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Abstract

Nonlinear parabolic interface problems are frequently encountered in the modelling

of physical processes which involved two or more materials with different proper-

ties. Research had focused largely on solving linear parabolic interface problems

with the use of Finite Element Method (FEM). However, Spectral Element Method

(SEM) for approximating nonlinear parabolic interface problems is scarce in liter-

ature. This work was therefore designed to give a theoretical framework for the

convergence rates of finite and spectral element solutions of a nonlinear parabolic

interface problem under certain regularity assumptions on the input data.

A nonlinear parabolic interface problem of the form

ut −∇ · (a(x, u)∇u) = f(x, u) in Ω× (0, T ]

with initial and boundary conditions

u(x, 0) = u0(x) , u(x, t) = 0 on ∂Ω× [0, T ]

and interface conditions

[u]Γ = 0,

[
a(x, u)

∂u

∂n

]
Γ

= g(x, t)

was considered on a convex polygonal domain Ω ∈ R2 with the assumption that

the unknown function u(x, t) is of low regularity across the interface, where f :

Ω× R→ R, a : Ω× R→ R are given functions and g : [0, T ]→ H2(Γ) ∩H1/2(Γ)

is the interface function. Galerkin weak formulation was used and the solution

domain was discretised into quasi-uniform triangular elements after which the

unknown function was approximated by piecewise linear functions on the finite

elements. The time discretisation was based on Backward Difference Schemes

(BDS). The implementation of this was based on predictor-corrector method due

to the presence of nonlinear terms. A four-step linearised FEM-BDS was proposed

and analysed to ease the computational stress and improve on the accuracy of the
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time-discretisation. On spectral elements, the formulation was based on Legendre

polynomials evaluated at Gauss-Lobatto-Legendre points. The integrals involved

were evaluated by numerical quadrature. The linear theories of interface and non-

interface problems as well as Sobolev imbedding inequalities were used to obtain

the a priori and the error estimates. Other tools used to obtain the error estimates

were approximation properties of linear interpolation operators and projection

operators.

The a priori estimates of the weak solution were obtained with low regularity

assumption on the solution across the interface, and almost optimal convergence

rates of O

(
h
(

1 + 1
| log h|

)1/2
)

and O
(
h2
(

1 + 1
| log h|

))
in the L2(0, T ;H1(Ω)) and

L2(0, T ;L2(Ω)) norms respectively were established for the spatially discrete scheme.

Almost optimal convergence rates of O
(
k + h

(
1 + 1

| log h|

))
and

O
(
k + h2

(
1 + 1

| log h|

))
in the L2(0, T ;H1(Ω)) and L2(0, T ;L2(Ω)) norms were ob-

tained for the fully discrete scheme based on the backward Euler scheme, respec-

tively for small mesh size h and time step k. Similar error estimates were obtained

for two-step implicit scheme and four-step linearised FEM-BDS. The solution by

SEM was found to converge spectrally in the L2(0, T ;L2(Ω))-norm as the degree

of the Legendre polynomial increases.

Convergence rates of almost optimal order in the L2(0, T ;H1(Ω)) and

L2(0, T ;L2(Ω)) norms for finite element approximation of a nonlinear parabolic

interface problem were established when the integrals involved were evaluated by

numerical quadrature.
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Word count: 438

iii



ACKNOWLEDGEMENTS

First and foremost, I give thanks to God, without whom I could have never

achieved this goal.

I want to thank my supervisor, Prof. V.F. Payne. He has always encouraged

and supported me in the most positive ways. Sir, working with you has been a

great pleasure. You have always shown much interest in my work and helped in

improving anything I delivered. I am thankful to the Head of Department Dr.

U.N. Bassey and to all the lecturers in the department who have in one way or the

other contributed to the success of this programme, may God reward your efforts.

I would like to thank Akindele Onifade, Dr. Samson Olaniyi, Ojo Emmanuel,

Adeyemo Michael, Taiwo Adeolu, Redi and other friends in the department. I

especially like to thank Faniran Taye for being a good friend in times of need.

I would also like to appreciate Pastor Tolu Omolola Ajala, Pastor Adewale

Adebule and other church members for their spiritual and moral supports. My

sincere appreciation also goes to Evang Olusegun Olajide and other members of

The Reigning Christ Commission for their love, encouragement and prayers.

There is no way to express all my gratitude to my parents who have loved me

unconditionally and other members of my family especially Otunba & Mrs.

Olafimihan Adewole, Pharm. & Mrs Moses Adewole and Mr & Mrs Oluwaseun

Fatoki, they have always been very optimistic in seeing the bright side of my

work. Finally, there is no way in which I can properly thank my fiancee, Kolawole

Oluwatosin for her unwavering support and love. She has been an incredible source

of strength to me.

iv



CERTIFICATION

I certify that this work was carried out by Mr. M.O. Adewole in the Department

of Mathematics, University of Ibadan.

———————————————————————–

Supervisor

V.F. Payne,

B.Sc., M.Sc., Ph.D. (Ibadan)

Professor, Department of Mathematics,

University of Ibadan, Nigeria.

v



DEDICATION

The project is dedicated to Almighty God.

vi



Contents

Abstract ii

Acknowledgements iv

Certification v

Dedication vi

Table of Contents vii

List of Figures ix

List of Tables xii

1 INTRODUCTION 1

1.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Basic Concept of FEM . . . . . . . . . . . . . . . . . . . . . 3

1.2 Historical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Spectral Element Method . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Basic Concept of SEM . . . . . . . . . . . . . . . . . . . . . 13

1.4 Knowledge Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Problem Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Guiding Questions . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . 24

vii



1.5.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . 25

1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Basic Definitions and Some Auxiliary Results of Function Spaces . . 26

1.7.1 The Space of Continuous Functions . . . . . . . . . . . . . . 26

1.7.2 Lp-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7.3 Sobolev Spaces of Integral Order . . . . . . . . . . . . . . . 28

1.7.4 Duality; The Space W−m,p(Ω) . . . . . . . . . . . . . . . . . 30

1.7.5 Fractional Order Spaces . . . . . . . . . . . . . . . . . . . . 30

1.7.6 Trace Operator . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 The Finite Element Interpolation Theorem for Ck Functions . . . . 32

2 LITERATURE REVIEW 34

2.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Spectral Element Method . . . . . . . . . . . . . . . . . . . . . . . 41

3 APPROXIMATION BY FEM 48

3.1 Regularity Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Finite Element Discretisation and Auxiliary Results . . . . . . . . . 52

3.3 Continuous Time Error Estimates . . . . . . . . . . . . . . . . . . . 59

3.4 Fully Discrete Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Backward Euler Time Discretisation . . . . . . . . . . . . . 70

3.4.2 One-Step Numerical Experiment . . . . . . . . . . . . . . . 81

3.4.3 Two-Step Time Discretisation . . . . . . . . . . . . . . . . . 92

3.4.4 Two-Step Numerical Experiment . . . . . . . . . . . . . . . 97

3.5 Four-Step Linearised FEM-BDS . . . . . . . . . . . . . . . . . . . . 99

3.5.1 Four-Step Numerical Experiment . . . . . . . . . . . . . . . 112

4 APPROXIMATION BY SEM 114

4.1 Spectral Element Discretisation . . . . . . . . . . . . . . . . . . . . 116

4.2 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



4.2.1 SE Numerical Experiment . . . . . . . . . . . . . . . . . . . 130

5 DISCUSSION OF RESULTS 136

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Contribution to Knowledge . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Reference 141

Appendices 150

ix



List of Figures

1.1 Basis functions v1, v2 v3 and v4 . . . . . . . . . . . . . . . . . . . . 5

1.2 The exact solution u (with broken lines) and the FE solution uh

(with a thick line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The exact solution u (with broken lines) and the FE solution uh

(with a thick line) when h = 0.5 and 0.25 . . . . . . . . . . . . . . . 9

1.4 (a) The basis functions on the bi-unit domain [−1, 1]. (b) The basis

functions on the element [0, 1] . . . . . . . . . . . . . . . . . . . . . 15

1.5 The exact solution and the SE solution . . . . . . . . . . . . . . . . 19

1.6 A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ . . . . . . . . . . 22

3.1 A body fitted triangulation of a rectangular domain with one re-

finement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Basis function φj . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 A typical interface element showing K̃ . . . . . . . . . . . . . . . . 58

3.4 Contour plot of the finite element solution Example 1 at h = 0.0619

and 0.03266 respectively. . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 The graph showing the finite element solutions of Example 1 at

t = 0.01 (hx, hy) = ( 1
32
, 1

32
) & ( 1

64
, 1

64
) . . . . . . . . . . . . . . . . . 85

3.6 Discretisation of the domain of Example 2 with three refinements. . 87

3.7 Finite element solutions of Example 2 at t = 2, 3, 4, 5 respectively

with h = 0.0387774 and k = 0.01. . . . . . . . . . . . . . . . . . . . 88

3.8 Computational domain of Example 3 . . . . . . . . . . . . . . . . . 93

x



3.9 (a) Contour plot of the finite element solution of Example 5 at t = 4,

with h = 0.0326587 and k = 0.0625 using 1-step implicit scheme.

(b) Contour plot of the finite element solution of Example 5 at t = 4,

with h = 0.0326587 and k = 0.0625 using 2-step implicit scheme.

(c) Contour plot of the exact solution of Example 5. . . . . . . . . . 98

4.1 Typical unfitted interface elements . . . . . . . . . . . . . . . . . . 118

4.2 Typical interface elements with curved edges . . . . . . . . . . . . . 118

4.3 The errors, for h =
√

2, in Table 4.1 and the graph of (4.2.19) . . . 134

4.4 The errors, for h =

√
2

2
, in Table 4.1 and the graph of (4.2.20) . . . 135

xi



List of Tables

3.1 Error estimates in L2−norm for Example 1 . . . . . . . . . . . . . . 84

3.2 Error estimates in H1−norm for Example 1 . . . . . . . . . . . . . . 84

3.3 Error estimates in L2−norm for Example 2 . . . . . . . . . . . . . . 89

3.4 Error estimates in H1−norm for Example 2 . . . . . . . . . . . . . . 89

3.5 Error estimates in L2−norm for Example 3 . . . . . . . . . . . . . . 91

3.6 Error estimates in H1−norm for Example 3 . . . . . . . . . . . . . . 91

3.7 Error estimates in L2−norm for Example 4 . . . . . . . . . . . . . . 100

3.8 Error estimates in L2−norm for Example 5 . . . . . . . . . . . . . . 100

3.9 Error estimates in L2−norm for Example 6 . . . . . . . . . . . . . . 113

3.10 Error estimates in L2−norm for Example 7 . . . . . . . . . . . . . . 113

3.11 Error estimates in L2−norm for Example 8 . . . . . . . . . . . . . . 113

4.1 Error estimates in L2−norm for the test problem

(4.2.16)− (4.2.18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1 Comparison, in L2−norm error, of the numerical scheme with

h = 0.0463597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Comparison, in L2−norm error, of the numerical scheme with

k = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Comparison of the numerical scheme with t = 20, k = 0.125

h = 0.0550215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Comparison, in L2−norm error, with polynomials of different

degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xii



Chapter 1

INTRODUCTION

Partial Differential Equations (PDEs) have variety of applications to mechanics,

electrostatics, quantum mechanics and many other fields of physics as well as to

finance. In the linear theory, solutions obey the principle of linear superposition, if

certain convergence requirements are satisfied, and they often have representation

formulas. However, superposition is not available for nonlinear PDEs and therefore

methods needed to study nonlinear equations are quite different from those of

the linear theory (Debnath, 2012). Nonlinear PDEs appear for example in non-

Newtonian fluids, glaceology, rheology, nonlinear elasticity, flow through a porous

medium, and image processing (Haberman, 2005 & Debnath, 2012).

In order to understand the dynamics of nature, we need to consider time evo-

lution which often leads to parabolic partial differential equations. The most

well-known linear parabolic partial differential equation is the heat equation, how-

ever, the heat equation has some unphysical features like the infinite speed of

propagation. Nonlinear generalizations of the heat equation often behave more

realistically. Furthermore, nonlinear models introduce new interesting phenomena

from intrinsic behaviour to extinction in finite time.

Interface problems are differential equations in which the input data are either

non-smooth, discontinuous or singular across one or more interfaces in the solution
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domain (Kumar and Joshi, 2012). Parabolic interface problems are frequently en-

countered in scientific computing and industrial applications. A typical example

is provided in the modelling of physical processes which involve two or more ma-

terials with different properties such as the conductivities of steel and bronze in

heat diffusion (Feistauer and Sobotikova, 1990). However, the solutions of inter-

face problems may have higher regularities in each individual material region than

in the entire physical domain because of the discontinuities across the interface

(Ladyzhenskaya et al., 1966 and Chen & Zou, 1998). In this case, achieving higher

order accuracy may be difficult using the classical method, hence there is need to

find the solution to the problem by variational formulation. In what follows, we

give an overview of the Finite Element Method FEM which is the fundamental

method used for solving partial differential equations.

1.1 Finite Element Method

Finite element method is an approximate technique where differential equations

are solved in a weak sense (in most cases). The weak form gives rises to desirable

flexibilities in enforcing boundary and interface conditions. The domain under

consideration is effectively discretised into smaller pieces (called elements) and an

approximate piecewise polynomial solution found on each of these pieces. The

dependent variable is approximated by a function that is mathematically simple

(piecewise linear or other polynomial forms), on a finite set of elements, approxi-

mating the domain of the differential equation (Gockenbach, 2006 and Brenner &

Scott, 2008).

In contrast with the finite element method, the finite difference method (which

is the classical numerical method for solving partial differential equations) in-

volves replacing the derivatives with difference quotients of the unknown at cer-

tain (finitely many) points to obtain the corresponding discrete problem whereas

the discretisation process using the finite element method involves, basically, the

2



following steps (Johnson 1987, Knabner and Angermann 2002, Gockenback 2006,

Kumar & Joshi 2012):

• Variationally formulation of the given problem.

• Discretisation (ie construction of the finite element space)

• Solution of the discrete problem

• Implementation of the method

The advantage of finite element method over finite difference method is that

complicated geometry, general boundary conditions and variable or non-linear ma-

terial properties can be handled easily. In addition, the finite element method has

a solid theoretical foundation which facilitates mathematical analysis and estima-

tion of error in the approximate finite element solution and thus makes it more

reliable (Johnson, 1987).

1.1.1 Basic Concept of FEM

Finite element method (FEM) involves a sequence of steps as given earlier. When

applied to a differential equation, the equation is first approximated by a piecewise

polynomial function uh which is expanded in a basis of test functions φi, and then

the residual function is tested against all the basis functions. The procedure yields

a linear system KU = F for which the components of U are the values of uh at

the nodes. K is the stiffness matrix and F is the load vector.

For clarity, we explain this procedure using a one-dimensional elliptic problem

with discontinuous coefficients: −
d

dx

(
a(x)

du

dx

)
= f(x)

u(0) = u(5) = 0

(1.1.1)

where

a(x) =

 1 0 ≤ x < 3

x 3 ≤ x ≤ 5

3



f(x) =

 2x3 − 18
5
x2 0 ≤ x < 3

8− 4x 3 ≤ x ≤ 5

with interface parameters

[u]x=3 = 0

[
a(x)

du

dx

]
x=3

= −2.1

The exact solution to (1.1.1) is

u(x) =

 1
10
x4(3− x) 0 ≤ x < 3

x2 − 8x+ 15 3 ≤ x ≤ 5

Th = {[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]} and Sh denotes the space of piecewise polyno-

mial functions.

The four basis functions in Sh are illustrated in Fig 1.1 and are given as

v1 =


x x ∈ [0, 1)

2− x x ∈ [1, 2)

0 elsewhere

v2 =


x− 1 x ∈ [1, 2)

3− x x ∈ [2, 3)

0 elsewhere

v3 =


x− 2 x ∈ [2, 3)

4− x x ∈ [3, 4)

0 elsewhere

v4 =


x− 3 x ∈ [3, 4)

5− x x ∈ [4, 5]

0 elsewhere

Multiply (1.1.1) by φ = v1 +v2 +v3 +v4 to obtain the weak form, then integrate

over Th to obtain the algebraic system
a(v1, v1) a(v1, v2) a(v1, v3) a(v1, v4)

a(v2, v1) a(v2, v2) a(v2, v3) a(v2, v4)

a(v3, v1) a(v3, v2) a(v3, v3) a(v3, v4)

a(v4, v1) a(v4, v2) a(v4, v3) a(v4, v4)




u1

u2

u3

u4

 =


L(v1)

L(v2)

L(v3)

L(v4)

 (1.1.2)
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Figure 1.1: Basis functions v1, v2 v3 and v4
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where

a(v1, v1) =

∫ 5

0

a(x)
dv1

dx

dv1

dx
dx

=

∫ 2

0

(1 · 1) dx

= 2

In a like manner,

a(v1, v2) = −1

a(v1, v3) = 0

a(v1, v4) = 0

a(v2, v2) = 2

a(v2, v3) = −1

a(v2, v4) = 0

a(v3, v3) = 4.5

a(v3, v4) = −3.5

a(v4, v4) = 8

Other components of the (4 × 4) matrix follow from the symmetric nature of

the matrix.

L(v1) =

∫ 5

0

f(x)v1 dx

=

∫ 1

0

(
2x3 − 18

5
x2

)
x dx+

∫ 2

1

(
2x3 − 18

5
x2

)
(2− x) dx

= −1.2

L(v2) = 3

L(v3) =

∫ 5

0

f(x)v3 dx

=

∫ 3

2

(
2x3 − 18

5
x2

)
(x− 2) dx+

∫ 4

3

(8− 4x) (4− x) dx

= 3.83333

L(v4) = −8
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System (1.1.2) becomes
2 −1 0 0

−1 2 −1 0

0 −1 4.5 −3.5

0 0 −3.5 8




u1

u2

u3

u4

 =


−1.2

3

3.83333

−8

+


0

0

−2.1

0

 (1.1.3)

Solving (1.1.3), we obtain 
u1

u2

u3

u4

 =


0.1759

1.5517

−0.0724

−1.0317


Therefore the finite element solution to (1.1.1) is

uh(x) = 0.1759v1 + 1.5517v2 − 0.0724v3 − 1.0317v4

see Fig 1.2 for the graph of uh and the exact solution u.

The solution uh is only an approximation of the exact solution u and can be

improved on by dividing the domain into more intervals (ie. having several basis

functions) see Fig 1.3.

In what follows, we discuss the development of the method.

1.2 Historical Setup

According to Thomee (2001) and Kantorovich & Krylov (1958), the idea of using

variational formulation for the numerical solution of a boundary value problem

can be traced back to Lord Rayleigh (in 1894 and 1896) and Ritz (in 1908). Ritz

approximated the exact solution with a linear combination of simple functions

(like polynomials and trigonometrical polynomials). The idea to express the vari-

ational form as a minimization of a quadratic functional problem was attributed

7



 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.2: The exact solution u (with broken lines) and the FE solution uh (with

a thick line)
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(b) 

Figure 1.3: The exact solution u (with broken lines) and the FE solution uh (with

a thick line) when h = 0.5 and 0.25
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to Ritz while the use of orthogonality condition was attributed to Galerkin in 1915

(Siddiqi, 2004).

The method of discretising the domain into finite subdomains and the use of

approximating functions on these subdomains was first proposed by Courant in

1943, these subdomains were called ”Courant elements”. This is often thought

of as the starting point of FEM. Courant solved the St. Venant’s torsion of a

square hollow box of (2× 2) with wall thickness of 1
4

by expressing the problem as

a minimization of a functional. He then used linear approximation over Courant

elements with values being specified at discrete points (now called nodal points)

(Babuska 1994, Gupta & Meek 1996).

A remarkable contribution was contained in a paper by Turner et al. (1956),

where the local approximation of the partial differential equation of linear elasticity

by the usage of assembly strategies was discussed. They used rectangular and

triangular elements and wrote ”The triangle is not only simpler to handle than the

rectangle but later it will be used as the basic building block for calculating stiffness

matrices for plates of arbitrary shape”.

Engineer Argyris in 1960, used the technique of dividing certain structures

into small structures (called elements) with locally defined strains and stresses.

He developed the concept of using stiffness matrix and flexibility matrix and in

1960, Clough termed these technique as ”Finite Element Methods” (Gupta et al.

1996, Sididqqi 2004).

In 1965, the minimization technique by Courant was extended and clarified

by Zienkiewicz and Chaung to analyze heat transfer and St. Venant’s torson of

prismatic shafts (Zienkiewicz and Chaung 1965). The mathematical theory of

the a priori error analysis due to interpolation properties of a class of triangular

elements was given by Zlámal (1968). His work is considered as the first most

significant mathematically based analysis of FEM (Thomee 2001, Siddiqi 2004).

One of the difficulties faced by FEM is to effectively approximate functions

on irregular domains. It is not possible, in general, to approximate the boundary

10



conditions of a domain with curved boundary. To deal with this difficulty, Ciarlet

(1978 and 1991) reported the use of curved elements as proposed and analysed by

that Argyris, Fried et al., Zienkiewicz, Felipa and Clough. The idea was to define

a polynomial map between a curved boundary and a reference element (called

isoparametric elements).

Another method of dealing with this difficulty was proposed by Nitsche (1971).

He introduced a bilinear form (Thomee 2001 and 2006)

Nγ(u, χ) := (∇u,∇χ)−
〈
∂u

∂n
, χ

〉
−
〈
u,
∂χ

∂n

〉
+ γh−1〈u, χ〉

and showed that the variational form for

−∆u = f

can be expressed as

Nγ(u, χ) = (f, χ) ∀ χ ∈ Sh

where Sh is the finite element space.

Books by Brenner and Scott (2008), Ciarlet (1978,1991) and Thomee (2006)

have provided a good mathematical foundation for the method. Besides books by

Zienkiewics and Cheung (1965), Zienkiewics and Taylor (1989,1991) have enriched

the applications of FEM in Engineering.

In practice, FEM is most suitable for diffusion-dominated problems and has

been critised for its weakness in handling convection-dominated problems (Pozrikidis,

2014). However, modification can be made to overcome this limitation. In the past

decades, researchers have concentrated their efforts on the improvement of FEM

to achieve high accuracy. This lead to adaptive refinement and hp-refinement

techniques as well as FEM with functions different from polynomials and spectral

element method. In this work, we study the finite element method as well as its

combination with spectral method.
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1.3 Spectral Element Method

The fundamental idea of spectral method is to approximate solutions of PDEs by

finite series of orthogonal functions such as the complex exponentials, Chebyshev

or Legendre polynomials (Boyd, 1999). The main advantage of the spectral method

relies on the exponential convergence property as soon as the orthogonal functions

are carefully chosen, but the main drawback is its inability to handle complex ge-

ometries (Pasquetti and Rapetti 2004, Boyd 1999). Furthermore, spectral methods

are appropriate for problems in which high-order regularity is guaranteed due to

their high-order character. Thus if the regularity of the solution is very low, the

result obtained from spectral methods might not be different from other low-order

methods (Timmermans et al., 1994).

Spectral Element Method (SEM) combines the geometric flexibilities of the

FEM with the rapid convergence of the spectral technique. It is an advanced im-

plementation of the finite element method in which the solution over each element

is expressed in terms of a priori unknown values at carefully selected spectral nodes

(Pasquetti and Rapetti 2004, Pozrikidis 2014). The advantage of the spectral ele-

ment method is that stable solution algorithms and high accuracy can be achieved

with a low number of elements under a broad range of conditions (Pozrikidis 2014).

Spectral element method does not mean selecting extremely high-order expan-

sions in the largest elements compatible with a given geometry. Rather, element

boundaries are chosen to provide optimal convergence of low-order spectral (but

high-order finite element) expansions. In fact a well formulated spectral element

problem (ie. one that is not overly global at the expense of a great loss in ef-

ficiency) should not require an excessive number of collocation points/element

(Patera 1984).

In what follows, we give the basic concept of SEM.
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1.3.1 Basic Concept of SEM

Spectral element method involves a sequence of steps just as the FEM. When

applied to a differential equation, the domain is first discretised into elements and

the unknown is approximated by linear combination of basis functions φ with each

basis function passing through spectral nodes on each element. The procedure

yields a linear system KU = F for which the components of u are the values of uh

at the nodes. K is the stiffness matrix and F is the load vector.

For clarity, we explain this procedure using the one-dimensional elliptic problem

(1.1.1). The basis function is taken as fourth degree Lagrange polynomial with

Gauss-Lobatto-Legendre (GLL) collocation points.

The GLL points is given as

z0 = −1

P ′N(zi) = 0 i = 1, . . . , N − 1

zN = +1

where PN(z) is the Legendre polynomial of degree N . In this example, N = 4

which implies

P4(z) =
1

8
(35z4 − 30z2 + 3)

P ′4(z) =
1

2
(35z3 − 15z) = 0

Therefore, for a bi-unit domain [−1, 1], the nodes are

−1, −
√

3

7
, 0, +

√
3

7
, +1

As a matter of choice we use

−1, −0.66 , 0, +0.66 , +1

For simplicity, we map nth element (n = 1, . . . , 5) to the standard interval of the

dimensionless x-axis [−1, 1]. The mapping is governed by the function

x(ξ) =
1

2

(
x

(n)
2 + x

(n)
1

)
+

1

2

(
x

(n)
2 − x

(n)
1

)
ξ
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It follows that dx =
1

2
hn dξ where hn = x

(n)
2 − x

(n)
1 is the element size. We make

use of the fourth degree Lagrange basis functions

ψ1(ξ) =
(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)(ξ − ξ5)

(ξ1 − ξ2)(ξ1 − ξ3)(ξ1 − ξ4)(ξ1 − ξ5)

ψ2(ξ) =
(ξ − ξ1)(ξ − ξ3)(ξ − ξ4)(ξ − ξ5)

(ξ2 − ξ1)(ξ2 − ξ3)(ξ2 − ξ4)(ξ2 − ξ5)

ψ3(ξ) =
(ξ − ξ1)(ξ − ξ2)(ξ − ξ4)(ξ − ξ5)

(ξ3 − ξ1)(ξ3 − ξ2)(ξ3 − ξ4)(ξ3 − ξ5)

ψ4(ξ) =
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ5)

(ξ4 − ξ1)(ξ4 − ξ2)(ξ4 − ξ3)(ξ4 − ξ5)

ψ5(ξ) =
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

(ξ5 − ξ1)(ξ5 − ξ2)(ξ5 − ξ3)(ξ5 − ξ4)

Fourth degree element contains five nodal points, thus Th contains 21 nodal points.

The approximate solution can be expressed as

uh(x) =
21∑
j=1

ujψj(x)

From the weak form of (1.1.1), we obtain

21∑
j=1

(
5∑

n=1

∫
En

a(x)
dψi
dx

dψj
dx

dx

)
uj =

5∑
n=1

∫
En

f(x)ψi dx+ interface parameter

(1.3.1)

for i = 1, . . . , 21. En denotes nth element. Now

A
(n)
ij =

∫
En

a(x)
dψi(x)

dx

dψj(x)

dx
dx

=
2

hn

∫ 1

−1

a(ξ)
dψi(ξ)

dξ

dψj(ξ)

dξ
dξ

The Dirichlet boundary conditions require that ψ1 = ψ21 = 0. After a simple
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Figure 1.4: (a) The basis functions on the bi-unit domain [−1, 1]. (b) The basis

functions on the element [0, 1]
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computation, we obtain

A(1) =



0 0 0 0 0

0 12.6983 −5.6565 1.1675 −0.3018

0 −5.6565 9.2697 −5.6565 1.0297

0 1.1675 −5.6565 12.6982 −7.9719

0 −0.3018 1.0297 −7.9719 7.2173



A(2) = A(3) =



7.2173 −7.9719 1.0297 −0.3018 0.0837

−7.9719 12.6983 −5.6565 1.1675 −0.3018

1.0667 −5.8074 9.4815 −5.8074 1.0667

−0.3018 1.1675 −5.6565 12.6983 −7.9719

0.0837 −0.3018 1.0297 −7.9719 7.2173



A(4) =



22.1687 −24.6103 3.3581 −1.0342 0.2929

−24.6103 40.2842 −18.8818 4.0862 −1.0786

3.3581 −18.8818 32.4439 −20.7138 3.8497

−1.0342 4.0862 −20.7138 48.6036 −31.1931

0.2929 −1.0786 3.8499 −31.1931 22.1687



A(5) =



35.5695 −32.5822 4.3878 −1.3360 0

−32.5823 52.9824 −24.5383 5.2537 0

4.3878 −24.5383 41.7135 −26.3703 0

−1.3360 5.2537 −26.3703 61.3019 0

0 0 0 0 0


Similarly,

L
(n)
i =

∫
En

f(x)ψi(x) dx

=
hn
2

∫ 1

−1

f(ξ)ψi(ξ) dξ
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After a simple calculation,

L(1) =



0

−0.02494

−0.23470

−0.36243

−0.07820


L(2) =



−0.07737

−0.46997

−0.48387

0.05160

0.07962


L(3) =



0.08046

0.93978

3.16116

4.46803

1.05945



L(4) =



−0.19571

−1.26905

−2.16345

−1.98493

−0.39142


L(5) =



−0.39144

−2.35371

−3.60575

−3.06959

0


The system of equations becomes

AU = L (1.3.2)

where

A =



12.6983 −5.6565 1.1675 −0.3018 0 0 0 0 0 0 0

−5.6565 9.2697 −5.6565 1.0297 0 0 0 0 0 0 0

1.1675 −5.6565 12.6982 −7.9719 0 0 0 0 0 0 0

−0.3018 1.0297 −7.9719 14.4346 −7.9719 1.0297 −0.3018 0.0837 0 0 0

0 0 0 −7.9719 12.6983 −5.6565 1.1675 −0.3018 0 0 0

0 0 0 1.0667 −5.8074 9.4815 −5.8074 1.0667 0 0 0

0 0 0 −0.3018 1.1675 −5.6565 12.6983 −7.9719 0 0 0

0 0 0 0.0837 −0.3018 1.0297 −7.9719 14.4346 −7.9719 1.0297 −0.3018

0 0 0 0 0 0 0 −7.9719 12.6983 −5.6565 1.1675

0 0 0 0 0 0 0 1.0667 −5.8074 9.4815 −5.8074

0 0 0 0 0 0 0 −0.3018 1.1675 −5.6565 12.6983

0 0 0 0 0 0 0 0.0837 −0.3018 1.0297 −7.9719

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.0837 0 0 0 0 0 0 0

−0.3018 0 0 0 0 0 0 0

1.0297 0 0 0 0 0 0 0

−7.9719 0 0 0 0 0 0 0

29.3860 −24.6103 3.3581 −1.0342 0.2929 0 0 0

−24.6103 40.2842 −18.8818 4.0862 −1.0786 0 0 0

3.3581 −18.8818 32.4439 −20.7138 3.8497 0 0 0

−1.0342 4.0862 −20.7138 48.6036 −31.1931 0 0 0

0.2929 −1.0786 3.8499 −31.1931 57.7382 −32.5822 4.3878 −1.3360

0 0 0 0 −32.5823 52.9824 −24.5383 5.2537

0 0 0 0 4.3878 −24.5383 41.7135 −26.3703

0 0 0 0 −1.3360 5.2537 −26.3703 61.3019



U =



U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14

U15

U16

U17

U18

U19

U20



and L =



−0.02494

−0.23470

−0.36243

−0.15557

−0.46997

−0.48387

0.05160

0.16009

0.93978

3.16116

4.46803

0.86374

−1.26905

−2.16345

−1.98493

−0.78286

−2.35371

−3.60575

−3.06959



+



0

0

0

0

0

0

0

0

0

0

0

−2.1

0

0

0

0

0

0

0


The solution to (1.3.2), with the implementation of the boundary conditions, is

U = (0.00000, 0.00065, 0.01681, 0.10495, 0.20080, 0.34572, 0.76295, 1.31652,

1.59225, 1.84560, 1.95908, 1.09715, 0.00709,−0.30472,−0.74501,

−0.96737,−0.98911,−0.96856,−0.74853,−0.31062, 0.00000)

It can be seen from Fig 1.5 and Fig 1.3(b) that SEM provides a better result than

FEM with the same number of collocation points
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Figure 1.5: The exact solution and the SE solution
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1.4 Knowledge Gap

FEM and SEM have been successfully applied to a wide variety of interface prob-

lems (see Chapter 2). It is therefore of interest to extend these methods to non-

linear parabolic interface problems.

Finite Element solution of nonlinear parabolic interface problems with time

discretisation based on θ method has been discussed by Farago et al., (2012). With

necessary assumptions that guarantee the uniqueness of solutions, they showed

that the scheme preserves the discrete maximum principle. Their results were

based on the algebraic discrete maximum principle for suitable ODE systems.

The authors focused on the discrete maximum principle of the scheme however,

the authors were silent on the convergence of the scheme. Due to the presence of

the nonlinear coefficients, the mass and stiffness matrices cannot be obtained in

the usual way, however, the authors did not give a definite technique on how to

obtain the mass and stiffness matrices.

Finite element solution of a nonlinear parabolic interface problem with a linear

source term has been studied by Yang (2015). She proposed a fully-discrete scheme

with time discretisation based on a linearised 2-step implicit scheme. Under certain

regularity assumptions on the input data, she proved the stability of the scheme

and obtained suboptimal convergence rate in the L2(Ω)-norm. The author was

silent on the semi-discrete scheme and the use of higher order polynomials on the

elements.

The convergence of the FE solution of the parabolic interface problem of the

form (1.5.1) − (1.5.3) has not been considered and considering the high spatial

accuracy of the spectral element method, it is natural to extend the technique to

the treatment of (1.5.1)− (1.5.3).
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1.5 Problem Specification

Let Ω be a convex polygonal domain in R2 with boundary ∂Ω and Ω1 ∈ Ω be an

open domain with smooth boundary Γ = ∂Ω1. Let Ω2 = Ω \ Ω̄1 be another open

domain contained in Ω with boundary Γ ∪ ∂Ω (see Fig 1.6).

We consider the parabolic interface problem

ut −∇ · (a(x, u)∇u) = f(x, u) in Ω× (0, T ] (1.5.1)

with initial and boundary conditions u(x, 0) = u0(x) in Ω

u(x, t) = 0 on ∂Ω× [0, T ]
(1.5.2)

and interface conditions 
[u]Γ = 0[

a(x, u)
∂u

∂n

]
Γ

= g(x, t)
(1.5.3)

where 0 < T <∞, the symbol [u] is a jump of a quantity u across the interface Γ

and n is the unit outward normal to the boundary ∂Ωi, (i = 1, 2).

The interface conditions are defined as the difference of the limiting values from

each side of the interface ie

[u]m∈Γ := lim
x→m+

u2(x, t)− lim
x→m−

u1(x, t)

and [
a(x, u)

∂u

∂n

]
m∈Γ

:=

[
lim
x→m+

a2∇u2(x, t)− lim
x→m−

a1∇u1(x, t)

]
· n

The coefficient function a(x, u) is assumed piecewise across Γ ie a(x, u) = ai(x, u)

for u ∈ R and x ∈ Ω, i = 1, 2.

