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ABSTRACT

Economic recession has become a global and reccurring phenomenon which poses
worrisome uncertainties on assets’ returns in financial markets. Various stochastic
models have been formulated in response to price instability in financial markets.
However, the existing stochastic volatility models did not incorporate the concept of
economic recession and induced volatility-uncertainty for options price valuation in a
recessed economic setting. Therefore, this study was geared towards the formulation
of economic recession-induced stochastic models for price computation.

Stochastic modelling methods with probabilistic uncertainty measure were used to
formulate two new volatility models incorporating economy recession volatility un-
certainties. The Feynman-Kac formula was applied to derive the characteristic func-
tions for the two novel models. The derived characteristic functions were used to
obtain an inverse-Fourier analytic formula for European and American-style op-
tions. A modified Carr and Madan Fast-Fourier Transform (FFT)-algorithm was
used to obtain an approximate solution for the American-call option, and a class
of Multi-Assets option in multi-dimensions. Itô Calculus was used to obtain an
explicit formula for a Factorial function Black-Scholes Partial Differential Equa-
tions (BS-PDE) for American options subject to moving boundary conditions. The
FFT call-prices accuracy test at varied fineness grid points N was investigated us-
ing an FFT-algorithm via Maple, taking BS-prices as benchmark. Sample paths
and numerical simulations were generated via software codes for the control regime-
switching Triple Stochastic Volatility Heston-like (TSVH) model.

The derived Uncertain Affine Exponential-Jump Model (UAEM) with recession,
induced stochastic-volatility and stochastic-intensity, and a control regime-switching
Triple Stochastic Volatility Heston-like (TSVH) formulated with respect to economy
recession volatility uncertainties are:

d lnS(t) =
(
r − q − λ(t)m

)
dt+

√
σ(t)dWs(t) + (eν − 1)dN(t), S(0) = S0 > 0

dσ(t) = κσ

(
β∗ + βrec − σ(t)

)
dt+ ξσ

√
σ(t)dWσ(t), σ(0) = σ0 > 0

dλ(t) = κλ
(
θ − λ(t)

)
dt+ ξλ

√
λ(t)dWλ(t), λ(0) = λ0 > 0.

and
dyt =

(
r − q

)
dt+

√
v1(t)dW1(t) +

√
v2(t)dW2(t) + α

(√
v3(t)dW3(t)

)
, S(0) = S0 > 0

dv1(t) = κ1
(
θ1 − v1(t)

)
dt+ σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0.

dv2(t) = κ2
(
θ2 − v2(t)

)
dt+ σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0.

dv3(t) = α
(
κ3
(
θ3 − v3(t)

)
dt+ σ3

√
v3(t)dŴ3(t)

)
recession

, v3(0) = v30 > 0

respectively, where α was a binary control parameter defined as:

α :=

{
0, if the economy is not in recession;
1, if the economy is in recession.

The inverse-Fourier analytic formulae for European-style and American-style call-
options obtained for the UAEM-process are:

Ecall
T (k) =

exp(−αk)
π

∫ ∞

0

e−(rT+iuk)φτ

(
u− (α+ 1)i

)
×
(

α2 + α− u2 − i(2α+ 1)u

α4 + 2α3 + α2 +
(
2(α2 + α) + 1

)
u2 + u4

)
du
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andAt(k) =
exp(−αk)

π

∫ ∞

0

e−(rT+iuk) ×
(φτ

(
u− (α+ 1)i

)(
α2 + α− u2 − i(2α+ 1)u

)
α4 + 2α3 + α2 +

(
2(α2 + α) + 1

)
u2 + u4

)
du + Pt,

respectively where Pt is premium price. The approximate solution obtained for American-call op-
tion via FFT-algorithm for the UAEM-process was:

Aτ (ku) ≈
exp(−αk)

π

N∑
j=1

e−iujζη(j−1)(u−1) eiϖujψT (uj)η + Pt, where 1 ≤ u ≤ N and ζη =
2π

N
.

The derived multi-Assets options prices formula in n-dimension was:

VT (k1,p1
, k2,p2

· · · , kn,pn
) ≈ e−(α1k1,p1

+α2k2,p2
+...+αnkn,pn )

(2π)n
Ω(k1,p1

, k2,p2
, · · · , kn,pn

)

n∏
j=1

hj ,

where 0 ≤ p1, p2, · · · , pn ≤ N − 1 and

Ω(k1,p1
, k2,p2

, · · · , kn,pn
) =

N1−1∑
m1=1

N1−1∑
m2=1

· · ·
N1−1∑
mn=1

e−
2π
N

(
(m1−N

2 )(p1−N
2 )+(m2−N

2 )(p2−N
2 )+···+(mn−N

2 )(pn−N
2 )
)

× ψT (u1, u2, · · · , un).

