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Abstract

Lateral Transshipment (LT) (stock movement between facilities on the same echelon), has
been used as an option for reducing the occurrences of stockout and excess stock in many
multi-echelon environments. Several LT models have been formulated for many supply
chain systems. However, the incorporation of LT into a system which jointly optimises
facility location and two-echelon inventory decisions with Response Time Requirement
(RTR) has not been considered. Therefore, this study was designed to incorporate LT
into a two-echelon system which jointly minimises expected cost emanating from facility
location and inventory decisions subject to RTR.

The customer arrival at facilities was modelled as a single server queue with Poisson
arrivals and exponential service rate. The balance equation of this queue along with the
distribution of the number of orders in replenishment (/N,,,) was used to derive service
center steady state expected level for on-hand inventory (/,,), backorder (B,,), and
LT (T,,). The derived steady state expected levels were used to formulate the two-
echelon LT model. This model was decomposed using Lagrange relaxation. Relaxation
of the assignment variable’s integrality was used to further reduce the model. The
reduced model was checked for convexity using second order conditions. Karush-Kuhn-
Tucker (KKT) conditions were used to investigate global optimality, which was also
examined for the case of stochastic occurrences. Multiple computational experiments
were performed on three data sets using general algebraic modelling system for the

values: d = 100,150; p = 0.5,0.9 and 7 = 0.2, 0.3, 0.5, where, dyyu,,,,,,, P and

UVW (max)

T are customer distance, utilisation rate and RTR, respectively.

The expected number of customers in queue at a service center was: FE[N,,| =

ZUEU AuYuvw p50+1
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The two-echelon LT model formulated was:
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The Lagrange dual problem was:

SUU7_1
ggfaé}é 5{17131/% Z Z {fvvaw * <hvw + qvw) Z Fvw(S) - QUvaw
weW veV 5=0
ZUEU )\uYuvw
Aw

|w|Syw—1 So+1
Zu )\uYuvw Pow + va P ot
+ (pv'w - qvw)eU)\—( E Fw(5> - ’w’va) + E )\uYuvw( )

+ (pvw — Quw + evw)

5=0 uel Ao(1 =)
+ Z (((pvw + Q’Uw)aw + duvw - eva))\u - 7Tu) Yuvw} + Z Ty
uelU uelU
Subject to

Y’LL'U'UJ S aUU'LUX'U'UJ
SUw S C’U'll)
So < Cy

Xvwa Yuvw S {Oa 1}

iii



The reduced model obtained was:

SUU! 1
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where Ay, Ay Ao, Yavws Loy (Sow, S0)s (Cow, Co)s Xows Guvw, Ty fows Pows Pow, Gow AN Ay
are, customer demand, pool demand, plant demand, assignment variable, lead time, base-
stock levels, capacity, location variable, distance variable, facility, holding, backorder,
LT and transportation costs, while, 6,,,, 7, are Lagrange multipliers and F,,,, F), are
facility and pool distribution functions, respectively. The reduced model was convex
and satisfied KKT conditions, establishing the existence of global minimum for the two-
echelon LT model. The stochastic case was also shown to be convex. The computational
experiment showed that expected cost remained stable with increasing RTR, and that the
model resulted to lower cost when compared with the model without LT.

The two-echelon joint location-inventory model with response time requirement and
lateral transshipment obtained lower expected cost than the model without lateral trans-
shipment. Stability of expected cost with varying response time requirement was also

established.

Keywords: Supply chain, Convexity, Karush-Khun-Tucker conditions, Global optimality,

Basestock level.
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Chapter 1
INTRODUCTION

1.1 Introduction

The day to day running of man’s life is largely dependent on the usage of various
machines or eqipments in various areas such as transportation, electricity, medicine,
communication, finance, etc. A common trait of these machines is that their components
are subject to failure. Hence, there is always a requirement from customers to replace
failed parts within an acceptable time frame. To satisfy this requirement, manufacturers
need to have efficient service parts supply systems that guarantee customers’ desired
response times. Items kept aside for purposes of meeting this customer requirement are
called service parts. The relevance of service parts in various sectors and in individuals
personal lives cannot be overemphasized. Inavailability or inadequacy of these parts will
almost surely lead to a halt or slow down activities in businesses and in man’s everyday
life.

Generally, there are three classifications of decisions made in service parts supply
systems; namely, tactical, strategic and operational decisions. Strategic decisions have
to do with determining what customer requirements are and how to distribute resources
to meet these requirements. Decisions that have to do with facility location planning are
strategic decisions. Tactical decisions are made to ascertain inventory level necessary
to meet given operational objectives at certain future time. Operational decisions drive
the everyday running of the system. Distribution planning decisions are examples of
operational decisions.

Decisions on inventory and location are critical for efficient running of service parts
supply system. If available parts in the system are scarce, customers’ waiting times
(response times) will be prolonged. If surplus parts are available, the operating cost of

the system will be very high. If available facilities are too few, customer satisfaction and



service levels (response time requirements) may not be guaranteed, whereas, an increase
in the total number of facilities will also result in increase in the total operating cost.
This highlights the need for efficient design of replenishment systems and the optimal
allocation of resources within these systems if the decision maker aims to attain cost-
effective management of service parts. Consequently, decision makers are always on the
look out for more efficient means of optimising supply chain decisions in their firms.

Conventionally, decisions on distribution and storage are not jointly considered, this is
partly as a result of the complexity that results from their joint consideration. Moreover,
decisions on distribution (operational) and stocking (tactical) are considered indepen-
dent of decisions on facility location and network design which are strategic decisions.
Integrated problems have been attracting the attention of numerous researchers who
have highlighted the benefits of joint consideration of location and inventory decisions.
Researchers have established that considering facility location decisions independent of
inventory decisions can result in supply chain systems that are below optimal Daskin
et al.| (2002)), (Candas and Kutanoglu| (2007)). Research on joint location inventory sys-
tems further evolved to consider joint two-echelon systems with service (time) constraints
Mak and Shen! (2009), Riaz (2013)). Nonetheless, jointly considering facility location,
inventory and distribution decisions with customer service level considerations (response
time requirements) remains a very challenging mathematical modelling task.

Customers in need of service parts usually have desired response times because
they intend to get their machines fixed and operational within their desired response
times. This makes firms try to locate facilities close enough to customers and this
is the motivation for two-echelon systems with a plant at the top echelon and Service
Centers (SVCs) at the lower echelon. For systems with slow demand arrival process,
it makes sense to assume that direct shipment to the demand node from the plant is a
better alternative to keeping inventory at SVCs. Yet in many situations, customers are
service time sensitive. Hence, most firms try to maintain positive inventory levels at
SVCs which are close enough to customers whose locations are not close to the plant.
From |Caglar et al.| (2004), such system is appropriate for service parts structures that
have SVCs stocked with service parts inventory. Also situations could arise in which a
Service Center (SVC) experiences a stock out situation and the customer’s sensitivity to
response time could make the customer seek for other alternatives. Thus, the decision

maker has to factor in a way to manage stock out situations.



The sensitivity of customers to response times and the desire of the decision maker to
satisfy this customer requirement while working within a given budget, makes the incor-
poration of lateral transshipment an interesting and attractive area of possible research
for many two-echelon joint systems. Lateral Transshipments (LTs) are stock transfer-
ence that occur among same-echelon locations in inventory systems and their effect on
two-echelon joint systems with response time constraints has not been studied. If a SVC
experiences stockout, demand at that SVC can be fulfilled by means of stock transference
from another SVC. LTs are also useful to decision makers with the objective of reducing
the penalties of stockouts at facilities |Axsater] (1990). The complexity that arises from
LTs lies in determining the right time to initiate a stock transfer and the destination which
will be optimal for the system. It is likely that an LT reduces the immediate stock out
risk at its destination but it unavoidably increases future risk of stockout at the origin.
Therefore an appropriate LT policy must evaluate these risks and determine when the LT
cost is dominated by its expected benefit.

The appropriate LT policy is usually dependent on the characteristics of the inventory
system in use. In this study, the SVCs and plant inventory are controlled with a base-stock
policy. Base stock or (S -1, S) policies are apparently fitting for slow moving items that
have high holding cost for inventory. Moinzadeh and Lee|(1986)) analytically check the
optimality of base stock policies given specific problem parameters. Their findings imply
that the optimality of base stock policy holds in a setting that admits low rate of demand
and low setup costs in comparison with holding costs. This policy is widely applied in
service parts inventory structures in which malfunctioning parts are replaced with new
ones from on hand stock. A low malfunctioning system implies a base-stock policy is
just appropriate. This is found in many areas, namely, transport, oil and gas, transport,
and IT firms. The problem considered in this study may be treated as creating a structure
for spare parts inventory.

In this study, we further stretch the research on joint location-inventory systems
by incorporating lateral transhipment into a centralised two-echelon spare parts system
which jointly considers decisions on facility location and inventory with customer service
constraint (response time requirement). This system involves a central plant at the top
echelon, which has constraints on capacity and production. This system also has a
finite number of SVCs at the lower echelon, which satisfy demand from geographically

dispersed customers. A SVC satisfies its assigned demand via on-hand inventory, LT or



backorder. The system also has a response time requirement across all facilities.

The problem here is to incorporate LT into a two-echelon joint inventory-location
system and simultaneously determine optimal number of SVCs, optimal assignment of
customer to SVCs, the on-hand inventory level, backorder level and lateral transshipment
level at SVCs, backorder and on-hand inventory level at the plant, under a response time
requirement for demand. We consider the problem by formulating and solving a model

which minimises total cost for the system.
1.2 Motivation for the study

Cost minimisation and service improvement are two contrasting management objec-
tives. Cost minimisation seeks to reduce expenses, while, improving service could lead
to increase in total system cost with the firm experiencing either an increase or a decrease
in profit margins. If the decision maker’s only objective is to minimise costs, it is very
likely that in the long run, customer service will suffer. Also, if the decision maker’s only
objective is to improve service, there is a chance that the firm might not make tangible
profit due to the cost required to improve service. Thus, the need for more efficient means
of balancing the contrasting objectives of cost minimisation and service improvement
exists and will always exist.

Integrating decisions on facility location, inventory and distribution has been a very
interesting and challenging aspect in the study of supply chain for spare parts. The
consideration of facility location decisions independent of inventory decisions can result
in supply chain designs that are below optimal Daskin et al.| (2002). Some authors have
investigated integrated supply chain systems with service considerations (response time
requirements) Caglar et al. (2004) and Mak and Shen! (2009). Also, many authors have
considered the effects of LT in many systems and LTs have been found to improve service
levels in inventory problems |Lee| (1987). However, LT has not been considered for the
system treated in this thesis.

We are thus motivated to consider a new approach for formulating models which
helps the decision maker to balance the contrasting objectives of cost minimisation and
service improvement. We do this by incorporating LT into an integrated two-echelon
system with response time requirement. So far, researchers have not yet formulated a
model that incorporates lateral transshipment into a two-echelon system that simulta-

neously considers facility, inventory and distribution decisions subject to response time



requirement.
1.3 Statement of the problem

Lateral Transshipment (LT) (stock movement between facilities on the same echelon),
has been used as an option for reducing the occurrences of stockout and excess stock in
many multi-echelon environments. Caglar et al.| (2004) studied a model for a two-echelon
spare parts system with RTR controlled with continuous (S-1,S) policies at both echelons.
The system considered by Caglar et al.| (2004) is made up of a plant, multiple service
centers and geographically spaced customers. Mak and Shen! (2009)) integrated facility
location into the problem considered by Caglar ef al.| (2004). Several LT models have
been formulated for many supply chain systems. However, the incorporation of LT into a
system with similar structures as those of (Caglar et al. (2004) and [Mak and Shen| (2009))
has not been considered. In other words, the incorporation of LT into a system which
jointly optimises facility location and two-echelon inventory decisions with response time
requirement has not been considered. Therefore, this study was designed to incorporate
LT into a two-echelon system which jointly minimises expected cost emanating from

facility location and inventory decisions subject to response time requirement.
1.4 Research aim and objectives

The aim of this study is to formulate and solve a model which incorporates LT into
a two echelon system with response time requirement which jointly determines optimal
facility locations, inventory stocking levels at SVCs, lateral transshipment levels at the
SVCs, backorder levels at SVC, inventory stocking levels at the plant, and backorder
levels at the plant.

The following are the objectives of this study:

1. To evaluate the distribution of number of units in transit to replenish inventory at

SVCs and at the plant.
2. To determine steady state expected inventory levels at both echelons.

3. To formulate mathematical models for joint two-echelon systems with response

time requirement and lateral transshipment.

4. To investigate properties of the models.



5. To examine optimality conditions for cases of probabilistic failure of SVCs and

stochastic demand.

6. To perform computational experiments on the model so as to highlight model

properties using General Algebraic Modeling System (GAMS).
1.5 Research methodology

The arrival of customers at SVCs followed the arrival process of the M/M/1 queue
system. The balance equation of this queue along with the property of the base stock
inventory control policy was used to derive service center steady state expected level
for on-hand inventory /,,,, backorder B,,,, and LT T},,. The derived steady state levels
were used to formulate the two-echelon LT model. This model was then decomposed
via Lagrange relaxation. This model was further reduced by relaxing the assignment
variable’s integrality constraint and fixing the base stock levels. The reduced model
was investigated for convexity. Karush-Kuhn-Tucker (KKT) conditions were used to
investigate global optimality, which was also examined for the cases of probabilistic
facility failure and stochastic demand. Computational experiments were carried out

using GAMS.

1.6 Structure of the study

This thesis’ structure is as follows. In Chapter One, we present the introduction. In
Chapter Two, we present the literature review. Chapter Three consists of methodology.
In Chapter Four, we present results and discussion, and in Chapter Five, we presents our

summary and conclusions.



Chapter 2
LITERATURE REVIEW

2.0 Introduction

The research carried out in this study consists of two major areas in service parts

supply chain. These areas are:
1. inventory-location
2. lateral transshipment

This chapter began with review of literature on inventory-location which are relevant
to this study . Thereafter, a review was also presented of relevant literature on lateral

transshipment.
2.1 Inventory-location

Significant portions of operations research literature have been fully dedicated to
the study of facility location models. Location models are usually designed to answer
questions like what number of facilities should be opened, what should be the capacity
of opened facilities, where should the facilities be located and number of customers
per facility? |Daskin| (1995). Some examples of location models are; fixed charge
location problems, covering problems, median problems and center problems. |Drezner
(1995), |Daskin|(1995) along with Drezner and Hamacher (2002) treat location problems
extensively. Many conventional facility location model formulations are deterministic;
that is all of the model parameters are assumed to be known and constant. While the
assumption for stochastic location models is that there are model parameters that are
uncertain and the aim is to ascertain the best decision given uncertainty. Snyder, (2006)

presents a review on stochastic location models.



Until recently, location decisions have been considered independent of inventory
decisions. The literature on inventory is very wide, so we restrict this review to models
that have similar structure to our problem.

The paper by Shebrooke (1968) has made one of the greatest impacts in multi-echelon
inventory research. He considered a mathematical model applicable to repairable items
called "Multi-Echelon Technique for Recoverable Item Control (METRIC)". METRIC
model uses an approximation to the distribution of items in replenishment to circumvent
the computationally burdensome exact representation, this has given it wide applicability.
All facilities are controlled using (S-1,S) or basestock policies. METRIC model is
used to get an approximate value for the total expected backorder in the system for
minimisation. Generalising Sherbrooke’s model, Muckstadt (1973) developed the MOD-
METRIC model for the consideration of items using hierarchical parts structures. The
model allows two levels of parts to be considered, an assembly (e.g. an engine) and it’s
components.

Graves| (1983)) considered a model which determines inventory stock level in multi-
echelon systems. He presented an exact procedure for determining expected inventory
level. He showed numerically that his approach was more accurate than the METRIC
approach under same problem structure. The downside of his approach is that it is
computationally onerous. Sherbrooke| (2004) gives full treatment of inventory in multi-
echelon arena.

Caglar et al.| (2004) studied a model for a two-echelon spare parts system controlled
with continuous (S-1,S) policies at both echelons. They imposed a constraint on response
time and created efficient algorithms to determine optimal stock level at both echelons.

Shen et al.|(2003) looked at an integrated location-inventory system that employed a
continuous review (1,Q) policy for inventory management. They utilise an economic order
quantity based approximation of the stochastic demand. The model displays the effect of
economies of scale, Eppen! (1979), since demand pooling from a number of retailers to a
single facility causes a reduction in safety stock (Eppen’s model clearly shows the savings
achieved when risk pooling is allowed). As a result of the term dependent on inventory
cost, which is approximated by the EOQ, the objective function happens to be nonlinear.
They assume identical mean-variance ratio for each retailer demand. Hence the problem
was solved by column generation algorithm following the combination of both square root

terms in the objective function. Computational results of their study suggest that when



decisions on location and decisions on inventory are not jointly optimised, the facilities
opened will exceed the optimal number. |Daskin ez al.| (2002 consider nonlinear integer
programming location problem that integrates inventory costs and cost of safety stock.
They utilised Lagrange relaxation and showed that their relaxation technique improved the
computational time of Shen ef al. (2003). [Shu ef al. (2005) slackened the identical mean-
variance ratio assumption. They utilised submodular function minimisation to solve
the problem. Shen and Qi| (2006) introduced costs on operational routing and obtained
a model which was a nonlinear integer problem. Shen and Daskin| (2005) examined
the relationship between minimising cost and maximising service. Their service level
definition is dependent on distance from distribution centers to retailers. They showed
that the structure of the model having service constraints was similar to the structure of
the model of Shen et al.|(2003) and that their model was solvable with same algorithms.
The authors further introduced a genetic algorithm which is able to efficiently produce
the trade-off curve between service and cost. Their results suggested that significant
service improvements can be attained relative to the solution that yields minimum cost
at relatively slight incremental cost.

Ozsen et al.|(2008) and Ozsen et al. (2009) extended the model by Shen ef al.| (2003)
by considering the effects of capacitated facilities which follow single sourcing and
multiple sourcing. This is a departure from the traditional approach that defines capacity
on the basis of maximum demand assignable to a facility. The authors imposed a limit
on storage space available for holding facility inventory. They formulated a nonlinear
model having nonconvex objective function which was solved using Lagrange relaxation
and linear relaxation. Shen (2006a) further extends the model by relaxing the assumption
of all demand being served. He presented a model which allows demand choice with
flexible pricing. The results shows that flexility of demand-choice can greatly improve
profitability of the supply chain this is because the firm is free to give higher service
priority to more profitable customers. Shen (2006b) gives a well treated survey of these
models. So far, we have only considered single-echelon problems.

Nozick and Turnquist (2001) considered locating Distribution Centers (DCs) in a two-
echelon environment that holds inventory at DCs and at a plant. Their system environment
is like the one considered in the conventional literature of two-echelon systems for
inventory, e.g. Shebrooke (1968) and |Graves| (1985). The (S-1,S) policy is utilised

to control inventory at the DCs at the plant. Also, the plant has unlimited production



capacity. They approximated safety stock using linear approximation dependent on
number of DCs. When the inventory cost is constant and incorporated into the fixed
cost of location, the resultant location model has similar structure with the fixed charge
problem without capacity bounds.

Candas and Kutanoglu| (2007) presented an integrated inventory-location multi-
commodity problem for a two-echelon system problem which optimises fill rates and
stock levels in order to achieve a time driven service level for the entire system. They
formulated an integer programming model which was also nonlinear and proposed a
linearisation-based procedure for solving small and medium sized cases. Moreover, they
compared the approach of simultaneous consideration of decisions on inventory and lo-
cation in a model to the approach that determine optimal location decisions first before
finding optimal inventory levels for the given facility locations. Their result showed that
following the simultaneous approach results in solutions which can attain same service
level with reduced cost.

All papers mentioned so far considered deterministic replenishment lead time, except
that of Nozick and Turnquist| (2001) who modelled the replenishment process with an
M /G /oo queue. The inventory-location literature has only a handful of models that
consider stochastic replenishment lead times.

Eskigun et al.| (2007) consider supply chain network models that incorporates the
consequence of choice of mode on customer satisfaction and system- wide service time.
Their models permit nonidentical lead times for different modes. Moreover, the node
response time is dependent on the quantity of demand processed. Their approach resulted
in deterministic models and they used mean lead time from the modes as their input.
Their models did not consider the effects of inventory.

Sourirajan et al.|(2007)) studied a single-item joint inventory-location model whose re-
plenishment lead time is stochastic and which is dependent on the demand size processed
by the facility. The mean replenishment lead time was represented by an approximate
queue formula. They utilised stochastic lead time of the resulting model to derive the
required level of safety stock pertaining to each facility. Benjaafar et al.| (2008]) studied
the joint optimisation of decisions on location and inventory control for a one-echelon
system and represented the replenishment process by an M/M/1 queue that considered
the congestion effect.

Mak and Shen|(2009)) considered a two-echelon joint location-inventory problem that
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incorporated service consideration. They modelled the manufacturing process as a queue
and formulated a mixed integer nonlinear programming model and found the solution by
means of a Lagrange heuristic.

Puga and Tancrez (2016) analysed a location-inventory model with stochastic demand
for large supply chain systems. They gave a continuous nonlinear formulation which
integrated decisions on stocking, location and allocation, and included the transportation,
inventory and facility costs. They relied on a property which made their model linear
when some variables were fixed. They proposed a heuristic based algorithm which
solved the resulting linear program and the solution was then utilised in improving
variable estimations for the subsequent iteration. Computational experiments showed the
efficiency of their heuristic algorithm for finding solutions that are fast and almost optimal
for large supply chain systems. However they did not incorporate service constraints
neither did they include lateral transshipment in their formulation.

Kok et al.| (2018) very recently, carried out a comprehensive literature review of
inventory location problems with demand uncertainty. They proposed a typology for

inventory management in multi-echelon systems and also identified current research

gaps.
2.2 Lateral transshipment

Existing LT literature have two key properties which emanate from timing of LTs. LTs
can be planned to occur at scheduled times before realisation of all demand, or they can
be performed at any time to salvage zero inventory situations. These two classifications
of transshipments are known as proactive and reactive. Proactive transshipment models
perform LTs to rebalance inventory in all locations belonging to the same echelon at
preset instants in time. This is done in advance and is done in such a way that the
related costs are minimal. Reactive transshipment models perform LTs in response to
circumstances in which a facility faces a zero inventory level (or the likelihood of a zero
inventory level) and another has enough stock available. This class of LT is appropriate
for settings that have LT costs which are reasonably low when compared to inventory
holding cost and penalty cost of not meeting customer demand instantly; this commonly
occures in spare parts systems. Kranenburg| (2006) considers a semi-conductor firm
ASML under a reactive LT setting, and shows that incorporating LTs results in annual

savings of up to 50% savings of total service parts inventory cost.

11



LTs have been expressed using different terminologies, namely, substitutions and
transfer of stock, reallocation of stock, lateral resupply, etc. Permitting LTs makes the
system more flexible, the implication of this being that controlling and optimising the
system becomes more challenging. In addition to deciding ordering dynamics from the
‘regular’ supplier, decisions timing, size, source, and destination of transshipment are
also necessary. Due to this additional difficulty, LT literature is majorly limited to two
echelons systems, further limitation is also observed in some contributions that consider
only one echelon and/ or allow LTs among just a restricted number of facilities. However,
optimal control of LTs has been studied under various differing scenarios. Some of such
scenarios are; number of echelons (one or two), stocking locations, ordering policy, etc.

A major characteristic of a LT policy lies in the type of pooling employed; complete
pooling or incomplete/partial pooling. Policies in which the LT facility is permitted to
share all its stock are classified as complete pooling, while policies which don’t permit a
facility sharing all its stock are classified as partial pooling.

The several contributions to LT literature are further categorised by certain character-
istics which depend on the inventory policy and their modeling of LT specifically. Listed

below are inventory system properties that help to classify the literature on LTs:

1. Number of entities; single entity or multiple entities
2. Number of echelons; multi-echelon or single echelon
3. Number of facilities; 2, 3, ...
4. Identical facilities? ; Yes, (do they have uniform cost) or no
5. Unfulfilled demands; allow lost sales or allow backorder
6. Timing of order policy; periodic or continuous
7. Ordering policy/rule; (S - 1, S), (s,S), (R,Q), General or Other
8. Transshipment type; reactive or proactive
9. Type of pooling; partial or complete
10. Type of decision makers; decentralised or centralised
11. LT cost; per transshipment, per item, both or none
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This research focuses on reactive transshipments in a centralised setting. The type
or transshipment considered in this study is reactive. Consequently we review reactive

transshipments in the next subsection.

2.2.1 Reactive lateral transshipments

In this subsection, we review existing literature on reactive LTs under periodic review

and continuous review settings.
2.2.1.1 Reactive lateral transshipments with periodic review

Here LTs are considered under the following classifications: one echelon centralised

systems and two echelon centralised systems.
2.2.1.2 One echelon centralised systems

The pioneer publication on reactive transshipment was the article of |Krishnan and
Rao| (1965). Their model followed periodic review and they obtained an expression
for optimal inventory levels for several locations which allow transshipment at each
replenishment period’s end once demand is known. They assumed same transshipment
costs across all locations, and showed that it is sufficient for the transshipment rule to
select one location with an excess to satisfy the stockout in another location.

Continuing with this approach, [Robinson| (1990) considered a problem that allow
multiple locations and multiple periods with non-uniform costs and demand distributions
and multiple periods. They established the optimality of the (S-1,S)/ basestock policy
and demonstrated the stationarity of the optimal order-up-to point. The optimal solution
only exists for scenarios that have two non-identical facilities or for systems that have
multiple identical facilities. Authors suggest an approximation based solution that uses
Monte Carlo sampling to avoid the complexities associated with the problem for more
general multi-location environments. However, the precision of this method is dependent
on demand sample, and there is no guarantee of convergence to optimality. Nonas and
Jornsten| (2007) found a different ’greedy transshipment rule’ which solves to optimality a
three location scenario while the multi-location scenario can only be solved given certain
conditions.

Yang and Qin| (2007) consider a similar model from another perspective, which is
consideration of ’virtual’ transshipments. Their study is domiciled in the energy industry

and its possible for transshipments to occur even when both locations have negative
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stock, thereby redistributing backorders. This underscores one of the various means
of diversifying transshipment policies. Another case of diversification is the work by
Kochel (1996) who consider the likelihood of stock sales outside the network before
demand arrival and then performing transshipment after demand arrival.

A similar model to|Robinson|(1990) is the one by Herer et al.|(2006), who examined a
more widespread cost mechanism and utilise LP in addition to a network flow structure to
develop a procedure that is more robust than the procedure of Robinson|(1990). This was
further enhanced by Ozdemir et al.| (2006) with the introduction of capacity constraints
to the model. They observed that the constraints alter the distribution of stock in the
system’s inventory and also result in an increase in total cost.

Hu et al. (2005) adopt a different method to improve the problem for multiple loca-
tions. They formulate a simplified model that is able to approximate order policies for a
system with few stocking points and low transshipment cost in comparison with holding
cost and cost of stockout. The defining property of the model is the assumption of free
and instantaneous transshipments.

Moinzadeh and Lee| (1986)) also presents same pattern of reactive transshipment after
demand. He considered a model having two locations along with negligible transshipment
times and lead times. [Tagaras and Cohen| (1992)) later incorporated positive lead times.
These authors treated complete and partial pooling, and decisions on stocking were
computed by means of an approximation heuristic. It was shown that for this system
complete pooling performed best. Tagaras (1999) more comprehensively consider a
similar three-location network, he found that the exact transshipment does not greatly
affect the results in a complete pooling environment. He showed that increasing the
number of locations resulted to increase in the advantage of transshipments.

Further work on systems with multiple locations was done in|Archibald ez al.| (2009).
They considered the real life scenario of a tyre dealer with a wide location network.
Archibald er al.|(2009) reduced the difficulty associated with dimensionality for systems
of this type by getting an approximate value for the dynamic programming function. This
was done using pairwise decomposition, which considered two locations per time and
was shown to be an improvement on previous heuristics proposed by Archibald| (2007) in
a complete pooling environment. One constraint of the model is that the review period is
same for all locations. |Archibald ef al.|(2009)) slackened this constraint by utilising a two-

step heuristic which first computed a static policy to ascertain which location satisfied a
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particular demand, and then applied dynamic programming to improve the policy.

A different research direction is the consideration of systems that have dynamic
deterministic demand. Herer and Tzur (2001)) considered a problem with two locations
and developed a solution for such problem. Seeking to determine optimal transshipment
and ordering decisions within a finite frame, they considered key characteristics of the
system. These characteristics form a framework which makes it possible to obtain
solutions for models of this type of model in polynomial time. Herer and Tzur (2003)
extended this problem and considered a setting with multiple locations.

Finally, Herer et al. (2002) take a more general look at the importance of trans-
shipments under the label ’legility’ which intends to create an inventory system that is
lean and agile inventory. By examining a number of the models previously discussed,
they showed that transshipment helps to improve the system performance under the two

criteria and produced a procedure for analysing this information.

2.2.2 Centralised two-echelon systems

For systems having two echelons stockouts can be satisfied via several means. One
possibility is LT but there could arise situations for which it is more beneficial to have
emergency shipments from a central warehouse. |Wee and Dadal (2005)) considered this
problem using five diverse combinations of emergency shipment, transshipment, and
no movements at all. He devised a procedure for determining the optimal setup with
respect to a particular model description. His research helped to establish emergency
stock movement structure.

Dong and Rudi| (2004)) examined the LT benefits for a manufacturer supplying a set of
retailers. Comparing the case in which the price leader is the manufacturer, with the case
having exogenous prices, they found that for exogenous prices, the retailers benefitted
more when demand within the entire network is uncorrelated. They used a Stackelberg
game to model endogenous price and found that the manufacturer took advantage of his
price leadership to achieve increase in his benefits, this was worse for retailers who chose
to use transshipments. Their results are valid for normal distributed demand, Zhang
(2005) extended the results in include general demand distributions.

A case study mainly based on retail was considered by |Bendoly| (2004) who studied
a model having store and Internet based customers. Bendoly utilised LT ideas to show

how a system’s performance can be improved via partial pooling of items. The model
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considered aretail environment in which stores operate side by side with internet channels.

2.2.3 Reactive lateral transshipments with continuous review

Reactive LT models look to transship anytime a stockout occurs or whenever there is
a likely stockout. Reactive LT models can use either partial or complete pooling. This
research focuses on complete pooling, hence only literature on complete pooling alone is
considered. Complete pooling is frequently used in environments such as, service parts,
that have typically large holding and backorder costs when compared with transshipment
cost. METRIC is the basic multi-echelon model for repairable service parts |Shebrooke
(1968). In this model, damaged parts are taken to a central base for repairs. This base
then supplies the individual bases with the repaired items. A (S-1,S) ordering system is
used by these bases to resupply their stocks.