This kind of problems arises in various branches of material science, population

growth, nonlinear problems of heat and mass transfer biochemistry, multiphase

flow in porous media, etc. (Fisher 1936, Canosa 1973, Sinha and Deka 2009,
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Figure 1.6: A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ
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Polyanin and Zaitsev 2012) often when two or more different materials are involved

with different conductivities or densities. In discrete element modelling, Fig 1.1

may represent solid structures (such as rocks, metals, ceramics etc.) with fractures,

fragmentation or other extensive material damage (Munijiza, 2004).

Assumption 1.1

A1 Ω is a bounded convex polygonal domain in R2, the interface Γ ∈ Ω and the

boundary ∂Ω are piecewise smooth, Lipschitz continuous and 1-dimensional.

A2 The functions a : Ω × R → R, f : Ω × R → R are measurable and bounded

with respect to their first variable x ∈ Ω and continuously differentiable with

respect to their second variable η ∈ R on Ωi, i = 1, 2.

g(x, t) ∈ L2(0, T ;H2(Γ) ∩H1/2(Γ)).

A3 Functions a and f satisfy

0 < µ1 ≤ a(x, ξ) ≤ µ2,

∣∣∣∣∂a∂ξ (x, ξ)

∣∣∣∣+

∣∣∣∣∂f∂ξ (x, ξ)

∣∣∣∣ ≤ µ3 ,

for ξ ∈ R, x ∈ Ω with positive constants µ1, µ2 and µ3 independent of (x, ξ).

Definition 1.1 For a given Banach space B, we define, for 1 ≤ p <∞,

Wm,p(0, T ;B) =

{
u(t) ∈ B for a.e t ∈ (0, T ) and

m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)

∥∥∥∥p
B

dt < 0

}
equipped with the norm

‖u‖Wm,p(0,T ;B) =

[
m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)

∥∥∥∥p
B

dt

]1/p

We write L2(0, T ;B) = W 0,2(0, T ;B) and Hm(0, T ;B) = Wm,2(0, T ;B).

We shall need the following spaces

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2) , Y = L2(Ω) ∩H1(Ω1) ∩H1(Ω2)

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2) ∀ v ∈ X

‖v‖Y = ‖v‖L2(Ω) + ‖v‖H1(Ω1) + ‖v‖H1(Ω2) ∀ v ∈ Y
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1.5.1 Guiding Questions

(i) Nonlinear PDEs are prone to blow-ups. Thus, how can this be prevented?

(ii) What are the conditions that guarantee the stability and convergence of the

scheme?

(iii) What is the convergence rate?

(iv) How can we improve on the accuracy of the FEM solutions?

1.5.2 Research Objectives

The main objectives of the study are to

• obtain regularity estimates which will be used to establish the existence and

uniqueness of the solution to (1.5.1)− (1.5.3) in the weak sense

• obtain almost optimal order error estimates in the L2(0, T ;H1(Ω))-norm and

L2(0, T ;L2(Ω))-norm for the spatially discrete scheme;

• obtain almost optimal order error estimates in the L2(0, T ;H1(Ω))-norm and

L2(0, T ;L2(Ω))-norm for the fully discrete scheme with time descretisation

based on backward Euler method;

• obtain almost optimal order error estimates in the L2(0, T ;L2(Ω))-norm for

the fully discrete scheme with time descretisation based on implicit linear

multistep method;

• combine FEM with spectral method and obtain appropriate error estimate

in the L2(Ω)-norm for discrete time discretisation.

The first objective answers the first guiding question. The second and third ob-

jectives answer the second and third questions while the fourth and fifth objects

answer the fourth question.
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1.5.3 Research Methodology

The finite element discretisation is done by partitioning the domain into quasi-

uniform triangular elements and the interface approximated by a polygon. The

unknown function is approximated by piecewise linear functions on each element.

On spectral elements, our formulation is based on Lagrange polynomials evaluated

at Gauss-Lobatto-Legendre points. In both cases, the time discretisation is based

on backward Euler scheme. To improve on the time discretisation, we consider

a two-point implicit method and a linearised scheme. The integrals involved are

evaluated by numerical quadrature and it is assumed that the mesh cannot be

fitted to the arbitrary interface.

The linear theories of interface and non-interface problems as well as Sobolev

imbedding inequalities were used. a priori estimates of the weak solution were

used to establish error estimates. Other tools used in this work are approximation

properties of linear interpolation operator and other projection operators.

To confirm the theoretical analysis, a good number of versions of problem

(1.5.1) − (1.5.3) were considered as test problems for our numerical experiment.

The mesh generation and computation are done in MATLABr, FreeFEM++

(F.Hecht, 2012) and Nektar++ (Cantwell et al., 2015) environments.

1.6 Notation

Unless otherwise stated, the symbol Ω refers to some connected region in R2, with

∂Ω referring to its boundary. Ω̄ denotes the closure of Ω (ie Ω̄ = Ω ∪ ∂Ω). Points

in R2 are denoted by x = (x1, x2).

For the sake of notational convenience, we introduce multi-index.

Definition 1.2 Let Z+ denote the set of non-negative integers. An n-tuple

α = (α1, ..., αn) ∈ Zn+ is called a multi-index. The non-negative integer |α| :=

α1 + · · ·+αn is referred to as the length of the multi-index α. We denote (0, ..., 0)

by 0; clearly |0| = 0. We also define
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Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂α

∂x1
α1 · · · ∂xnαn

1.7 Basic Definitions and Some Auxiliary Re-

sults of Function Spaces

The accuracy of finite element method for solving partial differential equations

depends on the smoothness of the analytical solution of the equation under con-

sideration, and this hinges on the smoothness of the data (Ciarlet 1978, Brenner

and Scott 2008).

Precise assumptions about the regularity of the solution and the data can be

conveniently formulated in terms of the choice of function spaces. Next a brief

overview of basic definitions and simple results from the theory of functions spaces

are presented.

1.7.1 The Space of Continuous Functions

Definition 1.3 We denote by Ck(Ω) the set of all continuous real-valued func-

tions defined on Ω such that Dαu is continuous on Ω for all α = (α1, ..., αn) ∈ Zn+
with |α| ≤ k. Ck(Ω̄) denotes the set of all u in Ck(Ω) such that Dαu can be

extended from Ω to a continuous function defined on Ω̄ for all α = (α1, ..., αn),

|α| ≤ k. Ck(Ω) can be equipped with the norm

‖u‖Ck(Ω) :=
∑
|α|≤k

sup
x∈Ω
|Dαu(x)|

When k = 0 we shall write C(Ω̄) instead of C0(Ω̄) to denote the set of all continuous

functions defined on Ω̄.

Definition 1.4 The support of a function φ : Ω→ R is the closure of the set of
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points in Ω for which φ is non-zero. ie

Supp φ := {x ∈ Ω : φ(x) 6= 0}

Thus, Supp φ is the smallest closed subset of Ω such that u = 0 in Ω\Supp φ.

Definition 1.5 Ck
0 (Ω) denotes the set of all functions u contained in Ck(Ω)

whose support is a bounded subset of Ω. Also we have

C∞0 (Ω) :=
⋂
k≥0

Ck
0 (Ω)

1.7.2 Lp-Space

Definition 1.6 Let Ω ⊂ Rn and 1 ≤ p < ∞, Lp(Ω) denotes the class of all

measurable functions u, defined on Ω, for which∫
Ω

|u(x)|p dx <∞ (1.7.1)

Lp(Ω) functions are identified with almost everywhere defined functions on Ω. The

elements of Lp(Ω) are thus actually equivalence classes of measurable functions sat-

isfying (1.7.1), two functions being equivalent if they are equal almost everywhere

in Ω. This space is endowed with the norm

‖u‖Lp(Ω) =

(∫
Ω

|u(x)|p dx

)1/p

Definition 1.7 A function u, measurable on Ω, is said to be essentially bounded

on Ω provided there exists a constant M for which |u(x)| ≤M almost everywhere

on Ω. The greatest lower bound of such constants is called the essential supremum

of u on Ω and is denoted by esssupx∈Ω |u(x)|.

Definition 1.8 L∞(Ω) denotes the vector space consisting of all functions u

that are essentially bounded on Ω, functions being once again identified if they are

equal almost everywhere in Ω. L∞(Ω) is equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω
|u(x)|
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Lp(Ω) is a Banach space for all 1 ≤ x ≤ ∞ (Adams 1975).

Definition 1.9 Let Ω ⊂ Rn, u,v ∈ Lp(Ω) and α be a multi-index. Then v is the

weak α-th partial derivatives of u if∫
Ω

uDαφ dx = (−1)|α|
∫

Ω

vφ dx ∀ φ ∈ C∞0 (Ω)

Since this definition relies on integration, we can only talk about the weak deriva-

tives of a function up to a set of measure zero. A weak αth-partial derivative of a

function, if it exists, is unique up to a set of measure zero (Adams 1975).

1.7.3 Sobolev Spaces of Integral Order

Definition 1.10 Let Ω be an open set in Rn. Define Wm,p(Ω) as the set of all

functions in Lp(Ω) whose weak partial derivatives, up to order m are also in Lp(Ω),

p ≥ 1. This space is equipped with the norm

‖u‖Wm,p(Ω) :=

∑
|α|≤m

‖Dαu‖pLp(Ω)

1/p

, 1 ≤ p <∞

and

‖u‖Wm,∞(Ω) :=
∑
|α|≤m

‖Dαu‖L∞(Ω)

Wm,p
0 (Ω) denotes the closure of C∞0 (Ω) in Wm,p(Ω). Wm,p

0 (Ω) comprises of func-

tions u ∈ Wm,p(Ω) such that

Dαu = 0 on ∂Ω ∀ |α| ≤ m− 1

It is obvious that W 0,p(Ω) = Lp(Ω). For any m ∈ N, the chain of imbedding

Wm,p
0 (Ω) ⊂ Wm,p(Ω) ⊂ Lp(Ω)

holds (Adams 1975). Wm,p(Ω) is a Banach space (Adams 1975, Evans 1997).

An important special case of Wm,p(Ω) corresponds to taking p = 2; the space
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Wm,2
0 (Ω) is then a Hilbert space with the inner product

(u, v)Wk,2(Ω) :=
∑
|α|≤k

(Dαu,Dαv)

We shall usually write Hk(Ω) instead of W k,2(Ω). Hm
0 (Ω) is a closed subspace of

Hm(Ω), which is the closure of C∞0 (Ω) in the norm of ‖ · ‖Hm(Ω).

Theorem 1.1 (Atkinson and Han, 2009) Let Ω ⊂ Rn be bounded along the

direction of one axis, p ∈ [0,∞). Then there exists a constant c, depending only

on Ω and p , so that, for every function u ∈ W 1,p
0 (Ω),

‖u‖Lp(Ω) ≤ c‖∇u‖Lp(Ω)

This result is called Poincaré inequality.

Definition 1.11 Let V and W be two Banach spaces with V ⊂ W . We say the

space V s continuously embedded in W and write V ↪→ W , if there is a c > 0 such

that

‖u‖W ≤ c‖u‖V ∀ u ∈ V

If V ↪→ W , the functions in V are more smooth than the remaining functions in

W (Atkinson et al. 2009).

Theorem 1.2 (Atkinson and Han, 2009) Let Ω ⊂ Rd be a Lipschitz domain.

Then the following statements are valid.

a. If k <
d

p
, then W k,p(Ω) ↪→ Lq(Ω) for any q ≤ p?, where p? is defined by

1

p?
=

1

p
− k

d
.

b. If k =
d

p
then W k,p(Ω) ↪→ Lq(Ω) for any q <∞

c. If k >
d

p
, then

W k,p(Ω) ↪→ Ck−[d/p]−1,β(Ω)
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where

β =

 [d/p] + 1− d/p if d/p 6= integer

any positive number < 1 if d/p = integer

[x] denotes the integer part of x, i.e. the largest integer less than or equal to

x.

1.7.4 Duality; The Space W−m,p(Ω)

Definition 1.12 We denote by W−m,p(Ω), (1 ≤ p < ∞) the dual space of

Wm,p(Ω). In other words f belongs to W−m,p(Ω) provided f is a bounded lin-

ear functional on Wm,p(Ω). We shall write (·, ·) to denote the pairing between

W−m,p(Ω) and Wm,p(Ω). If f ∈ W−m,p(Ω), we define the norm

‖f‖W−m,p(Ω) := sup{〈f, u〉 : u ∈ Wm,p(Ω), ‖u‖Wm,p(Ω) ≤ 1}

W−m,p(Ω) is complete (Adams 1975).

1.7.5 Fractional Order Spaces

We now define spaces W s,p(Ω) for arbitrary domains Ω in Rn, arbitrary values of

s, and 1 < p < ∞. These spaces coincide for integral values of s with the space

Wm,p(Ω) and W−m,p(Ω) defined earlier (Adams 1975). For s ≥ 0, the definitions

can be extended to p = 1 and p =∞ (Adams 1975),

Definition 1.13 Let s = k + σ with k ≥ 0 an integer and σ ∈ (0, 1). Then we

define the Sobolev space W s,p(Ω) to be the set{
v ∈ W k,p(Ω) | |D

αv(x)−Dαv(y)|p

‖x− y‖σp+n
<∞ ∀ α : |α| = k

}
with the norm

‖u‖W s,p(Ω) =

‖v‖p
Wk,p(Ω)

+
∑
|α|=k

∫
Ω×Ω

|Dαv(x)−Dαv(y)|p

‖x− y‖σp+n
dxdy

1/p
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The space W s,p(Ω) is a Banach space (Atkinson and Han 2009). It is reflexive if

and only if p ∈ (1,∞). It is Hilbert when p = 2. From this definition, H1/2(∂Ω) is

the space {
v ∈ Lp(∂Ω) | |v(x)− v(y)|2

‖x− y‖1+n
<∞

}
with the norm

‖u‖H1/2(∂Ω) =

[
‖v‖2

Lp(∂Ω) +

∫
∂Ω×∂Ω

|v(x)− v(y)|2

‖x− y‖1+n
dxdy

]1/2

1.7.6 Trace Operator

Sobolev spaces are defined through Lp(Ω) spaces and therefore, a typical function

u ∈ W 1,p(Ω) is only defined almost everywhere in Ω. The boundary value of a

Sobolev function is not well defined since the ∂Ω has Lebesgue measure zero. This

problem is resolved by trace operators. For a Sobolev function which is continuous

up to the boundary, its trace coincides with its boundary value (Atkinson and Han

2009, Evans 1997).

Theorem 1.3 (Atkinson and Han 2009, Evans 1997) Assume Ω is bounded and

∂Ω is C1. Then there exists a bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that

(a) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω̄)

(b) ‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) for each u ∈ W 1,p(Ω), with the constant C

depending only on p and Ω.

The operator T is called the trace operator, and Tu can be called the generalized

boundary value of u.

The trace operator is neither an injection nor a surjection from W 1,p(Ω) to Lp(∂Ω).

Specifically, the range T (W 1,p(Ω)) = W 1−1/p,p(∂Ω) ⊂ Lp(∂Ω) (Atkinson et al.,
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2009). In this work, we use traces of the H1(Ω) functions. These traces form the

space H1/2(∂Ω) and therefore we have

‖z‖H1/2(∂Ω) ≤ C‖z‖H1(Ω) ∀ z ∈ H1(Ω) (1.7.2)

Similarly, the trace space on the interface Γ is H1/2(Γ). More information on trace

operators can be found in the books by Adams (1975) and Evans (1997).

1.8 The Finite Element Interpolation Theorem

for Ck Functions

Theorem 1.4 (Oden & Reddy, 1976) Let u(x) denote any function with the

properties

(i) u(x) ∈ Ck(M) M ⊂ Rn

(ii) Dk+1u(x) exists ∀ x ∈M

where k is a fixed integer ≥ 0, and M is an Le−admissible set for some collection

of nodal points Le in Rn. Let

Ck+1 = sup
x∈Ωe

‖Dk+1u(x)‖ < ∞

where ‖Dku(x)‖ = sup
{
|Dku(x) · (ξ1, ξ2, . . . , ξn)|, |ξi| ≤ 1; i = 1, 2, . . . , n

}
. In ad-

dition, let either the following two sets of conditions hold:

(I) (Lagrange finite elements)

Le =
{
xNe
}Ne

N=1

is a k−unisolvent set of nodal points of a finite element Ωe ⊂ Rn, and Ue(x)

is the unique interpolating polynomial of degree ≤ k of u(x).
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(II) (Hermite finite elements)

Le =
ν⋃

µ=0

Σ(µ) Σ(µ) =
{

(µ)x
N
e

}Ne

N=1

is a k−unisolvent nodes of an Le−admissible finite element Ωe such that

(µ)x
N
e is associated with a subset χNµ of

∏µRn ≡ (Rn)µ , 1 ≤ N ≤ Nµ,

0 ≤ µ ≤ ν, and Ue(x) is the unique interpolating polynomial in Pk(M) such

that

Ue((0)X
N) = u((0)X

N) 1 ≤ N ≤ N0

DµUe((µ)X
N) · (ξ1, ξ2, . . . , ξµ) = Dµu((µ)X

N) · (ξ1, ξ2, . . . , ξµ)


∀ (ξ1, ξ2, . . . , ξµ) ∈ χNµ , 1 ≤ N ≤ Nµ, 0 ≤ µ ≤ ν.

Then there exist positive constants C = C(n, k,m, L̂M) depending on n, k, m and

L̂M but not on u, h or ρ such that, for any integer m, 0 ≤ m ≤ k, we have

sup
x∈Ωe

‖Dmu(x)−DmUe(x)‖ ≤ CCk+1
hk+1

ρm

For regular refinement,

sup
x∈Ωe

‖Dmu(x)−DmUe(x)‖ ≤ CCk+1h
k+1−m (1.8.1)

The remaining part of this thesis is organised as follows: Chapter 2 is devoted

to the review of relevant results and methods necessary for this research.

In chapter 3, we first establish the boundedness of (1.5.1) − (1.5.3) in the L2,

H1, and X norms, and state the FE discretisation. We then define interpolation

and projection operators and obtain necessary estimates in L2 and H1 norms.

Lastly, we give the analysis of the error estimates of the semi-discrete and fully

discrete schemes of the FEM solution of (1.5.1)− (1.5.3).

In chapter 4, we propose the use of spectral element method for (1.5.1)−(1.5.3).

We define the spectral element discretisation and establish an optimal convergence

rate for a linearised backward Euler scheme. We discuss our results and conclude

in chapter 5.
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Chapter 2

LITERATURE REVIEW

Solution of nonlinear parabolic interface problems by FEM has been discussed by

few authors. In the sequel, we shall give the existing methods and results of FEM

and SEM as discussed in relevant literature.

2.1 Finite Element Method

Although interface problems have been studied by Ja (1966) using difference

schemes, the use of FEM for interface problems started with the work of Babuska

(1970) on elliptic interface problem. He studied finite element approximation to

elliptic interface problem

−
n∑
i=1

∂

∂xi

[
a(x)

∂u

∂xi

]
= f on Ω

with Dirichlet boundary condition on smooth domain Ω ⊂ Rn with C∞ boundary

and interface. He formulated the problem as a minimization problem, defined and

analysed a quadratic functional which was used to obtain an error estimate of

optimal order in H1(Ω)-norm

Barrett and Elliot (1987), assuming higher regularity on the solution, analyzed

elliptic problems via a penalty method. By choosing the penalty parameter ap-

proximately, it was shown that the approximate solution converges to the exact
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solution at an optimal rate in both the H1-norm and L2-norm, over any interior

domain.

Feistauer and Sobotiková (1990) studied the finite element approximation of a

nonlinear elliptic problem with discontinuous coefficients across a common part of

the boundary of the domain. Conforming piecewise linear elements were used and

integrals were evaluated by numerical quadrature. Solvability and convergence of

the finite element solution were established with the assumption that the unknown

is in H1(Ω).

Z̆eńǐsek (1990) presented the analysis of the finite element method for nonlinear

elliptic equations with discontinuous coefficients

−
2∑
i=1

∂

∂xi
ai(x, u(x),∇u(x)) + a0(x, u(x),∇u(x)) = f(x) x ∈ Ω

with mixed boundary conditions

u(x) = uD(x) on ∂ΩD and
2∑
i=1

ai(x, u(x),∇u(x))ni(x) = q(x) on ∂ΩN

where Ω is a two dimensional polygonal domain with Lipschitz continuous bound-

ary. Under suitable assumptions which guarantee that the differential operator is

strongly monotone and Lipschitz continuous, he proved that the weak form of the

problem has a unique solution and the finite element solution converges at the rate

of order O(hε) to the exact solution u ∈ H1(Ω) provided the exact solution is of

class H1+ε (0 < ε ≤ 1) and no rate of convergence if u ∈ H1(Ω) only.

Chen and Zou (1998) proposed the finite element method for second order

elliptic and parabolic interface problems. They considered an elliptic problem of

the form

−∇ · (β∇u) = f in Ω

with boundary and interface conditions

u = 0 on ∂Ω and [u] = 0,

[
β
∂u

∂n

]
= g across Γ
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They assumed that Ω is a convex polygon in R2 with C2 boundary and an interface

of arbitrary shape. With the assumption that the solution, coefficients and inter-

face function are of low regularity, they obtained almost optimal convergence rates

of O(h| log h|1/2) and O(h2| log h|) in energy norm and L2(Ω) norm respectively.

Linear parabolic interface problem of the form

∂u

∂t
−∇ · (β∇u) = f(x, t) in Ω× (0, T )

with initial, boundary and interface conditions

u(x, 0) = u0 in Ω; u = 0 on ∂Ω×(0, T ); and [u] = 0,

[
β
∂u

∂n

]
= g across Γ×(0, T )

was studied using backward Euler time discretisation. They proved almost optimal

error estimates of O(k + h2| log h|) and O(k + h| log h|1/2) in L2(0, T ;L2(Ω)) and

energy norms. Their analysis was based on Sobolev embedding inequality, Sobolev

extension theorem, duality arguments, energy norm projection operator and L2

projection operator.

An unfitted finite element discretisation using an approach due to Nitsche was

proposed by Hansbo and Hansbo (2002) for approximating the elliptic interface

problem

−∇ · (α∇u) = f in Ω1 ∪ Ω2

with boundary and interface conditions

u = 0 on ∂Ω and [u] = 0 ,

[
α
∂u

∂n

]
= g on Γ

It is known that suboptimal convergence behaviour occurs when the mesh is not

fitted to the interface (Babuska, 1970). This problem was resolved by allowing the

approximating function to be discontinuous inside the elements which intersect

the interface. For each interface element K, they introduced the notation

κi|K =
meas(Ki)

meas(K)
and {φ} = (κ1φ1 + κ2φ2)Γ
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and expressed the discrete weak form as

ah(U, φ) = (f, φ)Ω + (κ2g, φ1)Γ + (κ1g, φ2)Γ

where

ah(U, φ) := (αi∇Ui,∇φi)Ωi∪Ω2−
(

[U ],

{
α
∂φ

∂n

})
Γ

−
({

α
∂U

∂n

}
, [φ]

)
Γ

+(λ[U ], [φ])Γ

with λ sufficiently large.

Although their method is more computationally complex than the standard FEM,

it gives a better approximation because an optimal order of convergence is guaran-

teed in the L2-norm. The analysis of the method was based on Sobolev embedding

inequalities and linear interpolation operator on quasi-uniform triangular elements.

Based on cartesian triangulations, Li et al. (2003) discussed elliptic interface

problems and established the optimal rate of convergence in the energy norm for

a conforming FEM.

Olshankii and Reusken (2004) treated a stationary Stokes problem on a bounded

connected domain in which the viscosity coefficient is piecewise constant and with

different values on the subdomains. With velocity u ∈ H1
0 (Ω)d and pressure

p ∈ L2
0(Ω) (ie. p ∈ L2(Ω) and

∫
Ω
p dx = 0), they established a well posed-

ness result. Analysis of the discretisation was based on conforming finite element

spaces and stability as well as convergence results were proved with respect to the

jump in the viscosity coefficient.

Sinha and Deka (2005) discussed FEM for a linear parabolic interface prob-

lem with the use of curved elements across the interface instead of triangle el-

ements. They employed the Linear theories of interface problems and Aubstin

Nitsche duality argument and show that the finite element solutions approximate

the true solutions with an optimal order of O(h) and O(h2) in L2(0, T ;H1(Ω))

and L2(0, T ;L2(Ω)) norms respectively. Their time discretisation was based on

discontinuous Galerkin method and also obtained optimal order of convergence.

Karatson and Korotov (2005) investigated the discrete maximum principles for

finite element solutions of nonlinear elliptic problems. They presented several vari-
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ants of the maximum principles and their discrete counterparts for second order

nonlinear elliptic problems with mixed boundary conditions. The problems con-

sidered were numerically solved by the continuous piecewise linear finite element

approximations built on simplicial meshes.

Sinha and Deka (2007) proposed and analyzed an unfitted finite element dis-

cretisation for both elliptic and parabolic problems with discontinuous coefficients.

They considered the interface problems first considered by Chen and Zou (1998)

but on unfitted finite element. An optimal order error estimate of O(h) in the

H1-norm was shown to be obtainable and almost optimal order error estimate

O(h2| log h|) in the L2-norm was derived for elliptic interface problems. An exten-

sion to parabolic interface problems was also discussed and estimates in L2(H1)-

norm and L2(L2)-norm were derived for the spatially discrete scheme. A fully

discrete scheme based on the backward Euler method was analyzed and an opti-

mal order error estimates in L2(H1)-norm was derived.

Sinha and Deka (2009) studied the FEMs for second order semilinear elliptic

interface problem

−∇ · (β(x)∇u(x)) + u(x) = f(u) in Ω

with boundary and interface conditions

u = 0 on ∂Ω and [u] = 0,

[
β
∂u

∂n

]
= 0 along Γ

They assumed that Ω is a convex polygon in R2 with C2 boundary and the mesh

can be fitted exactly to the arbitrary interface, however, it is very difficult to gen-

erate a grid which exactly follows the actual interface in practice. They obtained

optimal convergence rate of O(h) in H1(Ω) norm.

An extension to the semilinear parabolic interface problem of the form

∂u

∂t
−∇ · (β(x)∇u) + u(x) = f(u) in Ω× (0, T ]

with initial, boundary and interface conditions

u(x, 0) = u0 in Ω; u = 0 on ∂Ω× (0, T ); and [u] = 0,

[
β
∂u

∂n

]
= 0 along Γ× (0, T )
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was also considered. The convergence of the semidiscrete solution to the exact

solution was of order O(h) in the L2(0, T ;H1(Ω))-norm. A similar error estimate

was obtained for fully discrete scheme based on backward Euler method. Their

analysis was based on the linear theory of interface problems and the approxima-

tion theory of Brezzi-Rappaz-Raviart, Sobolev embedding inequality and auxiliary

projections.

Karatson and Korotov (2009) proved discrete maximum principles for finite

element discretisations of nonlinear elliptic interface problems with jumps of the

normal derivatives. This work is an extension of thier work in 2005 to a class of

such problems, and relies on a similar technique using positivity that ensure well-

posedness. The jump was allowed for normal derivatives but not for the solution

itself.

Deka and Ahmed (2012) improved on the works of Chen and Zou (1998)

and Sinha and Deka (2006) and also confirmed the optimal error estimates in

L2(0, T ;L2(Ω))-norm. Optimal error estimates in the L2(L2) and L2(H1) norms

were established for linear semi discrete scheme and a similar error estimates was

also extended to semilinear interface problems.

Mu et al. (2013) developed a weak Galerkin finite element method for elliptic

interface problems. An algorithm based on the work by Wang and Ye (2013)

was presented and analyzed. The uniqueness as well as the convergence of the

algorithm was established. Convergence of O(h1.75) was established numerically in

the L∞-norm.

Payne et al. (2012) employed the regularity assumption on the true solution

of an elliptic interface problem as well as interface and domain approximation

technique made popular by Chen and Zou (1998) in the finite element method

for elliptic problems with smooth interfaces. The result of the work showed that

optimal order of convergence in the L2 and H1-norms are possible even if the

solution has a low regularity.

Minimal dissipation local discontinuous Galerkin method for linear parabolic
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interface problem on two dimensional polygonal domain was proposed by Zhang

& Yu (2015). They considered the interface problem

∂u

∂t
−∇ · (β∇u) = f(x, t) in Ω× (0, T )

with initial, boundary and interface conditions

u(x, 0) = u0 in Ω; u = 0 on ∂Ω× (0, T ); and [u] = 0,

[
β
∂u

∂n

]
= 0 along Γ× (0, T )

They introduced auxiliary variables and recast the problem in a way suitable for

mathematical analysis. The method was proved to be L2-stable and converges

at a rate proportional to h| log h|1/2 however, they showed numerically that the

convergence rates are higher than the theoretical result.

Yang (2015) studied the convergence of the finite element solution of a nonlinear

parabolic interface problem with a linear source term:
∂u

∂t
−∇ · (σ0(u)∇u) = f(x, t) in Ω0

∂u

∂t
−∇ · (σ1(u)∇u) = f(x, t) in Ω1

with initial, boundary and interface conditions

u(x, 0) = u0(x) in Ω; u = 0 on ∂Ω× (0, T ); and [u] = 0,

[
−σ∂u

∂n

]
= g on Γ

The author focused on the fully discrete approximation and used a linearized 2-

step backward difference scheme for the time discretisation while piecewise linear

interpolation was used to approximate the interface. With the assumption that the

coefficient σ(u) is positive and smooth with respect to u ∈ R but not continuous

across the interface, the author proved a convergence rate of almost optimal order

O(k2 + h2| ln(2 + 1/h)|2) in the L2-norm. Her mathematical analysis was carried

out using body fitted triangulation, error splitting technique, and some projection

operators under certain regularity conditions that guaranteed a unique solution.
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2.2 Spectral Element Method

Spectral element method was first presented by Patera (1984). He proposed a spec-

tral element method for the solution of the incompressible Navier-Stokes equations

∂v

∂t
+ (v · ∇)v = −∇p+ ν∇2v

with

∇ · v = 0

The unknown function was represented as high order Langrangian interpolant

through Chebyshev collocation points for the spatial discretisation. For the time

discretisation, operator splitting technique was employed with second order Adams-

Bashforth explicit scheme for the wave operator and Crank-Nicolson method for

the diffusion term. He implemented the technique on a one-dimensional inflow-

outflow advection-diffusion equation

∂u

∂t
+
∂u

∂x
= ν

∂2u

∂x2
−∞ < x <∞

and simulated laminar flow on two-dimensional domain. He showed numerically

that the spectral element solution converges exponentially to the exact solution in

the L∞-norm. Extensions and improvements to the SEM which will allow it to be

used in greater generality were also suggested.

The study of interface problem by SEM was first carried out by Ronquist and

Patera in 1987. They presented a Legendre spectral element method for multi-

dimensional unsteady change-of-phase (Stefan) problem

k
∂T1

∂t
= κ1∇2T1 in D1

k
∂T2

∂t
= κ2∇2T1 in D2

with mixed boundary conditions and a moving interface. The moving interface

was captured by interface-local transformations and consistent flux evaluation.
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The analysis of the method was given for a 1-dimensional problem and the re-

sult was extended to a 2-dimensional problem. Quadrilateral elements were used

for the spatial discretisation and the unknown was approximated using Legendre

polynomials on Gauss-Lobatto-Legendre collocation points. For computational

simplification, tensor product mapping was used to map each element in the phys-

ical domain to a local (mathematical) domain.

The analysis of the rapid convergence rate and stability based on Gauss-Lobatto

Legendre quadrature was provided. Exponential convergence of the numerical

solution to the exact solution as the polynomial order increases was established

for fixed element.

Timmermans et al. (1994) combined Taylor-Galekin method (a method based

on Taylor series of the time derivative) with a spectral element spatial discreti-

sation for the approximation of convection-diffusion problems. Operator splitting

method is used to decouple the problem into a pure convection problem and a

pure diffusion problem. Convergence of the approximate solution to the exact so-

lution was established numerically in the L∞-norm. The result of the this work

was established by computation.

In the paper by Yoseph et al. (1995), the spectral element technique proposed

by Patera (1984) was implemented on a one-dimensional nonlinear advection-

diffusion equations. Time discretisations based on one-step implicit-explicit method,

Adams-Bashforth multistep method and a subcycling method (a technique in

which several convective steps are taken for each time step) were compared and

stability as well as convergence analysis were carried out. From the result of their

computation, subcycling method showed the best convergence rate and thus they

concluded that higher-order time scheme should be used with spectral finite ele-

ment. The result of the this work was established by computation.

Taylor et al. (1997), Komatitsch et al. (1999), Liquan (1999), Meng et al.

(2003) Pasquetti & Rapetti (2004) and Deng & Cai (2005) have all contributed to

the growth of SEM.
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Simulation of two- and three-dimensional moving boundary problems such as

free-surface flows or fluid structure interaction was presented by Bodard et al.

(2008). A moving boundary fitted technique was used for the simulation of the

unsteady part of the boundary. This was achieved by using arbitrary Lagrangian-

Eulerian (ALE) technique to avoid mesh distortion. The moving boundary in-

compressible Newtonian fluid flows considered are governed by the Navier-Stokes

equation

∂u

∂t

∣∣∣∣
x

+ u · ∇xu = −∇xp+ 2ν∇x ·Dx(u) + f , ∀ (x, t) ∈ Ωt × I

with ∇x · u = 0 where u is the velocity field, p the pressure field, ν the kinematic

viscosity of the fluid, Dx(u) = 1
2
(∇xu +∇xu

T ) the rate of deformation tensor and

f the body force per unit mass. Under suitable transformation, the Navier-Stokes

equation was written in ALE strong form as

∂u

∂t

∣∣∣∣
Y

+ (u−w) · ∇xu = −∇xp+ 2ν∇x ·Dx(u) + f , ∀ (x, t) ∈ Ωt × I

where w is the ALE velocity, x position of a point in the current fluid domain Ωt

and Y is the position of a point in the reference (ALE) coordinate.

Galerkin method was used to obtain the weak form in the ALE frame and quadri-

lateral elements were used for the spectral element discretisation with most of the

integrals evaluated numerically by Gauss-Lobatto-Legendre quadrature rule. The

velocity and pressure were approximated by GLL Lagrangian interpolation basis

of degrees N and N − 2 respectively on the each element. A combination of im-

plicit difference scheme and extrapolation method of order 2 were used for the

time discretisation. This work is purely computational and the results obtained

are very good with the theoretical results when available.

Gerritsma et al. (2008) investigated the application of the least square SEM

to compressible flow problems. They demonstrated that the least square SEM has

optimal convergence and that it is better used for functions with oscillation than

the ordinary SEM.
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Comparison of SEM with Radial Basis Function (RBF) method has been car-

ried out by Shin & Jung (2011). In their methods, it was assumed that the

the locations of the interfaces inside the given domain are known a priori. With

the position of the interface fixed, the domain was discretised into intervals and

Lagrange polynomials on collocation points were used for spectral element de-

scretisation. This resulted to an overdetermined system of linear equations which

was solved by Least square method. The shape parameters needed for the RBF

method, were chosen to increase the accuracy of the method while keeping the

system well-conditioned.

