz (Qz). 
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Figure 4.7: Geological map of Olode-Coco-Falansa area 
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4.1.2: Geology of Komu-Igbojaye-Godondoya area:  

The komu area is underlain by granite gneiss, amphibolite, mica schist and 

pegmatite with quartz veins associated with the larger rock bodies (figure 4.8- 4.14).  

 

Granite Gneiss 

Granite gneisses are the predominant rock type in the Komu area.  Mineralogically, 

they contain biotite, quartz and ferromagnesian minerals with prominent mafic and 

felsic bands. The less prominent mafic bands are dominantly composed of biotite while 

the dominant felsic bands are composed mainly of feldspars. Petrographic studies 

revealed an assemblage of quartz, biotite, microcline and plagioclase. Petrographically, 

biotite was observed as elongated brown crystals and distinct cleavage; alkali feldspar 

shows low birefigerence with low relief while microcline shows crosshatching while 

quartz is subhedral, clear and elongate with no preferred orientation. 

 

Amphibolites 

Amphibolites occur and are widely distributed in the Komu area. They commonly 

occur as dark greenish lensoid bodies which are composed of amphiboles, plagioclase 

and minor quantities of quartz. Petrographic studies revealed the amphiboles are 

mainly hornblende. 

 

Pegmatites 

In the Komu area, pegmatites occur as intrusives in the gneisses and 

amphibolites. Pegmatites occur as coarse grained rocks composed of quartz, feldspars 

and tourmaline of varying length which intrude amphibolites and gneisses with a 

NNW-SSE trend and gradational contact obvious between pegmatites and host 

lithologies. As regards gemstone mineralisation, it was observed that large crystals of 

quartz, k-feldspar and micas occur closer to areas with gemstone mineralisation. 

Petrographically, plagioclase, quartz, microcline, biotite, tourmaline and 

muscovite were observed. Quartz is characterised by low relief, and occurs as an 

interwoven intergrowth with feldspars which vary from plagioclase to microcline 

while perthite was observed in some sections (figure 4.15-4.17).  
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Figure 4.8: Field picture showing porphyritic granite in Komu area 
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Figure 4.9: Field picture showing pegmatite in Komu area 
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Figure 4.10: Field picture showing pegmatite in Komu area 
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Figure 4.11: Field picture showing pegmatite in Igbojaye area 
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Figure 4.12: Field picture showing pegmatite in Igbojaye area 
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Figure 4.13: Field picture showing pegmatite intruding metasedimentary rocks in 
Igbojaye area  
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Figure 4.14: Field picture showing pegmatite in Godondoya area 
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Figure 4.15: Photomicrograph of a section of pegmatite from Abuja Leather in 
transmitted light showing presence of Quartz (Qz), Muscovite (Ms) and Microcline 
(Mc). 
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Figure 4.16: Photomicrograph of a section of pegmatite from Balogun Ojo in 
transmitted light showing abundance of Microcline (Mc). 
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Figure 4.17: Photomicrograph of section of pegmatite from Doya in transmitted light 
showing presence of Microcline (Mc), Albite (Ab) and Quartz (Qz). 
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Figure: 4.18: Geological map of Komu area. 
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4.1.3: Geology of Idiyan area 

The Idiyan area is dominated by mica schist, granite gneisses, and migmatites 

with NW-SE trending pegmatites intruding the quartz mica schists. Granite gneisses 

around the Idiyan area have a NNE-SSW trend, they are medium grained, grey, and 

slightly foliated; biotite, quartz and feldspars observed on hand specimen. Mica schist 

in the Idiyan area occurs as low lying disjointed, highly weathered outcrops with an N-

S strike and they dip westernly (figure 4.19-4.22). 

 The migmatite gneiss is a mixture of different rock types which include 

granite gneiss intruded by quartz, pegmatitic and granitic intrusions of various sizes 

dimensions around Ominigbo and Abidioki. They are characterised by faults, folds and 

foliation with alternating dark and light layers (figure 4.21). Felsic material occurs as 

cross cutting veins of coarser granitic material and pegmatite. They are fine to medium 

grained and color is based on mineral assemblage with pitch and swell structures 

present in few areas. 

In thin section, brown biotite crystals are present with muscovite, quartz and 

albite. No mymerkitic texture was observed but in some areas on the section, 

microcline encloses some quartz grains and all minerals display subhedral shape. It is 

composed of plagioclase, biotite, quartz, and microcline with hornblende occurring 

with other opaques as accessory minerals. Quartz is abundant and it occurs as 

subhedral crystals which are medium to fine grained. Alkaline feldspar is mostly 

microcline and shows typical cross hatch twinning. 

The western flank of the study area is overlain by biotite granites which are 

mafic in color, with greater than 65% mafic minerals and low percentage of felsic 

minerals. Pegmatites are worked in this area for this feldspar content and gemstone 

prospects (figure 4.22). Petrographically, composed of quartz and orthoclase with 

subordinate mica; petrographic analysis revealed a preponderance of microcline (figure 

4.23). 

 Geological maps of the study locations are shown in figures 4.7, 4.18 and 4.24. 
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Figure 4.19: Field photograph showing biotite granite around Idiyan area 
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Figure 4.20: Field photograph showing quartz vein in granite gneiss in the Idiyan area. 
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Figure 4.21: Field pictures showing folded alternating layers of felsic and mafic bands 
in migmatised gneiss in the Idiyan area 
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Figure 4.22: Field pictures showing pegmatite mining pit in the Idiyan area. 
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Figure 4.23: Photomicrograph of section of pegmatite from Idiyan in transmitted light 
showing presence of Microcline (Mc) in abundance and Quartz (Qz). 
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Figure 4.24: Geological map of Idiyan area 
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4.2: Geochemistry and fluid inclusion study of pegmatites 

 Major, trace and rare elemental concentration of whole rock pegmatites and 

extracts are presented in tables 4.1-4.15 while results of fluid inclusion analysis is 

presented in tables 4.17- 4.30. 

 

4.2.1: Geochemistry of pegmatite 

4.2.1.1: Major elemental concentration 

Whole rock pegmatite and feldspar extracts 

Geochemical analytical results (table 4.1- 4.3; tables 4.4 -4.15), revealed 

pegmatites in the locations have SiO2 ranging from 47.76% to 82.17%. Samples from 

Omo-Oba had the lowest SiO2 concentration while pegmatites from Idiyan had the 

highest SiO2 concentration. TiO2 ranges from 0.01 to 0.34%, samples from Owode had 

the lowest TiO2 concentration while pegmatites from Idiyan had the highest TiO2 

concentration; Al2O3 ranges from 9.84% to 18.92% with samples from Idiyan having 

the lowest Al2O3 concentration while pegmatites from Omo-Oba had the highest Al2O3 

concentration. Fe2O3 ranges from 0.20% to 4.25% with samples from Falansa having 

the lowest Fe2O3 concentration while pegmatites from Omo-Oba had the highest Fe2O3 

concentration.  

For whole rock pegmatites, other oxides ranged:  MnO (0.01% to 1.21%), MgO 

(0.02% to 1.21%), CaO (0.11% to 2.24%), Na2O (0.09% to 10.16%), K2O (0.08% to 

11.36%) and P2O5 (0.01% to 0.23%). Highest concentrations of MnO, MgO, CaO, 

Na2O, K2O and P2O5 in whole rock pegmatites were observed at Doya, Omo-oba, 

Omo-oba, Balogun-Ojo and Owode respectively while lowest concentration of MnO, 

MgO, CaO, Na2O, K2O and P2O5 were observed at Falansa, Doya, Falansa, Omo-Oba 

and Balogun-Ojo respectively.  

For feldspar extracts, SiO2 ranges from 43.09% to 73.70%. Feldspar extracts 

from Omo-Oba had the lowest SiO2 concentration while feldspar extracts from Doya 

had the highest SiO2 concentration. TiO2 ranges from 0.002 to 0.02%, feldspar extracts 

from Falansa had the lowest TiO2 concentration while feldspars extracts from Omo-

Oba had the highest TiO2concentration; Al2O3 ranges from 16.38% to 21.13% with 

feldspar extracts from Doya having the lowest Al2O3 concentration while feldspar 

extracts from Balogun-Ojo had the highest Al2O3 concentration. Fe2O3 ranges from 

0.10% to 0.61%, feldspar extracts from Gbayo had the lowest Fe2O3 concentration 

while feldspars extracts from Doya had the highest Fe2O3 concentration. 
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Table 4.1: Major elements analytical results for whole rock pegmatites 

  
AB-
001  

AB-
002  

BAO-
001  

BAO-
008  

CO-
001  

CO-
002  

DO-
001  

DO-
003  

FA-
003  

FA-
004  

ID-
004  

ID-
005  

OM-
004  

OM-
008  

OW-
004  

OW-
005  

SiO2 71.81 76.44 67.75 76.55 77.08 75.24 73.84 72.45 74.61 71.69 82.17 74.81 98.01 47.76 69.68 71.61 

Al2O3 16.76 14.55 17.72 13.56 13.7 15.14 15.56 16.4 14.86 15.04 9.84 14.36 0.73 38.85 18.92 16.33 

Fe2O3(T) 2.32 0.51 0.28 0.53 0.38 1.08 0.94 0.87 0.52 0.2 0.53 1.09 0.39 4.25 0.33 0.33 

MnO 0.048 0.016 0.008 0.034 0.067 0.196 0.649 1.206 0.077 0.008 0.058 0.061 0.008 0.053 0.269 0.331 

MgO 0.33 0.04 0.09 0.11 0.03 0.09 0.03 0.02 0.07 0.02 0.12 0.3 0.08 1.21 0.04 0.04 

CaO 0.49 0.45 0.18 1.92 0.41 0.17 0.16 0.27 0.39 0.11 0.73 0.47 0.32 2.24 0.12 0.33 

Na2O 6.31 5.88 2.31 5.05 6.19 2.65 4.67 8.6 7.05 2.8 5.43 4.44 0.09 2.39 10.16 8.85 

K2O 0.44 0.85 11.36 1.17 0.62 2.74 3.16 0.32 0.81 8.43 0.35 4.27 0.08 1.98 0.4 0.34 

TiO2 0.044 0.02 0.013 0.026 0.008 0.034 0.013 0.004 0.014 0.003 0.033 0.061 0.008 0.339 0.003 0.003 

P2O5 0.03 0.04 0.01 0.01 0.11 0.03 0.04 0.06 0.17 0.12 0.04 0.03 0.06 0.01 0.06 0.23 

LOI 0.52 0.44 0.29 0.23 0.45 1.57 0.62 0.1 0.42 0.19 0.18 0.3 0.23 1.34 0.32 0.37 

Total 99.1 99.23 100 99.2 99.03 98.95 99.69 100.3 98.99 98.6 99.48 100.2 100 100.4 100.3 98.77 
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Table 4.2: Major elements analytical results for feldspars extracts 

