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Abstract

Lateral Transshipment (LT) (stockmovement between facilities on the same echelon), has

been used as an option for reducing the occurrences of stockout and excess stock in many

multi-echelon environments. Several LT models have been formulated for many supply

chain systems. However, the incorporation of LT into a system which jointly optimises

facility location and two-echelon inventory decisions with Response Time Requirement

(RTR) has not been considered. Therefore, this study was designed to incorporate LT

into a two-echelon system which jointly minimises expected cost emanating from facility

location and inventory decisions subject to RTR.

The customer arrival at facilities was modelled as a single server queue with Poisson

arrivals and exponential service rate. The balance equation of this queue along with the

distribution of the number of orders in replenishment (Nvw) was used to derive service

center steady state expected level for on-hand inventory (Ivw), backorder (Bvw), and

LT (Tvw). The derived steady state expected levels were used to formulate the two-

echelon LT model. This model was decomposed using Lagrange relaxation. Relaxation

of the assignment variable’s integrality was used to further reduce the model. The

reduced model was checked for convexity using second order conditions. Karush-Kuhn-

Tucker (KKT) conditions were used to investigate global optimality, which was also

examined for the case of stochastic occurrences. Multiple computational experiments

were performed on three data sets using general algebraic modelling system for the

values: duvw(max)
= 100, 150; ρ = 0.5, 0.9 and τ = 0.2, 0.3, 0.5, where, duvw(max)

, ρ and

τ are customer distance, utilisation rate and RTR, respectively.

The expected number of customers in queue at a service center was: E[Nvw] =∑
u∈U λuYuvw

λ0

ρS0+1

1−ρ +
∑

u∈U λuYuvwαw. The derived steady state expected levels were:

Ivw =
∑Svw−1

s=0 (Svw − s)P{Nvw = s}, Bvw =
∑

u∈U λuYuvw
λ0

ρS0+1

1−ρ +
∑

u∈U λuYuvwαw +∑
u∈U λuYuvw

λw

(∑|w|Svw−1
s=0 Fw(s)− |w|Svw

)
and

Tvw =
∑Svw−1

s=0 Fvw(s)− Svw −
∑

u∈U λuYuvw
λw

(∑|w|Svw−1
s=0 Fw(s)− |w|Svw

)
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The two-echelon LT model formulated was:

min
∑
w∈W

∑
v∈V

(
fvwXvw + hvwIvw + pvwBvw + qvwTvw +

∑
u∈U

λuYuvwduvw

)
+ h0S0

Subject to

∑
v∈V Yuvw = 1

Yuvw ≤ auvwXvw

Svw ≤ Cvw

S0 ≤ C0[
ρS0+1

λ0(1−ρ)
+ αw − τ

]
≤

∑|w|Svw−1
s=0 [1−Fw(s)]

λw

Xvw, Yuvw ∈ {0, 1}.

The Lagrange dual problem was:

max
θ,π≥0

min
X,Y,S

∑
w∈W

∑
v∈V

{
fvwXvw + (hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw

+ (pvw − qvw + θvw)

∑
u∈U λuYuvw

λw

+ (pvw − qvw)

∑
u∈U λuYuvw

λw
(

|w|Svw−1∑
s=0

Fw(s)− |w|Svw) +
∑
u∈U

λuYuvw
(pvw + θvw)ρS0+1

λ0(1− ρ)

+
∑
u∈U

(((pvw + θvw)αw + duvw − θvwτ)λu − πu)Yuvw

}
+
∑
u∈U

πu

Subject to

Yuvw ≤ auvwXvw

Svw ≤ Cvw

S0 ≤ C0

Xvw, Yuvw ∈ {0, 1}
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The reduced model obtained was:

min
0≤Yuvw

(hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw

+ (pvw − qvw + θvw)

∑
u∈U λuYuvw

λw

+ (pvw − qvw)

∑
u∈U λuYuvw

λw
(

|w|Svw−1∑
s=0

Fw(s)− |w|Svw) +
∑
u∈U

λuYuvw
(pvw + θvw)ρS0+1

λ0(1− ρ)

+
∑
u∈U

(((pvw + θvw)αw + duvw − θvwτ)λu − πu)Yuvw

whereλu, λw, λ0, Yuvw, Lw, (Svw, S0), (Cvw, C0), Xvw, auvw, τ, fvw, hvw, pvw, qvw andduvw
are, customer demand, pool demand, plant demand, assignment variable, lead time, base-

stock levels, capacity, location variable, distance variable, facility, holding, backorder,

LT and transportation costs, while, θvw, πu are Lagrange multipliers and Fvw, Fw are

facility and pool distribution functions, respectively. The reduced model was convex

and satisfied KKT conditions, establishing the existence of global minimum for the two-

echelon LT model. The stochastic case was also shown to be convex. The computational

experiment showed that expected cost remained stable with increasing RTR, and that the

model resulted to lower cost when compared with the model without LT.

The two-echelon joint location-inventory model with response time requirement and

lateral transshipment obtained lower expected cost than the model without lateral trans-

shipment. Stability of expected cost with varying response time requirement was also

established.

Keywords: Supply chain, Convexity, Karush-Khun-Tucker conditions, Global optimality,

Basestock level.

Word count: 473
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Chapter 1

INTRODUCTION

1.1 Introduction

The day to day running of man’s life is largely dependent on the usage of various

machines or eqipments in various areas such as transportation, electricity, medicine,

communication, finance, etc. A common trait of these machines is that their components

are subject to failure. Hence, there is always a requirement from customers to replace

failed parts within an acceptable time frame. To satisfy this requirement, manufacturers

need to have efficient service parts supply systems that guarantee customers’ desired

response times. Items kept aside for purposes of meeting this customer requirement are

called service parts. The relevance of service parts in various sectors and in individuals

personal lives cannot be overemphasized. Inavailability or inadequacy of these parts will

almost surely lead to a halt or slow down activities in businesses and in man’s everyday

life.

Generally, there are three classifications of decisions made in service parts supply

systems; namely, tactical, strategic and operational decisions. Strategic decisions have

to do with determining what customer requirements are and how to distribute resources

to meet these requirements. Decisions that have to do with facility location planning are

strategic decisions. Tactical decisions are made to ascertain inventory level necessary

to meet given operational objectives at certain future time. Operational decisions drive

the everyday running of the system. Distribution planning decisions are examples of

operational decisions.

Decisions on inventory and location are critical for efficient running of service parts

supply system. If available parts in the system are scarce, customers’ waiting times

(response times) will be prolonged. If surplus parts are available, the operating cost of

the system will be very high. If available facilities are too few, customer satisfaction and

1



service levels (response time requirements) may not be guaranteed, whereas, an increase

in the total number of facilities will also result in increase in the total operating cost.

This highlights the need for efficient design of replenishment systems and the optimal

allocation of resources within these systems if the decision maker aims to attain cost-

effective management of service parts. Consequently, decision makers are always on the

look out for more efficient means of optimising supply chain decisions in their firms.

Conventionally, decisions on distribution and storage are not jointly considered, this is

partly as a result of the complexity that results from their joint consideration. Moreover,

decisions on distribution (operational) and stocking (tactical) are considered indepen-

dent of decisions on facility location and network design which are strategic decisions.

Integrated problems have been attracting the attention of numerous researchers who

have highlighted the benefits of joint consideration of location and inventory decisions.

Researchers have established that considering facility location decisions independent of

inventory decisions can result in supply chain systems that are below optimal Daskin

et al. (2002), Candas and Kutanoglu (2007). Research on joint location inventory sys-

tems further evolved to consider joint two-echelon systems with service (time) constraints

Mak and Shen (2009), Riaz (2013). Nonetheless, jointly considering facility location,

inventory and distribution decisions with customer service level considerations (response

time requirements) remains a very challenging mathematical modelling task.

Customers in need of service parts usually have desired response times because

they intend to get their machines fixed and operational within their desired response

times. This makes firms try to locate facilities close enough to customers and this

is the motivation for two-echelon systems with a plant at the top echelon and Service

Centers (SVCs) at the lower echelon. For systems with slow demand arrival process,

it makes sense to assume that direct shipment to the demand node from the plant is a

better alternative to keeping inventory at SVCs. Yet in many situations, customers are

service time sensitive. Hence, most firms try to maintain positive inventory levels at

SVCs which are close enough to customers whose locations are not close to the plant.

From Caglar et al. (2004), such system is appropriate for service parts structures that

have SVCs stocked with service parts inventory. Also situations could arise in which a

Service Center (SVC) experiences a stock out situation and the customer’s sensitivity to

response time could make the customer seek for other alternatives. Thus, the decision

maker has to factor in a way to manage stock out situations.

2



The sensitivity of customers to response times and the desire of the decision maker to

satisfy this customer requirement while working within a given budget, makes the incor-

poration of lateral transshipment an interesting and attractive area of possible research

for many two-echelon joint systems. Lateral Transshipments (LTs) are stock transfer-

ence that occur among same-echelon locations in inventory systems and their effect on

two-echelon joint systems with response time constraints has not been studied. If a SVC

experiences stockout, demand at that SVC can be fulfilled by means of stock transference

from another SVC. LTs are also useful to decision makers with the objective of reducing

the penalties of stockouts at facilities Axsater (1990). The complexity that arises from

LTs lies in determining the right time to initiate a stock transfer and the destination which

will be optimal for the system. It is likely that an LT reduces the immediate stock out

risk at its destination but it unavoidably increases future risk of stockout at the origin.

Therefore an appropriate LT policy must evaluate these risks and determine when the LT

cost is dominated by its expected benefit.

The appropriate LT policy is usually dependent on the characteristics of the inventory

system in use. In this study, the SVCs and plant inventory are controlled with a base-stock

policy. Base stock or (S -1, S) policies are apparently fitting for slow moving items that

have high holding cost for inventory. Moinzadeh and Lee (1986) analytically check the

optimality of base stock policies given specific problem parameters. Their findings imply

that the optimality of base stock policy holds in a setting that admits low rate of demand

and low setup costs in comparison with holding costs. This policy is widely applied in

service parts inventory structures in which malfunctioning parts are replaced with new

ones from on hand stock. A low malfunctioning system implies a base-stock policy is

just appropriate. This is found in many areas, namely, transport, oil and gas, transport,

and IT firms. The problem considered in this study may be treated as creating a structure

for spare parts inventory.

In this study, we further stretch the research on joint location-inventory systems

by incorporating lateral transhipment into a centralised two-echelon spare parts system

which jointly considers decisions on facility location and inventory with customer service

constraint (response time requirement). This system involves a central plant at the top

echelon, which has constraints on capacity and production. This system also has a

finite number of SVCs at the lower echelon, which satisfy demand from geographically

dispersed customers. A SVC satisfies its assigned demand via on-hand inventory, LT or
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backorder. The system also has a response time requirement across all facilities.

The problem here is to incorporate LT into a two-echelon joint inventory-location

system and simultaneously determine optimal number of SVCs, optimal assignment of

customer to SVCs, the on-hand inventory level, backorder level and lateral transshipment

level at SVCs, backorder and on-hand inventory level at the plant, under a response time

requirement for demand. We consider the problem by formulating and solving a model

which minimises total cost for the system.

1.2 Motivation for the study

Cost minimisation and service improvement are two contrasting management objec-

tives. Cost minimisation seeks to reduce expenses, while, improving service could lead

to increase in total system cost with the firm experiencing either an increase or a decrease

in profit margins. If the decision maker’s only objective is to minimise costs, it is very

likely that in the long run, customer service will suffer. Also, if the decision maker’s only

objective is to improve service, there is a chance that the firm might not make tangible

profit due to the cost required to improve service. Thus, the need for more efficient means

of balancing the contrasting objectives of cost minimisation and service improvement

exists and will always exist.

Integrating decisions on facility location, inventory and distribution has been a very

interesting and challenging aspect in the study of supply chain for spare parts. The

consideration of facility location decisions independent of inventory decisions can result

in supply chain designs that are below optimal Daskin et al. (2002). Some authors have

investigated integrated supply chain systems with service considerations (response time

requirements) Caglar et al. (2004) and Mak and Shen (2009). Also, many authors have

considered the effects of LT in many systems and LTs have been found to improve service

levels in inventory problems Lee (1987). However, LT has not been considered for the

system treated in this thesis.

We are thus motivated to consider a new approach for formulating models which

helps the decision maker to balance the contrasting objectives of cost minimisation and

service improvement. We do this by incorporating LT into an integrated two-echelon

system with response time requirement. So far, researchers have not yet formulated a

model that incorporates lateral transshipment into a two-echelon system that simulta-

neously considers facility, inventory and distribution decisions subject to response time
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requirement.

1.3 Statement of the problem

Lateral Transshipment (LT) (stock movement between facilities on the same echelon),

has been used as an option for reducing the occurrences of stockout and excess stock in

manymulti-echelon environments. Caglar et al. (2004) studied amodel for a two-echelon

spare parts systemwith RTR controlled with continuous (S-1,S) policies at both echelons.

The system considered by Caglar et al. (2004) is made up of a plant, multiple service

centers and geographically spaced customers. Mak and Shen (2009) integrated facility

location into the problem considered by Caglar et al. (2004). Several LT models have

been formulated for many supply chain systems. However, the incorporation of LT into a

system with similar structures as those of Caglar et al. (2004) and Mak and Shen (2009)

has not been considered. In other words, the incorporation of LT into a system which

jointly optimises facility location and two-echelon inventory decisions with response time

requirement has not been considered. Therefore, this study was designed to incorporate

LT into a two-echelon system which jointly minimises expected cost emanating from

facility location and inventory decisions subject to response time requirement.

1.4 Research aim and objectives

The aim of this study is to formulate and solve a model which incorporates LT into

a two echelon system with response time requirement which jointly determines optimal

facility locations, inventory stocking levels at SVCs, lateral transshipment levels at the

SVCs, backorder levels at SVC, inventory stocking levels at the plant, and backorder

levels at the plant.

The following are the objectives of this study:

1. To evaluate the distribution of number of units in transit to replenish inventory at

SVCs and at the plant.

2. To determine steady state expected inventory levels at both echelons.

3. To formulate mathematical models for joint two-echelon systems with response

time requirement and lateral transshipment.

4. To investigate properties of the models.

5



5. To examine optimality conditions for cases of probabilistic failure of SVCs and

stochastic demand.

6. To perform computational experiments on the model so as to highlight model

properties using General Algebraic Modeling System (GAMS).

1.5 Research methodology

The arrival of customers at SVCs followed the arrival process of the M/M/1 queue

system. The balance equation of this queue along with the property of the base stock

inventory control policy was used to derive service center steady state expected level

for on-hand inventory Ivw, backorder Bvw, and LT Tvw. The derived steady state levels

were used to formulate the two-echelon LT model. This model was then decomposed

via Lagrange relaxation. This model was further reduced by relaxing the assignment

variable’s integrality constraint and fixing the base stock levels. The reduced model

was investigated for convexity. Karush-Kuhn-Tucker (KKT) conditions were used to

investigate global optimality, which was also examined for the cases of probabilistic

facility failure and stochastic demand. Computational experiments were carried out

using GAMS.

1.6 Structure of the study

This thesis’ structure is as follows. In Chapter One, we present the introduction. In

Chapter Two, we present the literature review. Chapter Three consists of methodology.

In Chapter Four, we present results and discussion, and in Chapter Five, we presents our

summary and conclusions.
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Chapter 2

LITERATURE REVIEW

2.0 Introduction

The research carried out in this study consists of two major areas in service parts

supply chain. These areas are:

1. inventory-location

2. lateral transshipment

This chapter began with review of literature on inventory-location which are relevant

to this study . Thereafter, a review was also presented of relevant literature on lateral

transshipment.

2.1 Inventory-location

Significant portions of operations research literature have been fully dedicated to

the study of facility location models. Location models are usually designed to answer

questions like what number of facilities should be opened, what should be the capacity

of opened facilities, where should the facilities be located and number of customers

per facility? Daskin (1995). Some examples of location models are; fixed charge

location problems, covering problems, median problems and center problems. Drezner

(1995), Daskin (1995) along with Drezner and Hamacher (2002) treat location problems

extensively. Many conventional facility location model formulations are deterministic;

that is all of the model parameters are assumed to be known and constant. While the

assumption for stochastic location models is that there are model parameters that are

uncertain and the aim is to ascertain the best decision given uncertainty. Snyder (2006)

presents a review on stochastic location models.
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Until recently, location decisions have been considered independent of inventory

decisions. The literature on inventory is very wide, so we restrict this review to models

that have similar structure to our problem.

The paper by Shebrooke (1968) has made one of the greatest impacts in multi-echelon

inventory research. He considered a mathematical model applicable to repairable items

called "Multi-Echelon Technique for Recoverable Item Control (METRIC)". METRIC

model uses an approximation to the distribution of items in replenishment to circumvent

the computationally burdensome exact representation, this has given it wide applicability.

All facilities are controlled using (S-1,S) or basestock policies. METRIC model is

used to get an approximate value for the total expected backorder in the system for

minimisation. Generalising Sherbrooke’s model, Muckstadt (1973) developed theMOD-

METRIC model for the consideration of items using hierarchical parts structures. The

model allows two levels of parts to be considered, an assembly (e.g. an engine) and it’s

components.

Graves (1985) considered a model which determines inventory stock level in multi-

echelon systems. He presented an exact procedure for determining expected inventory

level. He showed numerically that his approach was more accurate than the METRIC

approach under same problem structure. The downside of his approach is that it is

computationally onerous. Sherbrooke (2004) gives full treatment of inventory in multi-

echelon arena.

Caglar et al. (2004) studied a model for a two-echelon spare parts system controlled

with continuous (S-1,S) policies at both echelons. They imposed a constraint on response

time and created efficient algorithms to determine optimal stock level at both echelons.

Shen et al. (2003) looked at an integrated location-inventory system that employed a

continuous review (r,Q) policy for inventorymanagement. They utilise an economic order

quantity based approximation of the stochastic demand. The model displays the effect of

economies of scale, Eppen (1979), since demand pooling from a number of retailers to a

single facility causes a reduction in safety stock (Eppen’s model clearly shows the savings

achieved when risk pooling is allowed). As a result of the term dependent on inventory

cost, which is approximated by the EOQ, the objective function happens to be nonlinear.

They assume identical mean-variance ratio for each retailer demand. Hence the problem

was solved by column generation algorithm following the combination of both square root

terms in the objective function. Computational results of their study suggest that when
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decisions on location and decisions on inventory are not jointly optimised, the facilities

opened will exceed the optimal number. Daskin et al. (2002) consider nonlinear integer

programming location problem that integrates inventory costs and cost of safety stock.

They utilised Lagrange relaxation and showed that their relaxation technique improved the

computational time of Shen et al. (2003). Shu et al. (2005) slackened the identical mean-

variance ratio assumption. They utilised submodular function minimisation to solve

the problem. Shen and Qi (2006) introduced costs on operational routing and obtained

a model which was a nonlinear integer problem. Shen and Daskin (2005) examined

the relationship between minimising cost and maximising service. Their service level

definition is dependent on distance from distribution centers to retailers. They showed

that the structure of the model having service constraints was similar to the structure of

the model of Shen et al. (2003) and that their model was solvable with same algorithms.

The authors further introduced a genetic algorithm which is able to efficiently produce

the trade-off curve between service and cost. Their results suggested that significant

service improvements can be attained relative to the solution that yields minimum cost

at relatively slight incremental cost.

Ozsen et al. (2008) and Ozsen et al. (2009) extended the model by Shen et al. (2003)

by considering the effects of capacitated facilities which follow single sourcing and

multiple sourcing. This is a departure from the traditional approach that defines capacity

on the basis of maximum demand assignable to a facility. The authors imposed a limit

on storage space available for holding facility inventory. They formulated a nonlinear

model having nonconvex objective function which was solved using Lagrange relaxation

and linear relaxation. Shen (2006a) further extends the model by relaxing the assumption

of all demand being served. He presented a model which allows demand choice with

flexible pricing. The results shows that flexility of demand-choice can greatly improve

profitability of the supply chain this is because the firm is free to give higher service

priority to more profitable customers. Shen (2006b) gives a well treated survey of these

models. So far, we have only considered single-echelon problems.

Nozick and Turnquist (2001) considered locating Distribution Centers (DCs) in a two-

echelon environment that holds inventory atDCs and at a plant. Their system environment

is like the one considered in the conventional literature of two-echelon systems for

inventory, e.g. Shebrooke (1968) and Graves (1985). The (S-1,S) policy is utilised

to control inventory at the DCs at the plant. Also, the plant has unlimited production
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capacity. They approximated safety stock using linear approximation dependent on

number of DCs. When the inventory cost is constant and incorporated into the fixed

cost of location, the resultant location model has similar structure with the fixed charge

problem without capacity bounds.

Candas and Kutanoglu (2007) presented an integrated inventory-location multi-

commodity problem for a two-echelon system problem which optimises fill rates and

stock levels in order to achieve a time driven service level for the entire system. They

formulated an integer programming model which was also nonlinear and proposed a

linearisation-based procedure for solving small and medium sized cases. Moreover, they

compared the approach of simultaneous consideration of decisions on inventory and lo-

cation in a model to the approach that determine optimal location decisions first before

finding optimal inventory levels for the given facility locations. Their result showed that

following the simultaneous approach results in solutions which can attain same service

level with reduced cost.

All papers mentioned so far considered deterministic replenishment lead time, except

that of Nozick and Turnquist (2001) who modelled the replenishment process with an

M/G/∞ queue. The inventory-location literature has only a handful of models that

consider stochastic replenishment lead times.

Eskigun et al. (2007) consider supply chain network models that incorporates the

consequence of choice of mode on customer satisfaction and system- wide service time.

Their models permit nonidentical lead times for different modes. Moreover, the node

response time is dependent on the quantity of demand processed. Their approach resulted

in deterministic models and they used mean lead time from the modes as their input.

Their models did not consider the effects of inventory.

Sourirajan et al. (2007) studied a single-item joint inventory-locationmodel whose re-

plenishment lead time is stochastic and which is dependent on the demand size processed

by the facility. The mean replenishment lead time was represented by an approximate

queue formula. They utilised stochastic lead time of the resulting model to derive the

required level of safety stock pertaining to each facility. Benjaafar et al. (2008) studied

the joint optimisation of decisions on location and inventory control for a one-echelon

system and represented the replenishment process by an M/M/1 queue that considered

the congestion effect.

Mak and Shen (2009) considered a two-echelon joint location-inventory problem that
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incorporated service consideration. They modelled the manufacturing process as a queue

and formulated a mixed integer nonlinear programming model and found the solution by

means of a Lagrange heuristic.

Puga and Tancrez (2016) analysed a location-inventorymodel with stochastic demand

for large supply chain systems. They gave a continuous nonlinear formulation which

integrated decisions on stocking, location and allocation, and included the transportation,

inventory and facility costs. They relied on a property which made their model linear

when some variables were fixed. They proposed a heuristic based algorithm which

solved the resulting linear program and the solution was then utilised in improving

variable estimations for the subsequent iteration. Computational experiments showed the

efficiency of their heuristic algorithm for finding solutions that are fast and almost optimal

for large supply chain systems. However they did not incorporate service constraints

neither did they include lateral transshipment in their formulation.

Kok et al. (2018) very recently, carried out a comprehensive literature review of

inventory location problems with demand uncertainty. They proposed a typology for

inventory management in multi-echelon systems and also identified current research

gaps.

2.2 Lateral transshipment

Existing LT literature have two key properties which emanate from timing of LTs. LTs

can be planned to occur at scheduled times before realisation of all demand, or they can

be performed at any time to salvage zero inventory situations. These two classifications

of transshipments are known as proactive and reactive. Proactive transshipment models

perform LTs to rebalance inventory in all locations belonging to the same echelon at

preset instants in time. This is done in advance and is done in such a way that the

related costs are minimal. Reactive transshipment models perform LTs in response to

circumstances in which a facility faces a zero inventory level (or the likelihood of a zero

inventory level) and another has enough stock available. This class of LT is appropriate

for settings that have LT costs which are reasonably low when compared to inventory

holding cost and penalty cost of not meeting customer demand instantly; this commonly

occures in spare parts systems. Kranenburg (2006) considers a semi-conductor firm

ASML under a reactive LT setting, and shows that incorporating LTs results in annual

savings of up to 50% savings of total service parts inventory cost.
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LTs have been expressed using different terminologies, namely, substitutions and

transfer of stock, reallocation of stock, lateral resupply, etc. Permitting LTs makes the

system more flexible, the implication of this being that controlling and optimising the

system becomes more challenging. In addition to deciding ordering dynamics from the

’regular’ supplier, decisions timing, size, source, and destination of transshipment are

also necessary. Due to this additional difficulty, LT literature is majorly limited to two

echelons systems, further limitation is also observed in some contributions that consider

only one echelon and/ or allow LTs among just a restricted number of facilities. However,

optimal control of LTs has been studied under various differing scenarios. Some of such

scenarios are; number of echelons (one or two), stocking locations, ordering policy, etc.

A major characteristic of a LT policy lies in the type of pooling employed; complete

pooling or incomplete/partial pooling. Policies in which the LT facility is permitted to

share all its stock are classified as complete pooling, while policies which don’t permit a

facility sharing all its stock are classified as partial pooling.

The several contributions to LT literature are further categorised by certain character-

istics which depend on the inventory policy and their modeling of LT specifically. Listed

below are inventory system properties that help to classify the literature on LTs:

1. Number of entities; single entity or multiple entities

2. Number of echelons; multi-echelon or single echelon

3. Number of facilities; 2, 3, ...

4. Identical facilities? ; Yes, (do they have uniform cost) or no

5. Unfulfilled demands; allow lost sales or allow backorder

6. Timing of order policy; periodic or continuous

7. Ordering policy/rule; (S - 1, S), (s,S), (R,Q), General or Other

8. Transshipment type; reactive or proactive

9. Type of pooling; partial or complete

10. Type of decision makers; decentralised or centralised

11. LT cost; per transshipment, per item, both or none
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This research focuses on reactive transshipments in a centralised setting. The type

or transshipment considered in this study is reactive. Consequently we review reactive

transshipments in the next subsection.

2.2.1 Reactive lateral transshipments

In this subsection, we review existing literature on reactive LTs under periodic review

and continuous review settings.

2.2.1.1 Reactive lateral transshipments with periodic review

Here LTs are considered under the following classifications: one echelon centralised

systems and two echelon centralised systems.

2.2.1.2 One echelon centralised systems

The pioneer publication on reactive transshipment was the article of Krishnan and

Rao (1965). Their model followed periodic review and they obtained an expression

for optimal inventory levels for several locations which allow transshipment at each

replenishment period’s end once demand is known. They assumed same transshipment

costs across all locations, and showed that it is sufficient for the transshipment rule to

select one location with an excess to satisfy the stockout in another location.

Continuing with this approach, Robinson (1990) considered a problem that allow

multiple locations and multiple periods with non-uniform costs and demand distributions

and multiple periods. They established the optimality of the (S-1,S)/ basestock policy

and demonstrated the stationarity of the optimal order-up-to point. The optimal solution

only exists for scenarios that have two non-identical facilities or for systems that have

multiple identical facilities. Authors suggest an approximation based solution that uses

Monte Carlo sampling to avoid the complexities associated with the problem for more

general multi-location environments. However, the precision of this method is dependent

on demand sample, and there is no guarantee of convergence to optimality. Nonas and

Jornsten (2007) found a different ’greedy transshipment rule’ which solves to optimality a

three location scenario while the multi-location scenario can only be solved given certain

conditions.

Yang and Qin (2007) consider a similar model from another perspective, which is

consideration of ’virtual’ transshipments. Their study is domiciled in the energy industry

and its possible for transshipments to occur even when both locations have negative
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stock, thereby redistributing backorders. This underscores one of the various means

of diversifying transshipment policies. Another case of diversification is the work by

Kochel (1996) who consider the likelihood of stock sales outside the network before

demand arrival and then performing transshipment after demand arrival.

A similar model to Robinson (1990) is the one by Herer et al. (2006), who examined a

more widespread cost mechanism and utilise LP in addition to a network flow structure to

develop a procedure that is more robust than the procedure of Robinson (1990). This was

further enhanced by Ozdemir et al. (2006) with the introduction of capacity constraints

to the model. They observed that the constraints alter the distribution of stock in the

system’s inventory and also result in an increase in total cost.

Hu et al. (2005) adopt a different method to improve the problem for multiple loca-

tions. They formulate a simplified model that is able to approximate order policies for a

system with few stocking points and low transshipment cost in comparison with holding

cost and cost of stockout. The defining property of the model is the assumption of free

and instantaneous transshipments.

Moinzadeh and Lee (1986) also presents same pattern of reactive transshipment after

demand. He considered amodel having two locations alongwith negligible transshipment

times and lead times. Tagaras and Cohen (1992) later incorporated positive lead times.

These authors treated complete and partial pooling, and decisions on stocking were

computed by means of an approximation heuristic. It was shown that for this system

complete pooling performed best. Tagaras (1999) more comprehensively consider a

similar three-location network, he found that the exact transshipment does not greatly

affect the results in a complete pooling environment. He showed that increasing the

number of locations resulted to increase in the advantage of transshipments.

Further work on systems with multiple locations was done in Archibald et al. (2009).

They considered the real life scenario of a tyre dealer with a wide location network.

Archibald et al. (2009) reduced the difficulty associated with dimensionality for systems

of this type by getting an approximate value for the dynamic programming function. This

was done using pairwise decomposition, which considered two locations per time and

was shown to be an improvement on previous heuristics proposed by Archibald (2007) in

a complete pooling environment. One constraint of the model is that the review period is

same for all locations. Archibald et al. (2009) slackened this constraint by utilising a two-

step heuristic which first computed a static policy to ascertain which location satisfied a
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particular demand, and then applied dynamic programming to improve the policy.

A different research direction is the consideration of systems that have dynamic

deterministic demand. Herer and Tzur (2001) considered a problem with two locations

and developed a solution for such problem. Seeking to determine optimal transshipment

and ordering decisions within a finite frame, they considered key characteristics of the

system. These characteristics form a framework which makes it possible to obtain

solutions for models of this type of model in polynomial time. Herer and Tzur (2003)

extended this problem and considered a setting with multiple locations.

Finally, Herer et al. (2002) take a more general look at the importance of trans-

shipments under the label ’legility’ which intends to create an inventory system that is

lean and agile inventory. By examining a number of the models previously discussed,

they showed that transshipment helps to improve the system performance under the two

criteria and produced a procedure for analysing this information.

2.2.2 Centralised two-echelon systems

For systems having two echelons stockouts can be satisfied via several means. One

possibility is LT but there could arise situations for which it is more beneficial to have

emergency shipments from a central warehouse. Wee and Dada (2005) considered this

problem using five diverse combinations of emergency shipment, transshipment, and

no movements at all. He devised a procedure for determining the optimal setup with

respect to a particular model description. His research helped to establish emergency

stock movement structure.

Dong and Rudi (2004) examined the LT benefits for a manufacturer supplying a set of

retailers. Comparing the case in which the price leader is the manufacturer, with the case

having exogenous prices, they found that for exogenous prices, the retailers benefitted

more when demand within the entire network is uncorrelated. They used a Stackelberg

game to model endogenous price and found that the manufacturer took advantage of his

price leadership to achieve increase in his benefits, this was worse for retailers who chose

to use transshipments. Their results are valid for normal distributed demand, Zhang

(2005) extended the results in include general demand distributions.

A case study mainly based on retail was considered by Bendoly (2004) who studied

a model having store and Internet based customers. Bendoly utilised LT ideas to show

how a system’s performance can be improved via partial pooling of items. The model
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considered a retail environment inwhich stores operate side by sidewith internet channels.

2.2.3 Reactive lateral transshipments with continuous review

Reactive LT models look to transship anytime a stockout occurs or whenever there is

a likely stockout. Reactive LT models can use either partial or complete pooling. This

research focuses on complete pooling, hence only literature on complete pooling alone is

considered. Complete pooling is frequently used in environments such as, service parts,

that have typically large holding and backorder costs when compared with transshipment

cost. METRIC is the basic multi-echelon model for repairable service parts Shebrooke

(1968). In this model, damaged parts are taken to a central base for repairs. This base

then supplies the individual bases with the repaired items. A (S-1,S) ordering system is

used by these bases to resupply their stocks.

Lee (1987) considered LT in such model. Lee divided stock locations into various

pooling groups, and focused on one of such groups. He assumed identical locations with

Poisson demand. Damaged parts are taken for repairs at the designated central repair

facility having infinite repair capacity with positive and probabilistic repair times. Lee

tested three possible rules for determining transshipment source: maximum on hand

stock, random selection, minimum number of orders outstanding , and random selection.

For all rules, he derived approximations for the fill rate service level which is used for cost

minimisation under some service level constraint. Lee found that for rules tested, using

emergency LT led to substantial savings due to less stock requirement at the bases. Also,

for all rules tested, Lee found no substantial difference in performance. Axsater (1990)

relaxed the assumption made concerning identical locations. He also included stock

holding for the central depot and presented improved methods for the approximation of

service level.