Lee| (1987) considered LT in such model. Lee divided stock locations into various
pooling groups, and focused on one of such groups. He assumed identical locations with
Poisson demand. Damaged parts are taken for repairs at the designated central repair
facility having infinite repair capacity with positive and probabilistic repair times. Lee
tested three possible rules for determining transshipment source: maximum on hand
stock, random selection, minimum number of orders outstanding , and random selection.
For all rules, he derived approximations for the fill rate service level which is used for cost
minimisation under some service level constraint. Lee found that for rules tested, using
emergency LT led to substantial savings due to less stock requirement at the bases. Also,
for all rules tested, Lee found no substantial difference in performance. Axsater (1990)
relaxed the assumption made concerning identical locations. He also included stock
holding for the central depot and presented improved methods for the approximation of
service level.

Kukreja et al.| (2001) studied a similar model and the lower echelon was their only
focus. They utilised a different rule to select transshipment source: transship from
location with on hand stock and the minimum transshipment cost. Kukreja et al.| (2001)
found fill rate approximations which they applied to a heuristic for determining optimal
location stock levels. Kukreja and Schmidt (2005) extended this model to consider
systems controlled with (s,S) policies and have demand processes that are compound
Poisson. They selected the transshipment source using a dynamic programming rule and

proposed a simulation based approach for finding the optimal values of s and S. Huo and
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Li (2007) considered a different order policy in similar setting. They considered the lower
echelon of a system controlled with a (R,Q) rule and their approximations were similar
to those obtained by Axsater] (1990). A model that was similar to the model of Axsater
(1990) was considered by Jung et al.| (2003). Their facilities had finite repair capacities
with fill rate approximations which were used in an algorithm for finding optimal stock
level. Sherbrooke| (1992) considered same model as |Axsater (1990), but differed by
evaluating expected backorder. He determined stock levels using the VARI-METRIC
model by Sherbrooke| (1986) and evaluated backorder decrease due to the application of
LT. He concluded that the LT has the greatest impact on parts possessing low demand
rates. For a system with one echelon, [Wong et al.|(2006) and [Yanagi and Sasaki (1992)
determined the downtime due to waiting for a LT or backorders and thus particularly
considered non-zero lead time. Wong et al.| (2006) built on a previous model having
negligible transshipment lead time [Wong et al.| (2005), and derived exact service level
expressions (demands fraction fulfilled without using backorder), the expected downtime
due to LT, and the expected value of LT. They derived an approximation for expected
downtime due to backorders. |Yanagi and Sasaki (1992)) focused on the development of
approximations for the average number of failed items in addition to the probability of a
backorder occurrence.

An important feature also considered in spare parts modelling is time-based service
level. Lee (1987) and Kutanoglu| (2008) considered this sort of system. The requirement
to satisfy fractions of demand within a given time interval is known as time-based service
level. The latter article examined cost and service level in networks with two or three
locations. This allowed the achievement of time-based service level with particular sensi-
tivity to demand changes. This model pointed out important insights such as how service
requirements that are time-based are more important in spare parts environments than
fill rate, and how emergency LT results in improvement in response time performance.
The former paper considered the determination of appropriate stocking levels so as to
minimise cost. This was achieved by using an enumeration algorithm.

Although many of the models previously discussed are similar, there are slight dif-
ferences between these systems that can significantly change which policy is best for the
system. Utterbeeck et al.|(2009) considered this problem and proposed a procedure for
determining the most efficient from six viable network structures for a particular system.

They considered single and double echelon networks with available options being both
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LT and emergency shipments. They determined the best structure by utilising an opti-
misation setup with guided local search. This provided a new transshipment problem
feature which can be studied and optimised along with the transshipment and ordering
policies.

Tiacci and Saetta (2011) examined the relative efficiency of two lateral shipments
methods in minimising mean supply delay of a consumable item, regarding a classical
policy with no lateral shipment. They implemented a two-echelon simulation model
and performed an experiment by varying various parameters, such as number of ware-
houses, lead time of supply from the central facility, demand uncertainty for an item, and
warehouse size variability. In almost all newtwork configurations, their results showed
appreciable reductions in mean supply delay when lateral shipment is allowed with regard
to the particular classical policy.

Paterson et al. (2012) proposed an enhanced reactive method such that individual
transshipments are seen as an opportunities for proactive redistribution of stock. They
adopted a quasi-myopic procedure to the develop an enhanced reactive transshipment
rule that performed strongly. Comparing their results in a transshipment approach that is
fully reactive, their procedure resulted to highly improved service levels with safety stock
reduction and reduced total costs, especially for large systems. They also determined
an optimal policy for small networks and showed that the enhanced reactive policy
significantly closes the optimality gap.

Yang et al.|(2013)) considered a service parts inventory location problem with lateral
transshipment and flexible replenishment stock. They proposed a customer oriented
service measure and provide and approximation optimizing inventory allocation subject
to the this measure. However their lead time was deterministic.

Most papers that considered service measures used the fill rates as service measure,
for example Yang et al.| (2013), Kutanoglu and Mahajan (2009), and |Kutanoglu (2008).
Only very few have considered a response time threshold as the service constraint, for
example Caglar|(2001), Caglar et al.|(2004), andMak and Shen!(2009). So far researchers
on joint inventory location have not considered problems with lateral transshipment and

service constraints; this is the gap this study intends to fill.
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2.3 Some previous results

In this section, we take a close look at some techniques for determining optimal
inventory policies and optimal stocking levels for our two-echelon system. The sys-
tem considered in this study involves demand arrivals that occur one at a time. Firstly,
basic concepts comprising of definitions and some existing results on Poisson process
relevant to this study were presented. Afterwards, relevant concepts from nonlinear con-
strained optimisation such as the Lagrangian dual problem and convexity were presented.
Thereafter, the inventory policy used in the study was highlighted and it’s effects on per-
formance measures and inventory levels were discussed. In addition, the determination
of inventory levels for systems with lateral transshipment was dealt with. Finally, some

closely related models were presented.
2.3.1 Basic concepts

This study dwells on spare parts supply chain for expensive parts with low failure
rate. Consequently, demand arrival at a SVC occurs due to service part failure, which is
categorised as a rare event. The counting process which is used to model scenarios with
this property is the Poisson process, |[Shebrooke| (1968), |Caglar ez al.| (2004)), Mak and
Shen| (2009), [Yang et al.| (2013) and Riaz (2013) are some authors who have modelled

demand arrival using Poisson process in a two-echelon spare parts system.

Definition 2.3.1.1: Counting process
If {N(t),t > 0} is a stochastic process and total event occurrences at time t is denoted

by N(t). N(t)is called a counting process if it satisfies the following conditions:
1. N(t) > 0.
2. N(t) is integer valued.
3. s < t implies that N(s) < N(t).
4. If s < t, then N(t) — N(s) represents the total events occurrence in (s, t].

Definition 2.3.1.2: Poisson process

The process {N(t),t > 0} is said to be Poisson with rate A, where, \ is positive, if
1. N(0)=0
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2. The counting process posseses increments which are independent and stationary.

3. Forall s,t >0

P{N(t+s) — N(s) :n}:e‘At(Awn,n:o,L...

4. Not more than one event occurs at a time.

Given a Poisson process which has time of it’s first event represented by 7.
Furthermore, for n > 1, let T}, represent the time in between the (n — 1)”‘ and the n'"

event. Then {T},,n = 1,2,...} is known as the interarrival times sequence.

Proposition 2.3.1.1 (Ross| (2010) p. 317)
T,,n = 1,2, ..., are idd exponential random variables having mean %

The stochastic process above (N (t)) is a Markov process. We can therefore say, that
a Poisson process with rate ) is a counting process {N(t),t > 0} whose interarrival
times 77, T5, ... have identical exponential distribution functions

P{T, <z}=1-P{T, >z} =1—¢e*12>0.
2.3.1.1 Merging and splitting of Poisson processes

Lots of scenarios abound which require the merging and splitting of Poisson processes
for various purposes. The next theorem shows that merging and splitting of Poisson pro-

cesses also result in Poisson processes.

Theorem 2.3.1.1(Tijms (2003) p. 6)

1. Let {Ny(t),t > 0}, {Ny(t),t > 0} be independent Poisson processes having
rates \; and \, respectively, where {N;(t)} denotes type i arrivals. Let N(t) =
Ni(t) + No(t),t > 0. Then the merged process {N(t),t > 0} is Poisson having
rate A = \; + \o. In this merged process, let Z;, denote the time from the (k-1)th
arrival to the kth arrival. Also, let I, = i if the k" arrival for the merged process

happens to be of type i, then forany k=1,2,. ..,

i ,
1
DT

P{l,=i|Z, =t} = =1,2 (2.3.1)
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independently of t.

2. Given a Poisson process {N(t),t > 0} with rate ), let each arrival be categorised
as either an arrival of type 1 or an arrival of type 2 arrival having probabilities p;
and ps, respectively, independent of any other arrival. Let N;(¢) denote number of
type i arrivals at time t . Then {N;(¢)} and { N,(¢)} are two independent Poisson

processes having respective rates A\p; and Aps.

Most two echelon inventory problems exploit this property when determining steady
state levels at both echelons; (Graves| (1985), Caglar et al.|(2004), Mak and Shen (2009),
Yang et al. (2013) and Riaz (2013). In this study, this property was exploited in the

determination of SVC, pool and plant inventory levels.
2.3.2 Nonlinear constrained optimisation

In this section, the necessary tools from nonlinear programming needed for this study
are presented. The ideas presented follow those given by Boyd and Vandenberghe|(2004)
and |Gowers et al.| (2008). For n,m,p > 0, a nonlinear minimisation problem is an

optimisation problem which is expressible as:

min go(y)
subject to gy(y) < Oforeachd € {1,...,m}

h.(y) =0foreachc e {1,...,p} (2.3.2)

where y € R" is the optimisation decision variable, g, : R™ — R is called the objective
function or cost function. The inequalities g,(y) < 0 are known as inequality constraints,
while the corresponding functions g;, : R™ — R are called inequality constraint functions.
The equations h.(y) = 0 are known as the equality constraints, while the functions
h. : R® — R are known as the equality constraint functions.

The set of points for which the objective and all constraint functions are defined,

D:ﬁ domgbﬂﬁ dom h,.
b=0

— c=1

is called the domain of the optimisation problem.
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Apointy € Dissaid to be feasible if it satisfies the constraints g,(y) < 0,b =1, ..., m,
and h.(y) = 0,¢ = 1,...,p. The problem is said to be feasible if there exists at least a
feasible point, and infeasible otherwise. A constraint set or a feasible set is the collection

of all feasible points. The optimal value d’ of the problem (2.3.2)) is defined as

d' =min{go(y)|gs(y) <0,b=1,....m,h.(y) =0,c=1,...,p}

We say y* solves the problem (2.3.2), if y* is feasible and go(y*) = d’. The set of all

optimal points is the optimal set, denoted

Yo = {ylgs(y) <0,0=1,...,m, he(y) =0,c=1,...,p, go(y) = d'}

If an optimal point exists for the problem (2.3.2]), we say the optimal value has been
attained or achieved, and the problem is solvable. If Y, is empty, we say the optimal
value is not attained or not achieved (for minimisation problems this always happens

when the problem is unbounded below).

2.3.3 The Lagrange dual function

The Lagrangian takes the constraints in the program (2.3.2) and integrates the con-
straints into the objective function. The Lagrangian L: L : R" x R™ x R? — R associated

with this optimisation problem is

Ly, Mo, ve) = 90(y) + D Mogo(y) + > vehe(y) (23.3)

Ay is the Lagrange multiplier corresponding to the bth inequality constraint g, (y) < 0;

similarly v. is the Lagrange multiplier corresponding to the cth equality constraint

he(y) = 0.

The Lagrange dual function k : R™ xRP — R is the minimum value of the Lagrangian

overy: for \, € R™ v, € RP,
— m p
k(A ve) = min L(y, A, ve) = min (go(y) > Nugbly) + ) uchc(y)> (2.34)
b=1 c=1
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The dual function gives lower bounds to the optimal value d’ of the problem (2.3.2):

for any A\, > 0 and any v, we have

k(A ve) < d (2.3.5)

The Lagrange dual to the optimisation program (2.3.2)) is

max k(A 1.), subjectto \, > 0 (2.3.6)

ApER™:; . €RP

The dual optimal value d* is

d* = max k(\p;v.) = max min L(y, \p, V)
Ap>05v¢ Ap>050e y€D

Since k(\y,v.) < d', we know that d* < d’. The quantity d’ — d* is called the duality
gap. If d = d*, then the primal and its dual exhibits strong duality. Also, if d’ # d*, then

the primal and its dual exhibits weak duality.

2.3.4 Convex optimisation

A convex optimisation problem is a problem of the form

mingo(y)
subject to gy(a) < 0 foreachb € {1,--- ,m} (2.3.7)
where the functions go, g1, - - , gm: R™ — R are convex, that is, they satisfy
gb<Oé.Z' + By) < agb(‘r) + 6gb(y)7 be {07 e ’m} (238)

forallz,y € R"and all o, 5 € R, witha+ 5 =1,a > 0,5 > 0.

Theorem 2.3.4.1 (Winston (2004) p. 632)
Consider a nonlinear programming problem defined as (2.3.7). Any local minimum for

(2.3.7) is a global minimum.
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2.3.5 Mixed integer nonlinear problem

Mixed-Integer Nonlinear Problem (MINLP) combines the difficulty of optimising
over sets of discrete variables with the complexities associated with handling nonlin-
ear functions, Bonami ez al| (2012). MINLPs are easily expressed as (2.3.2) with an

integrality constraint.

minimize go(y)

subject to gy(y) < Oforeachb € {1,...,m}
h.(y) =0foreachc e {1,...,p} (2.3.9)
ye X CR"
vy e ZNiel

Iis the index set of discrete variables. A MINLP is said to be convex if it’s continuous

relaxation is convex.
2.3.6 (S-1,S) Inventory policy under Poisson demand

In this study, inventory is controlled using a (S-1,S) policy which has proven to be
most suitable for items whose demand arrival occur one at a time, Sherbrooke| (1992),
Candas and Kutanoglu/ (2007)), Mak and Shen| (2009). The (S-1,S) policy is also called
order-up-to policy or basestock policy. The inventory position of a given facility is
its stock level, S. Following a (S-1,S) policy implies that a replenishment order is
made immediately, anytime a demand occurs for an item or more. The order size
matches the the demand size. The amount in replenishment at any random time is
an important random variable in studying the characteristics of systems controlled with
a (S-1,S) policy. Once the stationary distribution of the amount in replenishment has
been established, the stationary distributions for on-hand, backordered and transshipped
inventory can be derived easily

Let A denote the demand arrival rate of the Poisson driven customer order process

and let V represent the number of orders in replenishment to the facility being considered.

Theorem 2.3.6.1 (Muckstadt (2005) p. 39)

Suppose demand rate for an item is A, its arrival process is Poisson, and the base
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stock level for the item is set to S. Furthermore, suppose that g(L) are density functions
with mean L corresponding to the replenishment time random variables, and G/(L) are
corresponding distribution functions . Also suppose that the replenishment times are idd
from one customer order to another customer order. Then the long run probability that s
units are in replenishment is given by

(AL)*

_ 1 _ AL
P{N=5}=¢ .

(2.3.10)
Thus, the probability that we have 5 in the replenishment system is Poisson distributed
with mean A\ L; that is, there is no need to know the density function for the replenishment

time, but only the mean replenishment time, L .

2.3.7 Performance measures

The ready rate: Ready rate for a stock level S, R(S) represents the probability that no
backorder exists at any random time, it represents the probability that number of items in

replenishment is equal to .S or less.

R(S) =Y P{N =s}. (2.3.11)

The fill rate: the fill rate, F'(S), for a particular stock level S, represents the expected
portion of demands satisfied instantly from on-hand stock. Suppose one customer order
arrives, a single unit of the customer order will be satisfied if the quantity of units in

replenishment is equal to S - 1 or less. Thus,

F(S)= > P{N=s} (2.3.12)

§<5—1

Thus, in this case,

F(S) = R(S) — P{N = S}

We see that R(s) > F(S). When using either a ready rate or fill rate measure, one
is not interested in the duration of occurrence of backorders. Thus, for example, having

a 96% fill rate means that, on average, from every 100 ordered units 96 requests are
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satisfied immediately. However, the time taken to fulfill the other 4% of the ordered units
is not measured. Thus, a firm which keeps high fill rates might not truly satisfy all its
customers needs. [Kutanoglu| (2008)), Kutanoglu and Mahajan! (2009), |Yang et al.| (2013)

utilised the fill rate as their performance measure.

Backorder rate: A third performance criterion for single-item systems determines the
expected value of outstanding backorders at any random time. This measure is represented
by B(S) and represents the duration of time for which backorders occur. Thus, this is a
response-time based measure. B(S) is given by the product of the customer demand rate
and the average demand waiting time. This follows from Little’s law, L, = AW, (Little
(1961)), where B(.S) = L,, A is the demand rate, and W, is the average demand waiting

time. In steady state, the expected backorder level is

B(S)=> (s—S)P{N = s}. (2.3.13)
5>8

That is, 5 — .S units are backordered if and only if 5 units are in replenishment, 5 > S.

2.3.8 Mathematical properties of fill rate and ready rate

Recall that in steady state the probability of having s units in replenishment is

AL)?
P{N =35} = e—ALQ.
S
The fill rate for a given stock level S is
F(S)=1-> P{N =3} (2.3.14)
5>
=Y P{N =3}
58

Suppose we aim to select stock levels that maximise the average fill rate for some
specific target investment threshold in inventory. An optimisation problem of this form

would be easily solved if F'(.S) happen to be discretely concave. However, it is not. The
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first difference is denoted by AF'(.S)
AF(S)=F(S+1)—F(S)
The second difference is denoted by A2F(S)
N*F(S) = AF(S+1) — AF(S).
Thus

AF(S)=) P{N=5}— ) P{N=s}

s<8 5<S5—-1
S
= e_AL% (2.3.15)
AF(S+1)= Y P{N=5}-) P{N=5}
§<S+1 5<S
M\ S+1
=\ ESJE o (2.3.16)
2 _ AL O‘L)SH =AML ()‘L)S
AES) =g T s
S
= (Aév) {SA—fl - 1} (2.3.17)

AL > S+ 1 implies that A?F'(S) > 0 and further implies that F'(S) is convex whenever
AL > S+ 1. In fact, F'(.S) is said to be discretely convex whenever S < AL — 1. Thus
F(S) is said to be discretely concave only if S > |AL|, when AL is non integer, and
S > AL — 1, for integer values of \L.

Next, we immediately observe that, R(S), is not also concave for all feasible values
of S.

Hence, neither R(.S) nor F'(S) have the desirable feature of concavity for all S > 0.
Thus, in many cases, S usually is constrained to values that are equal to or greater than
| AL] to guarantee that ready rate or fill rate functions are indeed concave for the feasible

region.

27



2.3.9 Mathematical properties of backorder rate

The backorder level B(S) has very attractive mathematical properties.

B(S)=> (s—S)P{N = s}
5>5
If B(S) were strictly discretely convex in addition to being strictly decreasing, then

AB(S) = B(S+1) — B(S) <0
AB(S+1)=B(S+2)— B(S+1)

and

A’B(S) = AB(S +1) — AB(S) > 0
= B(S+2)— B(S+1)— (B(S+1) — B(S))
— B(S +2) — 2B(S + 1) + B(S)

Observe that

AB(S)= > (5= (S+1)P{N=5}-> (s—S)P{N =3}

5>S5+1 5>85
= Y G (S+IYPIN =5} — > (5-S)P{N =5}
5>S5+1 5>S+1
- _ Z P{N =35}
§>S+1
=—(1— ZP{N = 5}) (2.3.18)
<S8
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AB(S+1)= > (5= (S+2)P{N=5}— > (s—S+1)P{N =5}

5>542 5>5+1
= > (E-(S+2)P{N=5}- > (5-S+1)P{N =5}
5>5+2 5>542
=— ) P{N=3}
§>5+2
=—(1- > P{N=3} (2.3.19)
5<S5+1
and
A?’B(S) = AB(S +1) — AB(S) (2.3.20)
=— ) P{N=s}+ Y P{N=35}
§>542 s>S+1
=— ) P{N=5}+ > P{N=st+P{N=5+1}
5>5+2 5>5+2
=P{N=5+1}>0 (2.3.21)

Thus B(S) is strictly (discretely) convex ¥V S > 0.

In this study, we are interested in improving customer service level, hence our model
has a service constraint that ensures that the customer waiting time does not exceed a
given threshold. The advantage of using the backorder measure is that unlike the fill
rate and ready rate, it captures all customer orders. |Caglar et al. (2004}, Mak and Shen
(2009), Riaz (2013) also considered minimising backorders to improve service using
a response time requirement. The two echelon structure in this study is similar to the
two echelon structure found in Caglar et al.| (2004), Mak and Shen (2009) and |Riaz
(2013). The structure comprises of a plant at the top echelon, multiple SVCs at the lower
echelon and geographically spaced customers. It is important to note that LT has not
been incorporated into the systems considered by |Caglar et al.| (2004), Mak and Shen
(2009) and Riaz|(2013)). This is the major contribution of this study.
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2.3.10 Determining inventory levels for two-echelon systems

Graves (1985) developed an exact inventory level distribution for a two-echelon sys-
tem. However, this exact model happened to be computationally burdensome for real life
problems with many variables and parameters. Hence, most authors use approximations
to ease computational burden.

A very useful approximation method is the multi echelon technique for repairable
item control (METRIC) Shebrooke (1968). It applies Palm’s theorem (Palm (1938))
and approximates the distribution for inventory level and backorder level using a Poisson
distribution with corresponding mean. METRIC assumes that successive lead times
from the plant to SVC are independent. Whereas in reality, these successive lead times
depend on the situation of inventory at the plant. |Axsater| (1990) noted that, METRIC
approximation will perform well when each SVC demand is low compared to the total
system demand. Let B, denote the expected plant backorder level and )\ the total plant
demand. By Little’s law, Little|(1961) Wty = lj—g, where Wt is the average waiting time
at the plant. From METRIC,

By= Y (5—80)P{N, = s} (2.3.22)

where

The splitting of Poisson processes imply that the plant backorder level can be split to
determine backorders at the SVC. Let \,, S,, and B, represent the demand at SVC v, the

stocking level for SVC v and the expected backorder level at SVC v, respectively.

al

B, =
Ao

(Bo) (2.3.23)

Caglar et al.| (2004) considered a two-echelon inventory problem with service con-
straints. They utilised METRIC approximation to obtain an optimal policy for such a
system and showed that

By(S,) = I, — S, + E[N,] (2.3.24)

Mak and Shen| (2009) and Riaz| (2013) considered two-echelon inventory location
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problems. They also utilised the metric approximation to determine their inventory level.
For items controlled with a (S-1,S) policy, setting stock levels depends on given

objectives and corresponding constraints.

Everett’s theorem (Everett| (1965))

Given an optimisation problem

min f (y)
subjectto g(y) < b (2.3.25)

where y € R" is the optimisation decision variable, f : R — Ris known as the objective
function or cost function. The inequality g(y) < b is the inequality constraint, while the
function g : R® — R is the inequality constraint function. The constraint g(y) < b is

relaxed. Assume f and g are convex. The relaxation of Problem (2.3.25) is

min [£(y) +0lg(y) — ) 2.326)
for @ > 0. 6 is the Lagrange multiplier linked with g(y) < b. The relationship be-
tween solutions to problem (2.3.26)) and problem (2.3.25)) is given by the theorem below

Theorem 2.3.10.1(Everett| (1965)).
Suppose 3°(6) solves the Problem (2.3.26) optimally with 6 as the Lagrange multiplier.
Let b = g(y°(0)). Then 3°(0) also solves

myinf (%)

subject to g(y) < V' (2.3.27)

Thus, for various values of #, we can determine optimal solutions for problems such as
(2.3.27). If b’ = b for specific Lagrange multiplier 6, we then say that problem (2.3.25)

has been solved.
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2.3.11 Optimal inventory position using the (S-1,S) policy

Following ideas from |Shebrooke| (1968)), [(Caglar et al.| (2004) and Muckstadt (2005)),
we construct an example that illustrates how to determine the optimal inventory position
S, when following the (S — 1, .5) policy.

Suppose a company manages an item at multiple service centers in a two-echelon

setting. The inventory policy for all locations is the (S — 1, S) policy. Hence, an order is
placed for replenishment on an external source whenever fulfilling a customer’s demand
depletes the SVC’s stock by one. The target is to choose stock levels that minimise
expected number of all outstanding backorders under the constraint of investment in
inventory.
Let b denote the budget threshold on expected value of inventory on hand; V' is the set of
SVC locations, h, is the unit holding cost for the item in SVC v, S, represents the item
stock level for SVC v, E[N,] is the steady state expected quantity in replenishment to
SVC v, and B, (.S,) is the expected value of outstanding backorders at a random time for
SVC v.

We state the optimisation problem as

min )y ., B,(S,)

subject to

Y vev T[Sy — E[N,] 4+ B, (S,)] £,8,=0,1,--- (2.3.28)

To solve problem (2.3.28)), we utilise the method of Lagrangian relaxation. We fix
the inventory position at the plant and let 6, denote the multiplier linked to the budget

constraint. The relaxed problem is

min Y " By(S,) + > (Bu[ho(Ss — E[N,] + B,(S,)) — b)) (2.3.29)

veV veV

subjectto S, =0,1,2,---
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— min [(1+ 0,h0) By(Sy) + 0uhuSy] — (60 Y o EIN,] + 6,0)

S veV veV
— GZV 0,[ho E[N,] + 0] + ; G [(1+0uh0) Bu(S0) + 0uhuS)]

Thus, the multiplier 6,, causes the resulting relaxed optimisation problem to be
separable by location. The problem that needs be solved has the same form for each
location, so we temporarily drop the subscript for location. Hence, the optimisation

problem is reduced to

— 6[hE[N] + b + min [(1+ 6h)B(S) + 0hS] (2.3.30)

For given values of 6 , 0[hE[N] + b] can be treated as a constant. Thus the problem

is further reduced to

(min (1+0h)B(S) + 6hS (2.3.31)

Let
f(S) = (1+40h)B(S)+ 60hS

f(S) is convex because B(S) has been shown to be discretely strictly convex. Define

Af(S) = f(S+1) = f(9)
— (1+ 6h){B(S + 1) — B(S)} + 0h

Since previously we established that

B(S+1)—B(S)=—(1—) _ P{N =s})

5<8

Af(S)=—(1+0h)(1-> P{N=5})+0h (2.3.32)

5<S

Since f(.5) is convex, our optimal stock level,for a given 6, will be smallest nonneg-
ative integer, S*, that gives

Af(S) =0
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which is, the minimum value that gives

(1+6h)(1 =) P{N =5}) < 6h (2.3.33)
s<S
or
1
P{N =35} > (2.3.34)
2 30

S* clearly depends on 6. Let

CO) =Y hulSu(6) = EIN] + Bu(S,(6.))] (2.3.35)

veV

The aim is to determine a value of 6, for each v such that C'(#") is equal to b approximately.
For each v, each value of 6 gives a set of feasible stock levels, inventory cost, and minimum

number of expected outstanding backorders.

1 1
1+61h 1+65h

- < m , S*(01) < S*(02) < --- < S*(,,). To determine S*(6), find the smallest

Suppose for each location v, we have 6, > 6y > --- > 6,,. Since < <

non negative integer value of .S which gives

_ 1
Y P{N=5}> T (2.3.36)

5<S

Hence to find S*(0;), i € [1, M], we utilise

> P{N=5}

5<S*(0;—1)

as an initial point for our computation. Since this value has already been computed for
the determination of S*(6; — 1), the computational effort needed to find S*(6;) might be
significantly reduced.

There exists a 6 > 0 such that

P{N =0} =

1+ 60h
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, Or
1 1

H(m”)

Let 00y = . (+ 1). If 6 = Oy, then S* (Gae) = 0V v.

h \ P{N=0}
2.3.12 Determining inventory levels with lateral transshipment

Lateral Transshipment (LT) is the movement of inventory between facilities on the
same echelon. LT is permitted to occur only among facilities in same pool. A pool is a
collection of SVCs that satisfy a pooling criterion. A pooling criterion could be based
on distance, geographical location, storage capacity, etc. In study, our pooling criterion
is geographical and is such that the collection of all SVCs in a geopolitical zone forms a
pool.

Let W be the set of pools, we add the pool subscript to our previous notations and also
introduce some new notations

I, = Probability of satisfying demand at SVC v in pool w from on-hand stock at the
SvC

T is the steady state expected lateral transshipment level at SVC v in pool w.

T, = Probability of satisfying demand at SVC v in pool w by LT from another SVC in
the same pool

B,,, = Probability of backordering demand at SVC v in pool w
B,, = Probability of backordering demand at pool w

Demand in this system must be fulfilled either from on-hand stock, lateral resupply
or backorder. Thus

]vw + va + va =1 (2337)

It is obvious that if S,,, = 0, then I, = 0
To show modelling ideas, we assume that there are w pools and all the service centers in
same pool are identical, |Lee| (1987 and Muckstadt (2005). Hence we assume that SVC
demand processes at all SVCs in pool w are Poisson processes with identical demand
rate, A\, and have same stock levels .S,,,.

Also I, Tiy, and B,,, are identical for all service centers. We also assume that plant

to SVC replenishment time for SVCs in the pool are idd exponential random variables
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with mean L . I, also gives the fraction of time a SVC has positive stock. Thus, the

fraction of time the SVC stock is zero or negative is
1- jvw = va + va

There are 1w SVCs in pool w, thus, pool w’s demand process is a Poisson process and it’s
rate is A, = W\,,,. Furthermore, the total plant demand processes are Poisson processes
withrate A\g = ) WA,

Let N,,, and N,, be the steady state number of items in replenishment to service center

v in pool w and pool w, respectively. |Lee| (1987) showed that the I,,,, is approximated by

Spw—1

L= Y_ P[Ny, =53] (2.3.38)

since S, = S for all service centers in pool w.