The derived explicit formula for the Factorial function BS-PDE was:

S(T ) = S(t0) exp
[
n!
(
r +

1

2
(n− 1)σ2

)(
T − t0

)
+ n!σ

(
W (t)−W (t0)

)]
, S(t0) ̸= 0),

and the TSVH call pricing formula derived was:

C(K) = Ste
−qτP1 −Ke−rτP2

such that

P1 =
1

2
+

1

π

∫ ∞

0

ℜ
[
exp(−iω lnK) f

(
ω − i; yt, v1(t), v2(t), v3(t)

)
iωSte(r−q)τ

]
dω

P2 =
1

2
+

1

π

∫ ∞

0

ℜ
[
exp(−iω lnK) f

(
ω; yt, v1(t), v2(t), v3(t)

)
iω

]
dω,

and f
(
ω − i; yt, v1(t), v2(t), v3(t)

)
= exp

(
A(τ, ω) + B0(τ, ω)yt + B1(τ, ω)v1(t) +

B2(τ, ω)v2(t) + B3(τ, ω)v3(t)
)
where A,B0, B1, B2, B3 are coefficient terms of the

stochastic processes yt, v1(t), v2(t), v3(t).

The options prices obtained from An Uncertain Affine Exponential-Jump Model with
Recession, induced stochastic-volatility and stochastic-intensity and a control regime-
switching Triple Stochastic Volatility Heston-like model, were efficient in terms of
probable future payoffs and applicable in financial markets, for options valuation in
recessed and recession-free economy states.

Keywords: Fast Fourier Transform, Recession induced-volatility, Economic

uncertainties

Word count: 425
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CHAPTER ONE

INTRODUCTION

1.1 Background to the study

This thesis examines uncertainties in options payoff with respect to economic reces-

sion among other risk factors in option pricing in an unstable economy not limited to

Nigeria but with more emphasis on Nigerian economic recession in recent time. The

negative effect of Nigeria economic recession eruption in the year 2016 on the uncer-

tainty in investments payoffs as well as the standard of living of Nigerians during the

recession period cannot be over emphasized. Many businesses, trades, and produc-

tions crumbled. It is saddening that many people lost their jobs as some companies

in the country could not withstand the shock and as a result liquidated. It worths

noting that Economic recession is almost surely becoming a global problem and a

re-occurring phenomenon in most parts of the world. The United States of Amer-

ica (USA) takes the lead in economic recession history. They are known to have

experienced a sequence of economic recession outbreaks. As a result, the United

States of America (USA) established the National Bureau of Economic Research

(NBER) to be responsible for disseminating timely economic recession information

to general public in 1929. The NBER defined economic recession as “a substantial

decline in the activities of the economy which spreads across and lasts over a few

months, revealed in production, real income, employment, and other indicators”

(HSU, 2016).

Diverse economic recession definitions found in the press stressed that an economic

recession usually commences after two successive declines in GDP. However, the

NBER is not in total agreement of using GDP fall as the only yardstick for measuring
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the entire economic activities, and therefore sees the GDP definition to be insufficient

for measuring economic activities. Hence, the GDP value should not be the sole

consideration while predicting the economic recession date of upsurge. There are

scenarios whereby economic recession emergence may not need to be comprised of

two successive quarters of economy decay. The economic recession outbreak of 2001

in United States of America is an example. With reference to Hsu (2016), the

declinations in GDP are closely correlated to recession period.

Consequently, the declaration of economic recession outbreak of Nigeria in 2016

by his Excellency, the President of Nigeria, Mr. Muhammadu Buhari, was hinged

on the outrageous decline in the GDP of the country and other macroeconomic

indicators to include high rate of unemployment, high rate of inflation, etc after two

consecutive quarters.

However, following the financial crises arising based on some economy factors such

as economic meltdown, economic recession, there is need for strategies diversifica-

tion put in place by financial institutions, investors, policymakers, and all other

players in the financial markets in order to circumvent or reduce the risk of loss in

investment returns. Future returns of an investment and various financial securities

have been tailored to the application of mathematical models formulation suitable

in predicting or forecasting possible assets’ returns, especially risky assets such as

stocks. The various mathematical models formulation follow assumptions suitable

for simulating stochastic processes in which the models themselves are stochastic

due to the observable characteristic of stock prices.

However, one of the formulated mathematical models which had gained ground in

mathematical finance especially in options pricing is popularly called Black - Scholes

model or simply Black-Scholes equation (Black & Scholes, 1973). The model was

formulated using a mathematical concept of Partial Differential Equations (PDEs).
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A version of the model is of the form:

∂Aput

∂t

(
S(t), T

)
+

1

2
σ2S2∂

2Aput

∂S2(t)

(
S(t), T

)
+ rS

∂Aput
(
S(t), T

)
∂S(t)

= rAput
(
S(t), T

)
.