Kukreja et al. (2001) studied a similar model and the lower echelon was their only

focus. They utilised a different rule to select transshipment source: transship from

location with on hand stock and the minimum transshipment cost. Kukreja et al. (2001)

found fill rate approximations which they applied to a heuristic for determining optimal

location stock levels. Kukreja and Schmidt (2005) extended this model to consider

systems controlled with (s,S) policies and have demand processes that are compound

Poisson. They selected the transshipment source using a dynamic programming rule and

proposed a simulation based approach for finding the optimal values of s and S. Huo and
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Li (2007) considered a different order policy in similar setting. They considered the lower

echelon of a system controlled with a (R,Q) rule and their approximations were similar

to those obtained by Axsater (1990). A model that was similar to the model of Axsater

(1990) was considered by Jung et al. (2003). Their facilities had finite repair capacities

with fill rate approximations which were used in an algorithm for finding optimal stock

level. Sherbrooke (1992) considered same model as Axsater (1990), but differed by

evaluating expected backorder. He determined stock levels using the VARI-METRIC

model by Sherbrooke (1986) and evaluated backorder decrease due to the application of

LT. He concluded that the LT has the greatest impact on parts possessing low demand

rates. For a system with one echelon, Wong et al. (2006) and Yanagi and Sasaki (1992)

determined the downtime due to waiting for a LT or backorders and thus particularly

considered non-zero lead time. Wong et al. (2006) built on a previous model having

negligible transshipment lead time Wong et al. (2005), and derived exact service level

expressions (demands fraction fulfilled without using backorder), the expected downtime

due to LT, and the expected value of LT. They derived an approximation for expected

downtime due to backorders. Yanagi and Sasaki (1992) focused on the development of

approximations for the average number of failed items in addition to the probability of a

backorder occurrence.

An important feature also considered in spare parts modelling is time-based service

level. Lee (1987) and Kutanoglu (2008) considered this sort of system. The requirement

to satisfy fractions of demand within a given time interval is known as time-based service

level. The latter article examined cost and service level in networks with two or three

locations. This allowed the achievement of time-based service level with particular sensi-

tivity to demand changes. This model pointed out important insights such as how service

requirements that are time-based are more important in spare parts environments than

fill rate, and how emergency LT results in improvement in response time performance.

The former paper considered the determination of appropriate stocking levels so as to

minimise cost. This was achieved by using an enumeration algorithm.

Although many of the models previously discussed are similar, there are slight dif-

ferences between these systems that can significantly change which policy is best for the

system. Utterbeeck et al. (2009) considered this problem and proposed a procedure for

determining the most efficient from six viable network structures for a particular system.

They considered single and double echelon networks with available options being both
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LT and emergency shipments. They determined the best structure by utilising an opti-

misation setup with guided local search. This provided a new transshipment problem

feature which can be studied and optimised along with the transshipment and ordering

policies.

Tiacci and Saetta (2011) examined the relative efficiency of two lateral shipments

methods in minimising mean supply delay of a consumable item, regarding a classical

policy with no lateral shipment. They implemented a two-echelon simulation model

and performed an experiment by varying various parameters, such as number of ware-

houses, lead time of supply from the central facility, demand uncertainty for an item, and

warehouse size variability. In almost all newtwork configurations, their results showed

appreciable reductions in mean supply delay when lateral shipment is allowedwith regard

to the particular classical policy.

Paterson et al. (2012) proposed an enhanced reactive method such that individual

transshipments are seen as an opportunities for proactive redistribution of stock. They

adopted a quasi-myopic procedure to the develop an enhanced reactive transshipment

rule that performed strongly. Comparing their results in a transshipment approach that is

fully reactive, their procedure resulted to highly improved service levels with safety stock

reduction and reduced total costs, especially for large systems. They also determined

an optimal policy for small networks and showed that the enhanced reactive policy

significantly closes the optimality gap.

Yang et al. (2013) considered a service parts inventory location problem with lateral

transshipment and flexible replenishment stock. They proposed a customer oriented

service measure and provide and approximation optimizing inventory allocation subject

to the this measure. However their lead time was deterministic.

Most papers that considered service measures used the fill rates as service measure,

for example Yang et al. (2013), Kutanoglu and Mahajan (2009), and Kutanoglu (2008).

Only very few have considered a response time threshold as the service constraint, for

example Caglar (2001), Caglar et al. (2004), andMak and Shen (2009). So far researchers

on joint inventory location have not considered problems with lateral transshipment and

service constraints; this is the gap this study intends to fill.
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2.3 Some previous results

In this section, we take a close look at some techniques for determining optimal

inventory policies and optimal stocking levels for our two-echelon system. The sys-

tem considered in this study involves demand arrivals that occur one at a time. Firstly,

basic concepts comprising of definitions and some existing results on Poisson process

relevant to this study were presented. Afterwards, relevant concepts from nonlinear con-

strained optimisation such as the Lagrangian dual problem and convexity were presented.

Thereafter, the inventory policy used in the study was highlighted and it’s effects on per-

formance measures and inventory levels were discussed. In addition, the determination

of inventory levels for systems with lateral transshipment was dealt with. Finally, some

closely related models were presented.

2.3.1 Basic concepts

This study dwells on spare parts supply chain for expensive parts with low failure

rate. Consequently, demand arrival at a SVC occurs due to service part failure, which is

categorised as a rare event. The counting process which is used to model scenarios with

this property is the Poisson process, Shebrooke (1968), Caglar et al. (2004), Mak and

Shen (2009), Yang et al. (2013) and Riaz (2013) are some authors who have modelled

demand arrival using Poisson process in a two-echelon spare parts system.

Definition 2.3.1.1: Counting process

If {N̄(t), t ≥ 0} is a stochastic process and total event occurrences at time t is denoted

by N̄(t). N̄(t) is called a counting process if it satisfies the following conditions:

1. N̄(t) ≥ 0.

2. N̄(t) is integer valued.

3. s < t implies that N̄(s) ≤ N̄(t).

4. If s < t, then N̄(t)− N̄(s) represents the total events occurrence in (s, t].

Definition 2.3.1.2: Poisson process

The process {N̄(t), t ≥ 0} is said to be Poisson with rate λ, where, λ is positive, if

1. N̄(0) = 0
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2. The counting process posseses increments which are independent and stationary.

3. For all s, t ≥ 0

P{N̄(t+ s)− N̄(s) = n} = e−λt
(λt)n

n!
, n = 0, 1, · · ·

4. Not more than one event occurs at a time.

Given a Poisson process which has time of it’s first event represented by T̄1.

Furthermore, for n > 1, let T̄n represent the time in between the (n − 1)th and the nth

event. Then {T̄n, n = 1, 2, ...} is known as the interarrival times sequence.

Proposition 2.3.1.1 (Ross (2010) p. 317)

T̄n, n = 1, 2, ..., are idd exponential random variables having mean 1
λ
.

The stochastic process above (N̄(t)) is a Markov process. We can therefore say, that

a Poisson process with rate λ is a counting process {N̄(t), t ≥ 0} whose interarrival

times T̄1, T2, ... have identical exponential distribution functions

P{Tn ≤ x} = 1− P{Tn > x} = 1− e−λx, x ≥ 0.

2.3.1.1 Merging and splitting of Poisson processes

Lots of scenarios aboundwhich require themerging and splitting of Poisson processes

for various purposes. The next theorem shows that merging and splitting of Poisson pro-

cesses also result in Poisson processes.

Theorem 2.3.1.1(Tijms (2003) p. 6)

1. Let {N̄1(t), t ≥ 0} , {N̄2(t), t ≥ 0} be independent Poisson processes having

rates λ1 and λ2 respectively, where {N̄i(t)} denotes type i arrivals. Let N̄(t) =

N̄1(t) + N̄2(t), t ≥ 0. Then the merged process {N̄(t), t ≥ 0} is Poisson having

rate λ = λ1 + λ2. In this merged process, let Z̄k denote the time from the (k-1)th

arrival to the kth arrival. Also, let Īk = i if the kth arrival for the merged process

happens to be of type i, then for any k = 1, 2, . . . ,

P{Īk = i|Z̄k = t} =
λi

λ1 + λ2

, i = 1, 2 (2.3.1)
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independently of t.

2. Given a Poisson process {N̄(t), t ≥ 0} with rate λ, let each arrival be categorised

as either an arrival of type 1 or an arrival of type 2 arrival having probabilities p̄1

and p̄2, respectively, independent of any other arrival. Let N̄i(t) denote number of

type i arrivals at time t . Then {N̄1(t)} and {N̄2(t)} are two independent Poisson

processes having respective rates λp̄1 and λp̄2.

Most two echelon inventory problems exploit this property when determining steady

state levels at both echelons; Graves (1985), Caglar et al. (2004), Mak and Shen (2009),

Yang et al. (2013) and Riaz (2013). In this study, this property was exploited in the

determination of SVC, pool and plant inventory levels.

2.3.2 Nonlinear constrained optimisation

In this section, the necessary tools from nonlinear programming needed for this study

are presented. The ideas presented follow those given by Boyd and Vandenberghe (2004)

and Gowers et al. (2008). For n,m, p > 0, a nonlinear minimisation problem is an

optimisation problem which is expressible as:

min g0(y)

subject to gb(y) ≤ 0 for each b ∈ {1, . . . ,m}

hc(y) = 0 for each c ∈ {1, . . . , p} (2.3.2)

where y ∈ Rn is the optimisation decision variable, g0 : Rn → R is called the objective

function or cost function. The inequalities gb(y) ≤ 0 are known as inequality constraints,

while the corresponding functions gb : Rn → R are called inequality constraint functions.

The equations hc(y) = 0 are known as the equality constraints, while the functions

hc : Rn → R are known as the equality constraint functions.

The set of points for which the objective and all constraint functions are defined,

D =
m⋂
b=0

dom gb ∩
p⋂
c=1

dom hc

is called the domain of the optimisation problem.
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Apoint y ∈ D is said to be feasible if it satisfies the constraints gb(y) ≤ 0, b = 1, ...,m,

and hc(y) = 0, c = 1, ..., p. The problem is said to be feasible if there exists at least a

feasible point, and infeasible otherwise. A constraint set or a feasible set is the collection

of all feasible points. The optimal value d′ of the problem (2.3.2) is defined as

d′ = min{g0(y)|gb(y) ≤ 0, b = 1, ...,m, hc(y) = 0, c = 1, ..., p}

We say y∗ solves the problem (2.3.2), if y∗ is feasible and g0(y∗) = d′. The set of all

optimal points is the optimal set, denoted

Yopt = {y|gb(y) ≤ 0, b = 1, ...,m, hc(y) = 0, c = 1, ..., p, g0(y) = d′}

If an optimal point exists for the problem (2.3.2), we say the optimal value has been

attained or achieved, and the problem is solvable. If Yopt is empty, we say the optimal

value is not attained or not achieved (for minimisation problems this always happens

when the problem is unbounded below).

2.3.3 The Lagrange dual function

The Lagrangian takes the constraints in the program (2.3.2) and integrates the con-

straints into the objective function. The Lagrangian L̄: L̄ : Rn×Rm×Rp → R associated

with this optimisation problem is

L̄(y, λb, νc) = g0(y) +
m∑
b=1

λbgb(y) +

p∑
c=1

νchc(y) (2.3.3)

λb is the Lagrangemultiplier corresponding to the bth inequality constraint gb(y) ≤ 0;

similarly νc is the Lagrange multiplier corresponding to the cth equality constraint

hc(y) = 0.

TheLagrange dual function k : Rm×Rp → R is theminimumvalue of the Lagrangian

over y: for λb ∈ Rm, νc ∈ Rp,

k(λb, νc) = min
y∈D

L̄(y, λb, νc) = min
y∈D

(
g0(y) +

m∑
b=1

λbgb(y) +

p∑
c=1

νchc(y)

)
(2.3.4)
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The dual function gives lower bounds to the optimal value d′ of the problem (2.3.2):

for any λb ≥ 0 and any νc we have

k(λb, νc) ≤ d′ (2.3.5)

The Lagrange dual to the optimisation program (2.3.2) is

max
λb∈Rm;νc∈Rp

k(λb, νc), subject to λb ≥ 0 (2.3.6)

The dual optimal value d∗ is

d∗ = max
λb≥0;νc

k(λb; νc) = max
λb≥0;νc

min
y∈D

L̄(y, λb, νc)

Since k(λb, νc) ≤ d′, we know that d∗ ≤ d′. The quantity d′ − d∗ is called the duality

gap. If d′ = d∗, then the primal and its dual exhibits strong duality. Also, if d′ 6= d∗, then

the primal and its dual exhibits weak duality.

2.3.4 Convex optimisation

A convex optimisation problem is a problem of the form

ming0(y)

subject to gb(a) ≤ 0 for each b ∈ {1, · · · ,m} (2.3.7)

where the functions g0, g1, · · · , gm: Rn → R are convex, that is, they satisfy

gb(αx+ βy) ≤ αgb(x) + βgb(y), b ∈ {0, · · · ,m} (2.3.8)

for all x, y ∈ Rn and all α, β ∈ R, with α + β = 1, α ≥ 0, β ≥ 0.

Theorem 2.3.4.1 (Winston (2004) p. 632)

Consider a nonlinear programming problem defined as (2.3.7). Any local minimum for

(2.3.7) is a global minimum.
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2.3.5 Mixed integer nonlinear problem

Mixed-Integer Nonlinear Problem (MINLP) combines the difficulty of optimising

over sets of discrete variables with the complexities associated with handling nonlin-

ear functions, Bonami et al. (2012). MINLPs are easily expressed as (2.3.2) with an

integrality constraint.

minimize g0(y)

subject to gb(y) ≤ 0 for each b ∈ {1, . . . ,m}

hc(y) = 0 for each c ∈ {1, . . . , p} (2.3.9)

y ∈ X ⊂ <n

yi ∈ Z, ∀i ∈ I

I is the index set of discrete variables. AMINLP is said to be convex if it’s continuous

relaxation is convex.

2.3.6 (S-1,S) Inventory policy under Poisson demand

In this study, inventory is controlled using a (S-1,S) policy which has proven to be

most suitable for items whose demand arrival occur one at a time, Sherbrooke (1992),

Candas and Kutanoglu (2007), Mak and Shen (2009). The (S-1,S) policy is also called

order-up-to policy or basestock policy. The inventory position of a given facility is

its stock level, S. Following a (S-1,S) policy implies that a replenishment order is

made immediately, anytime a demand occurs for an item or more. The order size

matches the the demand size. The amount in replenishment at any random time is

an important random variable in studying the characteristics of systems controlled with

a (S-1,S) policy. Once the stationary distribution of the amount in replenishment has

been established, the stationary distributions for on-hand, backordered and transshipped

inventory can be derived easily

Let λ denote the demand arrival rate of the Poisson driven customer order process

and letN represent the number of orders in replenishment to the facility being considered.

Theorem 2.3.6.1 (Muckstadt (2005) p. 39)

Suppose demand rate for an item is λ, its arrival process is Poisson, and the base
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stock level for the item is set to S. Furthermore, suppose that g(L) are density functions

with mean L corresponding to the replenishment time random variables, and G(L) are

corresponding distribution functions . Also suppose that the replenishment times are idd

from one customer order to another customer order. Then the long run probability that s̄

units are in replenishment is given by

P{N = s̄} = e−λL
(λL)s̄

s̄!
(2.3.10)

Thus, the probability that we have s̄ in the replenishment system is Poisson distributed

with mean λL; that is, there is no need to know the density function for the replenishment

time, but only the mean replenishment time, L .

2.3.7 Performance measures

The ready rate: Ready rate for a stock level S, R(S) represents the probability that no

backorder exists at any random time, it represents the probability that number of items in

replenishment is equal to S or less.

R(S) =
S∑
s̄=0

P{N = s̄}. (2.3.11)

The fill rate: the fill rate, F (S), for a particular stock level S, represents the expected

portion of demands satisfied instantly from on-hand stock. Suppose one customer order

arrives, a single unit of the customer order will be satisfied if the quantity of units in

replenishment is equal to S - 1 or less. Thus,

F (S) =
∑
s̄≤S−1

P{N = s̄} (2.3.12)

Thus, in this case,

F (S) = R(S)− P{N = S}

We see that R(s) > F (S). When using either a ready rate or fill rate measure, one

is not interested in the duration of occurrence of backorders. Thus, for example, having

a 96% fill rate means that, on average, from every 100 ordered units 96 requests are

25



satisfied immediately. However, the time taken to fulfill the other 4% of the ordered units

is not measured. Thus, a firm which keeps high fill rates might not truly satisfy all its

customers needs. Kutanoglu (2008), Kutanoglu and Mahajan (2009), Yang et al. (2013)

utilised the fill rate as their performance measure.

Backorder rate: A third performance criterion for single-item systems determines the

expected value of outstanding backorders at any random time. Thismeasure is represented

by B(S) and represents the duration of time for which backorders occur. Thus, this is a

response-time based measure. B(S) is given by the product of the customer demand rate

and the average demand waiting time. This follows from Little’s law, Lq = λWt (Little

(1961)), where B(S) = Lq, λ is the demand rate, andWt is the average demand waiting

time. In steady state, the expected backorder level is

B(S) =
∑
s̄>S

(s̄− S)P{N = s̄}. (2.3.13)

That is, s̄− S units are backordered if and only if s̄ units are in replenishment, s̄ > S.

2.3.8 Mathematical properties of fill rate and ready rate

Recall that in steady state the probability of having s̄ units in replenishment is

P{N = s̄} = e−λL
(λL)s̄

s̄!
.

The fill rate for a given stock level S is

F (S) = 1−
∑
s̄≥S

P{N = s̄} (2.3.14)

=
∑
s̄<S

P{N = s̄}

Suppose we aim to select stock levels that maximise the average fill rate for some

specific target investment threshold in inventory. An optimisation problem of this form

would be easily solved if F (S) happen to be discretely concave. However, it is not. The
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first difference is denoted by4F (S)

4F (S) = F (S + 1)− F (S)

The second difference is denoted by42F (S)

42F (S) = 4F (S + 1)−4F (S).

Thus

4F (S) =
∑
s̄≤S

P{N = s̄} −
∑
s̄≤S−1

P{N = s̄}

= e−λL
(λL)S

S!
(2.3.15)

4F (S + 1) =
∑
s̄≤S+1

P{N = s̄} −
∑
s̄≤S

P{N = s̄}

= e−λL
(λL)S+1

(S + 1)!
(2.3.16)

42F (S) = e−λL
(λL)S+1

(S + 1)!
− e−λL (λL)S

S!

= e−λL
(λL)S

S!

{
λL

S + 1
− 1

}
(2.3.17)

λL > S+ 1 implies that42F (S) > 0 and further implies that F (S) is convex whenever

λL > S + 1 . In fact, F (S) is said to be discretely convex whenever S < λL− 1. Thus

F (S) is said to be discretely concave only if S ≥ bλLc, when λL is non integer, and

S ≥ λL− 1, for integer values of λL.

Next, we immediately observe that, R(S), is not also concave for all feasible values

of S.

Hence, neither R(S) nor F (S) have the desirable feature of concavity for all S ≥ 0.

Thus, in many cases, S usually is constrained to values that are equal to or greater than

bλLc to guarantee that ready rate or fill rate functions are indeed concave for the feasible

region.
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2.3.9 Mathematical properties of backorder rate

The backorder level B(S) has very attractive mathematical properties.

B(S) =
∑
s̄>S

(s̄− S)P{N = s̄}

If B(S) were strictly discretely convex in addition to being strictly decreasing, then

4B(S) = B(S + 1)−B(S) < 0

4B(S + 1) = B(S + 2)−B(S + 1)

and

42B(S) = 4B(S + 1)−4B(S) > 0

= B(S + 2)−B(S + 1)− (B(S + 1)−B(S))

= B(S + 2)− 2B(S + 1) +B(S)

Observe that

4B(S) =
∑
s̄>S+1

(s̄− (S + 1))P{N = s̄} −
∑
s̄>S

(s̄− S)P{N = s̄}

=
∑
s̄≥S+1

(s̄− (S + 1))P{N = s̄} −
∑
s̄≥S+1

(s̄− S)P{N = s̄}

= −
∑
s̄≥S+1

P{N = s̄}

= −(1−
∑
s̄≤S

P{N = s̄}) (2.3.18)
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4B(S + 1) =
∑
s̄>S+2

(s̄− (S + 2))P{N = s̄} −
∑
s̄>S+1

(s̄− S + 1)P{N = s̄}

=
∑
s̄≥S+2

(s̄− (S + 2))P{N = s̄} −
∑
s̄≥S+2

(s̄− S + 1)P{N = s̄}

= −
∑
s̄≥S+2

P{N = s̄}

= −(1−
∑
s̄≤S+1

P{N = s̄}) (2.3.19)

and

42B(S) = 4B(S + 1)−4B(S) (2.3.20)

= −
∑
s̄≥S+2

P{N = s̄}+
∑
s≥S+1

P{N = s̄}

= −
∑
s̄≥S+2

P{N = s̄}+
∑
s̄≥S+2

P{N = s̄}+ P{N = S + 1}

= P{N = S + 1} > 0 (2.3.21)

Thus B(S) is strictly (discretely) convex ∀ S ≥ 0.

In this study, we are interested in improving customer service level, hence our model

has a service constraint that ensures that the customer waiting time does not exceed a

given threshold. The advantage of using the backorder measure is that unlike the fill

rate and ready rate, it captures all customer orders. Caglar et al. (2004), Mak and Shen

(2009), Riaz (2013) also considered minimising backorders to improve service using

a response time requirement. The two echelon structure in this study is similar to the

two echelon structure found in Caglar et al. (2004), Mak and Shen (2009) and Riaz

(2013). The structure comprises of a plant at the top echelon, multiple SVCs at the lower

echelon and geographically spaced customers. It is important to note that LT has not

been incorporated into the systems considered by Caglar et al. (2004), Mak and Shen

(2009) and Riaz (2013). This is the major contribution of this study.
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2.3.10 Determining inventory levels for two-echelon systems

Graves (1985) developed an exact inventory level distribution for a two-echelon sys-

tem. However, this exact model happened to be computationally burdensome for real life

problems with many variables and parameters. Hence, most authors use approximations

to ease computational burden.

A very useful approximation method is the multi echelon technique for repairable

item control (METRIC) Shebrooke (1968). It applies Palm’s theorem (Palm (1938))

and approximates the distribution for inventory level and backorder level using a Poisson

distribution with corresponding mean. METRIC assumes that successive lead times

from the plant to SVC are independent. Whereas in reality, these successive lead times

depend on the situation of inventory at the plant. Axsater (1990) noted that, METRIC

approximation will perform well when each SVC demand is low compared to the total

system demand. Let B0 denote the expected plant backorder level and λ0 the total plant

demand. By Little’s law, Little (1961)Wt0 = B0

λ0
, whereWt0 is the average waiting time

at the plant. From METRIC,

B0 =
∞∑

s̄=S0+1

(s̄− S0)P{N0 = s̄} (2.3.22)

where

P{N0 = s̄} = e−λ0Wt0
(λ0Wt0)s̄

s̄!

The splitting of Poisson processes imply that the plant backorder level can be split to

determine backorders at the SVC. Let λv, Sv, and Bv represent the demand at SVC v, the

stocking level for SVC v and the expected backorder level at SVC v, respectively.

Bv =
λv
λ0

(B0) (2.3.23)

Caglar et al. (2004) considered a two-echelon inventory problem with service con-

straints. They utilised METRIC approximation to obtain an optimal policy for such a

system and showed that

Bv(Sv) = Iv − Sv + E[Nv] (2.3.24)

Mak and Shen (2009) and Riaz (2013) considered two-echelon inventory location
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problems. They also utilised the metric approximation to determine their inventory level.

For items controlled with a (S-1,S) policy, setting stock levels depends on given

objectives and corresponding constraints.

Everett’s theorem (Everett (1965))

Given an optimisation problem

minf(y)

subject to g(y) ≤ b (2.3.25)

where y ∈ Rn is the optimisation decision variable, f : Rn → R is known as the objective

function or cost function. The inequality g(y) ≤ b is the inequality constraint, while the

function g : Rn → R is the inequality constraint function. The constraint g(y) ≤ b is

relaxed. Assume f and g are convex. The relaxation of Problem (2.3.25) is

min
y

[f(y) + θ(g(y)− b)] (2.3.26)

for θ ≥ 0. θ is the Lagrange multiplier linked with g(y) ≤ b. The relationship be-

tween solutions to problem (2.3.26) and problem (2.3.25) is given by the theorem below

Theorem 2.3.10.1(Everett (1965)).

Suppose y0(θ) solves the Problem (2.3.26) optimallywith θ as theLagrangemultiplier.

Let b′ = g(y0(θ)). Then y0(θ) also solves

min
y
f(y)

subject to g(y) ≤ b′ (2.3.27)

Thus, for various values of θ, we can determine optimal solutions for problems such as

(2.3.27). If b′ = b for specific Lagrange multiplier θ, we then say that problem (2.3.25)

has been solved.
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2.3.11 Optimal inventory position using the (S-1,S) policy

Following ideas from Shebrooke (1968), Caglar et al. (2004) and Muckstadt (2005),

we construct an example that illustrates how to determine the optimal inventory position

S, when following the (S − 1, S) policy.

Suppose a company manages an item at multiple service centers in a two-echelon

setting. The inventory policy for all locations is the (S− 1, S) policy. Hence, an order is

placed for replenishment on an external source whenever fulfilling a customer’s demand

depletes the SVC’s stock by one. The target is to choose stock levels that minimise

expected number of all outstanding backorders under the constraint of investment in

inventory.

Let b denote the budget threshold on expected value of inventory on hand; V is the set of

SVC locations, hv is the unit holding cost for the item in SVC v, Sv represents the item

stock level for SVC v, E[Nv] is the steady state expected quantity in replenishment to

SVC v, and Bv(Sv) is the expected value of outstanding backorders at a random time for

SVC v.

We state the optimisation problem as

min
∑

v∈V Bv(Sv)

subject to ∑
v∈V hv[Sv − E[Nv] +Bv(Sv)] ≤ b, Sv = 0, 1, · · · (2.3.28)

To solve problem (2.3.28), we utilise the method of Lagrangian relaxation. We fix

the inventory position at the plant and let θv denote the multiplier linked to the budget

constraint. The relaxed problem is

min
∑
v∈V

Bv(Sv) +
∑
v∈V

(θv[hv(Sv − E[Nv] +Bv(Sv))− b]) (2.3.29)

subject to Sv = 0, 1, 2, · · ·
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= min
Sv=0,1,···

∑
v∈V

[(1 + θvhv)Bv(Sv) + θvhvSv]− [θv
∑
v∈V

hvE[Nv] + θvb]

= −
∑
v∈V

θv[hvE[Nv] + b] +
∑
v∈V

min
Sv=0,1,···

[(1 + θvhv)Bv(Sv) + θvhvSv]

Thus, the multiplier θv, causes the resulting relaxed optimisation problem to be

separable by location. The problem that needs be solved has the same form for each

location, so we temporarily drop the subscript for location. Hence, the optimisation

problem is reduced to

− θ[hE[N ] + b] + min
S=0,1,···

[(1 + θh)B(S) + θhS] (2.3.30)

For given values of θ , θ[hE[N ] + b] can be treated as a constant. Thus the problem

is further reduced to

min
S=0,1,···

(1 + θh)B(S) + θhS (2.3.31)

Let

f(S) = (1 + θh)B(S) + θhS

f(S) is convex because B(S) has been shown to be discretely strictly convex. Define

4f(S) = f(S + 1)− f(S)

= (1 + θh){B(S + 1)−B(S)}+ θh

Since previously we established that

B(S + 1)−B(S) = −(1−
∑
s̄≤S

P{N = s})

4f(S) = −(1 + θh)(1−
∑
s̄≤S

P{N = s̄}) + θh (2.3.32)

Since f(S) is convex, our optimal stock level,for a given θ, will be smallest nonneg-

ative integer, S∗, that gives

4f(S) ≥ 0
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which is, the minimum value that gives

(1 + θh)(1−
∑
s̄≤S

P{N = s̄}) ≤ θh (2.3.33)

or ∑
s̄≤S

P{N = s̄} ≥ 1

1 + θh
(2.3.34)

S∗ clearly depends on θ. Let

C(θ′) =
∑
v∈V

hv[Sv(θv)− E[Nv] +Bv(Sv(θv))] (2.3.35)

The aim is to determine a value of θv for each v such thatC(θ′) is equal to b approximately.

For each v, each value of θ gives a set of feasible stock levels, inventory cost, andminimum

number of expected outstanding backorders.

Suppose for each location v, we have θ1 > θ2 > · · · > θM . Since 1
1+θ1h

< 1
1+θ2h

<

· · · < 1
1+θMh

, S∗(θ1) ≤ S∗(θ2) ≤ · · · ≤ S∗(θm). To determine S∗(θ), find the smallest

non negative integer value of S which gives

∑
s̄≤S

P{N = s̄} ≥ 1

1 + θh
(2.3.36)

Hence to find S∗(θi), i ∈ [1,M ], we utilise

∑
s̄≤S∗(θi−1)

P{N = s̄}

as an initial point for our computation. Since this value has already been computed for

the determination of S∗(θi − 1), the computational effort needed to find S∗(θi) might be

significantly reduced.

There exists a θ > 0 such that

P{N = 0} =
1

1 + θh
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, or

θ =
1

h

(
1

P{N = 0}
− 1

)

Let θmax = 1
h

(
1

P{N=0} − 1
)
. If θ = θmax, then S∗(θmax) = 0 ∀ v.

2.3.12 Determining inventory levels with lateral transshipment

Lateral Transshipment (LT) is the movement of inventory between facilities on the

same echelon. LT is permitted to occur only among facilities in same pool. A pool is a

collection of SVCs that satisfy a pooling criterion. A pooling criterion could be based

on distance, geographical location, storage capacity, etc. In study, our pooling criterion

is geographical and is such that the collection of all SVCs in a geopolitical zone forms a

pool.

LetW be the set of pools, we add the pool subscript to our previous notations and also

introduce some new notations

Īvw = Probability of satisfying demand at SVC v in pool w from on-hand stock at the

SVC

Tvw is the steady state expected lateral transshipment level at SVC v in pool w.

T̄vw = Probability of satisfying demand at SVC v in pool w by LT from another SVC in

the same pool

B̄vw = Probability of backordering demand at SVC v in pool w

B̄w = Probability of backordering demand at pool w

Demand in this system must be fulfilled either from on-hand stock, lateral resupply

or backorder. Thus

Īvw + T̄vw + B̄vw = 1 (2.3.37)

It is obvious that if Svw = 0, then Īvw = 0

To show modelling ideas, we assume that there are w̄ pools and all the service centers in

same pool are identical, Lee (1987) and Muckstadt (2005). Hence we assume that SVC

demand processes at all SVCs in pool w are Poisson processes with identical demand

rate, λvw, and have same stock levels Svw.

Also Īvw, T̄vw, and B̄vw are identical for all service centers. We also assume that plant

to SVC replenishment time for SVCs in the pool are idd exponential random variables
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with mean L . Īvw also gives the fraction of time a SVC has positive stock. Thus, the

fraction of time the SVC stock is zero or negative is

1− Īvw = T̄vw + B̄vw

There are ŵ SVCs in pool w, thus, pool w’s demand process is a Poisson process and it’s

rate is λw = ŵλvw. Furthermore, the total plant demand processes are Poisson processes

with rate λ0 =
∑

w ŵλw.

LetNvw andNw be the steady state number of items in replenishment to service center

v in pool w and pool w, respectively. Lee (1987) showed that the Īvw is approximated by

Īvw =
Svw−1∑
s̄=0

P [Nvw = s̄] (2.3.38)

since Svw = S for all service centers in pool w.

The probability that a pool’s demand arrival will not be satisfied from on-hand

pool stock is the probability the pool’s total number of units on order is equal to or

greater than the total pool stock. However, this probability is P [Nw > ŵS]. Therefore

B̄w = P [Nw > ŵS], because we assumed instantaneous transshipment between SVCs

within same pool. Since B̄vw and Īvw can be determined, we can also determine T̄vw
for a pool. We have T̄vw = 1 − (Īvw + B̄vw). According to Lee (1987), expected value

of lateral transshipments corresponding to a SVC per unit time (Tvw) is λvwT̄vw and

ŵλvwT̄vw for the entire pool. Lee showed that the total expected number of backorders

at pool w is

Bw =
∞∑

s̄=ŵSvw+1

(s̄− ŵSvw)P{Nw = s̄}+ ŵλvwT̄vw (2.3.39)

and the backorder level at the plant is given by

B0 =
∞∑

s̄=S0+1

(s̄− S0)P{N0 = s̄} (2.3.40)

The first term of equation (2.3.39) gives the expected backorder quantity at pool w which

has not been satisfied by the plant. The second term gives the expected value of items
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in resupply for lateral transshipments. Lee (1987) showed that these approximations are

accurate for high service levels.