The probability that a pool’s demand arrival will not be satisfied from on-hand
pool stock is the probability the pool’s total number of units on order is equal to or
greater than the total pool stock. However, this probability is P[N,, > wS]. Therefore
B, = P[N,, > wS], because we assumed instantaneous transshipment between SVCs
within same pool. Since B, and I,,, can be determined, we can also determine 7},
for a pool. We have T,,, = 1 — (I, + Byy). According to [Lee| (1987), expected value
of lateral transshipments corresponding to a SVC per unit time (7,,,) is Mowlow and
WAy T for the entire pool. Lee showed that the total expected number of backorders
at pool w is

Bw - Z (§ B vaw)P{Nw = §} + w/\vavw (2339)

S=WSyw+1

and the backorder level at the plant is given by
By= Y (5—80)P{N, = s} (2.3.40)

The first term of equation (2.3.39)) gives the expected backorder quantity at pool w which

has not been satisfied by the plant. The second term gives the expected value of items
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in resupply for lateral transshipments. Lee| (1987) showed that these approximations are
accurate for high service levels.
For this system we could choose to minimise the total costs which comprises of plant

holding cost, SVC holding cost and SVC backorder cost.

Crotar = h(So+ > 1Sw) +D Y Bu+q Y T, (2.3.41)

weW weW weW

where h is the per unit holding cost, p is the per unit backorder cost, and q is the LT cost
per unit item. The first, second and third terms represent all inventory holding costs, all

backorder costs and all LT costs respectively for the system.

2.3.13 Facility location model

The facility location model seeks to minimise set-up costs for SVCs or facilities,
and transportation costs from SVC to customers, while determining the facilities to
open and optimal customer assignment to opened facilities, |Daskin| (1995)). The model
considered here is called the uncapacitated fixed charge location model. Some very
important features of this facility location problem considered are: each facility has a
fixed opening cost, the facilities are assumed to be have infinite capacity, a customer
can be assigned to one and only one SVC. We remove the subscript for pool in this
formulation. Daskin|(1995) gives a detailed treatment of facility location models. The
facility location component of our model is similar to the model presented below, (Daskin

(1995) p.250).

min » ( foXo+ ) Aqudw> (2.3.42)

veV uceU

Subject to:

> vey Yuw = 1, foreach ,u € U (2.3.43)
Y < X, foreachu e Ujv € V (2.3.44)
X, € {0, 1}for eachyy € V (2.3.45)
Yo € {0, 1}or each,u € U (2.3.46)

where, f,, A\, and d,, are set up costs for SVC v, demand from customer u, and cost
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of transportation from customer u to SVC v, respectively. X, = 1 if a SVC is set up at
location v, 0 otherwise, and Y,,, = 1 if customer u is assigned to SVC v, 0 otherwise.

The objective (2.3.42) is to find the minimum sum of the fixed location costs and
transportation costs. The assignment constraint (2.3.43) states that each customer’s
demand should be assigned to one and only one SVC. Constraints (2.3.44)) require that
demand assignments can be made only to a candidate location that has an open SVC and
for which the resulting distance from customer is less than d,,,,. Finally, (2.3.43)), and
(2.3.46)) are constraints on nonnegativity and integrality.

This problem is solved by making use of heuristic algorithms or Lagrangian method.
The heuristic algorithms consist of the ADD and the DROP algorithms. The ADD
algorithm follows a greedy procedure to add facilities to the solution until the addition of
a facility decreases the cost no further. While the DROP algorithm opens all candidate
facilities and the greedy procedure proceeds to drop facilities from the solution till
dropping a facility can no longer decrease the cost. In this study, we explored our
models’ properties using the Lagrangian approach, so we lay emphasis on the Lagrange
relaxation method for the uncapacitated fixed charge facility location problem.

To begin the Lagrange procedure, constraint (2.3.43)) is relaxed and the corresponding

Lagrange multiplier is 7,. The following Lagrange dual problem is obtained

maxmin ZV fuX, + Z; %Z(](Audw — 7u)Yuw + ZU T (2.3.47)
Subject to:
Y < X, foreachyu e Ujv € V (2.3.48)
Xow € {0, 1} or each,v € V (2.3.49)
Y. € {0, 1}for each,u € U (2.3.50)

Solving the problem consists of three steps which are: determining the solution of
the Lagrange relaxed problem for fixed multiplier values 7, conversion of the relaxed
solution to a primal feasible solution, and then updating the Lagrange multipliers.

The starting point is to minimise for fixed values of . if \,dy, — 7, > 0,
Y, can be set to 0. If \,d,, — m, < 0, Y., can be set to the maximum feasible value.

Recall that Y,,, < X,,. Now we compute A, = f, + > ., min(0, \yd,,, — 7). We set
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X, = 1, the Lagrangian objective will change by A, foreach v. If A, < 0 setting X, = 1
will cause cost decrease; else we set X, = 0.
Thus for given values of m we can find optimal values for the facility location variables

X, and allocation variables Y, using the following two-step algorithm:

1. For each candidate facility, compute A, = f, + > ., min(0, \yduy — 7).

Set

1, ifA, <0
Xy

0, otherwise.

2. Set
1, if X, =1and \,dy, — 7, <0

0, otherwise.

Using this two step algorithm, the evaluation of for any values of m, will
give a lower bound to the problem (2.3.42). The subgradient optimisation procedure is
used to find the values of 7, that maximise this bound.

The solution derived with the algorithm presented above may not satisfy some of the
constraints relaxed. Particularly, it is likely some demand may not be assigned (Y, = 0)
and some others are assigned to two or more facilities (>, ., Y., > 2). However, we
can find a primal feasible solution by locating facilities at locations for which X, = 1 and
assigning demands to the nearest facility opened. The primal objective function obtained
from this set of locations and demand allocations will provide us with the solution’s
upper bound. Clearly, the smallest of such values over all iterations of the Lagrangian is
the best solution to use.

Daskin| (1995) showed that of the Add algorithm, Drop algorithm and the Lagrange

method, only the Lagrange method gave optimal solutions.

2.3.14 Two-echelon inventory model with service consideration

The two-echelon inventory with service constraints (response time requirement) is
presented. Caglar et al.| (2004) considered this model. The model presented does not
have lateral transshipments. Also the subscript w is dropped because there is no pool.

The model has a plant at the top echelon and a finite number of SVCs.
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min Z hyI, + holy (2.3.51)

veV
Subject to:
0<S, <C,, foreachyv € V (2.3.52)
0< S5y <G (2.3.53)
Wt, < 7,foreachy € V (2.3.54)

where, W, is the response time at a SVC. The objective (2.3.5T) is to find the minimum
sum of the plant inventory holding costs and inventory holding costs at all SVCs. Backo-

rders at the plant are considered internal to the system hence they do not attract a monetary

cost. Constraints (2.3.52)) and (2.3.53)) state that the SVCs, pools and plant stock levels

cannot exceed the storage capacity available. The service (response) time constraints
(2.3.54) require that expected response time must not be more than the required level.

Using Little’s law Wt, = ~—P4——, (2.3.54) can be written as s~—4%—— < 7 or
uwet Mutuv wet Mutuv

B, <7t ZueU A Yo [Caglar et al.| (2004) showed that the plant backorder level B, and

plant inventory level [, are

So—1

By = E[No] = ) [1 = Fy(s)]

S=0

[0 — So - E[No] + BO

— Sy~ E[No] + BN — S [1 — Fo(s)]
= Z_ F(](S)

Caglar et al.|(2004) also obtained the facility backorder level B, and facility inventory

level I, to be:

Sy—1

Bv = E[Nv} - Z[l _Fv<s>]

S§=0

I, =S, — E[N,]| + B,
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The objective function of this problem can be rewritten as

minz ho[Sy — E[Ny] + By + ho[lp — Z E[N,]]

veV veV

Thus the problem can be rewritten as

min » " hy[Sy — E[N,] + By] + holly — > E[N,]] (2.3.55)
veV veV
Subject to:
0<S, <C,, foreachyv € V (2.3.56)
0 <5 <Gy (2.3.57)
By, <7) e MY, foreachy € V (2.3.58)

Caglar et al.| (2004) utilised a Lagrange relaxation algorithm to solve the problem.
The constraint (2.3.58)) is relaxed to get the following relaxed problem with Lagrange

multiplier 6, > 0

> h[Sy+ B+ hollo= D> EINJ + Y 6,[By—7Y AYw] (2359

veV veV veV uelU

Subject to:

0<S, <C,, foreachyv € V (2.3.60)
0< S, < Cy (2.3.61)

A lower bound on (2.3.55)) is obtained by solving (2.3.59). [Caglar ef al.|(2004)) solved
(2.3.59) by enumerating all feasible values of Sy and S,,.

The work by |Caglar et al.| (2004) is useful to this research because our model has
similar two echelon structure with service considerations. It is important to state that the
incorporation of LT into the model of Caglar et al.|(2004) has not been considered. This

presents the major difference between our work and theirs.
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2.3.15 Two-echelon inventory-location model

This model was considered by Mak and Shen (2009). They merge ideas from the
uncapacitated fixed charge facility location problem and the model by Caglar ez al. (2004).

The model is as presented:

min Z (f,,Xv + hyly, + py By + Z )\uYuvduv) + holy (2.3.62)

veV uelU
Subject to:

> wey Yuw = 1, foreach ,u € U (2.3.63)

Yoo < aypX,, foreachyu € Ujv € V (2.3.64)

S, < C,, foreachv € V (2.3.65)

So < Gy (2.3.66)

Wt, < 7,for each,u € V (2.3.67)

S, > 0,integer, for each,v € V' (2.3.68)

Sp >0 (2.3.69)

X, € {0, 1}for eachyy € V (2.3.70)

Y. € {0, 1}for each,u € U (2.3.71)

The objective (2.3.62) is to find the minimum sum of the fixed location costs, plant
inventory holding costs, SVC inventory holding costs, backorder costs at SVCs, lateral
transshipment costs at SVCs and transportation costs. Backorders at the plant are consid-
ered internal to the system hence they do not attract a monetary cost. Constraint (2.3.63)
states that assignment of all demand from a customer should be made to one and only
one SVC. The constraints (2.3.64) require that assignment of demand to any candidate
location must not be initiated unless it is open and its distance from customer is less than

dpmaz- The constraints (2.3.63]) and (2.3.66)) state that the SVC and plant base stock levels

cannot be greater than the capacity available for storage. The response time requirement

ensure that expected response time must not exceed the required level. Finally,

(2.3.69), (2.3.69),(2.3.70),and (2.3.71)) are nonnegativity and integrality constraints.

This model does not consider lateral transshipment and the effect of pooling; this is
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the major difference between the model by Mak and Shen (2009) and our model. Mak
and Shen (2009) utilised the results obtained by [Caglar et al.| (2004) for steady state

expected inventory and backorder levels at SVCs and at the plant .

So—1

By = E[No] = > _[1 = Fy(s)]

Iy = Sy — E[No] + By
Sy—1

B, = E[N,] = Y _[1 = Fy(s)]

S=0

I, =S, — E[N,] + B,

They utilised a Lagrangian based algorithm to solve the problem. [Riaz (2013)
considered a similar problem to that of Mak and Shen (2009). The slight variation is
that customer assignment was made based on customer’s preference. It is important to
state that the incorporation of LT into the model of Mak and Shen| (2009) has not been

considered. This presents the major difference between our work and theirs.
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Chapter 3
METHODOLOGY

3.0 Introduction

In this chapter, the incorporation of Lateral Transshipments (LTs) into two-echelon
systems with response time requirement and the objective of cost minimisation is con-
sidered. Firstly, a general description of the system is presented after which different
model formulations depicting the system in different settings are presented. The different
model formulations presented in this chapter are: two-echelon inventory model with
Response Time Requirement (RTR) and Lateral Transshipment (LT), joint inventory lo-
cation two-echelon inventory model with RTR and LT, model with reliable locations and
model with stochastic demand. For each model, the steady state distribution of orders
in replenishment and the expected levels in steady state for on-hand inventory, LT and
backorder are presented. Furthermore, the system is decomposed and some properties

of the models are highlighted.

3.1 Mathematical model description
3.1.1 Background

Allowable transition of inventory among locations in same level of an inventory
system is known as LT. The use of LT has not been studied for two-echelon systems that
jointly consider facility and inventory decisions with response time requirements. For a
system that permits LT, in a case of stock-out at one facility, a demand can be satisfied by
means of a stock transfer from another facility. The challenge that comes with LTs lies in
deciding where and when a stock movement is beneficial. LTs may result in a reduction
in the immediate shortage risk at the location receiving transshipment, but it increases
the future risk at the location sending transshipment. Therefore, LT policies should seek

to balance these conflicting risks and determine when transshipment cost is dominated
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by the expected transshipment benefit. The suitability of a particular LT policy often
depends on the characteristics of the inventory system in which it is used.

Alsoitis common practice to see companies manage decisions on storage and distribu-
tion independently, this is partly as a result of the complexities that arise from combining
them. In addition, tactical decisions involving stocking and operational decisions involv-
ing distribution are usually considered independently of the strategic decisions involving
facility location and network design. It has been shown that making facility location de-
cisions independent of inventory consideration can lead to supply chain designs that are
suboptimal, Daskin et al.| (2002), Shen et al. (2003), Candas and Kutanoglu (2007) and
Mak and Shen|(2009). Nonetheless, the fusion of facility location,inventory management
and distribution decisions still remains a complex mathematical modelling task, espe-
cially with the consideration of response time requirements. Attempting to incorporate
LT into such joint two-echelon systems will result in much more complex models.

In this thesis, we incorporate LT into a two-echelon service parts supply chain with
response time requirement. We require that the response time for a customer order must

not exceed a given threshold.

3.1.2 System description and notations

The supply chain system considered in this study comprises of a plant at the upper
echelon, a set of possible SVC locations at the lower echelon in addition to a set of
customers (demand nodes). We assume that each customer’s demand node is also a
possible SVC location, thus, the set of possible SVC locations V' and the set of customers
U are equivalent sets. This two echelon service parts system operates in the following

manner:

1. The items are manufactured and held at the plant to satisfy Service Centre (SVC)
demands. The plant resupplies the SVC within a SVC specific replenishment lead

time. The items in each SVC are identical.

2. The SVCs keep inventory to satisfy orders from customers. Each customer is
assigned to exactly one SVC, and customers’ order process at their assigned SVC is
Poisson. The assignment of a customer depends on a customer’s distance to a SVC
and is taken care of by an assignment constraint in our model formulation. We do

not consider the case of a customer’s preference of one SVC to another. Orders
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10.

11.

placed by different customers are independent, hence the demand processes at the

various SVCs are independent Poisson processes.

. The plant and all SVCs have limited capacity for holding inventory and a continuous

review (S — 1,5) policy is used to manage replenishment at the SVC. These
items are characteristically costly for numerous service parts systems, capacity

constraints can be interpreted as budget constraints.

. When a customer order arrives at the SVC, the SVC sends a single unit of the item

from its inventory on hand to the customer (if there is no stockout) and immediately

places a replenishment request with the plant.

. If the SVC has zero or negative inventory level, the customer’s request will be

satisfied instantly by lateral transshipment from pooled neighbouring SVCs which

have stock on hand.

. If none of the pooled neighbouring SVCs have stock on hand, demand is backo-

rdered until they are satisfied.

. Lateral transshipment is assumed to be instantaneous

. When a SVC replenishment request arrives the plant, the plant sends one unit of the

item from its inventory on hand to the SVC (if there is no stockout), and instantly

places an order for a single unit to be produced.

. If the plant inventory level is zero, the demand at the plant is backordered till they

are satisfied.

Finished goods produced by the plant are used to satisfy backorders or are stored
as plant inventory. It is assumed that the plant possesses a single production line
with exponential service rate. The plant’s demand process is Poisson since, each
SVC faces an aggregation of Poisson customer demand arrivals and also places
orders for replenishment in a one-to-one manner. This then means that the plant

production line has the properties of a Markovian queue.

All demands at the SVCs, replenishment orders at the plant, transshipment and

backorder requests are processed in a First-Come,First-Served (#'C'F'S) manner.
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12. Demand arrivals at the SVC are fulfilled through any one of the following: stock

on hand, lateral transshipment or backorder.

We aim to simultaneously determine the optimal number of SVCs, customers assign-
ment to opened SVCs, inventory levels at SVCs, the lateral transshipment levels at the

SVCs and inventory levels at the plant.

The costs involved in this study are

1. The cost incurred as a result of opening the SVC known as fixed location cost.

2. The costs incurred as a result of keeping on hand inventory at the SVC and at the

plant. This is known as holding costs.

3. The costs incurred when demand at a SVC is backordered. This is known as

backorder costs.

4. Lateral transshipment costs at SVCs (cost incurred when demand is met via lateral

transshipment).

To begin, we introduce the following notations:

Sets

U represents the set of customers. We considered three data sets comprising of 37 nodes,
109 nodes and 181 nodes. The number of nodes represents the size of U for each of the
three data sets.

V represents the set of candidate SVC locations. The geographical location of each node
is considered a possible location for setting up a SVC. This is taken care of by the location
variable defined below. Consequently, the number of nodes represents the size of V for
each of the three data sets.

W represents the set of pools. In this study, we used a geographical pooling criterion.

All SVCs in a geopolitical zone form a pool

Parameters
fuw is the fixed opening cost for SVC v in pool w
h. s the per unit holding cost of each unit of inventory at SVC v in pool w per unit time

hg is the per unit holding cost of each unit of inventory at the plant per unit time
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Duw 18 the per unit cost of backorder per unit inventory for each unit of time

Guw 18 the LT cost per unit inventory

dypw is the distance of customer u from SVC v in pool w. This is determined by the
Haversine rule using the longitudes and latitudes of different nodes from the data sets.
du 18 the transportation cost from SVC v in pool w to customer . This is obtained by
multiplying d.,,, by 107!

A, 1s customer u’s demand rate

Avw 18 the SVC demand rate of a SVC in pool w demand rate = |
Aw is pool w’s demand rate = ) 1, Advw = D pcr D ower MuYuvw

veV Tvw

Ao is the plant demand rate (= Y, ci Aw) = Dowew Dover 2ouer MuYuvw

1 is the plant order processing rate

)\’U,Y’M’UUJ

uelU

p is the plant utilisation rate (= %0)

T = response time requirement

v, is the exact lead time from plant to pool w for any w € W

dpmaz 1S the Maximum allowable distance between a customer and its assigned SVC
Qe = 1 if the distance from customer u to candidate SVC location v in pool w is not
greater than d,,,,, O otherwise

Cw 18 the capacity of SVC v in pool w, this is the same for all SVCs in pool w

C, = wC,, is the total space available for storage at pool w, where w is the number of
SVCs in pool w

() is the total space available for storage space at the plant

Binary decision variables

Xy = 1ifa SVCis located at v in pool w, 0 otherwise

Yuvw = 1if customer u’s demand is assigned to SVC v in pool w

Other decision variables

Sww 18 the base stock level required at SVC v in pool w, this is uniform for all SVCs in
pool w

Sw = WS, is the total base stock level required at pool w. w represents the number of
SVCs in pool w.

Sp is the base stock level required at the plant.
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Service variables

1,,,, is the expected level for on-hand inventory at SVC v in pool w in steady state

I, = Y ,cy Luow is the expected level for on-hand inventory at pool w in steady state
B, is the expected level of backorder at SVC v in pool w in steady state

B, is the expected level of backorder at pool w in steady state

T’ is the expected LT level at SVC v in pool w in steady state. It describes the expected
number of items from SVC v used to satisfy LT requests.

Wt is the expected time of response at SVC v in pool w

1y is the expected plant inventory level in steady state

By is the expected plant backorder in steady state

Ny (t) is the number of replenishment orders placed by SVC v in pool w which are yet
to arrive at time t

N, is the steady state expected number of replenishment orders placed by SVC v in pool
w which are yet to arrive

N, () is the number of replenishment orders placed by pool w which are yet to arrive at
time t.

N, is the steady state expected number of replenishment orders placed by pool w which
are yet to arrive.

No(t) is the number of replenishment orders placed by the plant that are yet to arrive by
time t.

Ny is the steady state expected number of replenishment orders placed by the plant that

are yet to arrive by time.

3.1.3 Major assumptions

Two key assumptions are made concerning the model. Firstly, we assume that lateral
transshipment times are negligible. The lead time is the time taken for orders placed at the
plant to arrive at the SVC. The lead time comprises of the stochastic waiting time (delay)
at the plant and the deterministic plant to SVC transportation time. The consequence of
the assumption is that the deterministic plant to SVC transportation time is identical for
all SVCs in a pool. Secondly, we assumed that SVC basestock level is identical for all

SVCs in a pool.
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3.2 Two-echelon inventory model with response time re-
quirement and lateral transshipment (model I)

We now present a two-echelon inventory model with RTR and LT. To the best of our
knowledge, researchers have not considered the incorporation of LT into two-echelon
inventory systems with RTR, a plant at the top echelon, and a finite number of SVCs
at the lower echelon. This model considers inventory decisions alone without location
decisions. We use results from this model to formulate our other models. We call the

model, Model I, and present it below.

min > Y (hvwlow + PowBow + GowTow) + holo (3.2.1)

weW veV

Subject to:

0<Spw <Cyy, foreachv € V (3.2.2)
0<S8, <wlC,,, foreachw € W (3.2.3)
0 <5 < Cy (3.2.4)
Wty < T, foreachv € V (3.2.5)
Svw = 0,integer, foreachv € V (3.2.6)
So =0 (3.2.7)

The objective (3.2.1)) is to find minimum sum of the following: fixed location costs,
holding costs for inventory at plant and SVCs, backorder costs at SVCs and LT costs
at SVCs. Constraints (3.2.2), (3.2.3) and (3.2.4) state that base stock level for SVCs,
pools and plant cannot be greater than the storage capacity available. The constraints on
response time (3.2.5)) require that expected response time be no greater than the required

level. Finally, (3.2.6) and (3.2.7) are nonnegativity constraints.

Each SVC has the properties of a queuing system, |[Kruse (1981)), in which customer
orders can be regarded as the items in the system. Then the amount of items in the system
awaiting service represents the backorder level. Also, the time spent by the item in the

system is known as the response time. By using Little’s law (Little, |1961), |Kruse| (198 1))
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derived the waiting time and showed that at a SVC, the expected response is given by

B’UU)
Wtopw = — 3.2.8
. ( )
Hence,
Bow < TApw (3.2.9)

Two very important results for all models considered in this study are the result
showing the relationship between on-hand inventory, LT and backorder in steady state
and the result showing their steady state expected levels. We now present steady state

expected levels for on-hand inventory, LT and backorder for Model I.

3.2.1 Plant inventory level for model I

In this system each customer’s demand follow a Poisson process, hence the demand
at each SVC being a merger of various independent Poisson processes also is a Poisson
process (Tijms| (2003) p. 6). Also, each SVC operates an order-up-to or (S-1,S) policy
implying that a replenishment request is placed on the plant by a SVC immediately a
demand occurs. Hence, the demand process at the plant is a merger of independent
Poisson processes, thus, it is also a Poisson process. The plant possesses a single
production line and with plant service rate being exponential, the plant possesses the
characteristics of a queuing system with demands considered as arrivals to the system
and items in replenishment are considered to be in service in the queuing system.

Graves| (1985)) developed an exact distribution for inventory levels in a two-echelon
system. However, this exact model happened to be computationally burdensome for
the large problems encountered in practice. Thus, most authors use approximations to
reduce the computational burden. A very useful approximation method is the multi
echelon technique for repairable item control (METRIC), [Shebrooke| (1968)). It applies
Palm’s theorem (Palm| (1938))) and approximates the distribution for inventory level and
backorder level using a Poisson distribution with corresponding mean. METRIC assumes
that successive lead times from the plant to SVCs are independent. These lead times
actually depend on the situation of plant inventory situation, so they are not independent.
Axsater| (1990) showed that the METRIC approximation will generally perform well

when the SVC demand is low compared to the total system. B, denotes the expected
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plant backorder level and A\ represents total plant demand. By Little’s law , Little| (1961)
Wty = f—g, where Wt is the average waiting time at the plant.

Following METRIC approximation, |Caglar et al. (2004) established the standard
expression for inventory and backorder expressions. We state their result and also give a

new proof that follows from the model properties.

Proposition 3.2.1.1 Caglar ez al.| (2004)

In steady state the expected plant inventory level is given by

Iy = So — E[Ny] + By, (3.2.10)

Proof. Demand arrival at SVCs follow a Poisson hence each SVC faces an aggregation of
Poisson demand. Since each SVC is controlled with the (S-1,S) policy, the plant’s arrival
process is Poisson. Thus the plant exhibits the property of a queue with Markov arrival
process. The steady state levels for a Markovian queue imply that steady state inflow
is equal to steady state outflow and gives rise to the balance equation. The steady state
expected number of items in transit from the plant’s production line to its storage facility,
that is steady state inflow to the plant’s storage facility is denoted by E[Ny] . From
definition Sy > I and Sy — I represents steady state expected number of plant demand
satisfied from available inventory. While B, represents steady state expected number
of plant demand satisfied from backorder. Therefore steady state expected outflow is

So — Iy + By. Hence the balance equation of this system is

E[No] = So — I + By (3.2.11)

Thus

Iy = Sy — E[No| + Bo. (3.2.12)
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From (Caglar et al.|(2004) p. 10)

So—1
By = E[No] = Y _[1 = Fy(s)], (3.2.13)
s=0
and
So—1
Iy=) Fy(s) (3.2.14)
s=0
where

Fy(s) =Y P{No=m}

The expected plant inventory level and plant backorder level can be obtained easily for
different manufacturing queue systems via substituting steady state probability into the
above formulas, Mak and Shen| (2009). For example, we have the steady state probability

for the number of customers in the M /M /k queue as follows:

fo— n k -1 .
(E:nﬁi)g%%—g%¥%;7> s lf,n/::O,

P{No=n} = 2= P{N, =0}, if,1 <n<k
%P{No =0}, otherwise

For our system, the plant arrival process is Poisson and the plant possesses a single
production line. This in addition to queue discipline of first come first serve imply that
our system behaves as the M/M/1 queue; that is a queue with Poisson arrivals, expo-
nential service times and a single server. For this queue, the result by Buzacott and
Shanthikumar| (1993) gives the optimal policy at the plant, showing the expected plant
inventory level and the expected plant backorder level. We state their result and give a

well detailed proof which shows the behaviour of the system at the plant.

Proposition 3.2.1.2 (Buzacott and Shanthikumar| (1993))

p50+1
1—p

1. The steady state plant backorder level is given by By =
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2. The steady state plant on hand inventory is given by Iy = Sy — 1%ﬁ)(l — p)

1
pSo+t

3. The expected plant response time is given by Wy = 3T p)

Proof. The number of demand at the plant waiting for service when the plant inventory

level is nonpositive is known as the plant’s backorder level. The expected plant backorder

level is given by (3.2.13)):

where

54



Therefore
pS()+1
By = (3.2.15)
1—p
_ P So
In =Sy — ——(1—p) (3.2.16)
1—p
Applying Little’s law, the expected plant response time is obtained:
By p>ot!
Wty= — = —/——— (3.2.17)
T X N(l-p)
O]

3.2.2 Inventory level at pool for model I

In this subsection, we treat each pool as a single facility. Demand faced by each
pool is satisfied either through pool inventory on hand or through backorders. Backorder
describes a scenario in which demand not fulfilled instantly, wait in queue until they are
satisfied. We assume that base stock level S,,, is identical for all SVCs in same pool.
Hence the pool stock level is given by S,, = wS,,,, where w represents the number of
SVCs in pool w. Following the (S-1,S) policy implies that if s units are in replenishment
to pool w, then the inventory on hand is given by wS,,, — s. The (S-1,S) ensures that
the sum of the number of items in replenishment to a facility and its inventory level
is equal to its base stock level. That is [,, = wS,, — s iff NV,, = s. This implies that

P{I, = WSy, —s}isequalto P{N,, = s}. In steady state the distribution of outstanding
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orders in pool w is P{N,, = s}. By definition, it then follows that in steady state the

expected pool inventory level for pool w is:

WS w1
Iy= Y (S~ s)P{N, = s}
s=0
or
WS puw—1
I, = Fu(s) (3.2.18)
s=0
where
Fu(s) =)  P{N,=m}
m=0
The following proposition establishes the expected pool backorder level in steady
state.
Proposition 3.2.2.1

In steady state the expected pool backorder level is

WSyw—1

By = ALy — 1S+ Y Fuls) (3.2.19)
s=0

Proof. The number of demand at a pool waiting in queue for service when the pool’s
inventory level is nonpositive is known as the pool’s backorder level. By the model
assumptions, backorders can only occur in Pool w if all SVCs in that pool are out of

stock. Thus in steady state the expected backorder level for each pool is

WSyw—1
By =E[Ny = Y [1=Fu(s)] (3.2.20)
s=0
WSyw—1 WSyw—1
=E[N,J— Y 1+ ) Fuls)
s=0 s=0
WSyw—1

= E[N,] = Sy + > Fuls)
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At any given time t, the total outstanding orders from pool w comprises of:

(1) the backorders at the plant due to Pool w at time ¢ — «,, (these orders will not reach
pool w before t because they had a backorder status at time ¢ — «,, and as such were not
shipped immediately) and

(2) the size of new order arrivals during the interval (t — v, t).

Suppose the plant processes orders using a First Come First Served (FCFS) approach,
we can split plant backorders randomly |Graves| (1985). This suggests that the probability
that a plant backorder emanates from a particular pool is proportional to the pool demand
size. In steady state the expected value of the plant backorder due to pool w for each
w € W, is given by (’/\\—’g)BO. The expected value of new arrivals in a time interval of

length «,, is A, v, . Therefore in steady state the expected value of N, is given by:

A A So+1

E[N.] = 5 Bo+ Auay = A_/1) + Awtr
0 07 P (3.2.21)

== AwWO + /\waw == )\w(WO + aw) = )\wLw

Where L,, = Wy + «,, is the plant to pool lead time. Hence
WSy —1
By =AoLy — S+ Y Fuls) (3.2.22)
s=0

O

In this study, the pooling criterion is geopolitical. That is, a pool is the collection of

all SVCs in a particular geopolitical zone. Consequently, we have six pools in Nigeria.
3.2.3 Inventory level at SVCs for model I

Demand faced at a SVC is satisfied instantly through on hand inventory if the inventory

level is positive. When the inventory level is zero, the demand arrival at the SVC
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is satisfied instantly via LT from any other available SVC in same pool without zero
inventory level. This is a consequence of negligible LT times. In the event that all SVCs
in the pool have zero inventory level, then the demand is backordered. So SVC demand
is satisfied from any one of inventory on hand, LT, and backorder.

We begin by establishing a result which shows the relationship between steady ex-
pected levels for inventory, LT and backorder at the SVC. This result builds on work done

by Caglar et al.| (2004)) and Buzacott and Shanthikumar (1993)).