The methods were implemented on a first order differential equation

du

dx
= f(x), x ∈ (0, 1) with u(0) = c0 ∈ R

and interfaces at several points within (0, 1). Solution by SEM was found on

Chebyshev-Gauss-Lobatto collocation points and two different shape functions

(uniform and weighted functions) for RBF. The methods were further implemented

on a second order differential equations with singular functions:

−(βux)x + ru = f + νδ0 , x ∈ (0, 1) u(0) = u(1) = 0

where β and r are smooth and piecewise across the interface. Galerkin method was

used to obtain the weak form and the solution by SEM was found on Chebyshev

and Legendre collocation points. The solution by RBF was based on two different

shape functions (ie uniform and weighted).

The authors concluded that for both spectral and RBF methods, least squares col-

location method is efficient and yields accurate results for the interface problems.

The authors also noted that SEM is superior to RBF method in that boundary

effect related to Runge phenomenon is better treated with SEM.

Dehghan & Sabouri (2013) developed the Legendre spectral element method
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(LSEM) for a predator-prey model

∂u

∂t
= Du∆u+ F (u)− E(u, v)

∂v

∂t
= Dv∆v + κE(u, v)−G(u)

with Neuman boundary condition on a one dimensional domain. See Dehghan

& Sabouri (2013) for the meanings of the parameters Du, Dv, κ, F (u), G(u) and

E(u, v). The domain was partitioned into intervals and the unknown was approx-

imated by Lagrange polynomials on each element with Gauss-Lobatto-Legendre

collocation points. For computational conveniences, the domain was transformed

to a bi-unit domain and the model was converted to a system of initial value ordi-

nary differential equations. The time discretisation was based on implicit method

to ensure numerical stability. The maximum norm errors generated from LSEM

were compared with that from Lagrange Pseudo-Spectral Method (LPSM) and the

FEM with quadratic bases. It was shown that high accuracy could be achieved

from LSEM with less computational effort and time than the LPSM and FEM.

The integrals involved were numerically evaluated using Gauss-Lobatto quadrature

rule. The emphasis of the authors was on the accuracy of the spatial discretisation

using the LSEM.

Dutt et al. (2014) presented results of numerical experiments for a number of

test problems on non-smooth domains with analytic as well as singular solutions

to validate the theoretical error estimates obtained in their earlier work for a non-

conforming h− p SEM. Several examples on elliptic PDE of the form

3∑
ij=1

− ∂

∂xi
(aijwxi) + cw = F in Ω

on different geometrical 3-d domains containing different types of singularities

namely, vertex, edge and vertex-edge, were considered with different types of

boundary conditions. To overcome the singularities, the authors used local systems

of coordinates (which were modified versions of spherical and cylindrical coordi-

nate systems) together with geometric meshes which become finer near corners
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and edges. The domains were discretised into hexahedrons and the spectral el-

ement solution was obtained on Gauss-Lobatto-Legendre collocation points. It

was demonstrated numerically that the sum of regular error and the errors at the

singularity points decreases exponentially in H1(Ω)-norm.

In the work by Claus et al. (2015), the motion of an incompressible fluid

governed by the Navier-Stokes equation

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ 2∇ ·D in Ωt, t ∈ I

with ∇ · u = 0 in Ωt and Dirichlet boundary condition was studied numerically

using SEM, where u is the velocity, p is the pressure, D = 1
2
(∇u+∇uT ) is the rate

of deformation tensor and Re is the Reynolds number. The method was capable

of approximating the infinite stress values with an exponential increase in the

extreme values of the pressure with p-refinement. To avoid computational crime,

the grid points of the computational mesh at the free surface were moved with

the normal fluid velocity and arbitrary Lagrangian-Eulerian technique was used to

avoid mesh distortion. The result of this work is compared with existing results

with several numerical examples. Moreover, the impact of each parameter of the

model on the solution was investigated numerically. Exponential convergence rate

of the approximate solution to the exact solution was numerically established.

Sabouri & Dehghan (2015) presented an implicit spectral element approxima-

tion using the method-of-lines (MoL) to solve nonlinear parabolic differential equa-

tions with smooth coefficients. Naturally, solutions by SEM are only C-functions,

hence the their derivatives are not continuous across the elements in general and

as a result, the arising expansion for the spatial derivative is no longer a nodal one.

To overcome this limitation, the authors proposed the use of nodal expansion for

the spatial derivative. The nodal points used are the Gauss-Lobatto-Legendre and

Fakete points and the numerical quadrature points are chosen to coincide with

these point to increase the accuracy of the numerical integration. The authors
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demonstrated the method for the nonlinear problem

∂u

∂t
= ∇ · (F (u,∇u)∇u) + f(x) .

Use was made of the cardinality property of the Lagrange polynomials for the

MoL formulation in terms of the differentiation matrix and the Jacobian matrix.

In contrast with the stiffness matrix, the differentiation matrix is computationally

simple as it is independent of time.

The efficiency of the method was illustrated with a good number of numerical

simulations - cell motion model, tumor angiogenesis model, 2 and 3 dimensional

p-Laplacian equation. In each case the solutions from the method were com-

pared with other methods and it was concluded that the SEM is an efficient and

convenient technique for time dependent nonlinear diffusion equation in complex

geometries if the unknown function, its derivatives and deformed elements are

represented by the nodal expansion.
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Chapter 3

APPROXIMATION BY FEM

This chapter is devoted to the analysis of the error estimates, which is preceded

by variational formulation of the specified interface problem, finite element dis-

cretisation and the approximation properties of the unknown function across the

interface as well as the prove of some auxiliary estimates necessary for the error

analysis.

3.1 Regularity Estimates

The accuracy of FEM for differential equations depends on the smoothness of

the analytic solution to the equation under consideration, and this depends on

the smoothness of the data (Ciarlet 1978, Brenner & Scott 2008). Due to the

low regularity of the solution across the interface, sufficient conditions for the

solvability of (1.5.1)− (1.5.3) will be discussed in the weak form.

In what follows, we find the weak form and prove the a priori estimates for the

solution of (1.5.1)− (1.5.3) under appropriate regularity conditions on a, f and g.

We multiply (1.5.1) by a test function v ∈ L2(0, T ;H1
0 (Ω)) and use the Green’s

identity to obtain

(ut, v) + A(u : u, v) = (f, v) + 〈g, v〉Γ ∀ v(t) ∈ H1
0 (Ω), a.e t ∈ [0, T ] (3.1.1)
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where

(φ, ψ) =

∫
Ω

φψ dx A(ξ : φ, ψ) =

∫
Ω

a(x, ξ)∇φ · ∇ψ dx 〈φ, ψ〉Γ =

∫
Γ

φψ dΓ

It is known that ut ∈ L2(0, T ;H−1(Ω)) (cf Evans, 1997) and g ∈ L2(0, T ;H1/2(Γ)∩
H2(Γ)) (cf Ladyzhenskaya et al., 1966 and Chen & Zou 1998). We have the

following estimates:

Lemma 3.1 Suppose that the conditions of Assumption 1.1 are satisfied for every

a : Ω× R→ R, f : Ω× R→ R and g ∈ L2(0, T ;H1/2(Γ)), there exists a constant

C depending on µ1, µ2, µ3, T and Ω such that

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)) + ‖ut‖L2(0,T ;H−1(Ω))

≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
(3.1.2)

Proof Let v = u in (3.1.1), we have for t ∈ [0, T ]

1

2

d

dt
‖u‖2

L2(Ω) + µ1‖∇u‖2
L2(Ω) ≤ (f, u) + 〈g, u〉Γ

Using Cauchy inequality, Young’s inequality and (1.6.2) we obtain, for γ (which

depends on meas(Ω))

1

2

d

dt
‖u‖2

L2(Ω) + µ1‖∇u‖2
L2(Ω) ≤ (µ3 + γ)‖u‖2

L2(Ω) +
C

4ε
‖g‖2

H1/2(Γ) + ε‖u‖2
H1(Ω)

with ε = µ1
2

, it follows that

1

2

d

dt
‖u‖2

L2(Ω) − β‖u‖2
L2(Ω) +

µ1

2
‖u‖2

H1(Ω) ≤ C‖g‖2
H1/2(Γ)

where β = γ + µ1 + µ3 . We multiply both sides by the integrating factor

exp(−2βt) > 0

e−2βt1

2

d

dt
‖u‖2

L2(Ω) − e−2βtβ‖u‖2
L2(Ω) +

µ1

2
e−2βt‖u‖2

H1(Ω) ≤ Ce−2βt‖g‖2
H1/2(Γ)

which implies

1

2

d

dt

[
e−2βt‖u‖2

L2(Ω)

]
+
µ1

2
e−2βt‖u‖2

H1(Ω) ≤ Ce−2βt‖g‖2
H1/2(Γ)
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For t ∈ [0, T ], we have

e−2βt‖u‖2
L2(Ω) + µ1

∫ t

0

e−2βs‖u‖2
H1(Ω) ds ≤ C

∫ t

0

e−2βs‖g‖2
H1/2(Γ) ds+ ‖u0‖2

L2(Ω)

(3.1.3)

Taking the supremum of (3.1.3) with respect to t over [0, T ], there is a constant C

which depends on µ1, µ3,meas(Ω), and T such that

‖u‖2
L∞(0,T ;L2(Ω)) + ‖u‖2

L2(0,T ;H1(Ω)) ≤ C
(
‖g‖2

L2(0,T ;H1/2(Γ)) + ‖u0‖2
L2(Ω))

)
(3.1.4)

For ut(t) we have with t ∈ [0, T ]

‖ut‖H−1(Ω) = sup
v∈H1(Ω)

(ut, v)

‖v‖H1(Ω)

, v 6= 0

It follows from (3.1.1) and (3.1.4) (and Assumption 1.1 in mind) that

(ut, v) ≤ C
(
‖u(t)‖H1(Ω) + ‖g(t)‖H1/2(Γ)

)
‖v‖H1(Ω)

where C depends on µ2, Ω and µ3. Thus for all v ∈ H1(Ω),

‖ut‖H−1(Ω) ≤ C
(
‖u(t)‖H1(Ω) + ‖g(t)‖H1/2(Γ)

)
Integrating this with respect to t from 0 to T , we have

‖ut‖L2(0,T ;H−1(Ω)) ≤ C
(
‖u(t)‖L2(0,T ;H1(Ω)) + ‖g(t)‖L2(0,T ;H1/2(Γ))

)
(3.1.5)

(3.1.2) follows from (3.1.4) and (3.1.5). 2

Remark 3.1 Suppose the conditions of Lemma 3.1 are satisfied with

f(x, u) = f1(u) + f2(x) then (3.1.2) becomes

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)) + ‖ut‖L2(0,T ;H−1(Ω))

≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖f2‖H−1(Ω) + ‖u0‖L2(Ω)

)
Lemma 3.2 In Lemma 3.1, it is assumed that the solution u ∈ L2(0, T ;H1

0 (Ω)).

However, if u(t) ∈ X ∩H1
0 (Ω) for t ∈ (0, T ], we have

‖u‖L2(0,T ;X) ≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
(3.1.6)
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Proof Multiply (1.5.1) by v ∈ X ∩H1
0 (Ω) and integrate over Ω1∫

Ω1

utv −
∫

Γ

a(x, u)
∂u

∂n1

v +

∫
Ω1

a(x, u)∇u · ∇v =

∫
Ω1

f(x, u)v (3.1.7)

where n1 is the unit outward normal to the interface. Let v = ut in (3.1.7) and

using (1.5.1)

−
∫

Ω1

a∇u · ∇[∇ · (a∇u)] = ‖ut‖2
L2(Ω1) −

∫
Γ

gut −
∫

Ω1

fut +

∫
Ω1

a∇u · ∇f (3.1.8)

Using the notation ∂iu for ∂u
∂xi

(i = 1, 2), we have the expression

−
∫

Ω1

a∇u · ∇[∇ · (a∇u)] ≡ −
2∑

i,j=1

∫
Ω1

(a∂iu)(∂i∂j(a∂ju))

=
2∑

i,j=1

[∫
Ω1

∂j(a∂iu)(∂i(a∂ju))

−
∫

Γ

(a∂iu)(∂i(a∂ju))

]
(3.1.9)

Substitute (3.1.9) into (3.1.8)

2∑
i,j=1

∫
Ω1

∂j(a∂iu)(∂i(a∂ju)) = ‖ut‖2
L2(Ω1) −

∫
Γ

gut −
∫

Ω1

fut +

∫
Ω1

a∇u · ∇f

+
2∑

i,j=1

∫
Γ

(a∂iu)(∂i(a∂ju))

By Assumption 1.1, Schwartz and Young’s inequalities, we have for γ, depending

on meas(Ω1),

µ2
1

2∑
i,j=1

(∂i∂ju)2 ≤ 3

2
‖ut‖2

L2(Ω) +
1

2
‖g‖2

H1/2(Γ) +
µ3

2

d

dt
‖u‖2

L2(Ω1) + γ‖ut‖2
L2(Ω1)

+
µ4

2

µ2
1

2∑
i=1

∫
Γ

(∂iu)2 +
µ2

1

2

2∑
i,j=1

∫
Ω1

(∂i∂ju)2 + µ3

∫
Ω1

|∇u|2

which implies

2∑
i,j=1

(∂i∂ju)2 ≤ C

[
‖ut‖2

L2(Ω1) + ‖g‖2
H1/2(Γ) +

d

dt
‖u‖2

L2(Ω1) + ‖u‖2
H1(Ω1)

]
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Now, we have

‖u‖2
H2(Ω1) =

∑
α=2

‖Dαu‖2
L2(Ω1) + ‖u‖2

H1(Ω1)

=
2∑

i,j=1

(∂i∂ju)2 + ‖u‖2
H1(Ω1)

≤ C

[
‖ut‖2

L2(Ω1) + ‖g‖2
H1/2(Γ) +

d

dt
‖u‖2

L2(Ω1) + ‖u‖2
H1(Ω1)

]
Integrating with respect to t from 0 to T then using (3.1.2), we have

‖u‖L2(0,T ;H2(Ω1)) ≤ C
[
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

]
(3.1.10)

Following the same argument as above, we have

‖u‖L2(0,T ;H2(Ω2)) ≤ C
[
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

]
(3.1.11)

(3.1.6) follows from (3.1.2), (3.1.10) and (3.1.11). 2

3.2 Finite Element Discretisation and Auxiliary

Results

Th denotes a partition of Ω into disjoint triangles K (called elements) such that no

vertex of any triangle lies on the interior or side of another triangle. The domain

Ω1 is approximated by a domain Ωh
1 with a polygonal boundary Γh whose vertices

all lie on the interface Γ. Ωh
2 represents the domain with ∂Ω and Γh as its exterior

and interior boundaries respectively.

Let hK be the diameter of an element K ∈ Th and h = maxK∈Th hK . Let T ?h
denote the set of all elements that are intersected by the interface Γ;

T ?h = {K ∈ Th : K ∩ Γ 6= φ}

K ∈ T ?h is called an interface element and we write Ω?
h =

⋃
K∈T ?

h
K.

The triangulation Th of the domain Ω satisfies the following conditions
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(i) Ω̄ =
⋃
K∈Th

K̄

(ii) If K̄1, K̄2 ∈ Th and K̄1 6= K̄2, then either K̄1∩K̄2 = ∅ or K̄1∩K̄2 is a common

vertex or a common edge.

(iii) Each K ∈ Th is either in Ωh
1 or Ωh

2 , and has at most two vertices lying on Γh.

(iv) For each element K ∈ Th, let rK and r̄K be the diameters of its inscribed and

circumscribed circles respectively. It is assumed that, for some fixed h0 > 0,

there exists two positive constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0)

For any interface element K ∈ T ?h , let K1 = K ∩ Ω1 and K2 = K ∩ Ω2, it was

shown by Chen & Zou (1998) that

either meas(K1) ≤ Ch3
K or meas(K2) ≤ Ch3

K

To correct the discontinuities that might occur at the corners, we make the ele-

ments at the corners finer (see Fig 3.1).

Let Sh denote the space of continuous piecewise linear functions on Th which

vanish on ∂Ω. To describe a function ω ∈ Sh, we will use the values ω(Ni) of ω as

parameter, where Ni, (i = 1, 2, ...,M) are nodes (see figure 3.3) of triangles in Th.
Since ω = 0 on ∂Ω, we exclude the nodes on the boundary ∂Ω. The basis function

for the space Sh is φj which is given for i = 1, ..,M as

φj(Ni) = δij =

 1 if i = j

0 if i 6= j

The support of φj consists of the triangles with common nodes Nj. A function

w ∈ Sh has the representation

ω(x) =
M∑
j=1

ξjφj(x) for x ∈ Ω ∪ ∂Ω
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Figure 3.1: A body fitted triangulation of a rectangular domain with one refine-

ment

 

Figure 3.2: Basis function φj
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where ξj = ω(Nj)

Let πh : C(Ω̄) → Sh be the Lagrange interpolation operator corresponding to

the space Sh. The standard interpolation theory can not be applied due to the low

regularity of the solution across the interface. We follow Chen and Zou (1998) for

the proof of the following result.

Lemma 3.3 For the linear interpolation operator πh : C(Ω̄) → Sh, we have, for

m = 0, 1, and 0 < h < 1

‖u− πhu‖Hm(Ω) ≤ Ch2−m
(

1 +
1

| lnh|

)1/2

‖u‖X ∀ u ∈ X (3.2.1)

Proof By standard finite element interpolation theory [Ciarlet (1978),Evans (1997),

Brenner & Scott (2008)], for any triangle K ∈ Th\T ∗h ,

‖u− πhu‖Hm(K) ≤ Ch2−m‖u‖H2(K) for m = 0, 1 (3.2.2)

Now, for any elementK ∈ T ∗h , using Hölder’s inequality and the fact thatmeas(K1) ≤
Ch3, we have

‖u− πhu‖2
Hm(K1) ≤

∑
|α|≤m

‖Dα(u− πhu)‖2
L2(K1)

≤ [meas(K1)]
p−2
p

∑
|α|≤m

‖Dα(u− πhu)‖pL2(K1)

2/p

≤ Ch3( p−2
p )

∑
|α|≤m

‖Dα(u− πhu)‖pL2(K1)

2/p

for p > 2

Therefore

‖u− πhu‖Hm(K1) ≤ Ch3( p−2
2p )‖u− πhu‖Wm,p(Ki)

≤ Ch3( p−2
2p )‖u− πhu‖Wm,p(K)

Using the standard finite element interpolation theory,

‖u− πhu‖Hm(K1) ≤ Ch
3p−6
2p

+1−m‖u‖W 1,p(K) for any p > 2, m = 0, 1
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Recall the Sobolev embedding inequality for two dimensions [Ren & Wei (1994),

Evans (1997)]

‖φ‖Lp(Ωi) ≤ Cp1/2‖φ‖H1(Ωi) ∀ p > 2, φ ∈ H1(Ωi), i = 1, 2

therefore,

‖u− πhu‖Hm(K1) ≤ Ch
3p−6
2p

+1−mp1/2‖u‖H1(K) for any p > 2, m = 0, 1 (3.2.3)

By means of extensions [Stein (1971)],

‖u− πhu‖Hm(K2) ≤ Ch2−m‖u‖H2(K) , m = 0, 1 (3.2.4)

It follows from (3.2.3) and (3.2.4) that∑
K∈T ∗h

‖u− πhu‖2
Hm(K) ≤ Ch4−2m

[
1 + ph1−6/p

]
‖u‖2

X (3.2.5)

From (3.2.2) and (3.2.5), we have

‖u− πhu‖2
Hm(Ω) ≤ Ch4−2m‖u‖2

X + Ch4−2mph1−6/p‖u‖2
X , m = 0, 1 p > 2

Since p > 2, we take

p = 2

(
1 +

1

| lnh|

)
> 2 for 0 < h < 1

and (3.2.1) follows.

For the approximation property of gh to the interface function g, we have the

following (cf Chen & Zou, 1998)

Lemma 3.4 Assume that g ∈ H2(Γ). Then we have

|〈g, vh〉Γ − 〈gh, vh〉Γh
| ≤ Ch3/2‖g‖H2(Γ)‖vh‖H1(Ω?

h) ∀ vh ∈ Sh (3.2.6)

The following result is one of the instruments used to establish the error estimates.
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Lemma 3.5 For all νh, ωh ∈ Sh, we have

|A(u : νh, ωh)− Ah(uh : νh, ωh)| ≤ µ3‖∇νh‖L∞(Ω)‖u− uh‖L2(Ω)‖ωh‖H1(Ω)

+ Ch‖νh‖H1(Ω?
h)‖ωh‖H1(Ω?

h)

Proof Let K̃ denote one of K1 or K2, ie supp(a(x, u)− a(x, uh))∩K = K̃ ∀ K ∈
T ?h . See Fig 3.3.

|A(u : νh, ωh)− Ah(uh : νh, ωh)| ≤
∑
K∈Th

∫
K

|a(x, u)− a(x, uh)||∇νh · ∇ωh|

=
∑
K∈Th

∫
K\K̃
|a(x, u)− a(x, uh)||∇νh · ∇ωh|

+
∑
K∈T ?

h

∫
K̃

|a(x, u)− a(x, uh)||∇νh · ∇ωh|

Mean value theorem cannot be applied on K̃ due to the discontinuity across the

interface and therefore we have

|A(u : νh, ωh)− Ah(uh : νh, ωh)| ≤ µ3

∑
K∈Th

∫
K\K̃
|u− uh||∇νh||∇ωh|

+|µ2 − µ1|
∑
K∈T ?

h

∫
K̃

|∇νh · ∇ωh|

≤ µ3‖∇νh‖L∞(Ω)‖u− uh‖L2(Ω)‖∇ωh‖L2(Ω)

+Ch‖∇νh‖L2(Ω?
h)‖∇ωh‖L2(Ω?

h)

≤ µ3‖∇νh‖L∞(Ω)‖u− uh‖L2(Ω)‖ωh‖H1(Ω)

+Ch‖νh‖H1(Ω?
h)‖ωh‖H1(Ω?

h)

We have made use of the fact that ∇νh and ∇ωh are constant in K ∈ Th and

meas(K̃) ≤ Ch3.
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Figure 3.3: A typical interface element showing K̃
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Remark 3.2 If a is independent of u, we obtain the result by Chen and Zou (1998)

|A(νh, ωh)− Ah(νh, ωh)| ≤ Ch‖νh‖H1(Ω?
h)‖ωh‖H1(Ω?

h)

The following lemma will be used for the error estimation (Sinha and Deka, 2007)

Lemma 3.7 Let Ω?
h be the union of all interface triangles. Then we have

‖v‖H1(Ω?
h) ≤ Ch1/2‖v‖X ∀ v ∈ X

3.3 Continuous Time Error Estimates

This section is devoted to the analysis of the spatially discrete approximation of the

nonlinear parabolic interface problem. Almost optimal order error estimates are

analysed in H1(Ω)-norm and L2(Ω)-norm. The finite element analysis of nonlinear

non-interface problems are contained in Thomee (2006) and the references therein.

The semidiscrete problem is to find uh : [0, T ] → Sh such that uh(0) = uh,0 and

satisfying

(uh,t, vh)h + Ah(uh : uh, vh) = (f(x, uh), vh)h + 〈gh, vh〉Γh
∀ vh ∈ Sh, a.e t ∈ [0, T ]

(3.3.1)

where (ψ, φ)h : H1(Ω) × H1(Ω) → R, Ah(uh : φ, ψ) : H1(Ω) × H1(Ω) → R and

(f(x, uh), vh)h : R×H1(Ω)→ R are defined as

(ψ, φ)h =
∑
K∈Th

∫
K

ψφ dx , Ah(uh : φ, ψ) =
∑
K∈Th

∫
K

a(x, uh)∇φ · ∇ψ dx ,

(f(x, uh), φ)h =
∑
K∈Th

∫
K

f(x, uh)φ dx ∀ φ, ψ ∈ H1(Ω), t ∈ [0, T ]

(ψ, φ)h : H1(Ω)×H1(Ω)→ R, Ah(φ, ψ) : H1(Ω)×H1(Ω)→ R and (f(x, uh), φ)h :

R × H1(Ω) → R are the discrete versions of (ψ, φ) : H1(Ω) × H1(Ω) → R,

A(u : φ, ψ) : H1(Ω) ×H1(Ω) → R and (f(x, u), φ) : R ×H1(Ω) → R respectively
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and are obtained numerically using quadrature schemes. See Germain (2001) and

the references therein, for more information on numerical integration in FEM.

The existence of a unique solution to (3.3.1) follows the standard theory of Ordi-

nary Differential Equations (see Thomee (2006) for details). With uh expressed as

uh(x, t) =
∑Nh

j=1 αj(t)φj(x) (αj(t) : [0, T ] → R) in (3.3.1), this results to a system

of nonlinear ODEs. The assumptions on a(x, u), f(x, u) and g(x, t) guarantee a

unique bounded solution for t ∈ [0, T ].

It is easy to see that uh in (3.3.1) satisfies the a priori estimate (3.2.2)

‖uh‖L∞(0,T ;L2(Ω)) + ‖uh‖L2(0,T ;H1(Ω)) + ‖uh,t‖L2(0,T ;H−1(Ω))

≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
(3.3.2)

The convergence of uh in (3.3.1) to u in (3.1.1) could be established using Banach-

Alaoglu theorem (Siddiqi, 2004 Theorem 4.5.1) and the boundedness of uh, uh,t in

L2(0, T ;H1
0 (Ω)) and L2(0, T ;H−1

0 (Ω)) respectively.

Let Lh : L2
0(Ω)→ Sh be the standard L2 projection defined by

(Lhω, ψ) = (ω, ψ) ∀ ω ∈ L2(Ω), ψ ∈ Sh (3.3.3)

Since (3.3.3) holds for all ψ ∈ Sh, it holds particularly for ψ = Lhω

⇒ ‖Lhω‖2
L2(Ω) = (Lhω, Lhω)

= (ω, Lhω)

≤ ‖ω‖L2(Ω)‖Lhω‖L2(Ω)

⇒ ‖Lhω‖L2(Ω) ≤ ‖ω‖L2(Ω) (3.3.4)

Also, if ω ∈ H1(Ω) and let ψ = DαLhω for a multi-index |α| = 1,

‖DαLhω‖L2(Ω) ≤ ‖Dαω‖Lp(Ω) (3.3.5)

(3.3.4) and (3.3.5) imply

‖Lhω‖H1(Ω) ≤ ‖ω‖H1(Ω) ∀ ω ∈ H1(Ω) (3.3.6)
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Lhv ∈ Sh is the best approximation in the L2-norm to v ∈ L2(Ω). Thus, Lemma

3.3 implies that

‖Lhω − ω‖L2(Ω) ≤ C‖πhω − ω‖L2(Ω) ≤ Ch2

(
1 +

1

| log h|

)1/2

‖ω‖X (3.3.7)

Now, it follows from Sinha & Deka (2007) and inverse inequality (Ren & Wei 1994)

that

‖Lhω − ω‖H1(Ω) ≤ ‖πhω − ω‖H1(Ω) + ‖Lhω − πhω‖H1(Ω)

≤ ‖πhω − ω‖H1(Ω) + Ch−1‖Lhω − πhω‖L2(Ω)

≤ Ch

(
1 +

1

| log h|

)1/2

‖ω‖X

+Ch−1
{
‖ω − πhω‖L2(Ω) + ‖Lhω − ω‖L2(Ω)

}
≤ Ch

(
1 +

1

| log h|

)1/2

‖ω‖X

+Ch−1

[
Ch2

(
1 +

1

| log h|

)1/2

‖ω‖X

]

≤ Ch

(
1 +

1

| log h|

)1/2

‖ω‖X (3.3.8)

The theorem below gives the convergence result for the spatially discrete scheme

in L2(0, T ;H1(Ω))-norm.

Theorem 3.1 Suppose that the conditions of Assumption 1.1 are satisfied for

every a : Ω × R → R, f : Ω × R → R and g ∈ L2(0, T ;H1/2(Γ) ∩H2(Γ)) and let

u and uh be the solution of (3.1.1) and (3.3.1) respectively, then for u0 ∈ H1
0 (Ω)

there exists a positive constant C, independent of h, such that

‖u− uh‖2
L2(0,T ;H1(Ω)) ≤ C(u0, a, f, g)h2

(
1 +

1

| log h|

)
Proof Subtract (3.3.1) from (3.1.1) to get:

(ut − uh,t, vh) + A(u : u, vh) = Ah(uh : uh, vh) + (f(x, u), vh)− (f(x, uh), vh)h

+〈g, vh〉Γ − 〈gh, vh〉Γh

+(uh,t, vh)h − (uh,t, vh) ∀ vh ∈ Sh
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Let e(t) = u− uh, vh = Lhu− uh and use (3.3.3)

1

2

d

dt
‖e(t)‖2

L2(Ω) + A(u : e, e) = Ah(uh : uh, Lhu− uh)− A(u : uh, Lhu− uh)

+A(u : u− uh, u− Lhu) + (f(x, u), Lhu− uh)

−(f(x, uh), Lhu− uh)h + 〈g, Lhu− uh〉Γ

−〈gh, Lhu− uh〉Γh
+ (uh,t, Lhu− uh)h − (uh,t, Lhu− uh)

≤ B1 +B2 +B3 +B4 (3.3.9)

where

B1 = |Ah(uh : uh, Lhu− uh)− A(u : uh, Lhu− uh)|

B2 = |A(u : u− uh, u− Lhu)|+ |(uh,t, Lhu− uh)h − (uh,t, Lhu− uh)|

B3 = |(f(x, u), Lhu− uh)− (f(x, uh), Lhu− uh)h|

B4 = |〈g, Lhu− uh〉Γ − 〈gh, Lhu− uh〉Γh
|

Using (3.3.8) and the fact that ∇uh is constant on K ∈ Th, ‖∇uh‖L∞(Ω) ≤ c,

B1 ≤ µ3‖∇uh‖L∞(Ω)‖e(t)‖L2(Ω)‖Lhu− uh‖H1(Ω) + Ch‖uh‖H1(Ω)‖Lhu− uh‖H1(Ω)

≤ µ3c‖e(t)‖L2(Ω)

[
‖e(t)‖H1(Ω) + Ch

(
1 +

1

| log h|

)1/2

‖u‖X

]

+Ch‖uh‖H1(Ω)

[
‖e(t)‖H1(Ω) + Ch

(
1 +

1

| log h|

)1/2

‖u‖X

]
≤ (ε+ 1)c2µ2

3‖e(t)‖2
L2(Ω) +

1

2ε
‖e(t)‖2

H1(Ω)

+Ch2

(
1 +

1

| log h|

)
[‖u‖2

X + (ε+ 1)‖uh‖2
H1(Ω)] (3.3.10)

We obtain the last inequality by using Young’s inequality (with ε > 0) and fact

that h < 1.

B2 ≤ µ2‖e(t)‖H1(Ω)‖u− Lhu‖H1(Ω) + Ch‖uh,t‖H−1(Ω?
h)‖Lhu− uh‖H1(Ω?

h)

≤ 1

2ε
‖e(t)‖2

H1(Ω) + C(ε)h2

(
1 +

1

| log h|

)
‖u‖2

X + (ε+ 1)Ch2‖uh,t‖2
H−1(Ω)

≤ 1

2ε
‖e(t)‖2

H1(Ω) + C(ε)h2

(
1 +

1

| log h|

)[
‖u‖2

X + ‖uh,t‖2
H−1(Ω)

]
(3.3.11)
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B3 ≤ |(f(x, u), Lhu− uh)− (f(x, u), Lhu− uh)h|

+ |(f(x, u)− f(x, uh), Lhu− uh)h|

≤ Ch‖u‖H1(Ω?
h)‖Lhu− uh‖H1(Ω?

h) + µ3‖u− uh‖L2(Ω)‖Lhu− uh‖L2(Ω)

≤ Ch2

(
1 +

1

| log h|

)
[(ε+ 1)‖u‖2

H1(Ω) + ‖u‖2
X ] +

1

4ε
‖e(t)‖2

H1(Ω)

+ (µ2
3 + µ3)‖e(t)‖2

L2(Ω)

≤ C(ε)h2

(
1 +

1

| log h|

)
‖u‖2

X +
1

4ε
‖e(t)‖2

H1(Ω) + C(µ3)‖e(t)‖2
L2(Ω)(3.3.12)

Using Lemma 3.4,

B4 ≤ Ch3/2‖g‖H2(Γ)‖Lhu− uh‖H1(Ω)

≤ Ch3(ε+ 1)‖g‖2
H2(Γ) +

1

4ε
‖e(t)‖2

H1(Ω) + Ch2

(
1 +

1

| log h|

)
‖u‖2

X (3.3.13)

Substitute (3.3.10) − (3.3.13) into (3.3.9) and simplify with ε = 3/µ1 to obtain,

for h < 1,

1

2

d

dt
‖e(t)‖2

L2(Ω) +
µ1

2
‖e(t)‖2

H1(Ω) ≤ γ‖e(t)‖2
L2(Ω)

+ Ch2

(
1 +

1

| log h|

)(
‖g‖2

H2(Γ) + ‖u‖2
X + ‖uh‖2

H1(Ω) + ‖uh,t‖2
H−1(Ω)

)
where γ > 0 depends on c, µ3 and µ1. It follows that

e−2γt3µ1

8
‖e(t)‖2

H1(Ω) +
1

2

d

dt

[
‖e(t)‖2

L2(Ω)e
−2γt

]
≤ Ch2

(
1 +

1

| log h|

)
e−2γt

(
‖g‖2

H2(Γ) + ‖u‖2
X + ‖uh‖2

H1(Ω) + ‖uh,t‖2
H−1(Ω)

)
The result follows by integrating both sides with respect to time from 0 to T and

using Lemma 3.1, Lemma 3.2, (3.3.2), Lemma 3.3 with u0,h = πhu0.