For this system we could choose to minimise the total costs which comprises of plant

holding cost, SVC holding cost and SVC backorder cost.

Ctotal = h(S0 +
∑
w∈W

ŵSvw) + p̄
∑
w∈W

Bw + q
∑
w∈W

Tw (2.3.41)

where h is the per unit holding cost , p is the per unit backorder cost, and q is the LT cost

per unit item. The first, second and third terms represent all inventory holding costs, all

backorder costs and all LT costs respectively for the system.

2.3.13 Facility location model

The facility location model seeks to minimise set-up costs for SVCs or facilities,

and transportation costs from SVC to customers, while determining the facilities to

open and optimal customer assignment to opened facilities, Daskin (1995). The model

considered here is called the uncapacitated fixed charge location model. Some very

important features of this facility location problem considered are: each facility has a

fixed opening cost, the facilities are assumed to be have infinite capacity, a customer

can be assigned to one and only one SVC. We remove the subscript for pool in this

formulation. Daskin (1995) gives a detailed treatment of facility location models. The

facility location component of our model is similar to the model presented below, (Daskin

(1995) p.250).

min
∑
v∈V

(
fvXv +

∑
u∈U

λuYuvduv

)
(2.3.42)

Subject to:

∑
v∈V Yuv = 1, for each ,u ∈ U (2.3.43)

Yuv ≤ Xv, for each,u ∈ U, v ∈ V (2.3.44)

Xv ∈ {0, 1}for each,v ∈ V (2.3.45)

Yuv ∈ {0, 1}for each,u ∈ U (2.3.46)

where, fv, λu and duv are set up costs for SVC v, demand from customer u, and cost
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of transportation from customer u to SVC v, respectively. Xv = 1 if a SVC is set up at

location v, 0 otherwise, and Yuv = 1 if customer u is assigned to SVC v, 0 otherwise.

The objective (2.3.42) is to find the minimum sum of the fixed location costs and

transportation costs. The assignment constraint (2.3.43) states that each customer’s

demand should be assigned to one and only one SVC. Constraints (2.3.44) require that

demand assignments can be made only to a candidate location that has an open SVC and

for which the resulting distance from customer is less than dmax. Finally, (2.3.45), and

(2.3.46) are constraints on nonnegativity and integrality.

This problem is solved by making use of heuristic algorithms or Lagrangian method.

The heuristic algorithms consist of the ADD and the DROP algorithms. The ADD

algorithm follows a greedy procedure to add facilities to the solution until the addition of

a facility decreases the cost no further. While the DROP algorithm opens all candidate

facilities and the greedy procedure proceeds to drop facilities from the solution till

dropping a facility can no longer decrease the cost. In this study, we explored our

models’ properties using the Lagrangian approach, so we lay emphasis on the Lagrange

relaxation method for the uncapacitated fixed charge facility location problem.

To begin the Lagrange procedure, constraint (2.3.43) is relaxed and the corresponding

Lagrange multiplier is πu. The following Lagrange dual problem is obtained

max
π

min
X,Y

∑
v∈V

fvXv +
∑
v∈V

∑
u∈U

(λuduv − πu)Yuv +
∑
u∈U

πu (2.3.47)

Subject to:

Yuv ≤ Xv, for each,u ∈ U, v ∈ V (2.3.48)

Xvw ∈ {0, 1}for each,v ∈ V (2.3.49)

Yuv ∈ {0, 1}for each,u ∈ U (2.3.50)

Solving the problem consists of three steps which are: determining the solution of

the Lagrange relaxed problem for fixed multiplier values πu, conversion of the relaxed

solution to a primal feasible solution, and then updating the Lagrange multipliers.

The starting point is to minimise (2.3.47) for fixed values of πu. if λuduv − πu ≥ 0,

Yuv can be set to 0. If λuduv − πu < 0, Yuv can be set to the maximum feasible value.

Recall that Yuv ≤ Xv. Now we compute Av = fv +
∑

u∈U min(0, λuduv − πu). We set
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Xv = 1, the Lagrangian objective will change byAv for each v. IfAv < 0 settingXv = 1

will cause cost decrease; else we set Xv = 0.

Thus for given values of πwe can find optimal values for the facility location variables

Xv and allocation variables Yuv using the following two-step algorithm:

1. For each candidate facility, compute Av = fv +
∑

u∈U min(0, λuduv − πu).

Set

Xv

1, if Av < 0

0, otherwise.

2. Set

Yvv

1, if Xv = 1 and λuduv − πu < 0

0, otherwise.

Using this two step algorithm, the evaluation of (2.3.47) for any values of πu will

give a lower bound to the problem (2.3.42). The subgradient optimisation procedure is

used to find the values of πu that maximise this bound.

The solution derived with the algorithm presented above may not satisfy some of the

constraints relaxed. Particularly, it is likely some demand may not be assigned (Yuv = 0)

and some others are assigned to two or more facilities (
∑

v∈V Yuv ≥ 2). However, we

can find a primal feasible solution by locating facilities at locations for whichXv = 1 and

assigning demands to the nearest facility opened. The primal objective function obtained

from this set of locations and demand allocations will provide us with the solution’s

upper bound. Clearly, the smallest of such values over all iterations of the Lagrangian is

the best solution to use.

Daskin (1995) showed that of the Add algorithm, Drop algorithm and the Lagrange

method, only the Lagrange method gave optimal solutions.

2.3.14 Two-echelon inventory model with service consideration

The two-echelon inventory with service constraints (response time requirement) is

presented. Caglar et al. (2004) considered this model. The model presented does not

have lateral transshipments. Also the subscript w is dropped because there is no pool.

The model has a plant at the top echelon and a finite number of SVCs.
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min
∑
v∈V

hvIv + h0I0 (2.3.51)

Subject to:

0 ≤ Sv ≤ Cv, for each,v ∈ V (2.3.52)

0 ≤ S0 ≤ C0 (2.3.53)

Wtv ≤ τ, for each,v ∈ V (2.3.54)

where,Wtv is the response time at a SVC. The objective (2.3.51) is to find the minimum

sum of the plant inventory holding costs and inventory holding costs at all SVCs. Backo-

rders at the plant are considered internal to the system hence they do not attract amonetary

cost. Constraints (2.3.52) and (2.3.53) state that the SVCs, pools and plant stock levels

cannot exceed the storage capacity available. The service (response) time constraints

(2.3.54) require that expected response time must not be more than the required level.

Using Little’s law Wtv = Bv∑
u∈U λuYuv

, (2.3.54) can be written as Bv∑
u∈U λuYuv

≤ τ or

Bv ≤ τ
∑

u∈U λuYuv. Caglar et al. (2004) showed that the plant backorder level B0 and

plant inventory level I0 are

B0 = E[N0]−
S0−1∑
s=o

[1− F0(s)]

I0 = S0 − E[N0] +B0

= S0 − E[N0] + E[N0]−
S0−1∑
s=o

[1− F0(s)]

=

S0−1∑
s=o

F0(s)

Caglar et al. (2004) also obtained the facility backorder levelBv and facility inventory

level Iv to be:

Bv = E[Nv]−
Sv−1∑
s=o

[1− Fv(s)]

Iv = Sv − E[Nv] +Bv
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The objective function of this problem can be rewritten as

min
∑
v∈V

hv[Sv − E[Nv] +Bv] + h0[I0 −
∑
v∈V

E[Nv]]

Thus the problem can be rewritten as

min
∑
v∈V

hv[Sv − E[Nv] +Bv] + h0[I0 −
∑
v∈V

E[Nv]] (2.3.55)

Subject to:

0 ≤ Sv ≤ Cv, for each,v ∈ V (2.3.56)

0 ≤ S0 ≤ C0 (2.3.57)

Bv ≤ τ
∑

u∈U λuYuv, for each,v ∈ V (2.3.58)

Caglar et al. (2004) utilised a Lagrange relaxation algorithm to solve the problem.

The constraint (2.3.58) is relaxed to get the following relaxed problem with Lagrange

multiplier θv > 0

∑
v∈V

hv[Sv +Bv] + h0[I0 −
∑
v∈V

E[Nv]] +
∑
v∈V

θv[Bv − τ
∑
u∈U

λuYuv] (2.3.59)

Subject to:

0 ≤ Sv ≤ Cv, for each,v ∈ V (2.3.60)

0 ≤ S0 ≤ C0 (2.3.61)

A lower bound on (2.3.55) is obtained by solving (2.3.59). Caglar et al. (2004) solved

(2.3.59) by enumerating all feasible values of S0 and Sv.

The work by Caglar et al. (2004) is useful to this research because our model has

similar two echelon structure with service considerations. It is important to state that the

incorporation of LT into the model of Caglar et al. (2004) has not been considered. This

presents the major difference between our work and theirs.
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2.3.15 Two-echelon inventory-location model

This model was considered by Mak and Shen (2009). They merge ideas from the

uncapacitated fixed charge facility location problem and themodel byCaglar et al. (2004).

The model is as presented:

min
∑
v∈V

(
fvXv + hvIv + pvBv +

∑
u∈U

λuYuvduv

)
+ h0I0 (2.3.62)

Subject to:

∑
v∈V Yuv = 1, for each ,u ∈ U (2.3.63)

Yuv ≤ auvXv, for each,u ∈ U, v ∈ V (2.3.64)

Sv ≤ Cv, for each,v ∈ V (2.3.65)

S0 ≤ C0 (2.3.66)

Wtv ≤ τ, for each,v ∈ V (2.3.67)

Sv ≥ 0, integer, for each,v ∈ V (2.3.68)

S0 ≥ 0 (2.3.69)

Xv ∈ {0, 1}for each,v ∈ V (2.3.70)

Yuv ∈ {0, 1}for each,u ∈ U (2.3.71)

The objective (2.3.62) is to find the minimum sum of the fixed location costs, plant

inventory holding costs, SVC inventory holding costs, backorder costs at SVCs, lateral

transshipment costs at SVCs and transportation costs. Backorders at the plant are consid-

ered internal to the system hence they do not attract a monetary cost. Constraint (2.3.63)

states that assignment of all demand from a customer should be made to one and only

one SVC. The constraints (2.3.64) require that assignment of demand to any candidate

location must not be initiated unless it is open and its distance from customer is less than

dmax. The constraints (2.3.65) and (2.3.66) state that the SVC and plant base stock levels

cannot be greater than the capacity available for storage. The response time requirement

(2.3.67) ensure that expected response time must not exceed the required level. Finally,

(2.3.68), (2.3.69),(2.3.70),and (2.3.71) are nonnegativity and integrality constraints.

This model does not consider lateral transshipment and the effect of pooling; this is
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the major difference between the model by Mak and Shen (2009) and our model. Mak

and Shen (2009) utilised the results obtained by Caglar et al. (2004) for steady state

expected inventory and backorder levels at SVCs and at the plant .

B0 = E[N0]−
S0−1∑
s=o

[1− F0(s)]

I0 = S0 − E[N0] +B0

Bv = E[Nv]−
Sv−1∑
s=o

[1− Fv(s)]

Iv = Sv − E[Nv] +Bv

They utilised a Lagrangian based algorithm to solve the problem. Riaz (2013)

considered a similar problem to that of Mak and Shen (2009). The slight variation is

that customer assignment was made based on customer’s preference. It is important to

state that the incorporation of LT into the model of Mak and Shen (2009) has not been

considered. This presents the major difference between our work and theirs.
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Chapter 3

METHODOLOGY

3.0 Introduction

In this chapter, the incorporation of Lateral Transshipments (LTs) into two-echelon

systems with response time requirement and the objective of cost minimisation is con-

sidered. Firstly, a general description of the system is presented after which different

model formulations depicting the system in different settings are presented. The different

model formulations presented in this chapter are: two-echelon inventory model with

Response Time Requirement (RTR) and Lateral Transshipment (LT), joint inventory lo-

cation two-echelon inventory model with RTR and LT, model with reliable locations and

model with stochastic demand. For each model, the steady state distribution of orders

in replenishment and the expected levels in steady state for on-hand inventory, LT and

backorder are presented. Furthermore, the system is decomposed and some properties

of the models are highlighted.

3.1 Mathematical model description
3.1.1 Background

Allowable transition of inventory among locations in same level of an inventory

system is known as LT. The use of LT has not been studied for two-echelon systems that

jointly consider facility and inventory decisions with response time requirements. For a

system that permits LT, in a case of stock-out at one facility, a demand can be satisfied by

means of a stock transfer from another facility. The challenge that comes with LTs lies in

deciding where and when a stock movement is beneficial. LTs may result in a reduction

in the immediate shortage risk at the location receiving transshipment, but it increases

the future risk at the location sending transshipment. Therefore, LT policies should seek

to balance these conflicting risks and determine when transshipment cost is dominated
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by the expected transshipment benefit. The suitability of a particular LT policy often

depends on the characteristics of the inventory system in which it is used.

Also it is commonpractice to see companiesmanage decisions on storage and distribu-

tion independently, this is partly as a result of the complexities that arise from combining

them. In addition, tactical decisions involving stocking and operational decisions involv-

ing distribution are usually considered independently of the strategic decisions involving

facility location and network design. It has been shown that making facility location de-

cisions independent of inventory consideration can lead to supply chain designs that are

suboptimal, Daskin et al. (2002), Shen et al. (2003), Candas and Kutanoglu (2007) and

Mak and Shen (2009). Nonetheless, the fusion of facility location,inventory management

and distribution decisions still remains a complex mathematical modelling task, espe-

cially with the consideration of response time requirements. Attempting to incorporate

LT into such joint two-echelon systems will result in much more complex models.

In this thesis, we incorporate LT into a two-echelon service parts supply chain with

response time requirement. We require that the response time for a customer order must

not exceed a given threshold.

3.1.2 System description and notations

The supply chain system considered in this study comprises of a plant at the upper

echelon, a set of possible SVC locations at the lower echelon in addition to a set of

customers (demand nodes). We assume that each customer’s demand node is also a

possible SVC location, thus, the set of possible SVC locations V and the set of customers

U are equivalent sets. This two echelon service parts system operates in the following

manner:

1. The items are manufactured and held at the plant to satisfy Service Centre (SVC)

demands. The plant resupplies the SVC within a SVC specific replenishment lead

time. The items in each SVC are identical.

2. The SVCs keep inventory to satisfy orders from customers. Each customer is

assigned to exactly one SVC, and customers’ order process at their assigned SVC is

Poisson. The assignment of a customer depends on a customer’s distance to a SVC

and is taken care of by an assignment constraint in our model formulation. We do

not consider the case of a customer’s preference of one SVC to another. Orders
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placed by different customers are independent, hence the demand processes at the

various SVCs are independent Poisson processes.

3. The plant and all SVCs have limited capacity for holding inventory and a continuous

review (S − 1, S) policy is used to manage replenishment at the SVC. These

items are characteristically costly for numerous service parts systems, capacity

constraints can be interpreted as budget constraints.

4. When a customer order arrives at the SVC, the SVC sends a single unit of the item

from its inventory on hand to the customer (if there is no stockout) and immediately

places a replenishment request with the plant.

5. If the SVC has zero or negative inventory level, the customer’s request will be

satisfied instantly by lateral transshipment from pooled neighbouring SVCs which

have stock on hand.

6. If none of the pooled neighbouring SVCs have stock on hand, demand is backo-

rdered until they are satisfied.

7. Lateral transshipment is assumed to be instantaneous

8. When a SVC replenishment request arrives the plant, the plant sends one unit of the

item from its inventory on hand to the SVC (if there is no stockout), and instantly

places an order for a single unit to be produced.

9. If the plant inventory level is zero, the demand at the plant is backordered till they

are satisfied.

10. Finished goods produced by the plant are used to satisfy backorders or are stored

as plant inventory. It is assumed that the plant possesses a single production line

with exponential service rate. The plant’s demand process is Poisson since, each

SVC faces an aggregation of Poisson customer demand arrivals and also places

orders for replenishment in a one-to-one manner. This then means that the plant

production line has the properties of a Markovian queue.

11. All demands at the SVCs, replenishment orders at the plant, transshipment and

backorder requests are processed in a First-Come,First-Served (FCFS) manner.
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12. Demand arrivals at the SVC are fulfilled through any one of the following: stock

on hand, lateral transshipment or backorder.

We aim to simultaneously determine the optimal number of SVCs, customers assign-

ment to opened SVCs, inventory levels at SVCs, the lateral transshipment levels at the

SVCs and inventory levels at the plant.

The costs involved in this study are

1. The cost incurred as a result of opening the SVC known as fixed location cost.

2. The costs incurred as a result of keeping on hand inventory at the SVC and at the

plant. This is known as holding costs.

3. The costs incurred when demand at a SVC is backordered. This is known as

backorder costs.

4. Lateral transshipment costs at SVCs (cost incurred when demand is met via lateral

transshipment).

To begin, we introduce the following notations:

Sets

U represents the set of customers. We considered three data sets comprising of 37 nodes,

109 nodes and 181 nodes. The number of nodes represents the size of U for each of the

three data sets.

V represents the set of candidate SVC locations. The geographical location of each node

is considered a possible location for setting up a SVC. This is taken care of by the location

variable defined below. Consequently, the number of nodes represents the size of V for

each of the three data sets.

W represents the set of pools. In this study, we used a geographical pooling criterion.

All SVCs in a geopolitical zone form a pool

Parameters

fvw is the fixed opening cost for SVC v in pool w

hvw is the per unit holding cost of each unit of inventory at SVC v in pool w per unit time

h0 is the per unit holding cost of each unit of inventory at the plant per unit time
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pvw is the per unit cost of backorder per unit inventory for each unit of time

qvw is the LT cost per unit inventory

d̄uvw is the distance of customer u from SVC v in pool w. This is determined by the

Haversine rule using the longitudes and latitudes of different nodes from the data sets.

duvw is the transportation cost from SVC v in pool w to customer u. This is obtained by

multiplying d̄uvw by 10−1

λu is customer u’s demand rate

λvw is the SVC demand rate of a SVC in pool w demand rate =
∑

u∈U λuYuvw

λw is pool w’s demand rate =
∑

v∈V λvw =
∑

v∈V
∑

u∈U λuYuvw

λ0 is the plant demand rate (=
∑

w∈W λw) =
∑

w∈W
∑

v∈V
∑

u∈U λuYuvw

µ is the plant order processing rate

ρ is the plant utilisation rate (= λ0
µ

)

τ = response time requirement

αw is the exact lead time from plant to pool w for any w ∈ W

dmax is the Maximum allowable distance between a customer and its assigned SVC

auvw = 1 if the distance from customer u to candidate SVC location v in pool w is not

greater than dmax, 0 otherwise

Cvw is the capacity of SVC v in pool w, this is the same for all SVCs in pool w

Cw = ŵCvw is the total space available for storage at pool w, where ŵ is the number of

SVCs in pool w

C0 is the total space available for storage space at the plant

Binary decision variables

Xvw = 1 if a SVC is located at v in pool w, 0 otherwise

Yuvw = 1 if customer u’s demand is assigned to SVC v in pool w

Other decision variables

Svw is the base stock level required at SVC v in pool w, this is uniform for all SVCs in

pool w

Sw = ŵSvw is the total base stock level required at pool w. ŵ represents the number of

SVCs in pool w.

S0 is the base stock level required at the plant.
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Service variables

Ivw is the expected level for on-hand inventory at SVC v in pool w in steady state

Iw =
∑

v∈V Ivw is the expected level for on-hand inventory at pool w in steady state

Bvw is the expected level of backorder at SVC v in pool w in steady state

Bw is the expected level of backorder at pool w in steady state

Tvw is the expected LT level at SVC v in pool w in steady state. It describes the expected

number of items from SVC v used to satisfy LT requests.

Wtvw is the expected time of response at SVC v in pool w

I0 is the expected plant inventory level in steady state

B0 is the expected plant backorder in steady state

Nvw(t) is the number of replenishment orders placed by SVC v in pool w which are yet

to arrive at time t

Nvw is the steady state expected number of replenishment orders placed by SVC v in pool

w which are yet to arrive

Nw(t) is the number of replenishment orders placed by pool w which are yet to arrive at

time t.

Nw is the steady state expected number of replenishment orders placed by pool w which

are yet to arrive.

N0(t) is the number of replenishment orders placed by the plant that are yet to arrive by

time t.

N0 is the steady state expected number of replenishment orders placed by the plant that

are yet to arrive by time.

3.1.3 Major assumptions

Two key assumptions are made concerning the model. Firstly, we assume that lateral

transshipment times are negligible. The lead time is the time taken for orders placed at the

plant to arrive at the SVC. The lead time comprises of the stochastic waiting time (delay)

at the plant and the deterministic plant to SVC transportation time. The consequence of

the assumption is that the deterministic plant to SVC transportation time is identical for

all SVCs in a pool. Secondly, we assumed that SVC basestock level is identical for all

SVCs in a pool.
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3.2 Two-echelon inventory model with response time re-
quirement and lateral transshipment (model I)

We now present a two-echelon inventory model with RTR and LT. To the best of our

knowledge, researchers have not considered the incorporation of LT into two-echelon

inventory systems with RTR, a plant at the top echelon, and a finite number of SVCs

at the lower echelon. This model considers inventory decisions alone without location

decisions. We use results from this model to formulate our other models. We call the

model, Model I, and present it below.

min
∑
w∈W

∑
v∈V

(hvwIvw + pvwBvw + qvwTvw) + h0I0 (3.2.1)

Subject to:

0 ≤ Svw ≤ Cvw, for each v ∈ V (3.2.2)

0 ≤ Sw ≤ ŵCvw, for each w ∈ W (3.2.3)

0 ≤ S0 ≤ C0 (3.2.4)

Wtvw ≤ τ, for each v ∈ V (3.2.5)

Svw ≥ 0, integer, for each v ∈ V (3.2.6)

S0 ≥ 0 (3.2.7)

The objective (3.2.1) is to find minimum sum of the following: fixed location costs,

holding costs for inventory at plant and SVCs, backorder costs at SVCs and LT costs

at SVCs. Constraints (3.2.2), (3.2.3) and (3.2.4) state that base stock level for SVCs,

pools and plant cannot be greater than the storage capacity available. The constraints on

response time (3.2.5) require that expected response time be no greater than the required

level. Finally, (3.2.6) and (3.2.7) are nonnegativity constraints.

Each SVC has the properties of a queuing system, Kruse (1981), in which customer

orders can be regarded as the items in the system. Then the amount of items in the system

awaiting service represents the backorder level. Also, the time spent by the item in the

system is known as the response time. By using Little’s law (Little, 1961), Kruse (1981)
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derived the waiting time and showed that at a SVC, the expected response is given by

Wtvw =
Bvw

λvw
(3.2.8)

Hence,

Bvw ≤ τλvw (3.2.9)

Two very important results for all models considered in this study are the result

showing the relationship between on-hand inventory, LT and backorder in steady state

and the result showing their steady state expected levels. We now present steady state

expected levels for on-hand inventory, LT and backorder for Model I.

3.2.1 Plant inventory level for model I

In this system each customer’s demand follow a Poisson process, hence the demand

at each SVC being a merger of various independent Poisson processes also is a Poisson

process (Tijms (2003) p. 6). Also, each SVC operates an order-up-to or (S-1,S) policy

implying that a replenishment request is placed on the plant by a SVC immediately a

demand occurs. Hence, the demand process at the plant is a merger of independent

Poisson processes, thus, it is also a Poisson process. The plant possesses a single

production line and with plant service rate being exponential, the plant possesses the

characteristics of a queuing system with demands considered as arrivals to the system

and items in replenishment are considered to be in service in the queuing system.

Graves (1985) developed an exact distribution for inventory levels in a two-echelon

system. However, this exact model happened to be computationally burdensome for

the large problems encountered in practice. Thus, most authors use approximations to

reduce the computational burden. A very useful approximation method is the multi

echelon technique for repairable item control (METRIC), Shebrooke (1968). It applies

Palm’s theorem (Palm (1938)) and approximates the distribution for inventory level and

backorder level using a Poisson distributionwith correspondingmean. METRIC assumes

that successive lead times from the plant to SVCs are independent. These lead times

actually depend on the situation of plant inventory situation, so they are not independent.

Axsater (1990) showed that the METRIC approximation will generally perform well

when the SVC demand is low compared to the total system. B0 denotes the expected
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plant backorder level and λ0 represents total plant demand. By Little’s law , Little (1961)

Wt0 = B0

λ0
, whereWt0 is the average waiting time at the plant.

Following METRIC approximation, Caglar et al. (2004) established the standard

expression for inventory and backorder expressions. We state their result and also give a

new proof that follows from the model properties.

Proposition 3.2.1.1 Caglar et al. (2004)

In steady state the expected plant inventory level is given by

I0 = S0 − E[N0] +B0. (3.2.10)

Proof. Demand arrival at SVCs follow a Poisson hence each SVC faces an aggregation of

Poisson demand. Since each SVC is controlled with the (S-1,S) policy, the plant’s arrival

process is Poisson. Thus the plant exhibits the property of a queue with Markov arrival

process. The steady state levels for a Markovian queue imply that steady state inflow

is equal to steady state outflow and gives rise to the balance equation. The steady state

expected number of items in transit from the plant’s production line to its storage facility,

that is steady state inflow to the plant’s storage facility is denoted by E[N0] . From

definition S0 ≥ I0 and S0 − I0 represents steady state expected number of plant demand

satisfied from available inventory. While B0 represents steady state expected number

of plant demand satisfied from backorder. Therefore steady state expected outflow is

S0 − I0 +B0. Hence the balance equation of this system is

E[N0] = S0 − I0 +B0 (3.2.11)

Thus

I0 = S0 − E[N0] +B0. (3.2.12)
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From (Caglar et al. (2004) p. 10)

B0 = E[N0]−
S0−1∑
s=0

[1− F0(s)], (3.2.13)

and

I0 =

S0−1∑
s=0

F0(s) (3.2.14)

where

F0(s) =
s∑

m=0

P{N0 = m}

.

The expected plant inventory level and plant backorder level can be obtained easily for

different manufacturing queue systems via substituting steady state probability into the

above formulas, Mak and Shen (2009). For example, we have the steady state probability

for the number of customers in theM/M/k queue as follows:

P{N0 = n} =


(∑k−1

m=0
(qρ)n

m!
(kρ)k

k!(1−ρ)

)−1

, if, n = 0,

λn

n!µn
P{N0 = 0}, if, 1 ≤ n ≤ k

λn

kn−kk!µn
P{N0 = 0}, otherwise

For our system, the plant arrival process is Poisson and the plant possesses a single

production line. This in addition to queue discipline of first come first serve imply that

our system behaves as the M/M/1 queue; that is a queue with Poisson arrivals, expo-

nential service times and a single server. For this queue, the result by Buzacott and

Shanthikumar (1993) gives the optimal policy at the plant, showing the expected plant

inventory level and the expected plant backorder level. We state their result and give a

well detailed proof which shows the behaviour of the system at the plant.

Proposition 3.2.1.2 (Buzacott and Shanthikumar (1993))

1. The steady state plant backorder level is given by B0 = ρS0+1

1−ρ
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2. The steady state plant on hand inventory is given by I0 = S0 − ρ
1−ρ(1− ρS0)

3. The expected plant response time is given byW0 = ρS0+1

λ0(1−ρ)

Proof. The number of demand at the plant waiting for service when the plant inventory

level is nonpositive is known as the plant’s backorder level. The expected plant backorder

level is given by (3.2.13):

B0 = E[N0]−
S0−1∑
s=0

[1− F0(s)],

where

F0(s) =
s∑

m=0

P{N0 = m}.

=
s∑

m=0

(1− ρ)ρm = 1− ρs+1

E[N0] denotes the steady state expected quantity of outstanding orders in the system.

E[N0] =
∞∑
n=0

n(1− ρ)ρn,

= (1− ρ)ρ
∞∑
n=0

d

dρ
(ρn)

= (1− ρ)ρ
d

dρ

(
1

1− ρ

)
=

ρ

1− ρ
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B0 =
ρ

1− ρ
−

S0−1∑
s=0

(
1− (1− ρs+1)

)
=

ρ

1− ρ
−

S0−1∑
s=0

ρs+1

=
ρ

1− ρ
− ρ(1− ρS0)

(1− ρ)

=
ρ

1− ρ
− ρ− ρS0+1

1− ρ

Therefore

B0 =
ρS0+1

1− ρ
(3.2.15)

I0 = S0 −
ρ

1− ρ
(1− ρS0) (3.2.16)

Applying Little’s law, the expected plant response time is obtained:

Wt0 =
B0

λ0

=
ρS0+1

λ0(1− ρ)
(3.2.17)

3.2.2 Inventory level at pool for model I

In this subsection, we treat each pool as a single facility. Demand faced by each

pool is satisfied either through pool inventory on hand or through backorders. Backorder

describes a scenario in which demand not fulfilled instantly, wait in queue until they are

satisfied. We assume that base stock level Svw is identical for all SVCs in same pool.

Hence the pool stock level is given by Sw = ŵSvw, where ŵ represents the number of

SVCs in pool w. Following the (S-1,S) policy implies that if s units are in replenishment

to pool w, then the inventory on hand is given by ŵSvw − s. The (S-1,S) ensures that

the sum of the number of items in replenishment to a facility and its inventory level

is equal to its base stock level. That is Iw = ŵSvw − s iff Nw = s. This implies that

P{Iw = ŵSvw−s} is equal toP{Nw = s}. In steady state the distribution of outstanding

55



orders in pool w is P{Nw = s}. By definition, it then follows that in steady state the

expected pool inventory level for pool w is:

Iw =
ŵSvw−1∑
s=0

(ŵSvw − s)P{Nw = s}

or

Iw =
ŵSvw−1∑
s=0

Fw(s) (3.2.18)

where

Fw(s) =
s∑

m=0

P{Nw = m}

The following proposition establishes the expected pool backorder level in steady

state.

Proposition 3.2.2.1

In steady state the expected pool backorder level is

Bw = λwLw − ŵSvw +
ŵSvw−1∑
s=0

Fw(s) (3.2.19)

Proof. The number of demand at a pool waiting in queue for service when the pool’s

inventory level is nonpositive is known as the pool’s backorder level. By the model

assumptions, backorders can only occur in Pool w if all SVCs in that pool are out of

stock. Thus in steady state the expected backorder level for each pool is

Bw = E[Nw]−
ŵSvw−1∑
s=0

[1− Fw(s)] (3.2.20)

= E[Nw]−
ŵSvw−1∑
s=0

1 +
ŵSvw−1∑
s=0

Fw(s)

= E[Nw]− ŵSvw +
ŵSvw−1∑
s=0

Fw(s)

56



At any given time t, the total outstanding orders from pool w comprises of:

(1) the backorders at the plant due to Pool w at time t− αw (these orders will not reach

pool w before t because they had a backorder status at time t− αw and as such were not

shipped immediately) and

(2) the size of new order arrivals during the interval (t− αw, t).

Suppose the plant processes orders using a First Come First Served (FCFS) approach,

we can split plant backorders randomly Graves (1985). This suggests that the probability

that a plant backorder emanates from a particular pool is proportional to the pool demand

size. In steady state the expected value of the plant backorder due to pool w for each

w ∈ W , is given by (λw
λ0

)B0. The expected value of new arrivals in a time interval of

length αw is λwαw . Therefore in steady state the expected value of Nw is given by:

E[Nw] =
λw
λ0

B0 + λwαw =
λw
λ0

ρS0+1

1− ρ
+ λwαw

= λwW0 + λwαw = λw(W0 + αw) = λwLw

(3.2.21)

Where Lw = W0 + αw is the plant to pool lead time. Hence

Bw = λwLw − ŵSvw +
ŵSvw−1∑
s=0

Fw(s) (3.2.22)

In this study, the pooling criterion is geopolitical. That is, a pool is the collection of

all SVCs in a particular geopolitical zone. Consequently, we have six pools in Nigeria.

3.2.3 Inventory level at SVCs for model I

Demand faced at a SVC is satisfied instantly through on hand inventory if the inventory

level is positive. When the inventory level is zero, the demand arrival at the SVC
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is satisfied instantly via LT from any other available SVC in same pool without zero

inventory level. This is a consequence of negligible LT times. In the event that all SVCs

in the pool have zero inventory level, then the demand is backordered. So SVC demand

is satisfied from any one of inventory on hand, LT, and backorder.

We begin by establishing a result which shows the relationship between steady ex-

pected levels for inventory, LT and backorder at the SVC. This result builds on work done

by Caglar et al. (2004) and Buzacott and Shanthikumar (1993).

Proposition 3.2.3.1

1. In steady state the expected SVC inventory level at each SV Cv in pool w is

Ivw = Svw − E[Nvw] + Tvw +Bvw (3.2.23)

2. In steady state the expected SVC backorder level at each SV Cv in pool w is

Bvw = Ivw − Svw + E[Nvw]− Tvw (3.2.24)

3. In steady state the expected lateral transshipment level at each SV Cv in pool w is

Tvw = Ivw − Svw + [Nvw]−Bvw (3.2.25)
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Proof.