Proposition 3.2.3.1

1. In steady state the expected SVC inventory level at each SV C, in pool w is

Iyw = Svw — E[Nyw] + Tow + Buw (3.2.23)

2. In steady state the expected SVC backorder level at each SV C,, in pool w is

Byw = Ljw — Sow + E[Nyw| — Tow (3.2.24)

3. In steady state the expected lateral transshipment level at each SV C), in pool w is

va - [vw - va + [va] - va (3225)
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Svw—1
va = (va - S)P{va = S}
s=0
Svw—1 Svw—1
=S ¥ P{Nyy=s}— Y sP{N,, =s}
s=0 5=0
= S P{Nyw = s} = Y P{Ny, = s})
s=0 SZS'uw
= (O sP(Nuw =3} = D sP{Now=s})
s=0 s=Syw
= Sou(l= Y P{Nyy=5}) = (O _sP{Nyy=s}— Y sP{Ny, =s})
S:SUw s=0 SZva
= Sow = Sow P, P{Nuw = s} = (E[Nyw| = > sP{Ny, = s})
stvw S:va
= Sow = B[Ny + Y _ (s = Suu) P{Nyy = s}
$s=Syw
WSyw
= Suw = E[Nyw] + Y (s = Suw) P{Nyy, = s}
s=Svw
+ ) (s = 0Syu)P{ Ny = s}
S=wWSyw+1
Therefore
va - va E[va] + va + va
Where
WSyw
va = Z (5 va>P{Nmu - 5}
s=Syw
and
D> (s = Spw) P{Now = s}
S=wWSyw+1

The next proposition gives the optimal policy for a given SVC.
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Proposition 3.2.3.2

1. In steady state the expected SVC backorder level at each SVC is

WSyw—1
>\U’LU — S
Buw = Al + 3 ( ;0 F,(s) —wSUw> (3.2.26)

2. In steady state the expected lateral transshipment level at each SVC is

SUU7_1

Avw
T’Uw = Z Fvw(s) - va - >\U
s=0 w

WSyw—1
( > Fw(s)—wsw> (3.2.27)
s=0

Proof. By definition, in steady state the expected SVC inventory level is given by
Ly = (Sow — 8)P{ Ny, = s} (3.2.28)

By the model assumptions, backorders can only occur if all SVCs in a pool are out
of stock. Recall, S, = wS,,, is the total base stock level of the Pool w. Then in steady

state the expected SVC backorder level at each SVC in pool w is

By, = <)\Uw) B, (3.2.29)




hence

)\ WSyw—1
Bow = MowLuy + 22 < Fo(s) — wsvw) (3.2.30)

note that,

va + va + va - va - E[va]

The size of outstanding orders for a SVC at a given point in time t, is the sum of:

(1) the backorders at the plant due to the SVC at time ¢ — «,, (this will not get to the SVC
before t) and
(2) the amount of new order arrivals to the SVC during the interval (¢ — cv,, t).

The splitting of Poisson processes imply that the probability a backorder emanates
from a particular SVC is proportional to demand size at the SVC. In steady state the
expected SVC backorder level is given by A/{J—éﬂj}_ﬁ’o

The expected value of new orders that arrive during a time interval with length o, is

Aow@iy - Therefore in steady state, the expected value of N,,, is given by:

E[Nyw] = AvwlLu (3.2.31)

By 32.25)
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Therefore,

Svw—1 >\ WSyw—1
va :Avaw + Z Fvw(s) - va - /\vaw - ( Uw) ( Fw(s) - wsyw)

s=0 )\w s=0
/\ WSyw—1 Svw—1
=5 2 LR = > L= Fuls)] (3.2.32)
s=0 s=0
Svw—1

= Fvw(s) - va - <>;\Uw< i_ Fw(S) - wSUw))

w s=0

]

Following METRIC method (Shebrooke| (1968)), the distributions for outstanding

orders at the pool and SVCs are

P[N, =m] = (3.2.33)

and
i e*)‘wLw()\wLw)m

m)!

Fy(s) = (3.2.34)

m=0
In the above, L, is the expected replenishment lead time which is made up of expected

plant response time and delivery lead time.

pSO+1
L, =W, v = ————— w 3.2.35
0+« NI =) + « ( )
Similarly for SVCs
—Avw L )\ L m
P[Nyy =m] = & ( o w) (3.2.36)
m!
and

> e—Aquw ()\vaw)m

Fou(s) = m!

m=0

(3.2.37)

Note that L, here is same as that for the pool; this is because it is assumed that lateral

transshipment between SVCs in a pool is instantaneous.
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3.2.4 Model I properties

In this subsection we highlight properties of Model I. We begin by substituting the

expressions for /., By, and T,,, into our model to obtain the following reformulation

Svw—1
min Z Z {(hvw + C]vw) Z Fvw(s) - vasvw + )‘vw (pvaw)
s=0

weW veV

+(pvw - QUw))\ﬂ ( i_ Fw(S) - vaw) } + hO[SO - L(1 - pSO)]

Au 5=0 L=p
(3.2.38)
Subject to
Sow < Cyy, foreach,v € V (3.2.39)
Sw < C,, = wC,,, foreachw € W (3.2.40)
So < Gy (3.2.41)
Ly — 7] Ao < Avy w&il[l — Fu(s)] (3.2.42)
T 5=0
Svw, Sw, S0 > 0 integer , foreach v € V' (3.2.43)
(3.2.44)

3.2.4.1 Upper bound for plant basestock level

The existence of capacity constraint in addition to our assumption of low system
demand, indicate that the stock levels required to ensure the satisfaction of a desired
service level lies within a small range which has the capacity as its upper bound. The
storage capacity is usually small because the item considered in this study is slow moving
(has low demand rate). Thus, storing a large number of item might lead to obsolescence
and higher holding costs/Candas and Kutanoglu| (2007), Mak and Shen| (2009) and
Riaz (2013) exploited similar properties to develop solution algorithms for determining
optimal stocking levels. In this study we used 10 as our capacity.

For this model, this property implies that a number of problems can be solved when

the basestock level at the plant is fixed to each feasible value. The solution with the
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least cost is the original problem’s optimal solution. For fixed values of Sy, all terms
dependent on just Sy are treated as constants. Thus the only complicating constraint we

have is the response time constraint.

3.2.5 Lagrange relaxation for model I

The reformulation of Model I does not give any obvious clue on the properties
or structure of the model. Thus there is need to utilise a decomposition technique to
decompose the model. We make use of Lagrange relaxation. For fixed values of S, we
relax the service (response time) constraints (3.2.42)) in the restricted problem in order
to decompose the model and exploit the problem structure. Using +,,, to denote the

corresponding dual multiplier for (3.2.42)), we obtain the Lagrangian Dual problem as:

Svw—1 WSyw—1
maxmin » > { (Pow + Gow) Y Fou(8) = GuwSow + (Pow = ow + Yow) Fy(s)
5=0

7=0
weW veV

Avw .
_)\_<pvw — Quw + 7vw)wsvw + ((pvw + 7vw>Lw - 7vw7>>\vw} (3245)

Subject to

0< S <Cy foreachy e V,w e W (3.2.46)
Syw > 0 integer , for each,v € V,w € W (3.2.47)

Lagrange relaxation decomposes the problem by SVCs and associated pools. The

decomposed problem is

Sypw—1 BSpw—1
. vw Avw vw
nmax min [(hvw + qvw)Fvw(s) - QUw] + (pvw — Qow t ’wa)— (Fw(S) - 1)
¥>0 S pr >\w s—0
+ ((Pyz + Yow) L — YouwT)) Avw (3.2.48)
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Subject to

0< S <Cyy foreachw e V.we W (3.2.49)

Sww > 0integer , for each,v € V,w € W (3.2.50)

Next, we show that our objective function is strictly discretely convex with respect to
Syw and Sy, = WSy,,. Let K (Syuw, Sy ) represent the terms depending entirely on S,,, and
Sw- K (Syw, Sw) is strictly discretely convex if the determinant of its Hessian matrix is
positive definite. The Hessian matrix of K (S, Sy ) is the matrix of second differences

of K(Syw, Sw) -

va -1 Sul -1

A
K(va; Sw) == (hvw+qvw) Z Fvw(S)_QUvaw+(pvw_va+7vw))\_( Z (Fw<5>_1))
(3.2.51)

s=0 s=0

ASUwK(va7 Sw) = K(va + 1a Sw) - K(vaa Sw) = (h'vw + qvw)Fvw(va) — Qyw

(3.2.52)
AL K (Spws Sw) = D K(Svw + 1, 5u) — Dsy K (Svw, Sw)
= (hvw + QUw)(Fvw(va + 1) - Fvw(va))
Syw+1 Svw
= (hvw +QUw)( Z P{va = 3} - Z P{va = 3})
m=0 m=0
= (how + quw) P{Nyw = Spw + 1} (3.2.53)
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ASMK(vaa Sw) = K(va, Sw + 1) - K<va7 Sw)

VW

= (pmv — Gow T /71)10))\— (Fw(Sw) — 1)

Aw
)\'U’LU
= —(Pow — Gow + Yow) 3 [1—F,(S,)] <0 (3.2.54)
Ag,, (Agy, K(Syw, Sw)) =0 (3.2.55)

A%MK(SUHM Sw) - ASw[((svwa Sw + 1) - ASMK(vaa Sw)

— (o — o+ o) 2 (F (S 4 1) — FulS.))

Aw
/\vw
=+ (pvw — Quw + va> )\ (—1 + 1)
A Sw+1 Sw
= (pvw — GQuw +f71;w) )\Uw(z P[Nw = m] — ZP[NU) = m})
>\vw
- (pvw — Quw + '71;11)) \ (P[Nw - Sw + 1]) >0 (3256)

The Hessian Matrix of the problem Hess(Syy, Sy) is

AL K(Syw.Su)  Dg (As. K(Syw. S
PPN (10 {CYAE S RSO (E R R RO
Asmu (ASUJK(va7 SU))) A%U,K(S'U’w? Sw)

Since A% K (Spw, Sw) > 0, A% K(Syw, Sw) > 0 and det(Hess(Syw, Sw)) > 0, we

say that the problem is strictly discretely convex with respect to .S,,, and S,,.

An important property of convex problems is that every local minimum is a global

minimum (Winston| (2004) p. 632).
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3.2.6 Characteristics of the optimal solution for model 1

We decomposed the model by means of Lagrange relaxation. The Lagrangian dual
problem gives a lower bound solution to the model’s optimal solution. Consequently the
SVC lower bound solution may not satisfy the service constraint. Having exploited the
properties of Model I by means of Lagrange relaxation, we now proceed to determine
the nature of our optimal solution. Here, our optimal solution is the basestock level that
gives minimum cost and also satisfies the service or response time constraint.

Let the terms of the objective function of the primal problem (3.2.38) that depend on

Sy be given as:

Syw—1 WSy —1

H(va) - (hvw + QUw) Z Fvw(s) - Cvava + (pvw - Chnu)%( (FU)(S) - 1))
(3.2.58)

s=0 s=0

To determine optimal S,,, without response time constraint, let AH(.S,,,) be the
change in the objective function value at the increase of base stock level from S,,, to

Syw + 1. Then

AH(Syy) =H(Spw + 1) — H(Syw)

\ WSyw+w—1
- (hvw + QUw)Fvw(va) — Quw + (pvw - (va) )\Uw ( Z (Fw(s) - 1))

S=WSyw

(3.2.59)

(va + pvw))\vw E?j%%jf_l[l - Fw(s)] + )\quw

AH(S’UU)) = Fvw<5vw) - \ (h T4 )

(3.2.60)

The optimal .S,,, without response time constraint can be found as follows:

Fix Sy = Cj and follow the following steps to determine a local minimum cost for

S(] == CO-
1. f AH(C,y,) < 0then S,,, = C,,, remains.

2. f AH(C,,) > 0 select Sy, as the largest integer such that AH(S,,,) < 0.
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Decrease the value of Sy by one and follow the steps above. To get all local minimum
solutions, the process is repeated until Sj reaches zero. We pick the minimum of all local
solutions, this becomes the global minimum solution.

The optimal .S,,, with response time constraint can be found as follows:

Fix Sy = Cj and follow the following steps to determine a local minimum cost for

S(] - CO-

L If AH(Cyy) < 0and [Ly — 7] Ay < 322 305071 — Fy(s)] then Sy = Cloy

remains.

2. If AH(Cyy) > 0 select Sy, as the smallest integer such that AH(S,,,) > 0 and
WSyw—
(L — 7] A < 322 30 Y1 = Fy(s)]

s=0

Decrease the value of Sy by one and follow the steps above. To get all local minimum
solutions, the process is repeated until Sy reaches zero. We pick the minimum of all local
solutions, this becomes the global minimum solution.

Remark: We utilise Lagrange relaxation to decompose the model so as to enable us
highlight the model properties. We showed that the decomposed problem is convex. The
solution of the dual problem is only a lower bound. We proceed to show that Model I is

convex.

Proposition 3.2.6.1

Model I is a convex optimisation problem.

Proof. We showed convexity of the dual problem for fixed multiplier values. Thus, the
dual objective is convex for ~,,, = 0. Also the dual objective is equal to the primal
objective when +,,, = 0. Hence the objective function of the model is convex. The

inequality constraint in Model I which is our response time constraint depends only on

the variable S,, = w.S,,, and can be written as

1 Sw—1
— 2 (Fuls) =1) <0

Aw

Ss=

Ly, —T1+
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Let

where AJ(S,,) is the first difference of J(S,,).

A2J(S,) = AJ(Sy + 1) — AT(Sw)

= FulSu+1) = FalSu)

w

1 Sw+1 Sw
- (Z P[N,, =m] =) _ P[N, :m]>

m

(P[Ny =Sy +1]) >0

1
=
where A%J(S,,) is the second difference of J(S,). The objective function and the

inequality constraint are convex. Thus, Model I is a convex optimisation problem. [

The optimal solution to Model I can be obtained using GAMS software, thus there is

no urgency to immediately develop any specialised heuristics for solving it.

3.3 Joint location and two echelon inventory model with
response time requirement and lateral transship-
ment (model II)

Here we introduce facility location decisions into Model I and present the joint
location-inventory model with service consideration and lateral transshipment. This

model extends the model of [Mak and Shen| (2009) by incorporating LT. The model’s
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basic formulation is presented below.

min Z Z (waXvw + hvwlvw + pvaUw + vava + Z AuYuvwduvw> + hOIO

weW veV uel
(3.3.1)
Subject to:
> Vi = 1, for each u € U (3.3.2)
veV
Yoiow < QuowXow, foreach,u € U,v € V (3.3.3)
Sow < Chy, foreach,v € V (3.3.4)
Sw < wCyy,, foreach,w € W (3.3.5)
So < Cy (3.3.6)
Wty < 1,for each,v € V (3.3.7)
Swvw = 0,integer, for each,v € V/ (3.3.8)
Sop >0 (3.3.9)
Xow € {0, 1}or each,v € V (3.3.10)
Yivw € {0, 1}for each,u € U (3.3.11)

The objective (3.3.1) is to find the minimum sum of the fixed location costs, plant
inventory holding costs, SVC inventory holding costs, backorder costs at SVCs, LT costs
at SVCs and transportation costs. We treat backorders at the plant as internal to the
system hence they do not have monetary cost. Constraint states that all demand
should be assigned to SVCs. Constraints (3.3.3) states that demand cannot be assigned
to any candidate location unless there is an open SVC whose resulting distance from
customer is less than d,,,,. Constraints (3.3.4), (3.3.5) and (3.3.6) state that base stock
levels for SVCs, pools and plant cannot be greater than the storage capacity available.
The response time or service time constraints require that expected response time
(the time interval between when an order arrives and when it is shipped) cannot be greater

than the required level. Finally, (3.3.8), (3.3.9),(3.3.10),and (3.3.11)) are nonnegativity

and integer constraints.

In this model, our response time requirement is that average time between order
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arrival and shipping must not be greater than the service guarantee in the customer
contract. This is taken care of by (3.3.7). In this two-echelon system, stock-outs at a
SVC are satisfied instantly when any of its pooled SVCs have inventory on hand. In a
situation in which all SVCs in a pool are also out of stock, response time would be short
if the plant has on-hand inventory and ships instantly. A longer response time would
likely be observed if there is a stock-out situation at the plant. It is appropriate to impose
a response time requirement because we are mainly concerned with the design of an
inventory system for spare parts.

Each SVC possesses properties of a queuing system Kruse| (1981) in which the
customer orders can be regarded as the items in the system. Then the quantity of items in
the system awaiting service (in line or in queue) represents the backorder level, while, the
time the item spends in the system is known as the service time. |Kruse|(1981) derived

the waiting time and with Little’s law showed that the expected SVC response time is

given by
Wty = Bow (3.3.12)
D DR o
We may replace (3.3.7)) with the following:
Buw <7 Y AuYuw (3.3.13)
uelU

3.3.1 Inventory levels for model II

Obtaining the steady state levels for Model II follows the procedure used for Model 1.
Model II differs from Model I with the inclusion of location decisions such as customer
assignment. However, this difference only has notable effect at the level of SVCs. Thus,
for Model II, in steady state, the plant and pool expected levels remain same as Model 1.
The only difference comes from the inclusion of the customer assignment variable which
changes the definition of Ay, A\, and \,,. For Model II, \,, = Z%U A Yuows Ay =
Y vev Avw and Ao = > - Ay, Thus, the following hold for Model II

Sp+1
1-p

1. The steady state plant backorder level is given by By = £

2. The steady state plant on hand inventory is given by Iy = Sy — 1Tpp(l — p)

pSO+1

3. The expected plant response time is given by W, = N(=p)
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4. in steady state the expected pool inventory level for pool w is:

WSyw—1
Iy= Y (S, —s)P{N, = s}
s=0
or
WSyw—1
I, = Fu(s)

=0

»

5. In steady state the expected pool backorder level is
ﬁlsmu_l

Buy =MoLy — S+ > Fuls)
s=0

For Model 11, the following gives the on-hand inventory level, LT level and backorder
level for SVCs.

Proposition 3.3.1.1
The optimal SVC policy for Model II is:

1. In steady state the expected SVC inventory level at each SVC in pool w is

va_l

Ly =Y _ (Spw — 5)P{Ny, = s} (3.3.14)

s=0

2. In steady state the expected SVC backorder level at each SVC in pool w is

A’lLY'UA}”Ll) wS’”w_l
Bow =Y AYuvwLu + 2oue Yo ( D Fuls) - wsvw> (3.3.15)

A
uel w s=0

where

Fu(s)=>_ P{N,=m}

3. In steady state the expected lateral transshipment level at each SVC in pool w is
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Fu(s) — wsvw) (3.3.16)

where
Fou(s) = Z P{N,, = m}
m=0
Also,
MwLw()\ [, ym
PNy —m] = € (m?, w) (3.3.17)
and
S SAwlw AwLlw)™
Fols) = 3 vl ( ' ) (3.3.18)
— m!
Similarly
=S wew MiYuvw L M Yoow D)™
P[N'uw = m] = ‘ - (TEUEU ) (3319)
and
S _Zu UAuYu'quw )\UY’M’UU}LW m
Fou(s) = ST ey i (320

m!
m=0

3.3.2 Model II reformulation

With the results shown above, Model 1I is reformulated as:

Spw—1
min Z Z {fvvaw + (hvw + va> Z Fvw(s) - vava

weW veV s=0

+ 3 ((PowLow + duvw) MY

uelU

/\uYuvw Pt R
(s — ) T ( Fals) - wsw> } + holSy = TE=(1= %)
w s=0

(3.3.21)
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Subject to

Z Yuow = 1,foreach ,u € U (3.3.22)
veV

Yiow < QupwXow, foreachyu € Ujv € V (3.3.23)
Sow < Cyy, foreachv € V (3.3.24)
Sw < C,, = wC,,, foreachw € W (3.3.25)
So < Cy (3.3.26)

Sy—1
=) Ao Zonep 2 tove > - Fulo) (3327)
Sow, Sw, So = 0 integer , for eachv € V (3.3.28)
Xypw € {0, 1}for each,v € V (3.3.29)
Yiww € {0, 1}for each,u € U (3.3.30)
Remark 3.3.2.1

A close inspection reveals that Model 1I is a Mixed Integer Nonlinear Programming
Problem (MINLP). This follows because the objective function has terms that are depen-
dent on F},,, and F’, which are both sums of nonlinear random variables, our response time
constraint is dependent on F),, while S,,,, X,.,, and Y,,,,, are integer variables.

We proceed to examine the properties of Model II.

3.3.3 Distribution of outstanding orders in pools and service centers
for model 11

From previous subsections, it is obvious that before inventory levels can be evaluated,

the distribution of outstanding number of orders N,, and N, at the pool and SVCs

have to be determined. In this section, a close look is taken at different approximation

schemes in the literature of multi-echelon inventory management which are used to

find the distribution of outstanding number of orders NV,, and N, in Pools and SVCs

respectively.

3.3.3.1 METRIC distribution for model 11

The earliest approximation method is the multi echelon technique for repairable item

control (METRIC), Shebrooke| (1968)). It utilises Palm’s theorem Palm| (1938) and also
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approximates outstanding order distribution by means of a Poisson distribution and its
corresponding mean. Using METRIC method distributions are constructed for V,, and
Ny, with matching means. Using the METRIC-like method, NN, is approximated with a

Poisson random variable.

For model 11,
AwLw )\ L m
PN, =m] = & ( v w) (3.3.31)
m)!
and
i €>\wLw(>\wLw)m
Fu(s) =) - (3.3.32)

m=0
In the above, L, is the expected replenishment lead time which is made up of expected

plant response time and delivery lead time:

Ly =Wy+ oy = % + Qy (3.3.33)
Similarly
PNy = m] = e Zuev AuYuvwLw (T%ueU A Yoww L)™ (3.3.34)
and
o) *L e Suer MYuowlu (S0 ALYy Ly)™ (3.3.35)

!
0 m:

In the above, ZueU Ay Yuvw is the total demand assigned to SVC v in pool w . Note
that L,, here is same as that for the pool; this is because it is assumed that lateral
transshipment between SVCs in a pool is instantaneous. Thus the lateral transshipment
times are negligible.

METRIC discards the dependence between successive replenishment times from
Plant to SVC. These replenishment times depend on the plant inventory, hence they are
not independent. Axsater (1990) showed that in general METRIC works for systems
that have low SVC demand compared to overall demand. The METRIC approximation
performs well in such instances mainly due to the fact that successive replenishment times

to a SVC is reduced as a result of many other order arrivals at the plant from other SVCs.
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Caglar et al.| (2004) show that METRIC is a very good approximation for our system.

This is because the demand occurring at each SVC is low compared to total demand.
3.3.3.2 Exact distribution for model 11

Graves| (1985) proposed an exact probabilistic algorithm to obtain the steady state
distribution of N,,,. Finding the exact steady state distribution begins from finding the
distribution of plant total outstanding orders, this distribution is then disaggregated into
the distributions of total outstanding order at each pool which is further disaggregated
into the distributions of SVC total outstanding orders at each SVC. The total outstanding

orders at the plant is derived from |Graves| (1985) as:

No = By + Dy (3.3.36)

Where Dy is the total number of new arrivals at all pools during backorder duration.

In order to get the distribution of N, convolve the distribution of By and D).
S0
P(Ny = s9) =Y _P(By =1)P(Dy = sy — )
1=0

Assuming an M/M/1 repair system, the distribution of By is given by Buzacott and

Shanthikumar (1993):

P(By=n)=(1-p)p"™ n=01,23,.. (3.3.37)
Zw W)\w )\ SO*Z
P(DOZSO_Z): ‘ - (Z’UJEW w) 7l:071a273>"'a80:07172’37"‘
(so — D!

(3.3.38)

S0 ZwEW )\U,(Z A )so—l

( 0 30) ;( p)p (80 — l)'
S0 [ )\w so—l

P(No — 30) — (1 _ p)pSerwew Aw Z P (ZwGW ) (3339)

(so —I)!

Recall that s A = Ao
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Once P(Ny = s0) is found , it is disaggregated into the distributions of outstanding
orders for each pool.The plant fulfils backorder by FCFES principle, hence the binomial

distribution is used for the conditional distribution P[N,, = s,,|Ng = $¢]-

= s Ao |7 Aw |70
i £ ()]

S0=Sw

PN, = s,] = i (8“) F—w} h {1 - i—ﬂ o P[Ny = 5] (3.3.40)

P[N,, = s, is further disaggregated for each pool into distributions of outstanding

orders for each SVC. Applying same argument as above yields

> )\UY’U/UU) S )\UYUUU) ST S
ol = 55 () [ lin] ™ [} Do

Syw )\w )\w

Sw=Svw

P[Ny = 4] (3.3.41)

Graves| (1985) established that the exact representation is computationally burden-
some for large problems encountered in practice, so we stick to the METRIC representa-

tion.
3.3.4 Waiting time probability

Our response time constraint is a major component of this study. Thus, it is necessary
to know the probability that a customer’s waiting time lies in a particular interval so as to
set realistic response time requirements. By the model assumptions, demand satisfaction
from inventory on-hand or lateral transshipment is instantaneous,hence a customer will
have to wait only if his demand is backordered, that is if the pool has zero inventory.
The next proposition gives the probability that a customer’s waiting time lies within an

interval.
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Proposition 3.3.4.1

In this two-echelon environment, the probability that the waiting time of a customer

in pool w lies within the interval (0, ¢] is given by

Sw—1
w L. — )™ L.\m
P(O < Wty < t) _ Z (B—Aw(Lw—t) ()\w( ;ﬂ t)) . GA/wL/w%) (3.3.42)

m=0

where, Wt,, is the stochastic pool waiting time.

Proof. In steady state, the replenishment request initiated by a pool demand arrival will
satisfy the demand of the S,,- th future customer. The time ¢g, until the S, -th future
customer arrives is Erlang/ Gamma distributed with shape parameter S, and rate \,, (the
cdf of the sum of iid exp()\) random variable is an Erlang/Gamma random variable). If
the S,, — th customer has to wait, the relationship between his waiting time and g, is

given by

fs, + Wty = Ly, (3.3.43)

where L,, = Wy + «, is stochastic as a result of the properties of 1.

Thus
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! |

Lm=Sw m: m=Sw m.

[ o m Sw—l m
_ |30 et Quka)™ NN s, k) ]
= ' —

Lm=0 m: m=0 :

00 m Sw—l .

- Z e Mw(lw=t) A (Lw = )" _ Z et (Lw—t) (Aw(Lw — 1))

m=0 m' m=0 m'

Sw—1 Sw—1

_ oLy PAwlew)™ (Lt Ao (Lo — 1))

Sw—1 . -
= (e)‘w(Lwt) Ao(Lw — 1)) — e Awlw O‘wLw)— >

m=0 m! m!

3.3.5 Upper bound for plant basestock level

The following model characteristic gives an upper bound to plant’s maximum stock
level, it describes the model when backorder cost is set to zero and the response time

threshold never gets less than the plant to pool lead times.

Proposition 3.3.5.1

Given that the objective function (3.3.21]) is strictly increasing in Sy, if py,, = 0, L =

Wmazx

< 7, an upper bound of .S exists, which is denoted by

Wmazx

Wo + max,ew {a, }, and L
Sgee.

Sgr =min{Sy >0: L <7} (3.3.44)

Wmazx

Proof. Our response time constraint (3.3.27) can also be written as can also be written

as

S = Fuls)]

w

(L, — 7] <

The requirement L < 7 suggest that for any value of S,,, , LHS of (3.3.27) will

Wmax
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be nonpositive. By definition, 0 < F,(s) < 1 and 1 — F,(s) > 0, therefore at

S(?)naa:’ Z;ﬁ%wil [1=Fu(s)]

™ > 0 always hold, implying that the service constraint is always

satisfied at S;"*. Thus, the only constraints on S, are the response time constraint
and requirement of nonnegativity, hence the feasibility of S;*** holds with respect to
other decision variables. A consequence of our objective function being strictly
monotone increasing in Sy, is that any solution having S, > SJ** will obviously be
suboptimal. [

The model characteristic shown above, the existence of capacity constraint, in addition
to the assumption of Poisson arrivals, suggest that the stock levels to be considered in
order to attain a given service level lies within a small range which has plant capacity
as its upper bound. Similar properties have also been used by [Candas and Kutanoglu
(2007) and Mak and Shen| (2009) to develop solution algorithms.

For this model, the capacity constraint on plant implies a number of problems can
be solved by fixing S to each feasible value. The best cost from these solutions give
the optimal solution of the initial problem. For fixed values of S, we treat all terms

depending on S, alone as constants.
3.3.6 Lagrange relaxation for model II

At first view, Model II looks complex and it is difficult to determine its properties.
Thus, in order to explore the model properties, there is a need to utilise a technique
which can decompose the model and also take care of its complicating constraints. In
this study, we make use of the technique of Lagrange relaxation to decompose our
models. The complicating constraints in Model II are the assignment constraint and the
response time constraints. We decide to relax our assignment constraints (3.3.22]) and the
response time constraints in the reduced problem. Using 7, and 6,,, to denote
the corresponding dual multipliers for constraints (3.3.22)) and respectively, the

Lagrangian Dual problem is obtained:
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Svw—1
i 3 2 i ) 3 )~

weW veV

AV
ZueU Z Fw(s)

+ (pvw — Quw + 9vw>

/\w s=0
ZUGU )\uYuvw N
- T(pvw — Quw + e'uw)wsvw + (p'uw + evw)Lw Z /\uYuvw
uelU
+ Z uvw va)Auvw - 7Tu) Yuvw} + Z U (3345)
uelU uelU
Subject to
Yiow < QuowXow, foreachyu € Uy € V (3.3.46)
Sow < CowXpw, foreachv € V,w e W (3.3.47)
So < Cy (3.3.48)
Xow € {0, 1}, for each,v € V (3.3.49)
Yiww € {0,1}, for eachu € U (3.3.50)
Sows Sw, So > 0 integer , for each,v € V,w € W (3.3.51)

If X,, = 0, the solution is trivial. Thus, we fix all the X,, tobe 1 Vv € V, the

problem further reduces to

Svw—1
Onzlg,)f(r I?,lsn Z Z {fvw hvw + QUw> Z Fvw(s) - QUvaw
weW veV s=0
WSyw—1
ZUGU )\uYuvw -
+ (pvw — Quw + 9vw) —/\w ; Fw<8)
)\uYuvw
- ELEU)\—(p — GQvw + evw)wsvw + pvw + evw
+ Z uvw va >\uvw - 7ru) Yuvw} + Z Ty
uelU uelU
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Subject to

Yuow < Qupw, for each,u € U (3.3.53)
0< S <O,y foreach,v € V (3.3.54)
Yiuw € {0, 1} for each,u € U (3.3.55)
Swe integer for each,v € V (3.3.56)

Lagrange relaxation decomposes the problem by SVC and pool. For specific values of
Lagrange multipliers, the model decomposes by candidate SVC locations and associated

pools into subproblems of the following form:

Svw—1 Z Y WSyw—1
r%}isn<hvw + qvw) Z Fvw(s) - qvavw + (pvw — Gvw + va)% Z Fw(s)
’ s=0 w s=0
ZueU )\uYuvw R
- T(pvw — GQuw + evw)wsvw + (pvw + evw)Lw Z )\uYuvw
uelU
) ((uww = o)A = ) Yo (3.3.57)
uelU
Subject to
Yuow < 1, for each,u € U (3.3.58)
0< S <O,y foreach,v € V (3.3.59)
Yiuw € {0,1} for each,u € U (3.3.60)
Swe integer for each,v € V (3.3.61)

The solution of the above subproblem depends on the fact that SVCs have limited
storage capacity. Hence the feasible values of S, lies between 0 and C),,, in the optimal
solution. Therefore our solution approach to is to fix S,,, and S,, to each feasible value.
Furthermore, the assignment variable Y,,,,, is relaxed and allowed to be continuous in
the interval [0, 1]. This continuous relaxation gives a lower bound solution when using
Lagrangian relaxation.