(1.1.1)

for a put option Aput on an underlying asset S(t), the term σ, is the constant

volatility in the model and r, is the risk-neutral interest rate with constant value.

The Black-Scholes model has some shortcomings which render the model unsuitable

for valuation of financial assets in an unstable economy especially in a recessed

economy. Among the identified shortcomings observed in classical Black-Scholes

model (1973) is the issue of constant volatility assumption in the model knowing

fully that asset’s prices, especially stock assets, are risky assets. The prices of

such assets cannot be stable or constant since various factors responsible for price

fluctuations in financial markets are not stable too and reflect in the stochastic

dynamic nature of assets’ returns.

The quest to unravel the identified shortcomings of Black-Scholes model has moti-

vated researchers in mathematical finance as well as those in financial engineering,

among other related fields of studies, to concentrate on the formulation of other

models for valuation of assets and options on risky assets. Among the models that re-

searchers have successfully developed whereby a stochastic term structure of volatil-

ity was considered are: Heston (1993) model, Stochastic αβρ (SABR)- model, Grze-

lak - Oosterlee-Vann Veeren (GOVV)-model, Schöbel-Zhu-Heston model, Schöbel -

Zhu model, Double Heston model by Christoffersen, Heston, and Jacobs (2009), and

Da Fonseca, (2008), to mention but a few.

The state of financial market volatility is of keen interest to investors, policymakers,

financial institutions, and every other player in the financial market. Among various

stochastic volatility models available, the concept of economic recession induced

stochastic volatility uncertainty is yet to be introduced by other researchers. A very

sound knowledge of uncertainty studies in terms of economy recession stochastic
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volatility by most practitioners especially the investors in financial markets, will

surely assist them in decision making throughout recession periods and beyond.

Following the fact that an economy downturn affects investment, economy activities

and human endeavours generally, it is therefore worthy of paying attention to, while

formulating models for investment analysis or options valuation.

In the field of Financial mathematics, options valuation has become an indispensable

and crucial focus of many academic researchers and practitioners. It connects vari-

ous mathematical fields of studies. It depends on the use of some mathematical tools

and concepts which include: Probability and measure theory, Stochastic differential

equations (SDEs), Optimization theory, partial differential equations (PDEs), inte-

gral representations, numerical analysis, integral transforms, Ordinary Differential

Equations (ODEs), and other relevant mathematical concepts.

However, in this thesis, studies on options pricing in relation to economic recession,

fast Fourier transform and stochastic volatility models formulation are subjects of

our study focus.

1.2 Statement of the Problem

Economic recession has become a global and reccurring phenomenon which poses

worrisome uncertainties on assets’ returns in financial markets. Following the ob-

served limitations of deterministic volatility models such as the Black-Scholes model

1973, there has been a paradigm shift to stochastic volatility models formulation

and application in financial markets. The various stochastic models formulated

in response to price instability in financial markets are not limited to the pop-

ular Heston model 1993 and Double Heston model 2009. However, the existing

stochastic volatility models did not incorporate the concept of economic recession

and induced volatility-uncertainty for options price valuation in a recessed economic

setting. Therefore, this study was designed to develop economic recession-induced

stochastic models for option price computation, provide investors some useful infor-
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mation on uncertainty effects of recession on investment payoff, for decision making

and Fourier transform solution of the related stochastic models.

1.3 Motivation for the Study

The Nigeria economic recession eruption of the year 2016 and its contributory ef-

fects on the level of uncertainty felt in the Nigerian Stocks Exchange (NSE) payoffs

forms the core motivating issues among others which compelled us to propose an

economic recession induced volatility concept in valuation of options prices. There

were huge volatility variation effects caused by economic recession on economic ac-

tivities, financial engagements and standard of living generally during the period of

recession observed in Nigeria. However, an economic recession stochastic volatility

uncertainty concept was first conceived following the overwhelming volatility vari-

ation observed during economic recession period in comparison with the period of

non-economic recession.

The motivation of this research study is to establish the concept of economic re-

cession volatility in the valuation of options. Formulate economic recession induced

stochastic volatility models for Options price computation. Introduce an economic

recession induced volatility uncertainty concept in an uncertain exponential - jump

model which features stochastic volatility as well as stochastic intensity, and deriv-

ing the characteristic function. To carry out fast Fourier Transform computation for

the model and applications in options pricing. We also wish to propose a form of

control regime - switching Triple Stochastic Volatility Heston-like model for Options

valuation under economic recession induced uncertainty.

1.4 Objectives of the Study

The objectives of this research study are to:

(i) incorporate the concept of economic recession induced stochastic volatility in

options valuation.
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(ii) present fast-Fourier Transform of American-style option prices computation

using a newly formulated Uncertain affine exponential-jump model (UAEM)

with respect to stochastic volatility (SV) and stochastic intensity (SI) based

on economic recession induced volatility uncertainty concept.