Theorem 3.2 Suppose that the conditions of Assumption 1.1 are satisfied for

every a : Ω×R→ R, f : Ω×R→ R and g ∈ L2(0, T ;H2(Γ)) and let u and uh be

the solution of (3.1.1) and (3.3.1) respectively, then for u0 ∈ H1
0 (Ω) there exists a

positive constant C, independent of h, such that

‖u− uh‖L2(0,T ;L2(Ω)) ≤ h2

(
1 +

1

| log h|

)
C(u0, u, g)
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where

C(u0, u, g) = C
{
‖u0‖2

X + ‖u‖2
L∞(0,T ;X)

+

∫ T

0

exp(−γt)
(
‖g‖2

H2(Γ) + ‖u‖2
X + ‖ut‖2

X

)
dt

}1/2

The proof of this theorem requires some preparations

Let Ph : X ∩H1(Ω) → Sh be the elliptic projection of the exact solution u in Sh

defined by

Ah(u : Phν, φ) = A(u : ν, φ) ∀ φ ∈ Sh, t ∈ [0, T ] (3.3.14)

From (3.3.14)

µ1‖Phν‖2
H1(Ω) ≤ Ah(u : Phν, Phν)

≤ A(u : ν, Phν)

≤ µ2‖ν‖H1(Ω)‖Phν‖H1(Ω)

It follows that, for C > 0,

‖Phν‖H1(Ω) ≤ C‖ν‖H1(Ω) ∀ ν ∈ H1(Ω) (3.3.15)

For this projection, we have

Lemma 3.8 Let u be a smooth function in Ω × T and a = a(x, u) satisfies

Assumption 1.1. Assume that u ∈ X ∩H1
0 and let Phu be defined as in (3.3.14),

then

‖Phu− u‖H1(Ω) ≤ Ch

(
1 +

1

| log h|

)1/2

‖u‖X (3.3.16)

‖Phu− u‖L2(Ω) ≤ Ch2

(
1 +

1

| log h|

)
‖u‖X (3.3.17)
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Proof For ρ > 0, we have

ρ‖Phu− u‖2
H1(Ω) ≤ Ah(u : Phu− u, Phu− u)

≤ Ah(u : Phu, Phu− φ)− Ah(u : u, Phu− φ)

+Ah(u : Phu− u, φ− u), φ ∈ Sh

≤ |A(u : u, Phu− φ)− Ah(u : u, Phu− φ)|

+|Ah(u : Phu− u, φ− u)|

By a similar argument to the proof of Lemma 3.5, we have

ρ‖Phu− u‖2
H1(Ω) ≤ Ch‖u‖H1(Ω)‖Phu− φ‖H1(Ω) + ‖Phu− u‖H1(Ω)‖φ− u‖H1(Ω)

≤ Ch‖u‖H1(Ω)‖Phu− u‖H1(Ω) + Ch‖u‖H1(Ω)‖u− φ‖H1(Ω)

+‖Phu− u‖H1(Ω)‖φ− u‖H1(Ω)

≤ εCh2‖u‖2
H1(Ω) +

3

4ε
‖Phu− u‖2

H1(Ω) + ε‖φ− u‖2
H1(Ω)

(3.3.16) follows, using (3.2.1) with ε = 2/ρ and φ = πhu.

Now consider the dual problem

−∇ · (a(x, u)∇ψ) = Phu− u in Ω, ψ = 0 on ∂Ω

whose weak form is

A(u : ψ, φ) = (Phu− u, φ) ∀ φ ∈ H1
0 (Ω) (3.3.18)

It follows from a similar argument of Thomee (2006,pg 233) that

‖ψ‖X ≤ C‖Phu− u‖L2(Ω) (3.3.19)

This is because, by Poincare inequality (Atkinson & Han 2009),

µ1‖∇ψ‖2
L2(Ω) ≤ A(u : ψ, ψ) = (Phu− u, ψ) ≤ ‖Phu− u‖L2(Ω)‖ψ‖L2(Ω)

≤ C‖Phu− u‖L2(Ω)‖∇ψ‖L2(Ω)

⇒ ‖∇ψ‖L2(Ω) ≤ C‖Phu− u‖L2(Ω) (3.3.20)
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From the definition of X and the fact that ψ ∈ H1
0 (Ω),

‖ψ‖X ≤ C‖ψ‖H2(Ω)

≤ C‖∆ψ‖L2(Ω) ≤ ‖a∆ψ‖L2(Ω)

= C‖Phu− u+∇a · ∇ψ‖L2(Ω)

≤ C‖Phu− u‖L2(Ω)

Use is made of (3.3.20) and Assumption 1.1 in the last inequality.

Now, it follows from (3.3.18) that

‖Phu− u‖2
L2(Ω) = A(u : Phu− u, ψ)

= A(u : Phu− u, ψ − φ) + A(u : Phu− u, φ) φ ∈ Sh

≤ C‖Phu− u‖H1(Ω)‖ψ − φ‖H1(Ω) + |A(u : Phu, φ)− Ah(u : Phu, φ)|

Using (3.2.1), (3.3.16) and Lemma 3.5 with φ = πhψ we obtain

‖Phu− u‖2
L2(Ω) ≤ Ch2

(
1 +

1

| log h|

)
‖u‖X‖ψ‖X

+ Ch‖Phu‖H1(Ω?
h)‖πhψ‖H1(Ω?

h)

It follows from Lemma 3.7 that

‖Phu− u‖2
L2(Ω) ≤ Ch2

(
1 +

1

| log h|

)
‖u‖X‖ψ‖X

+ Ch2‖Phu‖H1(Ω)‖πhψ‖H1(Ω)

Using (3.3.15), (3.3.19) and the fact that ‖πhψ‖ ≤ C‖ψ‖, we have

‖Phu− u‖2
L2(Ω) ≤ Ch2

(
1 +

1

| log h|

)
‖u‖X‖ψ‖X + Ch2‖u‖X‖ψ‖X

≤ Ch2

(
1 +

1

| log h|

)
‖u‖X‖Phu− u‖L2(Ω)

which implies (3.3.17)

Lemma 3.9 Let u be a smooth function in Ω × T and a = a(x, u) satisfies

66



Assumption 1.1. Assume that u ∈ X ∩ H1
0 and let Phu be defined as in (3.2.9),

then

‖(Phu− u)t‖2
H1(Ω) ≤ Ch2

(
1 +

1

| log h|

)
(‖u‖2

X + ‖ut‖2
X) (3.3.21)

‖(Phu− u)t‖2
L2(Ω) ≤ Ch4

(
1 +

1

| log h|

)2

(‖u‖2
X + ‖ut‖2

X) (3.3.22)

Proof Let ξ = Phu− u, and assume that at is uniformly bounded. Following the

argument of Thomme (2006), we have

ρ‖ξt‖2
H1(Ω) ≤ A(u : ξt, ξt)

= A(u : ξt, φ− ut) + A(u : ξt, (Phu)t − φ)

= A(u : ξt, φ− ut) +

∫
Ω

[
∂

∂t
(a∇ξ)− ∂a

∂t
∇ξ
]
· ∇((Phu)t − φ) dx

≤ ‖ξt‖H1(Ω)‖φ− ut‖H1(Ω) + ‖ξ‖H1(Ω)‖(Phu)t − φ‖H1(Ω)

Take φ = πhut. Using Lemma 3.3, (3.3.16) and Young’s inequality, we obtain

(3.3.21). Following the duality argument (3.3.18)− (3.3.20), it is easy to see that

‖(Phu− u)t‖2
L2(Ω) ≤ Ch4

(
1 +

1

| log h|

)2

(‖u‖X + ‖ut‖X)

Proof of Theorem 3.2 We have

‖u− uh‖2
L2(Ω) ≤ 2(‖u− Phu‖2

L2(Ω) + ‖Phu− uh‖2
L2(Ω))

≤ Ch4

(
1 +

1

| log h|

)2

‖u‖2
X + 2‖Phu− uh‖2

L2(Ω) (3.3.23)

Using (3.3.14), we have

67



((uh − Phu)t, vh)h + Ah(uh : uh − Phu, vh)

= (uh,t, vh)h − ((Phu)t, vh)h + Ah(uh : uh, vh)− Ah(uh : Phu, vh)

= (f(x, uh), vh)h + 〈gh, vh〉Γh
+ ((u− Phu)t, vh) + Ah(uh : u− Phu, vh)

−(ut, vh)− Ah(uh : u, vh) + A(u : u, vh)− A(u : u, vh)

+ (Phut, vh)− (Phut, vh)h

= (f(x, uh), vh)h + 〈gh, vh〉Γh
+ ((u− Phu)t, vh) + Ah(uh : u, vh)

−Ah(uh : Phu, vh)− (f(x, u), vh)− 〈g, vh〉Γ + A(u : u, vh)− Ah(uh : u, vh)

+ (Phut, vh)− (Phut, vh)h

= ((u− Phu)t, vh) + (f(x, uh), vh)h − (f(x, u), vh) + 〈gh, vh〉Γh
− 〈g, vh〉Γ

+Ah(u : Phu, vh)− Ah(uh : Phu, vh) + (Phut, vh)− (Phut, vh)h

We take vh = uh−Phu and make use of the fact that ∇Phu is constant on K ∈ Th,
and obtain

1

2

d

dt
‖uh − Phu‖2

L2(Ω) + µ1‖uh − Phu‖2
H1(Ω)

≤ ‖uh − Phu‖L2(Ω)‖(u− Phu)t‖L2(Ω)

+Ch‖Phut‖H1(Ω?
h)‖uh − Phu‖H1(Ω?

h)

+ cµ3‖u− uh‖L2(Ω)‖uh − Phu‖H1(Ω) +B5 +B6

≤ C(µ1, µ3, ε)‖uh − Phu‖2
L2(Ω) + C(µ3, ε)‖u− Phu‖2

L2(Ω)

+ ‖(u− Phu)t‖2
L2(Ω) +

1

4ε
‖uh − Phu‖2

H1(Ω)

+h2‖Phut‖H1(Ω)‖uh − Phu‖H1(Ω) +B5 +B6

≤ C‖uh − Phu‖2
L2(Ω) + Ch4

(
1 +

1

| log h|

)2

(‖u‖2
X + ‖ut‖2

X)

+
1

2ε
‖uh − Phu‖2

H1(Ω) +B5 +B6 (3.3.24)

we obtain (3.3.24) using (3.3.15), Lemma 3.7, Lemma 3.8 and Lemma 3.9, where

B5 = |(f(x, uh), uh − Phu)h − (f(x, u), uh − Phu)|

B6 = |〈gh, uh − Phu〉Γh
− 〈g, uh − Phu〉Γ|
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From Lemma 3.7

B5 ≤ |(f(x, u), Phu− uh)− (f(x, u), Phu− uh)h|

+|(f(x, u)− f(x, uh), Phu− uh)h|

≤ Ch‖u‖H1(Ω?
h)‖Phu− uh‖H1(Ω?

h) + µ3‖e(t)‖L2(Ω)‖Phu− uh‖L2(Ω)

≤ Ch2‖u‖X‖Phu− uh‖H1(Ω) + µ3‖e(t)‖L2(Ω)‖Phu− uh‖L2(Ω)

≤ C(µ3, ε)h
4

(
1 +

1

| log h|

)2

‖u‖2
X +

1

4ε
‖Phu− uh‖2

H1(Ω)

+
5

4
‖Phu− uh‖2

L2(Ω) (3.3.25)

The last inequality is an implication of Lemma 3.8.

From Lemma 3.4 and Lemma 3.7, and the fact that Phu− uh is linear.

B6 ≤ Ch3/2‖g‖H2(Γ)‖Phu− uh‖H1(Ω?)

≤ Ch2‖g‖H2(Γ)‖Phu− uh‖H1(Ω)

≤ εCh4‖g‖2
H2(Γ) +

1

4ε
‖Phu− uh‖2

H1(Ω) (3.3.26)

Substitute (3.3.25) and (3.3.26) into (3.3.24), taking ε = µ1

1

2

d

dt
‖Phu− uh‖2

L2(Ω) ≤ γ‖Phu− uh‖2
L2(Ω)

+ Ch4

(
1 +

1

| log h|

)2 (
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
With uh,0 = πhu0, it follows that

‖(Phu− uh)(t)‖2
L2(Ω) ≤ Ch4

(
1 +

1

| log h|

)2 [
exp(2γt)‖u0‖2

X

+

∫ t

0

exp(2γ(t− s))(‖u‖2
X + ‖ut‖2

X + ‖g‖2
H2(Γ)) ds

]
(3.3.27)

The result follows by substituting (3.3.27) into (3.3.23) and taking the supremum

with respect to t over [0, T ].
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3.4 Fully Discrete Scheme

Now we present a fully discrete scheme based on backward difference approxi-

mations. Almost optimal order error estimates in the L2(0, T ;H1(Ω))-norm and

L2(0, T ;L2(Ω))-norm are obtained.

The interval [0,T] is divided into M equally spaced (for simplicity) subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. Let In = (tn−1, tn] be the nth

subinterval and let a piecewise constant function Uhk be defined by Uhk(x, t) =

Un
h (x), ∀ t ∈ In, n = 1, 2, . . . ,M .

3.4.1 Backward Euler Time Discretisation

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the backward difference quotient

defined by

∂kw
n =

wn − wn−1

k

The fully discrete finite element approximation to (3.1.1) is defined as follows:

Let U0
h = πhu0, find Un

h ∈ Sh, for n = 1, 2, . . . ,M , such that

(∂kU
n
h , vh)h + Ah(U

n
h : Un

h , vh) = (f(x, Un
h ), vh)h + 〈gnh , vh〉Γh

∀ vh ∈ Sh (3.4.1)

The result below establishes the convergence of the fully discrete solution to the

exact solution in the L2(0, T ;H1(Ω))-norm.

Theorem 3.3 Let u and Uhk be the solutions of (3.1.1) and (3.4.1) respectively.

Suppose that the conditions of Assumption 1.1 are satisfied for every a : Ω×R→ R,

f : Ω × R → R and g ∈ L2(0, T ;H2(Ω)). There exists a positive constant C in

dependent of h and k such that

‖u− Uhk‖L2(0,T ;H1(Ω)) ≤
[
k + h

(
1 +

1

| log h|

)]
C(u0, u, g) (3.4.2)
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where

C(u0, u, g) =

{
‖u0‖2

H1(Ω) +

∫ T

0

(
‖u‖2

X + ‖uh,t‖2
H1(Ω) + ‖g‖2

H2(Γ)

+ ‖ut‖Y + ‖utt‖L2(Ω)

)
dt
}1/2

Proof Subtract (3.4.1) from (3.1.1)

(unt − ∂kUn
h , vh) + A(un : un, vh)

= Ah(U
n
h : Un

h , vh) + (f(x, un), vh)− (f(x, Un
h ), vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh

+(∂kU
n
h , vh)h − (∂kU

n
h , vh) ∀ vh ∈ Sh

Let vh = Phu
n − Un

h and use (3.3.14) with en = un − Un
h and zn = un − Phun

(∂ke
n, en) + Ah(U

n
h : en, en)

= Ah(U
n
h : en, zn) + (∂ke

n, zn) + (∂ku
n − unt , Phun − Un

h )

+Ah(U
n
h : un, Phu

n − Un
h )− Ah(un : Phu

n, Phu
n − Un

h )

+(f(x, un), Phu
n − Un

h )− (f(x, Un
h ), Phu

n − Un
h )h + 〈gn, Phun − Un

h 〉Γ

−〈gnh , Phun − Un
h 〉Γh

+ (∂kU
n
h , Phu

n − Un
h )h − (∂kU

n
h , Phu

n − Un
h ) (3.4.3)

It is important to note the following:

i. For V = H2(Γ) or L2(Ω) or H1(Ω) or X, there exists a constant C > 0

independent of k such that

k

M∑
n=1

‖ωn‖2
V ≤ C‖ω‖2

L2(0,T ;V ) ∀ ωn ∈ V (3.4.4)

ii.

1

2

M∑
n=1

‖en − en−1‖2
L2(Ω) +

1

2
‖eM‖2

L2(Ω) −
1

2
‖e0‖2

L2(Ω) = k

M∑
n=1

(∂ke
n, en) (3.4.5)
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To obtain (3.4.5), observe that

M∑
n=1

‖en − en−1‖2
L2(Ω) = k2

M∑
n=1

‖∂ken‖2
L2(Ω)

= k2

M∑
n=1

(∂ke
n, ∂ke

n)

= k
M∑
n=1

(∂ke
n, en − en−1)

which implies

M∑
n=1

‖en − en−1‖2
L2(Ω) + k

M∑
n=1

(∂ke
n, en−1) = k

M∑
n=1

(∂ke
n, en) (3.4.6)

and

‖eM‖2
L2(Ω) − ‖e0‖2

L2(Ω) =
M∑
n=1

‖en‖2
L2(Ω) −

M∑
n=1

‖en−1‖2
L2(Ω)

=
M∑
n=1

∫
Ω

(en − en−1)(en + en−1) dx

= k
M∑
n=1

∫
Ω

∂ke
n(en + en−1) dx

= k
M∑
n=1

(∂ke
n, en) + k

M∑
n=1

(∂ke
n, en−1) (3.4.7)

(3.4.5) follows from (3.4.6) and (3.4.7).

We sum (3.4.3) over n from 1 to M and use (3.4.5).

1

2
‖eM‖2

L2(Ω) +
1

2

M∑
n=1

‖en − en−1‖2
L2(Ω) + k

M∑
n=1

Ah(U
n
h : en, en)

≤ 1

2
‖e0‖2

L2(Ω) +B7 +B8 +B9 +B10 +B11 (3.4.8)
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where

B7 =
M∑
n=1

∣∣kAh(Un
h : en, zn) + (en − en−1, zn)

∣∣
+ |(Un

h − Un−1
h , Phu

n − Un
h )h − (Un

h − Un−1
h , Phu

n − Un
h )|

B8 =
M∑
n=1

k|Ah(Un
h : un, Phu

n − Un
h )− Ah(un : Phu

n, Phu
n − Un

h )|

B9 =
M∑
n=1

k|(∂kun − unt , Phun − Un
h )|

B10 =
M∑
n=1

k |(f(x, un), Phu
n − Un

h )− (f(x, Un
h ), Phu

n − Un
h )h|

B11 =
M∑
n=1

k |〈gn, Phun − Un
h 〉Γ − 〈gnh , Phun − Un

h 〉Γh
|

By (3.3.16), (3.3.17) and Assumption (2.1, A3), we have, for ε > 0:

B7 ≤ µ2

M∑
n=1

k‖en‖H1(Ω)‖zn‖H1(Ω) +
M∑
n=1

‖en − en−1‖L2(Ω)‖zn‖L2(Ω)

+Ch
M∑
n=1

‖Un
h − Un−1

h ‖H1(Ω)‖Phun − Un
h ‖H1(Ω)

≤ 1

4ε

M∑
n=1

k‖en‖2
H1(Ω) + µ2

2ε
M∑
n=1

k‖zn‖2
H1(Ω) +

1

2

M∑
n=1

‖en − en−1‖2
L2(Ω)

+
1

2

M∑
n=1

‖zn‖2
L2(Ω) + Ch2

M∑
n=1

‖Un
h − Un−1

h ‖2
H1(Ω) +

1

2

M∑
n=1

‖Phun − Un
h ‖2

H1(Ω)

≤ 1

4ε

M∑
n=1

k‖en‖2
H1(Ω) + µ2

2εCh
2

(
1 +

1

| log h|

) M∑
n=1

k‖un‖2
X

+
1

2

M∑
n=1

‖en − en−1‖2
L2(Ω) + Ch4

(
1 +

1

| log h|

)2 M∑
n=1

‖un‖2
X

+Ch2

M∑
n=1

∫ tn

tn−1

‖uh,t‖2
H1(Ω) dt+

M∑
n=1

‖en‖2
H1(Ω)
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≤ 1

4ε

M∑
n=1

k‖en‖2
H1(Ω) + Ch2‖uh,t‖2

L2(0,T ;H1(Ω)) + Ch2

(
1 +

1

| log h|

) M∑
n=1

k‖un‖2
X

+Ch4

(
1 +

1

| log h|

)2 M∑
n=1

‖un‖2
X +

1

2

M∑
n=1

‖en − en−1‖2
L2(Ω)

+
M∑
n=1

‖en‖2
H1(Ω) (3.4.9)

Using Lemma 3.8 for B8, we have

B8 ≤ C(µ1, µ2)
M∑
n=1

k‖un − Phun‖H1(Ω)‖Phun − Un
h ‖H1(Ω)

≤ C(µ1, µ2)
M∑
n=1

k‖un − Phun‖2
H1(Ω)

+C(µ1, µ2)
M∑
n=1

k‖un − Phun‖H1(Ω)‖en‖H1(Ω)

≤ C(µ1, µ2, ε)
M∑
n=1

k‖un − Phun‖2
H1(Ω) +

1

4ε

M∑
n=1

k‖en‖2
H1(Ω)

≤ Ch2

(
1 +

1

| log h|

) M∑
n=1

k‖un‖2
X +

1

4ε

M∑
n=1

k‖en‖2
H1(Ω) (3.4.10)

For the term B9, we have

B9 =
M∑
n=1

(∫ tn

tn−1

(tn−1 − s)uss(s) ds, Phun − Un
h

)

≤
M∑
n=1

k‖untt‖L2(tn−1,tn:L2(Ω))‖Phun − Un
h ‖L2(Ω)

≤ 1

4

M∑
n=1

‖en‖2
L2(Ω) + k2‖utt‖2

L2(0,T ;L2(Ω))

+Ch4

(
1 +

1

| log h|

)2 M∑
n=1

‖un‖2
X (3.4.11)
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A similar approach to the estimation of B3 shows that

B10 ≤ εh2

M∑
n=1

k‖un‖2
H1(Ω) +

1

2ε

M∑
n=1

k‖Phun − Un
h ‖2

H1(Ω) + εµ2
3

M∑
n=1

k‖en‖2
L2(Ω)

≤ C(ε)h2

(
1 +

1

| log h|

) M∑
n=1

k‖un‖2
X +

1

ε

M∑
n=1

k‖en‖2
H1(Ω)

+ εµ2
3

M∑
n=1

k‖en‖2
L2(Ω) (3.4.12)

Using Lemma 3.4,

B11 ≤ k
M∑
n=1

Ch3/2‖gn‖H2(Γ)‖Phun − Un
h ‖H1(Ω)

≤ C(ε)h3

M∑
n=1

k‖gn‖2
H2(Γ) + Ch2

(
1 +

1

| log h|

) M∑
n=1

k‖u‖2
X

+
1

4ε

M∑
n=1

k‖en‖2
H1(Ω) (3.4.13)

Substituting (3.4.9) − (3.4.13) into (3.4.8) with ε = 7 and U0
h = πhu0, we obtain

for h < 1,

M∑
n=1

k‖en‖2
H1(Ω) ≤ Ch2

(
1 +

1

| log h|

)
‖u0‖2

H1(Ω) +
M∑
n=1

(
7µ2

3k +
1

4

)
‖en‖2

L2(Ω)

+ Ch2

(
1 +

1

| log h|

)2
[

M∑
n=1

k‖un‖2
X +

M∑
n=1

‖un‖2
X

]

+

∫ T

0

(
k2‖utt‖2

L2(Ω) + Ch2‖uh,t‖2
H1(Ω)

)
dt+ Ch2

M∑
n=1

k‖gn‖2
H2(Γ)

Applying the discrete version of Gronwall’s Lemma and (3.4.4), we have

M∑
n=1

k‖en‖2
H1(Ω) ≤ Ch2

(
1 +

1

| log h|

)2 [
‖u0‖2

H1(Ω) + ‖u‖2
L2(0,T ;X) + ‖uh,t‖2

L2(0,T ;H1(Ω))

+‖g‖2
L2(0,T ;H2(Γ))

]
+ k2‖utt‖2

L2(0,T ;L2(Ω)) (3.4.14)

It was shown by Chen and Zou (1998), that

‖u− Uhk‖L2(0,T ;H1(Ω)) ≤ Ck‖ut‖L2(0,T ;Y ) + C

[
M∑
n=1

k‖en‖2
H1(Ω)

]1/2

(3.4.15)
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The result follows from (3.4.14) and (3.4.15). 2

The result below establishes the convergence of the fully discrete solution to the

exact solution in the L2(0, T ;L2(Ω))-norm.

Theorem 3.4 Let u and Un
h be the solutions of (3.1.1) and (3.4.1) respectively.

Suppose that the conditions of Assumption 1.1 are satisfied for every a : Ω×R→ R,

f : Ω × R → R and g ∈ L2(0, T ;H2(Ω)). There exists a positive constant C in

dependent of h and k such that

‖un − Un
h ‖L2(Ω) ≤

[
k + h2

(
1 +

1

| log h|

)]
C(u0, u, g) (3.4.16)

where

C(u0, u, g) = C

[
‖u0‖2

X + ‖un‖2
X +

∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

+ ‖utt‖2
L2(Ω)

)
dt
]1/2

for n = 1, . . . ,M , and

‖u− Uhk‖L2(0,T ;L2(Ω)) ≤
[
k + h2

(
1 +

1

| log h|

)]
D(u0, u, g) (3.4.17)

D(u0, u, g) = C

[
‖u0‖2

X +

∫ T

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ) + ‖utt‖2
L2(Ω)

)
dt

]1/2

Proof We establish this using error splitting technique (Thomee, 2006).

Let zn = Phu
n − Un

h , then

(∂kz
n, vh)h + Ah(U

n
h : zn, vh)

= (∂kPhu
n, vh)h − (∂kU

n
h , vh)h + Ah(U

n
h : Phu

n, vh)− Ah(Un
h : Un

h , vh)

= (∂kPhu
n, vh)h − (f(x, Un

h ), vh)h − 〈gnh , vh〉Γh
+ Ah(U

n
h : Phu

n, vh)

= (∂kPhu
n, vh)h + Ah(U

n
h : Phu

n, vh)− Ah(un : Phu
n, vh)

+ (f(x, un), vh)− (f(x, Un
h ), vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh

− (unt , vh) (3.4.18)
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We made use of (3.1.1), (3.3.14) and (3.4.1) to obtain (3.4.18). It follows from

(3.4.18) that

(∂kz
n, vh)h + Ah(U

n
h : zn, vh)

= (∂k(Phu
n − un), vh)h + Ah(U

n
h : Phu

n, vh)− Ah(un : Phu
n, vh)

+ (f(x, un), vh)− (f(x, Un
h ), vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh

+ (∂ku
n − unt , vh) + (∂ku

n, zn)h − (∂ku
n, zn)

= B12 +B13 +B14 (3.4.19)

where

B12 = (∂k(Phu
n − un), vh)h + (∂ku

n − unt , vh) + (∂ku
n, zn)h − (∂ku

n, zn)

B13 = Ah(U
n
h : Phu

n, vh)− Ah(un : Phu
n, vh)

B14 = (f(x, un), vh)− (f(x, Un
h ), vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh

Now, using Young’s inequality, Lemma 3.7 with the fact that ‖zn‖H2(Ω) = 0, we

obtain

B12 ≤ ‖∂k(Phun − un)‖L2(Ω)‖zn‖L2(Ω) + ‖∂kun − unt ‖L2(Ω)‖zn‖L2(Ω)

+Ch‖∂kun‖H1(Ω?
h)‖zn‖H1(Ω?

h)

≤ ‖∂k(Phun − un)‖2
L2(Ω) +

1

2
‖zn‖2

L2(Ω) + ‖∂kun − unt ‖2
L2(Ω)

+ γCh4‖∂kun‖2
X +

1

4γ
‖zn‖2

H1(Ω) (3.4.20)

Using Young’s inequality, Lemma 3.8, we obtain

B13 ≤ Cµ3‖Un
h − un‖L2(Ω)‖zn‖H1(Ω)

≤ C‖zn‖L2(Ω)‖zn‖H1(Ω) + C‖Phun − un‖L2(Ω)‖zn‖H1(Ω)

≤ γC‖zn‖2
L2(Ω) +

1

2γ
‖zn‖2

H1(Ω) + C(γ)h4

(
1 +

1

| log h|

)2

‖un‖2
X (3.4.21)
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Using Lemma 3.4, Lemma 3.7, Lemma 3.8 with the fact that Dαzn = 0 for |α| = 2,

we have

B14 ≤ Ch‖un‖H1(Ω?
h)‖zn‖H1(Ω?

h) + µ3‖un − Un
h ‖L2(Ω)‖zn‖L2(Ω)

+Ch3/2‖gn‖H2(Γ)‖zn‖H1(Ω?
h)

≤ Ch2‖un‖X‖zn‖H1(Ω) + C‖zn‖2
L2(Ω) + C‖Phun − un‖2

L2(Ω)

+Ch2‖gn‖H2(Γ)‖zn‖H1(Ω)

≤ C(γ)h4

(
1 +

1

| log h|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)
+

1

2γ
‖zn‖2

H1(Ω)

+C‖zn‖2
L2(Ω) (3.4.22)

Substituting (3.4.20)− (3.4.22) into (3.4.19), we have

1

k
‖zn‖2

L2(Ω) + µ1‖∇zn‖2
L2(Ω) ≤

1

k
‖zn‖L2(Ω)‖zn−1‖L2(Ω) + ‖∂k(Phun − un)‖2

L2(Ω)

+C‖zn‖2
L2(Ω) + ‖∂kun − unt ‖2

L2(Ω) + Ch4‖∂kun‖2
X

+Ch4

(
1 +

1

| log h|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)
+

5

4γ
‖zn‖2

H1(Ω) (3.4.23)

With γ =
5

4µ1

, we obtain

(1− Ck)‖zn‖2
L2(Ω) ≤ ‖zn−1‖2

L2(Ω) + C
[
k‖∂k(Phun − un)‖2

L2(Ω)

+ k‖∂kun − unt ‖2
L2(Ω) + kh4‖∂kun‖2

X

+ kh4

(
1 +

1

| log h|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)]
(3.4.24)

For k sufficiently small, (3.4.24) becomes

‖zn‖2
L2(Ω) ≤ (1 + Ck)‖zn−1‖2

L2(Ω) + Ck
[
‖∂k(Phun − un)‖2

L2(Ω)

+ ‖∂kun − unt ‖2
L2(Ω) + h4‖∂kun‖2

X

+h4

(
1 +

1

| log h|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)]
(3.4.25)
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for n = 1, . . . ,M .

By iteration on n, we have

‖zn‖2
L2(Ω) ≤ ‖z0‖2

L2(Ω)

n∑
i=1

(1 + Ck)i + Ck

n∑
i=1

(1 + Ck)n−i
[
‖∂k(Phui − ui)‖2

L2(Ω)

+ ‖∂kui − uit‖2
L2(Ω) + h4‖∂kui‖2

X

+h4

(
1 +

1

| log h|

)2 (
‖ui‖2

X + ‖gi‖2
H2(Γ)

)]

≤ C‖z0‖2
L2(Ω) + Ck

n∑
i=1

[
‖∂k(Phui − ui)‖2

L2(Ω) + ‖∂kui − uit‖2
L2(Ω)

+h4‖∂kui‖2
X + h4

(
1 +

1

| log h|

)2 (
‖ui‖2

X + ‖gi‖2
H2(Γ)

)]

≤ C‖z0‖2
L2(Ω) + C

∫ tn

0

[
‖(Phu− u)t‖2

L2(Ω) + k2‖utt‖2
L2(Ω)

+h4‖ut‖2
X + h4

(
1 +

1

| log h|

)2 (
‖u‖2

X + ‖g‖2
H2(Γ)

)]
dt (3.4.26)

We have made use of (3.4.4) to obtain (3.4.26). Therefore

‖zn‖2
L2(Ω) ≤ C‖z0‖2

L2(Ω) + C

[
h4

(
1 +

1

| log h|

)2 ∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
dt

+ k2

∫ tn

0

‖utt‖2
L2(Ω) dt

]
With U0

h = πhu0, we have

‖zn‖2
L2(Ω) ≤ C

[
h4

(
1 +

1

| log h|

)2(
‖u0‖2

X +

∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
dt

)
+k2

∫ tn

0

‖utt‖2
L2(Ω) dt

]
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Now,

‖un − Un
h ‖2

L2(Ω) ≤ 2‖un − Phun‖2
L2(Ω) + 2‖zn‖2

L2(Ω)

≤ C

[
h4

(
1 +

1

| log h|

)2 (
‖u0‖2

X + ‖un‖2
X

+

∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
dt

)
+k2

∫ tn

0

‖utt‖2
L2(Ω) dt

]
(3.4.27)

(3.4.16) follows from (3.4.27).

Summing (3.4.27) over n from 1 to M , we have

M∑
n=1

k‖un − Un
h ‖2

L2(Ω) ≤ C

[
h4

(
1 +

1

| log h|

)2 M∑
n=1

k
(
‖u0‖2

X + ‖un‖2
X

+

∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
dt

)
+ k2

M∑
n=1

k

∫ tn

0

‖utt‖2
L2(Ω)

]

≤ Ch4

(
1 +

1

| log h|

)2 [
Mk

(
‖u0‖2

X + ‖u‖2
L2(0,T ;X)

+ ‖ut‖2
L2(0,T ;X) + ‖g‖2

L2(0,T ;H2(Γ))

)
+ ‖u‖2

L2(0,T ;X)

]
+Ck2Mk‖utt‖2

L2(0,T ;L2(Ω))

but Mk = T and therefore

M∑
n=1

k‖un − Un
h ‖2

L2(Ω) ≤ C

[
h4

(
1 +

1

| log h|

)2 (
‖u0‖2

X

+

∫ T

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
dt

)
+ k2

∫ T

0

‖utt‖2
L2(Ω) dt

]
(3.4.28)

It was shown by Chen and Zou (1998) that

‖u−Uhk‖L2(0,T ;L2(Ω)) ≤ Ck‖ut‖L2(0,T ;L2(Ω)) +

(
M∑
n=1

k‖un − Un
h ‖2

L2(Ω)

)1/2

(3.4.29)
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(3.4.17) follows from (3.4.28) and (3.4.29).

3.4.2 One-Step Numerical Experiment

The results of the finite element error estimates are verified using globally contin-

uous piecewise linear finite element functions based on the quasi-uniform triangu-

lation described in section 3.2. The mesh parameter h = maxK∈Th hK where hK is

the longest side of an element K ∈ Th.
The numerical experiments of this section are based on fully-discrete scheme

(3.4.1).

We represent the solution as uh(x, t) =
∑Nh

j=1 αj(t)φj(x), where each basis

function φj, (j = 1, 2, . . . , Nh) is a pyramid function with unit height. Thus,

(3.3.1) becomes

Aα′(t)+B(α)α(t) = f̂(α)+ ĝ(t) for t ∈ (0, T ], with α(0) = α0 = πhu0 (3.4.30)

where α(t) = (α1(t), α2(t), . . . , αNh
(t))T , A = (ajk), B(α) = (bjk(α)),

f̂(α) = (f̂1(α), f̂2(α), . . . , f̂Nh
(α))T with

ajk = (φj, φk)

bjk(α) =

(
a

(
x,

Nh∑
i=1

αiφi

)
∇φj,∇φk

)

f̂j(α) =

(
f

(
x,

Nh∑
i=1

αi(t)φi

)
, φj

)

For the approximation ĝ(t), let {zj}nh
j=1 be the set of all nodes of the trian-

gulation Th that lie on the interface Γ and {ψj}nh
j=1 be the hat functions cor-

responding to {zj}nh
j=1 in the space Sh. Then we have, for g ∈ C(Γ) × (0, T ],

ĝ(t) = (ĝ1(t), ĝ2(t), . . . , ĝnh
(t)) with ĝj(t) = 〈g(zj, t), ψj〉Γh

, j = 1, . . . , nh.

The fully discrete version of (3.4.30) is

(A+kB(αn))αn = Aαn−1+kf̂(αn)+ĝn for tn ∈ (0, T ], with α0 = πhu0 (3.4.31)
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The iterative scheme for (3.4.1) could be expressed as

(Un
h − Un−1

h , vh) + k(a(x, Un
h )∇Un

h ,∇vh)h = k(f(x, Un
h ), vh)h + k〈gh, vh〉Γh

vh ∈ Sh , n = 1, 2, . . .