With the values of S,,, and S, fixed, our continuous subproblem is then reduced to

a nonlinear problem of the form:
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ming(Y -~ AuYuvw) + D PuvwYaww (3.3.62)

uelU uelU

subjectto 0 < Yy < 1 (3.3.63)

where

Svw—1
g <Z )\uYuvw> :<hvw + QUw) Fvw (57 Z /\uYuvw>

uelU s=0 uelU

Zu )\uYuvw P!
+ (pvw — Gvw + evw)EU/\— Z Fw(S, )\w)
w s=0

(3.3.62)) has similar structure as a continuous (0,1) knapsack problem.

e Zug[j AuYuvw Lo (Z

m!

)\uYuvw I_Jw)m

uelU

B

Fvw(sa Z )\uYuvw) =

uelU

3
o

@l

6_)\wLw ()\wLw)m
m!

Fw(sa )\w) =

3
]
[e=)

Tuwow :(pvw + va)Lw/\u + (duvw - ngT)Au
Ay

)\w (pvw — Quw + evw)wsvw

_fn—u

let ZueU A Yuvw = a. The solution of the subproblem is dependent on the properties of

g(a) which are discussed below.

We begin by establishing convexity of the subproblem.

Proposition 3.3.6.1

g(a) is convex in @ when a > 0.
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Proof. ZueU M Yuow = a is the total demand assigned to the SVC with base-stock level

Svw, and A, is the total demand at pool w.

vafl Swfl
a
g(a) = (hvw + qvw) E Fvw(s> + (va — Gow + evw))\_ E Fw(s)
s=0 W s=0

Taking the derivatives of g(a) with respect to a

Spw 1 Sy —1
d X d Z 7vw Fw(s)
- = (how + Quuw —Fow v — Qo - Oy ) =2=0
7-9(a) = (hvw + duw) 2 (5) + (Pow — Gow + Ouw) .
where
e (aLy,)™
Fou(s) = —
m=0 ’
ig(a> (h + q )va—l i i (_L e aLyw (aL )m + efame(a/)mfle)
da vw VW i) m' w w w
WSyw—1
_vw Fw
+ (pvw — Qow T evw) 5=0 (S)
Aw
S ! - WSy —1
d N Lwe alLow (le 5 s—uw Fu; S
L) = (b o) 5 LT g Ei el
s=0 ’ w
(3.3.64)
d2 L2 (aLw)vaflefaLw
1229 @) = Ut + Go) = >0 3.3.65
R ] (3.3.65)
This establishes the convexity of g(a) with respect to assigned demand. O
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Proposition 3.3.6.2

The subproblem (3.3.62) is a convex optimisation problem.

Proof. Y, cu TuvwYuvw i linear in 3~ . A, Yi. A linear function is both convex an
concave. The result follows from the fact that the sum of convex functions is also a
convex function. L]

From proposition 3.3.6.1 and proposition 3.3.6.2, we can solve our continuous sub-
problem using standard optimisation solvers. Hence, our model can be solved by optimi-
sation solvers. We can obtain the solution to this model using GAMS, hence developing
specialised heuristics for solving our model is not an urgent need at this point.

We go further to highlight other properties of the problem with the following propositions.

Proposition 3.3.6.3

For each SVC satisfying X,,,, = 1, if all customers that satisfy a,,,, = 1 are assigned in
a greedy order, dy,, < doyy < -+ < diw, then the optimal assignment strategy for the

subproblem (3.3.62) has the following properties.
1. if Yy > 0 for some 1 < k < m, then Yy, = 1 forall {1 <u <k —1}

2. One and only one assignment variable Y-, takes on a strictly fractional value.

Proof. Property 1 follows from the order of assignment for customers in an open SVC.

dlvw S d2vw S e S dmvw

Yiuww > 0 implies that all or part of customer k’s demand have been assigned. From
our order of assignment it follows that if Y}, > 0 for some 1 < k£ < m, then Y+, = 1
forall {1 <u<k-—1}.

To prove property two, we recall that the total demand assigned to a SVC is constrained
by base stock level which is also constrained by capacity. This means that the fact that
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a customer falls within d,,,, distance of a SVC does not guarantee it’s assignment to
that SVC. Let D1y, = Ay and Dy = Dj—1yow + Aj, j = 2, - - m be the total demand
assigned to SVC v with the addition of Customer j’s demand. Also let Sj,,, be base
stock level required to satisfy Djy,. If Sjuw < Syw, then Yy, = 1. If Sjup > Spws
S(i—1yww < Syw and there exists Djw, where D(;_ 1), < Djw, < Djyy such that
Sivw = Syw, then Yj,,, > 0. If no such Dj,,, exists, then Yj,,, = 0. Yj,,, > 0,
implies that only a fraction of the customer’s demand is assigned to SVC v. Our order of
assignment implies that a fractional assignment can occur only at the upper boundary of
the base stock level. Therefore there exists the possibility of one fractional assignment.
Suppose that there are two fractional values; Y,/,,, > 0 and Y,»,,, > 0. Sorting them
according to our order gives either of d, /., < dyrpw OF Ao < dyrpw- I dyrpw < Ao
and Y,»,, > 0, then our order of assignment and property 1 imply that Y., = 1. If
Ao < dyrp and Yy, > 0, then Yy»,,, = 1. This also follows from property 1 and our
sorting order. In both cases the number of fractional variables happens to be one, which

is a contradiction. Hence there exists one and only fractional variable. [

In order to find an optimal solution to the reduced subproblem, it is necessary to check
for the existence of an assignment variable that has fractional value. If the existence of
a fractional assignment variable is established, there is a need to determine its optimal

value. The next proposition establishes optimal conditions for such assignment variable.

Proposition 3.3.6.4

A solution such that there is exactly one v* where 1 < u* < m where 0 < Y, < 1is

optimal if the conditions below are satisfied:

r Syw—1 s+1
urow U’w u AuYuvw L
/\* _(hvw + va Z . Z )\ uvw ev
u s= uelU
— 0)
- q+ Z Fou(s, \) (3.3.66)
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Proof. The Lagrangian function of subproblem (3.3.62) is

va(Y, ﬁu, Cu) == Q(Z )\uYuvw> + Z 7,uvaruvw - Z ﬁuYuvw + Z Cu(Yuvw - 1)
uelU uelU uelU uelU
(3.3.67)
Where 3 and ( are the Lagrange multipliers associated with Y,,,,,, > 0 and Y, < 1

respectively.

For subproblem (3.3.62)) KKT conditions are:

de (3/7 Bu; Cu) o dg(ZuGU )\uYuvw) 4 d Z’LLGU ruvauvw d ZuEU ﬁuYuvw

dYu*vw B dYu*vw dYu*vw dYu*vw
+ dzueU Cu(YuUw - 1)
dYu*vw
=0

by chain rule

dg(zue(] )\uYuvw> . dg(ZueU )‘uYuvw> d ZuEU AuYuvw

dYu*vw B d ZuEU )\uYuvw dYu*vw
_ dg(zueU AuYuvw))\ .
d ZuEU )\uYuvw b

In the convexity result, we showed that

Svw—1 — s
45 MYuo v ) 2 S|
Z?jgw_l Fu (8, Aw)

+ (pvw — GQuw + evw) )\
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Therefore,

Spw—1
dLy(Y, Bu, Cu) L N~ Lt s = et AuYavw Lo
W = _(hvw + QUw)Au Z 8! (Z )\uYuvw) € uev
s=0 uelU
( B +6,)A DSy —1
+ Pow Q;\w w )\ Z Fw(S,)\w>+Tuvw_ﬁu+CU:0
w s=0
(3.3.68)
(3.3.68) is the gradient condition.
Spw—1
dL, (Y, By, Cu L st
% — _(hvw + q,UU))Au* Z L')\u* (Z )\uYuvw)Se_ ZuGU )\uYu'quw
u*vw 5—0 S wel
B Spw—1
vw — Yow + Qw /\u* — * *
L qA ) S Ful8) 4 ruww — B3+ =0 (3.3.69)
w s=0
W Yuow = 0, for each,u € 3.
6.Y, 0, fi h U (3.3.70)
uw(Yuow — 1) = 0, for each,u € 3.
Y, 1 0, fi h U (3.3.71)
0 < Yiw <1, foreach,u € U (3.3.72)
w, Cu = 0, for eachu € 3.
Bus Cu > 0, fi h U (3.3.73)

Equations (3.3.70) and (3.3.71)) give the complementary slackness conditions. The

feasibility condition is given by (3.3.72)) and (3.3.73).

If Yoo € (0,1) then by (3:3770) and (3:3.71),5, = ¢, = 0 and (3.3:68) becomes

(3:3.66). The subproblem is convex, thus the KKT solution above is a global minimum.
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3.3.7 Upper bound solution for model 11

The previous section gives the method of finding the lower bound to our problem
for a given Lagrangian multipliers set. A lower bound solution is a system where
service constraints (response time requirement) and constraints on demand assignment
are relaxed. This section exploits our lower bound solution to determine some properties
of the problem’s optimal solution. The decision variable affected by the service constraint
is Syw- So a promising approach to obtain the optimal solution from our lower bound is
to enumerate over all values of S, that satisfy the response time requirement. This is

possible because the feasible range of S, is small. This also follows for Sj.

3.3.8 Determining Sy, S, and S,

In this subsection we determine a means of determining the base stock levels. For
each SVC in this system, we can easily obtain the optimal stock level and it’s associated

cost by the procedure presented below.

Proposition 3.3.8.1

In the unconstrained problem, given any feasible demand assignment and plant stock

level Sy, the optimal stock level at any service center is given by

Spw = min { Sy > 0: Fupy(Sew)

(QUw - pvw) ZuGU /\uYuvw (wsvw + w) - Zgﬁ%jf_l Fw(s)] + /\wQUw

>
)\w<hvw + QUw)

(3.3.74)

Proof. For a given demand allotment, the objective function terms which depend on .S,

are:
Spw—1 WSyw—1
v )\uYuvw - ~
(hmu + QUw) Z Fvw(s) - Q”uvaw + (pvw - QUw)ZUEU/\—( Z Fw(s) - U}va)
s=0 w s=0

(3.3.75)

Let the part of our objective function dependent on S,,, be denoted by:

89



Syw—1

H(va) :(hvw + QUw) Z Fvw<3) - QUvaw

s=0
WSyw—1
2 uer MYuw

+ (p'vw - va)T( ; Fw(s) - UA}va)
Let A(S,,) denote change in the value of the objective if the stock level at SVC v in

pool w is increased from S,,, to S,,, + 1. Then

AH(SUU)) = H(va _I_ 1) - H(va)
= (hvw + quw)Fvw(va) — GQyw

Zu /\uYuvw @Sut ol ~
+ (pvw - QUw) 6U>\ — Z Fw(S) —w

(Gow + Pow) Duer MaYavwltd — 20220V EL(8)] + MoGow
Aw(hvw _I_ QUw)

s=wWSyw

- Fvw(svw> -

(3.3.76)

When A(S,,) < 0, increasing S,,, by 1 will cause a decrease in cost. Also, by
definition F,, (S, ) is monotone increasing in S,,, and lies in the interval [0, 1]. Hence
the unconstrained optimal S,,, can be found as follows: Beginning from the smallest
feasible value of S,,, increase S, by 1 as long as A(S,,,) < 0. O

However, our unconstrained optimal basestock level may be infeasible under service
and capacity constraints. A better option is to use the exact method for determining
basestock levels proposed below. This procedure is different from that of Riaz| (2013)
because our procedure begins from Sy = S while their’s begin at Sy = Cj. Also
their’s does not consider lateral transshipment while the presence of lateral transshipments
and pooling conditions imply that we simultanously determine SVC basestock level and

pool basestock level.
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3.3.9 Algorithm for determining Sy, .5, and S,

An exact method for finding optimal S, is proposed. The algorithm begins at
So = S§'** and for each pool finds all feasible .S, that satisfy and (recall
that Sy, = wS,, < wC,,). Since the feasible range for S,,, is small and .S,,, is identical
for service centers in a pool the model can be solved by enumerating all feasible points
of S,y in the interval [0, C,,,] (fixing the basestock level for one SVC fixes the basestock
level for all SVCs in same pool, thereby fixing the pool basestock level). The problem
is solved for all feasible values of S,,, and S,,. The value that results in the minimum
objective function value gives the local optimal values of .S,,, and .S,, for the initial value
of Sy. However, if no feasible .S, is found for a given value of S, then that instance is
not feasible. Once a local minimum cost solution is found for the initial value of .Sy, .S
is decreased by one and the procedure is repeated. This continues till S, reaches zero or
the solution is infeasible for some Sy. After finding all the local minimum cost solutions,
the minimum is picked, this becomes the global minimum cost for SVC basestock level
of Sy, pool base stock level of .S,,, and plant basestock level of Sy. The optimal solution

in this case comprises of the values of S; and S,,, which give minimum cost

3.3.10 Infeasibility check

A procedure of determining infeasibility is proposed, which is typical of most MINLP
models. The search for a solution is terminated immediately the problem is found to be
infeasible.

For every iteration arising from the Lagrangian relaxation method, a lower bound
of the objective value is obtained. If an instance happens to be feasible, the following

observation shows that a loose upper bound (U By) is available:

Proposition 3.3.10.1

Given a feasible instance, the following gives an upper bound of the objective value:

UBf - Z Z fvw + hOCO ‘|’ Z Z hvwcvw + Z Audmax + QUw(vaw)

weW veVvV weW veV uelU

+ )Y powdwlu (3.3.77)
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Proof. If we have a feasible instance, the first five terms in are obviously upper
bounds of the fixed costs, plant holding costs and SVC holding costs, transportation costs
and transshipment costs. The fifth term is clearly an upper bound of the transshipment
cost. The sixth term is also an upper bound of the SVC backorder costs because for each

veVandeachw € W:

/\wLw Z Z )\uvauvaw - E[va] Z E[va] - [1 - Fvw(s)] = va (3378)

ueU s=0

3.3.11 Properties of the optimal solution for model 11

The following proposition ensures that a demand assignment satisfies the assignment

constraint, that is, a customer’s total demand assignment is to one and only one SVC.

Proposition 3.3.11.1

For the optimal solution of (3.3.21)) for customer u € U, Y, = 1 where v* =
argmingey {dyyp} and V' = {v € V' 1 ayp Xpw = 1}

Proof. For some customer u € U, let v* be an open SVC with the lowest transportation
cost dy,+, among all the open SVCs. The cost associated with this assignment is given

as

Spxw—1 Dy p50+1
hv*w v*w Fv*w - U*wsv*w e v*ww duv*w )\uYuv*w
(arw b ) 3 Forals) = St (B2t it )
s=0
)\uYuv*w “ou !t
+ (pv*w - QU*w) ZUGU ( Z Fw(s) - vaw) (3379)
>\w s=0

Now assume that in the optimal solution, customer u is assigned to open SVC v°.
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The cost of the assignment is

( w T Quow Z F Oy QvaSUOw + <IM&H—1 + Poow O + duvow) )\uYuv*w
Ao(1 = p)

A Yuv WSy —1
+ (Puow — qvow)z“e’]—o ( Z Fo ) (3.3.80)

since vV is the optimal SVC selected

( w T Qo w Z Fvo qUOwSUOw + (IMSOJ’_:L + D0y + duvow) )\uYuv*w
Ao(1 = p)

A Yuv wWSyw—1
+ (pvow - quw)Z:ueU—O ( Z F wSUm)

Sprw—1

pv*wp50+1
< (hv*w + C]v*w) Z Fv*w(s) — qv*wSU*w -+ (m T+ Doy + duv*w) )\uYuv*w
s=0

AYurrw (=
+ (pv*w - qv*w)zzueU— ( Z F 'UAJSUw> (3381)

however for d,«, < dypouw

Syrp—1

S Poruwp™ !
hv*w + Gurw Fv*w(8> - qv*wsv*w + <L + Po*wlay + duv*w) )‘uYuv*w
( ) et Ao(1=p)

Zu A Yuv w Gt ~
+ (pv*w - QU*w)eU— Z F vaw

§ D™ oo ) MY,
< F v va w - 0w Pw uvOw ud uv*w
_( —l—qvo 0 — Gy 0 +()\0<1—p)+p0a + 0>
)\uYuv w Tt
+ (Poow — qvow)—Z“GU)\ - ( E F(s) — vaw> (3.3.82)
w s=0

From (3.3.81)) and (3.3.82) v° =

The next result establishes the convexity of Model II.
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Proposition 3.3.11.2

Model 11 is a convex nonlinear mixed integer problem.

Proof. We showed convexity of the dual problem for fixed multiplier values and contin-
uous assignment variable. Thus, the dual objective is convex when 6,,,, = 0, 7, = 0 and
0 < Yuw <. Also the dual objective is equal to the primal objective when 0,,, = 0,
m, = 0and 0 < Y, <. A nonlinear mixed integer problem is convex if it’s corre-
sponding integer relaxed problem is convex. Hence, the objective function of Model II
is convex.

The complicating constraints for Model II are the response time and assignment
constraints. The response time constraint is an inequality constraint while the assignment
constraint is an equality constraint.

The response time constraint in Model II is same as that of Model I and also depends

only on the variable S,, = wS,,, and can be written as

sw—1
<0

L L
)‘w s=0
Thus the convexity result for the response time constraint of Model I also holds for Model
II.

The equality constraint can be writtenas 1 — >\, Vi = 0. 1 =37 |, Y is the
sum of a linear function and a constant, thus it is affine.

This establishes the convexity of MODEL II [

Justlike Model I, convexity implies that Model II can be solved by convex optimisation
solvers. The solution to Model II can be obtained using GAMS software, thus there is

no urgency to immediately develop any specialised heuristics for solving it.
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3.4 Model with reliable locations (model III)

Here, we present a model which takes into account possible service center failures
which we call Model III. |Chen et al.|(2011) studied a single echelon uncapacitated joint
reliable inventory location model which had negligible lead times and did not consider
lateral transshipments. |[Rui| (2015) considered a capacitated reliable facility location
model. We incorporate ideas from Chen et al.|(2011) and Cohen et al.|(1989) into Model
II to consider reliability of facilities in a two echelon joint location-inventory setting with
response time requirements and LT.

We assume that open SVCs have a uniform failure probability + and that SVC failures
are independent. A SVC failure means that the SVC is unable to provide any service.
Thus, its assigned customers are reassigned to any of the other functioning SVCs with an
assignment strategy.

The system’s reliability follows from the assignment strategy adopted for each level.
Letr (r = 1,...,w) denote a given customer’s assignment level to a SVC in pool w. When
r=1, it is the customer’s primary assignment. If r=2, it is the customer’s first backup
assignment, and so on. If a customer’s level-r assigned SVC failed, the level-(r + 1)
assigned SVC serves the customer as the immediate backup. In this case our assignment
strategy is pool based, that is, customers’ backup SVCs are SVCs in same pool. The
assignment level is determined by the capacity of open SVCs in same pools. We also
assume that each pool has an emergency facility which is not subject to failure and is
used to satisfy pool demand if all SVCs in the pool fail.

Whenever there is a SVC failure, it’s assigned demand is then reassigned to a SVC in
the same pool having sufficient capacity. If all level-r SVCs assigned to a customer fails,
then the customer is assigned to the emergency pool facility and a cost ¢ is incurred. The
probability that a customer gets served from it’s level-r assigned facility is (1 — v)y" 1,
that is, the probability that the customer’s level-r SVC is functional and all it’s lower level
SVCs have failed. The probability that a customer gets served from the emergency SVC
is ?, this is also the probability that all SVCs in pool w have failed.

However, it is vital to note that the level r assignment in this model cannot be
interpreted to mean that there exists r closer opened SVCs. That’s because of the
consideration of capacity constraints. The closest SVC among the ones still functional

may not have sufficient capacity to accommodate new assignments, hence we proceed to
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the succeeding closest SVC and check its available capacity until some SVC satisfies the
capacity constraint.

All demands assigned to a SVC at any level are met through any of the follow-
ing; inventory on-hand, lateral transshipment or backorder, for as long as the SVC is
operational.

The assignment variable for this model is

1, customer u is assigned to,SV C,,,, as a level r assignment
Yoiowr = (3.4.1)

0, otherwise.

Other decision variables and parameters remain same as in the previous section.

In this system, we also assume that the plant is not subject to failure. This in addition
to our assumption that each pool possesses an emergency SVC which is not subject to
failure imply that there will always be inventory on hand and back order at the plant and
pools. Thus, in steady state, the expected plant and pool levels for on-hand inventory and
backorder remain the same as that of Model I with the little difference being the values

of \p and A\, and \,,,. Thus, the following hold for Model III

Sp+1
1—p

1. The steady state plant backorder level is given by By =

2. The steady state plant on hand inventory is given by Iy = Sy — 1%ﬁ)(l — p)

p50+1

3. The expected plant response time is given by Wy = M=)

4. in steady state the expected pool inventory level for pool w is:

WSyw—1
Iy= Y (S, —s)P{N, = s}
s=0
or
WSyw—1
I, = Fu(s)
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5. In steady state the expected pool backorder level is

WSyw—1
By = ALy — 0Sww + Y Fuls)

s=0

where,
>\vw - ZUEU Zf:l Au’yril(l - V)Yuvwra
Aw =D ey Douet Qe Ay (1 =) Yawur
and
)‘0 = ZweW )\W = ZwEW ZUGV >\vw = ZwGW ZUEV ZuEU Z;L’Uzl )\UVT_1<1_7)Y1WU”“'
Here, Ay = > ,c0r Zle Ay (1 — ) Yypwr is the expected demand at SVC v in pool
w.
For Model 111, steady state expected on-hand inventory level, LT level and backorder

level for SVCs are given below.

1. In steady state the expected SVC inventory level at each SVC in w is

Svw—1

Ly =Y _ (Suw— 5)P{Ny, = s} (3.4.2)

s=0

2. In steady state the expected SVC backorder level at SVC v in pool w is

va - Z Z Au’}/r_l(l - V)Yuverw
welr=t e (3.4.3)
ZuGU Zr:l )‘u’yr_l(l - 7>Yuvwr ( - F (S) WS )

+

where

3. In steady state the expected LT level at SVC v in pool w is
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Svw—1
va - Z Fvw(s) - va
s=0

) Z Fy(s) — WSy

s=0

® )‘u 1 11— Yuvwr !
where
Fou(s) =Y P{N,, =m}
m=0
The model is as presented below

Svw—1
min Z Z [fvvaw _I_ (hvw + qU’LU) Z F’U’LU(S) - qU’L,US’Uw

weW veV s=0

+D 0 A = )Y (Pow L + du)

uelU r=1
e M A1 = ) Yy (S . o
+(pvw - va>z Sa Z 71)\ ( ) ( Fw(5> — U)va + Qb/\w’y
w s=0
+ ho [So - ﬁ(l - PSO)] (3.4.5)
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Subject to

ZYWW =1, foreach,u € U,r € {1,2,...,w} (3.4.6)
veV
ZYWW < GypwXow, foreachu e Uv e V,w e W (3.4.7)
r=1
>N AYusur < Sow < Cuy, foreachw € V (3.4.8)
uelU r=1
Sw < C, = wC,,, foreachw € W (3.4.9)
So < Cy (3.4.10)
w|

[Lw - T] Z Z )\u(’y?ﬂ_l)(l - V)Yuvwr

uelU r=1

@ )\u 1 1— Yuvwr Pt
)\w s=0
Svw, 9o > 0 integer , foreachv € V (3.4.12)
Xow € {0, 1}or each,v € V (3.4.13)
Yovwr € {0, 1}Hor each,u € U (3.4.14)
(3.4.17)) can also be written as

>esg L= Fu(s)]

w

[Lw _7_] <

Constraints (3.4.6) states that a customer should be assigned to only one SVC v in
pool w. Constraints require that demand assignments can be made to only open
SVCs which are at a distance of dmax from the customer and that a SVC cannot serve
a customer at more than one level. Constraints (3.4.8) states that the basestock level
at a SVC cannot be less than the sum of all possible demand assignments and cannot
be greater than the capacity. Constraints (3.4.9) and (3.4.10) states that the pool and
plant basestock level cannot exceed their respective capacity. Constraint (3.4.1T)) is the

service constraint. Finally, (3.4.12),(3.4.13),and (3.4.14)) are nonnegativity and integer

constraints. We examine the properties of Model III and give the expected inventory

level in steady state for the case of probabilistic facility failures using the distribution of
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the number of in replenishment orders . The following gives the SVC inventory levels

for Model III
Proposition 3.4.1

1. In steady state the expected SVC inventory level at each SVC v in pool w is

Svw—1

Ly =Y (Sow—5)P{Ny, = s} (3.4.15)

s=0

where

s) = 28: P{Ny, =m
m=0

2. In steady state the expected SVC backorder level at SVC v in pool w is

vw Z Z /\u'y 1 - YuvaWO + Z Z )\u'y Yuvwraw

uelU r=1 uelU r=1

@ >\u 1 11— uvwr P!
n D uer Drei )7\ ( ( Z Fi(s) — Sy

(3.4.16)

3. In steady state, the expected lateral transshipment level at SVC v in pool w is

S'U'Ll)il
va = Fvw(s) SUU’
s=0
o )\u =1 - Yuvwr et
 Duer X ;\Y (1-7) ( Fo(s) _uysvw> (3.4.17)
w s=0

Proof. The proof follows from Model II. The slight difference lies in including the
probability that a customer gets served from it’s level-r assigned facility (1 — )y .

Also for Model III the METRIC distribution imply that
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e 2o Zf:_OI MuFuwur (1) L (ZuEU Z::U:ill )\u uvwr(l B 7)7r71Lw)m
m!

P[Nyy, =m] =

and

e Bve S Yo (o (5, 55 MY (1= 907" )™

Fou(s) =

m!
m=0

Similar to Model 1

Spw—1
L, = (Sow — 8)P{Nyy = s} (3.4.18)

s=0
For the reliability model, expected number of demand assigned to a SVC is given by

Y wer Zf}:l A" H(1 =) Yypwr- Also the splitting of property Poisson processes imply

that

By = (ZuEU Z:jzl )‘uzrlﬂ B V)Yuvwr> B,

therefore

va = Z i )\ufyr_l(l - P)/)Yuverw

uelU r=1
o )\u Tl 1 - Yuvwr et
L 2uet e z 1= < Fo(s) — uvsm> (3.4.19)
w s=0
Similarly,
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E[va] = Z Z )‘U’yr_l(l - 7)Yuvwrw0 + Z Z Au’yr_l(l - V)Yuvwraw (3420)

uelU r=1 uelU r=1

=3 Ay = ) Yavwr L (3.4.21)
uelU r=1
From our previous results for Model I, we showed that

va = E[va] + va - va - va

Therefore,

Svw—1 D _ WSyw—1
- h /\u r=1 ]- - Yuvwr -
va = Fvw(s)_svw_ ZueU ZT:l ;/ ( /Y) ( Z Fw(S) - vaw)
s=0 w s=0
(3.4.22)
L]

3.4.1 Distribution of outstanding orders in pools and service centers
for model 111

From the previous subsection it is obvious that before inventory levels can be evaluated
for Model III, the distribution of outstanding number of orders V,, and /V,,, at the pool
and SVCs, respectively, have to be determined. We take a close look the METRIC and
exact approximations used for finding the distribution of outstanding number of orders

N,, and N,,, in Pools and SVCs, respectively.
3.4.1.1 METRIC for model I1I

For Model Il P[N,, = s| and F,(s) are same as Model II.
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In Model 111,

—2uev E:"D:_II AuYuvwr (1=9)7" " Lo w—1 \Y, 1— r=1y ym
e < u - uvwr w
P[Ny, = m] = (Z;;le'U D1 (1 =) )

(3.4.23)

5 e ZuGU Zf):_f AuYu?fwr(l—V)Vr_lLu;(ZUEU Z:‘”—l )\u uvwr(l _ 7)77’_1Lw)m

— =1
Fouls) = A m!
- (3.4.24)
3.4.1.2 Exact representation for model III
The following gives the exact representation for Model I1I.
P[Ny = so| and P|N,, = s,,] remain same with model I.
P[va - va] -
Z Sw ZueU Zf:}l )‘uYuvw’r o 1 . ZuEU Zf;f Auyuvwr oo
Sy =8 S’U’U) )\w )\w
P[Ny = 34 (3.4.25)

3.4.2 Lagrange relaxation for model I11

Following same procedure as Model II, we relax the model’s assignment (3.4.6)
and service (3.4.11) constraints in the relaxed problem. Let 7, and 6,, denote dual

multipliers for the constraints (3.4.6) and (3.4.11) respectively. The relaxation results in

the Lagrangian Dual problem below.
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Svw—1
I X h F _
g}raé}é )I(r,lilf% v {fvw vw + ( vw + QU'w) Z% Uw(s) qU’vaw

YD A = ) Yasur (Pow + Ovur) L

uelU r=1
W Sy —1
r— Pow — Qow + evw ~
#30 YA 1= )y PR R S (5) < )
uelU r=1 w s=0
+3 > A (1 =) Yaswr (duw — evwm)}
uelU r=1
+ Z Z Tur — Z Z 71-urY’uv'wr (3426)
uelU r=1 uelU r=1
Subject to
> Viwr < GuwwXow, foreachu € Uyv € V,w € W (3.4.27)
r=1
D) AYuur < Sow < Coy, for eachv € V (3.4.28)
uelU r=1
Sww integer , foreach v € V (3.4.29)
Xow € {0, 1}or each,v € V (3.4.30)
Yovwr € {0, 1}or each,u € Ujv € V (3.4.31)

When X, = 0, the optimal solution will be zero. Thus we consider the problem

for cases where X,,, = 1. The Lagrangian relaxation separates this problem into

subproblems by SVC and its associated pool.
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Spw—1

I{/l,isn(hvw + QUw> ( QUvaw + Z Z )\u7 1 - Yuva (pvw + evwr)Lw
s=0 uelU r=1
- (Pow = Gow + ) N
YD AT = )Y o > Fuls) — Suw)
uelU r=1 w s=0
Vi |1 D
+ Z Z Au’}/r_1<1 - V)Yuvwr ((duvw - ever)) + Z Z Tur
uelU r=1 uelU r=1
- Z Z WurYuvwr (3432)
uelU r=1
Subject to
ZYWW < Gypw, foreachu e U,v € V (3.4.33)
r=1
D D AYawur < Sow < Coy, for eachv € V (3.4.34)
uelU r=1
S integer , foreach v € V (3.4.35)
Yiuowr € {0, 1}or each,u € U,v € V (3.4.36)

We can rewrite the subproblem as

Svw—1
myylsn(hvw + Q'uw) ZO Fvw(s) - QUvaw
w—1 WSyw—1
r— Pow — Quw + va

“‘Zz)\zﬁ 1(1 _’V)Yuvwr( h\ ) Fy(s)

uelU r=1 w s=0
+ Z Z {Aufy 1 {(pvw + evwr)Lw + (duvw - varT)

uelU r=1

vw — Yow evw A

(o ci + } Z W} - (3.4.37)
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Subject to

> Yivwr < aypw, foreachu € U,v € V (3.4.38)
r=1

w—1
D D AYusur < Sow < Coy, for eachw € V (3.4.39)
uelU r=1
Sww integer , foreach v € V (3.4.40)
Yivwr € {0, 1}Hor each,u € Ujv € V (3.4.41)

Just like Model II, the solution of the above subproblem is dependent on the fact

that the SVCs have capacity constraint. Thus, the possible values of .S,,, in the optimal

solution lies between ZueU Z::ll M Yuowr and C,,. Therefore, the subproblem can be
solved by fixing S,,, to each feasible value.