  DO/F  FA/F  BAO/F6  ID/F2  ID/F  BAO/F  OM/F  OM/F2  CO/F  GB/F  AB/F  

SiO2 73.7 66.31 66.52 66.72 66.43 66.38 65.47 43.09 70.62 66.09 65.77 

Al2O3 16.38 18.88 21.13 17.94 19.48 18.27 19.11 55.56 19 18.78 17.95 

Fe2O3(T) 0.61 0.12 0.22 0.2 0.12 0.14 0.15 0.48 0.32 0.1 0.11 

MnO 0.949 0.006 0.008 0.008 0.004 0.004 0.006 0.006 0.096 0.004 0.01 

MgO 0.01 < 0.01 0.03 0.03 0.01 0.02 0.03 0.09 0.03 < 0.01 < 0.01 

CaO 0.26 0.04 2.61 0.16 0.25 0.08 0.09 0.07 0.46 0.16 0.05 

Na2O 8.12 2.6 8.81 2.94 3.52 2.22 2.56 0.23 8.53 2.91 2.33 

K2O 0.39 12.31 0.77 11.5 10.54 12.66 12.6 0.22 0.75 11.74 12.54 

TiO2 0.003 0.002 0.007 0.005 0.003 0.004 0.007 0.022 0.007 0.003 0.002 

P2O5 0.07 0.18 0.03 < 0.01 < 0.01 0.01 0.22 < 0.01 0.07 0.02 0.15 

LOI 0.12 0.2 0.32 0.25 0.24 0.23 0.15 0.66 0.62 0.2 0.17 

Total 100.6 100.6 100.5 99.77 100.6 100 100.4 100.4 100.5 100 99.09 
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Table 4.3: Major elements analytical results for biotite extracts 

  ID/B1  ID/B2  OM/B2  AB/B  AB/B2  OM/B  BAO/Bw  BAO/B  

SiO2 35.22 42.51 37.86 35.85 36.43 39.68 43.35 45.21 

Al2O3 27.79 18.22 23.88 32.61 32.78 27.69 17.8 24.6 

Fe2O3(T) 19.79 15.82 18.36 15.9 15.84 15.5 18.96 11.83 

MnO 0.73 1.693 0.121 0.291 0.299 0.082 0.619 0.374 

MgO 1.93 8.55 5.69 1.6 1.57 4.75 4.92 4.64 

CaO 0.38 0.16 0.46 0.1 0.09 0.86 0.32 0.48 

Na2O 2.4 0.83 0.74 1.86 1.85 1.06 0.68 2.12 

K2O 0.12 7.11 7.24 0.21 0.2 5.91 7.37 0.09 

TiO2 0.752 2.067 2.105 0.238 0.246 1.799 2.155 0.625 

P2O5 0.01 0.01 0.03 < 0.01 < 0.01 0.05 0.03 < 0.01 

LOI 1.79 1.73 2.37 1.95 1.92 1.78 3.31 2.16 

Total 90.91 98.71 98.85 90.59 91.23 99.16 99.52 92.13 
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Table 4.4: Major elements analytical results for muscovite extracts 

  CO/M  DO/M2  DO/M  FA/M2  GB/M  GB/M2  ID/M3  AB/M  BAO/M  AB/M2  ID/M  ID/M2  OW/M  

SiO2 52.2 48.23 47.55 45.9 48.28 49.26 49.67 46.64 46.81 45.51 48.09 48.82 46.19 

Al2O3 31.18 32.65 33.04 34.81 34.2 31.67 32.44 33.3 33.9 34.45 34.6 33.49 34.22 

Fe2O3(T) 2.12 2.99 2.96 3.24 2.69 2.78 2.6 3.3 1.92 3.32 2.67 2.61 2.17 

MnO 0.048 0.128 0.12 0.097 0.07 0.069 0.123 0.091 0.156 0.098 0.104 0.119 0.165 

MgO 0.23 0.11 0.11 0.14 0.25 0.25 0.06 0.13 0.38 0.14 0.05 0.05 0.31 

CaO 0.03 0.03 0.03 0.01 < 0.01 0.01 0.02 0.02 0.04 0.02 0.02 0.03 0.03 

Na2O 1.31 0.95 0.84 0.66 0.66 0.65 0.92 0.75 0.9 0.67 0.93 0.92 0.72 

K2O 8.01 9.01 9.37 9.72 9.44 9.54 8.95 9.54 9.68 9.67 9.23 9.21 10.09 

TiO2 0.098 0.101 0.088 0.112 0.044 0.047 0.078 0.132 0.1 0.117 0.077 0.076 0.098 

P2O5 0.01 0.02 0.02 0.03 < 0.01 0.02 < 0.01 0.02 0.04 < 0.01 < 0.01 < 0.01 0.03 

LOI 4.16 4.39 4.67 5.14 4.56 4.52 4.26 4.57 4.78 5.11 4.42 4.45 4.83 

Total 99.39 98.61 98.79 99.87 100.2 98.82 99.12 98.5 98.71 99.1 100.2 99.78 98.85 
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Table 4.5: Trace elemental analytical results for whole rock pegmatites 

  
AB-
001  

AB-
002  

BAO-
001  

BAO-
008  

CO-
001  

CO-
002  

DO-
001  

DO-
003  

FA-
003  

FA-
004  

ID-
004  

ID-
005  

OM-
004  

OM-
008  

OW-
004  

OW-
005  

Be 6 6 2 5 23 7 384 243 215 4 5 4 < 1 4 49 13 

Zn 210 < 30 < 30 < 30 < 30 < 30 210 < 30 < 30 < 30 30 80 < 30 < 30 570 < 30 

Ga 40 33 14 15 17 32 48 41 22 12 21 33 1 35 33 28 

Rb 45 139 267 30 64 348 > 1000 21 88 668 23 337 6 86 53 37 

Sr 6 7 73 134 20 9 3 < 2 28 85 22 28 3 124 4 5 

Nb 30.4 35.6 0.8 1.7 8.5 20.4 66.9 60.1 18.2 1.2 11.8 32.2 0.6 7.2 72.9 5.4 

Sn 8 15 < 1 < 1 3 17 23 4 4 < 1 1 2 < 1 2 < 1 < 1 

Cs 2.8 4 13.3 3.6 4.8 11 29.2 4 9.9 26.7 10.6 49.6 0.7 3.9 29.8 21.6 

Ba 5 6 630 139 8 12 5 4 11 182 9 48 13 523 29 7 

Hf < 0.1 0.4 0.2 0.1 0.4 0.9 3.3 5.4 0.6 < 0.1 1.3 1.2 < 0.1 4.2 7.1 0.9 

Ta 5.07 7.06 0.54 0.87 9.86 33.5 34.9 76.1 17.6 0.96 3.25 14.8 1.45 0.93 64.1 8.86 

W 251 255 217 274 352 428 177 97.4 215 191 217 230 933 141 112 172 

Th 0.2 9.76 0.81 10.9 0.83 6.8 7.92 11 0.69 0.11 6.28 13.2 < 0.05 10.2 1.35 0.95 

U 0.45 4.8 0.83 1.2 0.92 2.86 8.72 10.1 1.62 0.29 6.96 13.1 0.04 1.67 3.37 1.93 
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Table 4.6: Trace elemental analytical results for feldspar extracts 

  AB/F  OM/F  OM/F2  BAO/F6  BAO/F  CO/F  DO/F  FA/F  GB/F  ID/F  ID/F2  

Be 4 4 < 1 9 < 1 8 171 5 < 1 3 3 

Zn < 30 < 30 < 30 < 30 < 30 30 < 30 < 30 < 30 < 30 < 30 

Ga 14 14 46 22 13 30 41 14 14 39 37 

Rb > 1000 954 9 14 273 379 36 976 247 > 1000 > 1000 

Sr 97 74 8 130 115 17 < 2 70 131 42 36 

Nb 2.3 1 0.8 1.8 0.6 18 61.4 1.7 1.7 8 7.2 

Sn < 1 < 1 < 1 < 1 < 1 15 4 < 1 < 1 1 < 1 

Cs 30.7 37.8 0.9 1.4 11.4 11.8 3.5 30.3 6.5 351 285 

Ba 179 163 17 67 1912 8 4 162 2260 138 96 

Hf < 0.1 0.1 < 0.1 0.1 < 0.1 0.4 5.2 < 0.1 < 0.1 < 0.1 0.1 

Ta 1.28 0.58 0.94 0.55 0.32 7.67 69.1 0.76 0.49 1.33 1.62 

W 151 118 600 123 153 592 281 166 199 204 159 

Th < 0.05 0.11 0.96 0.24 0.17 0.79 2.78 < 0.05 0.08 0.21 0.32 

U 0.3 0.27 0.11 0.34 0.19 0.55 5.08 0.44 0.18 0.93 1.25 
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Table 4.7: Trace elemental analytical results for biotite extracts 

  BAO/Bw  BAO/B  AB/B  AB/B2  ID/B1  ID/B2  OM/B2  OM/B  

Be 5 2 4 4 2 5 2 3 

Zn 550 1340 1970 2000 3800 2220 110 120 

Ga 71 126 144 145 178 102 37 35 

Rb > 1000 3 11 13 5 > 1000 373 310 

Sr 17 18 < 2 < 2 12 11 36 49 

Nb 267 312 16.7 4.8 5.4 248 36.8 31.5 

Sn 41 26 25 25 19 70 6 4 

Cs 195 2.1 0.7 0.7 1.5 475 16.2 15.2 

Ba 242 16 22 12 < 2 52 1650 1185 

Hf 0.6 1 0.4 0.5 0.1 1.3 15 13.5 

Ta 56.1 68.7 2.97 1.35 1.16 26.5 2.89 2.54 

W 61.3 699 327 361 444 333 28 52.5 

Th 2.31 63.5 1.11 2.5 0.22 3.58 33.6 28.9 

U 3.94 43 0.94 1.21 0.56 8.28 6.69 5.45 
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Table 4.8: Trace elemental analytical results for muscovite extracts 

  AB/M  AB/M2  ID/M  ID/M2  ID/M3  BAO/M  GB/M  GB/M2  CO/M  DO/M2  FA/M2  DO/M  OW/M  

Be 23 29 26 19 21 72 23 23 15 19 28 18 28 

Zn 240 280 310 310 450 560 280 280 70 180 280 160 590 

Ga 271 281 243 249 247 171 104 103 96 242 281 249 177 

Rb > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 

Sr 7 8 14 14 14 5 6 5 6 15 8 17 5 

Nb 330 302 253 265 252 266 238 239 244 265 297 263 237 

Sn 319 263 222 233 218 2 46 46 75 194 260 178 8 

Cs 194 248 183 172 173 126 44.8 40.2 53.2 216 246 252 127 

Ba 5 4 28 32 34 11 59 54 16 82 5 80 10 

Hf 1.4 0.7 0.7 0.7 0.6 0.7 0.1 0.1 0.3 0.9 0.7 0.5 0.3 

Ta 87.7 107 63.8 82.4 75.4 58.7 34.8 32.8 55.4 96.5 103 74 58.3 

W 89.5 21.6 108 114 58.4 17.2 70.7 107 127 69.5 25.9 214 20.6 

Th 0.24 0.16 0.59 0.32 0.46 0.33 0.07 0.07 0.69 0.65 0.16 0.52 0.09 

U 2.76 2.29 0.81 0.8 0.93 0.8 0.09 0.03 0.96 1.65 2.19 0.36 0.21 
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Table 4.9: Rare earth elemental concentration for whole rock pegmatites 