(3.4.32)

Implementation of (5.0.3) will result to a system of nonlinear algebraic equations

as a result of a(x, Un
h ) and f(x, Un

h ) in (5.3). To avoid this difficulty, we use

predictor-corrector method. For n = 1, 2, . . .,

(Xn
h − Un−1

h , vh) + k(a(x, Un−1
h )∇Xn

h ,∇vh)h
= k(f(x, Un−1

h ), vh)h + k〈gh, vh〉Γh
vh ∈ Sh

(Un
h − Un−1

h , vh) + k(a(x,Xn
h )∇Un

h ,∇vh)h
= k(f(x,Xn

h ), vh)h + k〈gh, vh〉Γh
vh ∈ Sh

(3.4.33)

The mesh generation and computation are done in MATLABr and FreeFEM++

(Hecht, 2012) environments.

Example 1 We discuss the result of a two-dimensional non-linear parabolic inter-

face problem in the domain Ω = (−1, 1)× (−1, 1) where Ω1 is a circle centered at

(0, 0) with radius r =
√
x2 + y2 = 0.5, Ω2 = Ω \ Ω1 and the interface Γ is a circle

of radius 0.5 and therefore Γ 6= Γh.

On Ω× (0, 50], consider the nonlinear problem

ut −∇ · (ai∇u) = fi in Ωi × (0, 50], i = 1, 2

u(x, y, 0) = u0(x, y) in Ω

u(x, y, t) = 0 on ∂Ω× (0, 50]

u1|Γ = u2|Γ[
a(u)

∂u

∂n

]
Γ

= g

where ni denotes the unit normal vector on Ω1 (i = 1, 2). For the exact solution,

we choose

u =


1

8
(1− 4r2) sin(t) in Ω1 × (0, 50]

1

4
(1− x2)(1− y2)(1− 4r2) sin(2t) in Ω2 × (0, 50]
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The source function f , interface function g and the initial data u0 are determined

from the choice of u with

a =


u2

1 + u2
in Ω1 × (0, 50]

1

1 + u2
in Ω2 × (0, 50]

Errors in L2-norm and H1-norm at t = 5 for various step size h time step k are

presented in Tables 3.1 and 3.2 respectively.

The error entries in Tables 3.1 and 3.2 show that

‖Error‖L2(Ω) = O

(
k1.063 + h2.097

(
1 +

1

| lnh|

))
‖Error‖H1(Ω) = O

(
k0.989 + h2.281

(
1 +

1

| lnh|

))
Example 2 We discuss the result of a two-dimensional non-linear parabolic in-

terface problem in the domain Ω = (−1, 1) × (−1, 1) where Ω1 is the ellipse

4x2 + 16y2 < 1, Ω2 = Ω \ Ω1 and the interface Γ is the ellipse 4x2 + 16y2 = 1

and therefore Γ 6= Γh.

On Ω× (0, 10], consider the nonlinear problem

ut −∇ · (ai∇u) = fi in Ωi × (0, 10], i = 1, 2

u(x, y, 0) = u0(x, y) in Ω

u(x, y, t) = 0 on ∂Ω× (0, 10]

u1|Γ = u2|Γ[
a(u)

∂u

∂n

]
Γ

= g

where ni denotes the unit normal vector on Ω1 (i = 1, 2). For the exact solution,

we choose

u =


1

8
(1− 4x2 − 16y2)t exp(sin t) in Ω1 × (0, 10]

1

2
(1− x2)(1− y2)(4x216y2 − 1) sin t in Ω2 × (0, 10]
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Table 3.1: Error estimates in L2−norm for Example 1

h Error (k = 0.005)

0.404061 2.91025× 10−2

0.217242 7.20502× 10−3

0.113497 1.80574× 10−3

0.0711493 8.44232× 10−4

0.0543104 5.38294× 10−4

k Error (h = 0.0606786)

0.125 4.57222× 10−3

0.1 3.81943× 10−3

0.05 2.19672× 10−3

0.01 7.07933× 10−4

0.005 5.36616× 10−4

Table 3.2: Error estimates in H1−norm for Example 1

h Error (k = 0.005)

0.404061 7.97666× 10−2

0.217242 4.17718× 10−2

0.113497 1.88953× 10−2

0.0711493 1.40793× 10−2

0.0543104 1.41391× 10−2

k Error (h = 0.0606786)

0.125 1.30663× 10−1

0.1 1.07278× 10−1

0.05 6.39467× 10−2

0.01 1.94120× 10−2

0.005 1.37051× 10−2
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Figure 3.4: Contour plot of the finite element solution Example 1 at h = 0.0619

and 0.03266 respectively.
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Figure 3.5: The graph showing the finite element solutions of Example 1 at t = 0.01

(hx, hy) = ( 1
32
, 1

32
) & ( 1

64
, 1

64
)
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The source function f , interface function g and the initial data u0 are deter-

mined from the choice of u with

a =


5 in Ω1 × (0, 10]

1

1 + u2
in Ω2 × (0, 10]

Errors in L2-norm and H1-norm at t = 5 for various step size h time step k are

presented in Tables 3.3 and 3.4 respectively.

The error entries in Tables 3.3 and 3.3 show that

‖Error‖L2(Ω) = O

(
k1.209 + h2.13

(
1 +

1

| lnh|

))
‖Error‖H1(Ω) = O

(
k1.313 + h1.558

(
1 +

1

| lnh|

))
In the above examples, the mesh cannot be fitted exactly to the interface.

However, convergence rate of almost optimal order could still be obtained when

the mesh fits exactly to the interface. We demonstrate this with the example below.
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Figure 3.6: Discretisation of the domain of Example 2 with three refinements.
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Figure 3.7: Finite element solutions of Example 2 at t = 2, 3, 4, 5 respectively with

h = 0.0387774 and k = 0.01.
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Table 3.3: Error estimates in L2−norm for Example 2

h Error (k = 0.01)

0.205602 1.11369× 10−1

0.110793 2.85504× 10−2

0.0724138 1.47834× 10−2

0.0550215 9.81734× 10−3

0.0273063 5.68978× 10−3

k Error (h = 0.0285903)

0.5 1.17166× 10−1

0.25 5.58821× 10−2

0.125 2.13369× 10−2

0.0625 6.71479× 10−3

0.01 5.69057× 10−3

Table 3.4: Error estimates in H1−norm for Example 2

h Error (k = 0.01)

0.205602 3.89808× 10−1

0.110793 1.43536× 10−1

0.0724138 9.70718× 10−2

0.0550215 6.06143× 10−2

0.037129 4.70875× 10−2

k Error (h = 0.0285903)

0.5 6.19003× 10−1

0.25 2.83365× 10−1

0.125 1.05819× 10−1

0.0625 4.28184× 10−2

0.01 3.88477× 10−2

89



Example 3 Consider the following parabolic boundary value problem in

Ω = (−1, 1)× (−1, 1). The interface Γ = Ω̄1 ∩ Ω̄2 is the line x = 0 where

Ω1 is the rectangle [−1, 0)× [−1,−1], Ω2 is the triangle (0, 1]× [−1,−1].

ut −∇ · (ai∇u) = fi in Ωi × (0, 20] i = 1, 2

u(x, y, 0) = u0(x, y) in Ω

u(x, y, t) = 0 on ∂Ω× (0, 20]

u1|Γ = u2|Γ
(α1∇u1 · n1)|Γ − (α2∇u2 · n2)|Γ = g

where ni denotes the unit normal vector on Ω1 (i = 1, 2).We choose a problem

with a known solution as follows:

u =

 t(1 + x)(1− y2) in Ω1 × (0, 20]

t(1− x)(1− y2) in Ω2 × (0, 20]

The source function f , interface function g and the initial data u0 are determined

from the choice of u with

a =


1

1 + u2
in Ω1 × (0, 20]

1− x2y2 in Ω2 × (0, 20]

Errors in L2-norm and H1-norm at t = 2 for various step size h time step k are

presented in Tables 3.5 and 3.6 respectively.

The data presented in Tables 3.5 and 3.6 indicate that

‖u− uh‖L2(Ω) = O

(
k0.915 + h1.996

(
1 +

1

| lnh|

))
and

‖u− uh‖H1(Ω) = O

(
k1.106 + h1.715

(
1 +

1

| lnh|

))
These numerical results match the convergence rates as given in Theorem 3.3 and

Theorem 3.4 respectively.
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Table 3.5: Error estimates in L2−norm for Example 3

h Error (k = 0.001)

0.35912 2.42799× 10−2

0.286896 6.05176× 10−3

0.179911 2.73589× 10−3

0.0967333 2.97570× 10−3

0.0646608 2.99729× 10−3

k Error (h = 0.0967333)

0.05 9.27316× 10−2

0.04 7.48363× 10−2

0.02 3.80558× 10−2

0.01 1.91958× 10−2

0.001 2.97570× 10−3

Table 3.6: Error estimates in H1−norm for Example 3

h Error (k = 0.001)

0.35912 1.37141× 10−1

0.286896 5.67485× 10−2

0.179911 2.10261× 10−2

0.0959059 1.34518× 10−2

0.0646608 1.34375× 10−2

k Error (h = 0.0967333)

0.05 6.64483× 10−1

0.04 5.32124× 10−1

0.02 2.65937× 10−1

0.01 1.32882× 10−1

0.001 1.34518× 10−2
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3.4.3 Two-Step Time Discretisation

Now we discuss a fully discrete scheme based on 2-step backward difference ap-

proximation. Almost optimal order error estimate in the L2(0, T ;L2(Ω))-norm is

derived.

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the backward difference quotient

defined by

∂2
kw

n =
3wn − 4wn−1 + wn−2

2k

The 2-step fully discrete finite element approximation to (3.1.1) is defined as fol-

lows:

Let U0
h = πhu0, find Un

h ∈ Sh, for n = 1, 2, . . . ,M , such that

(∂2
kU

n
h , vh) + Ah(U

n
h , vh) = (f(x, Un

h ), vh)h + 〈gnh , vh〉Γh
∀ vh ∈ Sh (3.4.34)

We have the following stability result:

Lemma 3.10 Suppose the conditions of Assumption 1.1 are satisfied, there exists

a constant C independent of h and k such that for the solution of (3.4.34)

‖Un
h ‖2 ≤ C

(
‖U0

h‖2 + ‖U1
h‖2
)

+ Ck
n∑
i=2

‖gih‖2
H1/2(Γ) n = 2, 3, . . . ,M (3.4.35)

Proof Taking vh = Un
h in (3.4.34), we obtain by simple calculation

‖Un
h ‖2

L2(Ω) − Ck‖Un
h ‖2

L2(Ω) ≤ C
[
‖Un−2

h ‖2
L2(Ω) + ‖Un−1

h ‖2
L2(Ω) + k‖gnh‖2

H1/2(Γ)

]
For k sufficiently small,

‖Un
h ‖2

L2(Ω) ≤ C(1 + k)
[
‖Un−2

h ‖2
L2(Ω) + ‖Un−1

h ‖2
L2(Ω)

]
+ Ck‖gnh‖2

H1/2(Γ)

By iteration on n we have

‖Un
h ‖2

L2(Ω) ≤ C
[
‖U0

h‖2
L2(Ω) + ‖U1

h‖2
L2(Ω)

] n∑
i=2

(1 + k)i + Ck

n∑
i=2

(1 + k)n−i‖gih‖2
H1/2(Ω)

≤ C
[
‖U0

h‖2
L2(Ω) + ‖U1

h‖2
L2(Ω)

]
+ Ck

n∑
i=2

‖gih‖2
H1/2(Ω)
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Figure 3.8: Computational domain of Example 3
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The result below establishes the convergence of the fully discrete solution to

the exact solution in the L2(0, T ;L2(Ω))-norm.

Theorem 3.5 Let u and Un
h be the solutions of (3.1.1) and (3.4.34) respectively.

Suppose that the conditions of Assumption 1.1 are satisfied for every a : Ω×R→ R,

f : Ω × R → R, g(x, t), and uttt is defined for Ω × [0, T ]. There exists a positive

constant C independent of h and k such that

‖un − Un
h ‖L2(Ω) ≤

[
k2 + h2

(
1 +

1

| log h|

)]
C(u0, u, g) (3.4.36)

where

C(u0, u, g) = C
{
‖u0‖2

X + ‖un‖2
X

+

∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ) + ‖uttt‖2
L2(Ω)

)
dt

}1/2

and

‖un − Uhk‖L2(Ω) ≤
[
k2 + h2

(
1 +

1

| log h|

)]
D(u0, u, g) (3.4.37)

where

D(u0, u, g) = C
{
‖u0‖2

X

+

∫ T

0

(
‖u‖2

X + ‖ut‖2
X + ‖utt‖2

L2(Ω) + ‖g‖2
H2(Γ) + ‖uttt‖2

L2(Ω)

)
dt

}1/2

Proof Let zn = Un
h − Phun then following the argument that led to (3.4.19), we

have

(∂2
kz

n, vh) + Ah(U
n
h : zn, vh) = B15 +B13 +B14 (3.4.38)

where

B15 = (∂2
k(Phu

n − un), vh)h + (∂2
ku

n − unt , vh) + (∂2
ku

n, zn)h − (∂2
ku

n, zn)

With vh = zn, we have

B15 ≤ ‖∂2
k(Phu

n − un)‖2
L2(Ω) +

1

2
‖zn‖2

L2(Ω) + ‖∂2
ku

n − unt ‖2
L2(Ω)

+ γCh4‖∂2
ku

n‖2
X +

1

4γ
‖zn‖2

H1(Ω) (3.4.39)
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Following the argument that led to (3.4.35) using (3.4.21), (3.4.22) and (3.4.39),

we have

‖zn‖2
L2(Ω) ≤ C

[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω)

]
+ Ck

n∑
j=2

‖∂2
k(u

j − Phuj)‖2
L2(Ω)

+Ch4

(
1 +

1

| log h|

)2

k
n∑
j=2

(‖uj‖2
X + ‖gj‖2

H2(Γ))

+Ck
n∑
j=2

‖∂2
ku

j − ujt‖2
L2(Ω) + Ch4k

n∑
j=2

‖∂2
ku

j‖2
X

≤ C
[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω)

]
+ Ck

n∑
j=2

‖∂k(uj − Phuj)‖2
L2(Ω)

+Ck

n∑
j=2

‖∂k(uj−1 − Phuj−1)‖2
L2(Ω)

+Ch4

(
1 +

1

| log h|

)2

k
n∑
j=2

(‖uj‖2
X + ‖gj‖2

H2(Γ))

+Ck4k
n∑
j=2

‖ujttt‖2
L2(Ω) + Ch4k

n∑
j=2

‖∂kuj‖2
X + Ch4k

n∑
j=2

‖∂kuj−1‖2
X

≤ C
[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω)

]
+ C

∫ tn

0

‖(u− Phu)t‖2
L2(Ω) dt

+Ck4

∫ tn

0

‖uttt‖2
L2(Ω) dt+ Ch4

∫ tn

0

‖ut‖2
X dt

+Ch4

(
1 +

1

| log h|

)2 ∫ tn

0

[
‖u‖2

X + ‖g‖2
H2(Γ)

]
≤ C

[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω)

]
+ Ck4

∫ tn

0

‖uttt‖2
L2(Ω) dt

+Ch4

(
1 +

1

| log h|

)2 ∫ tn

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt (3.4.40)

where use is made of (3.3.22) and (3.4.4) in the above inequalities. We have, from
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(3.4.40) with U0
h = πhu0,

‖un − Un
h ‖2

L2(Ω) ≤ 2‖un − Phun‖2
L2(Ω) + ‖zn‖2

L2(Ω)

≤ C‖u1 − U1
h‖2

L2(Ω) + Ck4‖uttt‖2
L2(0,tn;L2(Ω))

+Ch4

(
1 +

1

| log h|

)2 {
‖u0‖2

X + ‖un‖2
X + ‖u‖2

L2(0,tn;X)

+ ‖ut‖2
L2(0,tn;X) + ‖g‖2

L2(0,tn;H2(Γ))

}
(3.4.41)

To obtain the same order of accuracy, U1
h could be obtained using Taylor’s series

U1
h = u(0) + kut(0) = u0 + k [∇ · (a(x, u0)∇u0) + f(x, u0)] (3.4.42)

(3.4.36) is obtained from (3.4.41) and (3.4.42).

From (3.4.41)

M∑
n=2

k‖un − Un
h ‖2

L2(Ω) ≤ Ch4

(
1 +

1

| log h|

)2
{

M∑
n=2

k‖u0‖2
X +

M∑
n=2

k‖un‖2
X

+
M∑
n=2

k

∫ tn

0

‖u‖2
X + ‖ut‖2

X + ‖g‖2
H2(Γ) dt

}

+Ck4

M∑
n=2

k

∫ tn

0

‖uttt‖2
L2(Ω) dt

≤ Ch4

(
1 +

1

| log h|

)2{
kM‖u0‖2

X +

∫ T

0

‖u‖2
X dt

+ kM

∫ T

0

‖u‖2
X + ‖ut‖2

X + ‖g‖2
H2(Γ) dt

}
+Ck4kM

∫ T

0

‖uttt‖2
L2(Ω) dt

≤ Ch4

(
1 +

1

| log h|

)2{
‖u0‖2

X +

∫ T

0

(
‖u‖2

X + ‖ut‖2
X

+ ‖g‖2
H2(Γ)

)
dt
}

+ Ck4‖uttt‖2
L2(0,T ;L2(Ω)) (3.4.43)

By a simple calculation (see Appendix A),

‖u− Uhk‖L2(0,T ;L2(Ω)) ≤ Ck2‖utt‖L2(0,T ;L2(Ω)) + C

(
M∑
n=2

k‖un − Un
h ‖2

L2(Ω)

)1/2

(3.4.44)
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(3.4.37) follows from (3.4.43) and (3.4.44).

Next we present examples to verify the error estimate (3.4.32).

3.4.4 Two-Step Numerical Experiment

The 2-step iterative scheme for (3.1.1) could be expressed as

(
3

2
Un
h − 2Un−1

h +
1

2
Un−2
h , vh) + k(a(x, Un

h )∇Un
h ,∇vh)h

= k(f(x, Un
h ), vh)h + k〈gh, vh〉Γh

(3.4.45)

vh ∈ Sh , n = 2, 3, . . . .

Implementation of (3.4.45) will result to a system of nonlinear algebraic equations

due to the presence of a(x, Un
h ) and f(x, Un

h ). To avoid this difficulty, we use

predictor-corrector method. For n = 2, 3, . . .,

(3
2
Xn
h − 2Un−1

h + 1
2
Un−2
h , vh) + k(a(x, Un−1

h )∇Xn
h ,∇vh)h

= k(f(x, Un−1
h ), vh)h + k〈gh, vh〉Γh

vh ∈ Sh

(3
2
Un
h − 2Un−1

h + 1
2
Un−2
h , vh) + k(a(x,Xn

h )∇Un
h ,∇vh)h

= k(f(x,Xn
h ), vh)h + k〈gh, vh〉Γh

vh ∈ Sh

(3.4.46)

To obtain U1
h we use (3.4.42), another alternative is the use of one-step method

discussed in Section 3.4.1.

Example 4 We present the solution of Example 1 using the 2-step implicit scheme.

Errors in L2-norm at t = 5 for various step size h time step k are presented in

Table 3.7.

The data presented in Table 3.7 indicate that

‖Error‖L2(Ω) = O

(
k2.397 + h2.047

(
1 +

1

| lnh|

))
These numerical results match the convergence rate as given in Theorem 3.5.
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Figure 3.9: (a) Contour plot of the finite element solution of Example 5 at t = 4,

with h = 0.0326587 and k = 0.0625 using 1-step implicit scheme. (b) Contour

plot of the finite element solution of Example 5 at t = 4, with h = 0.0326587 and

k = 0.0625 using 2-step implicit scheme. (c) Contour plot of the exact solution of

Example 5.
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Comparing (a) and (b) with (c) in Fig 3.9, it is seen that 2-step implicit scheme

gives a better approximation than the 1-step scheme.

Example 5 We present the solution of Example 2 using the 2-step implicit scheme.

Errors in L2-norm at t = 5 for various step size h time step k are presented in

Table 3.8.

The data presented in Table 3.8 indicate that

‖Error‖L2(Ω) = O

(
k2.615 + h2.013

(
1 +

1

| lnh|

))
These numerical results match the convergence rate as given in Theorem 3.5.

3.5 Four-Step Linearised FEM-BDS

We propose and analyse a fully discrete scheme based on four-step backward dif-

ference approximation. Almost optimal order error estimate in L2(Ω)-norm is

analysed.

The interval [0,T] is divided into M equally spaced (for simplicity) subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. Let In = (tn−1, tn] be the nth

subinterval and let

un = u(x, tn) and gn = g(x, tn) .

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the backward difference quotients

defined by
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Table 3.7: Error estimates in L2−norm for Example 4

h Error (k = 0.01)

0.404061 2.90393× 10−2

0.217242 7.14693× 10−3

0.113497 1.74197× 10−3

0.0711493 7.76256× 10−4

0.0606786 4.28527× 10−4

k Error (h = 0.0606786)

0.125 1.31134× 10−3

0.1 8.91514× 10−4

0.05 4.85279× 10−4

0.01 4.28527× 10−4

0.005 4.27536× 10−4

Table 3.8: Error estimates in L2−norm for Example 5

h Error (k = 0.0625)

0.205602 1.07997× 10−1

0.110793 2.49325× 10−2

0.0724138 1.09788× 10−2

0.0569736 5.83350× 10−3

0.037129 2.40172× 10−3

k Error (h = 0.037129)

0.5 9.14821× 10−2

0.25 1.95877× 10−2

0.2 1.11376× 10−2

0.125 3.13144× 10−3

0.0625 2.40172× 10−3
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∂1wn =
wn − wn−1

τ1

n = 1, 2, . . . ,M

∂2wn =
3wn − 4wn−1 + wn−2

2τ2

n = 2, 3, . . . ,M

∂3wn =
11wn − 18wn−1 + 9wn−2 − 2wn−3

6τ3

n = 3, 4, . . . ,M

∂4wn =
25wn − 48wn−1 + 36wn−2 − 16wn−3 + 3wn−4

12k
n = 4, 6, . . . ,M

The fully discrete finite element approximation to (1.5) is defined as follows:

Let U0
h = πhu0, find Un

h ∈ Sh, such that

(∂1U1
h , vh)h + Ah(U

0
h : U1

h , vh) = (f(U0
h , x), vh)h + 〈g1

h, vh〉Γh
∀ vh ∈ Sh (3.5.1)

(∂2U2
h , vh)h + Ah(2U

1
h − U0

h : U2
h , vh)

= (f(2U1
h − U0

h , x), vh)h + 〈g2
h, vh〉Γh

∀ vh ∈ Sh (3.5.2)

(∂3U3
h , vh)h + Ah(3U

2
h − 3U1

h + U0
h : U3

h , vh)

= (f(3U2
h − 3U1

h + U0
h , x), vh)h + 〈g3

h, vh〉Γh
∀ vh ∈ Sh (3.5.3)

(∂4Un
h , vh)h + Ah(4U

n−1
h − 6Un−2

h + 4Un−3
h − Un−4

h : Un
h , vh)

= (f(4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h , x), vh)h + 〈gnh , vh〉Γh

∀ vh ∈ Sh n = 4, 5, . . . ,M (3.5.4)

The scheme (3.5.1)− (3.5.4) is zero-stable. To see this, we obtain the first charac-

teristic polynomials as follows

ρ1(y) = y − 1

ρ2(y) =
3

2
y2 − 2y +

1

2

ρ3(y) =
11

6
y3 − 3y2 +

3

2
y − 1

3

ρ4(y) =
25

12
y4 − 4y3 + 3y2 − 4

3
y +

1

4
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The roots of these polynomials have modulli less than one and the roots with

modulus one are simple. See Appendix C.

The analysis of this work is done with the assumption that
∂iu

∂ti
exist for(i =

1, . . . , 5). It can be shown using Taylor expansion that
‖Un

h − 2Un−1
h + Un−2

h ‖L2(Ω) ≤ (∆t)2λ0

‖Un
h − 3Un−1

h + 3Un−2
h − Un−3

h ‖L2(Ω) ≤ (∆t)3λ1

‖Un
h − 4Un−1

h + 6Un−2
h − 4Un−3

h + Un−4
h ‖L2(Ω) ≤ (∆t)4λ2

(3.5.5)

We have the following stability result:

Lemma 3.11 Suppose the conditions of Assumption 1.1 are satisfied, there exists

a constant C independent of h and k such that for the solution of (3.5.1)− (3.5.4)

‖Un
h ‖2

L2(Ω) + k‖∇Un
h ‖2

L2(Ω) ≤ C
[
(1 + k)‖U0

h‖2
L2(Ω) + k

∑n
i=1

{
‖gih‖2

H1/2(Γ)

}]
(3.5.6)

Proof We take τ1 = τ2 = τ3 = k. Let vh = U1
h in (3.5.1), then

‖U1
h‖2

L2(Ω) + µ1k‖∇U1
h‖2

L2(Ω) ≤ ‖U1
h‖L2(Ω)‖U0

h‖L2(Ω) + µ3k‖U0
h‖L2(Ω)‖U1

h‖L2(Ω)

+ k‖g1
h‖H1/2(Γh)‖U1

h‖L2(Ω)

By Young’s inequality, there exists a constant C such that

(1− k)‖U1
h‖2

L2(Ω) + k‖∇U1
h‖2

L2(Ω) ≤ C
[
(1 + k)‖U0

h‖2
L2(Ω) + k‖g1

h‖2
H1/2(Γ)

]
There exists a constant C =

1

1− k0

such that

1 ≤ (1− k)−1 ≤ (1 + Ck) ≤ C

for 0 < k ≤ k0 < 1 and therefore

‖U1
h‖2

L2(Ω) + k‖∇U1
h‖2

L2(Ω) ≤ C
[
(1 + k)‖U0

h‖2
L2(Ω) + k‖g1

h‖2
H1/2(Γ)

]
(3.5.7)
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Let vh = U2
h in (3.5.2)

1

k
‖U2

h‖2
L2(Ω) + µ1‖∇U2

h‖2
L2(Ω) ≤

1

k
‖U2

h‖L2(Ω)‖U1
h‖L2(Ω)

+
1

2k
‖U2

h‖L2(Ω)‖U2
h − 2U1

h + U0
h‖L2(Ω)

+ µ3‖2U1
h − U0

h‖L2(Ω)‖U2
h‖L2(Ω)

+ ‖g2
h‖H1/2(Γ)‖U2

h‖L2(Ω)

≤ 1

k
‖U2

h‖L2(Ω)‖U1
h‖L2(Ω) +

λ0k

2
‖U2

h‖L2(Ω)

+µ3‖U2
h‖2

L2(Ω) + λ0µ3k
2‖U2

h‖L2(Ω)

+ ‖g2
h‖H1/2(Γ)‖U2

h‖L2(Ω)

By Young’s inequality, we have

1

2
[1− (1 + 3µ3) k] ‖U2

h‖2
L2(Ω) + kµ1‖∇U2

h‖2
L2(Ω)

≤ 1

2
‖U1

h‖2
L2(Ω) + k‖g2

h‖2
H1/2(Γ) +

1

4
k3λ2

0 +
1

2
µ3k

5

For 0 < k <
1

1 + 3µ3

, there is a C > 0 such that

‖U2
h‖2

L2(Ω) + k‖∇U2
h‖2

L2(Ω) ≤ C
[
‖U1

h‖2
L2(Ω) + k‖g2

h‖2
H1/2(Γ) + k3

]
By (3.5.7), we have

‖U2
h‖2

L2(Ω) + k‖∇U2
h‖2

L2(Ω) ≤ C

[
(1 + k)‖U0

h‖2
L2(Ω) + k

2∑
i=1

{
‖gih‖2

H1/2(Γ)

}]
(3.5.8)

By a similar argument to the argument that led to (3.5.8), we obtain

‖U3
h‖2

L2(Ω) + k‖∇U3
h‖2

L2(Ω) ≤ C

[
(1 + k)‖U0

h‖2
L2(Ω) + k

3∑
i=1

{
‖gih‖2

H1/2(Γ)

}]
(3.5.9)

For n = 4, 5, . . .,
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1

k
‖Un

h ‖2
L2(Ω) + µ1‖∇Un

h ‖2
L2(Ω)

≤ 1

k
‖Un

h ‖L2(Ω)‖Un−1
h ‖L2(Ω)

+
1

4k
‖Un

h ‖L2(Ω)‖Un
h − 4Un−1

h + 6Un−2
h − 4Un−3

h + Un−4
h ‖L2(Ω)

+
1

3k
‖Un

h ‖L2(Ω)‖Un
h − 3Un−1

h + 3Un−2
h − Un−3

h ‖L2(Ω)

+
1

2k
‖Un

h ‖L2(Ω)‖Un
h − 2Un−1

h + Un−2
h ‖L2(Ω) + ‖Un

h ‖L2(Ω)‖gnh‖H1/2(Γ)

+ µ3‖4Un−1
h − 6Un−2

h + 4Un−3
h + Un−4

h ‖L2(Ω)‖Un
h ‖L2(Ω)

≤ 1

k
‖Un

h ‖L2(Ω)‖Un−1
h ‖L2(Ω) +

λ2k
3

4
‖Un

h ‖L2(Ω) +
λ1k

2

3
‖Un

h ‖L2(Ω)

+
λ0k

2
‖Un

h ‖L2(Ω) + ‖Un
h ‖L2(Ω)‖gnh‖H1/2(Γ)

+ µ3‖Un
h ‖2

L2(Ω) + µ3λk
4‖Un

h ‖2
L2(Ω)

By Young’s inequality,

1

2
[1− (1 + 3µ3) k] ‖U2

h‖2
L2(Ω) + kµ1‖∇U2

h‖2
L2(Ω)

≤ 1

2
‖U1

h‖2
L2(Ω) + k‖g2

h‖2
H1/2(Γ) +

3

16
λ2

2k
7 +

1

9
λ2

1k
5 +

3

4
λ2

0k
3 +

1

2
λ2

2k
9

For 0 < k ≤ k0 <
1

1 + 3µ3

, there is a C > 0 such that

‖Un
h ‖2

L2(Ω) + k‖∇Un
h ‖2

L2(Ω) ≤ C
{
‖Un−1

h ‖2
L2(Ω) + k‖gnh‖2

H1/2(Γ) + k3
}

By iteration on n, we obtain

‖Un
h ‖2

L2(Ω) + k‖∇Un
h ‖2

L2(Ω) ≤ C

[
‖U3

h‖2
L2(Ω) + k

n∑
i=4

{
‖gih‖2

H1/2(Γ)

}
+ k3

]
(3.5.10)

(3.5.6) follows from (3.5.9) & (3.5.10).

The result below establishes the convergence of the scheme (3.5.1)− (3.5.4) to the

exact solution in the L2(Ω)-norm.

Theorem 3.6 Let u and Un
h be the solutions of (3.1.1) and (3.5.4) respectively.
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Suppose that the conditions of Assumption 1.1 are satisfied for every a : Ω×R→ R,

f : Ω × R → R, g ∈ L2(0, T ;H2(Γ) ∩H1/2(Γ)) and
∂5u

∂t5
is defined for Ω × [0, T ].

There exists a positive constant C independent of h and k such that

‖u− Un
h ‖L2(Ω) ≤

[
k4 + h2

(
1 +

1

| log h|

)]
C(u0, u, g)

where

C(u0, u, g) =

[
tn‖u0‖2

L2(Ω) +

∫ tn

0

(
tn‖g‖2

H1/2(Γ) +
5∑
j=2

‖∂
ju

∂tj
‖2
L2(Ω)

)
dt

+ ‖u0‖2
X +

∫ tn

0

(
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

)
dt

]1/2

Proof Let zn = Phu
n − Un

h , from (3.1.1) and (3.5.4), we have

(∂4zn, vh)h + Ah(z
n, vh) = B16 +B17 +B18 (3.5.11)

where

B16 = (∂4(Phu
n − un), vh)h + (∂4un − unt , vh) + (∂4un, vh)h − (∂4un, vh)

B17 = (f(x, un), vh)− (fn, vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh

B18 = Ah(4U
n−1
h − 6Un−2

h + 4Un−3
h − Un−4

h : Phu
n, vh)− Ah(un : Phu

n, vh)

and fn = f(x, 4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h ).

With vh = zn, we have

B16 ≤ ‖∂4(Phu
n − un)‖2

L2(Ω) +
1

2
‖zn‖2

L2(Ω) + ‖∂4un − unt ‖2
L2(Ω)

+ γCh4‖∂4un‖2
X +

1

4γ
‖zn‖2

H1(Ω) (3.5.12)
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Using Lemma 3.4, Lemma 3.7, Lemma 3.8 with the fact that Dαzn = 0 for |α| = 2,

we have

B17 ≤ Ch‖un‖H1(Ω?
h)‖zn‖H1(Ω?

h) + µ3‖un − Un
h ‖L2(Ω)‖zn‖L2(Ω)

+Ch3/2‖gn‖H2(Γ)‖zn‖H1(Ω?
h)

+ µ3‖Un
h − (4Un−1

h − 6Un−2
h + 4Un−3

h − Un−4
h )‖L2(Ω)‖zn‖L2(Ω)

≤ Ch2‖un‖X‖zn‖H1(Ω) +

(
µ3 +

1

2

)
‖zn‖2

L2(Ω) + C‖Phun − un‖2
L2(Ω)

+Ch2‖gn‖H2(Γ)‖zn‖H1(Ω) + Ck4‖Un
h ‖L2(Ω)‖zn‖L2(Ω)

≤ C(γ)h4

(
1 +

1

| log h|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)
+

1

2γ
‖zn‖2

H1(Ω)

+C‖zn‖2
L2(Ω) + Ck8‖Un

h ‖2
L2(Ω) (3.5.13)

Let ‖Phun‖L∞(Ω) = β. For B18, we have

B18 ≤ βµ3‖(4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h )− un‖L2(Ω)‖zn‖H1(Ω)

≤ βµ3‖(4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h )− Un
h ‖L2(Ω)‖zn‖H1(Ω)

+ βµ3‖Un
h − un‖L2(Ω)‖zn‖H1(Ω)

≤ Cµ3k
4‖Un

h ‖L2(Ω)‖zn‖H1(Ω) + βµ3‖Phun − un‖L2(Ω)‖zn‖H1(Ω)

+ βµ3‖zn‖L2(Ω)‖zn‖H1(Ω)

≤ γβ2µ2
3‖zn‖2

L2(Ω) +
3

4γ
‖zn‖2

H1(Ω) + Ch4

(
1 +

1

| log h|

)2

‖un‖2
X

+ Ck8‖Un
h ‖2

L2(Ω) (3.5.14)

Substituting (3.5.12)− (3.5.14) into (3.5.11), we have, for c1 > 0,

1

k
‖zn‖2

L2(Ω) + µ1‖zn‖2
H1(Ω) ≤

C

k

(
‖zn‖L2(Ω)‖zn−1‖L2(Ω) + ‖zn‖L2(Ω)‖zn−2‖L2(Ω)

+ ‖zn‖L2(Ω)‖zn−3‖L2(Ω) + ‖zn‖L2(Ω)‖zn−4‖L2(Ω)

)
+ ‖∂4(Phu

n − un)‖2
L2(Ω) + C0‖zn‖2

L2(Ω)

+ ‖∂kun − unt ‖2
L2(Ω) + Ch4‖∂4un‖2

X

+ Ch4

(
1 +

1

| lnh|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)
+

1

γ
‖zn‖2

H1(Ω) + Ck8‖Un
h ‖2

L2(Ω)
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where C0 =
1

2
+ µ3 + γβ2µ2

3. With γ =
1

µ1

, we obtain

(1− C0k) ‖zn‖2
L2(Ω)

≤ C
(
‖zn−1‖2

L2(Ω) + ‖zn−2‖2
L2(Ω) + ‖zn−3‖2

L2(Ω) + ‖zn−4‖2
L2(Ω)

)
+C

[
k‖∂4(Phu

n − un)‖2
L2(Ω) + k‖∂4un − unt ‖2

L2(Ω) + kh4‖∂4un‖2
X

]
+ Ch4k

(
1 +

1

| lnh|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)
+ Ck9‖Un

h ‖2
L2(Ω)

For 0 < k < min

{
1,

1

C0

}
, there is a C > 0 such that (1− C0k)−1 ≤ C, and

therefore

‖zn‖2
L2(Ω) ≤ C

[
‖zn−1‖2

L2(Ω) + ‖zn−2‖2
L2(Ω) + ‖zn−3‖2

L2(Ω) + ‖zn−4‖2
L2(Ω)

+ k‖∂4(Phu
n − un)‖2

L2(Ω) + k‖∂4un − unt ‖2
L2(Ω) + kh4‖∂4un‖2

X

+ Ch4k

(
1 +

1

| lnh|

)2 (
‖un‖2

X + ‖gn‖2
H2(Γ)

)
+ Ck9‖Un

h ‖2
L2(Ω)

for n = 4, . . . ,M .