Ivw =
Svw−1∑
s=0

(Svw − s)P{Nvw = s}

= Svw

Svw−1∑
s=0

P{Nvw = s} −
Svw−1∑
s=0

sP{Nvw = s}

= Svw(
∞∑
s=0

P{Nvw = s} −
∞∑

s=Svw

P{Nvw = s})

− (
∞∑
s=0

sP{Nvw = s} −
∞∑

s=Svw

sP{Nvw = s})

= Svw(1−
∞∑

s=Svw

P{Nvw = s})− (
∞∑
s=0

sP{Nvw = s} −
∞∑

s=Svw

sP{Nvw = s})

= Svw − Svw
∞∑

s=Svw

P{Nvw = s} − (E[Nvw]−
∞∑

s=Svw

sP{Nvw = s})

= Svw − E[Nvw] +
∞∑

s=Svw

(s− Svw)P{Nvw = s}

= Svw − E[Nvw] +
ŵSvw∑
s=Svw

(s− Svw)P{Nvw = s}

+
∞∑

s=ŵSvw+1

(s− ŵSvw)P{Nvw = s}

Therefore

Ivw = Svw − E[Nvw] + Tvw +Bvw

Where

Tvw =
ŵSvw∑
s=Svw

(s− Svw)P{Nvw = s}

and
∞∑

s=ŵSvw+1

(s− ŵSvw)P{Nvw = s}

The next proposition gives the optimal policy for a given SVC.
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Proposition 3.2.3.2

1. In steady state the expected SVC backorder level at each SVC is

Bvw = λvwLw +
λvw
λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.2.26)

2. In steady state the expected lateral transshipment level at each SVC is

Tvw =
Svw−1∑
s=0

Fvw(s)− Svw −
λvw
λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.2.27)

Proof. By definition, in steady state the expected SVC inventory level is given by

Ivw =
Svw−1∑
s=0

(Svw − s)P{Nvw = s} (3.2.28)

By the model assumptions, backorders can only occur if all SVCs in a pool are out

of stock. Recall, Sw = ŵSvw is the total base stock level of the Pool w. Then in steady

state the expected SVC backorder level at each SVC in pool w is

Bvw =

(
λvw
λw

)
Bw (3.2.29)

(3.2.29) follows from the splitting property of Poisson processes. Using (3.2.19) in

(3.2.29)

Bvw =

(
λvw
λw

)(
λwLw +

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

))
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hence

Bvw = λvwLw +
λvw
λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.2.30)

note that,

Tvw +Bvw + Svw − Ivw = E[Nvw]

The size of outstanding orders for a SVC at a given point in time t, is the sum of:

(1) the backorders at the plant due to the SVC at time t−αw (this will not get to the SVC

before t) and

(2) the amount of new order arrivals to the SVC during the interval (t− αw, t).

The splitting of Poisson processes imply that the probability a backorder emanates

from a particular SVC is proportional to demand size at the SVC. In steady state the

expected SVC backorder level is given by λvw
λ0
B0

The expected value of new orders that arrive during a time interval with length αw is

λvwαw . Therefore in steady state, the expected value of Nvw is given by:

E[Nvw] = λvwLw (3.2.31)

By (3.2.25)

Tvw = E[Nvw] + Ivw − Svw −Bvw
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Therefore,

Tvw =λvwLw +
Svw−1∑
s=0

Fvw(s)− Svw − λvwLw −
(
λvw
λw

)(ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)

=
λvw
λw

ŵSvw−1∑
s=0

[1− Fw(s)]−
Svw−1∑
s=0

[1− Fvw(s)] (3.2.32)

=
Svw−1∑
s=0

Fvw(s)− Svw −

(
λvw
λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw)

)

Following METRIC method (Shebrooke (1968)), the distributions for outstanding

orders at the pool and SVCs are

P [Nw = m] =
e−λwLw(λwLw)m

m!
(3.2.33)

and

Fw(s) =
s∑

m=0

e−λwLw(λwLw)m

m!
(3.2.34)

In the above, Lw is the expected replenishment lead time which is made up of expected

plant response time and delivery lead time.

Lw = W0 + αw =
ρS0+1

λ(1− ρ)
+ αw (3.2.35)

Similarly for SVCs

P [Nvw = m] =
e−λvwLw(λvwLw)m

m!
(3.2.36)

and

Fvw(s) =
s∑

m=0

e−λvwLw(λvwLw)m

m!
(3.2.37)

Note that Lw here is same as that for the pool; this is because it is assumed that lateral

transshipment between SVCs in a pool is instantaneous.
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3.2.4 Model I properties

In this subsection we highlight properties of Model I. We begin by substituting the

expressions for Ivw, Bvw and Tvw into our model to obtain the following reformulation

min
∑
w∈W

∑
v∈V

{
(hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw + λvw (pvwLw)

+(pvw − qvw)
λvw
λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)}
+ h0[S0 −

ρ

1− ρ
(1− ρS0)]

(3.2.38)

Subject to

Svw ≤ Cvw, for each,v ∈ V (3.2.39)

Sw ≤ Cw = ŵCvw, for each,w ∈ W (3.2.40)

S0 ≤ C0 (3.2.41)

[Lw − τ ]λvw ≤
λvw
λw

ŵSvw−1∑
s=0

[1− Fw(s)] (3.2.42)

Svw, Sw, S0 ≥ 0 integer , for each v ∈ V (3.2.43)

(3.2.44)

3.2.4.1 Upper bound for plant basestock level

The existence of capacity constraint in addition to our assumption of low system

demand, indicate that the stock levels required to ensure the satisfaction of a desired

service level lies within a small range which has the capacity as its upper bound. The

storage capacity is usually small because the item considered in this study is slowmoving

(has low demand rate). Thus, storing a large number of item might lead to obsolescence

and higher holding costs.Candas and Kutanoglu (2007), Mak and Shen (2009) and

Riaz (2013) exploited similar properties to develop solution algorithms for determining

optimal stocking levels. In this study we used 10 as our capacity.

For this model, this property implies that a number of problems can be solved when

the basestock level at the plant is fixed to each feasible value. The solution with the
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least cost is the original problem’s optimal solution. For fixed values of S0, all terms

dependent on just S0 are treated as constants. Thus the only complicating constraint we

have is the response time constraint.

3.2.5 Lagrange relaxation for model I

The reformulation of Model I does not give any obvious clue on the properties

or structure of the model. Thus there is need to utilise a decomposition technique to

decompose the model. We make use of Lagrange relaxation. For fixed values of S0, we

relax the service (response time) constraints (3.2.42) in the restricted problem in order

to decompose the model and exploit the problem structure. Using γvw to denote the

corresponding dual multiplier for (3.2.42), we obtain the Lagrangian Dual problem as:

max
γ≥0

min
∑
w∈W

∑
v∈V

{
(hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw + (pvw − qvw + γvw)
ŵSvw−1∑
s=0

Fw(s)

−λvw
λw

(pvw − qvw + γvw)ŵSvw + ((pvw + γvw)Lw − γvwτ)λvw

}
(3.2.45)

Subject to

0 ≤ Svw ≤ Cvw for each,v ∈ V,w ∈ W (3.2.46)

Svw ≥ 0 integer , for each,v ∈ V,w ∈ W (3.2.47)

Lagrange relaxation decomposes the problem by SVCs and associated pools. The

decomposed problem is

max
γ≥0

min
S

Svw−1∑
s=0

[(hvw + qvw)Fvw(s)− qvw] + (pvw − qvw + γvw)
λvw
λw

ŵSvw−1∑
s=0

(Fw(s)− 1)

+ ((pyz + γvw)Lw − γvwτ))λvw (3.2.48)
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Subject to

0 ≤ Svw ≤ Cvw for each,v ∈ V,w ∈ W (3.2.49)

Svw ≥ 0 integer , for each,v ∈ V,w ∈ W (3.2.50)

Next, we show that our objective function is strictly discretely convex with respect to

Svw and Sw = ŵSvw. LetK(Svw, Sw) represent the terms depending entirely on Svw and

Sw. K(Svw, Sw) is strictly discretely convex if the determinant of its Hessian matrix is

positive definite. The Hessian matrix of K(Svw, Sw) is the matrix of second differences

of K(Svw, Sw) .

K(Svw, Sw) = (hvw+qvw)
Svw−1∑
s=0

Fvw(s)−qvwSvw+(pvw−qvw+γvw)
λvw
λw

(
Sw−1∑
s=0

(Fw(s)−1))

(3.2.51)

4SvwK(Svw, Sw) = K(Svw + 1, Sw)−K(Svw, Sw) = (hvw + qvw)Fvw(Svw)− qvw
(3.2.52)

42
Svw

K(Svw, Sw) = 4SvwK(Svw + 1, Sw)−4SvwK(Svw, Sw)

= (hvw + qvw)(Fvw(Svw + 1)− Fvw(Svw))

= (hvw + qvw)(
Svw+1∑
m=0

P{Nvw = s} −
Svw∑
m=0

P{Nvw = s})

= (hvw + qvw)P{Nvw = Svw + 1} (3.2.53)
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4SwK(Svw, Sw) = K(Svw, Sw + 1)−K(Svw, Sw)

= (pvw − qvw + γvw)
λvw
λw

(Fw(Sw)− 1)

= −(pvw − qvw + γvw)
λvw
λw

[1− Fw(Sw)] < 0 (3.2.54)

4Svw(4SwK(Svw, Sw)) = 0 (3.2.55)

42
Sw
K(Svw, Sw) = 4SwK(Svw, Sw + 1)−4SwK(Svw, Sw)

= (pvw − qvw + γvw)
λvw
λw

(Fw(Sw + 1)− Fw(Sw))

+ (pvw − qvw + γvw)
λvw
λw

(−1 + 1)

= (pvw − qvw + γvw)
λvw
λw

(
Sw+1∑
m

P [Nw = m]−
Sw∑
m

P [Nw = m])

= (pvw − qvw + γvw)
λvw
λw

(P [Nw = Sw + 1]) > 0 (3.2.56)

The Hessian Matrix of the problem Hess(Svw, Sw) is

Hess(Svw, Sw) =

 42
Svw

K(Svw, Sw) 4Sw(4SvwK(Svw, Sw))

4Svw(4SwK(Svw, Sw)) 42
Sw
K(Svw, Sw)

 (3.2.57)

Since 42
Svw

K(Svw, Sw) > 0, 42
Sw
K(Svw, Sw) > 0 and det(Hess(Svw, Sw)) > 0, we

say that the problem is strictly discretely convex with respect to Svw and Sw.

An important property of convex problems is that every local minimum is a global

minimum (Winston (2004) p. 632).
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3.2.6 Characteristics of the optimal solution for model 1

We decomposed the model by means of Lagrange relaxation. The Lagrangian dual

problem gives a lower bound solution to the model’s optimal solution. Consequently the

SVC lower bound solution may not satisfy the service constraint. Having exploited the

properties of Model I by means of Lagrange relaxation, we now proceed to determine

the nature of our optimal solution. Here, our optimal solution is the basestock level that

gives minimum cost and also satisfies the service or response time constraint.

Let the terms of the objective function of the primal problem (3.2.38) that depend on

Svw be given as:

H(Svw) = (hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw + (pvw − qvw)
λvw
λw

(
ŵSvw−1∑
s=0

(Fw(s)− 1))

(3.2.58)

To determine optimal Svw without response time constraint, let 4H(Svw) be the

change in the objective function value at the increase of base stock level from Svw to

Svw + 1. Then

4H(Svw) =H(Svw + 1)−H(Svw)

= (hvw + qvw)Fvw(Svw)− qvw + (pvw − qvw)
λvw
λw

(
ŵSvw+ŵ−1∑
s=ŵSvw

(Fw(s)− 1)

)
(3.2.59)

4H(Svw) = Fvw(Svw)−
(qvw + pvw)λvw

∑ŵSvw+ŵ−1
s=ŵSvw

[1− Fw(s)] + λwqvw

λw(hvw + qvw)
(3.2.60)

The optimal Svw without response time constraint can be found as follows:

Fix S0 = C0 and follow the following steps to determine a local minimum cost for

S0 = C0.

1. If4H(Cvw) ≤ 0 then Svw = Cvw remains.

2. If4H(Cvw) > 0 select Svw as the largest integer such that4H(Svw) ≤ 0.
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Decrease the value of S0 by one and follow the steps above. To get all local minimum

solutions, the process is repeated until S0 reaches zero. We pick the minimum of all local

solutions, this becomes the global minimum solution.

The optimal Svw with response time constraint can be found as follows:

Fix S0 = C0 and follow the following steps to determine a local minimum cost for

S0 = C0.

1. If 4H(Cvw) ≤ 0 and [Lw − τ ]λvw ≤ λvw
λw

∑ŵCvw−1
s=0 [1 − Fw(s)] then Svw = Cvw

remains.

2. If 4H(Cvw) > 0 select Svw as the smallest integer such that 4H(Svw) > 0 and

[Lw − τ ]λvw ≤ λvw
λw

∑ŵSvw−1
s=0 [1− Fw(s)]

Decrease the value of S0 by one and follow the steps above. To get all local minimum

solutions, the process is repeated until S0 reaches zero. We pick the minimum of all local

solutions, this becomes the global minimum solution.

Remark: We utilise Lagrange relaxation to decompose the model so as to enable us

highlight the model properties. We showed that the decomposed problem is convex. The

solution of the dual problem is only a lower bound. We proceed to show that Model I is

convex.

Proposition 3.2.6.1

Model I is a convex optimisation problem.

Proof. We showed convexity of the dual problem for fixed multiplier values. Thus, the

dual objective is convex for γvw = 0. Also the dual objective is equal to the primal

objective when γvw = 0. Hence the objective function of the model is convex. The

inequality constraint in Model I which is our response time constraint depends only on

the variable Sw = ŵSvw and can be written as

Lw − τ +
1

λw

Sw−1∑
s=0

(Fw(s)− 1) ≤ 0
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Let

J̄(Sw) = Lw − τ +
1

λw

Sw−1∑
s=0

(Fw(s)− 1)

4J̄(Sw) = J̄(Sw + 1)− J̄(Sw)

=
1

λw
(Fw(Sw)− 1)

= − 1

λw
(1− Fw(Sw − 1)) < 0

where4J̄(Sw) is the first difference of J̄(Sw).

42J̄(Sw) = 4J̄(Sw + 1)−4J̄(Sw)

=
1

λw
(Fw(Sw + 1)− Fw(Sw))

=
1

λw

(
Sw+1∑
m

P [Nw = m]−
Sw∑
m

P [Nw = m]

)

=
1

λw
(P [Nw = Sw + 1]) > 0

where 42J̄(Sw) is the second difference of J̄(Sw). The objective function and the

inequality constraint are convex. Thus, Model I is a convex optimisation problem.

The optimal solution to Model I can be obtained using GAMS software, thus there is

no urgency to immediately develop any specialised heuristics for solving it.

3.3 Joint location and two echelon inventory model with
response time requirement and lateral transship-
ment (model II)

Here we introduce facility location decisions into Model I and present the joint

location-inventory model with service consideration and lateral transshipment. This

model extends the model of Mak and Shen (2009) by incorporating LT. The model’s
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basic formulation is presented below.

min
∑
w∈W

∑
v∈V

(
fvwXvw + hvwIvw + pvwBvw + qvwTvw +

∑
u∈U

λuYuvwduvw

)
+ h0I0

(3.3.1)

Subject to:

∑
v∈V

Yuvw = 1, for each ,u ∈ U (3.3.2)

Yuvw ≤ auvwXvw, for each,u ∈ U, v ∈ V (3.3.3)

Svw ≤ Cvw, for each,v ∈ V (3.3.4)

Sw ≤ ŵCvw, for each,w ∈ W (3.3.5)

S0 ≤ C0 (3.3.6)

Wtvw ≤ τ, for each,v ∈ V (3.3.7)

Svw ≥ 0, integer, for each,v ∈ V (3.3.8)

S0 ≥ 0 (3.3.9)

Xvw ∈ {0, 1}for each,v ∈ V (3.3.10)

Yuvw ∈ {0, 1}for each,u ∈ U (3.3.11)

The objective (3.3.1) is to find the minimum sum of the fixed location costs, plant

inventory holding costs, SVC inventory holding costs, backorder costs at SVCs, LT costs

at SVCs and transportation costs. We treat backorders at the plant as internal to the

system hence they do not have monetary cost. Constraint (3.3.2) states that all demand

should be assigned to SVCs. Constraints (3.3.3) states that demand cannot be assigned

to any candidate location unless there is an open SVC whose resulting distance from

customer is less than dmax. Constraints (3.3.4), (3.3.5) and (3.3.6) state that base stock

levels for SVCs, pools and plant cannot be greater than the storage capacity available.

The response time or service time constraints (3.3.7) require that expected response time

(the time interval between when an order arrives and when it is shipped) cannot be greater

than the required level. Finally, (3.3.8), (3.3.9),(3.3.10),and (3.3.11) are nonnegativity

and integer constraints.

In this model, our response time requirement is that average time between order
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arrival and shipping must not be greater than the service guarantee in the customer

contract. This is taken care of by (3.3.7). In this two-echelon system, stock-outs at a

SVC are satisfied instantly when any of its pooled SVCs have inventory on hand. In a

situation in which all SVCs in a pool are also out of stock, response time would be short

if the plant has on-hand inventory and ships instantly. A longer response time would

likely be observed if there is a stock-out situation at the plant. It is appropriate to impose

a response time requirement because we are mainly concerned with the design of an

inventory system for spare parts.

Each SVC possesses properties of a queuing system Kruse (1981) in which the

customer orders can be regarded as the items in the system. Then the quantity of items in

the system awaiting service (in line or in queue) represents the backorder level, while, the

time the item spends in the system is known as the service time. Kruse (1981) derived

the waiting time and with Little’s law showed that the expected SVC response time is

given by

Wtvw =
Bvw∑

u∈U λuYuvw
(3.3.12)

We may replace (3.3.7) with the following:

Bvw ≤ τ
∑
u∈U

λuYuvw (3.3.13)

3.3.1 Inventory levels for model II

Obtaining the steady state levels for Model II follows the procedure used for Model I.

Model II differs from Model I with the inclusion of location decisions such as customer

assignment. However, this difference only has notable effect at the level of SVCs. Thus,

for Model II, in steady state, the plant and pool expected levels remain same as Model I.

The only difference comes from the inclusion of the customer assignment variable which

changes the definition of λ0, λw and λvw. For Model II, λvw =
∑

u∈U λuYuvw, λw =∑
v∈V λvw and λ0 =

∑
w∈W λw. Thus, the following hold for Model II

1. The steady state plant backorder level is given by B0 = ρS0+1

1−ρ

2. The steady state plant on hand inventory is given by I0 = S0 − ρ
1−ρ(1− ρS0)

3. The expected plant response time is given byW0 = ρS0+1

λ0(1−ρ)
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4. in steady state the expected pool inventory level for pool w is:

Iw =
ŵSvw−1∑
s=0

(ŵSvw − s)P{Nw = s}

or

Iw =
ŵSvw−1∑
s=0

Fw(s)

5. In steady state the expected pool backorder level is

Bw = λwLw − ŵSvw +
ŵSvw−1∑
s=0

Fw(s)

For Model II, the following gives the on-hand inventory level, LT level and backorder

level for SVCs.

Proposition 3.3.1.1

The optimal SVC policy for Model II is:

1. In steady state the expected SVC inventory level at each SVC in pool w is

Ivw =
Svw−1∑
s=0

(Svw − s)P{Nvw = s} (3.3.14)

2. In steady state the expected SVC backorder level at each SVC in pool w is

Bvw =
∑
u∈U

λuYuvwLw +

∑
u∈U λuYuvw

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.3.15)

where

Fw(s) =
s∑

m=0

P{Nw = m}

3. In steady state the expected lateral transshipment level at each SVC in pool w is

72



Tvw =
Svw−1∑
s=0

Fvw(s)− Svw −
∑

u∈U λuYuvw

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.3.16)

where

Fvw(s) =
s∑

m=0

P{Nvw = m}

Also,

P [Nw = m] =
eλwLw(λwLw)m

m!
(3.3.17)

and

Fw(s) =
s∑

m=0

eλwLw(λwLw)m

m!
(3.3.18)

Similarly

P [Nvw = m] =
e−

∑
u∈U λuYuvwLw(

∑
u∈U λuYuvwLw)m

m!
(3.3.19)

and

Fvw(s) =
s∑

m=0

e−
∑

u∈U λuYuvwLw(
∑

u∈U λuYuvwLw)m

m!
(3.3.20)

3.3.2 Model II reformulation

With the results shown above, Model II is reformulated as:

min
∑
w∈W

∑
v∈V

{
fvwXvw + (hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw

+
∑
u∈U

((pvwLw + duvw)λuYuvw)

+ (pvw − qvw)

∑
u∈U λuYuvw

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)}
+ h0[S0 −

ρ

1− ρ
(1− ρS0)]

(3.3.21)
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Subject to

∑
v∈V

Yuvw = 1, for each ,u ∈ U (3.3.22)

Yuvw ≤ auvwXvw, for each,u ∈ U, v ∈ V (3.3.23)

Svw ≤ Cvw, for each,v ∈ V (3.3.24)

Sw ≤ Cw = ŵCvw, for each,w ∈ W (3.3.25)

S0 ≤ C0 (3.3.26)

[Lw − τ ]
∑
u∈U

λuYuvw ≤
∑

u∈U λuYuvw

λw

ŵSvw−1∑
s=0

[1− Fw(s)] (3.3.27)

Svw, Sw, S0 ≥ 0 integer , for each v ∈ V (3.3.28)

Xvw ∈ {0, 1}for each,v ∈ V (3.3.29)

Yuvw ∈ {0, 1}for each,u ∈ U (3.3.30)

Remark 3.3.2.1

A close inspection reveals that Model II is a Mixed Integer Nonlinear Programming

Problem (MINLP). This follows because the objective function has terms that are depen-

dent onFvw andFw which are both sums of nonlinear randomvariables, our response time

constraint (3.3.27) is dependent on Fw, while Svw, Xvw, and Yuvw are integer variables.

We proceed to examine the properties of Model II.

3.3.3 Distribution of outstanding orders in pools and service centers
for model II

From previous subsections, it is obvious that before inventory levels can be evaluated,

the distribution of outstanding number of orders Nw and Nvw at the pool and SVCs

have to be determined. In this section, a close look is taken at different approximation

schemes in the literature of multi-echelon inventory management which are used to

find the distribution of outstanding number of orders Nw and Nvw in Pools and SVCs

respectively.

3.3.3.1 METRIC distribution for model II

The earliest approximation method is the multi echelon technique for repairable item

control (METRIC), Shebrooke (1968). It utilises Palm’s theorem Palm (1938) and also
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approximates outstanding order distribution by means of a Poisson distribution and its

corresponding mean. Using METRIC method distributions are constructed for Nw and

Nvw with matching means. Using the METRIC-like method, Nw is approximated with a

Poisson random variable.

For model II,

P [Nw = m] =
eλwLw(λwLw)m

m!
(3.3.31)

and

Fw(s) =
s∑

m=0

eλwLw(λwLw)m

m!
(3.3.32)

In the above, Lw is the expected replenishment lead time which is made up of expected

plant response time and delivery lead time:

Lw = W0 + αw =
ρS0+1

λ0(1− ρ)
+ αw (3.3.33)

Similarly

P [Nvw = m] =
e−

∑
u∈U λuYuvwLw(

∑
u∈U λuYuvwLw)m

m!
(3.3.34)

and

Fvw(s) =
s∑

m=0

e−
∑

u∈U λuYuvwLw(
∑

u∈U λuYuvwLw)m

m!
(3.3.35)

In the above,
∑

u∈U λuYuvw is the total demand assigned to SVC v in pool w . Note

that Lw here is same as that for the pool; this is because it is assumed that lateral

transshipment between SVCs in a pool is instantaneous. Thus the lateral transshipment

times are negligible.

METRIC discards the dependence between successive replenishment times from

Plant to SVC. These replenishment times depend on the plant inventory, hence they are

not independent. Axsater (1990) showed that in general METRIC works for systems

that have low SVC demand compared to overall demand. The METRIC approximation

performswell in such instances mainly due to the fact that successive replenishment times

to a SVC is reduced as a result of many other order arrivals at the plant from other SVCs.
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Caglar et al. (2004) show that METRIC is a very good approximation for our system.

This is because the demand occurring at each SVC is low compared to total demand.

3.3.3.2 Exact distribution for model II

Graves (1985) proposed an exact probabilistic algorithm to obtain the steady state

distribution of Nvw. Finding the exact steady state distribution begins from finding the

distribution of plant total outstanding orders, this distribution is then disaggregated into

the distributions of total outstanding order at each pool which is further disaggregated

into the distributions of SVC total outstanding orders at each SVC. The total outstanding

orders at the plant is derived from Graves (1985) as:

N0 = B0 +D0 (3.3.36)

Where D0 is the total number of new arrivals at all pools during backorder duration.

In order to get the distribution of N, convolve the distribution of B0 and D0.

P (N0 = s0) =

s0∑
l=0

P (B0 = l)P (D0 = s0 − l)

Assuming an M/M/1 repair system, the distribution of B0 is given by Buzacott and

Shanthikumar (1993):

P (B0 = n) = (1− ρ)ρn+S0 , n = 0, 1, 2, 3, ... (3.3.37)

P (D0 = s0 − l) =
e
∑

w∈W λw(
∑

w∈W λw)s0−l

(s0 − l)!
, l = 0, 1, 2, 3, ..., s0 = 0, 1, 2, 3, ...

(3.3.38)

P (N0 = s0) =

s0∑
l=0

(1− ρ)ρl+S0
e
∑

w∈W λw(
∑

w∈W λw)s0−l

(s0 − l)!

P (N0 = s0) = (1− ρ)ρS0e
∑

w∈W λw

s0∑
l=0

ρl(
∑

w∈W λw)s0−l

(s0 − l)!
(3.3.39)

Recall that
∑

w∈W λw = λ0
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Once P (N0 = s0) is found , it is disaggregated into the distributions of outstanding

orders for each pool.The plant fulfils backorder by FCFS principle, hence the binomial

distribution is used for the conditional distribution P [Nw = sw|N0 = s0].

P [Nw = sw|N0 = s0] =
∞∑

s0=sw

(
s0

sw

)[
λw
λ0

]sw [
1− λw

λ0

]s0−sw

P [Nw = sw] =
∞∑

s0=sw

P [Nw = sw|N0 = s0]P [N0 = s0]

P [Nw = sw] =
∞∑

s0=sw

(
s0

sw

)[
λw
λ0

]sw [
1− λw

λ0

]s0−sw
P [N0 = s0] (3.3.40)

P [Nw = sw] is further disaggregated for each pool into distributions of outstanding

orders for each SVC. Applying same argument as above yields

P [Nvw =svw] =
∞∑

sw=svw

(
sw
svw

)[∑
u∈U λuYuvw

λw

]svw [
1−

∑
u∈U λuYuvw

λw

]sw−svw
P [Nw = sw] (3.3.41)

Graves (1985) established that the exact representation is computationally burden-

some for large problems encountered in practice, so we stick to the METRIC representa-

tion.

3.3.4 Waiting time probability

Our response time constraint is a major component of this study. Thus, it is necessary

to know the probability that a customer’s waiting time lies in a particular interval so as to

set realistic response time requirements. By the model assumptions, demand satisfaction

from inventory on-hand or lateral transshipment is instantaneous,hence a customer will

have to wait only if his demand is backordered, that is if the pool has zero inventory.

The next proposition gives the probability that a customer’s waiting time lies within an

interval.
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Proposition 3.3.4.1

In this two-echelon environment, the probability that the waiting time of a customer

in pool w lies within the interval (0, t] is given by

P (0 < Wtw ≤ t) =
Sw−1∑
m=0

(
e−λw(Lw−t) (λw(Lw − t))m

m!
− eλwLw

(λwLw)m

m!

)
(3.3.42)

where,Wtw is the stochastic pool waiting time.

Proof. In steady state, the replenishment request initiated by a pool demand arrival will

satisfy the demand of the Sw- th future customer. The time t̄Sw until the Sw-th future

customer arrives is Erlang/ Gamma distributed with shape parameter Sw and rate λw (the

cdf of the sum of iid exp(λ) random variable is an Erlang/Gamma random variable). If

the Sw − th customer has to wait, the relationship between his waiting time and t̄Sw is

given by

t̄Sw +Wtw = Lw (3.3.43)

where Lw = W0 + αw is stochastic as a result of the properties ofW0.

Thus
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P (0 < Wtvw ≤ t) = P (Lw − t ≤ t̄Sw < Lw)

=

[
∞∑

m=Sw

e−λwLw
(λwLw)m

m!

]
−

[
∞∑

m=Sw

eλw(Lw−t) (λw(Lw − t))m

m!

]

=

[
∞∑
m=0

e−λwLw
(λwLw)m

m!
−

Sw−1∑
m=0

e−λwLw
(λwLw)m

m!

]

−

[
∞∑
m=0

e−λw(Lw−t) (λw(Lw − t))m

m!
−

Sw−1∑
m=0

eλw(Lw−t) (λw(Lw − t))m

m!

]

=

[
1−

Sw−1∑
m=0

e−λwLw
(λwLw)m

m!

]
−

[
1−

Sw−1∑
m=0

e−λw(Lw−t) (λw(Lw − t))m

m!

]

=
Sw−1∑
m=0

(
e−λw(Lw−t) (λw(Lw − t))m

m!
− e−λwLw

(λwLw)m

m!

)

3.3.5 Upper bound for plant basestock level

The following model characteristic gives an upper bound to plant’s maximum stock

level, it describes the model when backorder cost is set to zero and the response time

threshold never gets less than the plant to pool lead times.

Proposition 3.3.5.1

Given that the objective function (3.3.21) is strictly increasing in S0, if pvw = 0, Lwmax =

W0 + maxw∈W{αw}, and Lwmax ≤ τ , an upper bound of S0 exists, which is denoted by

Smax0 .

Smax0 = min{S0 ≥ 0 : Lwmax ≤ τ} (3.3.44)

Proof. Our response time constraint (3.3.27) can also be written as can also be written

as

[Lw − τ ] ≤
∑ŵSvw−1

s=0 [1− Fw(s)]

λw
.

The requirement Lwmax ≤ τ suggest that for any value of Svw , LHS of (3.3.27) will
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be nonpositive. By definition, 0 ≤ Fw(s) ≤ 1 and 1 − Fw(s) ≥ 0, therefore at

Smax0 ,
∑ŵSvw−1

s=0 [1−Fw(s)]

λw
≥ 0 always hold, implying that the service constraint is always

satisfied at Smax0 . Thus, the only constraints on S0 are the response time constraint

and requirement of nonnegativity, hence the feasibility of Smax0 holds with respect to

other decision variables. A consequence of our objective function (3.3.21) being strictly

monotone increasing in S0, is that any solution having S0 > Smax0 will obviously be

suboptimal.

Themodel characteristic shown above, the existence of capacity constraint, in addition

to the assumption of Poisson arrivals, suggest that the stock levels to be considered in

order to attain a given service level lies within a small range which has plant capacity

as its upper bound. Similar properties have also been used by Candas and Kutanoglu

(2007) and Mak and Shen (2009) to develop solution algorithms.

For this model, the capacity constraint on plant implies a number of problems can

be solved by fixing S0 to each feasible value. The best cost from these solutions give

the optimal solution of the initial problem. For fixed values of S0 we treat all terms

depending on S0 alone as constants.

3.3.6 Lagrange relaxation for model II

At first view, Model II looks complex and it is difficult to determine its properties.