  AB-001  AB-002  BAO-001  BAO-008  CO-001  CO-002  DO-001  DO-003  FA-003  FA-004  ID-004  ID-005  OM-004  OM-008  OW-004  OW-005  

La 0.68 0.6 2.26 192 0.57 3.34 1.19 1.53 0.35 < 0.05 3.32 3.8 0.14 47.4 < 0.05 0.71 

Ce 1.34 1.37 4.27 269 1.13 7.46 3.67 4.51 0.67 0.18 8.61 11 0.4 86.4 0.08 2.08 

Pr 0.15 0.16 0.48 22.5 0.13 0.88 0.54 0.61 0.07 0.01 1.24 1.63 0.04 9 < 0.01 0.29 

Nd 0.31 0.63 1.76 60 0.47 2.99 1.81 2.02 0.22 0.1 5.36 7.44 0.18 30.6 < 0.05 0.99 

Sm 0.15 0.91 0.45 5.68 0.09 1.11 2.52 3.15 0.04 0.02 2.17 4.12 0.04 5.44 < 0.01 1.28 

Eu 0.014 0.01 0.47 1.25 0.02 0.087 < 0.005 < 0.005 0.02 0.01 0.115 0.166 0.017 2.16 < 0.005 0.024 

Gd 0.14 2.02 0.5 2.24 0.1 1.11 3.02 4.79 0.05 0.04 2.4 4.63 0.05 4.17 0.09 1.16 

Tb 0.02 0.51 0.11 0.25 0.02 0.22 0.56 0.87 < 0.01 < 0.01 0.43 0.9 0.01 0.55 0.03 0.14 

Dy 0.11 3.05 0.76 1.33 0.11 1.19 2.36 3.66 0.05 0.05 2.96 5.37 0.09 3.1 0.15 0.32 

Ho 0.01 0.42 0.16 0.21 0.02 0.2 0.17 0.2 < 0.01 < 0.01 0.62 0.89 0.03 0.6 0.01 0.01 

Er 0.03 1.11 0.41 0.56 0.04 0.6 0.23 0.23 0.02 0.02 1.99 2.67 0.14 1.77 0.02 0.02 

Tm < 0.005 0.192 0.06 0.088 < 0.005 0.099 0.024 0.021 < 0.005 < 0.005 0.416 0.504 0.027 0.27 < 0.005 < 0.005 

Yb 0.04 1.7 0.48 0.56 0.05 0.83 0.14 0.11 0.03 0.05 3.47 4.32 0.3 2.17 0.01 0.02 

Lu 0.007 0.265 0.081 0.105 0.006 0.135 0.019 0.015 0.006 0.006 0.649 0.654 0.067 0.356 < 0.002 0.005 
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Table 4.10: Rare earth elemental concentration for feldspar extracts 

  OM/F  OM/F2  AB/F  BAO/F6  BAO/F  CO/F  DO/F  FA/F  GB/F  ID/F  ID/F2  

La 0.3 20.4 < 0.05 2.57 1.27 1.08 0.25 < 0.05 0.71 1.56 1.18 

Ce 0.6 28.2 0.12 4.37 2.05 1.76 1.06 0.12 0.86 1.14 1.09 

Pr 0.07 2.39 < 0.01 0.46 0.23 0.23 0.15 0.01 0.09 0.25 0.21 

Nd 0.28 6.32 < 0.05 1.6 0.8 0.77 0.5 < 0.05 0.3 0.78 0.72 

Sm 0.04 0.52 < 0.01 0.43 0.25 0.25 1.06 < 0.01 0.1 0.22 0.25 

Eu 0.03 0.137 0.014 0.599 0.747 0.041 < 0.005 0.006 0.683 0.074 0.066 

Gd 0.04 0.15 0.02 0.52 0.42 0.22 1.93 0.02 0.16 0.22 0.28 

Tb < 0.01 0.02 < 0.01 0.11 0.07 0.04 0.31 < 0.01 0.03 0.04 0.05 

Dy 0.02 0.11 0.03 0.73 0.42 0.3 1.46 < 0.01 0.17 0.22 0.29 

Ho < 0.01 0.02 < 0.01 0.13 0.06 0.06 0.07 < 0.01 0.03 0.04 0.06 

Er 0.02 0.05 < 0.01 0.33 0.13 0.16 0.08 < 0.01 0.08 0.15 0.21 

Tm < 0.005 < 0.005 < 0.005 0.046 0.018 0.025 < 0.005 < 0.005 < 0.005 0.027 0.036 

Yb 0.02 0.04 < 0.01 0.29 0.14 0.22 0.05 < 0.01 0.09 0.21 0.31 

Lu 0.005 0.007 0.004 0.042 0.024 0.038 0.007 0.006 0.016 0.035 0.055 
 

 

 

 

 

 



87 
 

Table 4.11: Rare earth elemental concentration for biotite extracts 

  ID/B1  BAO/Bw  BAO/B  AB/B  AB/B2  ID/B2  OM/B2  OM/B  

La 2.57 6.31 12.6 3.33 2.83 3.08 105 93.7 

Ce 7.15 12.4 32.3 6.94 6.54 9.05 215 187 

Pr 0.61 1.47 5.67 0.78 0.76 1.26 24.1 21.1 

Nd 1.71 5.13 24.9 2.62 2.7 5.41 86.2 75.4 

Sm 0.31 1.3 15.3 0.6 1.01 2.43 16.2 14.5 

Eu 0.042 0.179 0.481 0.049 0.022 0.088 2.43 2.34 

Gd 0.16 1.21 15.2 0.47 0.56 2.85 13.1 11.4 

Tb 0.02 0.19 3.12 0.07 0.07 0.55 1.87 1.5 

Dy 0.09 1 17.7 0.38 0.28 3.48 10.1 8.06 

Ho 0.02 0.17 2.69 0.06 0.03 0.69 1.81 1.35 

Er 0.04 0.46 7.6 0.14 0.06 2.23 4.95 3.53 

Tm 0.006 0.061 1.45 0.018 0.011 0.43 0.674 0.478 

Yb 0.05 0.48 10.3 0.11 0.11 4.02 4.67 3.18 

Lu 0.011 0.074 1.57 0.016 0.018 0.673 0.722 0.502 
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Table 4.12: Rare earth elemental concentration for muscovite extracts 

  ID/M2  DO/M  BAO/M  CO/M  DO/M2  FA/M2  ID/M3  GB/M  GB/M2  AB/M  AB/M2  ID/M  OW/M  

La < 0.05 < 0.05 < 0.05 0.24 < 0.05 < 0.05 0.06 < 0.05 0.06 < 0.05 < 0.05 0.05 < 0.05 

Ce 0.13 0.2 0.24 0.64 0.17 0.17 0.16 0.5 1.26 0.24 0.13 0.22 0.1 

Pr 0.01 0.02 0.04 0.08 0.02 < 0.01 0.02 0.01 0.02 0.01 < 0.01 0.03 < 0.01 

Nd 0.05 0.1 0.15 0.35 0.06 < 0.05 0.08 < 0.05 0.09 0.09 0.08 0.1 < 0.05 

Sm 0.07 0.08 0.21 0.2 0.11 0.07 0.09 < 0.01 < 0.01 0.11 0.09 0.11 0.03 

Eu < 0.005 < 0.005 < 0.005 0.062 < 0.005 < 0.005 < 0.005 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 

Gd 0.13 0.16 0.21 0.5 0.24 0.13 0.15 0.02 0.02 0.15 0.15 0.14 0.03 

Tb 0.02 0.02 0.03 0.1 0.04 0.03 0.02 < 0.01 < 0.01 0.04 0.03 0.01 < 0.01 

Dy 0.06 0.1 0.07 0.62 0.18 0.17 0.06 0.01 0.01 0.27 0.18 0.04 < 0.01 

Ho < 0.01 < 0.01 < 0.01 0.12 0.02 0.02 < 0.01 < 0.01 < 0.01 0.03 0.02 < 0.01 < 0.01 

Er < 0.01 0.02 < 0.01 0.3 0.03 0.05 < 0.01 < 0.01 < 0.01 0.08 0.06 < 0.01 < 0.01 

Tm < 0.005 < 0.005 < 0.005 0.037 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 0.013 < 0.005 < 0.005 < 0.005 

Yb < 0.01 0.04 < 0.01 0.25 0.04 0.13 < 0.01 < 0.01 < 0.01 0.13 0.09 < 0.01 < 0.01 

Lu 0.002 0.007 0.003 0.045 0.009 0.023 < 0.002 < 0.002 0.003 0.031 0.016 < 0.002 0.003 
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Table 4.13: Range of major elements composition in the analysed samples 

 
Whole rock 
pegmatite (n=16) 

Feldspar extracts 
(n=11) 

Muscovite extracts 
(n=13) 

Biotite 
extracts (n=8) 

SiO2 45.51-82.17 43.09-73.70 45.51-52.20 35.22-45.21 
TiO2 Bdl- 0.34 BDL-0.02 0.04-0.13 0.24-2.16 
Al2O3 9.84-18.92 16.38-21.13 31.18-34.81 17.80-32.78 

Fe2O3 0.20-4.25 0.10-0.61 1.92-3.32 11.83-19.79 
MnO 0.01-1.21 BDL-0.95 0.05-0.17 0.08-1.69 
MgO 0.02-1.21 0.01-0.09 0.05-0.38 1.57-8.55 
CaO 0.11-2.24 0.04-2.61 0.01-0.04 0.09-0.86 
Na2O 0.09-10.16 0.23-8.81 0.65-1.31 0.68-2.40 
K2O 0.08-11.36 0.22-12.66 8.01-10.09 0.09-7.37 
P2O5 0.01-0.23 0.01-0.22 0.01-0.04 0.01-0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

Table 4.14: Range of trace elements composition in the analysed samples 

 Whole rock 
pegmatite (n=16) 

Feldspar extracts 
(n=11) 

Muscovite extracts 
(n=13) 

Biotite extracts 
(n=8) 