By iteration on n, we have

‖zn‖2
L2(Ω) ≤ C

[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω) + ‖z2‖2

L2(Ω) + ‖z3‖2
L2(Ω)

]
+ Ck

n∑
j=4

‖∂4(uj − Phuj)‖2
L2(Ω) + Ck9

n∑
j=4

‖U j
h‖

2
L2(Ω)

+ Ch4k

(
1 +

1

| lnh|

)2 n∑
j=4

(‖uj‖2
X + ‖gj‖2

H2(Γ))

+ Ck

n∑
j=4

‖∂4uj − ujt‖2
L2(Ω) + Ch4k

n∑
j=4

‖∂4uj‖2
X
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After a simple calculation, we have

‖zn‖2
L2(Ω) ≤ C

[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω) + ‖z2‖2

L2(Ω) + ‖z3‖2
L2(Ω)

]
+C

∫ tn

0

‖(u− Phu)t‖2
L2(Ω) dt+ Ck8

∫ tn

0

‖∂
5u

∂t5
‖2
L2(Ω) dt

+Ch4

(
1 +

1

| lnh|

)2 ∫ tn

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ Ck9

n∑
j=4

‖U j
h‖

2
L2(Ω)

≤ C
[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω) + ‖z2‖2

L2(Ω) + ‖z3‖2
L2(Ω)

]
+Ch4

(
1 +

1

| log h|

)2 ∫ tn

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ Ck8

∫ tn

0

‖∂
5u

∂t5
‖2
L2(Ω) dt+ Ck9

n∑
j=4

‖U j
h‖

2
L2(Ω) (3.5.15)

Let z1 = Phu
1 − U1

h , from (3.1.1) and (3.5.1), we have

(∂1z1, vh)h + Ah(z
1, vh) = (∂1(Phu

1 − u1), vh)h + (∂1u1 − u1
t , vh)

+ (∂1u1, vh)h − (∂1u1, vh)

+ Ah(U
0
h : Phu

1, vh)− Ah(u1 : Phu
1, vh)

+ (f(x, un), vh)− (f(x, U0
h), vh)h + 〈g1, vh〉Γ − 〈g1

h, vh〉Γh
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With vh = z1, we have

1

τ1

‖z1‖2
L2(Ω) + µ1‖z1‖2

H1(Ω) ≤
1

τ1

‖z0‖L2(Ω)‖z1‖L2(Ω) + ‖∂1(Phu
1 − u1)‖2

L2(Ω)

+

(
1

2
+ µ1

)
‖z1‖2

L2(Ω) + ‖∂1u1 − u1
t‖2
L2(Ω) + Ch4‖∂1u1‖2

X

+ Ch4‖g1‖2
H2(Γ) +

1

γ
‖z1‖2

H1(Ω) + γβ2µ2
3‖U0

h − u1‖2
L2(Ω)

≤ 1

τ1

‖z0‖L2(Ω)‖z1‖L2(Ω) + ‖∂1(Phu
1 − u1)‖2

L2(Ω)

+

(
1

2
+ µ1 + γβ2µ2

3

)
‖z1‖2

L2(Ω) + ‖∂1u1 − u1
t‖2
L2(Ω)

+ Ch4‖∂1u1‖2
X + Ch4‖g1‖2

H2(Γ) +
1

γ
‖z1‖2

H1(Ω)

+ Cτ1‖U1
h‖2

L2(Ω) + Ch4

(
1 +

1

| lnh|

)2

‖u1‖2
X

With γ =
1

µ1

, we obtain

(1− C0τ1) ‖z1|2L2(Ω) ≤ ‖z0‖2
L2(Ω) + τ1‖∂1(Phu

1 − u1)‖2
L2(Ω) + τ1‖∂1u1 − u1

t‖2
L2(Ω)

+ Cτ1h
4‖∂1u1‖2

X + Cτ 2
1 ‖U1

h‖2
L2(Ω)

+ τ1Ch
4

(
1 +

1

| lnh|

)2 (
‖u1‖2

X + ‖g1‖2
H2(Γ)

)
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For 0 < τ1 < min

{
1,

1

C0

}
, there is a C > 0 such that (1− C0τ1)−1 ≤ C, therefore,

‖z1‖2
L2(Ω) ≤ C

[
‖z0‖2

L2(Ω) + τ1‖∂1(Phu
1 − u1)‖2

L2(Ω) + τ1‖∂1u1 − u1
t‖2
L2(Ω)

+τ1h
4‖∂1u1‖2

X + τ1h
4

(
1 +

1

| lnh|

)2 (
‖u1‖2

X + ‖g1‖2
H2(Γ)

)
+ τ 2

1 ‖U1
h‖2

L2(Ω)

]
≤ C‖z0‖2

L2(Ω) + C

∫ t1

0

‖(u− Phu)t‖2
L2(Ω) dt+ Cτ 2

1

∫ t1

0

‖utt‖2
L2(Ω) dt

+Ch4

(
1 +

1

| lnh|

)2 ∫ t1

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ Cτ 2
1 ‖U1

h‖2
L2(Ω)

≤ C‖z0‖2
L2(Ω) + Cτ 2

1

∫ t1

0

‖utt‖2
L2(Ω) dt+ Cτ 2

1 ‖U1
h‖2

L2(Ω)

+Ch4

(
1 +

1

| log h|

)2 ∫ t1

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt (3.5.16)

By similar arguments to the one that led to (3.5.16), we have

‖z2‖2
L2(Ω) ≤ C

[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω)

]
+ Cτ 4

2

∫ t2

0

‖uttt‖2
L2(Ω) dt

+Ch4

(
1 +

1

| log h|

)2 ∫ t2

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ Cτ 4
2 ‖U2

h‖2
L2(Ω) (3.5.17)

‖z3‖2
L2(Ω) ≤ C

[
‖z0‖2

L2(Ω) + ‖z1‖2
L2(Ω) + ‖z2‖2

L2(Ω)

]
+ Cτ 6

3

∫ t3

0

‖utttt‖2
L2(Ω) dt

+Ch4

(
1 +

1

| log h|

)2 ∫ t3

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ Cτ 6
3 ‖U3

h‖2
L2(Ω) (3.5.18)
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From (3.5.15)− (3.5.18) with τ1 ≤ k4, τ2 ≤ k2 and τ3 ≤ k4/3 we have

‖zn‖2
L2(Ω) ≤ C‖z0‖2

L2(Ω) + Ck8

∫ tn

0

{
5∑
j=2

‖∂
ju

∂tj
‖2
L2(Ω)

}
dt

+ Ch4

(
1 +

1

| log h|

)2 ∫ tn

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ k9

n∑
j=1

‖U j
h‖

2
L2(Ω) (3.5.19)

Now, from Lemma 3.11,

k

n∑
j=1

‖U j
h‖

2
L2(Ω) = Ck

n∑
j=1

[
(1 + k)‖U0

h‖2
L2(Ω) + k

j∑
i=1

{
‖gih‖2

H1/2(Γ)

}]

≤ Ck

n∑
j=1

[
(1 + k)‖U0

h‖2
L2(Ω) +

∫ tj

0

‖g‖2
H1/2(Γ) dt

]
≤ Ctn

[
(1 + k)‖πu0‖2

L2(Ω) +

∫ tn

0

‖g‖2
H1/2(Γ) dt

]
(3.5.20)

From (3.5.19) and (3.5.20),

‖zn‖2
L2(Ω) ≤ C‖z0‖2

L2(Ω) + Ck8

∫ tn

0

{
5∑
j=2

‖∂
ju

∂tj
‖2
L2(Ω) + tn‖g‖2

H1/2(Γ)

}
dt

+ Ch4

(
1 +

1

| log h|

)2 ∫ tn

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

+ Ctnk
8(1 + k)‖u0‖2

L2(Ω) (3.5.21)

Now, from Lemma 3.8 and (3.5.21)

‖un − Un
h ‖2

L2(Ω)

≤ 2‖un − Phun‖2
L2(Ω) + 2‖zn‖2

L2(Ω)

≤ Ck8

[
tn‖u0‖2

L2(Ω) +

∫ tn

0

(
tn‖g‖2

H1/2(Γ) +
5∑
j=2

‖∂
ju

∂tj
‖2
L2(Ω)

)
dt

]

+ Ch4

(
1 +

1

| log h|

)2{
‖u0‖2

X +

∫ tn

0

[
‖u‖2

X + ‖ut‖2
X + ‖g‖2

H2(Γ)

]
dt

}
The result follows immediately.
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Remark 3.3 The initial three steps of the scheme are constructed using low order

time discretisation scheme, however, this does not affect the convergence rate since

they are used once. Moreover, in the error analysis, the step sizes of these low order

discretisation are chosen to be sufficiently small to guarantee the convergence rate.

3.5.1 Four-Step Numerical Experiment

Example 6 We present the solution of Example 1 using the four-step linearised

scheme (3.5.1)− (3.5.4).

Errors in L2-norm at t = 12 for various step size h time step k are presented in

Table 3.9.

The data presented in Table 3.9 indicate that

‖Error‖L2(Ω) = O

(
k3.954 + h1.991

(
1 +

1

| lnh|

))
These numerical results match the convergence rate as given in Theorem 3.6.

Example 7 We present the solution of Example 2 using the linearised scheme.

Errors in L2-norm at t = 5 for various step size h time step k are presented in

Table 3.10.

The data presented in Table 3.10 indicate that

‖Error‖L2(Ω) = O

(
k4.900 + h1.982

(
1 +

1

| lnh|

))
These numerical results match the convergence rates as given in Theorem 3.6.

Example 8 We present the solution of Example 3 using the linearised scheme.

Errors in L2-norm at t = 4 for various step size h time step k are presented in

Table 3.11.

The data presented in Table 3.11 indicate that

‖Error‖L2(Ω) = O

(
k3.341 + h1.980

(
1 +

1

| lnh|

))
These numerical results match the convergence rates as given in Theorem 3.6.
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Table 3.9: Error estimates in L2−norm for Example 6

h Error (k = 0.04)

0.287138 2.56400× 10−2

0.181985 9.42931× 10−3

0.0950432 2.33584× 10−3

0.0633621 1.02274× 10−3

0.0475216 5.62814× 10−4

k Error (h = 0.0633621)

0.4 1.28272× 10−1

0.08 2.39792× 10−2

0.04 1.02274× 10−3

0.02 1.02271× 10−3

0.004 1.02271× 10−3

Table 3.10: Error estimates in L2−norm for Example 7

h Error (k = 0.03125)

0.205602 1.08564× 10−1

0.110793 2.54235× 10−2

0.0568736 6.28146× 10−3

0.037129 2.80833× 10−3

0.0285903 1.58868× 10−3

k Error (h = 0.0285903)

0.5 7.17604× 10−2

0.25 3.22750× 10−2

0.0625 1.60550× 10−3

0.03125 1.58868× 10−3

0.0125 1.58764× 10−3

Table 3.11: Error estimates in L2−norm for Example 8

h Error (k = 0.01)

0.179911 2.54014× 10−2

0.0957657 6.43713× 10−3

0.0749228 4.20417× 10−3

0.0636832 2.95527× 10−3

0.048928 1.71333× 10−3

k Error (h = 0.048928)

0.05 3.12546× 10−2

0.025 7.27635× 10−3

0.016 3.27310× 10−3

0.01 1.71333× 10−3

0.005 1.64282× 10−3
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Chapter 4

APPROXIMATION BY SEM

In the previous chapter, we approximated the problem (3.1.1)−(3.1.3) using piece-

wise linear functions on the elements with three nodes. In this chapter, we propose

the use of higher order polynomials on the elements. Higher order polynomials re-

quire additional nodes on the elements. The additional nodes are selected in a

way that prevents Runge phenomenon as the polynomial degree increases. The

position of the interface is also put under consideration.

The error generated by the finite element method is directly connected to the

regularity of the exact solution, thus, when the regularity of the solution is very

low, the result obtained from spectral element method might not be different from

other low-order methods (Timmermans et al., 1994). We shall assume that the

unknown function u(t) ∈ Xd, for t ∈ (0, T ) where

Xd = Hd(Ω) ∩Hd+1(Ω1) ∩Hd+1(Ω2)

endowed with the norm

‖v‖Xd
= ‖v‖Hd(Ω) + ‖v‖Hd+1(Ω1) + ‖v‖Hd+1(Ω2) ∀ v ∈ Xd

d ∈ N is the degree of the polynomial. We write X1 = X. We have the regularity

estimate

Lemma 4.1 Suppose that the conditions of Assumption 1.1 are satisfied for every
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a : Ω× R→ R, f : Ω× R→ R and g ∈ L2(0, T ;H1/2(Γ) ∩Hd+1(Γ)), there exists

a constant C depending on µ1, µ2, µ3, T and Ω such that for u ∈ L2(0, T ;Xd),

‖u‖L2(0,T ;Xd) ≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
d = 1, 2, . . . , n0 (4.0.1)

Proof The case has been proved for d = 1 (see Lemma 3.2). We use mathematical

induction on d for the case d > 1. We need to show that

‖u‖L2(0,T ;Hd+1(Ωi)) ≤ C
[
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

]
i = 1, 2. (4.0.2)

For d = 1,

‖u‖L2(0,T ;H2(Ω1)) ≤ C
[
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

]
We assume (4.0.2) is true for d = n, i.e.

‖u‖L2(0,T ;Hn+1(Ω1)) ≤ C
[
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

]
(4.0.3)

Now,

‖u‖2
L2(0,T ;Hn+2(Ω1)) =

∫ T

0

∫
Ω1

∑
|α|≤n+2

|∂αu|2 dx dt

=

∫ T

0

∫
Ω1

∑
|α|≤n+1

|∂αu|2 +
∑
|α|=n+2

|∂αu|2 dx dt

= ‖u‖2
L2(0,T ;Hn+1(Ω1))

+

∫ T

0

∫
Ω1

∑
|α|=n+1

∇(∂αu) · ∇(∂αu) dx dt

= ‖u‖2
L2(0,T ;Hn+1(Ω1))

+
1

µ1

∫ T

0

∫
Ω1

∑
|α|=n+1

a∇(∂αu) · ∇(∂αu) dx dt (4.0.4)

Using (3.1.7) in (4.0.4), we have

‖u‖2
L2(0,T ;Hn+2(Ω1)) = ‖u‖2

L2(0,T ;Hn+1(Ω1)) +
1

µ1

[∫ T

0

∫
Ω1

f(x, ∂αu)∂αu

−
∫

Ω1

(∂αut)(∂
αu) +

∫
Γ

g∂αu dt

]
|α| = n+ 1

≤ C
(
‖u‖2

L2(0,T ;Hn+1(Ω1)) + ‖g‖2
L2(0,T ;H1/2(Γ))

)
‖∂αut‖L2(0,T ;H−1(Ω1)) +

1

4
‖u‖2

L2(0,T ;Hn+2(Ω1)) (4.0.5)
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We have made use of integration by parts, Cauchy and Young’s inequalities in the

last inequality with |α| = n.

Using (3.1.5) and (4.0.3) in (4.0.5), we have

‖u‖2
L2(0,T ;Hn+2(Ω1)) ≤ C

(
‖g‖2

L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω1)

)
(4.0.6)

Following a similar procedure as above,

‖u‖2
L2(0,T ;Hn+2(Ω2)) ≤ C

(
‖g‖2

L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω2)

)
(4.0.7)

(4.0.1) follows from (3.1.2), (4.0.6) and (4.0.7).

4.1 Spectral Element Discretisation

Th denotes a partition of Ω into disjoint triangles K with Gauss-Lobatto-Legendre

collocation points. Let T?h denote the set of all elements that are intersected by

the interface Γ;

T?h = {K ∈ Th : K ∩ Γ 6= φ}

K ∈ T?h is called an interface element and we write Ω?
h =

⋃
K∈T?

h
K.

The triangulation Th of the domain Ω satisfies the following conditions

(i) Ω̄ =
⋃
K∈Th

K̄

(ii) If K̄1, K̄2 ∈ Th and K̄1 6= K̄2, then either K̄1∩K̄2 = ∅ or K̄1∩K̄2 is a common

vertex or a common edge.

(iii) For any triangle K ∈ T?h, we assume that Γ intersects K at most twice, and

it intersects each (open) edge at most once. For d ≥ 2, we assume some of

the nodes fall on the interface (see Fig 4.1). However, if the triangulation

could be fitted to the interface, then each K ∈ Th is either in Ωh
1 or Ωh

2 , and

has at most two vertices lying on Γh (see Fig 4.2).
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(iv) For each element K ∈ Th, let rK and r̄K be the diameters of its inscribed and

circumscribed circles respectively. It is assumed that, for some fixed h0 > 0,

there exists two positive constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0)

For any interface element K ∈ T?h, let K1 = K ∩ Ω1 and K2 = K ∩ Ω2, it was

shown by Chen & Zou (1998) that

either meas(K1) ≤ Ch3
K or meas(K2) ≤ Ch3

K

It is clear from Fig 4.1 that the polynomial approximation of the interface

function is one degree less than the polynomial approximation of the unknown

function u on each element. However the polynomial approximation of the interface

function is of the same degree with the polynomial approximation of the unknown

function u on an element when the elements can be fitted exactly to the interface.

Let Sdh denote the space of continuous piecewise polynomial functions of order

d ∈ N on Th which vanish on ∂Ω. Sdh contains dth order Lagrangian polyno-

mial through Gauss-Lobatto-Legendre (GLL) collocation points on each K ∈ Th.

The GLL points are clustered near the boundary, therefore Runge phenomenon is

avoided. We ensure that the number of interpolation nodes per element is equal to

that required to make dth degree polynomial with all the terms in x and y. This

is necessary to ensure continuity across the element edges. See (Oden & Reddy

1976) for the details about our choice.

Let Πh : C(Ω̄) → Sdh be the Lagrange interpolation operator corresponding to

the space Sdh. As the solutions concerned are in H1(Ω) globally, one cannot apply

the standard interpolation theory directly. Thus for the interpolation Πh, we have

Lemma 4.2 Let Πh : C(Ω̄) → Sdh be the interpolation operator, then for m =

0, 1, . . . , d, d ∈ N, n ∈ R+ 0 < h < d, we have

‖u− Πhu‖Hm(Ω) ≤ Cd

(
h

dn

)d+1−m
(

1 +
1

| ln h
d
|

)1/2

‖u‖Xd
(4.1.1)
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Figure 4.1: Typical unfitted interface elements

 
 
 
 
 
 
 
 
 
 

Figure 4.2: Typical interface elements with curved edges
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Proof For any u ∈ Xd, let ui be the restriction of u on Ωi (i = 1, 2). As the

interface is of class Cd+1, by extension theorem (Stein 1971 and Evans 1997), we

can extend the function ui ∈ Hd+1(Ωi) onto the whole of Ω, and obtain the function

ũi ∈ Hd+1(Ω) such that ũi = ui on Ωi and

‖ũi‖Hd+1(Ω) ≤ C‖ui‖Hd+1(Ωi) i = 1, 2 (4.1.2)

In the proof of Theorem 1.4,

|xNe − x| ≤ h

where xNe is an interpolation point in the element while x is a variable point.

However, without loss of generality, we can take x as a variable point in the

hd−neighbourhood of xNe such that

|xNe − x| ≤ hd

where hd is the minimum distance between a node and its surrounding nodes .

For any K ∈ Th\T∗h, we have

‖u− Πhu‖Wm,p(K) ≤ C

(
h

dn

)d+1−m

‖u‖W d+1,p(K) , m = 0, 1, . . . , d, p ≥ 1

(4.1.3)

The last inequality follows from (1.8.1) using the fact that hd ∝
h

dn
.

Now, for any element K ∈ T∗h, using Hölder’s inequality and the fact that

meas(K1) ≤ Ch3, we have

‖u− Πhu‖2
Hm(K1) ≤

∑
|α|≤m

‖Dα(u− Πhu)‖2
L2(K1)

≤

∑
|α|≤m

‖Dα(u− Πhu)‖2q′

L2(K1)

1/q′

[meas(K1)]
q′−1
q′
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Taking p = 2q′, we obtain

‖u− Πhu‖2
Hm(K1) ≤ [meas(K1)]

p−2
p

∑
|α|≤m

‖Dα(u− Πhu)‖pL2(K1)

2/p

≤ Ch3( p−2
p )

∑
|α|≤m

‖Dα(u− Πhu)‖pL2(K1)

2/p

for p > 2

Therefore

‖u− Πhu‖Hm(K1) ≤ Ch3( p−2
2p )‖u− Πhu‖Wm,p(K1) (4.1.4)

≤ Ch3( p−2
2p )‖u− Πhu‖Wm,p(K)

Using (4.1.3),

‖u−πhu‖Hm(K1) ≤ Ch
3p−6
2p

(
h

dn

)d−m
‖u‖W d,p(K) , for any p > 2, m = 0, 1, . . . , d,

Recall the Sobolev embedding inequality for two dimensions [Ren & Wei (1994)]

‖φ‖Lp(Ωi) ≤ Cp1/2‖φ‖H1(Ωi) ∀ p > 2, φ ∈ H1(Ωi), i = 1, 2

therefore,

‖u−Πhu‖Hm(K1) ≤ Ch
3p−6
2p

(
h

dn

)d−m
p1/2‖u‖Hd+1(K) for any p > 2, m = 0, 1, . . . , d

(4.1.5)

By means of extensions (4.1.2),

‖u− Πhu‖Hm(K2) ≤ ‖u− Πhu‖Hm(K)

≤ C

(
h

dn

)d+1−m

‖u‖Hd+1(K) , m = 0, 1, . . . , d (4.1.6)

It follows from (4.1.5) and (4.1.6) that

∑
K∈T ∗h

‖u− πhu‖2
Hm(K) ≤ C

(
h

dn

)2d+2−2m [
1 + pd2h1−6/p

]
‖u‖2

Xd
(4.1.7)
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From (4.1.3) and (4.1.7), we have for m = 0, 1, . . . , d and p > 2

‖u− Πhu‖2
Hm(Ω) ≤ C

(
h

dn

)2d+2−2m

‖u‖2
Xd

+ C

(
h

dn

)2d+2−2m

pd2h1−6/p‖u‖2
Xd

Since p > 2, we take

p = 2

(
1 +

1

| ln h
d
|

)
> 2 for 0 < h < d, d ∈ N

and (4.1.1) follows.

It was assumed in the proof of the above theorem that the triangulation does not

fit the interface, however, it is possible to have a triangulation that fit (perfectly

or almost perfectly) the interface. This could be achieved using curve interface

elements or by making the interface elements small enough such that Ω? ⊂ Ω0

(where Ω0 is some neighbourhood of Γ). We therefore have

Remark 4.1 It was assumed that u ∈ Xd in Lemma 4.2. However if

u ∈ Xd∩W d,∞(Ω0∩Ω1)∩W d,∞(Ω0∩Ω2), then we have for d ∈ N, 0 < h < d, and

m = 0, 1, . . . , d

‖u− Πhu‖Hm(Ω) ≤ Cd

(
h

dn

)d+1−m {
‖u‖Xd

+ ‖u‖W d,∞(Ω0∩Ω1) + ‖u‖W d,∞(Ω0∩Ω2)

}
(4.1.8)

Proof For any element K ∈ T∗h, using Hölder’s inequality and the fact that

meas(K2) ≤ Ch2, we have

‖u− Πhu‖2
Hm(K2) ≤

∑
|α|≤m

‖Dα(u− Πhu)‖2
L2(K2)

≤ [meas(K2)]
p−2
p

∑
|α|≤m

‖Dα(u− Πhu)‖pL2(K2)

2/p

≤ Ch
2( p−2

p )
?

∑
|α|≤m

‖Dα(u− Πhu)‖pL2(K2)

2/p

for p > 2

Where h? = max
K∈T?

h

hK . Therefore

‖u− Πhu‖Hm(K2) ≤ Ch
( p−2

p )
? ‖u− Πhu‖Wm,p(K2) (4.1.9)
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From (4.1.3), (4.1.4) and (4.1.9), we have

‖u− Πhu‖2
Hm(Ω) ≤ C

(
h

dn

)2d+2−2m

‖u‖2
Xd

+ Ch2−6/p
?

(
h?
d

)2d−2m ∑
K∈T∗h

{
h?‖u‖2

W d,p(K1) + h2/p
? ‖u‖2

W d,p(K2)

}
≤ C

(
h

dn

)2d+2−2m

‖u‖2
Xd

+ Ch2−6/p
?

(
h?
d

)2d−2m ∑
K∈T∗h

{
h?‖u‖2

W d,p(K∩Ω1) + h2/p
? ‖u‖2

W d,p(K∩Ω2)

}
≤ Cd2

(
h

dn

)2d+2−2m [
‖u‖2

Xd

+ h−6/p
?

(
h?‖u‖2

W d,p(Ω∗h∩Ω1) + h2/p
? ‖u‖2

W d,p(Ω∗h∩Ω2)

)]
≤ Cd2

(
h

dn

)2d+2−2m [
‖u‖2

Xd

+ h−6/p
?

(
h?‖u‖2

W d,p(Ω0∩Ω1) + h2/p
? ‖u‖2

W d,p(Ω0∩Ω2)

)]
For h? sufficiently small such that Ω∗h ⊂ Ω0,

‖u− Πhu‖2
Hm(Ω) ≤ Cd2

(
h

dn

)2d+2−2m [
‖u‖2

Xd

+ h−4/p
?

(
‖u‖2

W d,p(Ω0∩Ω1) + ‖u‖2
W d,p(Ω0∩Ω2)

)]
(4.1.10)

For i = 1, 2,

‖u‖p
W d,p(Ω0∩Ωi)

=
∑
|α|≤d

‖Dαu‖pLp(Ω0∩Ωi)

≤
∑
|α|≤d

meas(Ω0 ∩ Ωi)‖Dαu‖pL∞(Ω0∩Ωi)

≤ meas(Ω0 ∩ Ωi)
∑
|α|≤d

max
|α|≤d
‖Dαu‖pL∞(Ω0∩Ωi)

= meas(Ω0 ∩ Ωi)‖u‖pW d,∞(Ω0∩Ωi)

∴ ‖u‖W d,p(Ω0∩Ωi) ≤ C1/p‖u‖W d,∞(Ω0∩Ωi)
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This together with (4.1.10) implies that

‖u− Πhu‖2
Hm(Ω) ≤ Cd2

(
h

dn

)2d+2−2m [
‖u‖2

Xd

+ C2/ph−4/p
?

(
‖u‖2

W d,∞(Ω0∩Ω1) + ‖u‖2
W d,∞(Ω0∩Ω2)

)]
(4.1.8) follows as p→∞.

For computational simplicity, we present the analysis and computation for the

case where the spatial discretisation can be fitted exactly to the interface with

the use of interface elements with curved edges along the interface (see Fig 4.2).

Similar estimates could be obtained for unfitted spatial discretisation.

4.2 Convergence Rate

The time discretisation is based on backward difference approximations. We obtain

an error estimate of optimal order in the L2-norm.

The interval [0,T] is divided into M equally spaced (for simplicity) subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. Let the function Un
h be defined by

Un
h = Uh(x, tn), ∀ tn ∈ (0, T ], n = 1, 2, . . . ,M . For a given sequence {wn}Mn=0 ⊂

L2(Ω), we have the backward difference quotient defined by

∂kw
n =

wn − wn−1

k

The linearized fully discrete spectral element approximation to (3.1.1) is defined

as follows:

Let U0
h = Πhu0, find Un

h ∈ Sdh, for n = 1, 2, . . . ,M , such that

(∂kU
n
h , vh)h + A(Un−1

h : Un
h , vh) = (f(x, Un−1

h ), vh) + 〈gnh , vh〉Γ ∀ vh ∈ Sdh (4.2.1)

The main result of this chapter is stated below:
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Theorem 4.1 Let u and Un
h be the solutions of (3.1.1) and (4.2.1) respectively.

Suppose that the conditions of Assumption 1.1 are satisfied for every a : Ω×R→ R,

f : Ω × R → R and g ∈ L2(0, T ;Hd+1(Γ)). There exists a positive constant C

independent of h and k such that

‖u− Un
h ‖L2(Ω) ≤

[
d

(
h

dn

)d+1

+ k

]
C(u, g)

where

C(u, g) =

{
B(u0) +

∫ tn

0

(
B(u) +B(ut) + ‖utt‖2

L2(Ω) + ‖g‖2
Hd+1(Γ)

)
dt

}1/2

The proof of this result requires some necessary preparations.

Lemma 4.3 Assume that g ∈ H1+d(Γ), νh, ωh ∈ Sdh for t ∈ (0, T ]. Then we have

|〈g, vh〉Γ − 〈gh, vh〉Γ| ≤ Cd

(
h

dn

)d+1

‖g‖Hd+1(Γ)‖vh‖L2(Ω) (4.2.2)

|A(u : νh, ωh)− A(uh : νh, ωh)| ≤ µ3‖∇νh‖L∞(Ω)‖u− uh‖L2(Ω)‖ωh‖H1(Ω)(4.2.3)

|(f(x, u), vh)− (f(x, uh), vh)| ≤ µ3‖u− uh‖L2(Ω)‖vh‖L2(Ω) (4.2.4)

Proof Since gh is the interpolant of g along the interface, we can use (4.1.8)

|〈g, vh〉Γ − 〈gh, vh〉Γ| = |〈g − gh, vh〉Γ|

≤ ‖g − gh‖L2(Γ)‖vh‖L2(Γ)

≤ Cd

(
h

dn

)d+1

‖g‖Hd+1(Γ)‖vh‖L2(Ω)

For (4.2.3), we have

|A(u : νh, ωh)− A(uh : νh, ωh)| ≤
∑
K∈Th

∫
K

|a(x, u)− a(x, uh)||∇νh · ∇ωh|

≤ µ3

∑
K∈Th

∫
K

|u− uh||∇νh||∇ωh|

≤ µ3‖∇νh‖L∞(Ω)‖u− uh‖L2(Ω)‖∇ωh‖L2(Ω)

≤ µ3‖∇νh‖L∞(Ω)‖u− uh‖L2(Ω)‖ωh‖H1(Ω)
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For (4.2.4), we have

|(f(x, u), vh)− (f(x, uh), vh)| ≤
∑
K∈Th

∫
K

|f(x, u)− f(x, uh)||vh|

≤ µ3

∑
K∈Th

∫
K

|u− uh||vh|

≤ µ3‖u− uh‖L2(Ω)‖vh‖L2(Ω)

Let Rh : X ∩H1(Ω) → Sdh be the elliptic projection of the exact solution u in Sdh

defined by

A(u : Rhν − ν, φ) = 0 ∀ φ ∈ Sdh, t ∈ [0, T ] (4.2.5)

For this projection, we have

Lemma 4.4 Let u be a smooth function in Ω × T and a = a(x, u) satisfies

Assumption 1.1. Assume that u ∈ X ∩ H1
0 and let Rhu be defined as in (4.2.5),

then

‖Rhu− u‖L2(Ω) +
h

dn
‖Rhu− u‖H1(Ω) ≤ d

(
h

dn

)d+1

C(u)

Proof By the definition of Rh, we have

µ1‖Rhu− u‖2
H1(Ω) ≤ A(u : Rhu− u,Rhu− u)

= A(u : Rhu− u,Rhu− φ) + A(u : Rhu− u, φ− u), φ ∈ Sdh
≤ µ2‖Rhu− u‖H1(Ω)‖φ− u‖H1(Ω)

Using (4.1.8) with φ = Πhu, we have

‖Rhu− u‖H1(Ω) ≤ Cd

(
h

dn

)d {
‖u‖Xd

+ ‖u‖W d,∞(Ω0∩Ω1) + ‖u‖W d,∞(Ω0∩Ω2)

}
(4.2.6)

Now consider the dual problem

−∇ · (a(x, u)∇ψ) = Rhu− u in Ω, ψ = 0 on ∂Ω
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whose weak form is

A(u : ψ, φ) = (Rhu− u, φ) ∀ φ ∈ H1
0 (Ω) (4.2.7)

Now, it follows from (4.2.5) that

‖Rhu− u‖2
L2(Ω) = A(u : Rhu− u, ψ)

= A(u : Rhu− u, ψ − φ) + A(u : Rhu− u, φ) φ ∈ Sdh
≤ C‖Phu− u‖H1(Ω)‖ψ − φ‖H1(Ω)

Take φ = Πhψ and use (4.1.8)

‖Rhu− u‖2
L2(Ω) ≤ d

(
h

dn

)d+1

Dd(u)D1(ψ) (4.2.8)

but

D1(ψ) ≤ C‖Rhu− u‖L2(Ω) (4.2.9)

See Appendix B for (4.2.9).