For fixed values of S, the constraint (3.4.39) is satisfied and we can easily express

the subproblem as:

Svw—1
m}}n(hvw + qyw) ; Fvw(3>
w—1 WSyw—1
r— Pow — Quw + evw
+Zz)\u’y 1(1 _V)Yuvwr( )\ ) Z Fw(s)
uelU r=1 w s=0
w—1 "
-+ Z Z {)\u’)/rl<1 - 7) {(pvw + evwr)Lw + (duvw - evwr7—>} - Z 7"-ur} Yuvwr
uelU r=1 r=1
(3.4.42)
Subject to
Z Yoivwr < Quowr, foreachyu e Uyv e V,w e W (3.4.43)
r=1
Yowr € {0, 1}or eachyu € U,v € V (3.4.44)

We consider (3.4.43) for a,,., = 1 and relax the integrality of Y,,,,,. This further

simplifies the subproblem to:
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Svw—1
min(hvw + QUw) Z Fvw(s)

s=0
WSyw—1

+Zz)\u’y 1 — %) Yuvwr (p’Uw —~ q)\vw +0m") Z Fw(S)

uelU r=1 w 5=0
+ Z Z { ) {(pvw + evwr) w + (duvw - ver ZT(UT} wowr

uelU r=1

(3.4.45)
Subject to

ZY“”W <1, foreachu e UveV,welW

r=1

The objective function of the above subproblem can be written as:

w—1
min go() Z Ay T = )Y arr) + > AR0W) Yo} (3.4.46)

uelU r=1 uelU r=1

where

w—1 Sow—
3 S A 1 =)o) = (o + ) Y. Fruls)

uelU r=1 s=0
WSyw—1
(pvw Gow + evw> —
2 Z Ay’ Yawmor =" Fu(s)  (3.447)
uelU r=1 w s=0

and
va = Auvril(l - 7) {(pvw + 9vwr>Lw + ( uvw ver } Z Tur (3448)

Proposition 3.4.2.1

(ZuEU Zw ' )‘ (]— - W)Yuvwr) IS convex IIl ZueU Zw ' )‘ (]- - V)Yuvwr
when EueU Zr:l u’Yr_l(l - V)Yuvwr 2 0.

Proof. Convexity has been established for the non-reliability case (Model II). The proof

107



follows from the convexity result for Model II. In this case the total demand assigned to a

SVCwvin pOOl wis ZuEU Z:sz_ll >\U7T—1 (1 _V)Yuvwr- Therefore g2 (ZUGU ijz_ll )\u’Vr_l (1_

) Yuwr) is convex. O

The continuous relaxation of the assignment variable imply that any of the following
could occur: Zf;ll Yiowr = 0, Zf’;ll Yiowr = L or 0 < Zf’;ll Yiowr < 1. From
nonlinear programming if 0 < Y,,,,,» < 1 and the first derivative at Y., is equal to zero

then (3.4.46)) has a local minimum (Winston (2004) p. 637).
Proposition 3.4.2.2

If0 < 3% Yipur < 1, then the subproblem (3:4.43) satisfies the KKT condtions.

Proof. The Lagrangian of (3.4.45)) is

w—1 w—1
L(Y7 "iu) ZQQ(Z Z )\u’}/ril(l - ’Y)Yuvwr) + Z Z Ruvauv’wrW/Til(l - ’Y)
uelU r=o uelU r=1

w—1

+ 50 Y (Yiwr — 1) (3.4.49)

r=1

Where « is the Lagrange multipliers associated with Zf;l (Yaowr — 1) < 0.

For subproblem (3.4.45), KKT conditions are:

0 wy Ry 0 -l B o w—1
L(‘g)Y/;i}w:i ) :aYu*vwr 92(2 Z )\UVT 1<1 - V)Yuvwr) + aYU*UwT Z Z vaYuvwr

uelU r=1 uelU r=1

a w—1
oY .. Z ’iu(Yuvwr - 1) =0

r=1

_|_
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by chain rule

agQ(ZuEU Zf;ol Auvril(l - ’Y)Yuvwr)
aYu*vwr

_ ag?(ZueU Zw_l u7r_1(1 - ) uvuﬂ") 8ZUEU Zw B Yvwr7r_1(1 - ’Y)

8Z:ueU Zw ' AuY, vwr’}/r_l(l - 7)
_ 692(ZueU Zw ! /\u’yr 1(1 - V)Yuvwr)
aZueU Zw ‘A wYouvwr V(L =)

892(ZUEU Zw ! Au/yT 1(1 - V)Yuvwr)
0 ZuEU Zw ' /\ Y., fuwrfyr_l(l - 7)

Svw—1 Ls+1
= _(hvw + QUw) Z Z Z A Yuvwr7
s=0 uelU r=1
WSyw—1
+ (pvw — Quw + ‘ng> Fw(s)
s=0

OL(Y, )
a Yu*vwr

(hvw + va))\U* " 1(1 - P)/)

Spw—1 Ls+1 w—1
D QLD MYy =)
5=0 uelU r=1

— g+ 0 (1 —
+(p q+ )Au (

(3.4.50)) is the gradient condition.
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@Yu*vwr

A (77711 =)

— > uevU Z?;ll AuYuvwry" " H(1=y) L

— > uer Z;Dgll AuYuvwr Y™~ H(1=7y) Lo

WSyw—1
) S Fu(s,h) F Row + R =0 (3.450)
s=0



w—1

ku(Y Yuwwr — 1) < 0, for each,u € U (3.4.51)
r=1

0 <Yiuwr <1, foreachu e U (3.4.52)

Ky > 0, foreachu € U (3.4.53)

If Y,y is fractional, x,, = 0 by (3.4.5T).

Equation (3.4.51) gives the complementary slackness conditions. The feasibility

condition is given by (3.4.52)) and (3.4.53).
By convexity of the subproblem, the KKT solution above is a global minimum.

]

Just like our previous models, we also utilise GAMS to get solutions for this model.
3.5 Model with stochastic demand (model IV)

Decision making in facility location is long-term. The absence of precise forecasts
for demand and cost when making decisions is a challenge that arises frequently in the
strategic aspect of supply chain. Since it is challenging and costly to reverse those
decisions, making them robust against uncertainty is of utmost importance. Grahovac
and Chakravarty (2001) reviews various location models with the purpose of producing
solutions that are robust and reliable. A very common procedure for this family of models
is scenario-based modelling. This procedure characterises uncertainty using a finite set
consisting of discrete scenarios. We have two possible explanations of the scenario set.
The explanation from a dynamic perspective is that as the business setting changes over
time, scenarios and their associated probabilities characterise the steady state fraction
of time that the setting is in each state. While, the static perspective is that the set
denotes a range of probable outcomes, out of which one will occur and then remain fixed
afterwards.

It is common practice for companies to conduct scenario-based studies to consider

the performances of various projects under different probable future outcomes. In fa-

110



cility location modeling, one can apply stochastic optimisation or robust optimisation
techniques, depending on ones’ defined objective function, in order to produce one or
more "good" solutions which perform relatively well for a good number of or all possible
scenarios.

Models I-III considered fixed demand for customers in the system. Model IV, however,
includes demand uncertainty into Model II by considering a set of discrete demand
scenarios. The scenarios are such that a customer’s demand rate is different for each
scenario. Thus, for Model 1V, we assume that the demand rate (\,) is uncertain. The
model objective involves determining the optimal costs for a given finite set of likely
demand rate scenarios. Define Z as the scenario set and 7* as probability of scenario
z € Z occuring. Each z € Z comprises of different demand rates for each number of
customers. In addition, a subscript z is added to decision variable (for example Y,,,,.) and

any parameter (for example )\, ,) that may assume different values for different scenarios.

1. In steady state the expected inventory level for each SVC v in pool w for scenario
zis
vaz_l

Lwe = Y (Souws — 8)P{Nyu: = s} 3.5.1)

s=0

2. In steady state, the expected backorder level for SCV v in pool w is

2+1
2 uer AuzYuvws p2

vaz = )\quuvwz w
)\Oz 1- Pz * Z “
uelU
)\quuvwz Poun! N
+ Luev X ( > Fuu(s) - wsm> (3.5.2)
wz s—=0

where,

sz(s) = Z P{Nwz = m}

3. In steady state, the expected lateral transshipment level at SVC v in pool w is
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where.

vwz Z P{vaz -

The scenario based problem is as formulated below:

Svwz—1
min Z Z fvvaw + Z'YZ { Z Z { VW + QMU Z Fvwz(s) - QUvawz
s=0

weW veV zeZ weW veV
SOz+1

- vwLw duvwz )\quuvwz
+Z<(>‘0z1_pZ)+p ot ) )
uelU
)\quuvwz Gzt N
+(pvw - QUw) ZUEU)\ ( Z sz(s) - wSMUZ) }

s=0
h . L — 1 0z
+27 0 [So 1—pz( P )]}
z2€Z
(3.5.4)
Subject to
ZYWW = 1,foreachu € U,z € Z (3.5.5)
veV
Yiow: < Xy, foreachu e U,z € Z (3.5.6)
0 < Spw: < Chys, foreachv € V,,, 2z € Z (3.5.7)
Swr < Cy, = wCy,,,, foreachw € W,z € Z (3.5.8)
So. < Cy,, foreach z € Z (3.5.9)

WSywz—1

SOz+1
pz ZueU Zze A )‘quuvwz
Aoz (1= p-) } 22 Yo < Au: > 1= Fus(s)]

uel zeZ s=0

(3.5.10)
Svwz, Swzs S0 > 0 integer , foreachv e V,.w e W,z € Z (3.5.11)
Xypw: € {0, 1}foreachyy € V,z € Z (3.5.12)
Yiow: € {0, 1}oreachu € U,z € Z (3.5.13)
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(3.5.10) can also be written as

Soz+1 WSywz—1 _
Pz foay—1| < D50 [1 = Fu(s)]
Aoz (1 = p2)

Note that our objective in the formulation above is to minimise the expected cost across
all scenarios. However, optimising the mean outcome can result in solutions that do not
perform well under some scenarios. We can produce solutions that are more robust by
using alternative objectives which reflect risk-averseness. Some examples of objectives
which reflect risk-averseness are minimax regret \Serra and Marianov, (1998)), expected
failure cost Snyder and Daskin| (2005) and conditional value-at-risk or CV aR |Chen
et al.| (2006). Furthermore, the simultaneous consideration of both risk-averse objective
and average-case objective is often more desirable. Using multi-objective optimisation
methods, it is then possible to obtain an efficient set of solutions that are Pareto-optimal
and depend on our chosen objectives. The decision maker may then evaluate trade-offs
between objectives and then select one solution from our efficient set. This method is
demonstrated by Snyder and Daskin| (2005) who consider trade-offs between cost and
customer coverage degree.

In this study, we apply similar technique in considering two objectives, which are:
worst possible ‘response time’ among all given scenarios and the expected cost across
all scenarios. Our intent is to minimise the longest response time among customers from
all scenarios. The consideration of the worst possible response time for all possible
scenarios, reflects the desire to have a robust supply chain.

Model IV examines the model under a stochastic demand environment. There are
different demand scenarios that each have a probability of occurrence. In this section,
we look at properties of Model IV given steady state expected levels. For Model 1V, the

minimum expected cost across all scenarios is evaluated.

Proposition 3.5.1

1. In steady state the expected SVC inventory level at each SVC v in pool w for each

scenario z € Z is

Ty, = (vaz - S)P{vaz = S} (3514)
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2. In steady state the expected SVC backorder level at SVC v in pool w for scenario z

is

ZuGU AuzYuvwz pfOZH

vaz - + Auzyuvwzaw
/\Oz 1-— Pz wel
A'LI/ZYQ,L'U'LUZ wsvwz !
+ Z“EUA ( > Fuuls) - wsm> (3.5.15)
wz S:O

where,

Fuu(s) = 3 P{N,. = m}

3. In steady state, the expected lateral transshipment level at SVC v in pool w is

sz<5) - vawz

S’Uwz_l Z )\ Y wsvwz_l
welU Mzt uvwz
va - Fvwz(5> - vaz - \

wz

s=0

(3.5.16)

Fvwz(s) = Z P{vaz - m}
m=0
This is similar to Model III results. We only replace r with z and then include a

subscript of z for any variable or parameter that depends on demand.

3.5.1 Distribution of number of outstanding orders in pools and
service centers for model IV

METRIC For model IV
For model IV
szsz >\ L m
P[N,, =m] = ¢ (Aw:Lu:) (3.5.17)
m)!
and
S Awz Lz >\ L m
Fo(s) = S Quel:) (3.5.18)

In the above,
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p
Ly, = Woy, + au = + vy (3.5.19)
" /\(1 - pz)
In model IV,
- Zu AuzYuvwzLwz )\ Y L m
€ ev Uz - uvwz-Hwz
P[Nyy, =m] = (2uev ) (3.5.20)
m!
and =
"\ e 2euer AuzYuvwsLus AuzYuowzLwz)™
Fou:(s) = (Z'ueU ) (3.5.21)
m/!
m=0
Exact representation for model IV
The following shows the exact representation for Model I'V.
P(Ny. = s0.) = (1 — p,)po=ro=crw= Z P /\Ozo‘wz o (3.5.22)
0z 0z z )Mz s()z o

P[Ny: = suz] = (S°Z> {AW} h [1 - A‘”Z} T PNy = s (3.5.23)

P[vaz vaz] -
Swz ZUGU )\quuvwz Sz ZUEU )\UZY'U/U’LUZ Swz—Svwz
1 B P Nwz = Swz
s Zs: <5vwz> |: Awz Aws [ S ]
(3.5.24)
Proposition 3.5.1.1

The objective function of Model IV is convex.

Proof. Model 1V can be treated as solving Model II for each scenario. Model IV for
a single scenario is same as Model II. We have shown that Model II is convex. Thus,

Model IV being a sum of convex scenarios is also convex. 0
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Chapter 4
RESULTS AND DISCUSSION

4.0 Introduction

In this chapter computational experiments are designed and implemented to examine
the models’ properties. We use GAMS to implement the experiments. Our GAMS code
can be found in appendices II- V. In this study, we have a finite number of customers
with known demand rates. The customers are geographically dispersed and we consider
each customer’s location as a node. The customers are located in different cities and
each city is treated as a node. For example, suppose we have a customer u; € U in
Lagos and another customer uy € U in Ibadan. In this case, the demand emanating from
Lagos is said to be the demand from customer u; and is denoted by A,,, while, demand
emanating from Ibadan is said to be the demand from customer w5 and is denoted by \,,,.
The collection of all customers {u;, ug, us - - - u, } gives the set U. Also, each customer’s
location is treated as a candidate SVC location v € V. The collection of the location of
all customers {vy, va, v3, - - - v, } gives the set V. The sets U and V' are equivalent. LT can
only occur among SVCs in the same pool. We use a geopolitical pooling criterion. Thus,
the collection of all SVCs in a geopolitical zone form a pool w € W. Consequently, we
have six pools in Nigeria. The collection of all pools {wy, ws, -+ ,ws} gives us the set
W.

Three data sets are used comprising of 37 nodes, 109 nodes and 181 nodes; each
node is considered as a potential SVC location and as a demand node. The 37 nodes
represent the most populous cities in each of the 36 states in Nigeria and Federal Capital
Territory (FCT). The 109 nodes represents the 3 most populous cities in each of the 36
states in Nigeria and the FCT. The 181 nodes denotes the 5 most populous cities in each
of the 36 states in Nigeria and the FCT. The population data was obtained from the 2006
census. The costs associated with opening a SVC at a candidate SVC location are the

fixed cost of setting up a SVC in that location and the transportation costs from that SVC
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location to its assigned customers. The fixed costs are given in the data sets. The cost of
transportation between a SVC location and any of its assigned customers is derived by
multiplying the distance between the SVC and the assigned customer by 10~!. Demand
rates are obtained by multiplying the population at a node or city by 10~°. For example,
Ife with a population of 643582 has demand rate of 6. The demand rate for each node is
constrained to be no more than 10 for nodes with very large population. The deterministic
transportation time from the plant to a SVC is obtained by dividing the distance between
the plant and the SVC by 2400. «, is set to be the maximum of the transportation times
from the plant to all the SVCs in pool w. For all data sets, the plant is located in Abuja.

The data sets are given in Tables 5.1- 5.8 in Appendix L.

4.1 Computational results for model I

4.1.1 Model I performance

Here we compare expected costs obtained from our model with expected costs
obtained from the model without LT. This test is conducted with the 37 node and 109
node data sets for various values of (p = U R. We take note of the objective function value
of our model (OBJ LT) and the objective function value of the model without LT (OBJ
WLT). We also take note the Minimum RTR (MRTR) corresponding to the objective
value costs of our model (MRTR LT)and the model without LT (MRTR WLT). The
model without LT follows the model by Caglar et al.| (2004) with the pooling criterion
but without LT. The pooling criterion is imposed on the model without LT because
for our model the pooling criterion partitions the main problem into sub problems by
geographical region. Hence, a fair comparison will be to compare also with a collection

of sub problems by geographical region. The results are summarised in Table 4.1.
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Table 4.1: Model I performance

S/N | NODES | UR | MRTR LT | MRTR WLT | OBJ LT OBJ WLT
1 37 0.99 | 0.7 0.217 25110.1896 | 29643.265
2 37 0.9 |0.244 0.007 41713.239 | 44315

3 37 0.7 [0.219 0.006 43648.115 | 46020.384
4 37 0.5 |0.216 0.004 43905.332 | 46249.862
5 37 0.3 |0.216 0.004 43965.959 | 46305.816
6 37 0.1 |0.216 0.004 43985.072 | 46324.456
7 109 0.99 | 0.53 0.0605 99688.493 | 117638.186
8 109 0.9 |0.34 0.005 126235.589 | 142015.236
9 109 0.7 ]0.321 0.0039 128213.665 | 1435757.798
10 | 109 0.5 |0.319 0.0038 128474.328 | 143990.155
11 | 109 0.3 |0.319 0.0037 128535.506 | 144046.565
12 | 109 0.1 |0.319 0.0037 128554.674 | 144065.252
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4.1.2 Discussion of model I performance

For all instances tested, the total system cost of our LT model was lower than that of
the model without LT. This illustrates the cost savings that can be achieved via the
incorporation of LT. The MRTR for our model was higher than that of the model without
LT. This occurs because for our model, the assumption of negligible LT times imply
that the lead time L,, is identical for all SVCs in a pool. However, the focus of this
experiment is to compare costs only, the effect of response time requirement on our

model is examined in the next result.
4.1.3 Effect of response time requirement for model I

In this experiment we check the behaviour of the model as the response time is varied.
The 37-node dataset is used with (p) set to 0.9. From Table 5.1, Model I gives lower
costs than the model without LT for all values of p, thus, our choice of p is arbitrary.
We vary response time requirement values between 0.272 and 0.668. For this model,
response time values greater than 0.668 will always be feasible. Hence, there is no need
to increase the value of response time beyond 0.668. This is a result of the values obtained
for our deterministic transportation time from the plant to pool w, c,. The result of this

experiment is shown in Fig 4.1 below.
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4.1.4 Discussion of the effect of response time requirement for model
I

Figure 4.1 shows that expected cost remains stable with varying response time
requirement values. This occurs as a result of lateral transshipment and pooling which
ensure uniform response time constraint for all SVCs in a pool. The implication of this is
that within feasible values, the decision maker can slacken or tighten the response time
requirement to fit into the contract signed with a customer and this will have negligible
effect on the expected cost. This is especially important, because from Table 4.1, we
see that Model I gives lower costs than the model without LT. This, and the consistency
of costs with varying response times, means that the decision maker is able to negotiate
response times with a customer with a certain degree of certainty about the consequence

of whatever agreement the make.

4.1.5 Effect of base stock level on model 1

We utilise the 37 node dataset for this experiment and set (p) to 0.9. From Table 4.1,
Model I gives lower costs than the model without LT for all values of p, thus, our choice
of p is arbitrary. In the first instance, S, is fixed at 5, while S is varied between the
feasible range. In the second instance .Sy is fixed at 3 and the value of .S,,, is varied within
the feasible range. In all cases the minimum feasible value of 7 and the corresponding
total cost are recorded. The total cost and 7 are plotted against the stock level. Figure

4.2 and Figure 4.3 below, show the result of this experiment.
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4.1.6 Discussion of the effect of base stock level on model 1

Figure 4.2, shows that increasing plant base stock results in negligible increase in expected
cost and causes a decrease in the minimum response time requirement. Figure 4.3, shows
that increasing SVC stock level results in an increase in expected cost and causes no
change in reduced minimum response time requirement. If the decision maker intends to
reduce response times to customers with minimum increase in cost, she has to increase

the plant base stock level. In real life, the value of S is usually constrained by capacity.
4.2 Computational results for model I1

In this section we utilise all three data sets. The difference between Model II and
Model I is that Model Il is a location-inventory model, while, Model I considers inventory
alone. Consequently, all the SVC location variables such as X, Yiuw, duvw are factored
into the formulation of Model II. This Model is solved using GAMS and the GAMS code
for Model II can be found in Appendices IV-V.

4.2.1 Model II performance

Here we compare our model with the model without LT. This test is conducted with the
three data sets for (p = UR = (0.9,0.5),7 = RTR = (0.5,0.3,0.220r0.2), dppoz =
(150, 100). We take note of the objective function value of our model and the objective
function value of the model without LT. The model without LT follows the model by
Mak and Shen| (2009) with the pooling criterion but without LT. The pooling criterion is
imposed on the model without LT because for our model the pooling criterion partitions
the main problem into sub problems by geographical region. Hence, a fair comparison
will be to compare also with a collection of sub problems by geographical region. In this

Model the plant is also located in Abuja. The results are summarised in Table 4.2.
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Table 4.2: Model II performance

S/N | NODES | UR | RTR | dmax | OBJLT OBJ WLT SVCLT | SVC WLT
1 37 09 | 05 150 306486.913 | 311808.6209 | 19 21
2 37 0.5 |05 150 299939.9668 | 312063.1298 | 19 21
3 37 09 |03 150 306486.913 | 311808.6209 | 19 21
4 37 05|03 150 299939.9668 | 312063.1298 | 19 21
5 37 09 | 022 | 150 306486.913 | 311808.6209 | 19 21
6 37 0.5 | 022 | 150 299939.9668 | 308860.178 | 19 21
7 37 09 | 05 100 383839.3325 | 355492.5327 | 28 28
8 37 05 |05 100 365704.9459 | 355805.1491 | 28 28
9 37 09 |03 100 383839.3325 | 355492.5326 | 28 28
10 | 37 05103 100 385704.9459 | 355805.1491 | 28 28
11 | 37 09 |02 100 383839.3325 | 355492.5327 | 28 28
12| 37 05102 100 385704.9459 | 355805.1491 | 28 28
13 109 09 | 05 150 413185.1743 | 568250.7459 | 25 27
14 | 109 05 |05 150 413292.6378 | 568604.1851 | 25 27
15 109 09 |03 150 413383.5425 | 568230.7459 | 25 27
16 | 109 05 (03 150 413388.0967 | 565604.1851 | 25 27
17 | 109 09 102 150 413383.5425 | 568230.7459 | 25 27
18 | 109 05102 150 413345.021 | 568604.1851 | 25 27
19 | 109 09 |05 100 531475.699 | 640499.9813 | 37 38
20 | 109 0.5 |05 100 531660.5781 | 640871.0662 | 37 38
21 109 09 |03 100 531479.7333 | 640499.9813 | 37 38
22 | 109 0.5 |03 100 531671.7892 | 640695.7594 | 37 38
23 109 09 |02 100 531487.9847 | 640499.9813 | 37 38
24 | 109 05102 100 531665.913 | 640871.0662 | 37 38
25 181 09 | 05 150 503122.2887 | 756096.5497 | 23 27
26 | 181 0.5 |05 150 503121.2472 | 756165.2004 | 23 27
27 | 181 09 |03 150 503341.0051 | 756096.5497 | 23 27
28 | 181 05|03 150 503193.3191 | 756165.2004 | 23 27
29 | 181 09 |02 150 503341.0051 | 755797.6929 | 23 27
30 | 181 05 102 150 503421.4726 | 756165.2004 | 23 27
31 181 09 | 05 100 709562.535 | 874040.9894 | 44 45
32 | 181 05 |05 100 709671.889 | 873901.569 | 44 45
33 181 09 |03 100 709605.4168 | 873920.4 44 46
34 | 181 05103 100 709597.7653 | 874047.5136 | 44 45
35 181 09 102 100 709608.2478 | 873971.9055 | 44 46
36 | 181 05102 100 709629.8785 | 874199.5546 | 44 45
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4.2.2 Discussion of model II performance

For the 37 node set, the entire system cost for the our LT model is lower compared to
the model without LT when d,,,.,, = 150, while the model without LT performs better
than our model when d,,,,,, = 100. Generally our model gives lower costs for as long as
dmaz = 120. Also in all instances tested for the 109 nodes data set and the 181 nodes data
set respectively, the total system of our LT model was lower than that of the model without
LT. This shows that our model is suitable for systems having many nodes.Furthermore,
in most instances fewer SVCs are required for the our LT model (SVC LT) compared to
the model without LT (SVC WLT).

Also, the total cost increases as d,,,,, reduces from 150 to 100, this is due to the fact

that more facilities need to be opened as the coverage distance reduces.

4.2.3 Effect of base stock level on response time for model 1T

The 37 node dataset is utilised for this experiment with (p) set to 0.9, d,,.. set to 150
kilometers, and S,,, set to 1. In the first instance, .S, is fixed at 1, while S, is varied
between the feasible range. In the second instance S is fixed at 4 and the value of .S,,, is
varied within the feasible range. In both instances the minimum feasible value of 7 and
the corresponding total cost are recorded. The total cost and 7 are plotted against base

stock level. Figure 4.4 and Figure 4.5 show the results from this experiment.
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4.2.4 Discussion of the effect of base stock level on response time for
model II
From Figure 4.4, it is seen that an increase in plant base stock causes a decrease in
minimum response time requirement and has little effect on total cost. From Figure
4.5, an increase in SVC base stock level results in reduced minimum response time
requirement while the total costs increase with increase in SVC base stock level. Thus
increasing SVC base stock level will lead to better response times. This however causes
an increase in total cost. In real life, the value of 5, is usually constrained by capacity

or budget constraints.

4.2.5 Relationship between backorder cost and response time

Most literature in traditional inventory theory make use of backorder as utilisation
measure. This means that in order to discourage long waiting times, penalty costs are
usually imposed on backorder. That is, backorder costs are usually increased in order
to discourage backorders. This experiment considers the behaviour of the model as
backorder and response time are varied. The 37-node dataset is used with (p) set to 0.9,
dmaz set to 150 kilometers, and storage capacity set to 5. We test two sets of instances.
In the first set, the penalty on backorder, p, is varied between 60 and 180 by gradually
increasing 60 by 2%, 4%, ..., 200%, and for each value of p the total expected cost is
observed. In the second instance, the response time requirement is varied between 0.2
and 0.6 time units by gradually increasing 0.2 by 2%, 4%, ..., 200% and for each value,
the total expected cost is also recorded. Then we plotted the total costs expected with
varied response time and the total costs expected with varied backorder costs against the

percentage increase. The result of this experiment is shown by Figure 4.6.
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4.2.6 Discussion of the relationship between backorder cost and re-
sponse time

From Figure 4.6 it is observed that the graph for backorder is has a steeper ascent
than that of response time, while the graph for response time is consistent. This implies
that the change in cost observed when the response time is varied among its feasible
points is minimal when compared with backorder values. Hence in terms of expected
cost, the response time is a more consistent measure than backorder. Also, the response
time curve is dominated by the backorder costs. This implies that using response time
in place of backorder as a service measure will always result in lower costs for our
system. The spikes observed on the graph for expected cost under varying response time
imply that cost fluctuate when response time lies between 0.22 and 0.28. The cost also
fluctuates when response time lies between 0.576 and 0.6. With these spikes the value
of the expected costs under varying response require lies in the interval [287190.9578,
293965.0978]. Thus, the gap between the minimum and maximum values of the expected

costs is 2.03%. Thus, fluctuations only have little effect on the expected costs.