Pb 8-61 7-86 5-13 13-51 
Zn Bdl-570 Bdl-30 Bdl-590 110-3800 
Co 10-73 11-95 1-16 22-46 
U 0.04-13.10 0.11-5.08 0.03-2.76 0.56-43.00 
Th 0.11-13.20 0.08-2.78 0.07-0.69 0.22-63.5 
Sr 3-134 8-131 5-17 11-49 
Cd - - - - 
Sb - - - - 
Bi 0.2-1.5 0.2-2.6 0.2-2.8 0.1-50.6 
Ba 4-630 4-2260 4-82 12-1650 
W 97-933 118-600 17-214 28-699 
Zr 2-166 1-30 3-10 2-621 
Sn 1-23 1-15 2-319 4-70 
Be 2-384 3-171 15-72 2-5 
Sc 1-13 Bdl-1 1-40 29-389 
Y 0.6-38.2 1.3-4.9 0.8-4.1 1.2-81.5 
Hf 0.10-7.10 0.10-5.20 0.1-1.4 0.1-15.0 
Rb 6-668 9-976 45->1000 3-373 
Ta 0.54-76 0.32-69 33-107 1-69 
Nb 0.60-73 0.6-61 237-330 4.8-312 
Cs 0.70-50 0.90-351 40-252 0.7-475 
Ga 1-48 13-46 96-281 35-178 
Tl 0.21-4.91 0.7-7.51 5.61-26.4 2.23-9.39 
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Table 4.15: Rare earth elemental composition in the analysed samples (in ppm) 

 
Whole rock 
pegmatite (n=16) 

Feldspar 
extracts (n=11) 

Muscovite 
extracts (n=13) 

Biotite 
extracts 
(n=8) 

La 0.14-192 0.25-20.40 - 2.57-105 

Ce 0.08-269 0.12-28.20 0.13-0.64 6.54-215 

Pr 0.01-23 0.01-2.39 0.01-0.08 0.61-24.10 

Nd 0.10-60 0.28-6.32 0.05-0.35 1.71-86.2 

Sm 0.02-5.68 0.04-1.06 0.07-0.21 0.31-16.2 

Eu 0.01-2.16 0.01-0.75 - 0.02-2.43 

Gd 0.04-4.79 0.02-1.93 0.02-0.50 0.16-15.20 

Tb 0.01-0.90 0.02-0.31 0.02-0.10 0.02-3.12 

Dy 0.05-5.37 0.02-1.46 0.01-0.62 0.09-17.70 

Ho 0.01-0.89 0.02-0.13 - 0.02-2.69 

 Er 0.02-2.67 0.02-0.33 0.02-0.30 0.04-7.60 

Tm 0.02-0.50 0.02-0.05 - 0.01-1.45 

Yb 0.01-4.32 0.02-0.31 0.04-0.25 0.05-10.30 

Lu 0.01-0.65 0.01-0.06 0.01-0.05 0.01-1.57 

∑REE 0.4-194.0 0.2-58.4 0.16-3.4  12.8-486.8 
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For feldspar extracts, other oxides range is as follows; MnO (0.01% to 0.95%), 

MgO (0.01% to 0.09%), CaO (0.04% to 2.61%), Na2O (0.23% to 8.81%), K2O (0.22% 

to 12.66%) and P2O5 (0.01% to 0.22%). Highest concentrations of MnO, MgO, CaO, 

Na2O, K2O and P2O5 in feldspar extracts were observed at Doya, Omo-Oba, Balogun-

Ojo, and Omo-Oba respectively while lowest concentration of MnO, MgO, CaO, 

Na2O, K2O and P2O5 were observed at Idiyan,, Falansa Omo-Oba, Coco and Idiyan 

respectively.  

 

Mica extracts 

Muscovite extracts 

For muscovite extracts, SiO2 ranges from 45.51% to 52.20. Muscovite extracts 

from Abuja leather had the lowest SiO2 concentration while muscovite extracts from 

Coco had the highest SiO2 concentration. TiO2 ranges from 0.04 to 0.13%, muscovite 

extracts from Gbayo had the lowest TiO2 concentration while muscovites extracts from 

Abuja leather had the highest TiO2 concentration; Al2O3 ranges from 31.18% to 

34.81% with muscovite extracts from Coco having the lowest Al2O3 concentration 

while muscovite extracts from Falansa had the highest Al2O3 concentration. Fe2O3 

ranges from 1.92% to 3.32%, muscovite extracts from Balogun-Ojo had the lowest 

Fe2O3 concentration while muscovites extracts from Abuja leather had the highest 

Fe2O3 concentration.  

Other major oxides in the muscovite extracts are as follows; MnO (0.05% to 

0.17%), MgO (0.05% to 0.38%), CaO (0.01% to 0.04%), Na2O (0.65% to 1.31%, K2O 

(8.01% to 10.09%) and P2O5 (0.01% to 0.04%). Highest concentrations of MnO, MgO, 

CaO, Na2O, K2O and P2O5 in muscovite extracts were observed at Owode, Coco, 

Balogun-ojo, Coco, Coco and Balogun-Ojo respectively while lowest concentration of 

MnO, MgO, CaO, Na2O, K2O and P2O5 were observed at Coco, Idiyan, Gbayo, Gbayo, 

Coco and Idiyan respectively. 

 

Biotite extracts 

For biotite extracts, SiO2 ranges from 35.22% to 45.21%. Biotite extracts from Idiyan 

had the lowest SiO2 concentration while biotite extracts from Balogun-Ojo had the 

highest SiO2 concentration. TiO2 ranges from 0.24 to 2.16%, biotite extracts from 

Abuja leather had the lowest TiO2 concentration while biotites extracts from Balogun-

Ojo had the highest TiO2 concentration; Al2O3 ranges from 17.80% to 32.78% with 
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biotite extracts from Balogun-Ojo having the lowest Al2O3 concentration while biotite 

extracts from Abuja leather had the highest Al2O3 concentration. Fe2O3 ranges from 

11.83% to 19.79%. Biotite extracts from Balogun-Ojo had the lowest Fe2O3 

concentration while biotites extracts from Idiyan had the highest Fe2O3 concentration.  

For biotite extracts, other oxides ranged; MnO (0.08% to 1.69%), MgO (1.57% 

to 8.55%), CaO (0.09% to 0.86%), Na2O (0.68% to 2.40%), K2O (0.09% to 7.37%) 

and P2O5 (0.01% to 0.52%). Highest concentrations of MnO, MgO, CaO, Na2O, K2O 

and P2O5 in biotite extracts were observed at Idiyan, Idiyan, Omo-oba, Abuja leather, 

Balogun-Ojo and Omo-Oba respectively while lowest concentration of MnO, MgO, 

CaO, Na2O, K2O and P2O5 were observed at Omo-oba, Abuja leather, Abuja leather, 

Balogun-Ojo, Idiyan an Omo-Oba respectively.  

 

4.2.1.2: Trace elemental concentration 

Range of selected trace elements (in ppm) in whole rock pegmatites are as 

follows (table 4.2): U (0.04-13) Th (0.1-13), W (97-933), Sn (1.0-23.0), Be (2-384), 

Rb (6.0-668.0), Ta (0.5-76.1), Nb (0.6-72.9), Sr (3.0-134.0), Ba (4.0-630.0) and Cs 

(0.7-49.6). Whole rock pegmatite samples from Doya has elevated concentration of Be 

relative to other pegmatites which had concentration less than 50ppm except one of the 

samples from Falansa which also revealed elevated concentration of Be. Samples from 

Doya also revealed highest concentration of Nb (67ppm) and Ta (76ppm). For W, all 

whole rock pegmatites have values in excess of 97ppm with one of the samples from 

Omo-Oba having the highest concentration (figure 4.25-4.30). 

Range of selected trace elements (in ppm) in feldspar extracts are as follows: U 

(0.11-5.08) Th (0.1-2.8), W (118.0-600.0), Sn (1.0-15.0), Be (3-171), Rb (9.0-976.0), 

Ta (0.3-69.1), Nb (0.6-61.4), Sr (8.0-131.0), Ba (4.0-2260.0) and Cs (0.9-351.0). Be, 

Nb and Ta concentration is generally low in feldspars with concentration below 

10ppm, 20ppm and 8ppm respectively in all samples except the feldspar extract sample 

from Doya with concentration of 171ppm, 61ppm and 69ppm for Be, Nb and Ta. 

Furthermore, W concentration varies in feldspar extracts with values above 118ppm in 

all extracts; with elevated concentrations in excess of 590ppm recorded in feldspar 

extracts from Omo-Oba and Coco (figure 4.31-4.35). 

Range of selected trace elements (in ppm) in muscovite extracts are as follows: 

U (0.03-2.8) Th (0.1-0.7), W (17-214), Sn (2.0-319.0), Be (15-72), Rb (45->1000.0), 

Ta (32.8-107.0), Nb (237.0-330.0), Sr (5.0-17.0), Ba (4.0-82.0) and Cs (0.7-49.6). 
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Compared to other mineral extracts and whole rock pegmatites, muscovite extracts 

revealed the lowest concentration values of W and the  highest concentration values of 

Sn, Nb and Ta. All muscovite extracts from the study have with the exception of 

Balogun-Ojo and Owode samples have Sn concentration above 45ppm, Nb values are 

above 237ppm in all muscovite extracts, values higher than Nb concentration in whole 

rock and feldspar extracts while 107ppm of  Ta; the highest Ta value in pegmatites and 

extracts in this study was recorded in muscovite extracts from Abuja leather area. 

Highest concentrations of Nb and Sn were also recorded in samples from Abuja 

Leather (figure 4.36 - 4.41). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

Figure 4.25: Be concentration in whole rock pegmatites from the different locations 
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Figure 4.26: Nb concentration in whole rock pegmatites from the different locations 
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Figure 4.27: Sn concentration in whole rock pegmatites from the different locations 
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Figure 4.28: Cs concentration in whole rock pegmatites from the different locations 
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Figure 4.29: Ta concentration in whole rock pegmatites from the different locations 

 

 

 

 

 



100 
 

 

Figure 4.30: W concentration in whole rock pegmatites from the different locations 
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Figure 4.31: Be concentration in feldspars from the different locations 
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Figure 4.32: Nb concentration in feldspars from the different locations 
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Figure 4.33: Cs concentration in feldspars from the different locations 
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Figure 4.34: Ta concentration in feldspars from the different locations 
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Figure 4.35: W concentration in feldspars from the different locations 
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Range of selected trace elements (in ppm) in biotite extracts are as follows: U 

(0.56-43.0) Th (0.2-64), W (28.0-699.0), Sn (4.0-70.0), Be (2-5), Rb (3.0-6373.0), Ta 

(1.2-68.7), Nb (04.8-312.0), Sr (11.0-49.0), Ba (12.0-1650.0) and Cs (0.7-

475.0).compared to muscovite extracts, the biotite extracts have elevated concentration 

of W in excess of 326 in all locations except Omo-Oba but lower concentrations of Ta 

which is below 27ppm in all locations except Balogun-Ojo with Ta concentration of 

69ppm (figure 4.42-4.46) 

 

4.2.1.3: Rare Earth Elemental concentration 

Pegmatite whole rock samples revealed low to moderate REE abundance; the 

value ranged 0.4-555.8ppm. Range of selected rare earth elements in whole rock 

pegmatites are as follows (table 4.3): La (0.14-192.0ppm), Nd (0.1-60.0ppm), Eu (0.1-

2.16ppm), Sm (0.2-5.68ppm), Gd (0.04-4.8ppm), Ce (0.08-269.0ppm), Er (0.02-

2.67ppm) and Yb (0.01-4.32ppm). REE abundance in feldspar extracts is low (0.2-

58.4ppm). Selected rare earth elements in feldspar extracts ranged (table 4.15): La 

(0.25-20.40ppm), Nd (0.28-6.32ppm), Eu (0.1-0.75ppm), Sm (0.4-1.06ppm), Gd (0.2-

1.93ppm), Ce (0.12-28.20ppm), Er (0.02-0.3 ppm) and Yb (0.02-0.31ppm).  