Thus, in order to explore the model properties, there is a need to utilise a technique

which can decompose the model and also take care of its complicating constraints. In

this study, we make use of the technique of Lagrange relaxation to decompose our

models. The complicating constraints in Model II are the assignment constraint and the

response time constraints. We decide to relax our assignment constraints (3.3.22) and the

response time constraints (3.3.27) in the reduced problem. Using πu and θvw to denote

the corresponding dual multipliers for constraints (3.3.22) and (3.3.27) respectively, the

Lagrangian Dual problem is obtained:
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max
θ≥0,π

min
X,Y,S

∑
w∈W

∑
v∈V

{
fvwXvw + (hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw

+ (pvw − qvw + θvw)

∑
u∈U λuYuvw

λw

ŵSvw−1∑
s=0

Fw(s)

−
∑

u∈U λuYuvw

λw
(pvw − qvw + θvw)ŵSvw + (pvw + θvw)Lw

∑
u∈U

λuYuvw

+
∑
u∈U

((duvw − θvwτ)λuvw − πu)Yuvw

}
+
∑
u∈U

πu (3.3.45)

Subject to

Yuvw ≤ auvwXvw, for each,u ∈ U, v ∈ V (3.3.46)

Svw ≤ CvwXvw, for each,v ∈ V,w ∈ W (3.3.47)

S0 ≤ C0 (3.3.48)

Xvw ∈ {0, 1}, for each,v ∈ V (3.3.49)

Yuvw ∈ {0, 1}, for eachu ∈ U (3.3.50)

Svw, Sw, S0 ≥ 0 integer , for each,v ∈ V,w ∈ W (3.3.51)

If Xvw = 0, the solution is trivial. Thus, we fix all the Xvw to be 1 ∀ v ∈ V , the

problem further reduces to

max
θ≥0,π

min
Y,S

∑
w∈W

∑
v∈V

{
fvw + (hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw

+ (pvw − qvw + θvw)

∑
u∈U λuYuvw

λw

ŵSvw−1∑
s=0

Fw(s)

−
∑

u∈U λuYuvw

λw
(pvw − qvw + θvw)ŵSvw + (pvw + θvw)Lw

∑
u∈U

λuYuvw

+
∑
u∈U

((duvw − θvwτ)λuvw − πu)Yuvw

}
+
∑
u∈U

πu (3.3.52)
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Subject to

Yuvw ≤ auvw, for each,u ∈ U (3.3.53)

0 ≤ Svw ≤ Cvw for each,v ∈ V (3.3.54)

Yuvw ∈ {0, 1} for each,u ∈ U (3.3.55)

Svw integer for each,v ∈ V (3.3.56)

Lagrange relaxation decomposes the problem by SVC and pool. For specific values of

Lagrange multipliers, the model decomposes by candidate SVC locations and associated

pools into subproblems of the following form:

min
Y,S

(hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw + (pvw − qvw + θvw)

∑
u∈U λuYuvw

λw

ŵSvw−1∑
s=0

Fw(s)

−
∑

u∈U λuYuvw

λw
(pvw − qvw + θvw)ŵSvw + (pvw + θvw)Lw

∑
u∈U

λuYuvw

+
∑
u∈U

((duvw − θvwτ)λu − πu)Yuvw (3.3.57)

Subject to

Yuvw ≤ 1, for each,u ∈ U (3.3.58)

0 ≤ Svw ≤ Cvw for each,v ∈ V (3.3.59)

Yuvw ∈ {0, 1} for each,u ∈ U (3.3.60)

Svw integer for each,v ∈ V (3.3.61)

The solution of the above subproblem depends on the fact that SVCs have limited

storage capacity. Hence the feasible values of Svw lies between 0 and Cvw in the optimal

solution. Therefore our solution approach to is to fix Svw and Sw to each feasible value.

Furthermore, the assignment variable Yuvw is relaxed and allowed to be continuous in

the interval [0, 1]. This continuous relaxation gives a lower bound solution when using

Lagrangian relaxation.

With the values of Svw and Sw fixed, our continuous subproblem is then reduced to

a nonlinear problem of the form:
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ming(
∑
u∈U

λuYuvw) +
∑
u∈U

ruvwYuvw (3.3.62)

subject to 0 ≤ Yuvw ≤ 1 (3.3.63)

where

g

(∑
u∈U

λuYuvw

)
=(hvw + qvw)

Svw−1∑
s=0

Fvw

(
s,
∑
u∈U

λuYuvw

)

+ (pvw − qvw + θvw)

∑
u∈U λuYuvw

λw

ŵSvw−1∑
s=0

Fw(s, λw)

(3.3.62) has similar structure as a continuous (0,1) knapsack problem.

Fvw(s,
∑
u∈U

λuYuvw) =
s∑

m=0

e−
∑

u∈U λuYuvwLw(
∑

u∈U λuYuvwL̄w)m

m!

Fw(s, λw) =
s∑

m=0

e−λwLw(λwLw)m

m!

and

ruvw =(pvw + θvw)Lwλu + (duvw − θvwτ)λu

− πu −
λu
λw

(pvw − qvw + θvw)ŵSvw

let
∑

u∈U λuYuvw = a. The solution of the subproblem is dependent on the properties of

g(a) which are discussed below.

We begin by establishing convexity of the subproblem.

Proposition 3.3.6.1

g(a) is convex in a when a ≥ 0.
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Proof.
∑

u∈U λuYuvw = a is the total demand assigned to the SVC with base-stock level

Svw, and λw is the total demand at pool w.

g(a) = (hvw + qvw)
Svw−1∑
s=0

Fvw(s) + (pvw − qvw + θvw)
a

λw

Sw−1∑
s=0

Fw(s)

Taking the derivatives of g(a) with respect to a

d

da
g(a) = (hvw + qvw)

Svw−1∑
s=0

d

da
Fvw(s) + (pvw − qvw + θvw)

∑ŵSvw−1
s=0 Fw(s)

λw

where

Fvw(s) =
s∑

m=0

e−aLw(aLw)m

m!

d

da
g(a) = (hvw + qvw)

Svw−1∑
s=0

s∑
m=0

1

m!

(
−Lwe−aLvw(aLw)m + e−aLwm(a)m−1Lmw

)
+ (pvw − qvw + θvw)

∑ŵSvw−1
s=0 Fw(s)

λw

d

da
g(a) = −(hvw + qvw)

Svw−1∑
s=0

Lwe
−aLvw(aLw)s

s!
+ (pvw − qvw + θvw)

∑ŵSvw−1
s=0 Fw(s)

λw

(3.3.64)

d2

da2
g(a) = (hvw + qvw)

L2
w(aLw)Svw−1e−aLw

(Svw − 1)!
≥ 0 (3.3.65)

This establishes the convexity of g(a) with respect to assigned demand.
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Proposition 3.3.6.2

The subproblem (3.3.62) is a convex optimisation problem.

Proof.
∑

u∈U ruvwYuvw is linear in
∑

u∈U λuYuvw. A linear function is both convex an

concave. The result follows from the fact that the sum of convex functions is also a

convex function.

From proposition 3.3.6.1 and proposition 3.3.6.2, we can solve our continuous sub-

problem using standard optimisation solvers. Hence, our model can be solved by optimi-

sation solvers. We can obtain the solution to this model using GAMS, hence developing

specialised heuristics for solving our model is not an urgent need at this point.

We go further to highlight other properties of the problemwith the following propositions.

Proposition 3.3.6.3

For each SVC satisfying Xvw = 1, if all customers that satisfy auvw = 1 are assigned in

a greedy order, d1vw ≤ d2vw ≤ · · · ≤ dmvw, then the optimal assignment strategy for the

subproblem (3.3.62) has the following properties.

1. if Ykvw > 0 for some 1 ≤ k ≤ m, then Yu∗vw = 1 for all {1 ≤ u ≤ k − 1}

2. One and only one assignment variable Yu∗vw takes on a strictly fractional value.

Proof. Property 1 follows from the order of assignment for customers in an open SVC.

d1vw ≤ d2vw ≤ · · · ≤ dmvw

Ykvw > 0 implies that all or part of customer k’s demand have been assigned. From

our order of assignment it follows that if Ykvw > 0 for some 1 ≤ k ≤ m, then Yu∗vw = 1

for all {1 ≤ u ≤ k − 1}.

To prove property two, we recall that the total demand assigned to a SVC is constrained

by base stock level which is also constrained by capacity. This means that the fact that
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a customer falls within dmax distance of a SVC does not guarantee it’s assignment to

that SVC. Let D1vw = λ1 and Djvw = D(j−1)vw + λj, j = 2, · · ·m be the total demand

assigned to SVC v with the addition of Customer j’s demand. Also let Sjvw be base

stock level required to satisfy Djvw. If Sjvw ≤ Svw, then Yjvw = 1. If Sjvw > Svw,

S(j−1)vw ≤ Svw and there exists D̄jvw where D(j−1)vw < D̄jvw < Djvw such that

S̄jvw = Svw, then Yjvw > 0. If no such D̄jvw exists, then Yjvw = 0. Yjvw > 0,

implies that only a fraction of the customer’s demand is assigned to SVC v. Our order of

assignment implies that a fractional assignment can occur only at the upper boundary of

the base stock level. Therefore there exists the possibility of one fractional assignment.

Suppose that there are two fractional values; Yu′vw > 0 and Yu”vw > 0. Sorting them

according to our order gives either of du′vw ≤ du”vw or du”vw ≤ du′vw. If du′vw ≤ du”vw

and Yu”vw > 0, then our order of assignment and property 1 imply that Yu′vw = 1. If

du”vw ≤ du′vw and Yu′vw > 0, then Yu”vw = 1. This also follows from property 1 and our

sorting order. In both cases the number of fractional variables happens to be one, which

is a contradiction. Hence there exists one and only fractional variable.

In order to find an optimal solution to the reduced subproblem, it is necessary to check

for the existence of an assignment variable that has fractional value. If the existence of

a fractional assignment variable is established, there is a need to determine its optimal

value. The next proposition establishes optimal conditions for such assignment variable.

Proposition 3.3.6.4

A solution such that there is exactly one u∗ where 1 ≤ u∗ ≤ m where 0 < Yu∗vw < 1 is

optimal if the conditions below are satisfied:

ru∗vw
λ∗u

=(hvw + qvw)
Svw−1∑
s=0

Ls+1
vw

s!
(
∑
u∈U

λuYuvw)se−
∑

u∈U λuYuvwLw

− (p− q + θw)

λw

Sw−1∑
s=0

Fw(s, λw) (3.3.66)
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Proof. The Lagrangian function of subproblem (3.3.62) is

Lvw(Y, βu, ζu) = g(
∑
u∈U

λuYuvw) +
∑
u∈U

ruvwYuvw −
∑
u∈U

βuYuvw +
∑
u∈U

ζu(Yuvw − 1)

(3.3.67)

Where β and ζ are the Lagrange multipliers associated with Yuvw > 0 and Yuvw < 1

respectively.

For subproblem (3.3.62) KKT conditions are:

dLw(Y, βu, ζu)

dYu∗vw
=
dg(
∑

u∈U λuYuvw)

dYu∗vw
+
d
∑

u∈U ruvwYuvw

dYu∗vw
−
d
∑

u∈U βuYuvw

dYu∗vw

+
d
∑

u∈U ζu(Yuvw − 1)

dYu∗vw

= 0

by chain rule

dg(
∑

u∈U λuYuvw)

dYu∗vw
=
dg(
∑

u∈U λuYuvw)

d
∑

u∈U λuYuvw

d
∑

u∈U λuYuvw

dYu∗vw

=
dg(
∑

u∈U λuYuvw)

d
∑

u∈U λuYuvw
λu∗

In the convexity result, we showed that

dg(
∑

u∈U λuYuvw)

d
∑

u∈U λuYuvw
= −(hvw + qvw)

Svw−1∑
s=0

Lwe
−

∑
u∈U λuYuvwLw(

∑
u∈U λuYuvwLw)s

s!

+ (pvw − qvw + θvw)

∑ŵSvw−1
s=0 Fw(s, λw)

λw
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Therefore,

dLw(Y, βu, ζu)

dYu∗vw
= −(hvw + qvw)λ∗u

Svw−1∑
s=0

Ls+1
w

s!
(
∑
u∈U

λuYuvw)se−
∑

u∈U λuYuvwLw

+
(pvw − qvw + θw)λu

λw

ŵSvw−1∑
s=0

Fw(s, λw) + ruvw − βu + ζu = 0

(3.3.68)

(3.3.68) is the gradient condition.

dLw(Y, βu, ζu)

dYu∗vw
= −(hvw + qvw)λu∗

Svw−1∑
s=0

Ls+1
w

s!
λu∗(

∑
u∈U

λuYuvw)se−
∑

u∈U λuYuvwLw

+
(pvw − qvw + θw)λu∗

λw

ŵSvw−1∑
s=0

Fw(s) + ru∗vw − β∗u + ζ∗u = 0 (3.3.69)

βuYuvw = 0, for each,u ∈ U (3.3.70)

ζu(Yuvw − 1) = 0, for each,u ∈ U (3.3.71)

0 ≤ Yuvw ≤ 1, foreach,u ∈ U (3.3.72)

βu, ζu ≥ 0, for eachu ∈ U (3.3.73)

Equations (3.3.70) and (3.3.71) give the complementary slackness conditions. The

feasibility condition is given by (3.3.72) and (3.3.73).

If Yuvw ∈ (0, 1) then by (3.3.70) and (3.3.71),βu = ζu = 0 and (3.3.68) becomes

(3.3.66). The subproblem is convex, thus the KKT solution above is a global minimum.
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3.3.7 Upper bound solution for model II

The previous section gives the method of finding the lower bound to our problem

for a given Lagrangian multipliers set. A lower bound solution is a system where

service constraints (response time requirement) and constraints on demand assignment

are relaxed. This section exploits our lower bound solution to determine some properties

of the problem’s optimal solution. The decision variable affected by the service constraint

is Svw. So a promising approach to obtain the optimal solution from our lower bound is

to enumerate over all values of Svw that satisfy the response time requirement. This is

possible because the feasible range of Svw is small. This also follows for S0.

3.3.8 Determining S0, Sw and Svw

In this subsection we determine a means of determining the base stock levels. For

each SVC in this system, we can easily obtain the optimal stock level and it’s associated

cost by the procedure presented below.

Proposition 3.3.8.1

In the unconstrained problem, given any feasible demand assignment and plant stock

level S0, the optimal stock level at any service center is given by

Svw = min {Svw ≥ 0 : Fvw(Svw)

>
(qvw − pvw)

∑
u∈U λuYuvw

[
(ŵSvw + ŵ)−

∑ŵSvw+ŵ−1
s=ŵSvw

Fw(s)
]

+ λwqvw

λw(hvw + qvw)


(3.3.74)

Proof. For a given demand allotment, the objective function terms which depend on Svw

are:

(hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw + (pvw− qvw)

∑
u∈U λuYuvw

λw
(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw)

(3.3.75)

Let the part of our objective function dependent on Svw be denoted by:
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H(Svw) =(hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw

+ (pvw − qvw)

∑
u∈U λuYuvw

λw
(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw)

Let4(Svw) denote change in the value of the objective if the stock level at SVC v in

pool w is increased from Svw to Svw + 1. Then

4H(Svw) = H(Svw + 1)−H(Svw)

= (hvw + qvw)Fvw(Svw)− qvw

+ (pvw − qvw)

∑
u∈U λuYuvw

λw

(
ŵSvw+ŵ−1∑
s=ŵSvw

Fw(s)− ŵ

)

= Fvw(Svw)−
(qvw + pvw)

∑
u∈U λuYuvw[ŵ −

∑ŵSvw+ŵ−1
s=ŵSvw

Fw(s)] + λwqvw

λw(hvw + qvw)

(3.3.76)

When 4(Svw) < 0, increasing Svw by 1 will cause a decrease in cost. Also, by

definition Fvw(Svw) is monotone increasing in Svw and lies in the interval [0, 1]. Hence

the unconstrained optimal Svw can be found as follows: Beginning from the smallest

feasible value of Svw, increase Svw by 1 as long as4(Svw) ≤ 0.

However, our unconstrained optimal basestock level may be infeasible under service

and capacity constraints. A better option is to use the exact method for determining

basestock levels proposed below. This procedure is different from that of Riaz (2013)

because our procedure begins from S0 = Smaz while their’s begin at S0 = C0. Also

their’s does not consider lateral transshipmentwhile the presence of lateral transshipments

and pooling conditions imply that we simultanously determine SVC basestock level and

pool basestock level.
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3.3.9 Algorithm for determining S0, Sw and Suvw

An exact method for finding optimal Svw is proposed. The algorithm begins at

S0 = Smax0 and for each pool finds all feasible Sw that satisfy (3.3.25) and (3.3.27) (recall

that Sw = ŵSvw ≤ ŵCvw). Since the feasible range for Svw is small and Svw is identical

for service centers in a pool the model can be solved by enumerating all feasible points

of Svw in the interval [0, Cvw] (fixing the basestock level for one SVC fixes the basestock

level for all SVCs in same pool, thereby fixing the pool basestock level). The problem

is solved for all feasible values of Svw and Sw. The value that results in the minimum

objective function value gives the local optimal values of Svw and Sw for the initial value

of S0. However, if no feasible Sw is found for a given value of S0, then that instance is

not feasible. Once a local minimum cost solution is found for the initial value of S0, S0

is decreased by one and the procedure is repeated. This continues till S0 reaches zero or

the solution is infeasible for some S0. After finding all the local minimum cost solutions,

the minimum is picked, this becomes the global minimum cost for SVC basestock level

of Svw, pool base stock level of Sw, and plant basestock level of S0. The optimal solution

in this case comprises of the values of S0 and Svw which give minimum cost

3.3.10 Infeasibility check

A procedure of determining infeasibility is proposed, which is typical of most MINLP

models. The search for a solution is terminated immediately the problem is found to be

infeasible.

For every iteration arising from the Lagrangian relaxation method, a lower bound

of the objective value is obtained. If an instance happens to be feasible, the following

observation shows that a loose upper bound (UBf ) is available:

Proposition 3.3.10.1

Given a feasible instance, the following gives an upper bound of the objective value:

UBf =
∑
w∈W

∑
v∈V

fvw + h0C0 +
∑
w∈W

∑
v∈V

hvwCvw +
∑
u∈U

λudmax + qvw(ŵSvw)

+
∑
w∈W

∑
v∈V

pvwλwLw (3.3.77)
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Proof. If we have a feasible instance, the first five terms in (3.3.77) are obviously upper

bounds of the fixed costs, plant holding costs and SVC holding costs, transportation costs

and transshipment costs. The fifth term is clearly an upper bound of the transshipment

cost. The sixth term is also an upper bound of the SVC backorder costs because for each

v ∈ V and each w ∈ W :

λwLw ≥
∑
u∈U

λuvwYuvwLw = E[Nvw] ≥ E[Nvw]−
Svw−1∑
s=0

[1− Fvw(s)] = Bvw (3.3.78)

3.3.11 Properties of the optimal solution for model II

The following proposition ensures that a demand assignment satisfies the assignment

constraint, that is, a customer’s total demand assignment is to one and only one SVC.

Proposition 3.3.11.1

For the optimal solution of (3.3.21) for customer u ∈ U , Yuv∗w = 1 where v∗ =

argminv∈V ′{duv∗w} and V ′ = {v ∈ V : auvwXvw = 1}

Proof. For some customer u ∈ U , let v∗ be an open SVC with the lowest transportation

cost duv∗w among all the open SVCs. The cost associated with this assignment is given

as

(hv∗w + qv∗w)

Sv∗w−1∑
s=0

Fv∗w(s)− qv∗wSv∗w +

(
pv∗wρ

S0+1

λ0(1− ρ)
+ pv∗wαw + duv∗w

)
λuYuv∗w

+ (pv∗w − qv∗w)

∑
u∈U λuYuv∗w

λw

(
ŵSw−1∑
s=0

Fw(s)− ŵSvw

)
(3.3.79)

Now assume that in the optimal solution, customer u is assigned to open SVC v0.
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The cost of the assignment is

(hv0w + qv0w)

Sv0w−1∑
s=0

Fv0w(s)− qv0wSv0w +

(
pv0wρ

S0+1

λ0(1− ρ)
+ pv0wαw + duv0w

)
λuYuv∗w

+ (pv0w − qv0w)

∑
u∈U λuYuv0w

λw

(
ŵSw−1∑
s=0

Fw(s)− ŵSvw

)
(3.3.80)

since v0 is the optimal SVC selected

(hv0w + qv0w)

Sv0w−1∑
s=0

Fv0w(s)− qv0wSv0w +

(
pv0wρ

S0+1

λ0(1− ρ)
+ pv0wαw + duv0w

)
λuYuv∗w

+ (pv0w − qv0w)

∑
u∈U λuYuv0w

λw

(
ŵSw−1∑
s=0

Fw(s)− ŵSvw

)

≤ (hv∗w + qv∗w)

Sv∗w−1∑
s=0

Fv∗w(s)− qv∗wSv∗w +

(
pv∗wρ

S0+1

λ0(1− ρ)
+ pv∗wαw + duv∗w

)
λuYuv∗w

+ (pv∗w − qv∗w)

∑
u∈U λuYuv∗w

λw

(
ŵSw−1∑
s=0

Fw(s)− ŵSvw

)
(3.3.81)

however for duv∗w ≤ duv0w

(hv∗w + qv∗w)

Sv∗w−1∑
s=0

Fv∗w(s)− qv∗wSv∗w +

(
pv∗wρ

S0+1

λ0(1− ρ)
+ pv∗wαw + duv∗w

)
λuYuv∗w

+ (pv∗w − qv∗w)

∑
u∈U λuYuv∗w

λw

(
ŵSw−1∑
s=0

Fw(s)− ŵSvw

)

≤ (hv0w + qv0w)

Sv0w−1∑
s=0

Fv0w(s)− qv0wSv0w +

(
pv0wρ

S0+1

λ0(1− ρ)
+ pv0wαw + duv0w

)
λuYuv∗w

+ (pv0w − qv0w)

∑
u∈U λuYuv0w

λw

(
ŵSw−1∑
s=0

Fw(s)− ŵSvw

)
(3.3.82)

From (3.3.81) and (3.3.82) v0 = v∗

The next result establishes the convexity of Model II.
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Proposition 3.3.11.2

Model II is a convex nonlinear mixed integer problem.

Proof. We showed convexity of the dual problem for fixed multiplier values and contin-

uous assignment variable. Thus, the dual objective is convex when θvw = 0, πu = 0 and

0 ≤ Yuvw ≤. Also the dual objective is equal to the primal objective when θvw = 0,

πu = 0 and 0 ≤ Yuvw ≤. A nonlinear mixed integer problem is convex if it’s corre-

sponding integer relaxed problem is convex. Hence, the objective function of Model II

is convex.

The complicating constraints for Model II are the response time and assignment

constraints. The response time constraint is an inequality constraint while the assignment

constraint is an equality constraint.

The response time constraint in Model II is same as that of Model I and also depends

only on the variable Sw = ŵSvw and can be written as

Lw − τ +
1

λw

Sw−1∑
s=0

(Fw(s)− 1) ≤ 0

Thus the convexity result for the response time constraint of Model I also holds for Model

II.

The equality constraint can be written as 1−
∑

v∈V Yuvw = 0. 1−
∑

v∈V Yuvw is the

sum of a linear function and a constant, thus it is affine.

This establishes the convexity of MODEL II

Just likeModel I, convexity implies thatModel II can be solved by convex optimisation

solvers. The solution to Model II can be obtained using GAMS software, thus there is

no urgency to immediately develop any specialised heuristics for solving it.
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3.4 Model with reliable locations (model III)

Here, we present a model which takes into account possible service center failures

which we call Model III. Chen et al. (2011) studied a single echelon uncapacitated joint

reliable inventory location model which had negligible lead times and did not consider

lateral transshipments. Rui (2015) considered a capacitated reliable facility location

model. We incorporate ideas from Chen et al. (2011) and Cohen et al. (1989) into Model

II to consider reliability of facilities in a two echelon joint location-inventory setting with

response time requirements and LT.

We assume that open SVCs have a uniform failure probability γ and that SVC failures

are independent. A SVC failure means that the SVC is unable to provide any service.

Thus, its assigned customers are reassigned to any of the other functioning SVCs with an

assignment strategy.

The system’s reliability follows from the assignment strategy adopted for each level.

Let r (r = 1, ..., ŵ) denote a given customer’s assignment level to a SVC in poolw. When

r=1, it is the customer’s primary assignment. If r=2, it is the customer’s first backup

assignment, and so on. If a customer’s level-r assigned SVC failed, the level-(r + 1)

assigned SVC serves the customer as the immediate backup. In this case our assignment

strategy is pool based, that is, customers’ backup SVCs are SVCs in same pool. The

assignment level is determined by the capacity of open SVCs in same pools. We also

assume that each pool has an emergency facility which is not subject to failure and is

used to satisfy pool demand if all SVCs in the pool fail.

Whenever there is a SVC failure, it’s assigned demand is then reassigned to a SVC in

the same pool having sufficient capacity. If all level-r SVCs assigned to a customer fails,

then the customer is assigned to the emergency pool facility and a cost φ is incurred. The

probability that a customer gets served from it’s level-r assigned facility is (1− γ)γr−1,

that is, the probability that the customer’s level-r SVC is functional and all it’s lower level

SVCs have failed. The probability that a customer gets served from the emergency SVC

is γŵ, this is also the probability that all SVCs in pool w have failed.

However, it is vital to note that the level r assignment in this model cannot be

interpreted to mean that there exists r closer opened SVCs. That’s because of the

consideration of capacity constraints. The closest SVC among the ones still functional

may not have sufficient capacity to accommodate new assignments, hence we proceed to
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the succeeding closest SVC and check its available capacity until some SVC satisfies the

capacity constraint.

All demands assigned to a SVC at any level are met through any of the follow-

ing; inventory on-hand, lateral transshipment or backorder, for as long as the SVC is

operational.

The assignment variable for this model is

Yuvwr =

 1, customer u is assigned to,SV Cvw, as a level r assignment

0, otherwise.
(3.4.1)

Other decision variables and parameters remain same as in the previous section.

In this system, we also assume that the plant is not subject to failure. This in addition

to our assumption that each pool possesses an emergency SVC which is not subject to

failure imply that there will always be inventory on hand and back order at the plant and

pools. Thus, in steady state, the expected plant and pool levels for on-hand inventory and

backorder remain the same as that of Model I with the little difference being the values

of λ0 and λw and λvw. Thus, the following hold for Model III

1. The steady state plant backorder level is given by B0 = ρS0+1

1−ρ

2. The steady state plant on hand inventory is given by I0 = S0 − ρ
1−ρ(1− ρS0)

3. The expected plant response time is given byW0 = ρS0+1

λ0(1−ρ)

4. in steady state the expected pool inventory level for pool w is:

Iw =
ŵSvw−1∑
s=0

(ŵSvw − s)P{Nw = s}

or

Iw =
ŵSvw−1∑
s=0

Fw(s)
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5. In steady state the expected pool backorder level is

Bw = λwLw − ŵSvw +
ŵSvw−1∑
s=0

Fw(s)

where,

λvw =
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1− γ)Yuvwr,

λw =
∑

v∈V
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1− γ)Yuvwr

and

λ0 =
∑

wεW λW =
∑

w∈W
∑

v∈V λvw =
∑

w∈W
∑

v∈V
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1−γ)Yuvwr.

Here, λvw =
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1− γ)Yuvwr is the expected demand at SVC v in pool

w.

For Model III, steady state expected on-hand inventory level, LT level and backorder

level for SVCs are given below.

1. In steady state the expected SVC inventory level at each SVC in w is

Ivw =
Svw−1∑
s=0

(Svw − s)P{Nvw = s} (3.4.2)

2. In steady state the expected SVC backorder level at SVC v in pool w is

Bvw =
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)YuvwrLw

+

∑
u∈U

∑ŵ
r=1 λuγ

r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

) (3.4.3)

where

Fw(s) =
s∑

m=0

P{Nw = m}

3. In steady state the expected LT level at SVC v in pool w is
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Tvw =
Svw−1∑
s=0

Fvw(s)− Svw

−
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.4.4)

where

Fvw(s) =
s∑

m=0

P{Nvw = m}

The model is as presented below

min
∑
w∈W

∑
v∈V

[
fvwXvw + (hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw

+
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwr (pvwLw + duvw)

+(pvw − qvw)

∑
u∈U λu

∑ŵ
r=1 γ

r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
+ φλwγ

ŵ

]

+ h0

[
S0 −

ρ

1− ρ
(1− ρS0)

]
(3.4.5)
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Subject to

∑
v∈V

Yuvwr = 1, for each,u ∈ U, r ∈ {1, 2, ..., ŵ} (3.4.6)

ŵ∑
r=1

Yuvwr ≤ auvwXvw, for each,u ∈ U, v ∈ V,w ∈ W (3.4.7)

∑
u∈U

ŵ∑
r=1

λuYuvwr ≤ Svw ≤ Cvw, for each,v ∈ V (3.4.8)

Sw ≤ Cw = ŵCvw, for each,w ∈ W (3.4.9)

S0 ≤ C0 (3.4.10)

[Lw − τ ]
∑
u∈U

w|∑
r=1

λu(γ
r−1)(1− γ)Yuvwr

≤
∑

u∈U
∑ŵ

r=1 λu(γ
r−1)(1− γ)Yuvwr

λw

ŵSvw−1∑
s=0

[1− Fw(s)] (3.4.11)

Svw, S0 ≥ 0 integer , for each v ∈ V (3.4.12)

Xvw ∈ {0, 1}for each,v ∈ V (3.4.13)

Yuvwr ∈ {0, 1}for each,u ∈ U (3.4.14)

(3.4.11) can also be written as

[Lw − τ ] ≤
∑ŵSvw−1

s=0 [1− Fw(s)]

λw

Constraints (3.4.6) states that a customer should be assigned to only one SVC v in

pool w. Constraints (3.4.7) require that demand assignments can be made to only open

SVCs which are at a distance of dmax from the customer and that a SVC cannot serve

a customer at more than one level. Constraints (3.4.8) states that the basestock level

at a SVC cannot be less than the sum of all possible demand assignments and cannot

be greater than the capacity. Constraints (3.4.9) and (3.4.10) states that the pool and

plant basestock level cannot exceed their respective capacity. Constraint (3.4.11) is the

service constraint. Finally, (3.4.12),(3.4.13),and (3.4.14) are nonnegativity and integer

constraints. We examine the properties of Model III and give the expected inventory

level in steady state for the case of probabilistic facility failures using the distribution of
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the number of in replenishment orders . The following gives the SVC inventory levels

for Model III

Proposition 3.4.1

1. In steady state the expected SVC inventory level at each SVC v in pool w is

Ivw =
Svw−1∑
s=0

(Svw − s)P{Nvw = s} (3.4.15)

where

Fvw(s) =
s∑

m=0

P{Nvw = m}

2. In steady state the expected SVC backorder level at SVC v in pool w is

Bvw =
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)YuvwrW0 +

∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwrαw

+

∑
u∈U

∑ŵ
r=1 λuγ

r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.4.16)

3. In steady state, the expected lateral transshipment level at SVC v in pool w is

Tvw =
Svw−1∑
s=0

Fvw(s)− Svw

−
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.4.17)

Proof. The proof follows from Model II. The slight difference lies in including the

probability that a customer gets served from it’s level-r assigned facility (1 − γ)γr−1.

Also for Model III the METRIC distribution imply that
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P [Nvw = m] =
e−

∑
u∈U

∑ŵ−1
r=0 λuYuvwr(1−γ)γr−1Lw(

∑
u∈U

∑ŵ−1
r=1 λuYuvwr(1− γ)γr−1Lw)m

m!

and

Fvw(s) =
s∑

m=0

e−
∑

u∈U
∑ŵ−1

r=1 λuYuvwr(1−γ)γr−1Lw(
∑

u∈U
∑ŵ−1

r=1 λuYuvwr(1− γ)γr−1Lw)m

m!

Similar to Model I

Ivw =
Svw−1∑
s=0

(Svw − s)P{Nvw = s} (3.4.18)

For the reliability model, expected number of demand assigned to a SVC is given by∑
u∈U

∑ŵ
r=1 λuγ

r−1(1−γ)Yuvwr. Also the splitting of property Poisson processes imply

that

Bvw =

(∑
u∈U

∑ŵ
r=1 λuγ

r−1(1− γ)Yuvwr

λw

)
Bw

therefore

Bvw =
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)YuvwrLw

+

∑
u∈U

∑ŵ
r=1 λuγ

r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.4.19)

Similarly,
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E[Nvw] =
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)YuvwrW0 +

∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwrαw (3.4.20)

=
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)YuvwrLw (3.4.21)

From our previous results for Model I, we showed that

Tvw = E[Nvw] + Ivw − Svw −Bvw

Therefore,

Tvw =
Svw−1∑
s=0

Fvw(s)−Svw−
∑

u∈U
∑ŵ

r=1 λuγ
r−1(1− γ)Yuvwr

λw

(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw

)
(3.4.22)

3.4.1 Distribution of outstanding orders in pools and service centers
for model III

From the previous subsection it is obvious that before inventory levels can be evaluated

for Model III, the distribution of outstanding number of orders Nw and Nvw at the pool

and SVCs, respectively, have to be determined. We take a close look the METRIC and

exact approximations used for finding the distribution of outstanding number of orders

Nw and Nvw in Pools and SVCs, respectively.

3.4.1.1 METRIC for model III

For Model III P [Nw = s] and Fw(s) are same as Model II.
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In Model III,

P [Nvw = m] =
e−

∑
u∈U

∑ŵ−1
r=1 λuYuvwr(1−γ)γr−1Lw(

∑
u∈U

∑ŵ−1
r=1 λuYuvwr(1− γ)γr−1Lw)m

m!
(3.4.23)

and

Fvw(s) =
s∑

m=0

e−
∑

u∈U
∑ŵ−1

r=1 λuYuvwr(1−γ)γr−1Lw(
∑

u∈U
∑ŵ−1

r=1 λuYuvwr(1− γ)γr−1Lw)m

m!