4.2.7 Trade off between service and cost

Service consideration is very crucial in the design of efficient spare parts supply
chain. However, emphasis on cost minimisation alone in supply chain design usually
results in poor service delivery. Cost and service consideration can act as two divergent
performance measures in supply chain design [Shen and Daskin (2005). Investigating
the trade-off between costs and service level is therefore critical. This computational
experiment solves the problem at different levels of service requirement. Expected cost
is plotted against service time requirement (7 ) resulting in a trade-off curve. The same
graph also shows the optimal number of SVCs against response time requirements. This

is shown in Figure 4.7.
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4.2.8 Discussion of the trade off between service and cost

With a large value of 7 it is optimal to open 19 facilities. As 7 approaches it’s lower
bound, the number of open service increased. As 7 is varied along its feasible range,
Figure 4.7 shows that the expected costs remains stable. The reason for this is because
the number of facilities required to meet demand also remains consistent with varying
response time. The fluctuations observed on the graph for expected cost under varying
response time imply that cost fluctuate when response time lies between 0.22 and 0.28.
The cost also fluctuates when response time lies between 0.576 and 0.6. With these fluc-
tuations the value of the expected costs under varying response require lies in the interval
[287190.9578, 293965.0978]. Thus, the gap between the minimum and maximum values
of the expected costs is 2.03%. Thus, fluctuations only have little effect on the expected

costs. We also see that the fluctuation has no effect on the number of SVCs opened.
4.3 Computational results for model III

This model extends Model II by considering possible SVC failures. Thus, in this

section we only consider the effects of falire probability and response time.

4.3.1 Effect of failure probability on model III

We examine how the model behaves as the probability of failure is varied between
0.05 and 0.5. The 37-node dataset is used with (p) set to 0.9, d,,.. set to 150 kilometers,

and storage capacity set to 5. This result is shown in Figure 4.8.
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4.3.2 Discussion of the effect of failure probability on model III

Figure 4.8 shows that cost remains relatively stable when the failure probability lies
between 0.05 and 0.3. As the probabily increases from 0.3, the cost rise is steeper. Thus
the optimal decision will be to open service centers whose failure probability lie in the

range [0.05-0.3].
4.3.3 Effect of response time on model III

The response time requirement 7 is varied between 0.22 and 0.72. The expected cost

in each instance is plotted against the response time in Figure 4.9.

4.3.4 Discussion of the effect of response time on model I1I

It is observed that the expected cost is fairly consistent as the response time varies.
This is a consequence of lateral transshipment which ensures that the response time is

pool specific. This also agrees with the results obtained for Model I and Model II.
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4.4 Computational results for model IV

4.4.1 Effect of response time and cost for model IV

We look at the model behavior as the number of demand scenarios increase from 2 to
20. Each customer has different demand rate for each scenario. For each case the model
is solved for two objectives which are; the minimum expected cost and the maximum
response time. The objective of maximum response time is chosen to ensure a robust
solution. That is, a solution that satisfies all possible response times. The expected cost
is plotted against the response time. The result of this experiment is found in Figure 4.10

below.
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4.4.2 Discussion of the effect of response time and cost for model IV

From Figure 4.10, maximum response time increase as the number of scenarios increase.
While the expected cost experiences slight increase as the number of scenarios increase
from 2 to 6. As the scenarios increase from 6 to 10 a spike in expected cost is observed.
The expected cost is stable when the number of scenarios lie between 10 and 20. The
variation observed occurs because of the uncertainty that comes with considering a
number of likely scenarios at the same time. The consideration of a number of scenarios

each having a probability of occuring, makes the system highly stochastic.

4.4.3 Effect of change in probability on model IV

In this experiment we observe the effect of change in probability on the expected cost.

The result is shown in Figure 4.11.
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4.4.4 Discussion of effect of change in probability on model IV

From Figure 4.11, the cost rises steadily as the probability increases. This is to be

expected because higher probabilities certainly mean higher inventory costs.
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Chapter 5
SUMMARY AND CONCLUSIONS

5.0 Introduction

The incorporation of lateral transshipment into two-echelon location-inventory sys-
tems with response time requirement has been extensively studied in this thesis. Basic
formulations for four models which looked at the incorporation of LT into different two-
echelon systems were obtained. The steady state distribution for number of items in
replenishment was obtained for all models. These distributions along with the properties
of a Markovian queue were used to derive the steady state inventory levels for our models.
These steady state levels were used to obtain full model formulation for our models which
then made it possible to examine the models’ properties. Convexity was established for
our models using second order conditions. Computational experiments showed that the
two-echelon joint location-inventory model with response time requirement and lateral
transshipment resulted to lower costs when compared with the model without lateral
transshipment . It was also established that lateral transshipment also resulted to stability
of expected cost with varying response time requirement.

Conclusively, this study showed that lateral transshipment is an interesting and ef-
ficient tool for simultaneously reducing cost and achieving desired customer response
time requirement in a two-echelon joint location-inventory system with response time

requirement.
5.1 Contribution to knowledge

The contributions to knowledge of this study are enumerated below:

1. This study established a significant contribution by enhancing the literature on two-
echelon systems via the incorporation of lateral transshipment into a centralised

two-echelon location-inventory system with finite number of facilities at the lower
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echelon and response time requirement across all facilities.

2. Steady state distributions for number of items in replenishment to SVCs and the

plant were obtained for the system considered.

3. The steady state relationship between expected on-hand inventory level, expected

lateral transshipment level and expected backorder level was obtained.

4. Steady state expressions for expected on-hand inventory level, expected lateral

transshipment level and expected backorder level were determined.

5. This study presented four new mathematical models for the system, namely, two-
echelon inventory model with response time requirement and lateral transshipment,
joint two-echelon location-inventory model with response time requirement and
lateral transshipment, model with reliable locations, and model with stochastic

demand.

6. It was established that the objective functions of the four models and their con-
straints satisfied the convexity conditions. Thus, the two-echelon location-inventory
system with response time requirement and lateral transshipment is a convex opti-

misation problem and can be solved with convex optimisation solvers.

7. It was established that incorporating lateral transshipment resulted to lower cost

when compared with the model without lateral transshipment.

8. The results obtained in this study showed that lateral transshipment is an efficient
tool for balancing the contrasting objectives of minimising costs and improving
service in a two-echelon joint location-inventory problem with response time re-

quirement
5.2 Recommendations

Our two-echelon system points to some directions for future research. A continuous
review (S-1,S) policy was used in this study. Thus, an extension will consider the
problem using other inventory policies such as batch ordering policies. Another possible
extension will be the relaxation of the assumption of uniform base stock level for all
SVCs in a pool. The assumption of negligible transshipment time implied that SVCs in

a pool had identical lead times, consequently, the consideration of non negligible lead
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times will also be an interesting area for further research. Further extension will be the
development of specialised heuristics for the various models and compare the solutions

obtained with the heuristics with the solutions obtained with GAMS.
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APPENDICES

Appendix (I) Data sets

The data sets used in this study are provided in this section. The 37 nodes data set
comprises of the most populous cities in each of the 36 state capitals in Nigeria and
the Federal Capital Territory (FCT). The 109 nodes data set comprises of the 3 most
populous cities in each of the 36 state capitals in Nigeria and the FCT.The 181 nodes data
set comprises of the 5 most populous cities in each of the 36 state capitals in Nigeria and

the FCT. The data sets are presented in Tables 6.1-6.8.
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Table 5.1: 37 nodes data set

Cities Nodes | Population | Demand | Latitude Longitude | Fixed cost
Ado Ekiti 1 313690 3 7.61261 5.27384 10000
Ajeromi-Ifelodun | 2 6873316 10 6.4555 3.3339 30000
Ifo 3 539170 5 6.78197 3.25195 12000
Akoko 4 701785 7 7.641 5.79399 11500
Ife 5 643582 6 7.47442 4.55933 12500
Ibadan 6 3034200 10 7.39639 3.91667 20000
Uyo 7 427873 4 5.033 7.917 25000
Yenagoa 8 352285 4 5.033 6.333 20000
Calabar 9 375196 4 4.95 8.325 23000
Warri 10 564658 6 5.517 5.75 18000
Benin 11 1495800 10 6.33333 5.62222 15000
Portharcourt 12 1005904 10 4.73292 6.96919 27000
Aba 13 534265 5 5.117 7.367 18000
Onitsha 14 7425000 10 6.132942 | 6.792399 | 18500
Afikpo 15 314191 3 5.89258 7.93534 15000
Enugu 16 717291 7 6.4526667 | 7.5103333 | 20000
Owerri 17 403425 4 5.485 7.035 19000
Abuja 18 776298 8 9.0765 7.3986 40000
Gboko 18 361325 4 7.325 9.005 16000
Okene 20 325623 3 7.48333 6.21667 15000
[lorin 21 777667 8 8.43005 4.426 18000
Lafia 22 329922 3 8.64007 8.69959 19000
Minna 23 348788 3 9.583555 | 6.546316 | 17000
Jos 24 900000 9 9.933 8.883 18000
Yola 25 395871 4 9.23 12.46 16000
Bauchi 26 493730 5 10.5 10 16000
Maiduguri 27 540016 5 11.833 13.15 18500
Akko 28 337435 3 10.09994 | 11.04833 | 15000
Gassol 29 245086 2 8.47269 10.5442 13000
Fune 30 301954 3 11.85212 | 11.44862 | 16500
Birnin Kudu 31 314108 3 11.49023 | 9.49368 13500
Kaduna 32 767306 8 10.52306 | 7.44028 25000
Kano 33 2828861 10 12 8.517 30000
Katsina 34 459022 5 12.983 7.6 19000
Birnin Kebbi 35 268620 3 12.45832 | 4.26267 14000
Sokoto 36 427760 4 13.067 5.233 18000
Gusau 37 383712 4 11.87555 | 6.61984 13000
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Table 5.2: 109 nodes data set 1

Cities Nodes | Population | Demand | Latitude Longitude | Fixed cost
Ado Ekiti 1 313690 3 7.61261 5.27384 10000
Ijero 2 221873 2 7.84582 5.05686 9600
Ekiti West 3 179600 2 7.68663 5.02847 9000
Ajeromi-Ifelodun | 4 6873316 10 6.4555 3.3339 30000
Alimosho 4 1319571 10 6.61056 3.29583 28000
Kosofe 5 682772 7 6.598781 | 3.409463 | 20000
Ifo 6 539170 5 6.78197 3.25195 12000
Ado-Odo/Ota 7 527242 5 6.62366 3.08626 11500
Ijebu 8 458641 5 6.99551 3.97085 13500
Akoko 10 701785 7 7.641 5.79399 11500
Akure 11 491033 5 7.26382 5.31136 12000
Ondo 12 364960 4 7.09145 4.96053 11000
Ife 13 643582 6 7.47442 4.55933 12500
Illesha 14 212225 2 7.60146 4.7618 11000
Iwo 15 191348 2 7.67548 4.14127 9000
Ibadan 16 3034200 10 7.39639 3.91667 20000
Saki 17 382225 4 8.70467 3.58944 12000
Ibaraba 18 320718 3 7.43737 3.26761 10000
Uyo 19 427873 4 5.033 7.917 25000
Essien Udim 20 193257 2 5.13333 7.6833 15000
Ibiono Ibom 21 188605 2 5.23333 7.88333 12000
Yenagoa 22 352285 4 5.033 6.333 20000
Southern Jjaw 23 321808 3 4.7 5.967 12000
Ekeremor 24 269588 3 5.05 5.783 12500
Calabar 25 375196 4 4.95 8.325 23000
Akpabuyo 26 272262 3 4.880791 | 8.528161 | 18000
Odunkpani 27 192884 2 5.081238 | 8.349917 | 15000
Warri 28 564658 6 5.517 5.75 18000
Ughelli 29 533325 5 55 5.983 16000
Asaba 30 514679 5 6.1978417 | 6.7284667 | 17000
Benin 31 1495800 10 6.33333 5.62222 15000
Oredo 32 374515 4 6.23581 5.55114 12000
Ikpobah-Okha 33 372080 4 6.16445 5.62284 11000
Portharcourt 34 1005904 10 4.73292 6.96919 27000
Obio/Akpor 35 462350 5 4.83153 6.98906 20000
Ahoada 36 415556 4 5.0858 6.47089 17000
Aba 37 534265 5 5.117 7.367 18000
Umuahia 38 359230 4 5.524953 | 7.492241 | 16000
Isiala ngwa 39 290773 3 5.286819 | 7.416505 | 14500
Onitsha 40 7425000 10 6.132942 | 6.792399 | 18500
Idemili 41 637821 6 6.123656 | 6.947753 | 17000
Nnewi 42 391227 4 6.010519 | 6.910345 | 16300
Afikpo 43 314191 3 5.89258 7.93534 15000
1zzi 44 236679 2 6.48453 8.29468 14000
Onicha 45 236609 2 6.09899 7.84133 14000
Enugu 46 717291 7 6.4526667 | 7.5103333 | 20000
Nsukka 47 309448 3 6.85329 7.34801 17000
Igbo Eze North 48 258829 3 6.98333 7.45 14000
Owerri 49 403425 4 5.485 7.035 19000
Ideato 50 315815 3 5.88537 7.13136 16000
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Table 5.3: 109 nodes data set 11

Cities Nodes | Population | Demand | Latitude Longitude | Fixed cost
Isiala-Mbano | 51 197921 2 5.66767 7.20338 15000
Abuja 52 776298 8 9.0765 7.3986 40000
Gboko 53 361325 4 7.325 9.005 16000
Makurdi 54 300377 3 7.73056 8.53611 17000
Gwer 55 290973 3 7.3 8.48333 14000
Okene 56 325623 3 7.48333 6.21667 15000
Ankpa 57 266176 3 7.44848 7.63174 12000
Dekina 58 260968 3 7.58435 7.17344 1000
Mlorin 59 777667 8 8.43005 4.426 18000
Baruten 60 206679 2 9.26039 3.31607 9000
Edu 61 201642 2 8.89181 5.21012 8000
Lafia 62 329922 3 8.64007 8.69959 19000
Karu 63 216230 2 9.04694 7.76364 20000
Nasarawa 64 187220 2 8.5 8.25 15000
Minna 65 348788 3 9.583555 | 6.546316 | 17000
Mashegu 66 215197 2 9.92993 5.23385 15000
Suleja 67 215075 2 9.19085 7.15184 18000
Jos 68 900000 9 9.933 8.883 18000
Mangu 69 300520 3 9.39052 9.17968 16000
Langtang 70 247489 2 9.05651 9.82247 15000
Yola 71 395871 4 9.23 12.46 16000
Mubi 72 281471 3 10.267 13.267 13000
Fufore 73 209460 2 9.217 12.65 12000
Bauchi 74 493730 5 10.5 10 16000
Ningi 75 385997 4 11.067 9.567 14500
Toro 76 346000 3 10.059584 | 9.070932 | 12000
Maiduguri 77 540016 5 11.833 13.15 18500
Gwoza 78 276568 3 11.08611 | 13.69139 | 16000
Bama 79 270119 3 11.521831 | 13.688377 | 14500
Akko 80 337435 3 10.09994 | 11.04833 | 15000
Gombe 81 266844 3 10.28263 | 11.16674 | 16500
Yamaltu/Deba | 82 255726 3 10.23814 | 11.44152 | 14000
Gassol 83 245086 2 8.47269 10.5442 13000
Wukari 84 238283 2 7.96327 9.84767 13500
Sardauna 85 224357 2 6.87463 11.21184 | 12000
Fune 86 301954 3 11.85212 | 11.44862 | 16500
Jakusko 87 232458 2 1245605 10.91226 | 14000
Potiskum 88 204866 2 11.71064 | 11.15721 | 12000
Birnin Kudu 89 314108 3 11.49023 | 9.49368 13500
Gwaram 90 271368 3 11.1858 9.9686 12000
Kafin Hausa 91 267284 3 12.14958 | 10.00247 | 11000
Kaduna 92 767306 8 10.52306 | 7.44028 25000
Zaria 93 698163 7 10.98854 | 7.69622 20000
Igabi 94 430753 4 10.781 7.504 18000
Kano 95 2828861 10 12 8.517 30000
Nasarawa 96 596411 6 8.5 8.25 19000
Dala 97 418759 4 12.017 8.483 15000
Katsina 98 459022 5 12.983 7.6 19000
Kankara 99 243259 2 11.97384 | 7.36266 14000
Funtua 100 225156 2 11.47196 | 7.30699 13000
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Table 5.4: 109 nodes data set I11

Birnin Kebbi 101 | 268620 | 3 | 12.45832 | 4.26267 | 14000
Wasagu/Danko | 102 | 265271 | 3 | 11.42938 | 5.6749 | 12000
Bagudo 103 | 238014 | 2 | 11.34757 | 3.95674 | 11000
Sokoto 104 | 427760 | 4 | 13.067 5.233 18000
Gada 105 | 249052 | 2 | 13.74739 | 5.65521 | 16000
Gwadabawa 106 | 231569 | 2 | 13.44757 | 5.3106 | 15000
Gusau 107 | 383712 | 4 | 11.87555 | 6.61984 | 13000
Zurmi 108 | 293977 | 3 | 12.81147 | 6.7938 | 12000
Maru 109 | 293141 | 3 | 11.53807 | 6.27888 | 1000
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Table 5.5: 181 nodes data set 1

Cities Nodes | Population | Demand | Latitude Longitude | Fixed cost
Ado Ekiti 1 313690 3 7.61261 5.27384 10000
Ijero 2 221873 2 7.84582 5.05686 10000
Ekiti West 3 179600 2 7.68663 5.02847 10000
Ikole 4 170414 2 7.89347 5.5111 10000
Ekiti south west | 5 165277 2 7.51325 5.05179 10000
Ajeromi-Ifelodun | 7 6873316 10 6.4555 3.3339 10000
Alimosho 6 1319571 10 6.61056 3.29583 10000
Kosofe 8 682772 7 6.598781 | 3.409463 | 10000
Mushin 9 631857 6 6.535233 | 3.348967 | 10000
Oshodi-Isolo 10 629061 6 6.535498 | 3.308678 | 10000
Ifo 11 539170 5 6.78197 3.25195 10000
Ado-Odo/Ota 12 527242 5 6.62366 3.08626 10000
Ijebu 13 458641 5 6.99551 3.97085 10000
Abeokuta 14 449088 4 7.23079 3.16845 10000
Yewa(Egbado) 15 352180 4 7.14729 291795 10000
Akoko 16 701785 7 7.641 5.79399 10000
Akure 17 491033 5 7.26382 5.31136 10000
Ondo 18 364960 4 7.09145 4.96053 10000
Ilaje 19 289838 3 6.20323 4.76788 10000
Okitipupa 20 234138 2 6.54797 4.69894 10000
Ife 21 643582 6 7.47442 4.55933 10000
Illesha 22 212225 2 7.60146 4.7618 10000
Iwo 23 191348 2 7.67548 4.14127 10000
Ede 24 159307 2 7.7069 4.50922 10000
Osogbo 25 155507 2 7.75963 4.57625 10000
Ibadan 26 3034200 10 7.39639 3.91667 10000
Saki 27 382225 4 8.70467 3.58944 10000
Ibaraba 28 320718 3 7.43737 3.26761 10000
Ona-Ara 29 265571 3 7.28333 4.03333 10000
Oyo 30 260552 3 7.87878 4.02132 10000
Uyo 31 427873 4 5.033 7.917 10000
Essien Udim 32 193257 2 5.13333 7.6833 10000
Ibiono Ibom 33 188605 2 5.23333 7.88333 10000
Eket 34 172856 2 4.65 7.933 10000
Etinan 35 168924 2 4.85 7.83333 10000
Yenagoa 36 352285 4 5.033 6.333 10000
Southern Tjaw 37 321808 3 4.7 5.967 10000
Ekeremor 38 269588 3 5.05 5.783 10000
Sagbama 39 186869 2 5.167 6.2 10000
Brass 40 184127 2 4.315 6.24167 10000
Calabar 41 375196 4 4.95 8.325 10000
Akpabuyo 42 272262 3 4.880791 | 8.528161 | 10000
Odunkpani 43 192884 2 5.081238 | 8.349917 | 10000
Boki 44 186611 2 6.27389 9.01 10000
Obubra 45 172543 2 6.08333 8.33333 10000
Warri 46 564658 6 5.517 5.75 10000
Ughelli 47 533325 5 55 5.983 10000
Asaba 48 514679 5 6.1978417 | 6.7284667 | 10000
Ethiope 49 403654 4 5.678246 | 5962111 | 10000
Sapele 50 142652 1 5.9 5.667 10000
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Table 5.6: 181 nodes data set II

Cities Nodes | Population | Demand | Latitude Longitude | Fixed cost
Benin 51 1495800 10 6.33333 5.62222 10000
Oredo 52 374515 4 6.23581 5.55114 10000
Ikpobah-Okha | 53 372080 4 6.16445 5.62284 10000
Egor 54 340287 3 6.35748 5.57547 10000
Akoko-Edo 55 261567 3 7.34506 6.11489 10000
Portharcourt 56 1005904 10 4.73292 6.96919 10000
Obio/Akpor 57 462350 5 4.83153 6.98906 10000
Ahoada 58 415556 4 5.0858 6.47089 10000
Khana 59 292924 3 4.69962 7.42264 10000
Abua-Oduai 60 282410 3 4.82977 6.56739 10000
Aba 61 534265 5 5.117 7.367 10000
Umuahia 62 359230 4 5.524953 | 7.492241 | 10000
Isiala ngwa 63 290773 3 5.286819 | 7.416505 | 10000
Ohafia 64 245987 2 5.617 7.833 10000
Osisioma ngwa | 65 220662 2 5.14972 7.33028 10000
Onitsha 66 7425000 10 6.132942 | 6.792399 | 10000
Idemili 67 637821 6 6.123656 | 6.947753 | 10000
Nnewi 68 391227 4 6.010519 | 6.910345 | 10000
Awka 69 301846 3 6.222004 | 7.082116 | 10000
Ihiala 70 302277 3 5.851644 | 6.851181 | 10000
Afikpo 71 314191 3 5.89258 7.93534 10000
Izzi 72 236679 2 6.48453 8.29468 10000
Onicha 73 236609 2 6.09899 7.84133 10000
Ikwo 74 214969 2 6.05316 8.16284 10000
Abakaliki 75 149683 1 6.32485 8.11368 10000
Enugu 76 717291 7 6.4526667 | 7.5103333 | 10000
Nsukka 77 309448 3 6.85329 7.34801 10000
Igbo Eze North | 78 258829 3 6.98333 7.45 10000
Udi 79 238305 2 6.51181 7.35535 10000
Igbo-Etiti 80 208333 2 6.68151 7.41959 10000
Owerri 81 403425 4 5.485 7.035 10000
Ideato 82 315815 3 5.88537 7.13136 10000
Isiala-Mbano 83 197921 2 5.66767 7.20338 10000
Abo-Mbaise 84 194779 2 5.42549 7.2518 10000
Ahiazu-Mbaise | 85 170824 2 5.54639 7.27135 10000
Abuja 86 776298 8 9.0765 7.3986 10000
Gboko 87 361325 4 7.325 9.005 10000
Makurdi 88 300377 3 7.73056 8.53611 10000
Gwer 89 290973 3 7.3 8.48333 10000
Oturkpo 90 266411 3 7.19306 8.14639 10000
Kwande 91 248642 2 6.80099 9.47021 10000
Okene 92 325623 3 7.48333 6.21667 10000
Ankpa 93 266176 3 7.44848 7.63174 10000
Dekina 94 260968 3 7.58435 7.17344 10000
Okehi 95 223574 2 7.68192 6.28543 10000
Lokoja 96 196643 2 8.20488 6.56305 10000
Mlorin 97 777667 8 8.43005 4.426 10000
Baruten 98 206679 2 9.26039 3.31607 10000
Edu 99 201642 2 8.89181 5.21012 10000
Ifelodun 100 204975 2 7.91667 4.66667 10000
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Table 5.7: 181 nodes data set III

Cities Nodes | Population | Demand | Latitude Longitude | Fixed cost
Asa 101 124668 1 8.43005 4.426 10000
Lafia 102 329922 3 8.64007 8.69959 10000
Karu 103 216230 2 9.04694 7.76364 10000
Nasarawa 104 187220 2 8.5 8.25 10000
Obi 105 148405 1 8.34738 8.72769 10000
Nasarawa Eggon | 106 148405 1 8.74947 8.44035 10000
Minna 107 348788 3 9.583555 | 6.546316 | 10000
Mashegu 108 215197 2 9.92993 5.23385 10000
Suleja 109 215075 2 9.19085 7.15184 10000
Shiroro 110 235665 2 10.11543 | 6.68307 10000
Mokwa 111 242858 2 9.2 5.33333 10000
Jos 112 900000 9 9.933 8.883 10000
Mangu 113 300520 3 9.39052 9.17968 10000
Langtang 114 247489 2 9.05651 9.82247 10000
Shendam 115 205119 2 8.71667 9.5 10000
Quaan Pan 116 197276 2 8.76078 9.16142 10000
Yola 117 395871 4 9.23 12.46 10000
Mubi 118 281471 3 10.267 13.267 10000
Fufore 119 209460 2 9.217 12.65 10000
Song 120 195188 2 9.82444 12.625 10000
Demsa 121 178407 2 9.455541 12.152552 | 10000
Bauchi 122 493730 5 10.5 10 10000
Ningi 123 385997 4 11.067 9.567 10000
Toro 124 346000 3 10.059584 | 9.070932 | 10000
Alkaleri 125 328284 3 9.883 10.5 10000
Katagum 126 293020 3 12.283 10.35 10000
Maiduguri 127 540016 5 11.833 13.15 10000
Gwoza 128 276568 3 11.08611 | 13.69139 | 10000
Bama 129 270119 3 11.521831 | 13.688377 | 10000
Ngala 130 236498 2 12.342068 | 14.185827 | 10000
Damboa 131 233200 2 11.15 12.75 10000
Akko 132 337435 3 10.09994 | 11.04833 | 10000
Gombe 133 266844 3 10.28263 | 11.16674 | 10000
Yamaltu 134 255726 3 10.23814 | 11.44152 | 10000
Funakaye 135 237687 2 10.74227 | 11.40843 | 10000
Balanga 136 211490 2 9.8096 11.78623 | 10000
Gassol 137 245086 2 8.47269 10.5442 10000
Wukari 138 238283 2 7.96327 9.84767 10000
Sardauna 139 224357 2 6.87463 11.21184 | 10000
Bali 140 211024 2 8.15541 10.96853 | 10000
Karim Lamido 141 193924 2 9.22208 10.86536 | 10000
Fune 142 301954 3 11.85212 | 11.44862 | 10000
Jakusko 143 232458 2 1245605 10.91226 | 10000
Potiskum 144 204866 2 11.71064 | 11.15721 | 10000
Geidam 145 155740 2 12.65454 | 12.06733 | 10000
Nguru 146 150699 2 12.97973 | 10.39914 | 10000
Birnin Kudu 147 314108 3 11.49023 | 9.49368 10000
Gwaram 148 271368 3 11.1858 9.9686 10000
Kafin Hausa 149 267284 3 12.14958 | 10.00247 | 10000
Dutse 150 251135 3 11.80331 | 9.30708 10000
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Table 5.8: 181 nodes data set IV

Cities Nodes | Population | Demand | Latitude | Longitude | Fixed cost
Jahun 151 229882 2 12.07996 | 9.55457 10000
Kaduna 152 767306 8 10.52306 | 7.44028 10000
Zaria 153 698163 7 10.98854 | 7.69622 10000
Igabi 154 430753 4 10.781 7.504 10000
Lere 155 339740 3 10.34643 | 8.56734 10000
Chikun 156 372272 4 10.315 7.274 10000
Kano 157 2828861 10 12 8.517 10000
Nasarawa 158 596411 6 8.5 8.25 10000
Dala 159 418759 4 12.017 8.483 10000
Gwale 160 357827 4 11.98211 | 8.49818 10000
Kumbotso 161 294391 3 11.90063 | 8.51633 10000
Katsina 162 459022 5 12.983 7.6 10000
Kankara 163 243259 2 11.97384 | 7.36266 10000
Funtua 164 225156 2 11.47196 | 7.30699 10000
Daura 165 224884 2 12.98195 | 8.2516 10000
Kafur 166 209360 2 11.67376 | 7.68971 10000
Birnin Kebbi 167 268620 3 12.45832 | 4.26267 10000
Wasagu/Danko | 168 265271 3 11.42938 | 5.6749 10000
Bagudo 169 238014 2 11.34757 | 3.95674 10000
Argungu 170 200248 2 12.68795 | 4.40358 10000
Jega 171 197757 2 12.16397 | 4.48643 10000
Sokoto 172 427760 4 13.067 5.233 10000
Gada 173 249052 2 13.74739 | 5.65521 10000
Gwadabawa 174 231569 2 13.44757 | 5.3106 10000
Tambuwal 175 225917 2 12.36609 | 4.84882 10000
Sabon Birni 176 207470 2 13.4847 | 6.26409 10000
Gusau 177 383712 4 11.87555 | 6.61984 10000
Zurmi 178 293977 3 12.81147 | 6.7938 10000
Maru 179 293141 3 11.53807 | 6.27888 10000
Kaura Namoda | 180 285363 3 12.56195 | 6.57617 10000
Tsafe 181 266929 3 11.88251 | 6.8947 10000

161




fontext

Appendix (IT) model I GAMS code

* EVALUATING GAMS

$offtext

* Turn on the default end of line comment Character !!