REE abundance in muscovite extracts is low (0.2-3.5ppm). Selected rare earth 

elements in feldspar extracts ranged (table 18): Nd (0.05-0.35ppm), Sm (0.1-0.21ppm), 

Gd (0.02-0.5ppm), Ce (0.13-28.20.0ppm), Er (0.02-0.3 ppm) and Yb (0.02-0.31ppm). 

For biotite extracts, REE abundance is low (0.2-58.4ppm). Selected rare earth elements 

in biotite extracts ranged (table 18): La (0.25-20.40ppm), Nd (0.28-6.32ppm), Eu (0.1-

0.75ppm), Sm (0.4-1.06ppm), Gd (0.2-1.93ppm), Ce (0.12-0.64ppm), Er (0.02-0.3 

ppm), Yb (0.04-0.25ppm) and Yb (0.04-0.25ppm). 
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Figure 4.36: Be concentration in muscovites from the different locations 
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Figure 4.37: Nb concentration in muscovites from the different locations 
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Figure 4.38: Sn concentration in muscovites in the different locations 
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Figure 4.39: Cs concentration in muscovites in the different locations 
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Figure 4.40: Ta concentration in muscovites in the different locations 
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Figure 4.41 W concentration in muscovites in the different locations 
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Figure 4.42: Nb concentration in biotite extracts  in the different locations 
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 Figure 4.43: Sn concentration in biotite extracts  in the different locations 
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 Figure 4.44: Cs concentration in biotite extracts  in the different locations 
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 Figure 4.45: Ta concentration in biotite extracts  in the different locations 
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 Figure 4.46: W concentration in biotite extracts  in the different locations 
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4.2.1.4: Comparison of selected trace elemental concentrations in whole rock, 

feldspars, biotite and muscovite extracts 

Comparison of trace elemental concentration of Sn, Zn, W, Ta, Nb and Cs was 

also carried out to assess the mineralisation pattern of these elements within the 

different sample types analysed. Trace elemental plots of samples from Balogun-Ojo 

(figures 4.47-4.48) revealed higher concentration of Cs, Ta and Nb in the biotite and 

muscovite extracts. Feldspars and whole rocks have lower concentration of Cs, Ta and 

Nb; W concentration showed no preference for any mineral phase while higher 

concentration of Zn was observed in biotite and muscovite extracts. 

In Abuja-leather samples, elevated concentrations of Cs, Ta, Nb and Sn was 

observed in muscovite extracts compared to other extracts and whole rock samples, 

high concentration of Zn was observed in biotite extracts and W shows no preference 

for any mineral phase (figure 4.49-4.50). 

Plots for whole rock pegmatites and extracts from Idiyan area revealed W has 

no preference for any mineral phase while Sn is elevated in the biotite and muscovite 

extracts. Elevated concentration of Zn was also observed in biotite extracts while 

elevated concentration of Cs and Nb was observed in biotites and muscovite extracts; 

feldspars extracts also revealed high Cs concentration (figure 4.51-4.52). In the Omo-

Oba area, results also indicate elevated concentration of Nb, Cs and Zn in biotite 

extracts (figure 4.53-4.54). 

Prefential enrichment of some elements observed  in the biotite and muscovite 

extracts is possibly due to the ability of the micas to incorporate a wide range of rare 

elements by substitutions at various sites in its crystal structure (Belyankina and Petrov 

1983; Bailey, 1984). 
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Figure 4.47: comparative plot of Sn, Zn and W for whole rock and mineral extracts in 
Balogun-Ojo sample 
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Figure 4.48: comparative plot of Cs,Ta and Nb for whole rock and mineral extracts in 
Balogun-Ojo sample 
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Figure 4.49: comparative plot of Sn, Zn and W for whole rock and mineral extracts in 
Abuja leather sample 
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Figure 4.50: comparative plot of Cs, Ta and Nb for whole rock and mineral extracts in 
Abuja leather sample 
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Figure 4.51: comparative plot of Sn, Zn and W for whole rock and mineral extracts in 
Idiyan sample 
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Figure 4.52: comparative plot of Cs, Ta and Nb for whole rock and mineral extracts in 
Idiyan sample 
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Figure 4.53: comparative plot of Sn, Zn and W for whole rock and mineral extracts in 
Om-Oba sample 
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Figure 4.54: comparative plot of Cs, Ta and Nb for whole rock and minerals extracts in 
Omo-Oba sample 
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4.2.1.5: Discussion 

Na2O-Al2O3-K2O ternary plot and the plot of A/NK against A/CNK revealed 

pegmatites are peraluminous with the aluminium saturation index (ASI) greater than 

1.0 in all samples with the exception of the samples from Omoba and Idiyan which are 

metaluminous (figure 4.55-4.56).   

High levels of fractionation of lithophilic elements (e.g. Rb, Cs) is believed to 

be a common characteristics of rare metal pegmatite (Garba, 2003) During late 

fractional crystallisation, there is a decrease in the K/Rb ratio hence the  lower the 

K/Rb, the higher the degree of fractionation crystallisation and the more mineralised 

the pegmatites.  

In this study, some pegmatites do not reveal chemical signatures associated 

with economically mineralised pegmatite which is delineated by K/Rb ratios, which is 

below 100 (Tischendorff, 1977). K/Rb ratios range from 26-353 in whole rock 

pegmatites with about eight of the samples studied having K/Rb ratios less than 100 

and only one sample (Doya) revealing high fractionation with K/Rb values of 26 (table 

4.16a-e).  K/Rb vs Rb plots revealed pegmatites are un-mineralised pegmatites with 

the exception of the ‘Doya” sample while the K/Rb vs Ba revealed that pegmatites 

mostly belong to the muscovite class. From the K/Rb vs Ba plot, pegmatites from 

Doya are rare element pegmatites while those of Idiyan, Balogun –Ojo, Falansa,Omo-

Oba and Owode are muscovite class pegmatites.  

The plot of Ta vs Ga shows that the pegmatites from the localities have low 

mineralisation potential with few of the pegmatite whole rock (Abuja leather, Coco, 

Doya and Falansa) and biotite samples (Abuja leather, Baba-ode and Doya) plotting 

above the Beus , (1966) mineralisation  line; only one feldspar sample (Doya) reveals 

mineralisation potential while all muscovite mineral extracts plotted above the Ta-line 

of mineralisation of Beus, (1966) with some plotting above the Gordiyenko, (1971) 

mineralisation line. Preferential enrichment in muscovite and biotite extracts is 

believed to be due to the ability of the muscovite extracts to selectively accommodate 

certain elements in its crystal lattice during fractional crystallisation. 

 Similar observation was observed in the plot of Ta vs K/Cs and the Ta vs Cs + 

Rb plot; this further emphasises the low Ta-Nb mineralisation potential of the 

pegmatites studied (figure 4.57-4.59). 
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Figure 4.55: Ternary plot of Na2O-Al2O3-K2O. 
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Figure 4.56: Plot of A/NK against A/CNK (after Shand 1943). 
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Figure 4.57: K/Rb vs Rb plot for pegmatite and extracts (modified after Staurov et al., 
1966). Blue represents whole rock samples, red represents feldspar extracts, brown 
muscovite extracts and green biotite extracts 
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Figure 4.58: mineralisation potential and characterisation of the pegmatite (modified 
after Maniar and Piccoli, 1989) 
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Figure 4.59: K/Rb vs Cs plot for pegmatites in the studied areas, 
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Table 4.16a: Elemental ratios of whole rock pegmatites and mineral extracts 

Sample 
number  1 2 3 4 5 6 7 8 9 10 

K/Rb 81 51 353 324 80 65 26 126 76 105 

K/Ba 1.262 0.98 0.004 0.036 0.774 0.221 0.934 2.15 0.641 0.015 

Ta/W 0.02 0.028 0.002 0.003 0.028 0.078 0.197 0.781 0.082 0.005 

Zr/Hf 40 22.5 25 60 17.5 15.56 10 7.41 13.33 20 

Ba/Rb 0.11 0.04 2.36 4.63 0.13 0.03 0.01 0.19 0.13 0.27 

Rb/Sr 7.5 19.86 3.66 0.22 3.2 38.67 333.33 21 3.14 7.86 

Rb/Cs 16.07 34.75 20.08 8.33 13.33 31.64 34.25 5.25 8.89 25.02 

Nb/Ta 6 5.04 1.48 1.95 0.86 0.61 1.92 0.79 1.03 1.25 

Th/U 0.08 3.9 0.43 6.41 0.21 1.79 1.55 1.47 0.14 0.03 

 

Table 4.16b: Elemental ratios of whole rock pegmatites and mineral extracts 

Sample number  11 12 13 14 15 16 17 18 19 20 

K/Rb 126 105 111 191 63 76 110 203 104 456 

K/Ba 0.603 0.093 0.007 0.005 0.35 1.264 0.016 0.014 0.013 0.131 

Ta/W 0.015 0.064 0.002 0.007 0.572 0.052 0.005 0.002 0.008 0.004 

Zr/Hf 11.54 10.83 20 39.52 9.15 10 40 20 30 60 

Ba/Rb 0.39 0.14 2.17 6.08 0.55 0.19 0.17 1.89 0.18 4.79 

Rb/Sr 1.05 12.04 2 0.69 13.25 7.4 12.89 1.13 10.31 0.11 

Rb/Cs 2.17 6.79 8.57 22.05 1.78 1.71 25.24 10 32.57 10 

Nb/Ta 3.63 2.18 0.41 7.74 1.14 0.61 1.72 0.85 1.8 3.27 

Th/U 2.17 3.22 0.07 4.86 0.18 0.13 0.03 0.33 0.01 0.13 

 
Table 4.16c: Elemental ratios of whole rock pegmatites and mineral extracts 

Sample number  21 22 23 24 25 26 27 28 29 30 

K/Rb 385 90 105 394 87 95 16 80 79 80 

K/Ba 0.001 2.03 0.016 0.001 0.026 0.031 1.066 0.082 0.15 0.168 

Ta/W 0.002 0.246 0.005 0.002 0.007 0.01 0.013 3.413 0.98 4.954 

Zr/Hf 20 5.77 20 10 20 40 17.5 11.43 7.14 7.14 

Ba/Rb 7 0.11 0.17 9.15 0.14 0.1 0.02 0.01 0.01 0 

Rb/Sr 2.37 18 13.94 1.89 23.81 27.78 22.29 200 142.86 125 

Rb/Cs 23.95 10.29 32.21 38 2.85 3.51 32.12 7.94 5.15 4.03 

Nb/Ta 1.88 0.89 2.24 3.47 6.02 4.44 2.35 4.53 3.76 2.82 

Th/U 0.09 0.34 0.01 0.05 0.04 0.06 0.23 0.06 0.05 0.03 
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Table 4.16d: Elemental ratios of whole rock pegmatites and mineral extracts 