Lemma 4.4 follows from (4.2.6), (4.2.8)

Lemma 4.5 Let u be a smooth function in Ω × T and a = a(x, u) satisfies

Assumption 1.1. Assume that u ∈ X ∩H1
0 and let Rhu be defined as in (4.5), then

‖(Rhu− u)t‖L2(Ω) +
h

dn
‖(Rhu− u)t‖H1(Ω) ≤ d

(
h

dn

)d+1

[Dd(u) +Dd(ut)]

Proof Let ξ = Rhu− u, and assume that at is uniformly bounded. Following the

argument of Thomme (2006), we have

ρ‖ξt‖2
H1(Ω) ≤ A(u : ξt, ξt)

= A(u : ξt, φ− ut) + A(u : ξt, (Rhu)t − φ)

= A(u : ξt, φ− ut) +

∫
Ω

[
∂

∂t
(a∇ξ)− ∂a

∂t
∇ξ
]
· ∇((Rhu)t − φ) dx

≤ ‖ξt‖H1(Ω)‖φ− ut‖H1(Ω) + ‖ξ‖H1(Ω)‖(Rhu)t − φ‖H1(Ω)

Take φ = Πhut. Using Lemma 4.5 and Young’s inequality, we obtain

‖(Phu− u)t‖H1(Ω) ≤ d

(
h

dn

)d
[Dd(u) +Dd(ut)] (4.2.10)
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Following the duality argument (4.2.7)− (4.2.9), we have

‖(Phu− u)t‖2
L2(Ω) ≤ d

(
h

dn

)d+1

[Dd(u) +Dd(ut)]

Proof of Theorem 4.1 We establish this using error splitting technique.

Let zn = Rhu
n − Un

h , then

(∂kz
n, vh) + A(Un−1

h : zn, vh)

= (∂kRhu
n, vh)− (∂kU

n
h , vh) + A(Un−1

h : Rhu
n, vh)− A(Un−1

h : Un
h , vh)

= (∂kRhu
n, vh)− (f(x, Un−1

h ), vh)− 〈gnh , vh〉Γ + A(Un−1
h : Rhu

n, vh)

− A(un : Rhu
n − un, vh)

= (∂kRhu
n, vh) + A(Un−1

h : Rhu
n, vh)− A(un : Rhu

n, vh)

+ (f(x, un), vh)− (f(x, Un−1
h ), vh) + 〈gn, vh〉Γ − 〈gnh , vh〉Γ

− (unt , vh)

= (∂k(Rhu
n − un), vh) + A(Un−1

h : Rhu
n, vh)− A(un : Rhu

n, vh)

+ (f(x, un), vh)− (f(x, Un−1
h ), vh) + 〈gn, vh〉Γ − 〈gnh , vh〉Γ

+ (∂ku
n − unt , vh)

= D1 +D2 +D3 (4.2.11)

where

D1 = (∂k(Rhu
n − un), vh) + (∂ku

n − unt , vh)

D2 = A(Un−1
h : Rhu

n, vh)− A(un : Rhu
n, vh)

D3 = (f(x, un), vh)− (f(x, Un−1
h ), vh) + 〈gn, vh〉Γ − 〈gnh , vh〉Γ

Now, using Young’s inequality with vh = zn, we obtain

D1 ≤ ‖∂k(Rhu
n − un)‖L2(Ω)‖zn‖L2(Ω) + ‖∂kun − unt ‖L2(Ω)‖zn‖L2(Ω)

≤ 2‖∂k(Phun − un)‖2
L2(Ω) +

1

4
‖zn‖2

L2(Ω) + 2‖∂kun − unt ‖2
L2(Ω) (4.2.12)
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Using Young’s inequality, and Lemma 4.3, we obtain

D2 ≤ µ3‖∇Rhu
n‖L∞(Ω)‖Un−1

h − un‖L2(Ω)‖zn‖H1(Ω)

≤ C‖zn−1‖L2(Ω)‖zn‖H1(Ω) + C‖Rhu
n−1 − un−1‖L2(Ω)‖zn‖H1(Ω)

+ C‖un−1 − un‖L2(Ω)‖zn‖H1(Ω)

≤ γC
(
‖zn−1‖2

L2(Ω) + ‖Rhu
n−1 − un−1‖2

L2(Ω) + k2‖∂kun‖2
L2(Ω)

)
+

3

8γ
‖zn‖2

H1(Ω) (4.2.13)

Using Lemma 4.3,

D3 ≤ µ3‖un − Un−1
h ‖L2(Ω)‖zn‖L2(Ω) + Cd

(
h

dn

)d+1

‖gn‖Hd+1(Γ)‖zn‖L2(Ω)

≤ C
(
‖zn−1‖2

L2(Ω) + ‖Rhu
n−1 − un−1‖2

L2(Ω) + k2‖∂kun‖2
L2(Ω)

)
+ Cd2

(
h

dn

)2d+2

‖gn‖2
Hd+1(Γ) +

1

4
‖zn‖2

L2(Ω) (4.2.14)

Substituting (4.2.12)− (4.2.14) into (4.2.11), we have

1

k
‖zn‖2

L2(Ω) + µ1‖∇zn‖2
L2(Ω) ≤

1

k
‖zn‖L2(Ω)‖zn−1‖L2(Ω) + 2‖∂k(Rhu

n − un)‖2
L2(Ω)

+
1

2
‖zn‖2

L2(Ω) + C‖zn−1‖2
L2(Ω) + 2‖∂kun − unt ‖2

L2(Ω)

+C
(
‖Rhu

n−1 − un−1‖2
L2(Ω) + k2‖∂kun‖2

L2(Ω)

)
+

3

8γ
‖zn‖2

H1(Ω) + Cd2

(
h

dn

)2d+2

‖gn‖2
Hd+1(Γ)

With γ =
3

8µ1

, we obtain

(1− Ck)‖zn‖2
L2(Ω) ≤ C‖zn−1‖2

L2(Ω) + C
[
k‖∂k(Rhu

n − un)‖2
L2(Ω)

+ k‖∂kun − unt ‖2
L2(Ω) + k‖Rhu

n−1 − un−1‖2
L2(Ω)

+ k3‖∂kun‖2
L2(Ω)

]
+ Ckd2

(
h

dn

)2d+2

‖gn‖2
Hd+1(Γ)
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For k sufficiently small, there exist a constant C such that (1 − ck)−1 ≤ C and

therefore,

‖zn‖2
L2(Ω) ≤ C‖zn−1‖2

L2(Ω) + C
[
k‖∂k(Rhu

n − un)‖2
L2(Ω)

+ k‖∂kun − unt ‖2
L2(Ω) + k‖Rhu

n−1 − un−1‖2
L2(Ω)

+ k3‖∂kun‖2
L2(Ω)

]
+ Ckd2

(
h

dn

)2d+2

‖gn‖2
Hd+1(Γ)

for n = 1, . . . ,M .

By iteration on n, we have

‖zn‖2
L2(Ω) ≤ C‖z0‖2

L2(Ω) + Ck

n∑
j=1

‖∂k(Rhu
j − uj)‖2

L2(Ω)

+ Cd2

(
h

dn

)2d+2

k
n∑
j=1

(
‖gj‖2

Hd+1(Γ)

)
+ Ck3

n∑
j=1

‖∂kuj‖2
L2(Ω)

+ Ck
n∑
j=1

(
‖∂kuj − ujt‖2

L2(Ω) + ‖Rhu
j−1 − uj−1‖2

L2(Ω)

)
≤ C‖z0‖2

L2(Ω) + Ck
n∑
j=1

[
‖∂k(Rhu

j − uj)‖2
L2(Ω) + ‖∂kuj − ujt‖2

L2(Ω)

+ k2‖∂kuj‖2
L2(Ω) + d2

(
h

dn

)2d+2 (
B(uj−1) + ‖gj‖2

Hd+1(Γ)

)]

≤ C‖z0‖2
L2(Ω) + C

∫ tn

0

[
‖(Rhu− u)t‖2

L2(Ω) + k2‖utt‖2
L2(Ω)

+ k2‖ut‖2
L2(Ω) + d2

(
h

dn

)2d+2 (
B(u) + ‖g‖2

Hd+1(Γ)

)]
dt

Where B(ξ) = ‖ξ‖2
Xd

+ ‖ξ‖2
W d,∞(Ω0∩Ω1)

+ ‖ξ‖2
W d,∞(Ω0∩Ω2)

. Therefore

‖zn‖2
L2(Ω) ≤ C‖z0‖2

L2(Ω) + C

∫ tn

0

[
k2
(
‖ut‖2

L2(Ω) + ‖utt‖2
L2(Ω)

)
+ d2

(
h

dn

)2d+2 (
B(u) +B(ut) + ‖g‖2

Hd+1(Γ)

)]
dt
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With U0
h = Πhu0, we have

‖zn‖2
L2(Ω) ≤ Ck2

∫ tn

0

(
‖ut‖2

L2(Ω) + ‖utt‖2
L2(Ω)

)
dt

+Cd2

(
h

dn

)2d+2 [
B(u0) +

∫ tn

0

(
B(u) +B(ut) + ‖g‖2

Hd+1(Γ)

)
dt

]
Theorem 4.1 follows using triangle inequality.

4.2.1 SE Numerical Experiment

The result of the spectral element error estimate is verified using globally continu-

ous piecewise polynomials on the quasi-uniform triangulation described in section

4.1. The mesh parameter h = maxK∈Th
hK where hK is the longest side of an

element K ∈ Th.

We represent the solution as uh(x, t) =
∑Nh

j=1 αj(t)φj(x), where each basis func-

tion φj, (j = 1, 2, . . . , Nh) is a polynomial function with unit height and zeros at

GLL points.

For the approximation g(x, t), let {zj}nh
j=1 be the set of all nodes of the triangu-

lation Th that lie on the interface Γ and {ψj}nh
j=1 be the Legendre polynomials

corresponding to GLL points {zj}nh
j=1 in the space Sdh.

The iterative scheme for (4.2.1) could be expressed as

(Un
h − Un−1

h , vh) + k(a(x, Un−1
h )∇Un

h ,∇vh) = k(f(x, Un−1
h ), vh) + k〈gh, vh〉Γ
vh ∈ Sdh , n = 1, 2, . . .

(4.2.15)

The mesh generation and computation are done in Nektar++ (Cantwell et al.,

2015) environments.

Example 1 We consider the Advection-Diffusion equation

∂u

∂t
= ∇ · (D∇u)−∇ · (~vu) +R (4.2.16)

where
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u = the variable of interest which could be mass transfer (for species concentra-

tion) or temperature (for heat transfer)

D = mass diffusivity (for particle motion) or thermal diffusivity (for heat trans-

fer)

~v = the average velocity of the quantity. For example, where u is the con-

centration of the salt in a river, then ~v would be the velocity of the water

flow.

R = the sources or sinks of the quantity u. For heat transfer for example, R > 0

means the thermal energy is being generated (possibly by friction).

Obviously, (4.2.16) is a PDE of practical interest and of the form (1.5.1). Consider

(4.2.16) in Ω = (−1, 1)× (−1, 1). The interface Γ = Ω̄1∩ Ω̄2 occurs at y = 0 where

Ω1 = (−1, 1)× (−1, 0), Ω2 = (−1, 1)× (0, 1). We choose a problem with a known

solution as follows:

u =

 e−0.1t sin πx sin πy in Ω1 × (0, 10]

e−0.01t sin πx sin πy in Ω2 × (0, 10]
(4.2.17)

The source function f , interface function g and the initial data u0 are determined

from the choice of u with

D =


1

20π2
in Ω1 × (0, 10]

1

200π2
in Ω2 × (0, 10]

(4.2.18)
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Table 4.1: Error estimates in L2−norm for the test problem (4.2.16)− (4.2.18).

d h =
√

2 h =
1

2

√
2

6 3.78356× 10−5 3.78356× 10−6

8 9.37908× 10−7 8.18879× 10−9

10 1.63671× 10−8 4.20808× 10−11

12 2.10014× 10−10 2.12807× 10−12
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Errors in L2-norm at t = 2 for various step size h and polynomial order d are

presented in Table 4.1.

The data presented in Table 4.1 indicate that

‖u− uh‖L2(Ω) u 1.81× 10−12 + 7.14786× 10−3d

( √
2

d0.754174

)d+1

for h =
√

2 (4.2.19)

and

‖u− uh‖L2(Ω) u 1.79× 10−12 + 1.83985× 10−2d

( √
2

2d0.727628

)d+1

for h =

√
2

2
(4.2.20)

These numerical results match the convergence rates as given in Theorem 4.1.
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Figure 4.3: The errors, for h =
√

2, in Table 4.1 and the graph of (4.2.19)
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Figure 4.4: The errors, for h =

√
2

2
, in Table 4.1 and the graph of (4.2.20)
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Chapter 5

DISCUSSION OF RESULTS

In contrast with the four-step FEM-BDM, Backward Euler scheme behaves anoma-

lously as t becomes large. This behaviour can be controlled by using very small

time step k and small mesh parameter h, however the four-step linearised scheme

is more efficient in this case. For instance, when t = 40 in Example 2, the con-

vergence of the Backward Euler scheme (see Table 5.1) behaves irregularly with

constant mesh parameter. We demonstrated same in Table 5.2 with constant time

step.

We also give a comparison of the schemes with the one proposed by Yang (2015)

in Tables 5.1 − 5.3. The two-step implicit scheme gives a better approximation

than the method proposed by Yang (2015) but computationally slower.

The proposed 4-step FEM-BDM gives a better accuracy. However to achieve

the same accuracy using the backward Euler scheme or 2-step implicit scheme, the

step size k has to be very small which could be computationally time consuming.

This is also demonstrated in Table 5.3 with all computations done on a laptop

with 2G RAM and 500G hard-drive. In the analysis, it was assumed that ∂5u
∂t5

exists, however if the regularity of the solution with respect to time is very low,

the result obtained from the method may not be different from other low-order

time discretisation methods (such as the two-step implicit scheme or the backward
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Euler scheme).

Improving on the spatial discretisation by SEM is rewarding when the regu-

larity of the unknown is very high. In Example 3, where the regularity of the

unknown is low, the result of using high degree polynomial is not different from

using low degree polynomial (see Table 5.4).

Due to the low regularity of the unknown function across the interface, reduc-

tion of error by increasing the polynomial degree may not be achieved.

5.1 Conclusion

Solution of a second order nonlinear parabolic interface problem by finite element

method and spectral element method was discussed. The convergence of the finite

element solution to the exact solution on a two-dimensional convex polygonal do-

main is analysed. In our study, the linear theories of interface and non-interface

problems, Sobolev imbedding inequality were used to obtain a priori estimates of

the weak solution and approximation of the linear interpolation operator. The lin-

ear interpolation operator was later used to estimate the clearly defined projection

operators in L2 and H1 norms.

The spatial discretisation was done using quasi-uniform triangular elements

with the unknown function approximated using Legendre polynomials. Discreti-

sation in time was based on backward difference scheme.

For FEM, we showed that almost optimal order of convergence rate in

L2(0, T ;H1(Ω))-norm and L2(0, T ;L2(Ω))-norm could be obtained for the approx-

imation of a nonlinear parabolic interface problem when the integrals involved in

the method are evaluated by numerical quadrature and the mesh cannot be fitted

to the interface. The numerical experiment was implemented using predictor-

corrector method because of the nonlinear terms. A four-step linearised FEM-

BDS was proposed and analysed to ease the computational stress and improve the

accuracy of the time-descretisation. The method was shown to be numerically
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Table 5.1: Comparison, in L2−norm error, of the numerical schemes with

h = 0.0463597

k Backward Euler 2-step implicit linearised 4-step Yang

0.4 1.09686 1.14329 1.09535 1.099700

0.2 7.82985× 10−2 4.92450× 10−2 7.04749× 10−3 4.92897× 10−2

0.1 4.85658× 10−2 1.06354× 10−2 6.24596× 10−3 1.09047× 10−2

Table 5.2: Comparison, in L2−norm error, of the numerical schemes with k = 0.2

h Backward Euler 2-step implicit linearised 4-step Yang

0.217242 1.87077× 10−1 1.88643× 10−1 1.91605× 10−1 1.82463× 10−1

0.108621 4.19731× 10−2 4.08319× 10−2 4.35048× 10−2 5.48989× 10−2

0.0550215 1.93533× 10−2 9.85728× 10−3 9.45986× 10−3 4.89246× 10−2

0.0273063 2.08968× 10−2 1.06763× 10−2 7.10719× 10−3 5.14151× 10−2

Table 5.3: Comparison of the numerical schemes with t = 20, k = 0.125,

h = 0.0550215

Backward Euler 2-step implicit linearised 4-step Yang

‖Error‖L2 6.2998× 10−2 1.07111× 10−2 1.11134× 10−2 1.60784× 10−2

‖Error‖H1 3.68037× 10−1 1.50167× 10−1 1.50011× 10−1 1.74212× 10−1

Time 11.94 min 12.12 min 6.71 min 6.06 min

Table 5.4: Comparison, in L2−norm error, with polynomials of different degrees

d = 1 d = 2 d = 3 d = 4

Error 1.87077× 10−1 1.88643× 10−1 1.91605× 10−1 1.82463× 10−1
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stable and that higher order accuracy in time could be obtained for k sufficiently

small.

On spectral elements, the formulation was based on Legendre polynomials eval-

uated at Gauss-Lobatto-Legendre points. The integrals involved were evaluated

by numerical quadrature. We analysed a spectral convergence rate for spectral

element approximation under certain regularity assumptions on the input data.

5.2 Contribution to Knowledge

In this work,

• Convergence rates of almost optimal order for the FE solution of a nonlin-

ear parabolic interface problem under certain regularity assumptions that

guarantee uniqueness and boundedness of solution were established

• A two-step implicit scheme with implementation by predictor-corrector ap-

proach due to the presence of nonlinearity was proposed. The scheme was

shown to be stable for small time-step k and its convergence was also con-

firmed.

• A four-step linearised FEM-BDS was proposed and analysed to ease the com-

putational stress and improve on the accuracy of the time-descretisation. The

stability and convergence of the scheme were established. Numerical exam-

ples were given to confirm the theoretical results and to show the effectiveness

of the methods over the existing one by Yang (2015).

• A theoretical framework for the convergence rate of spectral element solution

of the problem in L2−norm was given and spectral convergence of the scheme

was established.
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5.3 Further Research

Future work includes

• Extension of the results to domain in R3

• Investigation of FE and SE solutions of parabolic interface problems with

other types of nonlinearities.

• The maximum principle of the scheme (3.5.1) − (3.5.4) is a good area of

interest. This is possible in view of Farago et al. (2010).

• Investigation of FE and SE solutions of nonlinear hyperbolic interface prob-

lems

• Extension of the work to integral and integro-differential equations with in-

terfaces
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Appendices

Here, we give the explanation of the components of proofs of some results as well

as computer codes that produced the graphs and tables.

Appendix A

‖u− Uhk‖2
L2(0,T ;L2(Ω)) =

M∑
n=1

∫ tn

tn−1

‖u− Un
h ‖2

L2(Ω) ds

≤ 2
M∑
n=1

∫ tn

tn−1

‖u− un‖2
L2(Ω) + ‖un − Un

h ‖2
L2(Ω) ds

= 2
M∑
n=1

∫ tn

tn−1

‖u− un‖2
L2(Ω) ds+ 2

M∑
n=1

k‖un − Un
h ‖2

L2(Ω)

≤ Ck4‖utt‖2
L2(0,T ;L2(Ω)) + 2

M∑
n=1

k‖un − Un
h ‖2

L2(Ω)

Therefore,

‖u− Uhk‖L2(0,T ;L2(Ω)) ≤ Ck2‖utt‖L2(0,T ;L2(Ω)) + C

[
M∑
n=1

k‖un − Un
h ‖2

L2(Ω)

]1/2

Appendix B

By Sobolev Embedding Theorem 1.13,

W 1,∞(Ωi ∩ Ω0) ↪→ C(Ωi ∩ Ω0) i = 1, 2

therefore there exist c, C > 0 such that

c‖v‖W 1,∞(Ωi∩Ω0) ≤ ‖v‖C(Ωi∩Ω0) ≤ C‖v‖W 1,∞(Ωi∩Ω0) ∀ v ∈ W 1,∞(Ωi ∩ Ω0)
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Since C(Ωi ∩ Ω0) is dense in L2(Ωi ∩ Ω0) for i = 1, 2, we have

‖v‖W 1,∞(Ωi∩Ω0) ≤ C‖v‖L2(Ωi∩Ω0) ∀ v ∈ W 1,∞(Ωi ∩ Ω0)

Thus,

D1(ψ) ≤ C{‖ψ‖X + ‖ψ‖L2(Ω1∩Ω0) + ‖ψ‖L2(Ω2∩Ω0)}

≤ C‖ψ‖X (5.3.1)

(5.3.1) follows from the fact that

‖ψ‖L2(Ωi∩Ω0) ≤ ‖ψ‖L2(Ω) ≤ ‖ψ‖X

Following the argument that led to (3.3.19), we have

D1(ψ) ≤ C‖u‖X ≤ C‖Rhu− u‖L2(Ω)

Appendix C

Definition Consider the linear multistep method

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j (5.3.2)

where αj and βj are constants with αk 6= 0 and that not both α0 and β0 are zero.

(5.3.2) is said to be zero-stable if no root of the first characteristic polynomial has

modulus greater than one, and every root with modulus one is simple.

More information on zero-stability can be found in Lambert (1973).

Appendix D The FreeFEM++ code that produced Tables 3.1− 3.2 and Figure

3.4

border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
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border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border aa(t=0,2∗pi){x=0.5∗ cos(t); y=0.5∗ sin(t); label=5;};
real n=1 ;

mesh Th = buildmesh (a(14*n) + b(14*n) + c(14*n) + d(14*n)+ aa(40*n) );

plot(Th,wait=1);

func u0 = 0 ;

real T=5, dt=0.01 ;

real L2error, H1error;

func uexact = (5*(0.125-0.5*x∧2-0.5*y∧2)*sin(T)*(x∧2+y∧2<=0.25))+

((x∧2-1)*(-y∧2+1)*(x∧2+y∧2-.25)*sin(2*T))*(x∧2+y∧2>0.25);

real t;

func f = ((5*(.125-.5*x∧2-.5*y∧2))*cos(t)-(250*(0.125-0.5*x ∧2-0.5*y∧2))

*sin(t)∧3 *x∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2) +6250*(.125-.5*x∧2-.5*y∧2)∧3

*sin(t)∧5 *x∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)∧2

+250*(.125-.5*x∧2-.5*y∧2)∧2 *sin(t)∧3/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)

-(250*(.125-.5*x∧2-.5*y∧2)) *sin(t)∧3*y∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)

+6250*(.125-.5*x∧2-.5*y∧2)∧3 *sin(t)∧5*y∧2/(1+25

*(0.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)∧2 )*(x∧2+y∧2<=0.25)

+((2*(x∧2-1))*(-y∧2+1)*(x∧2+y∧2-0.25)*cos(2*t)+(1.0*(2*x*(-y∧2+1)

*(x∧2+y∧2-.25)*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*x*sin(2*t)))*((4*(x∧2-1))

*(-y∧2+1)∧2 *(x∧2+y∧2-.25)∧2*sin(2*t)∧2*x+4*(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-

.25)*sin(2*t)∧2*x)/(1+(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-.25)∧2

*sin(2*t)∧2)∧2-(1.0*((2*(-y∧2+1))*(x∧2+y∧2-.25)*sin(2*t)+8*x∧2*(-y∧2+1)

*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*sin(2*t)))/(1+(x∧2-1)∧2*(-y∧2+1)∧2

*(x∧2+y∧2-.25)∧2*sin(2*t)∧2)+(1.0*(-(2*(x∧2-1)) *y*(x∧2+y∧2-.25)*sin(2*t)

+(2*(x∧2-1))*(-y∧2+1)*y*sin(2*t)))*(-4*(x∧2-1)∧2*(-y∧2+1)*(x∧2+y∧2-.25)∧2

*sin(2*t)∧2*y+4*(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-.25)*sin(2*t)∧2*y)/(1+(x∧2-1)∧2*(-

y∧2+1)∧2*(x∧2+y∧2-.25)∧2*sin(2*t)∧2)∧2-(1.0*(-(2*(x∧2-1))*(x∧2+y∧2-.25)*sin(2*t)-
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(8*(x∧2-1))*y∧2*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*sin(2*t)))/(1+(x∧2-1)∧2*(-y∧2+1)∧2

(x∧2+y∧2-.25)∧2*sin(2*t)∧2) )*(x∧2+y∧2>0.25) ;

func g1 = 0;

fespace Vh(Th,P1);

Vh u=u0,v,uold,uu ;

Vh h = hTriangle; // get the size of all triangles

problem ther(uu,v)= int2d(Th)(uu*v/dt + ((uold∧2/(1+uold∧2))*(x∧2+y∧2<=0.25)

+ ((1/(1+uold∧2))*(x∧2+y∧2>0.25))) *(dx(uu) * dx(v) + dy(uu) * dy(v)))

- int2d(Th)(uold*v/dt)-int2d(Th)(f*v) + on(aa,uu=0) + on(a,uu=0) + on(b,uu=0)

+on(c,uu=0)+ on(d,uu=0);

problem the(u,v)= int2d(Th)(u*v/dt + ((uu∧2/(1+uu∧2))*(x∧2+y∧2<=0.25) +

((1/(1+uu∧2))*(x∧2+y∧2>0.25))) *(dx(u) * dx(v) + dy(u) * dy(v)))

- int2d(Th)(uold*v/dt)-int2d(Th)(f*v) + on(aa,u=0) + on(a,u=0)

+ on(b,u=0)+on(c,u=0)+ on(d,u=0);

ofstream ff(”ther.dat”);

for( t=dt;t<=T;t+=dt){
ther; // here solve the thermic problem

the; uold=uu; uu=u; // }
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uuu = uexact;

plot(uuu) ;

H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uuu))∧2 + (dy(u)-dy(uuu))∧2

));

cout � ”h = ”� h[ ].max � endl;

cout � ”L2 error = ”� L2error � endl;

cout � ”H1 error = ”� H1error � endl;

Appendix E The FreeFEM++ code that produced Tables 3.3− 3.4 and Figures
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3.6&3.7

border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border aa(t=0,2*pi){x=0.5*cos(t); y=0.25*sin(t); label=5;};
real n=1 ;

mesh Th = buildmesh (a(14*n) + b(14*n) + c(14*n) + d(14*n)+ aa(30*n) );

plot(Th,wait=1);

func u0 = 0 ;

real T=4, dt=0.005 ;

real L2error, H1error;

func uexact = (0.125*(1-4*x∧2-16*y∧2)*T*exp(sin(T))*(4*x∧2+16*y∧2<=1)) +

(0.5*(x∧2-1)*(y∧2-1)*(4*x∧2+16*y∧2-1)*sin(T))*(4*x∧2+16*y∧2>1) ;

real t;

func f = ((1/8*(-4*x∧2-16*y∧2+1))*exp(sin(t+dt))+(1/8*(-4*x∧2-16*y∧2+1))

*(t+dt)*cos(t+dt)*exp(sin(t+dt))+(25*(t+dt))*exp(sin(t+dt))) *(4*x∧2+16*y∧2<=1)

+ (-(.5*(-x∧2+1))*(-y∧2+1)*(-4*x∧2-16*y∧2+1)*cos(t+dt) +(1.0*x*(-y∧2+1)*(-

4*x∧2-16*y∧2+1)*sin(t+dt)+(4.0*(-x∧2+1)) *(-y∧2+1)*x*sin(t+dt))*(-((-x∧2+1))*(-

y∧2+1)∧2*(-4*x∧2-16 *y∧2+1)∧2*sin(t+dt)∧2*x-4.00*(-x∧2+1)∧2*(-y∧2+1)∧2*(-4*x∧2

-16*y∧2+1)*sin(t+dt)∧2*x)/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2*(-4*x∧2-16 *y∧2+1)∧2

*sin(t+dt)∧2)∧2-((1.0*(-y∧2+1))*(-4*x∧2-16*y∧2+1) *sin(t+dt)-16.0*x∧2*(-y∧2+1)

*sin(t+dt)+(4.0*(-x∧2+1))*(-y∧2+1) *sin(t+dt))/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2*(-

4*x∧2-16*y∧2+1)∧2 *sin(t+dt)∧2)+((1.0*(-x∧2+1))*y*(-4*x∧2-16*y∧2+1)*sin(t+dt)

+(16.0*(-x∧2+1))*(-y∧2+1)*y*sin(t+dt))*(-(-x∧2+1)∧2*(-y∧2+1) *(-4*x∧2-16*y∧2

+1)∧2 *sin(t+dt)∧2*y-16.00*(-x∧2+1)∧2*(-y∧2+1)∧2 *(-4*x∧2-16*y∧2+1)*sin(t+

dt)∧2*y)/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2 *(-4*x∧2-16*y∧2+1)∧2*sin(t+dt)∧2)∧2-

((1.0*(-x∧2+1))*(-4*x∧2-16 *y∧2+1)*sin(t+dt)-(64*(-x∧2+1))*y∧2*sin(t+dt)+(16

*(-x∧2+1)) *(-y∧2+1)*sin(t+dt))/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2*(-4*x∧2-16*y∧2
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+1)∧2*sin(t+dt)∧2))*(4*x∧2+16*y∧2>1);

func g1 = 0;

fespace Vh(Th,P1);

Vh u,v,uu,uold=u0;

Vh h = hTriangle; // get the size of all triangles

problem thermicc(uu,v)= int2d(Th)(uu*v/dt + (5*(4*x∧2+16*y∧2<=1)

+ ((1/(1+ (uold)∧2))*(4*x∧2+16*y∧2>1))) *(dx(uu) * dx(v) + dy(uu) * dy(v)))

- int2d(Th)(uold*v/dt) - int2d(Th)(f*v) + on(aa,uu=0) + on(a,uu=0) + on(b,uu=0)

+on(c,uu=0)+ on(d,uu=0);

problem themic(u,v)= int2d(Th)(u*v/dt + (5*(4*x∧2+16*y∧2<=1)

+ ((1/ (1+(uu)∧2))*(4*x∧2+16*y∧2>1))) *(dx(u) * dx(v) + dy(u) * dy(v)))

- int2d(Th)(uold*v/dt) - int2d(Th)(f*v) + on(aa,u=0) + on(a,u=0)

+ on(b,u=0)+on(c,u=0)+ on(d,u=0);

ofstream ff(”thermic.dat”);

for( t=dt;t<=T;t+=dt){
thermicc; // here solve the thermic problem

themic; uold=uu; uu=u; // }
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uuu = uexact;

plot(uuu) ;

H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uuu))∧2 + (dy(u)-dy(uuu))∧2

));

cout � ”h = ”� h[ ].max � endl;

cout � ”L2 error = ”� L2error � endl;

cout � ”H1 error = ”� H1error � endl;

Appendix F The FreeFEM++ code that produced Tables 3.5 − 3.6 and Figure

3.8
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border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border e(t=-1.0,1){x=-t; y=t; label=5;};
real n=1;

mesh Th = buildmesh (a(16*n) + b(16*n) + c(16*n) +d(16*n) + e(40*n));

plot(Th,wait=1);

func u0 = 0;

real T=10, dt=0.0125 ;

real L2error, H1error;

func uexact = (T*(1+x)*(1+y)*(x+y))*(x+y<=0)+(T*(1-x)*(1-y)*(x+y))*(x+y>0);

real t;

func g = 0;

func f = ((1+x)*(1+y)*(x+y)+((t+dt)*(1+y)*(x+y)+(t+dt)*(1+x)*(1+y))

*(2*(t+dt)∧2*(1+x)*(1+y)∧2*(x+y)∧2+2*(t+dt)∧2*(1+x)∧2*(1+y)∧2

*(x+y))/(1+(t+dt)∧2 *(1+x)∧2*(1+y)∧2*(x+y)∧2)∧2-2*(t+dt)*(1+y)/(1+(t+dt)∧2

*(1+x)∧2*(1+y)∧2 *(x+y)∧2)+((t+dt)*(1+x)*(x+y)+(t+dt)*(1+x)*(1+y))

*(2*(t+dt)∧2*(1+x)∧2*(1+y) *(x+y)∧2+2*(t+dt)∧2*(1+x)∧2*(1+y)∧2*(x+y))

/(1+(t+dt)∧2*(1+x)∧2*(1+y)∧2 *(x+y)∧2)∧2-2*(t+dt)*(1+x)/(1+(t+dt)∧2

*(1+x)∧2*(1+y)∧2*(x+y)∧2))*(x+y<=0) +((1-x)*(1-y)*(x+y)+2*x*y∧2*(-(t+dt)

*(1-y)*(x+y)+(t+dt)*(1-x)*(1-y)) +(2*(-x∧2*y∧2+1))*(t+dt)*(1-y)+2*x∧2*y*(-

(t+dt)*(1-x)*(x+y) +(t+dt)*(1-x)*(1-y))+(2*(-x∧2*y∧2+1))*(t+dt)*(1-x))*(x+y>0);

fespace Vh(Th,P1);

Vh u,v,uu,uold=u0;

Vh h = hTriangle; // get the size of all triangles

problem thermicc(uu,v)= int2d(Th)(uu*v/dt + (1/(1+uold∧2)*(x+y<=0) + (1-

x∧2*y∧2)*(x+y>0))*(dx(uu) * dx(v) + dy(uu) * dy(v))) - int2d(Th)(uold*v/dt)

- int2d(Th)(f*v) + on(e,uu=0) + on(a,uu=0) + on(b,uu=0) +on(c,uu=0)+ on(d,uu=0);
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problem themic(u,v)= int2d(Th)(u*v/dt + (1/(1+uu∧2)*(x+y<=0) + (1-x∧2*y∧2)

*(x+y>0))*(dx(u) * dx(v) + dy(u) * dy(v))) - int2d(Th)(uold*v/dt)

- int2d(Th)(f*v) + on(e,u=0) + on(a,u=0) + on(b,u=0)+on(c,u=0)+ on(d,u=0);

ofstream ff(”thermic.dat”);

for( t=dt;t<=T;t+=dt){
thermicc; // here solve the thermic problem

themic; uold=uu; uu=u; }
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uuu = uexact;

plot(uuu) ;

H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uuu))∧2 + (dy(u)-dy(uuu))∧2

));

cout � ”h = ”� h[ ].max � endl;

cout � ”L2 error = ”� L2error � endl;

cout � ”H1 error = ”� H1error � endl;

Appendix G The FreeFEM++ code that produced Table 3.7

border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border aa(t=0,2*pi){x=0.5*cos(t); y=0.5*sin(t); label=5;};
real n= 1;

mesh Th = buildmesh (a(14*n) + b(14*n) + c(14*n) + d(14*n)+ aa(40*n) );

plot(Th,wait=1);

func u0 = 0 ;

real T=12, dt=0.01 ;

real L2error, H1error;
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func uexact = (5*(0.125-0.5*x∧2-0.5*y∧2)*sin(T)*(x∧2+y∧2<=0.25)) +((x∧2-1)*(-

y∧2+1)*(x∧2+y∧2-0.25)*sin(2*T)) *(x∧2+y∧2>0.25);

real t;

func f = ((5*(.125-.5*x∧2-.5*y∧2))*cos(t)-(250*(0.125-0.5*x ∧2-0.5*y∧2))

*sin(t)∧3 *x∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2) +6250*(.125-.5*x∧2-.5*y∧2)∧3

*sin(t)∧5 *x∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)∧2

+250*(.125-.5*x∧2-.5*y∧2)∧2 *sin(t)∧3/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)