(3.4.24)

3.4.1.2 Exact representation for model III

The following gives the exact representation for Model III.

P [N0 = s0] and P [Nw = sw] remain same with model I.

P [Nvw = svw] =∑
sw=svw

(
sw
svw

)[∑
u∈U

∑ŵ−1
r=1 λuYuvwr

λw

]svw [
1−

∑
u∈U

∑ŵ−1
r=1 λuYuvwr

λw

]sw−svw
P [Nw = sw] (3.4.25)

3.4.2 Lagrange relaxation for model III

Following same procedure as Model II, we relax the model’s assignment (3.4.6)

and service (3.4.11) constraints in the relaxed problem. Let πur and θvw denote dual

multipliers for the constraints (3.4.6) and (3.4.11) respectively. The relaxation results in

the Lagrangian Dual problem below.
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max
θ,π≥0

min
X,Y,S

∑
v∈V

{
fvwXvw + (hvw + qvw)

Svw−1∑
s=0

Fvw(s)− qvwSvw

+
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwr(pvw + θvwr)Lw

+
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwr

(pvw − qvw + θvw)

λw
(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw)

+
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwr ((duvw − θvwrτ))

}

+
∑
u∈U

ŵ∑
r=1

πur −
∑
u∈U

ŵ∑
r=1

πurYuvwr (3.4.26)

Subject to

ŵ∑
r=1

Yuvwr ≤ auvwXvw, for each,u ∈ U, v ∈ V,w ∈ W (3.4.27)

∑
u∈U

ŵ∑
r=1

λuYuvwr ≤ Svw ≤ Cvw, for each,v ∈ V (3.4.28)

Svw integer , for each v ∈ V (3.4.29)

Xvw ∈ {0, 1}for each,v ∈ V (3.4.30)

Yuvwr ∈ {0, 1}for each,u ∈ U, v ∈ V (3.4.31)

When Xvw = 0, the optimal solution will be zero. Thus we consider the problem

for cases where Xvw = 1. The Lagrangian relaxation separates this problem into

subproblems by SVC and its associated pool.
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min
Y,S

(hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw +
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwr(pvw + θvwr)Lw

+
∑
u∈U

ŵ∑
r=1

λuγ
r−1(1− γ)Yuvwr

(pvw − qvw + θvw)

λw
(
ŵSvw−1∑
s=0

Fw(s)− ŵSvw)

+
∑
u∈U

|Vw|−1∑
r=1

λuγ
r−1(1− γ)Yuvwr ((duvw − θvwrτ)) +

∑
u∈U

ŵ∑
r=1

πur

−
∑
u∈U

ŵ∑
r=1

πurYuvwr (3.4.32)

Subject to

ŵ∑
r=1

Yuvwr ≤ auvw, for each,u ∈ U, v ∈ V (3.4.33)

∑
u∈U

ŵ∑
r=1

λuYuvwr ≤ Svw ≤ Cvw, for each,v ∈ V (3.4.34)

Svw integer , for each v ∈ V (3.4.35)

Yuvwr ∈ {0, 1}for each,u ∈ U, v ∈ V (3.4.36)

We can rewrite the subproblem as

min
Y,S

(hvw + qvw)
Svw−1∑
s=0

Fvw(s)− qvwSvw

+
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr

(pvw − qvw + θvw)

λw

ŵSvw−1∑
s=0

Fw(s)

+
∑
u∈U

ŵ−1∑
r=1

{
λuγ

r−1(1− γ) {(pvw + θvwr)Lw + (duvw − θvwrτ)

−(pvw − qvw + θvw)

λw
(ŵSvw)

}
−

ŵ∑
r=1

πur

}
Yuvwr (3.4.37)
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Subject to

ŵ∑
r=1

Yuvwr ≤ auvw, for each,u ∈ U, v ∈ V (3.4.38)

∑
u∈U

ŵ−1∑
r=1

λuYuvwr ≤ Svw ≤ Cvw, for each,v ∈ V (3.4.39)

Svw integer , for each v ∈ V (3.4.40)

Yuvwr ∈ {0, 1}for each,u ∈ U, v ∈ V (3.4.41)

Just like Model II, the solution of the above subproblem is dependent on the fact

that the SVCs have capacity constraint. Thus, the possible values of Svw in the optimal

solution lies between
∑

u∈U
∑ŵ−1

r=1 λuYuvwr and Cvw. Therefore, the subproblem can be

solved by fixing Svw to each feasible value.

For fixed values of Svw, the constraint (3.4.39) is satisfied and we can easily express

the subproblem as:

min
Y

(hvw + qvw)
Svw−1∑
s=0

Fvw(s)

+
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr

(pvw − qvw + θvw)

λw

ŵSvw−1∑
s=0

Fw(s)

+
∑
u∈U

ŵ−1∑
r=1

{
λuγ

r−1(1− γ) {(pvw + θvwr)Lw + (duvw − θvwrτ)} −
ŵ∑
r=1

πur

}
Yuvwr

(3.4.42)

Subject to

ŵ∑
r=1

Yuvwr ≤ auvwr, for each,u ∈ U, v ∈ V,w ∈ W (3.4.43)

Yuvwr ∈ {0, 1}for each,u ∈ U, v ∈ V (3.4.44)

We consider (3.4.43) for auvwr = 1 and relax the integrality of Yuvwr. This further

simplifies the subproblem to:
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min(hvw + qvw)
Svw−1∑
s=0

Fvw(s)

+
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr

(pvw − qvw + θvw)

λw

ŵSvw−1∑
s=0

Fw(s)

+
∑
u∈U

ŵ−1∑
r=1

{
λuγ

r−1(1− γ) {(pvw + θvwr)Lw + (duvw − θvwrτ)} −
ŵ∑
r=1

πur

}
Yuvwr

(3.4.45)

Subject to
ŵ∑
r=1

Yuvwr ≤ 1, for each,u ∈ U, v ∈ V,w ∈ W

The objective function of the above subproblem can be written as:

min g2(
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr) +

∑
u∈U

ŵ−1∑
r=1

{R(vw)Yuvwr} (3.4.46)

where

g2(
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr) = (hvw + qvw)

Svw−1∑
s=0

Fvw(s)

+
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr

(pvw − qvw + θvw)

λw

ŵSvw−1∑
s=0

Fw(s) (3.4.47)

and

Rvw = λuγ
r−1(1− γ) {(pvw + θvwr)Lw + (duvw − θvwrτ)} −

ŵ∑
r=1

πur (3.4.48)

Proposition 3.4.2.1

g2(
∑

u∈U
∑ŵ−1

r=1 λuγ
r−1(1 − γ)Yuvwr) is convex in

∑
u∈U

∑ŵ−1
r=1 λuγ

r−1(1 − γ)Yuvwr

when
∑

u∈U
∑ŵ−1

r=1 λuγ
r−1(1− γ)Yuvwr ≥ 0.

Proof. Convexity has been established for the non-reliability case (Model II). The proof
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follows from the convexity result for Model II. In this case the total demand assigned to a

SVC v in poolw is
∑

u∈U
∑ŵ−1

r=1 λuγ
r−1(1−γ)Yuvwr. Therefore g2(

∑
u∈U

∑ŵ−1
r=1 λuγ

r−1(1−

γ)Yuvwr) is convex.

The continuous relaxation of the assignment variable imply that any of the following

could occur:
∑ŵ−1

r=1 Yuvwr = 0,
∑ŵ−1

r=1 Yuvwr = 1 or 0 <
∑ŵ−1

r=1 Yuvwr < 1. From

nonlinear programming if 0 < Yuvwr < 1 and the first derivative at Yuvwr is equal to zero

then (3.4.46) has a local minimum (Winston (2004) p. 637).

Proposition 3.4.2.2

If 0 <
∑ŵ−1

r=1 Yuvwr < 1, then the subproblem (3.4.45) satisfies the KKT condtions.

Proof. The Lagrangian of (3.4.45) is

L(Y, κu) =g2(
∑
u∈U

ŵ−1∑
r=o

λuγ
r−1(1− γ)Yuvwr) +

∑
u∈U

ŵ−1∑
r=1

RuvwYuvwrγ
r−1(1− γ)

+ κu

ŵ−1∑
r=1

(Yuvwr − 1) (3.4.49)

Where κ is the Lagrange multipliers associated with
∑ŵ−1

r=1 (Yuvwr − 1) ≤ 0.

For subproblem (3.4.45), KKT conditions are:

∂L(Y, %u, κu)

∂Yu∗vwr
=

∂

∂Yu∗vwr
g2(
∑
u∈U

ŵ−1∑
r=1

λuγ
r−1(1− γ)Yuvwr) +

∂

∂Yu∗vwr

∑
u∈U

ŵ−1∑
r=1

RvwYuvwr

+
∂

∂Yu∗vwr

ŵ−1∑
r=1

κu(Yuvwr − 1) = 0
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by chain rule

∂g2(
∑

u∈U
∑ŵ−1

r=o λuγ
r−1(1− γ)Yuvwr)

∂Yu∗vwr

=
∂g2(

∑
u∈U

∑ŵ−1
r=o λuγ

r−1(1− γ)Yuvwr)

∂
∑

u∈U
∑ŵ−1

r=1 λuYuvwrγ
r−1(1− γ)

∂
∑

u∈U
∑ŵ−1

r=1 λuYuvwrγ
r−1(1− γ)

∂Yu∗vwr

=
∂g2(

∑
u∈U

∑ŵ−1
r=o λuγ

r−1(1− γ)Yuvwr)

∂
∑

u∈U
∑ŵ−1

r=1 λuYuvwrγ
r−1(1− γ)

λu∗(γr−1(1− γ))

∂g2(
∑

u∈U
∑ŵ−1

r=o λuγ
r−1(1− γ)Yuvwr)

∂
∑

u∈U
∑ŵ−1

r=1 λuYuvwrγ
r−1(1− γ)

= −(hvw + qvw)
Svw−1∑
s=0

Ls+1
w

s!
(
∑
u∈U

ŵ−1∑
r=1

λuYuvwrγ
r−1(1− γ))se−

∑
u∈U

∑ŵ−1
r=1 λuYuvwrγr−1(1−γ)Lw

+ (pvw − qvw + θvw)
ŵSvw−1∑
s=0

Fw(s)

∂L(Y, κu)

∂Yu∗vwr

= −(hvw + qvw)λu∗γr−1(1− γ)

Svw−1∑
s=0

Ls+1
w

s!
(
∑
u∈U

ŵ−1∑
r=1

λuYuvwrγ
r−1(1− γ))se−

∑
u∈U

∑ŵ−1
r=1 λuYuvwrγr−1(1−γ)Lw

+
(p− q + θw)λu∗γr−1(1− γ)

λw

ŵSvw−1∑
s=0

Fw(s, λw) +Rvw + κu = 0 (3.4.50)

(3.4.50) is the gradient condition.
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κu(
ŵ−1∑
r=1

Yuvwr − 1) ≤ 0, for each,u ∈ U (3.4.51)

0 ≤ Yuvwr ≤ 1, for each,u ∈ U (3.4.52)

κu ≥ 0, for each u ∈ U (3.4.53)

If Yuvwr is fractional, κu = 0 by (3.4.51).

Equation (3.4.51) gives the complementary slackness conditions. The feasibility

condition is given by (3.4.52) and (3.4.53).

By convexity of the subproblem, the KKT solution above is a global minimum.

Just like our previous models, we also utilise GAMS to get solutions for this model.

3.5 Model with stochastic demand (model IV)

Decision making in facility location is long-term. The absence of precise forecasts

for demand and cost when making decisions is a challenge that arises frequently in the

strategic aspect of supply chain. Since it is challenging and costly to reverse those

decisions, making them robust against uncertainty is of utmost importance. Grahovac

and Chakravarty (2001) reviews various location models with the purpose of producing

solutions that are robust and reliable. A very common procedure for this family of models

is scenario-based modelling. This procedure characterises uncertainty using a finite set

consisting of discrete scenarios. We have two possible explanations of the scenario set.

The explanation from a dynamic perspective is that as the business setting changes over

time, scenarios and their associated probabilities characterise the steady state fraction

of time that the setting is in each state. While, the static perspective is that the set

denotes a range of probable outcomes, out of which one will occur and then remain fixed

afterwards.

It is common practice for companies to conduct scenario-based studies to consider

the performances of various projects under different probable future outcomes. In fa-
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cility location modeling, one can apply stochastic optimisation or robust optimisation

techniques, depending on ones’ defined objective function, in order to produce one or

more "good" solutions which perform relatively well for a good number of or all possible

scenarios.

Models I-III considered fixed demand for customers in the system. Model IV, however,

includes demand uncertainty into Model II by considering a set of discrete demand

scenarios. The scenarios are such that a customer’s demand rate is different for each

scenario. Thus, for Model IV, we assume that the demand rate (λu) is uncertain. The

model objective involves determining the optimal costs for a given finite set of likely

demand rate scenarios. Define Z as the scenario set and γz as probability of scenario

z ∈ Z occuring. Each z ∈ Z comprises of different demand rates for each number of

customers. In addition, a subscript z is added to decision variable (for example Yuvwz) and

any parameter (for example λuz) that may assume different values for different scenarios.

1. In steady state the expected inventory level for each SVC v in pool w for scenario

z is

Ivwz =
Svwz−1∑
s=0

(Svwz − s)P{Nvwz = s} (3.5.1)

2. In steady state, the expected backorder level for SCV v in pool w is

Bvwz =

∑
u∈U λuzYuvwz

λ0z

ρS0z+1
z

1− ρz
+
∑
u∈U

λuzYuvwzαw

+

∑
u∈U λuzYuvwz

λwz

(
ŵSvwz−1∑
s=0

Fwz(s)− ŵSvwz

)
(3.5.2)

where,

Fwz(s) =
s∑

m=0

P{Nwz = m}

3. In steady state, the expected lateral transshipment level at SVC v in pool w is

Tvw =
Svwz−1∑
s=0

Fvwz(s)− Svwz −
∑

u∈U λuzYuvwz

λw

(
ŵSvwz−1∑
s=0

Fwz(s)− ŵSvwz

)
(3.5.3)
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where.

Fvwz(s) =
s∑

m=0

P{Nvwz = m}

The scenario based problem is as formulated below:

min
∑
w∈W

∑
v∈V

fvwXvw +
∑
z∈Z

γz

{∑
w∈W

∑
v∈V

{
(hvw + qvw)

Svwz−1∑
s=0

Fvwz(s)− qvwSvwz

+
∑
u∈U

((
pvwρ

S0z+1

λ0z(1− ρz)
+ pvwαw + duvwz

)
λuzYuvwz

)

+(pvw − qvw)

∑
u∈U λuzYuvwz

λwz

(
ŵSvwz−1∑
s=0

Fwz(s)− ŵSvwz

)}

+
∑
z∈Z

γzh0z

[
S0z −

ρz
1− ρz

(1− ρS0z
z )

]}
(3.5.4)

Subject to

∑
v∈V

Yuvwz = 1, for eachu ∈ U, z ∈ Z (3.5.5)

Yuvwz ≤ Xvw, for each,u ∈ U, z ∈ Z (3.5.6)

0 ≤ Svwz ≤ Cvwz, for each,v ∈ Vw, z ∈ Z (3.5.7)

Swz ≤ Cwz = ŵCvwz, for each,w ∈ W, z ∈ Z (3.5.8)

S0z ≤ C0z, for each z ∈ Z (3.5.9)[
ρS0z+1
z

λ0z(1− ρz)
+ αw − τ

]∑
u∈U

∑
z∈Z

λuzYuvwz ≤
∑

u∈U
∑

z∈ Z λuzYuvwz

λwz

ŵSvwz−1∑
s=0

[1− Fwz(s)]

(3.5.10)

Svwz, Swz, S0z ≥ 0 integer , for each v ∈ V,w ∈ W, z ∈ Z (3.5.11)

Xvwz ∈ {0, 1}for each,v ∈ V, z ∈ Z (3.5.12)

Yuvwz ∈ {0, 1}for each,u ∈ U, z ∈ Z (3.5.13)
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(3.5.10) can also be written as

[
ρS0z+1
z

λ0z(1− ρz)
+ αw − τ

]
≤
∑ŵSvwz−1

s=0 [1− Fwz(s)]
λwz

Note that our objective in the formulation above is to minimise the expected cost across

all scenarios. However, optimising the mean outcome can result in solutions that do not

perform well under some scenarios. We can produce solutions that are more robust by

using alternative objectives which reflect risk-averseness. Some examples of objectives

which reflect risk-averseness are minimax regret Serra and Marianov (1998), expected

failure cost Snyder and Daskin (2005) and conditional value-at-risk or CV aR Chen

et al. (2006). Furthermore, the simultaneous consideration of both risk-averse objective

and average-case objective is often more desirable. Using multi-objective optimisation

methods, it is then possible to obtain an efficient set of solutions that are Pareto-optimal

and depend on our chosen objectives. The decision maker may then evaluate trade-offs

between objectives and then select one solution from our efficient set. This method is

demonstrated by Snyder and Daskin (2005) who consider trade-offs between cost and

customer coverage degree.

In this study, we apply similar technique in considering two objectives, which are:

worst possible ’response time’ among all given scenarios and the expected cost across

all scenarios. Our intent is to minimise the longest response time among customers from

all scenarios. The consideration of the worst possible response time for all possible

scenarios, reflects the desire to have a robust supply chain.

Model IV examines the model under a stochastic demand environment. There are

different demand scenarios that each have a probability of occurrence. In this section,

we look at properties of Model IV given steady state expected levels. For Model IV, the

minimum expected cost across all scenarios is evaluated.

Proposition 3.5.1

1. In steady state the expected SVC inventory level at each SVC v in pool w for each

scenario z ∈ Z is

Ivwz =
Svwz−1∑
s=0

(Svwz − s)P{Nvwz = s} (3.5.14)
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2. In steady state the expected SVC backorder level at SVC v in pool w for scenario z

is

Bvwz =

∑
u∈U λuzYuvwz

λ0z

ρS0z+1
z

1− ρz
+
∑
u∈U

λuzYuvwzαw

+

∑
u∈U λuzYuvwz

λwz

(
ŵSvwz−1∑
s=0

Fwz(s)− ŵSvwz

)
(3.5.15)

where,

Fwz(s) =
s∑

m=0

P{Nwz = m}

3. In steady state, the expected lateral transshipment level at SVC v in pool w is

Tvw =
Svwz−1∑
s=0

Fvwz(s)− Svwz −
∑

u∈U λuzYuvwz

λwz

(
ŵSvwz−1∑
s=0

Fwz(s)− ŵSvwz

)
(3.5.16)

where,

Fvwz(s) =
s∑

m=0

P{Nvwz = m}

This is similar to Model III results. We only replace r with z and then include a

subscript of z for any variable or parameter that depends on demand.

3.5.1 Distribution of number of outstanding orders in pools and
service centers for model IV

METRIC For model IV

For model IV

P [Nwz = m] =
eλwzLwz(λwzLwz)

m

m!
(3.5.17)

and

Fwz(s) =
s∑

m=0

eλwzLwz(λwzLwz)
m

m!
(3.5.18)

In the above,
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Lwz = W0z + αw =
ρS0z+1
z

λ(1− ρz)
+ αw (3.5.19)

In model IV,

P [Nvwz = m] =
e−

∑
u∈U λuzYuvwzLwz(

∑
u∈U λuzYuvwzLwz)

m

m!
(3.5.20)

and

Fvwz(s) =
s∑

m=0

e−
∑

u∈U λuzYuvwzLwz(
∑

u∈U λuzYuvwzLwz)
m

m!
(3.5.21)

Exact representation for model IV

The following shows the exact representation for Model IV.

P (N0z = s0z) = (1− ρz)ρS0z
z eλ0zαwz

s0z∑
l=0

ρlz(λ0zαwz)
s0z−l

(s0z − l)!
(3.5.22)

P [Nwz = swz] =
∑

sz=swz

(
s0z

swz

)[
λwz
λ0z

]swz
[
1− λwz

λ0z

]s0z−swz

P [N0z = s0z] (3.5.23)

P [Nvwz = svwz] =∑
swz=svwz

(
swz
svwz

)[∑
u∈U λuzYuvwz

λwz

]svwz
[
1−

∑
u∈U λuzYuvwz

λwz

]swz−svwz

P [Nwz = swz]

(3.5.24)

Proposition 3.5.1.1

The objective function of Model IV is convex.

Proof. Model IV can be treated as solving Model II for each scenario. Model IV for

a single scenario is same as Model II. We have shown that Model II is convex. Thus,

Model IV being a sum of convex scenarios is also convex.
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Chapter 4

RESULTS AND DISCUSSION

4.0 Introduction

In this chapter computational experiments are designed and implemented to examine

the models’ properties. We use GAMS to implement the experiments. Our GAMS code

can be found in appendices II- V. In this study, we have a finite number of customers

with known demand rates. The customers are geographically dispersed and we consider

each customer’s location as a node. The customers are located in different cities and

each city is treated as a node. For example, suppose we have a customer u1 ∈ U in

Lagos and another customer u2 ∈ U in Ibadan. In this case, the demand emanating from

Lagos is said to be the demand from customer u1 and is denoted by λu1 , while, demand

emanating from Ibadan is said to be the demand from customer u2 and is denoted by λu2 .

The collection of all customers {u1, u2, u3 · · ·un} gives the set U . Also, each customer’s

location is treated as a candidate SVC location v ∈ V . The collection of the location of

all customers {v1, v2, v3, · · · vn} gives the set V . The setsU and V are equivalent. LT can

only occur among SVCs in the same pool. We use a geopolitical pooling criterion. Thus,

the collection of all SVCs in a geopolitical zone form a pool w ∈ W . Consequently, we

have six pools in Nigeria. The collection of all pools {w1, w2, · · · , w6} gives us the set

W .

Three data sets are used comprising of 37 nodes, 109 nodes and 181 nodes; each

node is considered as a potential SVC location and as a demand node. The 37 nodes

represent the most populous cities in each of the 36 states in Nigeria and Federal Capital

Territory (FCT). The 109 nodes represents the 3 most populous cities in each of the 36

states in Nigeria and the FCT. The 181 nodes denotes the 5 most populous cities in each

of the 36 states in Nigeria and the FCT. The population data was obtained from the 2006

census. The costs associated with opening a SVC at a candidate SVC location are the

fixed cost of setting up a SVC in that location and the transportation costs from that SVC
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location to its assigned customers. The fixed costs are given in the data sets. The cost of

transportation between a SVC location and any of its assigned customers is derived by

multiplying the distance between the SVC and the assigned customer by 10−1. Demand

rates are obtained by multiplying the population at a node or city by 10−5. For example,

Ife with a population of 643582 has demand rate of 6. The demand rate for each node is

constrained to be nomore than 10 for nodes with very large population. The deterministic

transportation time from the plant to a SVC is obtained by dividing the distance between

the plant and the SVC by 2400. αw is set to be the maximum of the transportation times

from the plant to all the SVCs in pool w. For all data sets, the plant is located in Abuja.

The data sets are given in Tables 5.1- 5.8 in Appendix I.

4.1 Computational results for model I

4.1.1 Model I performance

Here we compare expected costs obtained from our model with expected costs

obtained from the model without LT. This test is conducted with the 37 node and 109

node data sets for various values of (ρ = UR. We take note of the objective function value

of our model (OBJ LT) and the objective function value of the model without LT (OBJ

WLT). We also take note the Minimum RTR (MRTR) corresponding to the objective

value costs of our model (MRTR LT)and the model without LT (MRTR WLT). The

model without LT follows the model by Caglar et al. (2004) with the pooling criterion

but without LT. The pooling criterion is imposed on the model without LT because

for our model the pooling criterion partitions the main problem into sub problems by

geographical region. Hence, a fair comparison will be to compare also with a collection

of sub problems by geographical region. The results are summarised in Table 4.1.
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Table 4.1: Model I performance

S/N NODES UR MRTR LT MRTR WLT OBJ LT OBJ WLT
1 37 0.99 0.7 0.217 25110.1896 29643.265
2 37 0.9 0.244 0.007 41713.239 44315
3 37 0.7 0.219 0.006 43648.115 46020.384
4 37 0.5 0.216 0.004 43905.332 46249.862
5 37 0.3 0.216 0.004 43965.959 46305.816
6 37 0.1 0.216 0.004 43985.072 46324.456
7 109 0.99 0.53 0.0605 99688.493 117638.186
8 109 0.9 0.34 0.005 126235.589 142015.236
9 109 0.7 0.321 0.0039 128213.665 1435757.798
10 109 0.5 0.319 0.0038 128474.328 143990.155
11 109 0.3 0.319 0.0037 128535.506 144046.565
12 109 0.1 0.319 0.0037 128554.674 144065.252
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4.1.2 Discussion of model I performance

For all instances tested, the total system cost of our LT model was lower than that of

the model without LT. This illustrates the cost savings that can be achieved via the

incorporation of LT. The MRTR for our model was higher than that of the model without

LT. This occurs because for our model, the assumption of negligible LT times imply

that the lead time Lw is identical for all SVCs in a pool. However, the focus of this

experiment is to compare costs only, the effect of response time requirement on our

model is examined in the next result.

4.1.3 Effect of response time requirement for model I

In this experiment we check the behaviour of the model as the response time is varied.

The 37-node dataset is used with (ρ) set to 0.9. From Table 5.1, Model I gives lower

costs than the model without LT for all values of ρ, thus, our choice of ρ is arbitrary.

We vary response time requirement values between 0.272 and 0.668. For this model,

response time values greater than 0.668 will always be feasible. Hence, there is no need

to increase the value of response time beyond 0.668. This is a result of the values obtained

for our deterministic transportation time from the plant to pool w, αw. The result of this

experiment is shown in Fig 4.1 below.
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Figure 4.1: Effect of response time for model I
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4.1.4 Discussion of the effect of response time requirement formodel
I

Figure 4.1 shows that expected cost remains stable with varying response time

requirement values. This occurs as a result of lateral transshipment and pooling which

ensure uniform response time constraint for all SVCs in a pool. The implication of this is

that within feasible values, the decision maker can slacken or tighten the response time

requirement to fit into the contract signed with a customer and this will have negligible

effect on the expected cost. This is especially important, because from Table 4.1, we

see that Model I gives lower costs than the model without LT. This, and the consistency

of costs with varying response times, means that the decision maker is able to negotiate

response times with a customer with a certain degree of certainty about the consequence

of whatever agreement the make.

4.1.5 Effect of base stock level on model 1

We utilise the 37 node dataset for this experiment and set (ρ) to 0.9. From Table 4.1,

Model I gives lower costs than the model without LT for all values of ρ, thus, our choice

of ρ is arbitrary. In the first instance, Svw is fixed at 5, while S0 is varied between the

feasible range. In the second instance S0 is fixed at 3 and the value of Svw is varied within

the feasible range. In all cases the minimum feasible value of τ and the corresponding

total cost are recorded. The total cost and τ are plotted against the stock level. Figure

4.2 and Figure 4.3 below, show the result of this experiment.
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Figure 4.2: Effect of plant base stock level for model I
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Figure 4.3: Effect of SVC base stock level for model I
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4.1.6 Discussion of the effect of base stock level on model 1

Figure 4.2, shows that increasing plant base stock results in negligible increase in expected

cost and causes a decrease in the minimum response time requirement. Figure 4.3, shows

that increasing SVC stock level results in an increase in expected cost and causes no

change in reduced minimum response time requirement. If the decision maker intends to

reduce response times to customers with minimum increase in cost, she has to increase

the plant base stock level. In real life, the value of S0 is usually constrained by capacity.

4.2 Computational results for model II

In this section we utilise all three data sets. The difference between Model II and

Model I is thatModel II is a location-inventorymodel, while, Model I considers inventory

alone. Consequently, all the SVC location variables such asXvw, Yuvw, duvw are factored

into the formulation of Model II. This Model is solved using GAMS and the GAMS code

for Model II can be found in Appendices IV-V.

4.2.1 Model II performance

Here we compare our model with the model without LT. This test is conducted with the

three data sets for (ρ = UR = (0.9, 0.5), τ = RTR = (0.5, 0.3, 0.22or0.2), dmax =

(150, 100). We take note of the objective function value of our model and the objective

function value of the model without LT. The model without LT follows the model by

Mak and Shen (2009) with the pooling criterion but without LT. The pooling criterion is

imposed on the model without LT because for our model the pooling criterion partitions

the main problem into sub problems by geographical region. Hence, a fair comparison

will be to compare also with a collection of sub problems by geographical region. In this

Model the plant is also located in Abuja. The results are summarised in Table 4.2.
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Table 4.2: Model II performance

S/N NODES UR RTR dmax OBJ LT OBJ WLT SVC LT SVC WLT
1 37 0.9 0.5 150 306486.913 311808.6209 19 21
2 37 0.5 0.5 150 299939.9668 312063.1298 19 21
3 37 0.9 0.3 150 306486.913 311808.6209 19 21
4 37 0.5 0.3 150 299939.9668 312063.1298 19 21
5 37 0.9 0.22 150 306486.913 311808.6209 19 21
6 37 0.5 0.22 150 299939.9668 308860.178 19 21
7 37 0.9 0.5 100 383839.3325 355492.5327 28 28
8 37 0.5 0.5 100 365704.9459 355805.1491 28 28
9 37 0.9 0.3 100 383839.3325 355492.5326 28 28
10 37 0.5 0.3 100 385704.9459 355805.1491 28 28
11 37 0.9 0.2 100 383839.3325 355492.5327 28 28
12 37 0.5 0.2 100 385704.9459 355805.1491 28 28
13 109 0.9 0.5 150 413185.1743 568250.7459 25 27
14 109 0.5 0.5 150 413292.6378 568604.1851 25 27
15 109 0.9 0.3 150 413383.5425 568230.7459 25 27
16 109 0.5 0.3 150 413388.0967 565604.1851 25 27
17 109 0.9 0.2 150 413383.5425 568230.7459 25 27
18 109 0.5 0.2 150 413345.021 568604.1851 25 27
19 109 0.9 0.5 100 531475.699 640499.9813 37 38
20 109 0.5 0.5 100 531660.5781 640871.0662 37 38
21 109 0.9 0.3 100 531479.7333 640499.9813 37 38
22 109 0.5 0.3 100 531671.7892 640695.7594 37 38
23 109 0.9 0.2 100 531487.9847 640499.9813 37 38
24 109 0.5 0.2 100 531665.913 640871.0662 37 38
25 181 0.9 0.5 150 503122.2887 756096.5497 23 27
26 181 0.5 0.5 150 503121.2472 756165.2004 23 27
27 181 0.9 0.3 150 503341.0051 756096.5497 23 27
28 181 0.5 0.3 150 503193.3191 756165.2004 23 27
29 181 0.9 0.2 150 503341.0051 755797.6929 23 27
30 181 0.5 0.2 150 503421.4726 756165.2004 23 27
31 181 0.9 0.5 100 709562.535 874040.9894 44 45
32 181 0.5 0.5 100 709671.889 873901.569 44 45
33 181 0.9 0.3 100 709605.4168 873920.4 44 46
34 181 0.5 0.3 100 709597.7653 874047.5136 44 45
35 181 0.9 0.2 100 709608.2478 873971.9055 44 46
36 181 0.5 0.2 100 709629.8785 874199.5546 44 45
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4.2.2 Discussion of model II performance

For the 37 node set, the entire system cost for the our LT model is lower compared to

the model without LT when dmax = 150, while the model without LT performs better

than our model when dmax = 100. Generally our model gives lower costs for as long as

dmax ≥ 120. Also in all instances tested for the 109 nodes data set and the 181 nodes data

set respectively, the total system of our LTmodel was lower than that of themodel without

LT. This shows that our model is suitable for systems having many nodes.Furthermore,

in most instances fewer SVCs are required for the our LT model (SVC LT) compared to

the model without LT (SVC WLT).

Also, the total cost increases as dmax reduces from 150 to 100, this is due to the fact

that more facilities need to be opened as the coverage distance reduces.

4.2.3 Effect of base stock level on response time for model II

The 37 node dataset is utilised for this experiment with (ρ) set to 0.9, dmax set to 150

kilometers, and Svw set to 1. In the first instance, Svw is fixed at 1, while S0 is varied

between the feasible range. In the second instance S0 is fixed at 4 and the value of Svw is

varied within the feasible range. In both instances the minimum feasible value of τ and

the corresponding total cost are recorded. The total cost and τ are plotted against base

stock level. Figure 4.4 and Figure 4.5 show the results from this experiment.

126



Figure 4.4: Effect of plant base stock level for model II
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Figure 4.5: Effect of SVC base stock level for model II
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4.2.4 Discussion of the effect of base stock level on response time for
model II

From Figure 4.4, it is seen that an increase in plant base stock causes a decrease in

minimum response time requirement and has little effect on total cost. From Figure

4.5, an increase in SVC base stock level results in reduced minimum response time

requirement while the total costs increase with increase in SVC base stock level. Thus

increasing SVC base stock level will lead to better response times. This however causes

an increase in total cost. In real life, the value of Svw is usually constrained by capacity

or budget constraints.