Sample number  31 32 33 34 35 36 37 38 39 40 

K/Rb 76 66 75 78 79 81 74 78 84 77 

K/Ba 0.029 0.082 0.012 0.011 0.012 0.132 0.027 0.011 0.072 0.033 

Ta/W 0.723 0.436 1.388 0.492 0.307 3.977 1.291 0.346 2.83 0.591 

Zr/Hf 7.14 13.33 6.67 30 30 7.14 6.67 10 13.33 5.71 

Ba/Rb 0.03 0.02 0.08 0.06 0.05 0.01 0.03 0.08 0.01 0.03 

Rb/Sr 71.43 166.67 66.67 166.67 200 125 71.43 58.82 200 71.43 

Rb/Cs 5.81 18.8 4.63 22.32 24.88 4.07 5.78 3.97 7.87 5.46 

Nb/Ta 3.22 4.4 2.75 6.84 7.29 2.88 3.34 3.55 4.07 3.97 

Th/U 0.08 0.18 0.15 0.02 0.02 0.03 0.12 0.12 0.02 0.15 

 

Table 4.16e: Elemental ratios of whole rock pegmatites and mineral extracts 

Sample 
number  41 42 43 44 45 46 47 48 

K/Rb 59 161 158 128 61 199 249 158 

K/Ba 0.016 0 0.085 0.154 0.003 1.2 0.133 0.001 

Ta/W 0.08 0.103 0.009 0.004 0.915 0.003 0.098 0.048 

Zr/Hf 10 41.4 27.5 24 25 20 10 40.96 

Ba/Rb 0.05 4.42 2 0.92 0.24 0.4 5.33 3.82 

Rb/Sr 90.91 10.36 5.5 6.5 58.82 0.42 0.17 6.33 

Rb/Cs 2.11 23.02 15.71 18.57 5.13 3.33 1.43 20.39 

Nb/Ta 9.36 12.73 5.62 3.56 4.76 4.66 4.54 12.4 

Th/U 0.48 17.68 0.43 0.96 0.62 0.05 17.16 14.45 

 
Sample 1-16 are whole rock pegmatites. 17-27 are feldspar extracts, 28-40 are 
muscovite extracts and samples 41-48 are biotite extrcats 
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Fractionation degree of the pegmatites was also assessed using plots of Sr/Rb 

vs Rb/Ba and Rb/K vs. Sr/Rb (figure 4.60-4.61). The plots show the same trend for 

pegmatites in the locations with increasing fractionation. Furthermore, Nb/Ta ratio 

ranges from 0.41-7.74 in whole rock pegmatites, 0.85-6.02 in feldspar extracts, 2.35-

7.29 in muscovite extracts and 3.54-12.73 in biotite extracts while Ta/W ranged 0.01-

0.80 in whole rock pegmatites, 0.01-0.25 in feldspar extracts, 0.31-4.95 in muscovite 

extracts and 0.01-0.92 (table4.4) in biotite extracts which suggest the pegmatites whole 

rock and the extracts have higher concentration of Nb and W with respect to tantalum 

and could be more a Niobium and Tungsten prospect (figure 4.62-4.66). 

Rare earth elemental normalisation pattern revealed two distribution patterns 

with no preferential enrichment of LREE or HREE.. Normalisation plots revealed no 

Ce anomalies but they revealed negative Europium anomaly is indicative of 

fractionation and late metasomatic effects (Taylor et al., 1986).  Based on Eu/Eu* 

values and the presence/absence or Eu anomalies. Negative Eu anomalies was 

observed in all samples with K/Rb less than 100 and in just one sample with K/Rb 

value above 100. In this group of samples, Eu/EU* values ranged 0.04-0.65, with an 

average of 0.17 while in the samples with higher K/Rb values, Eu/Eu* values ranges 

from 0.90-3.03with an average of 1.48 which implies variable fractionation in the 

pegmatite studied. 

In the other set of pegmatites with low K/Rb values, incompatible elemental 

plots revealed as expected, an enrichment in Cs, Rb, Ta, Nb relative to primordial 

mantle (values after Sun and McDonough, 1985) and a depletion in Ba, K and Sr. 

Enrichment in Rb, Cs, Ta and Nb with the depletion in K and Ba suggesting the 

pegmatites are formed as a result of progressive fractionation; and Rb enrichment 

coupled with Ba depletion is a due to late stage fractional crystallisation (figure 4.67-

4.70). 

In the other set of pegmatites, with high K/Rb values, negative Ce and negative 

Europium anomalies were not observed though some samples have a low positive Eu 

anomaly. It is inferred from the negative Eu and Ce anomalies that these pegmatites 

did not undergo considerable fractionation and they were not subjected to considerable 

metasomatism. For these samples, incompatible element plots revealed various 

patterns. It revealed a lower enrichment in Cs, Rb, Nb and in some cases Ta as well as 

lower depletions in Sr and Ba which suggests they were formed from a more 

unfractionated melt. 
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Furthermore, in pegmatites with low K/Rb ratios, (La/Yb)N ratios ranged 0.26-

3.47 and they range 1.37-18.54 in pegmatites with higher K/Rb values which further 

indicates the difference in fractionation pattern between the two groups of pegmatites. 
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Figure 4.60: Relative degree of fractionation of pegmatites (after Larsen, 2002) 
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Figure 4.61: Relative degree of fractionation of pegmatites 
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Figure 4.62: Plot of Ta vs K/Cs for pegmatite and extracts (modified after Beus, 1966 
and Gordiyenko, 1977). Blue represents whole rock samples, red represents feldspar 
extracts, brown muscovite extracts and green biotite extracts 
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Figure 4.63: Plot Ta vs Rb for pegmatite and extracts modified after (modified after 
Beus, 1966 and Gordiyenko, 1977;   a: Ta prospective; b: Ta mineralised) Blue 
represents whole rock samples, red represents feldspar extracts, brown muscovite 
extracts and green biotite extracts 
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Figure 4.64: Plot of Ta (ppm) against Cs + Rb (ppm) for mineral extracts from the 
study areas (after Gaupp et al., 1984). Blue represents whole rock samples, red 
represents feldspar extracts, brown muscovite extracts and green biotite extracts 
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 Figure 4.65: Ta vs Ga plot for pegmatites and extracts from the study area. Blue 
represents whole rock samples, red represents feldspar extracts, brown muscovite 
extracts and green biotite extracts 
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Figure 4.66: Plot of Ta (ppm) against Cs (ppm) for mineral extracts from the study 
areas (after Moller and Morteani, 1987).  Blue represents whole rock samples, red 
represents feldspar extracts, brown muscovite extracts and green biotite extracts 
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Figure 4.67: condrite normalisation plot for group 1 pegmatite (values after Sun and 
McDonough, 1989).  
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Figure 4.68: Chondrite-normalised plot of incompatible trace elements for group 2 
pegmatites [normalisation values after Taylor and McLennan (1985)] 
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Figure 4.69: condrite normalisation plot for group 2 pegmatite (values after Sun and 
McDonough, 1989).  
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Figure 4.70: Chondrite-normalised plot of incompatible trace elements for group 2 
pegmatites [normalisation values after Taylor and McLennan (1985)] 
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4.3 Fluid inclusion studies 

4.3.1 Description of Fluid Inclusion Types  

Availability, type and distribution of inclusions were determined by 

petrographic study on the doubly polished wafer. Inclusions observed were classified 

using the petrographic criteria of Shepherd et al., (1985) through a combination of 

distribution (e.g. isolated individuals or as trails along annealed fractures), phases 

present at room temperature and composition. 

Using these criteria, the fluid inclusions present in a grain can were classified 

as primary (isolated individuals which are commonly aligned to crystal growth planes), 

secondary (fluid inclusion trails crosscut grains and are aligned with and contained 

within annealed fractures) and pseudosecondary (fluid inclusion trails begin and 

terminate abruptly within individual crystals). For this study, only primary and 

pseudosecondary inclusions were analysed as these fluid inclusions provide data on 

pressure, temperature and composition (PTX) properties of fluid trapped during quartz 

crystallisation and subsequent fluid migration events.  

Inclusions occur as isolated individuals or in trails along annealed micro-

fractures that cross-cut quartz grains in all samples. Fluid inclusion morphologies 

range from ellipsoidal to tabular to irregular and the sizes range from <2 μm to 100 μm 

(figure 4.71). Three types of aqueous inclusions (type 1, type 2 and type 3) were 

observed (table 4.17-4.18). 

 Type 1 inclusions are two-phase liquid + vapour (L+V; L>V) with high degree 

of fill (F) i.e. F~ 0.90 (F= vol. of liquid/[vol. of liquid + vapour]). They occur in all 

samples hosted in quartz grains as isolated individuals, in random groupings and as 

trails along post-crystallisation annealed fractures with size ranging from 2 μm to 100 

μm. They display a range of shapes varying from tabular to ellipsoidal to irregular. 

Type 2 are three phase (liquid + vapour + solid) inclusions with a high degree 

of fill i.e. F~0.85. They are ellipsoidal in shape with size of 2 μm to 15 μm. The 

trapped solid phases are generally < 3 μm in the longest dimension. They occur in 

trails or as isolated individuals within quartz grains. They are uncommon and only 

occur in five samples. 



149 
 

 

Figure 4.71: Schematic representation of the occurrence of quartz-hosted FIs in all 
samples. 
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Table 4.17: Classification of fluid inclusions observed in the study 

 

L=liquid, V=vapour, S=solid. 
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Table 4.18: Sample number and fluid inclusion type present in the pegmatite samples.  