-(250*(.125-.5*x∧2-.5*y∧2)) *sin(t)∧3*y∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)

+6250*(.125-.5*x∧2-.5*y∧2)∧3 *sin(t)∧5*y∧2/(1+25

*(0.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)∧2 )*(x∧2+y∧2<=0.25)

+((2*(x∧2-1))*(-y∧2+1)*(x∧2+y∧2-0.25)*cos(2*t)+(1.0*(2*x*(-y∧2+1)

*(x∧2+y∧2-.25)*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*x*sin(2*t)))*((4*(x∧2-1))

*(-y∧2+1)∧2 *(x∧2+y∧2-.25)∧2*sin(2*t)∧2*x+4*(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-

.25)*sin(2*t)∧2*x)/(1+(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-.25)∧2

*sin(2*t)∧2)∧2-(1.0*((2*(-y∧2+1))*(x∧2+y∧2-.25)*sin(2*t)+8*x∧2*(-y∧2+1)

*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*sin(2*t)))/(1+(x∧2-1)∧2*(-y∧2+1)∧2

*(x∧2+y∧2-.25)∧2*sin(2*t)∧2)+(1.0*(-(2*(x∧2-1)) *y*(x∧2+y∧2-.25)*sin(2*t)

+(2*(x∧2-1))*(-y∧2+1)*y*sin(2*t)))*(-4*(x∧2-1)∧2*(-y∧2+1)*(x∧2+y∧2-.25)∧2

*sin(2*t)∧2*y+4*(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-.25)*sin(2*t)∧2*y)/(1+(x∧2-1)∧2*(-

y∧2+1)∧2*(x∧2+y∧2-.25)∧2*sin(2*t)∧2)∧2-(1.0*(-(2*(x∧2-1))*(x∧2+y∧2-.25)*sin(2*t)-

(8*(x∧2-1))*y∧2*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*sin(2*t)))/(1+(x∧2-1)∧2*(-y∧2+1)∧2

(x∧2+y∧2-.25)∧2*sin(2*t)∧2) )*(x∧2+y∧2>0.25) ;

func g1 = 0;

fespace Vh(Th,P1);

Vh u=u0,v,uold,uu, uold1 ;

Vh h = hTriangle; // get the size of all triangles

for( t=dt;t<2*dt;t+=dt){
solve Poisson1(uold1,v,solver=LU) = int2d(Th)( uold1*v/dt + ((uold∧2/(1+uold∧2))

*(x∧2+y∧2<=0.25) + ((1/(1+(uold)∧2))*(x∧2+y∧2>0.25))) *(dx(uold1)*dx(v) +
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dy(uold1)*dy(v))) - int2d(Th)(f*v + uold*v/dt ) + on(a,uold1=0) + on(b,uold1=0)

+ on(c,uold1=0) + on(d,uold1=0) + on(aa,uold1=0) ; }
problem termicc(uu,v)= int2d(Th)(1.5*uu*v/dt + ((((2*uold1-uold)∧2)/(1+

(2*uold1-1*uold)∧2))*(x∧2+y∧2<=0.25) + ((1/(1+(2*uold1-uold)∧2))

*(x∧2+y∧2>0.25))) *(dx(uu) * dx(v) + dy(uu) * dy(v))) - int2d(Th)(2*uold1*v/dt)

+ int2d(Th)(0.5*uold*v/dt) -int2d(Th)(f*v) + on(aa,uu=0) + on(a,uu=0)

+ on(b,uu=0)+on(c,uu=0)+ on(d,uu=0);

problem temic(u,v)= int2d(Th)(1.5*u*v/dt + (((uu∧2)/(1+(uu)∧2))*(x∧2+y∧2<=0.25)

+ ((1/(1+(uu)∧2))*(x∧2+y∧2>0.25)))*(dx(u) * dx(v) + dy(u) * dy(v)))

- int2d(Th)(2*uold1*v/dt) + int2d(Th)(0.5*uold*v/dt) -int2d(Th)(f*v)

+ on(aa,u=0) + on(a,u=0) + on(b,u=0)+on(c,u=0)+ on(d,u=0);

ofstream ff(”ther.dat”);

for( t=2*dt;t¡=T;t+=dt){
termicc; // here solve the thermic problem

temic;

uu=u;

uold=uold1;

uold1=u;

}
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uuu = uexact;

plot(uuu) ;

H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uuu))∧2 + (dy(u)-dy(uuu))∧2

));

cout � ”h = ”

llh[ ].max� endl;

cout � ”L2 error = ”�L2error� endl;

cout � ”H1 error = ”�H1error� endl;
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Appendix H The FreeFEM++ code that produced Table 3.8

border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border aa(t=0,2*pi){x=0.5*cos(t); y=0.25*sin(t); label=5;};
real n=1 ;

mesh Th = buildmesh (a(14*n) + b(14*n) + c(14*n) + d(14*n)+ aa(30*n) );

plot(Th,wait=1);

func u0 = 0 ;

real T=4, dt=0.005 ;

real L2error, H1error;

func uexact = (0.125*(1-4*x∧2-16*y∧2)*T*exp(sin(T))*(4*x∧2+16*y∧2<=1)) +

(0.5*(x∧2-1)*(y∧2-1)*(4*x∧2+16*y∧2-1)*sin(T))*(4*x∧2+16*y∧2>1) ;

real t;

func f = ((1/8*(-4*x∧2-16*y∧2+1))*exp(sin(t+dt))+(1/8*(-4*x∧2-16*y∧2+1))

*(t+dt)*cos(t+dt)*exp(sin(t+dt))+(25*(t+dt))*exp(sin(t+dt))) *(4*x∧2+16*y∧2<=1)

+ (-(.5*(-x∧2+1))*(-y∧2+1)*(-4*x∧2-16*y∧2+1)*cos(t+dt) +(1.0*x*(-y∧2+1)*(-

4*x∧2-16*y∧2+1)*sin(t+dt)+(4.0*(-x∧2+1)) *(-y∧2+1)*x*sin(t+dt))*(-((-x∧2+1))*(-

y∧2+1)∧2*(-4*x∧2-16 *y∧2+1)∧2*sin(t+dt)∧2*x-4.00*(-x∧2+1)∧2*(-y∧2+1)∧2*(-4*x∧2

-16*y∧2+1)*sin(t+dt)∧2*x)/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2*(-4*x∧2-16 *y∧2+1)∧2

*sin(t+dt)∧2)∧2-((1.0*(-y∧2+1))*(-4*x∧2-16*y∧2+1) *sin(t+dt)-16.0*x∧2*(-y∧2+1)

*sin(t+dt)+(4.0*(-x∧2+1))*(-y∧2+1) *sin(t+dt))/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2*(-

4*x∧2-16*y∧2+1)∧2 *sin(t+dt)∧2)+((1.0*(-x∧2+1))*y*(-4*x∧2-16*y∧2+1)*sin(t+dt)

+(16.0*(-x∧2+1))*(-y∧2+1)*y*sin(t+dt))*(-(-x∧2+1)∧2*(-y∧2+1) *(-4*x∧2-16*y∧2

+1)∧2 *sin(t+dt)∧2*y-16.00*(-x∧2+1)∧2*(-y∧2+1)∧2 *(-4*x∧2-16*y∧2+1)*sin(t+

dt)∧2*y)/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2 *(-4*x∧2-16*y∧2+1)∧2*sin(t+dt)∧2)∧2-

((1.0*(-x∧2+1))*(-4*x∧2-16 *y∧2+1)*sin(t+dt)-(64*(-x∧2+1))*y∧2*sin(t+dt)+(16
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*(-x∧2+1)) *(-y∧2+1)*sin(t+dt))/(1+.25*(-x∧2+1)∧2*(-y∧2+1)∧2*(-4*x∧2-16*y∧2

+1)∧2*sin(t+dt)∧2))*(4*x∧2+16*y∧2>1);

func g1 = 0;

fespace Vh(Th,P1);

Vh u,v,uu,uold=u0,uold1;

for( t=0;t<=0;t+=dt){
solve Poisson1(uold1,v,solver=LU) = int2d(Th)( uold1*v/dt + (5*(4*x∧2+16*y∧2<=1)

+ ((1/(1+(uold)∧2))*(4*x∧2+16*y∧2>1))) *(dx(uold1)*dx(v) + dy(uold1)*dy(v)))

- int2d(Th)(f*v + uold*v/dt ) + on(a,uold1=0) + on(b,uold1=0) + on(c,uold1=0)

+ on(d,uold1=0) + on(aa,uold1=0) ; }
Vh h = hTriangle; // get the size of all triangles

problem thermicc(uu,v)= int2d(Th)(1.5*uu*v/dt + (5*(4*x∧2+16*y∧2<=1) +

((1/(1+ (2*uold1-1*uold)∧2))*(4*x∧2+16*y∧2>1))) *(dx(uu) * dx(v) + dy(uu)

* dy(v))) - int2d(Th)(2*uold1*v/dt) + int2d(Th)(0.5*uold*v/dt) -int2d(Th)(f*v)

+ on(aa,uu=0) + on(a,uu=0) + on(b,uu=0)+on(c,uu=0)+ on(d,uu=0);

problem themic(u,v)= int2d(Th)(1.5*u*v/dt + (5*(4*x∧2+16*y∧2<=1) + ((1/

(1+(uu)∧2))*(4*x∧2+16*y∧2>1))) *(dx(u) * dx(v) + dy(u) * dy(v)))

- int2d(Th)(2*uold1*v/dt) + int2d(Th)(0.5*uold*v/dt) -int2d(Th)(f*v)

+ on(aa,u=0) + on(a,u=0) + on(b,u=0)+on(c,u=0)+ on(d,u=0);

ofstream ff(”ther.dat”);

for( t=dt;t<T;t+=dt){
thermicc; // here solve the thermic problem

themic;

uu=u;

uold=uold1;

uold1=u; }
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uuu = uexact;
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plot(uuu) ;

H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uuu))∧2 + (dy(u)-dy(uuu))∧2

));

cout � ”h = ”�h[ ].max� endl;

cout � ”L2 error = ”�L2error� endl;

cout � ”H1 error = ”�H1error� endl;

Appendix I The FreeFEM++ code that produced Table 3.9

border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border e(t=-1.0,1){x=-t; y=t; label=5;};
real n=1;

mesh Th = buildmesh (a(16*n) + b(16*n) + c(16*n) +d(16*n) + e(40*n));

plot(Th,wait=1);

func u0 = 0;

real T=10, dt=0.0125 ;

real L2error, H1error;

func uexact = (T*(1+x)*(1+y)*(x+y))*(x+y<=0)+(T*(1-x)*(1-y)*(x+y))*(x+y>0);

real t;

func g = 0;

func f = ((1+x)*(1+y)*(x+y)+((t+dt)*(1+y)*(x+y)+(t+dt)*(1+x)*(1+y))

*(2*(t+dt)∧2*(1+x)*(1+y)∧2*(x+y)∧2+2*(t+dt)∧2*(1+x)∧2*(1+y)∧2

*(x+y))/(1+(t+dt)∧2 *(1+x)∧2*(1+y)∧2*(x+y)∧2)∧2-2*(t+dt)*(1+y)/(1+(t+dt)∧2

*(1+x)∧2*(1+y)∧2 *(x+y)∧2)+((t+dt)*(1+x)*(x+y)+(t+dt)*(1+x)*(1+y))

*(2*(t+dt)∧2*(1+x)∧2*(1+y) *(x+y)∧2+2*(t+dt)∧2*(1+x)∧2*(1+y)∧2*(x+y))

/(1+(t+dt)∧2*(1+x)∧2*(1+y)∧2 *(x+y)∧2)∧2-2*(t+dt)*(1+x)/(1+(t+dt)∧2

*(1+x)∧2*(1+y)∧2*(x+y)∧2))*(x+y<=0) +((1-x)*(1-y)*(x+y)+2*x*y∧2*(-(t+dt)
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*(1-y)*(x+y)+(t+dt)*(1-x)*(1-y)) +(2*(-x∧2*y∧2+1))*(t+dt)*(1-y)+2*x∧2*y*(-

(t+dt)*(1-x)*(x+y) +(t+dt)*(1-x)*(1-y))+(2*(-x∧2*y∧2+1))*(t+dt)*(1-x))*(x+y>0);

fespace Vh(Th,P1);

Vh u,v,uu,uold=u0,uold1;

for( t=0;t<=0;t+=dt){
solve Poisson1(uold1,v,solver=LU) = int2d(Th)( uold1*v/dt + (1/(1+uold∧2)

*(x+y<=0) + (1-x∧2*y∧2)*(x+y>0))*(dx(uold1) * dx(v) + dy(uold1) * dy(v))) -

int2d(Th)(f*v + uold*v/dt ) + on(a,uold1=0) + on(b,uold1=0) + on(c,uold1=0)

+ on(d,uold1=0) + on(e,uold1=0) ; }
Vh h = hTriangle; // get the size of all triangles

problem hermicc(uu,v)= int2d(Th)(1.5*uu*v/dt + (1/(1+(2*uold1-uold)∧2)

(x+y<=0) + (1-x∧2*y∧2)*(x+y>0))*(dx(uu) * dx(v) + dy(uu) * dy(v)))-int2d(Th)

(2*uold1*v/dt) + int2d(Th)(0.5*uold*v/dt) -int2d(Th)(f*v) + on(e,uu=0)

+ on(a,uu=0) + on(b,uu=0)+on(c,uu=0)+ on(d,uu=0);

problem hemic(u,v)= int2d(Th)(1.5*u*v/dt + (1/(1+uu∧2)*(x+y<=0) +

(1-x∧2*y∧2)*(x+y>0))*(dx(u) * dx(v) + dy(u) * dy(v))) - int2d(Th)(2*uold1*v/dt)

+ int2d(Th)(0.5*uold*v/dt) -int2d(Th)(f*v) + on(e,u=0) + on(a,u=0) + on(b,u=0)

+on(c,u=0)+ on(d,u=0);

ofstream ff(”ther.dat”);

for( t=dt;t<T;t+=dt){
hermicc; // here solve the thermic problem

hemic;

uu=u;

uold=uold1;

uold1=u; }
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uuu = uexact;

plot(uuu) ;
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H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uuu))∧2 + (dy(u)-dy(uuu))∧2

));

cout << ”h = ”<<h[ ].max<< endl;

cout << ”L2 error = ”<<L2error<< endl;

cout << ”H1 error = ”<<H1error<< endl;

Appendix J The FreeFEM++ code that produced Table 3.10

border a(t=-1.0,1.0){x=t; y=-1; label=1;};
border b(t=-1.0,1.0){x=1; y=t; label=2;};
border c(t=-1.0,1){x=-t; y=1; label=3;};
border d(t=-1.0,1){x=-1; y=-t;label=4;};
border aa(t=0,2*pi){x=0.5*cos(t); y=0.5*sin(t); label=5;};
real n= 4 ;

mesh Th = buildmesh (a(16*n) + b(16*n) + c(16*n) + d(16*n)+ aa(40*n) );

plot(Th,wait=1);

func u0 = 0 ;

real T=60, dt=0.08 ;

real L2error, H1error;

func uexact = (5*(0.125-0.5*x∧2-0.5*y∧2)*sin(T)*(x∧2+y∧2<=0.25))

+((x∧2-1)*(-y∧2+1)*(x∧2+y∧2-.25)*sin(2*T))*(x∧2+y∧2>0.25);

real t;

func f = ((5*(.125-.5*x∧2-.5*y∧2))*cos(t)-(250*(0.125-0.5*x ∧2-0.5*y∧2))

*sin(t)∧3 *x∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2) +6250*(.125-.5*x∧2-.5*y∧2)∧3

*sin(t)∧5 *x∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)∧2

+250*(.125-.5*x∧2-.5*y∧2)∧2 *sin(t)∧3/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)

-(250*(.125-.5*x∧2-.5*y∧2)) *sin(t)∧3*y∧2/(1+25*(.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)

+6250*(.125-.5*x∧2-.5*y∧2)∧3 *sin(t)∧5*y∧2/(1+25

*(0.125-.5*x∧2-.5*y∧2)∧2*sin(t)∧2)∧2 )*(x∧2+y∧2<=0.25)

+((2*(x∧2-1))*(-y∧2+1)*(x∧2+y∧2-0.25)*cos(2*t)+(1.0*(2*x*(-y∧2+1)
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*(x∧2+y∧2-.25)*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*x*sin(2*t)))*((4*(x∧2-1))

*(-y∧2+1)∧2 *(x∧2+y∧2-.25)∧2*sin(2*t)∧2*x+4*(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-

.25)*sin(2*t)∧2*x)/(1+(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-.25)∧2

*sin(2*t)∧2)∧2-(1.0*((2*(-y∧2+1))*(x∧2+y∧2-.25)*sin(2*t)+8*x∧2*(-y∧2+1)

*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*sin(2*t)))/(1+(x∧2-1)∧2*(-y∧2+1)∧2

*(x∧2+y∧2-.25)∧2*sin(2*t)∧2)+(1.0*(-(2*(x∧2-1)) *y*(x∧2+y∧2-.25)*sin(2*t)

+(2*(x∧2-1))*(-y∧2+1)*y*sin(2*t)))*(-4*(x∧2-1)∧2*(-y∧2+1)*(x∧2+y∧2-.25)∧2

*sin(2*t)∧2*y+4*(x∧2-1)∧2*(-y∧2+1)∧2*(x∧2+y∧2-.25)*sin(2*t)∧2*y)/(1+(x∧2-1)∧2*(-

y∧2+1)∧2*(x∧2+y∧2-.25)∧2*sin(2*t)∧2)∧2-(1.0*(-(2*(x∧2-1))*(x∧2+y∧2-.25)*sin(2*t)-

(8*(x∧2-1))*y∧2*sin(2*t)+(2*(x∧2-1))*(-y∧2+1)*sin(2*t)))/(1+(x∧2-1)∧2*(-y∧2+1)∧2

(x∧2+y∧2-.25)∧2*sin(2*t)∧2) )*(x∧2+y∧2>0.25) ;

func g1 = 0;

fespace Vh(Th,P1); Vh u,v,uold=u0,uold1,uold2,uold3;

for( t=dt/4;t<=dt/4;t+=dt){
solve Poisson1(uold1,v,solver=LU) = int2d(Th)( uold1*v/dt + ((uold∧2/(1+uold∧2))

*(x∧2+y∧2<=0.25) + ((1/(1+(uold)∧2))*(x∧2+y∧2>0.25))) *(dx(uold1)*dx(v) +

dy(uold1)*dy(v))) - int2d(Th)(f*v + uold*v/dt ) + on(a,uold1=0) + on(b,uold1=0)

+ on(c,uold1=0) + on(d,uold1=0) + on(aa,uold1=0) ; }
for( t=dt/2;t<=dt/2;t+=dt){
solve Poisson2(uold2,v,solver=LU) = int2d(Th)( 1.5*uold2*v/dt + ( ( ((2*uold1-

uold)∧2)/(1+(2*uold1-uold)∧2))*(x∧2+y∧2<=0.25) + (1/(1+(2*uold1-uold)∧2))

*(x∧2+y∧2>0.25) )*( dx(uold2)*dx(v) + dy(uold2)*dy(v)))

- int2d(Th)(f*v + 2*uold1*v/dt - 0.5*uold*v/dt ) + on(a,uold2=0) + on(b,uold2=0)

+ on(c,uold2=0) + on(d,uold2=0) + on(aa,uold2=0) ; }
for( t=3*dt/4;t<=3*dt/4;t+=dt){
solve Poisson3(uold3,v,solver=LU) = int2d(Th)( 11*uold3*v/(6*dt) + ( (((3*uold2-

3*uold1+uold)∧2)/(1+(3*uold2-3*uold1+uold)∧2))*(x∧2+y∧2<=0.25)

+ (1/(1+(3*uold2-3*uold1+uold)∧2))*(x∧2+y∧2>0.25) )*(dx(uold3)*dx(v)

+ dy(uold3)*dy(v))) - int2d(Th)(f*v + 3*uold2*v/dt - 1.5*uold1*v/dt
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+ uold*v/(3*dt) ) + on(a,uold3=0) + on(b,uold3=0)

+ on(c,uold3=0) + on(d,uold3=0) + on(aa,uold3=0) ; }
Vh h = hTriangle ; // get the size of all triangles

problem thermiccc(u,v)= int2d(Th)(25*u*v/(12*dt)

+ ( (((4*uold3-6*uold2+4*uold1-uold)∧2)/(1+(4*uold3-6*uold2+4*uold1-uold)∧2))

*(x∧2+y∧2<=0.25) + (1/(1+(4*uold3-6*uold2+4*uold1-uold)∧2))*(x∧2+y∧2>0.25)

)*(dx(u) * dx(v) + dy(u) * dy(v))) - int2d(Th)(f*v) + int2d(Th)(-4*uold3*v/dt

+ 3*uold2*v/dt - 4*uold1*v/(3*dt)) + int2d(Th)(uold*v/(4*dt)) + on(aa,u=0)

+ on(a,u=0) + on(b,u=0) + on(c,u=0) + on(d,u=0);

ofstream ff(”thermiccc.dat”);

for( t=dt;t<=T;t+=dt){
thermiccc; // here solve the therm problem

uold=uold1;

uold1 = uold2;

uold2=uold3;

uold3=u; }
plot(u);

L2error= sqrt(int2d(Th)((u-uexact)∧2));

Vh uu = uexact;

plot(uu) ;

Vh zzz = uexact-u;

plot(zzz);

H1error = sqrt(L2error∧2 + int2d(Th)((dx(u)-dx(uu))∧2 + (dy(u)-dy(uu))∧2 ));

cout << ”h = ”<<h[].max<< endl;

cout << ”L2 error = ”<<L2error<< endl;

cout << ”H1 error = ”<<H1error<< endl;

Appendix K The XML code that produced Table 4.1

<?xml version=”1.0” encoding=”UTF-8”?>
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<NEKTAR xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”http://www.nektar.info/schema/nektar.xsd”>

<GEOMETRY DIM=”2” SPACE=”2”>

<VERTEX>

<V ID=”0”> -1.0 -1.0 0.0 </V>

<V ID=”1”> 0.0 -1.0 0.0 </V>

<V ID=”2”> 1.0 -1.0 0.0 </V>

<V ID=”3”> -1.0 0.0 0.0 </V>

<V ID=”4”> 0.0 0.0 0.0 </V>

<V ID=”5”> 1.0 0.0 0.0 </V>

<V ID=”6”> -1.0 1.0 0.0 </V>

<V ID=”7”> 0.0 1.0 0.0 </V>

<V ID=”8”> 1.0 1.0 0.0 </V>

</VERTEX>

<EDGE>

<E ID=”0”> 0 1 </E>

<E ID=”1”> 1 2 </E>

<E ID=”2”> 0 3 </E>

<E ID=”3”> 0 4 </E>

<E ID=”4”> 1 4 </E>

<E ID=”5”> 1 5 </E>

<E ID=”6”> 2 5 </E>

<E ID=”7”> 3 4 </E>

<E ID=”8”> 4 5 </E>

<E ID=”9”> 3 6 </E>

<E ID=”10”> 3 7 </E>

<E ID=”11”> 4 7 </E>

<E ID=”12”> 4 8 </E>

<E ID=”13”> 5 8 </E>
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<E ID=”14”> 6 7 </E>

<E ID=”15”> 7 8 </E>

</EDGE>

<ELEMENT>

<T ID=”0”> 0 4 3 </T>

<T ID=”1”> 4 5 8 </T>

<T ID=”2”> 1 6 5 </T>

<T ID=”3”> 8 13 12 </T>

<T ID=”4”> 12 15 11 </T>

<T ID=”5”> 7 11 10 </T>

<T ID=”6”> 10 14 9 </T>

<T ID=”7”> 7 2 3 </T>

</ELEMENT>

<COMPOSITE>

<C ID=”0”> T[0,1,2,7] </C>

<C ID=”1”>T[3,4,5,6] </C>

<C ID=”2”> E[0,1,2,6,7,8] </C>

<C ID=”3”> E[9,13,14,15,7,8] </C>

</COMPOSITE>

<DOMAIN> C[0]</DOMAIN>

</GEOMETRY>

<EXPANSIONS>

<E COMPOSITE=”C[0]” NUMMODES=”7” FIELDS=”u” TYPE=”MODIFIED”

POINTSTYPE=”GaussLobattoLegendre”/>

</EXPANSIONS>

<CONDITIONS>

<SOLVERINFO>

<I PROPERTY=”EQTYPE” VALUE=”UnsteadyAdvectionDiffusion”/>

<I PROPERTY=”Projection” VALUE=”Continuous”/>
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<I PROPERTY=”HOMOGENEOUS” VALUE=”1D”/>

<I PROPERTY=”DiffusionAdvancement” VALUE=”Implicit”/>

<I PROPERTY=”AdvectionAdvancement” VALUE=”Explicit”/>

<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder2”/>

</SOLVERINFO>

<PARAMETERS>

<P> TimeStep = 0.0001 </P>

<P> FinalTime = 5 </P>

<P> NumSteps = FinalTime/TimeStep </P>

<P> IO CheckSteps = 1000 </P>

<P> IO InfoSteps = 1000 </P>

<P> wavefreq = 0 </P>

<P> epsilon = 1/(20*PI∧2) </P>

<P> LZ=0.01</P>

<P>HomModesZ=2</P>

</PARAMETERS>

<VARIABLES>

<V ID=”0”> u </V>

</VARIABLES>

<BOUNDARYREGIONS>

<B ID=”0”> C[2] </B>

</BOUNDARYREGIONS>

<BOUNDARYCONDITIONS>

<REGION REF=”0”>

<D VAR=”u” USERDEFINEDTYPE=”TimeDependent” VALUE=”0”/>

</REGION>

</BOUNDARYCONDITIONS>

<FUNCTION NAME=”AdvectionVelocity”>

<E VAR=”Vx” VALUE=”0.0”/>

169



<E VAR=”Vy” VALUE=”0.0”/>

<E VAR=”Vz” VALUE=”0.0”/>

</FUNCTION>

<FUNCTION NAME=”InitialConditions”>

<E VAR=”u” VALUE=”sin(PI*x)*sin(PI*y)”/>

</FUNCTION>

<FUNCTION NAME=”ExactSolution”>

<E VAR=”u” VALUE=”exp(-FinalTime /10)*sin(PI*x)*sin(PI*y)”/>

</FUNCTION>

</CONDITIONS>

</NEKTAR>

<?xml version=”1.0” encoding=”UTF-8”?>

<NEKTAR xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”http://www.nektar.info/schema/nektar.xsd”>

<GEOMETRY DIM=”2” SPACE=”2”>

<VERTEX>

<V ID=”0”> -1.0 -1.0 0.0 </V>

<V ID=”1”> -0.5 -1.0 0.0 </V>

<V ID=”2”> 0.0 -1.0 0.0 </V>

<V ID=”3”> 0.5 -1.0 0.0 </V>

<V ID=”4”> 1.0 -1.0 0.0 </V>

<V ID=”5”> -1.0 -0.5 0.0 </V>

<V ID=”6”> -0.5 -0.5 0.0 </V>

<V ID=”7”> 0.0 -0.5 0.0 </V>

<V ID=”8”> 0.5 -0.5 0.0 </V>

<V ID=”9”> 1.0 -0.5 0.0 </V>

<V ID=”10”> -1.0 0.0 0.0 </V>
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<V ID=”11”> -0.5 0.0 0.0 </V>

<V ID=”12”> 0.0 0.0 0.0 </V>

<V ID=”13”> 0.5 0.0 0.0 </V>

<V ID=”14”> 1.0 0.0 0.0 </V>

<V ID=”15”> -1.0 0.5 0.0 </V>

<V ID=”16”> -0.5 0.5 0.0 </V>

<V ID=”17”> 0.0 0.5 0.0 </V>

<V ID=”18”> 0.5 0.5 0.0 </V>

<V ID=”19”> 1.0 0.5 0.0 </V>

<V ID=”20”> -1.0 1.0 0.0 </V>

<V ID=”21”> -0.5 1.0 0.0 </V>

<V ID=”22”> 0.0 1.0 0.0 </V>

<V ID=”23”> 0.5 1.0 0.0 </V>

<V ID=”24”> 1.0 1.0 0.0 </V>

</VERTEX>

<EDGE>

<E ID=”0”> 0 1 </E>

<E ID=”1”> 1 2 </E>

<E ID=”2”> 2 3 </E>

<E ID=”3”> 3 4 </E>

<E ID=”4”> 0 5 </E>

<E ID=”5”> 0 6 </E>

<E ID=”6”> 1 6 </E>

<E ID=”7”> 1 7 </E>

<E ID=”8”> 2 7 </E>

<E ID=”9”> 2 8 </E>

<E ID=”10”> 3 8 </E>

<E ID=”11”> 3 9 </E>

<E ID=”12”> 4 9 </E>
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<E ID=”13”> 5 6 </E>

<E ID=”14”> 6 7 </E>

<E ID=”15”> 7 8 </E>

<E ID=”16”> 8 9 </E>

<E ID=”17”> 5 10 </E>

<E ID=”18”> 5 11 </E>

<E ID=”19”> 6 11 </E>

<E ID=”20”> 6 12 </E>

<E ID=”21”> 7 12 </E>

<E ID=”22”> 7 13 </E>

<E ID=”23”> 8 13 </E>

<E ID=”24”> 8 14 </E>

<E ID=”25”> 9 14 </E>

<E ID=”26”> 10 11 </E>

<E ID=”27”> 11 12 </E>

<E ID=”28”> 12 13 </E>

<E ID=”29”> 13 14 </E>

<E ID=”30”> 10 15 </E>

<E ID=”31”> 10 16 </E>

<E ID=”32”> 11 16 </E>

<E ID=”33”> 11 17 </E>

<E ID=”34”> 12 17 </E>

<E ID=”35”> 12 18 </E>

<E ID=”36”> 13 18 </E>

<E ID=”37”> 13 19 </E>

<E ID=”38”> 14 19 </E>

<E ID=”39”> 15 16 </E>

<E ID=”40”> 16 17 </E>

<E ID=”41”> 17 18 </E>
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<E ID=”42”> 18 19 </E>

<E ID=”43”> 15 20 </E>

<E ID=”44”> 15 21 </E>

<E ID=”45”> 16 21 </E>

<E ID=”46”> 16 22 </E>

<E ID=”47”> 17 22 </E>

<E ID=”48”> 17 23 </E>

<E ID=”49”> 18 23 </E>

<E ID=”50”> 18 24 </E>

<E ID=”51”> 19 24 </E>

<E ID=”52”> 20 21 </E>

<E ID=”53”> 21 22 </E>

<E ID=”54”> 22 23 </E>

<E ID=”55”> 23 24 </E>

</EDGE>

<ELEMENT>

<T ID=”0”> 4 5 13 </T>

<T ID=”1”> 0 6 5 </T>

<T ID=”2”> 6 7 14 </T>

<T ID=”3”> 1 8 7 </T>

<T ID=”4”> 8 9 15 </T>

<T ID=”5”> 2 10 9 </T>

<T ID=”6”> 10 11 16 </T>

<T ID=”7”> 3 12 11 </T>

<T ID=”8”> 17 18 26 </T>

<T ID=”9”> 13 19 18 </T>

<T ID=”10”> 19 20 27 </T>

<T ID=”11”> 14 21 20 </T>

<T ID=”12”> 21 22 28 </T>
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<T ID=”13”> 15 23 22 </T>

<T ID=”14”> 23 24 29 </T>

<T ID=”15”> 16 25 24 </T>

<T ID=”16”> 30 31 39 </T>

<T ID=”17”> 26 32 31 </T>

<T ID=”18”> 32 33 40 </T>

<T ID=”19”> 27 34 33 </T>

<T ID=”20”> 34 35 41 </T>

<T ID=”21”> 28 36 35 </T>

<T ID=”22”> 36 37 42 </T>

<T ID=”23”> 29 38 37 </T>

<T ID=”24”> 44 52 43 </T>

<T ID=”25”> 39 45 44 </T>

<T ID=”26”> 45 46 53 </T>

<T ID=”27”> 40 47 46 </T>

<T ID=”28”> 47 48 54 </T>

<T ID=”29”> 41 49 48 </T>

<T ID=”30”> 49 50 55 </T>

<T ID=”31”> 42 51 50 </T>

</ELEMENT>

<COMPOSITE>

<C ID=”0”> T[0-15] </C>

<C ID=”1”> T[16-31] </C>

<C ID=”2”> E[0,1,2,3,4,12,17,25,26,27,28,29] </C>

<C ID=”3”> E[26,27,28,29,30,38,43,51,52,53,54,55] </C>

</COMPOSITE>

<DOMAIN> C[0] </DOMAIN>

</GEOMETRY>

<EXPANSIONS>
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<E COMPOSITE=”C[0]” NUMMODES=”7” FIELDS=”u” TYPE=”MODIFIED”

POINTSTYPE=”GaussLobattoLegendre”/>

</EXPANSIONS>

<CONDITIONS>

<SOLVERINFO>

<I PROPERTY=”EQTYPE” VALUE=”UnsteadyAdvectionDiffusion”/>

<I PROPERTY=”Projection” VALUE=”Continuous”/>

<I PROPERTY=”HOMOGENEOUS” VALUE=”1D”/>

<I PROPERTY=”DiffusionAdvancement” VALUE=”Implicit”/>

<I PROPERTY=”AdvectionAdvancement” VALUE=”Explicit”/>

<I PROPERTY=”TimeIntegrationMethod” VALUE=”IMEXOrder2”/>

</SOLVERINFO>

<PARAMETERS>

<P> TimeStep = 0.0001 </P>

<P> FinalTime = 5 </P>

<P> NumSteps = FinalTime/TimeStep </P>

<P> IO CheckSteps = 1000 </P>

<P> IO InfoSteps = 1000 </P>

<P> wavefreq = 0 </P>

<P> epsilon = 1/(20*PI∧2) </P>

<P> LZ=0.01</P>

<P>HomModesZ=2</P>

</PARAMETERS>

<VARIABLES>

<V ID=”0”> u </V>

</VARIABLES>

<BOUNDARYREGIONS>

<B ID=”0”> C[2] </B>

</BOUNDARYREGIONS>
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<BOUNDARYCONDITIONS>

<REGION REF=”0”>

<D VAR=”u” USERDEFINEDTYPE=”TimeDependent” VALUE=”0”/>

</REGION>

</BOUNDARYCONDITIONS>

<FUNCTION NAME=”AdvectionVelocity”>

<E VAR=”Vx” VALUE=”0.0”/>

<E VAR=”Vy” VALUE=”0.0”/>

<E VAR=”Vz” VALUE=”0.0”/>

</FUNCTION>

<FUNCTION NAME=”InitialConditions”>

<E VAR=”u” VALUE=”sin(PI*x)*sin(PI*y)”/>

</FUNCTION>

<FUNCTION NAME=”ExactSolution”>

<E VAR=”u” VALUE=”exp(-FinalTime /10)*sin(PI*x)*sin(PI*y)”/>

</FUNCTION>

</CONDITIONS>

</NEKTAR>
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