4.2.5 Relationship between backorder cost and response time

Most literature in traditional inventory theory make use of backorder as utilisation

measure. This means that in order to discourage long waiting times, penalty costs are

usually imposed on backorder. That is, backorder costs are usually increased in order

to discourage backorders. This experiment considers the behaviour of the model as

backorder and response time are varied. The 37-node dataset is used with (ρ) set to 0.9,

dmax set to 150 kilometers, and storage capacity set to 5. We test two sets of instances.

In the first set, the penalty on backorder, p, is varied between 60 and 180 by gradually

increasing 60 by 2%, 4%, ..., 200%, and for each value of p the total expected cost is

observed. In the second instance, the response time requirement is varied between 0.2

and 0.6 time units by gradually increasing 0.2 by 2%, 4%, ..., 200% and for each value,

the total expected cost is also recorded. Then we plotted the total costs expected with

varied response time and the total costs expected with varied backorder costs against the

percentage increase. The result of this experiment is shown by Figure 4.6.
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Figure 4.6: Relationship between backorder cost and response time for model II
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4.2.6 Discussion of the relationship between backorder cost and re-
sponse time

From Figure 4.6 it is observed that the graph for backorder is has a steeper ascent

than that of response time, while the graph for response time is consistent. This implies

that the change in cost observed when the response time is varied among its feasible

points is minimal when compared with backorder values. Hence in terms of expected

cost, the response time is a more consistent measure than backorder. Also, the response

time curve is dominated by the backorder costs. This implies that using response time

in place of backorder as a service measure will always result in lower costs for our

system. The spikes observed on the graph for expected cost under varying response time

imply that cost fluctuate when response time lies between 0.22 and 0.28. The cost also

fluctuates when response time lies between 0.576 and 0.6. With these spikes the value

of the expected costs under varying response require lies in the interval [287190.9578,

293965.0978]. Thus, the gap between theminimum andmaximum values of the expected

costs is 2.03%. Thus, fluctuations only have little effect on the expected costs.

4.2.7 Trade off between service and cost

Service consideration is very crucial in the design of efficient spare parts supply

chain. However, emphasis on cost minimisation alone in supply chain design usually

results in poor service delivery. Cost and service consideration can act as two divergent

performance measures in supply chain design Shen and Daskin (2005). Investigating

the trade-off between costs and service level is therefore critical. This computational

experiment solves the problem at different levels of service requirement. Expected cost

is plotted against service time requirement (τ ) resulting in a trade-off curve. The same

graph also shows the optimal number of SVCs against response time requirements. This

is shown in Figure 4.7.
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Figure 4.7: Relationship between response time, cost and open SVCs for Model II
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4.2.8 Discussion of the trade off between service and cost

With a large value of τ it is optimal to open 19 facilities. As τ approaches it’s lower

bound, the number of open service increased. As τ is varied along its feasible range,

Figure 4.7 shows that the expected costs remains stable. The reason for this is because

the number of facilities required to meet demand also remains consistent with varying

response time. The fluctuations observed on the graph for expected cost under varying

response time imply that cost fluctuate when response time lies between 0.22 and 0.28.

The cost also fluctuates when response time lies between 0.576 and 0.6. With these fluc-

tuations the value of the expected costs under varying response require lies in the interval

[287190.9578, 293965.0978]. Thus, the gap between the minimum andmaximum values

of the expected costs is 2.03%. Thus, fluctuations only have little effect on the expected

costs. We also see that the fluctuation has no effect on the number of SVCs opened.

4.3 Computational results for model III

This model extends Model II by considering possible SVC failures. Thus, in this

section we only consider the effects of falire probability and response time.

4.3.1 Effect of failure probability on model III

We examine how the model behaves as the probability of failure is varied between

0.05 and 0.5. The 37-node dataset is used with (ρ) set to 0.9, dmax set to 150 kilometers,

and storage capacity set to 5. This result is shown in Figure 4.8.
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Figure 4.8: Effect of failure probability on model III
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4.3.2 Discussion of the effect of failure probability on model III

Figure 4.8 shows that cost remains relatively stable when the failure probability lies

between 0.05 and 0.3. As the probabily increases from 0.3, the cost rise is steeper. Thus

the optimal decision will be to open service centers whose failure probability lie in the

range [0.05-0.3].

4.3.3 Effect of response time on model III

The response time requirement τ is varied between 0.22 and 0.72. The expected cost

in each instance is plotted against the response time in Figure 4.9.

4.3.4 Discussion of the effect of response time on model III

It is observed that the expected cost is fairly consistent as the response time varies.

This is a consequence of lateral transshipment which ensures that the response time is

pool specific. This also agrees with the results obtained for Model I and Model II.
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Figure 4.9: Effect of response time on model III
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4.4 Computational results for model IV
4.4.1 Effect of response time and cost for model IV

We look at the model behavior as the number of demand scenarios increase from 2 to

20. Each customer has different demand rate for each scenario. For each case the model

is solved for two objectives which are; the minimum expected cost and the maximum

response time. The objective of maximum response time is chosen to ensure a robust

solution. That is, a solution that satisfies all possible response times. The expected cost

is plotted against the response time. The result of this experiment is found in Figure 4.10

below.
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Figure 4.10: Waiting time and cost for model IV
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4.4.2 Discussion of the effect of response time and cost for model IV

From Figure 4.10, maximum response time increase as the number of scenarios increase.

While the expected cost experiences slight increase as the number of scenarios increase

from 2 to 6. As the scenarios increase from 6 to 10 a spike in expected cost is observed.

The expected cost is stable when the number of scenarios lie between 10 and 20. The

variation observed occurs because of the uncertainty that comes with considering a

number of likely scenarios at the same time. The consideration of a number of scenarios

each having a probability of occuring, makes the system highly stochastic.

4.4.3 Effect of change in probability on model IV

In this experiment we observe the effect of change in probability on the expected cost.

The result is shown in Figure 4.11.
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Figure 4.11: Effect of probability change on model IV
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4.4.4 Discussion of effect of change in probability on model IV

From Figure 4.11, the cost rises steadily as the probability increases. This is to be

expected because higher probabilities certainly mean higher inventory costs.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.0 Introduction

The incorporation of lateral transshipment into two-echelon location-inventory sys-

tems with response time requirement has been extensively studied in this thesis. Basic

formulations for four models which looked at the incorporation of LT into different two-

echelon systems were obtained. The steady state distribution for number of items in

replenishment was obtained for all models. These distributions along with the properties

of aMarkovian queue were used to derive the steady state inventory levels for our models.

These steady state levels were used to obtain full model formulation for our models which

then made it possible to examine the models’ properties. Convexity was established for

our models using second order conditions. Computational experiments showed that the

two-echelon joint location-inventory model with response time requirement and lateral

transshipment resulted to lower costs when compared with the model without lateral

transshipment . It was also established that lateral transshipment also resulted to stability

of expected cost with varying response time requirement.

Conclusively, this study showed that lateral transshipment is an interesting and ef-

ficient tool for simultaneously reducing cost and achieving desired customer response

time requirement in a two-echelon joint location-inventory system with response time

requirement.

5.1 Contribution to knowledge

The contributions to knowledge of this study are enumerated below:

1. This study established a significant contribution by enhancing the literature on two-

echelon systems via the incorporation of lateral transshipment into a centralised

two-echelon location-inventory system with finite number of facilities at the lower
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echelon and response time requirement across all facilities.

2. Steady state distributions for number of items in replenishment to SVCs and the

plant were obtained for the system considered.

3. The steady state relationship between expected on-hand inventory level, expected

lateral transshipment level and expected backorder level was obtained.

4. Steady state expressions for expected on-hand inventory level, expected lateral

transshipment level and expected backorder level were determined.

5. This study presented four new mathematical models for the system, namely, two-

echelon inventorymodel with response time requirement and lateral transshipment,

joint two-echelon location-inventory model with response time requirement and

lateral transshipment, model with reliable locations, and model with stochastic

demand.

6. It was established that the objective functions of the four models and their con-

straints satisfied the convexity conditions. Thus, the two-echelon location-inventory

system with response time requirement and lateral transshipment is a convex opti-

misation problem and can be solved with convex optimisation solvers.

7. It was established that incorporating lateral transshipment resulted to lower cost

when compared with the model without lateral transshipment.

8. The results obtained in this study showed that lateral transshipment is an efficient

tool for balancing the contrasting objectives of minimising costs and improving

service in a two-echelon joint location-inventory problem with response time re-

quirement

5.2 Recommendations

Our two-echelon system points to some directions for future research. A continuous

review (S-1,S) policy was used in this study. Thus, an extension will consider the

problem using other inventory policies such as batch ordering policies. Another possible

extension will be the relaxation of the assumption of uniform base stock level for all

SVCs in a pool. The assumption of negligible transshipment time implied that SVCs in

a pool had identical lead times, consequently, the consideration of non negligible lead
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times will also be an interesting area for further research. Further extension will be the

development of specialised heuristics for the various models and compare the solutions

obtained with the heuristics with the solutions obtained with GAMS.
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APPENDICES

Appendix (I) Data sets

The data sets used in this study are provided in this section. The 37 nodes data set

comprises of the most populous cities in each of the 36 state capitals in Nigeria and

the Federal Capital Territory (FCT). The 109 nodes data set comprises of the 3 most

populous cities in each of the 36 state capitals in Nigeria and the FCT.The 181 nodes data

set comprises of the 5 most populous cities in each of the 36 state capitals in Nigeria and

the FCT. The data sets are presented in Tables 6.1-6.8.
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Table 5.1: 37 nodes data set

Cities Nodes Population Demand Latitude Longitude Fixed cost
Ado Ekiti 1 313690 3 7.61261 5.27384 10000
Ajeromi-Ifelodun 2 6873316 10 6.4555 3.3339 30000
Ifo 3 539170 5 6.78197 3.25195 12000
Akoko 4 701785 7 7.641 5.79399 11500
Ife 5 643582 6 7.47442 4.55933 12500
Ibadan 6 3034200 10 7.39639 3.91667 20000
Uyo 7 427873 4 5.033 7.917 25000
Yenagoa 8 352285 4 5.033 6.333 20000
Calabar 9 375196 4 4.95 8.325 23000
Warri 10 564658 6 5.517 5.75 18000
Benin 11 1495800 10 6.33333 5.62222 15000
Portharcourt 12 1005904 10 4.73292 6.96919 27000
Aba 13 534265 5 5.117 7.367 18000
Onitsha 14 7425000 10 6.132942 6.792399 18500
Afikpo 15 314191 3 5.89258 7.93534 15000
Enugu 16 717291 7 6.4526667 7.5103333 20000
Owerri 17 403425 4 5.485 7.035 19000
Abuja 18 776298 8 9.0765 7.3986 40000
Gboko 18 361325 4 7.325 9.005 16000
Okene 20 325623 3 7.48333 6.21667 15000
Illorin 21 777667 8 8.43005 4.426 18000
Lafia 22 329922 3 8.64007 8.69959 19000
Minna 23 348788 3 9.583555 6.546316 17000
Jos 24 900000 9 9.933 8.883 18000
Yola 25 395871 4 9.23 12.46 16000
Bauchi 26 493730 5 10.5 10 16000
Maiduguri 27 540016 5 11.833 13.15 18500
Akko 28 337435 3 10.09994 11.04833 15000
Gassol 29 245086 2 8.47269 10.5442 13000
Fune 30 301954 3 11.85212 11.44862 16500
Birnin Kudu 31 314108 3 11.49023 9.49368 13500
Kaduna 32 767306 8 10.52306 7.44028 25000
Kano 33 2828861 10 12 8.517 30000
Katsina 34 459022 5 12.983 7.6 19000
Birnin Kebbi 35 268620 3 12.45832 4.26267 14000
Sokoto 36 427760 4 13.067 5.233 18000
Gusau 37 383712 4 11.87555 6.61984 13000
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Table 5.2: 109 nodes data set I

Cities Nodes Population Demand Latitude Longitude Fixed cost
Ado Ekiti 1 313690 3 7.61261 5.27384 10000
Ijero 2 221873 2 7.84582 5.05686 9600
Ekiti West 3 179600 2 7.68663 5.02847 9000
Ajeromi-Ifelodun 4 6873316 10 6.4555 3.3339 30000
Alimosho 4 1319571 10 6.61056 3.29583 28000
Kosofe 5 682772 7 6.598781 3.409463 20000
Ifo 6 539170 5 6.78197 3.25195 12000
Ado-Odo/Ota 7 527242 5 6.62366 3.08626 11500
Ijebu 8 458641 5 6.99551 3.97085 13500
Akoko 10 701785 7 7.641 5.79399 11500
Akure 11 491033 5 7.26382 5.31136 12000
Ondo 12 364960 4 7.09145 4.96053 11000
Ife 13 643582 6 7.47442 4.55933 12500
Illesha 14 212225 2 7.60146 4.7618 11000
Iwo 15 191348 2 7.67548 4.14127 9000
Ibadan 16 3034200 10 7.39639 3.91667 20000
Saki 17 382225 4 8.70467 3.58944 12000
Ibaraba 18 320718 3 7.43737 3.26761 10000
Uyo 19 427873 4 5.033 7.917 25000
Essien Udim 20 193257 2 5.13333 7.6833 15000
Ibiono Ibom 21 188605 2 5.23333 7.88333 12000
Yenagoa 22 352285 4 5.033 6.333 20000
Southern Ijaw 23 321808 3 4.7 5.967 12000
Ekeremor 24 269588 3 5.05 5.783 12500
Calabar 25 375196 4 4.95 8.325 23000
Akpabuyo 26 272262 3 4.880791 8.528161 18000
Odunkpani 27 192884 2 5.081238 8.349917 15000
Warri 28 564658 6 5.517 5.75 18000
Ughelli 29 533325 5 5.5 5.983 16000
Asaba 30 514679 5 6.1978417 6.7284667 17000
Benin 31 1495800 10 6.33333 5.62222 15000
Oredo 32 374515 4 6.23581 5.55114 12000
Ikpobah-Okha 33 372080 4 6.16445 5.62284 11000
Portharcourt 34 1005904 10 4.73292 6.96919 27000
Obio/Akpor 35 462350 5 4.83153 6.98906 20000
Ahoada 36 415556 4 5.0858 6.47089 17000
Aba 37 534265 5 5.117 7.367 18000
Umuahia 38 359230 4 5.524953 7.492241 16000
Isiala ngwa 39 290773 3 5.286819 7.416505 14500
Onitsha 40 7425000 10 6.132942 6.792399 18500
Idemili 41 637821 6 6.123656 6.947753 17000
Nnewi 42 391227 4 6.010519 6.910345 16300
Afikpo 43 314191 3 5.89258 7.93534 15000
Izzi 44 236679 2 6.48453 8.29468 14000
Onicha 45 236609 2 6.09899 7.84133 14000
Enugu 46 717291 7 6.4526667 7.5103333 20000
Nsukka 47 309448 3 6.85329 7.34801 17000
Igbo Eze North 48 258829 3 6.98333 7.45 14000
Owerri 49 403425 4 5.485 7.035 19000
Ideato 50 315815 3 5.88537 7.13136 16000
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Table 5.3: 109 nodes data set II

Cities Nodes Population Demand Latitude Longitude Fixed cost
Isiala-Mbano 51 197921 2 5.66767 7.20338 15000
Abuja 52 776298 8 9.0765 7.3986 40000
Gboko 53 361325 4 7.325 9.005 16000
Makurdi 54 300377 3 7.73056 8.53611 17000
Gwer 55 290973 3 7.3 8.48333 14000
Okene 56 325623 3 7.48333 6.21667 15000
Ankpa 57 266176 3 7.44848 7.63174 12000
Dekina 58 260968 3 7.58435 7.17344 1000
Illorin 59 777667 8 8.43005 4.426 18000
Baruten 60 206679 2 9.26039 3.31607 9000
Edu 61 201642 2 8.89181 5.21012 8000
Lafia 62 329922 3 8.64007 8.69959 19000
Karu 63 216230 2 9.04694 7.76364 20000
Nasarawa 64 187220 2 8.5 8.25 15000
Minna 65 348788 3 9.583555 6.546316 17000
Mashegu 66 215197 2 9.92993 5.23385 15000
Suleja 67 215075 2 9.19085 7.15184 18000
Jos 68 900000 9 9.933 8.883 18000
Mangu 69 300520 3 9.39052 9.17968 16000
Langtang 70 247489 2 9.05651 9.82247 15000
Yola 71 395871 4 9.23 12.46 16000
Mubi 72 281471 3 10.267 13.267 13000
Fufore 73 209460 2 9.217 12.65 12000
Bauchi 74 493730 5 10.5 10 16000
Ningi 75 385997 4 11.067 9.567 14500
Toro 76 346000 3 10.059584 9.070932 12000
Maiduguri 77 540016 5 11.833 13.15 18500
Gwoza 78 276568 3 11.08611 13.69139 16000
Bama 79 270119 3 11.521831 13.688377 14500
Akko 80 337435 3 10.09994 11.04833 15000
Gombe 81 266844 3 10.28263 11.16674 16500
Yamaltu/Deba 82 255726 3 10.23814 11.44152 14000
Gassol 83 245086 2 8.47269 10.5442 13000
Wukari 84 238283 2 7.96327 9.84767 13500
Sardauna 85 224357 2 6.87463 11.21184 12000
Fune 86 301954 3 11.85212 11.44862 16500
Jakusko 87 232458 2 1245605 10.91226 14000
Potiskum 88 204866 2 11.71064 11.15721 12000
Birnin Kudu 89 314108 3 11.49023 9.49368 13500
Gwaram 90 271368 3 11.1858 9.9686 12000
Kafin Hausa 91 267284 3 12.14958 10.00247 11000
Kaduna 92 767306 8 10.52306 7.44028 25000
Zaria 93 698163 7 10.98854 7.69622 20000
Igabi 94 430753 4 10.781 7.504 18000
Kano 95 2828861 10 12 8.517 30000
Nasarawa 96 596411 6 8.5 8.25 19000
Dala 97 418759 4 12.017 8.483 15000
Katsina 98 459022 5 12.983 7.6 19000
Kankara 99 243259 2 11.97384 7.36266 14000
Funtua 100 225156 2 11.47196 7.30699 13000
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Table 5.4: 109 nodes data set III

Birnin Kebbi 101 268620 3 12.45832 4.26267 14000
Wasagu/Danko 102 265271 3 11.42938 5.6749 12000
Bagudo 103 238014 2 11.34757 3.95674 11000
Sokoto 104 427760 4 13.067 5.233 18000
Gada 105 249052 2 13.74739 5.65521 16000
Gwadabawa 106 231569 2 13.44757 5.3106 15000
Gusau 107 383712 4 11.87555 6.61984 13000
Zurmi 108 293977 3 12.81147 6.7938 12000
Maru 109 293141 3 11.53807 6.27888 1000
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Table 5.5: 181 nodes data set I

Cities Nodes Population Demand Latitude Longitude Fixed cost
Ado Ekiti 1 313690 3 7.61261 5.27384 10000
Ijero 2 221873 2 7.84582 5.05686 10000
Ekiti West 3 179600 2 7.68663 5.02847 10000
Ikole 4 170414 2 7.89347 5.5111 10000
Ekiti south west 5 165277 2 7.51325 5.05179 10000
Ajeromi-Ifelodun 7 6873316 10 6.4555 3.3339 10000
Alimosho 6 1319571 10 6.61056 3.29583 10000
Kosofe 8 682772 7 6.598781 3.409463 10000
Mushin 9 631857 6 6.535233 3.348967 10000
Oshodi-Isolo 10 629061 6 6.535498 3.308678 10000
Ifo 11 539170 5 6.78197 3.25195 10000
Ado-Odo/Ota 12 527242 5 6.62366 3.08626 10000
Ijebu 13 458641 5 6.99551 3.97085 10000
Abeokuta 14 449088 4 7.23079 3.16845 10000
Yewa(Egbado) 15 352180 4 7.14729 2.91795 10000
Akoko 16 701785 7 7.641 5.79399 10000
Akure 17 491033 5 7.26382 5.31136 10000
Ondo 18 364960 4 7.09145 4.96053 10000
Illaje 19 289838 3 6.20323 4.76788 10000
Okitipupa 20 234138 2 6.54797 4.69894 10000
Ife 21 643582 6 7.47442 4.55933 10000
Illesha 22 212225 2 7.60146 4.7618 10000
Iwo 23 191348 2 7.67548 4.14127 10000
Ede 24 159307 2 7.7069 4.50922 10000
Osogbo 25 155507 2 7.75963 4.57625 10000
Ibadan 26 3034200 10 7.39639 3.91667 10000
Saki 27 382225 4 8.70467 3.58944 10000
Ibaraba 28 320718 3 7.43737 3.26761 10000
Ona-Ara 29 265571 3 7.28333 4.03333 10000
Oyo 30 260552 3 7.87878 4.02132 10000
Uyo 31 427873 4 5.033 7.917 10000
Essien Udim 32 193257 2 5.13333 7.6833 10000
Ibiono Ibom 33 188605 2 5.23333 7.88333 10000
Eket 34 172856 2 4.65 7.933 10000
Etinan 35 168924 2 4.85 7.83333 10000
Yenagoa 36 352285 4 5.033 6.333 10000
Southern Ijaw 37 321808 3 4.7 5.967 10000
Ekeremor 38 269588 3 5.05 5.783 10000
Sagbama 39 186869 2 5.167 6.2 10000
Brass 40 184127 2 4.315 6.24167 10000
Calabar 41 375196 4 4.95 8.325 10000
Akpabuyo 42 272262 3 4.880791 8.528161 10000
Odunkpani 43 192884 2 5.081238 8.349917 10000
Boki 44 186611 2 6.27389 9.01 10000
Obubra 45 172543 2 6.08333 8.33333 10000
Warri 46 564658 6 5.517 5.75 10000
Ughelli 47 533325 5 5.5 5.983 10000
Asaba 48 514679 5 6.1978417 6.7284667 10000
Ethiope 49 403654 4 5.678246 5.962111 10000
Sapele 50 142652 1 5.9 5.667 10000
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Table 5.6: 181 nodes data set II

Cities Nodes Population Demand Latitude Longitude Fixed cost
Benin 51 1495800 10 6.33333 5.62222 10000
Oredo 52 374515 4 6.23581 5.55114 10000
Ikpobah-Okha 53 372080 4 6.16445 5.62284 10000
Egor 54 340287 3 6.35748 5.57547 10000
Akoko-Edo 55 261567 3 7.34506 6.11489 10000
Portharcourt 56 1005904 10 4.73292 6.96919 10000
Obio/Akpor 57 462350 5 4.83153 6.98906 10000
Ahoada 58 415556 4 5.0858 6.47089 10000
Khana 59 292924 3 4.69962 7.42264 10000
Abua-Oduai 60 282410 3 4.82977 6.56739 10000
Aba 61 534265 5 5.117 7.367 10000
Umuahia 62 359230 4 5.524953 7.492241 10000
Isiala ngwa 63 290773 3 5.286819 7.416505 10000
Ohafia 64 245987 2 5.617 7.833 10000
Osisioma ngwa 65 220662 2 5.14972 7.33028 10000
Onitsha 66 7425000 10 6.132942 6.792399 10000
Idemili 67 637821 6 6.123656 6.947753 10000
Nnewi 68 391227 4 6.010519 6.910345 10000
Awka 69 301846 3 6.222004 7.082116 10000
Ihiala 70 302277 3 5.851644 6.851181 10000
Afikpo 71 314191 3 5.89258 7.93534 10000
Izzi 72 236679 2 6.48453 8.29468 10000
Onicha 73 236609 2 6.09899 7.84133 10000
Ikwo 74 214969 2 6.05316 8.16284 10000
Abakaliki 75 149683 1 6.32485 8.11368 10000
Enugu 76 717291 7 6.4526667 7.5103333 10000
Nsukka 77 309448 3 6.85329 7.34801 10000
Igbo Eze North 78 258829 3 6.98333 7.45 10000
Udi 79 238305 2 6.51181 7.35535 10000
Igbo-Etiti 80 208333 2 6.68151 7.41959 10000
Owerri 81 403425 4 5.485 7.035 10000
Ideato 82 315815 3 5.88537 7.13136 10000
Isiala-Mbano 83 197921 2 5.66767 7.20338 10000
Abo-Mbaise 84 194779 2 5.42549 7.2518 10000
Ahiazu-Mbaise 85 170824 2 5.54639 7.27135 10000
Abuja 86 776298 8 9.0765 7.3986 10000
Gboko 87 361325 4 7.325 9.005 10000
Makurdi 88 300377 3 7.73056 8.53611 10000
Gwer 89 290973 3 7.3 8.48333 10000
Oturkpo 90 266411 3 7.19306 8.14639 10000
Kwande 91 248642 2 6.80099 9.47021 10000
Okene 92 325623 3 7.48333 6.21667 10000
Ankpa 93 266176 3 7.44848 7.63174 10000
Dekina 94 260968 3 7.58435 7.17344 10000
Okehi 95 223574 2 7.68192 6.28543 10000
Lokoja 96 196643 2 8.20488 6.56305 10000
Illorin 97 777667 8 8.43005 4.426 10000
Baruten 98 206679 2 9.26039 3.31607 10000
Edu 99 201642 2 8.89181 5.21012 10000
Ifelodun 100 204975 2 7.91667 4.66667 10000
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Table 5.7: 181 nodes data set III

Cities Nodes Population Demand Latitude Longitude Fixed cost
Asa 101 124668 1 8.43005 4.426 10000
Lafia 102 329922 3 8.64007 8.69959 10000
Karu 103 216230 2 9.04694 7.76364 10000
Nasarawa 104 187220 2 8.5 8.25 10000
Obi 105 148405 1 8.34738 8.72769 10000
Nasarawa Eggon 106 148405 1 8.74947 8.44035 10000
Minna 107 348788 3 9.583555 6.546316 10000
Mashegu 108 215197 2 9.92993 5.23385 10000
Suleja 109 215075 2 9.19085 7.15184 10000
Shiroro 110 235665 2 10.11543 6.68307 10000
Mokwa 111 242858 2 9.2 5.33333 10000
Jos 112 900000 9 9.933 8.883 10000
Mangu 113 300520 3 9.39052 9.17968 10000
Langtang 114 247489 2 9.05651 9.82247 10000
Shendam 115 205119 2 8.71667 9.5 10000
Quaan Pan 116 197276 2 8.76078 9.16142 10000
Yola 117 395871 4 9.23 12.46 10000
Mubi 118 281471 3 10.267 13.267 10000
Fufore 119 209460 2 9.217 12.65 10000
Song 120 195188 2 9.82444 12.625 10000
Demsa 121 178407 2 9.455541 12.152552 10000
Bauchi 122 493730 5 10.5 10 10000
Ningi 123 385997 4 11.067 9.567 10000
Toro 124 346000 3 10.059584 9.070932 10000
Alkaleri 125 328284 3 9.883 10.5 10000
Katagum 126 293020 3 12.283 10.35 10000
Maiduguri 127 540016 5 11.833 13.15 10000
Gwoza 128 276568 3 11.08611 13.69139 10000
Bama 129 270119 3 11.521831 13.688377 10000
Ngala 130 236498 2 12.342068 14.185827 10000
Damboa 131 233200 2 11.15 12.75 10000
Akko 132 337435 3 10.09994 11.04833 10000
Gombe 133 266844 3 10.28263 11.16674 10000
Yamaltu 134 255726 3 10.23814 11.44152 10000
Funakaye 135 237687 2 10.74227 11.40843 10000
Balanga 136 211490 2 9.8096 11.78623 10000
Gassol 137 245086 2 8.47269 10.5442 10000
Wukari 138 238283 2 7.96327 9.84767 10000
Sardauna 139 224357 2 6.87463 11.21184 10000
Bali 140 211024 2 8.15541 10.96853 10000
Karim Lamido 141 193924 2 9.22208 10.86536 10000
Fune 142 301954 3 11.85212 11.44862 10000
Jakusko 143 232458 2 1245605 10.91226 10000
Potiskum 144 204866 2 11.71064 11.15721 10000
Geidam 145 155740 2 12.65454 12.06733 10000
Nguru 146 150699 2 12.97973 10.39914 10000
Birnin Kudu 147 314108 3 11.49023 9.49368 10000
Gwaram 148 271368 3 11.1858 9.9686 10000
Kafin Hausa 149 267284 3 12.14958 10.00247 10000
Dutse 150 251135 3 11.80331 9.30708 10000
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Table 5.8: 181 nodes data set IV

Cities Nodes Population Demand Latitude Longitude Fixed cost
Jahun 151 229882 2 12.07996 9.55457 10000
Kaduna 152 767306 8 10.52306 7.44028 10000
Zaria 153 698163 7 10.98854 7.69622 10000
Igabi 154 430753 4 10.781 7.504 10000
Lere 155 339740 3 10.34643 8.56734 10000
Chikun 156 372272 4 1o.315 7.274 10000
Kano 157 2828861 10 12 8.517 10000
Nasarawa 158 596411 6 8.5 8.25 10000
Dala 159 418759 4 12.017 8.483 10000
Gwale 160 357827 4 11.98211 8.49818 10000
Kumbotso 161 294391 3 11.90063 8.51633 10000
Katsina 162 459022 5 12.983 7.6 10000
Kankara 163 243259 2 11.97384 7.36266 10000
Funtua 164 225156 2 11.47196 7.30699 10000
Daura 165 224884 2 12.98195 8.2516 10000
Kafur 166 209360 2 11.67376 7.68971 10000
Birnin Kebbi 167 268620 3 12.45832 4.26267 10000
Wasagu/Danko 168 265271 3 11.42938 5.6749 10000
Bagudo 169 238014 2 11.34757 3.95674 10000
Argungu 170 200248 2 12.68795 4.40358 10000
Jega 171 197757 2 12.16397 4.48643 10000
Sokoto 172 427760 4 13.067 5.233 10000
Gada 173 249052 2 13.74739 5.65521 10000
Gwadabawa 174 231569 2 13.44757 5.3106 10000
Tambuwal 175 225917 2 12.36609 4.84882 10000
Sabon Birni 176 207470 2 13.4847 6.26409 10000
Gusau 177 383712 4 11.87555 6.61984 10000
Zurmi 178 293977 3 12.81147 6.7938 10000
Maru 179 293141 3 11.53807 6.27888 10000
Kaura Namoda 180 285363 3 12.56195 6.57617 10000
Tsafe 181 266929 3 11.88251 6.8947 10000
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Appendix (II) model I GAMS code

$ontext

* EVALUATING GAMS

$offtext

* Turn on the default end of line comment Character !!