 

Sample 

number/FI 

type 

1 2 3 4 5 6 7 8 9 10 

1 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 

2 - - X - X X - X - X 

3 XX XX XX XX XX XX XX XX XX XX 

X: present; XX: medium relative abundance; XXX: high relative abundance. 
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4.3.2 Fluid Inclusion photomicrographs for each sample 

The following photomicrographs (figure 4.72-4.91) contain the range of fluid 

inclusion types recorded during this study. Each photomicrograph is annotated and 

annealed fractures hosting fluid inclusions are highlighted. 
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Figure 4.72: Photomicrographs of sample AB 006 (Abuja Leather). (a) General view 
of typical quartz and feldspar grains under low magnification. (b) Trail containing 
Type 3 that terminates at quartz grain boundary. 
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Figure 4.73: Photomicrographs of sample AB 006 (Abuja Leather) (c) Trail containing 
Type 1 along annealed fracture in quartz. (d) Type 1 and 3 forming cluster of 
individual FIs in quartz grain. 
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Figure 4.74: Photomicrographs of sample AB 007 (Abuja Leather). (a) General view 
of typical quartz and feldspar grains under low magnification. (b) Trail containing 
Type 1 and 3 and terminating at quartz grain boundary 
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Figure 4.75: Photomicrographs of sample AB 007 (Abuja Leather). (c) Type 1 forming 
a cluster hosted in quartz grain. (d) Trail containing Type 1 in quartz grain. 
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Figure 4.76: Photomicrographs of sample OM 009 (Omoba). (a) General view of 
typical FI-rich quartz grain under low magnification. (b) Type 1 and Type 3 forming a 
trail along an annealed fracture. 
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Figure 4.77: Photomicrographs of sample OM 009 (Omoba).  (c) Isolated individuals 
of Type 1. (d) Isolated Type 2 (L=Liquid, V=Vapour, S=Solid) inclusions. 
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Figure 4.78: Photomicrographs of sample OM 010 (Omoba). (a) General view of 
typical quartz grain under low magnification. (b) Multiple crosscutting trails of Type 1 
along annealed fractures in quartz. 
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Figure 4.79: Photomicrographs of sample OM 010 (Omoba). (c) Trail of Type 1 along 
an annealed fracture in quartz. (d) Isolated Type 1 inclusions in quartz. 
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Figure 4.80: Photomicrographs of sample OW 003 (Owode). (a) General view of 
typical quartz grain under low magnification. (b) Type 1 and Type 3 forming trail 
along annealed fracture. 
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Figure 4.81: Photomicrographs of sample OW 003 (Owode) (c) Cluster containing 
Type 1 FI. (d) Isolated Type 2 (L=Liquid, V=Vapour, S=Solid) inclusions. 
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Figure 4.82: Photomicrographs of sample OW 005 (Owode). (a) General view of 
typical quartz grain under low magnification. (b) Type 1 and Type 3 forming trail 
along annealed fracture 
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Figure 4.83: Photomicrographs of sample OW 005 (Owode) (c) Trail containing Type 
1 along annealed fracture. (d) Trail containing Type 2 (L=Liquid, V=Vapour, S=Solid) 
inclusions. 
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Figure 4.84: Photomicrographs of sample GB 001 (Gbayo). (a) General view of typical 
quartz grain under low magnification. (b) Type 1 and Type 3 forming trails along 
annealed fracture. 
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Figure 4.85: Photomicrographs of sample GB 001 (Gbayo) (c) Type 1 showing 
irregular shape due to stretching. (d) Multiple Type 1 inclusions displaying a variety of 
morphologies. 
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Figure 4.86: Photomicrographs of sample GB 002 (Gbayo). (a) General view of typical 
quartz grain under low magnification. (b) Type 1 and Type 3 forming trails along 
annealed fractures 
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Figure 4.87: Photomicrographs of sample GB 002 (Gbayo) (c) Multiple Type 1forming 
trail along annealed fracture. (d) Higher magnification view of inset from (c) showing 
irregular shapes of FI and varying vapour bubble volumes. 
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Figure 4.88: Photomicrographs of sample CO 003 (Coco). (a) General view of typical 
quartz grain under low magnification. (b) Type 3 forming a trail along an annealed 
fracture. 



170 
 

 

 
Figure 4.89: Photomicrographs of sample CO 003 (Coco) (c) Isolated Type 1. (d) 
Multiple Type 1 individuals forming cluster. 
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Figure 4.90: Photomicrographs of sample CO 005 (Coco). (a) General view of typical 
quartz grain under low magnification. (b) Multiple crosscutting trails containing Type 
1and Type 3 FI 
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Figure 4.91: Photomicrographs of sample CO 005 (Coco) (c) Trail containing Type 1. 
(d) Isolated Type 2 (L=Liquid, V=Vapour, S=Solid). 
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4.3.3.1: Abuja Leather, Komu 

Fluid inclusion microthermometry was carried out on thirteen Type 1 

inclusions in sample AB 006 and fifteen Type 1 inclusions in sample AB 007 obtained 

from Abuja Leather in Komu. The length of inclusions vary from 3.7-9.2µm; type 1 

inclusions in sample AB 006 homogenise to the liquid phase between 118°C to 130°C 

with mean TH value of 125.3°C (Figure 4.92-4.93, table 4.19-4.20). TLM values ranges 

from -1.4°C to -4.8°C corresponding to salinity values of 2.4 to 7.6 eq. wt.% NaCl. 

Type 1 inclusions in sample AB 007 homogenise to the liquid phase between 80°C and 

99°C with a mean TH value of 89.2°C. TLM values ranges from -3.9°C to -8.2°C 

corresponding to salinity values of  6.3 to 11.9 eq. wt.% NaCl (mean = 9.1 eq. wt.% 

NaCl). 

 

4.3.3.2: Omoba in Okeho 

Fluid inclusion microthermometry was carried out on seven Type 1, six Type 2 

inclusions in sample OM 009 and eleven Type 1 inclusions in sample OM 010. The 

length of inclusions vary from 5.1-20.6µm; type 1 inclusions in sample OM 009 

homogenise to the liquid phase at 159°C and 259°C with a mean TH value of 204°C 

(Figure 4.94-4.95, table 4.21-4.22). TLM values ranges from -3.2°C to -5.6°C 

corresponding to salinity of  5.3 to 8.7 eq. wt.% NaCl (mean = 6.7 eq. wt.% NaCl).  

 Type 2 inclusions in sample OM 009 homogenise to the liquid phase 

(solid phase does not homogenise) between 318°C and 385°C with mean TH value of 

327.4°C. Type 1 inclusions in sample OM 010 homogenise to the liquid phase at 

138°C to214°C with a mean TH value of 185.2°C. TLM values ranges from -0.4°C to -

1.7°C which corresponds to salinity values of  0.7 and 3.1 eq. wt.% NaCl (mean = 1.8 

eq. wt.% NaCl). 
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Table 4.19: Microthermometric result of Abuja Leather samples 
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Table 4.20: Microthermometric result of Abuja Leather samples 
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Figure 4.92: TH frequency distribution histogram for Type 1 (n=28) FIs in Abuja 
leather samples 
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Figure 4.93: TH versus salinity plot for Abuja leather samples. 
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Table 4.21: Microthermometric result of Omoba samples  
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Table 4.22: Microthermometric result of Omoba samples  
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Figure 4.94: TH frequency distribution histogram for Type 1 (n=18) and Type 2 (n=6) 
FIs in Omoba samples. 
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Figure 4.95: TH versus salinity plot for Omoba samples. 
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4.3.3.3: Owode, Ibarapa 

Microthermometry was carried out on eleven Type 1 inclusions and two Type 2 

inclusions in sample OW 003. It was also carried out on eleven Type 1 inclusions and 

one Type 2 inclusion in sample OW 005. The length of inclusions vary from 2.9-

20.1µm;  type 1 inclusions in sample OW 003 homogenise into the liquid phase 

between 109°C and 229°C with mean TH value of 167°C (Figure 4.96-4.97, table 4.23-

4.24). TLM occurs between -0.2°C and -8.6°C corresponding to salinity values of  0.4 

and 12.4 eq. wt.% NaCl (mean = 6.9 eq. wt.% NaCl). Type 2 inclusions in sample OW 

003 homogenise to the liquid phase (solid phase does not homogenise) at 142.5°C to 

146.3°C with a mean TH value of 144.4°C. Type 1 inclusions in sample OW 005 

homogenise to the liquid phase between 152°C and 172°C with mean TH value of 

161.2°C. TLM occurs between -0.1°C and -1.5°C corresponding to salinity values of  

0.2 to 2.6 eq. wt.% NaCl (mean = 1.2 eq. wt.% NaCl). The Type 2 inclusion in sample 

OW 005 homogenises to the liquid phase (solid phase does not homogenise) at 

162.5°C. 
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Table 4.23: Microthermometric results of Owode, Ibarapa samples 
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Table 4.24: Microthermometric results of Owode, Ibarapa samples 
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Figure 4.96: TH frequency distribution histogram for Type 1 (n=22) and Type 2 (n=3) 
FIs in Owode, Ibarapa samples. 
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Figure 4.97: TH versus salinity plot for Owode, Ibarapa samples 
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4.3.3.4: Gbayo, Olode 

Fluid inclusion microthermometry was carried out on twenty-one Type 1 

aqueous-rich inclusions in sample GB 001 and twelve Type 1 aqueous-rich inclusions 

and four Type 2 inclusions in sample GB 002. Type 1 inclusions in sample GB 001 

homogenise to the liquid phase between 145°C and 156°C with a mean TH value of 

151°C (Figure 4.98-4.99, table 4.25-2.26). TLM occurs between -17.2°C and -19.4°C 

corresponding to salinity values of  20.4 to 22 eq. wt.% NaCl (mean = 21.3 eq. wt.% 

NaCl). Type 1 inclusions in sample GB 002 homogenise to the liquid phase between 

162°C and 175°C with a mean TH of 169°C. TLM occurs between -4.1°C and -6.2°C 

corresponding to salinity values of  6.6 to 9.5 eq. wt.% NaCl (mean = 7.8 eq. wt.% 

NaCl). Type 2 inclusions in sample GB 002 homogenise to the liquid phase between 

146°C and 158°C. The solid phase homogenises to the liquid phase at 175°C. 
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Table 4.25:  Microthermometric results of Gbayo samples 
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Table 4.26:  Microthermometric results of Gbayo samples 

 

 

 

 

 

 

 



190 
 

 

Figure 4.98: TH frequency distribution histogram for Type 1 (n=33) and Type 2 (n=4) 
FIs in Gbayo, Olode samples. 
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Figure 4.99: TH versus salinity plot for Gbayo, Olode samples. 
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4.3.3.5: Coco, Olode 

Fluid inclusion microthermometry was carried out on fourteen one Type 1 

aqueous-rich inclusions in sample CO 003 and ten Type 1 inclusions and five Type 2 

inclusions from sample CO 005. Type 1 inclusions in sample CO 003 homogenise to 

the liquid phase between 122°C and 142°C with a mean TH value of 132°C (Figure 

4.100-4.101, table 4.27-4.28). TLM values ranges from -0.6°C to -2.1°C corresponding 

to salinity values of  1.1 to 3.5 eq. wt.% NaCl (mean = 2.2 eq. wt.% NaCl). Type 1 

inclusions in sample CO 005 define two fluid populations (Population A and 

Population B).  

Population A (n=3) which homogenise to the liquid phase between 150°C and 

156°C with a mean TH value of 153°C. TLM occurs between -1.5°C and -3.4°C which 

corresponds  to salinity values of  2.6 to 5.6 eq. wt.% NaCl (mean = 4.1 eq. wt.% 

NaCl). Population B (n = 7) homogenise to the liquid phase between 238°C and 

261°C with a mean TH value of 248°C. TLM occurs between -2.8°C and -3.4°C 

corresponding to salinity values of  4.6 to 5.6 eq. wt.% NaCl (mean = 5.2 eq. wt.% 

NaCl/). Type 2 inclusions in sample CO 005 homogenise to the liquid phase (solid 

phase does not homogenise) between 305°C and 312°C. 