$onEolcom

* Define an end of line Comment Character of your choice to be used

* $eolcom %%

* Declaration Of Sets to Be used

Sets
\ ’Set of Customers’ /1%37/
* vV ’Set of Candidate SVC Locations’ /1%*37/
W ’Set of Pools’ /wl*w6/
*DYNAMIC SETS (ACTING AS SUBSETS OF CUSTOMERS/SvCs FOR EACH POOL)
v1(V) ’'Set of cities in pool 1’ /1*6/
v2(V) ’'Set of cities in pool 2’ /7*12/
v3(V) ’'Set of cities in pool 3’ /13*17/
v4(V) ’'Set of cities in pool 4’ /18%24/
v5(V) ’Set of cities in pool 5’ /25%30/
v6(V) ’Set of cities in pool 6’ /31%37/
* THE SAME THING IS DONE FOR POOLS
wl(w) ’Set of cities in pool 1’ /wl/
w2(w) ’Set of cities in pool 2’ /w2/
w3(w) ’Set of cities in pool 3’ /w3/
w4d(w) ’Set of cities in pool 4’ /w4/
w5(w) ’Set of cities in pool 5’ /w5/
wo(w) ’Set of cities in pool 6’ /w6/
sets

* Data sets containing the lattitude, longitude and demand for cities

Datal 'Raw Data Sets To Be entered’ /Latitude, Longitude, Demand/;

* Declare the set indices for U, V and W as same as i, j and pool

* Declaration of Parameters to be used

* Note That Gams is not case sensitive,thus f(V,W) is same as f(v,w)

Parameters
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h® ’is the per unit holding cost of each unit of inventory at SV Cv
*in Poolw per unit time’
p(v,w)’is the per unit cost of backorder per unit inventory for each

*unit of time’

q(v,w) ’is the LT cost per unit inventory’
lambu(v) ’Demand rate of customer u’
lambw(w) "Demand rate (Poisson) at Pool $w$’
lamb® ’Demand rate (Poisson) at Plant’

rho ’Utilisation rate of the plant’
tau ’Average response time requirement’
alpha(w) ’exact lead time from plant to pool $w§$’

C(v,w)’is the space capacity of SVC $v$§ in pool $w$, this is uniform
for *all SVCs in pool $w$’
Cw(w) ’is the total space available for storage at pool $w$’

co ’is the total space available for storage space at the plant’;

* The Data Containing longitude and latitude of each City is to be
*read in as a table

Table Data(v,*) ’Datasets for each City(Node)’
$ Include RawDataset371.inc

Display Data; !! This Line displays the input Data

o
w

* Data containing distances between cities in each of the six

*pools, are imported from Excel files that were saved in csv format

* Theline below represents \hat w
parameter mode(w) /wl 6, w2 6, w3 5, wd 7, w5 6, w6 7 /;

ho= 50 ;
p(v,w) = 70;
q(v,w) = 25;
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co =5 ;

C(v,w) = CO;

*The total storage in each pool is clxulated and assigned separately
*for each pool

Cw(w) = sum(v, C(v,w)) ;

lambu(v) = Data(v,"Demand") ;
lamb® = sum(v,lambu(v));
* Total demand in each pool is calculated and assigned separately

*for each pool

lambw(’wl’) = sum(v$(l<= ord(v) and ord(v)<=6),lambu(v));
lambw(C’w2’) = sum(v$(7<= ord(v) and ord(v)<=12),lambu(v));
lambw(’w3’) = sum(v$(13<= ord(v) and ord(v)<=17),lambu(v));
lambw(’w4’) = sum(v$(18<= ord(v) and ord(v)<=24),lambu(v));
lambw(’w5’) = sum(v$(26<= ord(v) and ord(v)<=30),lambu(v));
lambw(’w6’) = sum(v$(31<= ord(v) and ord(v)<=37),lambu(v));
display lamb®, lambw, C, cw;
rho = 0.9 ; !! The value of rho will be varied later on
tau = 0.5 ; !! The value of tau will be varied later on

parameter alpha(w) /wl 0.125745458, w2 0.140129167,
w3 0.06223475, w4 0.216291083, w5 0.195848958,
w6 0.241284333/;

The Distances are saved temporarily in a variable called a

for pool

*Binary Variables

*X(v,w) "X(v,w)= 1 If SCv is open in pool $w$§, O otherwise’
*Y(u,v,w) ’y(Qu,v,w) =1, if customer u’s demand is allocated to
SVC $v$ in pool $w$, O otherwise ’

parameters
SO,Ib0®, Lb(w);
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SO = 3;
IbO SO - (rho/(1-rho))*(1-rho**S0);
Lb(w) = (rho**(S0+1)/(1-rho))/lamb® + alpha(w);

* Determining the value of F(w)

set s2 /0*175/; !! A set to be used for the summation

* number of svc in pools used to estimate
Sw(w) /wl 6, w2 6, w3 5, wd 7, w5 6, wo 7 /
parameter

Sw(w) / wl 30, w2 30, w3 25, w4 35, w5 30, w6 35 /

Fw(w), Svw(v,w), Fvw(v,w);
Svw(v,w) = Sw(w)/mode(w) ;
*Svw(v,w) = Sw(w)/mode(w);
*here Svw(v,w) = 5. In order to find optimal Svw(v,w) the problem
*is solved for different scenarios of Svw(v,w) from ® to 5 Or from

*® to 10 and the minimum is selected.

*Y.lo(u,v,w) = 1;
Variables OBJ;

option sysout

1
[e]
=}

option domlim

Il
N

*$ontext

Equations
Eql, Eq4(v,w),Eq5(v,w);

* THE ObJECTIVE FUNCTION TO BE MINIMIZED

Eql .. OB] =e= sum((v,w), (hO+q(v,w))*(sum(s2$(s2.val
<=Svw(v,w)-1),

(Svw(v,w)-s2.val)*exp[-lambu(v)*Lb(w)]*
(([1lambu(v)*Lb(w)]**s2.val))/fact(s2.val))) -q(v,w)*Svw(v,w) +
lambu(v) *p(v,w) *((rho**(S0+1))/(1lamb®* (1 -rho)) + alpha(w))

+ (p(v,w)-q(v,w))*(1ambu(v) /lambw(w))
*(sum(s2$(s2.val<=Sw(w)-1), (Sw(w)-s2.val)*exp[-lambu(v)*Lb(w)]
*(([lambu(v)*Lb(w)]**s2.val))/fact(s2.val))-Sw(w)) ) + hO0*Ib0;
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* SUBJECT TO

Eq4(v,w) .. Svw(v,w) =1= C(v,w);

Eq5(v,w) .. ((rho**(S0+1))/(lamb®*(1 -rho)) + alpha(w)- tau) =1=
(1ambu(v) /lambw(w)) *(Sw(w) -sum(s2$(s2.val<=Sw(w)-1), (Sw(w)-s2.val)
*exp[- lambu(v)*Lb(w)]*(([lambu(v)*Lb(w)]**s2.val))/fact(s2.val)));
*Eq6(v,w) .. Svw(v,w) =1= C(v,w);

* The Model Statement assigns a name and required equations to the

*Problem to be solved
option iterlim =50000;
option reslim =10000;

Model Optim /all/;

* The Solve Statement Then Solves the Problem

solve Optim minimizing OBJ using mip ;

*$offtext
Appendix (IIT) model II GAMS code
fontext
* EVALUATING GAMS
fofftext

o
w

Turn on the default end of line comment Character !!

$onEolcom

* Define an end of line Comment Character of your choice to be used
* $eolcom %%

* Declaration Of Sets to Be used

Sets
U ’Set of Customers’ /1%37/

* vV "Set of Candidate SVC Locations’ /1%37/
W ’Set of Pools’ /wl*w6/

* DYNAMIC SETS (ACTING AS SUBSETS OF CUSTOMERS/SvCs FOR EACH POOL)
ul(U) ’Set of cities in pool 1’ /1%6/
u2(U) ’Set of cities in pool 2’ /7%12/
u3(U) ’Set of cities in pool 3’ /13*17/
u4(U) ’Set of cities in pool 4’ /18%24/
u5(U) ’Set of cities in pool 5’ /25%30/
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u6(U) ’Set of cities in pool 6’ /31%37/
* THE SAME THING IS DONE FOR POOLS
wl(w) ’Set of cities in pool 1’ /wl/
w2(w) ’'Set of cities in pool 2’ /w2/
w3(w) ’'Set of cities in pool 3’ /w3/
w4d(w) ’'Set of cities in pool 4’ /w4/
w5(w) ’'Set of cities in pool 5’ /w5/
w6(w) ’'Set of cities in pool 6’ /w6/
* Make the cities(nodes) associated with ul to u6 the same with
vl to v6
Alias (u, v), (ul, vl), @2, v2), (u3, v3), (u4, v4),
(us, v5), (ub, v6);
sets
* Data sets containing the lattitude, longitude and demand for
Datal ’Raw Data Sets To Be entered’ /Latitude, Longitude, Demand/;

* Declaration of Parameters to be used

o
w

Note That Gams is not case sensitive,thus f(V,W) is same as f(v,w)
Parameters

f(v,w) ’Fixed cost of opening SVC at location v in Pool $w$’

ho ’is the per unit holding cost of each unit of inventory
*at SVCv in P oolw per unit time’

p(v,w) ’is the per unit cost of backorder per unit inventory

* for each unit of time’

q(v,w) ’Lateral transshipment cost per unit inventory’
dCu,v,w) ’Distance from SVCvw to customer u’

diCu,v,w) "Transportation cost from SVCvw to customer u’
lambu(u) ’Demand rate of customer u’

lambvw(v,w) ’Demand rate (Poisson) at SVC $v$ in Pool $w$’

lambw(w) "’Demand rate (Poisson) at Pool $w$’

lamb® ’Demand rate (Poisson) at Plant’

rho ’Utilisation rate of the plant’

tau ’Average response time requirement’

alpha(w) ’exact lead time from plant to pool $w§$’

dmax ’is the Maximum allowable distance between a customer its

assigned SVC’

a(u,v,w) ’if the distance from customer u to candidate location v
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in poolw is not greater than dmax, 0 otherwise’
C(v,w) ’is the space capacity of SVC $v$ in pool $w$, this is
uniform for all

SVCs in pool $w$’
Cw(w) ’is the total space available for storage at pool $w$’
Co, k(Cu,w) ’is the total space available for storage space
*at the plant’;
* The Data Containing longitude and latitude of each City is to be
*read in as a table
Table Data(u,*) ’Datasets for each City (Node)’
$ Include RawDataset37.inc

Display Data; !! This Line displays the input Data

* Data containing distances between cities in each of the six pools,

*are imported from Excel files that were saved in csv format

$ondelim I'l Turn delimeters on
Table Distpl(*,*)

$ Include 37nodesPoollDist.csv
display Distpl ;

Table distp2(*,*)
$ Include 37nodesPool2Dist.csv
display Distp2

Table Distp3(*,*)
$ Include 37nodesPool3Dist.csv
display Distp3

Table Distp4(*,*)
$ Include 37nodesPool4Dist.csv
display Distp4

Table Distp5(*,*)
$ Include 37nodesPool5Dist.csv
display Distp5
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Table Distp6(*,*)
$ Include 37nodesPool6Dist.csv
display Distp6 ;

$offdelim

* Theline below represents \hat w
parameter mode(w) /wl 6, w2 6, w3 5, wd 7, w5 6, w6 7 /;

f(v,w)= 10000;

h0= 50 ;
p(v,w) = 70;
q(v,w) = 25;
dmax = 150;
co =5 ;
C(v,w) = CO;

*The total storage in each pool is clxulated and assigned separately
*for each pool
Cw(w) = sum(v, C(v,w)) ;

lambu(u) = Data(u,"Demand") ;

lamb® = sum(u,lambu(u));

* Total demand in each pool is calculated and assigned separately
*for each pool

lambw('wl’) = sum(u$(l<= ord(u) and ord(u)<=6),lambu(u));
lambw(’w2’) = sum(u$ (7<= ord(u) and ord(u)<=60),lambu(u));
lambw(’w3’) = sum(u$(13<= ord(u) and ord(u)<=17),lambu(u));
lambw(’w4’) = sum(u$(18<= ord(u) and ord(u)<=24),lambu(u));

lambw(C’w5’) = sum(u$(26<= ord(u) and ord(u)<=30),lambulu));
lambw(’w6’) = sum(u$(31<= ord(u) and ord(u)<=37),lambulu));
display lamb®, lambw, C, cw;

rho = 0.9 ; !! The value of rho will be varied later on
tau = 0.205 ; !! The value of tau will be varied later on
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parameter alpha(w) /wl 0.2282144583, w2 0.2269349167,
w3 0.1834542083, w4 0.1869252500, w5 0.3439902500,

w6 0.2304287917 /;

* The Distances are saved temporarily in a variable called a
*for each pool

d(Cul,vl,’wl’) = Distpl(ul,vl) ;

d(u2,v2,’'w2’) Distp2(u2,v2) ;

d(u3,v3,’w3’) Distp3(u3,v3) ;

d(u4,v4,’wd’) = Distpd(u4,vd) ;

d(u5,v5,’w5’) = Distp5(u5,v5) ;

d(u6,v6,’w6’) = Distp6(u6,vb) ;

diCul,vl,’wl’) = Distpl(ul,v1)/10 ;

dli(u2,v2,’w2’) Distp2(u2,v2)/10 ;

d1(u3,v3,’w3’) Distp3(u3,v3)/10;

di(u4,v4,’wd’) Distp4(u4,v4) /10 ;

d1(u5,v5,’w5’) Distp5(u5,v5)/10 ;

d1(u6,v6,’w6’) Distp6(u6,v6) /10;

Binary Variables

X(v,w) "X(v,w)= 1 If SCv is open in pool $w$, O otherwise’
Y(u,v,w) ’y(u,v,w) =1, if customer u’s demand is allocated to
SVC $v$ in pool $w$, O otherwise ’

loop((u,v,w),
ifC [(dQu,v,w) > 0 and d(u,v,w)<= dmax)] ,
a(u,v,w)= 1;
* Y.1(u,v,w)= 1;
k(u,w) =1 ;
else
a(u,v,w)= 0;
Y.1(u,v,w)= 0;
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loop((ul,vl,wl),

if ([(d(ul,vl,wl)=0)

a(ul,vl,wl)= 1;
)
)

loop((u2,v2,w2),

if ([(d(u2,v2,w2)=0)

a(u2,v2,w2)= 1;
)
)

loop((u3,v3,w3),

if ([(d(u3,v3,w3)=0)

a(u3,v3,w3)=1;
)k
)k

loop((u4d,vd,wd),

if ([(d(u4,v4,wd)=0)

a(u4,vd,wd)= 1;
);
);

loop((u5,v5,w5),

if ([(d(u5,v5,w5)=0)

a(u5,v5,w5)= 1;
)
)

loop((u6,v6,w6),

if ([(d(u6,v6,w6)=0)

a(u6,ve,w6)= 1;

and

and

and

and

and

and

(ord(ul)=

(ord(u2)=

(ord(u3)=

(ord(ud)=

(ord(ub5)=

(ord(ub)=
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ord(v4))],
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);
);

*Display the parameter ’a’ that contains all distances between
*cities

display d, a , lambu;

parameters
SO, BbO, Wt®, IbO®, Lb(w);
SO = 4;
Bb® = rho**(S0+1)/(1-rho) ;
Wt® = BbO®/lamb0 ;
Ib® = SO® - (rho/(1-rho))*(1-rho**S0);

Lb(w) = Wt® + alpha(w);
* Determining the value of F(w)
set s2 /0*%175/; !! A set to be used for the summation
* number of svc in pools used to estimate Sw(w) /wl 6, w2 6,
w3 5, wd 7, w5 6, wo 7 /
parameter

Sw(w) / wl 60, w2 60, w3 50, w4 70, w5 60, w6 70 /

Fw(w), Svw(v,w), Fvw(v,w);

Svw(v,w) = Sw(w)/mode(w) ;

Svw(v,w) = Sw(w)/mode(w) ;

*here Svw(v,w) = 5. In order to find optimal Svw(v,w) the
problem is solved for different scenarios of Svw(v,w) from

® to 5 Or from O to 10 and the minimum is selected.

* A Library of Function is Loaded which contains the cdfpoisson
function

$funcLibIn stolib stodclib

Function cdfPoisson /stolib.cdfPoisson/;

* Fw(w) cdfPoisson(s2.val$(s2.val<=Sw(w)), lambw(w)*Lb(w));

* Fvw(v,w) = cdfPoisson( s2.val, sum(u,lambu(u)*Y(u,v,w)*Lb(w)) );
Parameters Ibw(w), Bbw(w);

Ibw(w) = sum(s2${s2.val<=Sw(w)-1}, cdfPoisson{s2.val, lambw(w)*Lb(w)1});
Bbw(w) = ((lambw(w)/lamb®)*Bb0 + lambw(w)*alpha(w)- Sw(w)+ Ibw(w));



*Y.lo(u,v,w) = 1;
Variables OBJ;
option sysout = on;

option domlim

l
N

*$ontext

Equations

Eql, Eq3(u,v,w), Eq5(v,w)

Eq21(ul,wl) , Eq22(u2,w2),Eq23(u3,w3),Eq24(ud,wd) ,Eq25Cu5,w5),
Eq26(u6,w6) ;

* THE ObJECTIVE FUNCTION TO BE MINIMIZED
Eql .. OB] =e= sum((v,w), f(v,w)*X(v,w) + hO®*(sum(s2$
(s2.val<=Svw(v,w)-1), (Svw(v,w)-s2.val)*exp[-sum{u, lambu(u) *Y(u,v,w)}
*Lb(w) 1*(([sum{u, lambu(w) *Y(u,v,w) }*Lb(w) ]**s2.val))/fact(s2.val))) +
p(v,w)*(C sum(u,lambu(u) *Y(u,v,w))/lambw(w) )*Bbw(w))+ g(v,w)¥*
(sum(s2${s2.val<=Svw(v,w)-1}, (Svw(v,w)-s2.val) *exp[-sum{u, lambu(u) *
Y(u,v,w)}*Lb(w)]*(([sum{u, lambu(u) *Y(u,v,w) }*Lb(w)]**s2.val)
/fact(s2.val)) )- Svw(v,w) - (sum(u,lambu(uw)*Y(u,v,w))/lambw(w))*
(Ibw(w)-Sw(w)))+ sum(u, lambu(w)*Y(u,v,w)*dl(u,v,w)) ) + hO*Ib0;

* SUBJECT TO

Eq21(ul,wl) .. sum[vl, Y(ul,vl,wl)] =e=1
Eq22(u2,w2) .. sum[v2, Y(u2,v2,w2)] =e= 1
Eq23(u3,w3) .. sum[v3, Y(u3,v3,w3)] =e= 1;
Eq24(u4,wd) .. sum[v4, Y(ud,vd4,wd)] =e= 1
Eq25(u5,w5) .. sum[v5, Y(u5,v5,w5)] =e=1
Eq26(u6,w6) .. sum[v6, Y(u6,v6,w6)] =e= 1

Eq3(u,v,w) .. Y(u,v,w) =1= a(u,v,w)*X(v,w) ;

*Eq4(v,w) .. Svw(v,w) =1= C(v,w);

Eq5(v,w) .. (sum(Cu, lambu(u)*Y(u,v,w))/lambw(w) )*Bbw(w) =1=
tau*sum(u, lambu(w)*Y(u,v,w));

* The Model Statement assigns a name and required equations
*to the Problem to be solved

option iterlim =50000;
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option reslim =10000;
Model Optim /all/;

* The Solve Statement Then Solves the Problem

solve Optim minimizing OBJ using minlp ;
*$offtext

parameter cnt ;

cnt = sum((v,w)$&x.1(v,w)),1)

display X.1, Y.1, cnt;

Appendix (IV)model IT GAMS code without LT

fontext

* EVALUATING GANMS

$offtext

* Turn on the default end of line comment Character !!

$onEolcom

* Define an end of line Comment Character of your choice to be used
* $eolcom %%

* Declaration Of Sets to Be used

Sets
U ’Set of Customers’ /1*37/

* vV ’Set of Candidate SVC Locations’ /1%37/
W ’Set of Pools’ /wl*w6/

* DYNAMIC SETS (ACTING AS SUBSETS OF CUSTOMERS/SvCs FOR EACH POOL)
ul(U) ’Set of cities in pool 1’ /1*6/
u2(U) ’Set of cities in pool 2’ /7*12/
u3(U) ’Set of cities in pool 3’ /13*17/
u4d(U) ’Set of cities in pool 4’ /18%24/
u5(U) ’'Set of cities in pool 5’ /25%30/
u6(U) ’'Set of cities in pool 6’ /31%37/

* THE SAME THING IS DONE FOR POOLS
wl(w) ’Set of cities in pool 1’ /wl/
w2(w) ’Set of cities in pool 2’ /w2/
w3(w) ’Set of cities in pool 3’ /w3/
w4d(w) ’Set of cities in pool 4’ /w4/
w5(w) ’Set of cities in pool 5’ /w5/
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wo(w) ’Set of cities in pool 6’ /w6/
*Make the cities(nodes) associated with ul to u6 the same
*with vl to vé6
Alias (u, v), (ul, vl), 2, v2), (u3, v3), (u4, v4),
(us, v5), (uoe, v6);
sets
* Data sets containing the lattitude, longitude and demand
Datal ’Raw Data Sets To Be entered’ /Latitude, Longitude, Demand/;
* Declare the set indices for U, V and W as same as i, j and pool
* Declaration of Parameters to be used
* Note That Gams is not case sensitive,thus f(V,W) same as f(v,w)
Parameters
f(v,w) ’Fixed cost of opening SVC at location v in Pool $w$’
ho ’is the per unit holding cost of each unit of inventory
at SVCv in P oolw per unit time’
p(v,w) ’is the per unit cost of backorder per unit inventory for

each unit of time’

q(v,w) ’Lateral transshipment cost per unit inventory’
d(u,v,w) 'Distance from SVCvw to customer u’

diCu,v,w) "Transportation cost from SVCvw to customer u’
lambu(u) ’Demand rate of customer u’

lambvw(v,w) ’Demand rate (Poisson) at SVC $v$ in Pool $w$’

lambw (w) ’Demand rate (Poisson) at Pool $w$’

lamb@® ’Demand rate (Poisson) at Plant’

rho ’Utilisation rate of the plant’

tau ’Average response time requirement’

alpha(w) ’exact lead time from plant to pool $w$’

dmax ’is the Maximum allowable distance between a customer

its assigned SVC’
aCu,v,w) ’if the distance from customer u to candidate location
v in pool $w$ is not

greater than dmax, 0 otherwise’

C(v,w) ’is the space capacity of SVC $v$ in pool $w$, this is
uniform for all SVCs in pool $w$’

Cw(w) ’is the total space available for storage at pool $w$’
Co, k(Cu,w) ’is the total space available for storage space
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at the plant’ ;

* The Data Containing longitude and latitude of each City is to
*be read in as a table

Table Data(u,*) ’Datasets for each of The Cities(Nodes)’

$ Include RawDataset371.inc

Display Data; !! This Line displays the input Data

* Data containing distances between cities in each of the six pools,

*are imported from Excel files that were saved in csv format

$ondelim I'l Turn delimeters on
Table Distpl(*,*)

$ Include 37nodesPoollDist.csv
display Distpl ;

Table distp2(*,*)
$ Include 37nodesPool2Dist.csv
display Distp2

Table Distp3(*,*)
$ Include 37nodesPool3Dist.csv
display Distp3

Table Distp4(*,*)
$ Include 37nodesPool4Dist.csv
display Distp4

Table Distp5(*,*)
$ Include 37nodesPool5Dist.csv
display Distp5

Table Distp6(*,*)
$ Include 37nodesPool6Dist.csv

display Distp6 ;

$offdelim
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o
7

* Theline below represents \hat w
parameter mode(w) /wl 6, w2 6, w3 5, wd 7, w5 6, w6 7 /;

f(v,w)= 10000;

ho= 50 ;
p(v,w) = 70;
q(v,w) = 25;
dmax = 150;
c® =5.5;
C(v,w) = CO;

*The total storage in each pool is clxulated and assigned separately
*for each pool
Cw(w) = sum(v, C(v,w)) ;

lambu(u) = Data(u, "Demand") ;
lamb® = sum(u,lambu(u));

* Total demand in each pool is calculated and assigned separately
*for each pool

lambw('wl’) = sum(u$(l<= ord(u) and ord(u)<=6),lambu(w));

lambw('w2’) = sum(u$ (7<= ord(u) and ord(u)<=60),lambu(u));
lambw('w3’) = sum(u$(13<= ord(u) and ord(u)<=17),lambuu));
lambw('w4’) = sum(u$(18<= ord(u) and ord(u)<=24),lambu(u));
lambw(’w5’) = sum(u$(26<= ord(u) and ord(u)<=30),lambuu));
lambw('w6’) = sum(u$(31<= ord(u) and ord(u)<=37),lambuu));
display lamb®, lambw, C, cw;

rho = 0.9 ; !! The value of rho will be varied later on
tau = 0.11 ; !! The value of tau will be varied later on

*CALCULATION FOR THE DISTANCES BETWEEN EACH CITY

parameters

lat(v), long(v);
lat(v) = Data(v,’latitude’);
long(v) = Data(v,’longitude’);
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w

The line below is Optional.
display
lat ;
* Convert Them to radians
lat(v) = lat(v)*Pi/180;
long(v) = long(v)*Pi/180;
* The line below is Optional.
display
lat ;
Scalar
Radi ’The Radius of the Earth ’;
Radi = 6371;
Parameter
distl(u,v);
* The Distances are calculated using a the haversine formula
distl(u,v) = 2*Radi*arcsin{ sqrt[ power( sin( (lat(u)-lat(v))/2 ),
2 ) + cos(lat(u))
*cos(lat(v)) * power( sin( (long(u)-long(v))/2 ), 2 ) 1} ;
display
distl ;

o
w

The Shipping cost is obtained via dividing the distances by 10
* The plant is assumed to be in Abuja (i.e node 37) so we have to
*find the shipping cost

* of transporting goods from the plant (Abuja) to each candidate
*facility (service centres)

* location, And then save these values in a parameter called alpha(W).
* YOU CAN CHANGE THE 37 TO THE NUMBER of the city where you want the
*plant to be located, e.g

* If you want the plant to be in Abia state, then you have to use
*alpha(W) = d(’1’,w); to

* replace the line of code below.

*The Distances are saved temporarily in a variable called a
d(ul,vl,’wl’) Distpl(ul,vl) ;
d(u2,v2,’'w2’) Distp2(u2,v2) ;
d(u3,v3,’w3’) Distp3(u3,v3) ;
d(u4,vd,’wd’) Distp4(u4,vd) ;
d(u5,v5,’w5’) Distp5(u5,v5) ;
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d(u6,v6,’w6’) = Distp6(u6,v6) ;

diCul,vl,’wl’) Distpl(ul,vl)/10 ;
di(u2,v2,’w2’) Distp2(u2,v2)/10 ;
di(u3,v3,’w3’) Distp3(u3,v3)/10;
di(u4d,vd,’wd’) Distp4(u4,v4) /10 ;
d1(u5,v5,’w5’) Distp5(u5,v5)/10 ;
d1(u6,v6,’wb’) Distp6(u6,v6) /10;

Binary Variables
X(v,w) ’'x(v,w)= 1 If SVC $v§ is open in pool $w$, 0 otherwise’
Y(u,v,w) y(u,v,w) =1, if customer u’s demand is allocated to

*SVC $v$ in pool $w$, O otherwise ’

loop((u,v,w),

ifC [(dCu,v,w) > 0 and d(u,v,w)<= dmax)] ,
a(u,v,w)= 1;

® Y.1(u,v,w)= 1;
k(u,w) =1 ;

else
a(u,v,w)= 0;

* Y.1(u,v,w)= 0;
k(u,w) = 0 ;

);

);

loop((ul,vl,wl),

if ([(d(ul,vl,w1)=0) and (ord(ul)= ord(vl))],
a(ul,vl,wl)= 1;

);

);

loop((u2,v2,w2),
if ([(d(u2,v2,w2)=0) and (ord(u2)= ord(v2))],
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a(u2,v2,w2)= 1;
)
)

loop((u3,v3,w3),

if ([(d(u3,v3,w3)=0) and (ord(u3)= ord(v3))],
a(u3,v3,w3)=1;

);

);

loop((u4,vd,wd),

if ([(d(u4,v4,wd)=0) and (ord(u4d)= ord(v4))],
a(u4,vd,wd)= 1;

);

);

loop((u5,v5,w5),

if ([(d(u5,v5,w5)=0) and (ord(u5)= ord(v5))],
a(u5,v5,w5)=1;

);

);

loop((u6,v6,w6),

if ([(d(u6b,v6,w6)=0) and (ord(u6)= ord(v6))],
a(u6b,ve,w6)= 1;

);

);

*Display the parameter ’a’ that contains all distances between cities

display d, a , lambu;

parameters
SO, BbO®, Lb(v,w);
SO =1;
BbO rho**(S0+1)/(1-rho) ;
*WtO Bb®/lamb® ;
*alpha(v,w)= dist1(’18’,v) /2400
*Ib® = SO - (rho/(1-rho))*(1-rho**S®);
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Lb(v,w) = Bb0/lamb® + distl1(’18’,v)/2400;

* Determining the value of F(w)

set s2 /0*175/; !! A set to be used for the summation

* number of svc in pools used to estimate Sw(w) /wl 6, w2 6,
*w3 5, wd 7, w5 6, wo 7 /
parameter

Sw(w) / wl 30, w2 30, w3 25, w4 35, w5 30, w6 35 /

Fw(w), Svw(v,w), Fvw(v,w);

Svw(v,w) = Sw(w)/mode(w) ;

Svw(v,w) = Sw(w)/mode(w) ;

*here Svw(v,w) = 5. In order to find optimal Svw(v,w) the
*problem is solved for different scenarios of Svw(v,w) from
*® to 5 Or from O to 10 and the minimum is selected.
*Y.lo(u,v,w) = 1;
Variables OBJ;

option sysout = on;

1l
[\

option domlim

*$ontext

Equations
Eql, Eq3Cu,v,w), Eg5(v,w), Eg21(ul,wl) , Eq22(u2,w2),Eq23(u3,w3),
Eq24 (u4,wd) ,Eq25Cu5,w5), Eq26(u6,w6) ;

* THE ObJECTIVE FUNCTION TO BE MINIMIZED

Eql .. OB] =e= sum((v,w), f(v,w)*X(v,w) -p(v,w)*Svw(v,w)+Ch0 +p(v,w))
*(sum(s2$(s2.val<=Svw(v,w)-1), (Svw(v,w)-s2.val) *exp[-sum(u, lambu(u) *
Y(u,v,w)*Lb(v,w)]*(([sum{u,lambu(u)*Y(u,v,w)}*Lb(v,w)]**s2.val))
/fact(s2.val)))+sum(u, [p(v,w)*(Lb(v,w)+ dil(u,v,w))]*lambu(u)
*Y(u,v,w)) ) + hO0*[SO - (rho/(l-rho))*(1-rho**S0)];

* SUBJECT TO

Eq21(ul,wl) .. sum[vl, Y(ul,vl,wl)] =e=
Eq22(u2,w2) .. sum[v2, Y(u2,v2,w2)] =e=
Eq23(u3,w3) .. sum[v3, Y(u3,v3,w3)] =e=
Eq24(u4,wd) .. sum[v4, Y(ud,vd,wd)] =e=
Eq25Cu5,w5) .. sum[v5, Y(u5,v5,w5)] =e=
Eq26(u6,w6) .. sum[v6, Y(ub6,v6,wb)] =e=
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Eq3(u,v,w) .. Y(u,v,w) =1= a(u,v,w)*X(v,w) ;

Eq5(v,w) .. (Lb(v,w)- tau)*sum(u,lambu(u)*Y(u,v,w)) =1=
sum(s2$(s2.val<=Svw(v,w)-1), [1- (Svw(v,w)-s2.val)*exp[-sum{u,
lambu(u) *Y(u,v,w) }*Lb(v,w) ]* (([sum{u, lambu(u) *Y(u,v,w) }*Lb(v,w) ]
**s2.val))/fact(s2.val)]);

Model Optim /all/;

solve Optim minimizing OBJ using minlp ;
*$offtext

parameter cnt ;

cnt = sum((v,w)$.1(v,w)),1)

display X.1, Y.1, cnt;
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