$onEolcom

* Define an end of line Comment Character of your choice to be used

* $eolcom %%

* Declaration Of Sets to Be used

Sets

V ’Set of Customers’ /1*37/

* V ’Set of Candidate SVC Locations’ /1*37/

W ’Set of Pools’ /w1*w6/

*DYNAMIC SETS (ACTING AS SUBSETS OF CUSTOMERS/SvCs FOR EACH POOL)

v1(V) ’Set of cities in pool 1’ /1*6/

v2(V) ’Set of cities in pool 2’ /7*12/

v3(V) ’Set of cities in pool 3’ /13*17/

v4(V) ’Set of cities in pool 4’ /18*24/

v5(V) ’Set of cities in pool 5’ /25*30/

v6(V) ’Set of cities in pool 6’ /31*37/

* THE SAME THING IS DONE FOR POOLS

w1(w) ’Set of cities in pool 1’ /w1/

w2(w) ’Set of cities in pool 2’ /w2/

w3(w) ’Set of cities in pool 3’ /w3/

w4(w) ’Set of cities in pool 4’ /w4/

w5(w) ’Set of cities in pool 5’ /w5/

w6(w) ’Set of cities in pool 6’ /w6/

sets

* Data sets containing the lattitude, longitude and demand for cities

Data1 ’Raw Data Sets To Be entered’ /Latitude, Longitude, Demand/;

* Declare the set indices for U, V and W as same as i, j and pool

*--------------------------------------------------------------------

* Declaration of Parameters to be used

* Note That Gams is not case sensitive,thus f(V,W) is same as f(v,w)

*--------------------------------------------------------------------

Parameters
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h0 ’is the per unit holding cost of each unit of inventory at SV Cv

*in Poolw per unit time’

p(v,w)’is the per unit cost of backorder per unit inventory for each

*unit of time’

q(v,w) ’is the LT cost per unit inventory’

lambu(v) ’Demand rate of customer u’

lambw(w) ’Demand rate (Poisson) at Pool $w$’

lamb0 ’Demand rate (Poisson) at Plant’

rho ’Utilisation rate of the plant’

tau ’Average response time requirement’

alpha(w) ’exact lead time from plant to pool $w$’

C(v,w)’is the space capacity of SVC $v$ in pool $w$, this is uniform

for *all SVCs in pool $w$’

Cw(w) ’is the total space available for storage at pool $w$’

C0 ’is the total space available for storage space at the plant’;

*------------------------------------------------------------------

* The Data Containing longitude and latitude of each City is to be

*read in as a table

*------------------------------------------------------------------

Table Data(v,*) ’Datasets for each City(Node)’

$ Include RawDataset371.inc

Display Data; !! This Line displays the input Data

*=================================================================

* Data containing distances between cities in each of the six

*pools, are imported from Excel files that were saved in csv format

*----------------------------------------------------------------

*-----------------------------------------------------------------

* These are Added too enable simple coding Parameter values

*-----------------------------------------------------------------

* Theline below represents \hat w

parameter mode(w) /w1 6, w2 6, w3 5, w4 7, w5 6, w6 7 /;

*-----------------------------------------------------------------

* Assigning The Parameter values

*------------------------------------------------------------------

h0= 50 ;

p(v,w) = 70;

q(v,w) = 25;
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C0 = 5 ;

C(v,w) = C0;

*The total storage in each pool is clxulated and assigned separately

*for each pool

Cw(w) = sum(v, C(v,w)) ;

lambu(v) = Data(v,"Demand") ;

lamb0 = sum(v,lambu(v));

* Total demand in each pool is calculated and assigned separately

*for each pool

lambw(’w1’) = sum(v$(1<= ord(v) and ord(v)<=6),lambu(v));

lambw(’w2’) = sum(v$(7<= ord(v) and ord(v)<=12),lambu(v));

lambw(’w3’) = sum(v$(13<= ord(v) and ord(v)<=17),lambu(v));

lambw(’w4’) = sum(v$(18<= ord(v) and ord(v)<=24),lambu(v));

lambw(’w5’) = sum(v$(26<= ord(v) and ord(v)<=30),lambu(v));

lambw(’w6’) = sum(v$(31<= ord(v) and ord(v)<=37),lambu(v));

display lamb0, lambw, C, cw;

rho = 0.9 ; !! The value of rho will be varied later on

tau = 0.5 ; !! The value of tau will be varied later on

parameter alpha(w) /w1 0.125745458, w2 0.140129167,

w3 0.06223475, w4 0.216291083, w5 0.195848958,

w6 0.241284333/;

* The Distances are saved temporarily in a variable called a

for pool

*----------------------------------------------------------------

* VARIABLE DECLARATIONS

*----------------------------------------------------------------

*Binary Variables

*X(v,w) ’x(v,w)= 1 If SCv is open in pool $w$, 0 otherwise’

*Y(u,v,w) ’y(u,v,w) =1, if customer u’s demand is allocated to

SVC $v$ in pool $w$, 0 otherwise ’

*--------------------------------------------------------------

*DECLARING THE CONDITION FOR Y(u,v,w) and a(u,v,w)

*--------------------------------------------------------------

parameters

S0,Ib0, Lb(w);
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S0 = 3;

Ib0 = S0 - (rho/(1-rho))*(1-rho**S0);

Lb(w) = (rho**(S0+1)/(1-rho))/lamb0 + alpha(w);

* Determining the value of F(w)

set s2 /0*175/; !! A set to be used for the summation

* number of svc in pools used to estimate

Sw(w) /w1 6, w2 6, w3 5, w4 7, w5 6, w6 7 /

parameter

Sw(w) / w1 30, w2 30, w3 25, w4 35, w5 30, w6 35 /

Fw(w), Svw(v,w), Fvw(v,w);

Svw(v,w) = Sw(w)/mode(w);

*Svw(v,w) = Sw(w)/mode(w);

*here Svw(v,w) = 5. In order to find optimal Svw(v,w) the problem

*is solved for different scenarios of Svw(v,w) from 0 to 5 0r from

*0 to 10 and the minimum is selected.

*--------------------------------------------------------------

*THESE ARE TO BE USED IN THE OBJECTIVE EQUATION TO BE OPTIMIZED

*--------------------------------------------------------------

*Y.lo(u,v,w) = 1;

Variables OBJ;

option sysout = on;

option domlim = 2;

*$ontext

*---------------------------------------------------------------

* EQUATION DECLARATIONS

*----------------------------------------------------------------

Equations

Eq1, Eq4(v,w),Eq5(v,w);

* THE ObJECTIVE FUNCTION TO BE MINIMIZED

Eq1 .. OBJ =e= sum((v,w), (h0+q(v,w))*(sum(s2$(s2.val

<=Svw(v,w)-1),

(Svw(v,w)-s2.val)*exp[-lambu(v)*Lb(w)]*

(([lambu(v)*Lb(w)]**s2.val))/fact(s2.val))) -q(v,w)*Svw(v,w) +

lambu(v)*p(v,w)*((rho**(S0+1))/(lamb0*(1 -rho)) + alpha(w))

+ (p(v,w)-q(v,w))*(lambu(v)/lambw(w))

*(sum(s2$(s2.val<=Sw(w)-1), (Sw(w)-s2.val)*exp[-lambu(v)*Lb(w)]

*(([lambu(v)*Lb(w)]**s2.val))/fact(s2.val))-Sw(w)) ) + h0*Ib0;
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* SUBJECT TO

Eq4(v,w) .. Svw(v,w) =l= C(v,w);

Eq5(v,w) .. ((rho**(S0+1))/(lamb0*(1 -rho)) + alpha(w)- tau) =l=

(lambu(v)/lambw(w))*(Sw(w)-sum(s2$(s2.val<=Sw(w)-1), (Sw(w)-s2.val)

*exp[- lambu(v)*Lb(w)]*(([lambu(v)*Lb(w)]**s2.val))/fact(s2.val)));

*Eq6(v,w) .. Svw(v,w) =l= C(v,w);

* The Model Statement assigns a name and required equations to the

*Problem to be solved

option iterlim =50000;

option reslim =10000;

Model Optim /all/;

* The Solve Statement Then Solves the Problem

solve Optim minimizing OBJ using mip ;

*$offtext

Appendix (III) model II GAMS code

$ontext

* EVALUATING GAMS

$offtext

* Turn on the default end of line comment Character !!

$onEolcom

* Define an end of line Comment Character of your choice to be used

* $eolcom %%

* Declaration Of Sets to Be used

Sets

U ’Set of Customers’ /1*37/

* V ’Set of Candidate SVC Locations’ /1*37/

W ’Set of Pools’ /w1*w6/

* DYNAMIC SETS (ACTING AS SUBSETS OF CUSTOMERS/SvCs FOR EACH POOL)

u1(U) ’Set of cities in pool 1’ /1*6/

u2(U) ’Set of cities in pool 2’ /7*12/

u3(U) ’Set of cities in pool 3’ /13*17/

u4(U) ’Set of cities in pool 4’ /18*24/

u5(U) ’Set of cities in pool 5’ /25*30/
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u6(U) ’Set of cities in pool 6’ /31*37/

* THE SAME THING IS DONE FOR POOLS

w1(w) ’Set of cities in pool 1’ /w1/

w2(w) ’Set of cities in pool 2’ /w2/

w3(w) ’Set of cities in pool 3’ /w3/

w4(w) ’Set of cities in pool 4’ /w4/

w5(w) ’Set of cities in pool 5’ /w5/

w6(w) ’Set of cities in pool 6’ /w6/

* Make the cities(nodes) associated with u1 to u6 the same with

v1 to v6

Alias (u, v), (u1, v1),(u2, v2), (u3, v3), (u4, v4),

(u5, v5), (u6, v6);

sets

* Data sets containing the lattitude, longitude and demand for

Data1 ’Raw Data Sets To Be entered’ /Latitude, Longitude, Demand/;

*------------------------------------------------------------------

* Declaration of Parameters to be used

* Note That Gams is not case sensitive,thus f(V,W) is same as f(v,w)

*-----------------------------------------------------------------

Parameters

f(v,w) ’Fixed cost of opening SVC at location v in Pool $w$’

h0 ’is the per unit holding cost of each unit of inventory

*at SVCv in P oolw per unit time’

p(v,w) ’is the per unit cost of backorder per unit inventory

* for each unit of time’

q(v,w) ’Lateral transshipment cost per unit inventory’

d(u,v,w) ’Distance from SVCvw to customer u’

d1(u,v,w) ’Transportation cost from SVCvw to customer u’

lambu(u) ’Demand rate of customer u’

lambvw(v,w) ’Demand rate (Poisson) at SVC $v$ in Pool $w$’

lambw(w) ’Demand rate (Poisson) at Pool $w$’

lamb0 ’Demand rate (Poisson) at Plant’

rho ’Utilisation rate of the plant’

tau ’Average response time requirement’

alpha(w) ’exact lead time from plant to pool $w$’

dmax ’is the Maximum allowable distance between a customer its

assigned SVC’

a(u,v,w) ’if the distance from customer u to candidate location v
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in poolw is not greater than dmax, 0 otherwise’

C(v,w) ’is the space capacity of SVC $v$ in pool $w$, this is

uniform for all

SVCs in pool $w$’

Cw(w) ’is the total space available for storage at pool $w$’

C0, k(u,w) ’is the total space available for storage space

*at the plant’;

*------------------------------------------------------------------

* The Data Containing longitude and latitude of each City is to be

*read in as a table

*-----------------------------------------------------------------

Table Data(u,*) ’Datasets for each City (Node)’

$ Include RawDataset37.inc

Display Data; !! This Line displays the input Data

*==================================================================

* Data containing distances between cities in each of the six pools,

*are imported from Excel files that were saved in csv format

*-------------------------------------------------------------------

$ondelim !! Turn delimeters on

Table Distp1(*,*)

$ Include 37nodesPool1Dist.csv

display Distp1 ;

Table distp2(*,*)

$ Include 37nodesPool2Dist.csv

display Distp2

Table Distp3(*,*)

$ Include 37nodesPool3Dist.csv

display Distp3

Table Distp4(*,*)

$ Include 37nodesPool4Dist.csv

display Distp4

Table Distp5(*,*)

$ Include 37nodesPool5Dist.csv

display Distp5
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Table Distp6(*,*)

$ Include 37nodesPool6Dist.csv

display Distp6 ;

$offdelim

*-------------------------------------------------------------------

* These are Added too enable simple coding Parameter values

*-------------------------------------------------------------------

* Theline below represents \hat w

parameter mode(w) /w1 6, w2 6, w3 5, w4 7, w5 6, w6 7 /;

*--------------------------------------------------------------------

* Assigning The Parameter values

*--------------------------------------------------------------------

f(v,w)= 10000;

h0= 50 ;

p(v,w) = 70;

q(v,w) = 25;

dmax = 150;

C0 = 5 ;

C(v,w) = C0;

*The total storage in each pool is clxulated and assigned separately

*for each pool

Cw(w) = sum(v, C(v,w)) ;

lambu(u) = Data(u,"Demand") ;

lamb0 = sum(u,lambu(u));

* Total demand in each pool is calculated and assigned separately

*for each pool

lambw(’w1’) = sum(u$(1<= ord(u) and ord(u)<=6),lambu(u));

lambw(’w2’) = sum(u$(7<= ord(u) and ord(u)<=60),lambu(u));

lambw(’w3’) = sum(u$(13<= ord(u) and ord(u)<=17),lambu(u));

lambw(’w4’) = sum(u$(18<= ord(u) and ord(u)<=24),lambu(u));

lambw(’w5’) = sum(u$(26<= ord(u) and ord(u)<=30),lambu(u));

lambw(’w6’) = sum(u$(31<= ord(u) and ord(u)<=37),lambu(u));

display lamb0, lambw, C, cw;

rho = 0.9 ; !! The value of rho will be varied later on

tau = 0.205 ; !! The value of tau will be varied later on
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parameter alpha(w) /w1 0.2282144583, w2 0.2269349167,

w3 0.1834542083, w4 0.1869252500, w5 0.3439902500,

w6 0.2304287917 /;

* The Distances are saved temporarily in a variable called a

*for each pool

d(u1,v1,’w1’) = Distp1(u1,v1) ;

d(u2,v2,’w2’) = Distp2(u2,v2) ;

d(u3,v3,’w3’) = Distp3(u3,v3) ;

d(u4,v4,’w4’) = Distp4(u4,v4) ;

d(u5,v5,’w5’) = Distp5(u5,v5) ;

d(u6,v6,’w6’) = Distp6(u6,v6) ;

d1(u1,v1,’w1’) = Distp1(u1,v1)/10 ;

d1(u2,v2,’w2’) = Distp2(u2,v2)/10 ;

d1(u3,v3,’w3’) = Distp3(u3,v3)/10;

d1(u4,v4,’w4’) = Distp4(u4,v4)/10 ;

d1(u5,v5,’w5’) = Distp5(u5,v5)/10 ;

d1(u6,v6,’w6’) = Distp6(u6,v6) /10;

*-------------------------------------------------------------

* VARIABLE DECLARATIONS

*-------------------------------------------------------------

Binary Variables

X(v,w) ’x(v,w)= 1 If SCv is open in pool $w$, 0 otherwise’

Y(u,v,w) ’y(u,v,w) =1, if customer u’s demand is allocated to

SVC $v$ in pool $w$, 0 otherwise ’

*---------------------------------------------------------------

*DECLARING THE CONDITION FOR Y(u,v,w) and a(u,v,w)

*---------------------------------------------------------------

loop((u,v,w),

if( [(d(u,v,w) > 0 and d(u,v,w)<= dmax)] ,

a(u,v,w)= 1;

* Y.l(u,v,w)= 1;

k(u,w) = 1 ;

else

a(u,v,w)= 0;

* Y.l(u,v,w)= 0;
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k(u,w) = 0 ;

);

);

loop((u1,v1,w1),

if ([(d(u1,v1,w1)=0) and (ord(u1)= ord(v1))],

a(u1,v1,w1)= 1;

);

);

loop((u2,v2,w2),

if ([(d(u2,v2,w2)=0) and (ord(u2)= ord(v2))],

a(u2,v2,w2)= 1;

);

);

loop((u3,v3,w3),

if ([(d(u3,v3,w3)=0) and (ord(u3)= ord(v3))],

a(u3,v3,w3)= 1;

);

);

loop((u4,v4,w4),

if ([(d(u4,v4,w4)=0) and (ord(u4)= ord(v4))],

a(u4,v4,w4)= 1;

);

);

loop((u5,v5,w5),

if ([(d(u5,v5,w5)=0) and (ord(u5)= ord(v5))],

a(u5,v5,w5)= 1;

);

);

loop((u6,v6,w6),

if ([(d(u6,v6,w6)=0) and (ord(u6)= ord(v6))],

a(u6,v6,w6)= 1;
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);

);

*Display the parameter ’a’ that contains all distances between

*cities

display d, a , lambu;

parameters

S0, Bb0, Wt0, Ib0, Lb(w);

S0 = 4;

Bb0 = rho**(S0+1)/(1-rho) ;

Wt0 = Bb0/lamb0 ;

Ib0 = S0 - (rho/(1-rho))*(1-rho**S0);

Lb(w) = Wt0 + alpha(w);

* Determining the value of F(w)

set s2 /0*175/; !! A set to be used for the summation

* number of svc in pools used to estimate Sw(w) /w1 6, w2 6,

w3 5, w4 7, w5 6, w6 7 /

parameter

Sw(w) / w1 60, w2 60, w3 50, w4 70, w5 60, w6 70 /

Fw(w), Svw(v,w), Fvw(v,w);

Svw(v,w) = Sw(w)/mode(w);

Svw(v,w) = Sw(w)/mode(w);

*here Svw(v,w) = 5. In order to find optimal Svw(v,w) the

problem is solved for different scenarios of Svw(v,w) from

0 to 5 0r from 0 to 10 and the minimum is selected.

* A Library of Function is Loaded which contains the cdfpoisson

function

$funcLibIn stolib stodclib

Function cdfPoisson /stolib.cdfPoisson/;

* Fw(w) = cdfPoisson(s2.val$(s2.val<=Sw(w)), lambw(w)*Lb(w));

* Fvw(v,w) = cdfPoisson( s2.val, sum(u,lambu(u)*Y(u,v,w)*Lb(w)) );

Parameters Ibw(w), Bbw(w);

Ibw(w) = sum(s2${s2.val<=Sw(w)-1}, cdfPoisson{s2.val, lambw(w)*Lb(w)});

Bbw(w) = ((lambw(w)/lamb0)*Bb0 + lambw(w)*alpha(w)- Sw(w)+ Ibw(w));

*-----------------------------------------------------------------

*THESE ARE TO BE USED IN THE OBJECTIVE EQUATION TO BE OPTIMISED

*----------------------------------------------------------------
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*Y.lo(u,v,w) = 1;

Variables OBJ;

option sysout = on;

option domlim = 2;

*$ontext

*----------------------------------------------------------------

* EQUATION DECLARATIONS

*-----------------------------------------------------------------

Equations

Eq1, Eq3(u,v,w), Eq5(v,w)

Eq21(u1,w1) , Eq22(u2,w2),Eq23(u3,w3),Eq24(u4,w4),Eq25(u5,w5),

Eq26(u6,w6) ;

* THE ObJECTIVE FUNCTION TO BE MINIMIZED

Eq1 .. OBJ =e= sum((v,w), f(v,w)*X(v,w) + h0*(sum(s2$

(s2.val<=Svw(v,w)-1),(Svw(v,w)-s2.val)*exp[-sum{u,lambu(u)*Y(u,v,w)}

*Lb(w)]*(([sum{u,lambu(u)*Y(u,v,w)}*Lb(w)]**s2.val))/fact(s2.val))) +

p(v,w)*(( sum(u,lambu(u)*Y(u,v,w))/lambw(w) )*Bbw(w))+ q(v,w)*

(sum(s2${s2.val<=Svw(v,w)-1},(Svw(v,w)-s2.val)*exp[-sum{u,lambu(u)*

Y(u,v,w)}*Lb(w)]*(([sum{u,lambu(u)*Y(u,v,w)}*Lb(w)]**s2.val)

/fact(s2.val)) )- Svw(v,w) - (sum(u,lambu(u)*Y(u,v,w))/lambw(w))*

(Ibw(w)-Sw(w)))+ sum(u, lambu(u)*Y(u,v,w)*d1(u,v,w)) ) + h0*Ib0;

* SUBJECT TO

Eq21(u1,w1) .. sum[v1, Y(u1,v1,w1)] =e= 1;

Eq22(u2,w2) .. sum[v2, Y(u2,v2,w2)] =e= 1;

Eq23(u3,w3) .. sum[v3, Y(u3,v3,w3)] =e= 1;

Eq24(u4,w4) .. sum[v4, Y(u4,v4,w4)] =e= 1;

Eq25(u5,w5) .. sum[v5, Y(u5,v5,w5)] =e= 1;

Eq26(u6,w6) .. sum[v6, Y(u6,v6,w6)] =e= 1;

Eq3(u,v,w) .. Y(u,v,w) =l= a(u,v,w)*X(v,w) ;

*Eq4(v,w) .. Svw(v,w) =l= C(v,w);

Eq5(v,w) .. (sum(u, lambu(u)*Y(u,v,w))/lambw(w) )*Bbw(w) =l=

tau*sum(u, lambu(u)*Y(u,v,w));

* The Model Statement assigns a name and required equations

*to the Problem to be solved

option iterlim =50000;
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option reslim =10000;

Model Optim /all/;

* The Solve Statement Then Solves the Problem

solve Optim minimizing OBJ using minlp ;

*$offtext

parameter cnt ;

cnt = sum((v,w)$(x.l(v,w)),1)

display X.l, Y.l, cnt;

Appendix (IV)model II GAMS code without LT

$ontext

* EVALUATING GAMS

$offtext

* Turn on the default end of line comment Character !!

$onEolcom

* Define an end of line Comment Character of your choice to be used

* $eolcom %%

* Declaration Of Sets to Be used

Sets

U ’Set of Customers’ /1*37/

* V ’Set of Candidate SVC Locations’ /1*37/

W ’Set of Pools’ /w1*w6/

* DYNAMIC SETS (ACTING AS SUBSETS OF CUSTOMERS/SvCs FOR EACH POOL)

u1(U) ’Set of cities in pool 1’ /1*6/

u2(U) ’Set of cities in pool 2’ /7*12/

u3(U) ’Set of cities in pool 3’ /13*17/

u4(U) ’Set of cities in pool 4’ /18*24/

u5(U) ’Set of cities in pool 5’ /25*30/

u6(U) ’Set of cities in pool 6’ /31*37/

* THE SAME THING IS DONE FOR POOLS

w1(w) ’Set of cities in pool 1’ /w1/

w2(w) ’Set of cities in pool 2’ /w2/

w3(w) ’Set of cities in pool 3’ /w3/

w4(w) ’Set of cities in pool 4’ /w4/

w5(w) ’Set of cities in pool 5’ /w5/
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w6(w) ’Set of cities in pool 6’ /w6/

*Make the cities(nodes) associated with u1 to u6 the same

*with v1 to v6

Alias (u, v), (u1, v1),(u2, v2), (u3, v3), (u4, v4),

(u5, v5), (u6, v6);

sets

* Data sets containing the lattitude, longitude and demand

Data1 ’Raw Data Sets To Be entered’ /Latitude, Longitude, Demand/;

* Declare the set indices for U, V and W as same as i, j and pool

*----------------------------------------------------------------

* Declaration of Parameters to be used

* Note That Gams is not case sensitive,thus f(V,W) same as f(v,w)

*-----------------------------------------------------------------

Parameters

f(v,w) ’Fixed cost of opening SVC at location v in Pool $w$’

h0 ’is the per unit holding cost of each unit of inventory

at SVCv in P oolw per unit time’

p(v,w) ’is the per unit cost of backorder per unit inventory for

each unit of time’

q(v,w) ’Lateral transshipment cost per unit inventory’

d(u,v,w) ’Distance from SVCvw to customer u’

d1(u,v,w) ’Transportation cost from SVCvw to customer u’

lambu(u) ’Demand rate of customer u’

lambvw(v,w) ’Demand rate (Poisson) at SVC $v$ in Pool $w$’

lambw(w) ’Demand rate (Poisson) at Pool $w$’

lamb0 ’Demand rate (Poisson) at Plant’

rho ’Utilisation rate of the plant’

tau ’Average response time requirement’

alpha(w) ’exact lead time from plant to pool $w$’

dmax ’is the Maximum allowable distance between a customer

its assigned SVC’

a(u,v,w) ’if the distance from customer u to candidate location

v in pool $w$ is not

greater than dmax, 0 otherwise’

C(v,w) ’is the space capacity of SVC $v$ in pool $w$, this is

uniform for all SVCs in pool $w$’

Cw(w) ’is the total space available for storage at pool $w$’

C0, k(u,w) ’is the total space available for storage space
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at the plant’ ;

*-----------------------------------------------------------------

* The Data Containing longitude and latitude of each City is to

*be read in as a table

*----------------------------------------------------------------

Table Data(u,*) ’Datasets for each of The Cities(Nodes)’

$ Include RawDataset371.inc

Display Data; !! This Line displays the input Data

*==================================================================

* Data containing distances between cities in each of the six pools,

*are imported from Excel files that were saved in csv format

*-------------------------------------------------------------------

$ondelim !! Turn delimeters on

Table Distp1(*,*)

$ Include 37nodesPool1Dist.csv

display Distp1 ;

Table distp2(*,*)

$ Include 37nodesPool2Dist.csv

display Distp2

Table Distp3(*,*)

$ Include 37nodesPool3Dist.csv

display Distp3

Table Distp4(*,*)

$ Include 37nodesPool4Dist.csv

display Distp4

Table Distp5(*,*)

$ Include 37nodesPool5Dist.csv

display Distp5

Table Distp6(*,*)

$ Include 37nodesPool6Dist.csv

display Distp6 ;

$offdelim
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*---------------------------------------------------------------

* These are Added too enable simple coding Parameter values

*---------------------------------------------------------------

* Theline below represents \hat w

parameter mode(w) /w1 6, w2 6, w3 5, w4 7, w5 6, w6 7 /;

*----------------------------------------------------------------

* Assigning The Parameter values

*----------------------------------------------------------------

f(v,w)= 10000;

h0= 50 ;

p(v,w) = 70;

q(v,w) = 25;

dmax = 150;

C0 = 5.5 ;

C(v,w) = C0;

*The total storage in each pool is clxulated and assigned separately

*for each pool

Cw(w) = sum(v, C(v,w)) ;

lambu(u) = Data(u,"Demand") ;

lamb0 = sum(u,lambu(u));

* Total demand in each pool is calculated and assigned separately

*for each pool

lambw(’w1’) = sum(u$(1<= ord(u) and ord(u)<=6),lambu(u));

lambw(’w2’) = sum(u$(7<= ord(u) and ord(u)<=60),lambu(u));

lambw(’w3’) = sum(u$(13<= ord(u) and ord(u)<=17),lambu(u));

lambw(’w4’) = sum(u$(18<= ord(u) and ord(u)<=24),lambu(u));

lambw(’w5’) = sum(u$(26<= ord(u) and ord(u)<=30),lambu(u));

lambw(’w6’) = sum(u$(31<= ord(u) and ord(u)<=37),lambu(u));

display lamb0, lambw, C, cw;

rho = 0.9 ; !! The value of rho will be varied later on

tau = 0.11 ; !! The value of tau will be varied later on

*CALCULATION FOR THE DISTANCES BETWEEN EACH CITY

parameters

lat(v), long(v);

lat(v) = Data(v,’latitude’);

long(v) = Data(v,’longitude’);
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* The line below is Optional.

display

lat ;

* Convert Them to radians

lat(v) = lat(v)*Pi/180;

long(v) = long(v)*Pi/180;

* The line below is Optional.

display

lat ;

Scalar

Radi ’The Radius of the Earth ’;

Radi = 6371;

Parameter

dist1(u,v);

* The Distances are calculated using a the haversine formula

dist1(u,v) = 2*Radi*arcsin{ sqrt[ power( sin( (lat(u)-lat(v))/2 ),

2 ) + cos(lat(u))

*cos(lat(v)) * power( sin( (long(u)-long(v))/2 ), 2 ) ]} ;

display

dist1 ;

* The Shipping cost is obtained via dividing the distances by 10

* The plant is assumed to be in Abuja (i.e node 37) so we have to

*find the shipping cost

* of transporting goods from the plant (Abuja) to each candidate

*facility (service centres)

* location, And then save these values in a parameter called alpha(W).

* YOU CAN CHANGE THE 37 TO THE NUMBER of the city where you want the

*plant to be located, e.g

* If you want the plant to be in Abia state, then you have to use

*alpha(W) = d(’1’,w); to

* replace the line of code below.

*The Distances are saved temporarily in a variable called a

d(u1,v1,’w1’) = Distp1(u1,v1) ;

d(u2,v2,’w2’) = Distp2(u2,v2) ;

d(u3,v3,’w3’) = Distp3(u3,v3) ;

d(u4,v4,’w4’) = Distp4(u4,v4) ;

d(u5,v5,’w5’) = Distp5(u5,v5) ;
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d(u6,v6,’w6’) = Distp6(u6,v6) ;

d1(u1,v1,’w1’) = Distp1(u1,v1)/10 ;

d1(u2,v2,’w2’) = Distp2(u2,v2)/10 ;

d1(u3,v3,’w3’) = Distp3(u3,v3)/10;

d1(u4,v4,’w4’) = Distp4(u4,v4)/10 ;

d1(u5,v5,’w5’) = Distp5(u5,v5)/10 ;

d1(u6,v6,’w6’) = Distp6(u6,v6) /10;

*-----------------------------------------------------------------

* VARIABLE DECLARATIONS

*-----------------------------------------------------------------

Binary Variables

X(v,w) ’x(v,w)= 1 If SVC $v$ is open in pool $w$, 0 otherwise’

Y(u,v,w) y(u,v,w) =1, if customer u’s demand is allocated to

*SVC $v$ in pool $w$, 0 otherwise ’

*-----------------------------------------------------------------

*DECLARING THE CONDITION FOR Y(u,v,w) and a(u,v,w)

*-----------------------------------------------------------------

loop((u,v,w),

if( [(d(u,v,w) > 0 and d(u,v,w)<= dmax)] ,

a(u,v,w)= 1;

* Y.l(u,v,w)= 1;

k(u,w) = 1 ;

else

a(u,v,w)= 0;

* Y.l(u,v,w)= 0;

k(u,w) = 0 ;

);

);

loop((u1,v1,w1),

if ([(d(u1,v1,w1)=0) and (ord(u1)= ord(v1))],

a(u1,v1,w1)= 1;

);

);

loop((u2,v2,w2),

if ([(d(u2,v2,w2)=0) and (ord(u2)= ord(v2))],
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a(u2,v2,w2)= 1;

);

);

loop((u3,v3,w3),

if ([(d(u3,v3,w3)=0) and (ord(u3)= ord(v3))],

a(u3,v3,w3)= 1;

);

);

loop((u4,v4,w4),

if ([(d(u4,v4,w4)=0) and (ord(u4)= ord(v4))],

a(u4,v4,w4)= 1;

);

);

loop((u5,v5,w5),

if ([(d(u5,v5,w5)=0) and (ord(u5)= ord(v5))],

a(u5,v5,w5)= 1;

);

);

loop((u6,v6,w6),

if ([(d(u6,v6,w6)=0) and (ord(u6)= ord(v6))],

a(u6,v6,w6)= 1;

);

);

*Display the parameter ’a’ that contains all distances between cities

display d, a , lambu;

parameters

S0, Bb0, Lb(v,w);

S0 = 1;

Bb0 = rho**(S0+1)/(1-rho) ;

*Wt0 = Bb0/lamb0 ;

*alpha(v,w)= dist1(’18’,v)/2400

*Ib0 = S0 - (rho/(1-rho))*(1-rho**S0);
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Lb(v,w) = Bb0/lamb0 + dist1(’18’,v)/2400;

* Determining the value of F(w)

set s2 /0*175/; !! A set to be used for the summation

* number of svc in pools used to estimate Sw(w) /w1 6, w2 6,

*w3 5, w4 7, w5 6, w6 7 /

parameter

Sw(w) / w1 30, w2 30, w3 25, w4 35, w5 30, w6 35 /

Fw(w), Svw(v,w), Fvw(v,w);

Svw(v,w) = Sw(w)/mode(w);

Svw(v,w) = Sw(w)/mode(w);

*here Svw(v,w) = 5. In order to find optimal Svw(v,w) the

*problem is solved for different scenarios of Svw(v,w) from

*0 to 5 0r from 0 to 10 and the minimum is selected.

*Y.lo(u,v,w) = 1;

Variables OBJ;

option sysout = on;

option domlim = 2;

*$ontext

*------------------------------------------------------------------

* EQUATION DECLARATIONS

*-----------------------------------------------------------------

Equations

Eq1, Eq3(u,v,w), Eq5(v,w), Eq21(u1,w1) , Eq22(u2,w2),Eq23(u3,w3),

Eq24(u4,w4),Eq25(u5,w5), Eq26(u6,w6) ;

* THE ObJECTIVE FUNCTION TO BE MINIMIZED

Eq1 .. OBJ =e= sum((v,w), f(v,w)*X(v,w) -p(v,w)*Svw(v,w)+(h0 +p(v,w))

*(sum(s2$(s2.val<=Svw(v,w)-1),(Svw(v,w)-s2.val)*exp[-sum(u,lambu(u)*

Y(u,v,w))*Lb(v,w)]*(([sum{u,lambu(u)*Y(u,v,w)}*Lb(v,w)]**s2.val))

/fact(s2.val)))+sum(u, [p(v,w)*(Lb(v,w)+ d1(u,v,w))]*lambu(u)

*Y(u,v,w)) ) + h0*[S0 - (rho/(1-rho))*(1-rho**S0)];

* SUBJECT TO

Eq21(u1,w1) .. sum[v1, Y(u1,v1,w1)] =e= 1;

Eq22(u2,w2) .. sum[v2, Y(u2,v2,w2)] =e= 1;

Eq23(u3,w3) .. sum[v3, Y(u3,v3,w3)] =e= 1;

Eq24(u4,w4) .. sum[v4, Y(u4,v4,w4)] =e= 1;

Eq25(u5,w5) .. sum[v5, Y(u5,v5,w5)] =e= 1;

Eq26(u6,w6) .. sum[v6, Y(u6,v6,w6)] =e= 1;
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Eq3(u,v,w) .. Y(u,v,w) =l= a(u,v,w)*X(v,w) ;

Eq5(v,w) .. (Lb(v,w)- tau)*sum(u,lambu(u)*Y(u,v,w)) =l=

sum(s2$(s2.val<=Svw(v,w)-1),[1- (Svw(v,w)-s2.val)*exp[-sum{u,

lambu(u)*Y(u,v,w)}*Lb(v,w)]*(([sum{u,lambu(u)*Y(u,v,w)}*Lb(v,w)]

**s2.val))/fact(s2.val)]);

Model Optim /all/;

solve Optim minimizing OBJ using minlp ;

*$offtext

parameter cnt ;

cnt = sum((v,w)$(x.l(v,w)),1)

display X.l, Y.l, cnt;
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