 A summary of the homogenisation properties of the inclusions is also in table 

4.29-4.30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



193 
 

Table 4.27: Microthermometric results of Coco samples. 
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Table 4.28: Microthermometric results of Coco samples. 
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Figure 4.100: TH frequency distribution histogram for Type 1 (n=24) and Type 2 (n=4) 
FIs in Coco samples. 
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Figure 4.101: TH versus salinity plot for Coco samples. 
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Table 4.29: Salinity and homogenisation measurements of inclusion wafers 
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Table 4.30: Range and average of homogenisation temperature per location 
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4.3.4: Discussion: Modelling Trapping Pressure and Temperature (P-T) of 

Aqueous Fluids  

Isochores were constructed to constrain trapping temperature and pressure of 

fluids using the PVT (Pressure, Volume, Temperature) modelling software FLUIDS. 

Temperature of homogenisation (TH), calculated salinity (eq. wt% NaCl), for Type 1 

aqueous inclusions, were used to generate an isochore for each sample. To model fluid 

trapping temperatures, a maximum trapping pressure was estimated based upon 

crystallisation depth for granitoid magmas (1.5 kilobar ≈ 5.1km; Hunt et al., 2005).  

 

4.3.4.1: Abuja Leather, Komu 

The microthermometric data used are as follows: sample AB 006, TH = 89.2°C, F = 

0.9, TLM = -6.0°C and for sample AB 007, TH = 125.3°C, F = 0.9, TLM= -2.6°C.  

Both temperatures are considered to be low and therefore unrelated to higher 

temperature magmatic fluids. Assuming a maximum lithostatic pressure of ~1.5kbar 

(~5 km) this equates to corrected minimum trapping temperatures of ~190°C. These 

modelled temperatures show a temperature correction of about 65°C for the fluids 

modelled in this pegmatite (Figure 4.102). The differing TH and salinity values 

between the fluids in AB 006 and AB 007 may represent a dilution trend that indicates 

an interaction of two fluids, one of which may be of meteoric origin. 

 

4.3.4.2: Omoba, Okeho 

The microthermometric data used for Omoba samples was TH = 165.5°C, F = 

0.9 and TLM = -2.1°C. This temperature is considered to be moderate to high and is 

therefore likely to be related to higher temperature magmatic fluids. Assuming a 

minimum lithostatic pressure of ~1.5kbar (~5km) this equates to corrected maximum 

trapping temperatures of ~250°C. This modelled temperature shows a temperature 

correction of about 85°C for the fluids modelled in this pegmatite (Figure 4.103). 

 

4.3.4.3: Owode, Ibarapa 

The microthermometric data used for Owode samples was TH = 164.9°C, F = 

0.85 and TLM = -0.7°C. This temperature is considered to be moderate to high and is 

therefore likely to be related to higher temperature magmatic fluids. Assuming a 

maximum lithostatic pressure of ~1.5 kbar (~5km) this equates to corrected minimum 
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trapping temperatures of ~250°C. This modelled temperature shows a temperature 

correction of about  85°C for the fluids modelled in this pegmatite (Figure 4.104). 
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Figure 4.102: Isochores calculated for Type 1 aqueous FIs in Abuja leather sample. 
Arrow indicates possible dilution trend. 
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Figure 4.103: Isochore calculated for Type 1 aqueous FIs in samples from Omoba area. 
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Figure 4.104: Isochore calculated for Type 1 aqueous FIs in Owode samples. 
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4.3.4.4: Gbayo, Olode 

The microthermometric data used are as follows:  

sample GB 001, TH = 150.6°C, F = 0.9, TLM = -18.4°C;  

sample GB 002, TH = 168.6°C, F = 0.9, TLM= -5°C.  

These temperatures are considered to be moderate to high and are therefore likely to be 

related to higher temperature magmatic fluids. Assuming a maximum lithostatic 

pressure of ~1.5kbar (~5km) this equates to a corrected minimum trapping temperature 

of ~250°C. These modelled temperatures show a temperature correction of about 80°C 

for the fluids modelled in this pegmatite (Figure 4.105). The differing TH and salinity 

values between the fluids in AB 006 and AB 007 may represent a dilution trend that 

indicates an interaction of two fluids, one of which may be of meteoric origin. 

 

4.3.4.5: Olode 
The microthermometric data used are as follows:  

Sample CO 003, TH = 131°C, F = 0.85, TLM = -1.3°C;  

Sample CO 005, TH = 248.4°C, F = 0.9, TLM= -2.5°C.  

Temperatures for CO 003 are considered to be low to moderate and therefore unrelated 

to higher temperature magmatic fluids. Temperatures for sample CO 005 are 

considered to be high and therefore the fluids are associated with magmatic activity. 

Assuming a maximum lithostatic pressure of 1.5kbar (~5km) this equates to a 

corrected minimum trapping temperature of ~ 325°C. These modelled temperatures 

show a temperature correction of about 75°C for the fluids modelled in this pegmatite 

(Figure 4.106). The differing TH and salinity values between the fluids in AB 006 and 

AB 007 may represent a dilution trend that indicates an interaction of two fluids, one 

of which may be of meteoric origin. 
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Figure 4.105: Isochores calculated for Type 1 aqueous FIs in samples from Gbayo. 
Arrow indicates possible dilution trend. 
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Figure 4.106: Isochores calculated for Type 1 aqueous FIs in Coco samples. Arrow 
indicates possible dilution trend. 
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Based on the data presented above, a qualitative model is generated that shows 

a pressure-temperature-time (PTt) path of fluid trapping for the pegmatites (Figure 

4.107). The fluids trapped initially at Time 1 (Type 2 FI) have relatively high 

minimum trapping temperatures (i.e. homogenisation T~350°C). These may then be 

the earliest fluids trapped and may be associated with late magmatic-hydrothermal 

fluids. The trapping of Type 2 fluids is then followed by the trapping of Type 1 fluids 

(Time 2 and Time 3). Higher (~250°C) and lower (~160°C) TH values for Type 1 FI 

may indicate a dilution trend suggesting interaction between at least two fluids 

suggesting interaction between very late magmatic and meteoric fluids. Finally, the 

presence of Type 3 FI indicate a much lower temperature and pressure regime at Time 

4 (<50°C). 
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Figure 4.107: A qualitative pressure-temperature-time (PTt) model for fluid trapping. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION ANDRECOMMENDATIONS 
5.1: Summary 

Geochemistry, mineralisation potential and fluid characteristics of pegmatites 

in selected areas of southwestern Nigeria has been studied. The areas were 

systematically mapped and mapping revealed pegmatites are associated with different 

lithological units in the selected areas; these lithologies include: granite gneisses, 

sillimanite quartzite, pellitic schists, amphibolites and quartz mica schists. 

Pegmatites occur as intrusions associated with the different lithologies and are 

composed of quartz + microcline + muscovite + biotite. Geochemical analysis reveals 

silica concentration for whole rock pegmatites while other mineral extracts had lower 

silica content while alumina concentration varies across the extracts. Across all 

samples, SiO2 ranged 35.22-82.17%, CaO ranged 0.01-2.61%, Na2O ranged 0.09-

10.16%, and P2O5 ranged 0.01-0.23%. Al2O3 ranged 9.84-34.81%, Fe2O3 ranged 0.10-

19.70%, MnO ranged 0.01-1.69%, MgO ranged 0.02-8.55% and K2O 0.08-12.66% 

with highest concentration of Al2O3, TiO2, MnO, MgO and Fe2O3 in biotite extracts. 

 Geochemical analysis revealed low concentration of rare metals. Ta, Nb, Ta, 

Cs and W had values (in ppm) ranging 0.54-76.00, 0.60-73.00, 0.70-50.00 and 97.00-

933.00 in whole rock pegmatites; 0.32-69.00, 0.60-61.00, 0.90-351.00 and118.00-

600.00 in feldspar extracts; 33.00-107.00, 237.00-330.00, 40.00-252.00 and 17.00-

214.00 in muscovite extracts; 1.00-69.00, 4.80-312.00, 0.70-475.00 and 28.00-699.00 

in biotite extracts while ∑REE (in ppm) in whole rock pegmatites and extracts vary 

from low to moderate with values ranging 0.39-555.77, 0.19-58.36, 0.16-3.4 and 

12.79-486.83 in whole rock, feldspar extracts, muscovite extracts and biotite extracts 

respectively. 

Plots of K/Rb versus Cs, Ta versus Ga, Ta vs Cs, Ta vs Cs + Rb, Ta vs K/Cs as 

well as the Th/u vs K/Cs  revealed low level of Ta-Nb mineralisation the pegmatites 

and extracts.  Nb/Ta and Ta/W ranged from 0.41-7.74 and 0.01-0.80 in whole rock 
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pegmatites, 0.85-6.02 and 0.01-0.25 in feldspar extracts, 2.35-7.29 in muscovite 

extracts and 3.54-12.73 and 0.01-0.92 in biotite extracts.  

Fluid characterisation using microthermometry on pegmatitic quartz revealed 

three types of aqueous inclusions. Type 1 are two-phase LV (L>V) inclusions (~2 - 

100 μm) occurring as isolated individuals, in clusters and in trails in quartz. They are 

primary to pseudosecondary in origin. Microthermometric analyses yield final 

temperature of melting of ice which ranged -19.5 oC to -0.1 oC which is equivalent to 

salinity of 0.18 to 22 eq. wt. % NaCl while TH values ranged from 80°C to 261°C. 

Type 2 inclusions are three-phase (L+V+S) inclusions (~2-15μm) occurring in 

isolation and in trails. They are primary to pseudosecondary in origin. 

Microthermometric analyses yield TH values of 143°C to ~335°C with higher TH 

values inferred to be magmatic in origin. Two distinct solid phases were being 

observed in samples obtained from Omoba, Owode and Coco, both types are <3μm in 

longest dimension and may indicate the presence of sylvite (KCl).  

Type 3 are monophase (liquid) aqueous inclusions at room temperature and 

occur as isolated individuals, as clusters and in trails that also contain Type 1 and Type 

2 in quartz. Type 3 is primary to pseudosecondary in origin and is indicative of 

trapping temperatures of below 50°C; and they record migration of low temperature 

aqueous fluids.  

 

5.2: Conclusion  

Based on geochemical analytical results and geochemical variation plots, pegmatites in 

the studied locations have low level of Ta mineralisation and moderate levels of Nb 

and W mineralisation in muscovite extracts compared to other extracts. Fluid 

characterisation revealed pegmatites are magmatic in origin but meteoric fluids were 

involved in pegmatite genesis in some of the areas. 

 

 5.3: Recommendations 

1. Fluid inclusion analyses on additional samples should be carried out to 

consolidate results for each pegmatite.  

2. Identification of the solid phases in Type II fluid inclusions should be done 

using Laser and Raman Microspectroscopy.  
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