(iii) carry out fast-Fourier Transform of a class of correlated multi-assets option

with respect to economic recession inducing uncertainties and show a frame-

work for extending the fast-Fourier Transform of the options to multi-dimensions.

(iv) propose Factorial function Black-Scholes PDE for options valuation.

(v) obtain Fourier Transform of the Factorial function Black-Scholes PDE model

for computation of options prices.

(vi) investigate the accuracy of Fast-Fourier Transform method with control fine-

ness of integration grid points, N , for Valuation of American-style Options.

(vii) propose control regime-switching Triple Stochastic Volatility Heston-like (TSVH)

model for pricing Option with economic recession induced stochastic volatility.

(viii) To investigate simulation of sample paths and volatility surface for the pro-

posed control regime-switching Triple Stochastic Volatility Heston-like (TSVH)

model for pricing Options with economic recession induced stochastic volatil-

ity.

(ix) Present some numerical schemes for a control regime-switching Triple Stochas-

tic Volatility Heston-like (TSVH) model for pricing Options with economic

recession induced stochastic volatility.

1.5 Significance of the study

This study shows model formulation that incorporate economic recession induced

stochastic volatility uncertainty for options pricing. Two models are formulated for

options pricing with a rapt focus on economy recession factors. The first and the

second model are presented in Chapter 4 of this study under Result 1 and Result 4
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respectively. It is believed that this study will be very informative to various financial

institutions, investors, researchers in the field of financial mathematics, financial

engineering, economics, optimization theory, stochastic modelling, computational

mathematics, and partial differential equations. It is hoped the study will also

draw more attention of various researchers to options pricing in relation to economy

recession.

1.6 Structure and arrangement of the thesis

This thesis is structured as follows. Chapter 1 is introduction. There are various

sections which include: Motivation for the research, Statement of the Problem, the

study objectives, and the significance of the study. Chapter 2 is titled Review

of Literature, with some sections to include: Review on stocks payoff uncertainty,

Economy recession effect on investment, stochastic volatility models. Chapter 3 is

titled “Methodology”. Chapter 4 is titled “ Results and Discussions”. We present

Four Results.

Result 1 is titled “FFT Computation of American Options prices with Economy

Recession induced Stochastic Volatility”. The sections and some of the subsections

in this chapter are: Introduction to the Result 1, Justification for Jumps on Asset

Prices associated with Economy Recession, Jumps of the Underlying Stock price,

The Model Assumptions, The Model formulation, the UAEM model characteris-

tic function derivation, the model solution, Numerical Fourier based Transform of

Options, Numerical Experiment, and Conclusion.

The Result 2 is titled “FFT Computation of a class of Multi-assets Option with

Economic Recession Induced Uncertainties”. The sections include: An overview of

Result 2, Introduction, The FFT of a class of finite dimension correlated multi-

assets, Application on three correlated assets, and Conclusion.

The Result 3 is: “Accuracy of Fast Fourier Transform Method with Control Fineness

of Integration grid for Valuation of American Option”. The sections are: Overview of
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the Result 3, Introduction, Factorial function Black - Scholes PDE, Moving Bound-

ary for American Options, Fourier transform solution step for the Factorial function

Black-Scholes PDE for American Options, Valuation of dividend paying American

put option under Economic recession induced volatility uncertainty, Numerical Re-

sults, and Conclusion.

The Result 4 is titled “A control regime - switching triple stochastic volatility

Heston-like model for Options valuation in a Recessed Economy”. The sections

are: An Overview of Result 4, Introduction, Preliminaries to the model formulation,

The Triple Stochastic Volatility Heston (TSVH) model formulation, Options compu-

tation in control regime-switching Triple Stochastic Volatility Heston-like (TSVH)

model, control regime-switching Triple Stochastic Volatility Heston (TSVH) model

PDE form, Some numerical discretization schemes for the TSVH model, Simulations

and sample paths generation for the TSVH-model, and Conclusion.

The last chapter of the thesis is chapter Five titled “Summary and Conclusion”.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Chapter Overview

In this section, we present the review of relevant existing literature on this study.

The chapter consists of the following sections: Stocks payoff uncertainty, Economic

recession effects on investment, Simple economic recession decay model, Review

on stochastic volatility models to include; The Detemple - Tian model (DTM),

Constant-Elasticity-of-Variance (CEV) models, The Stochastic αβρ (SABR)- model,

Grzelak Oosterlee Vann Veeren (GOVV)-model, Schöbel-Zhu-Heston model, Schöbel

- Zhu model, Heston model, and Double Heston model. We further review Fast

Fourier Transform. In the financial market, the concept of uncertainty theory could

vividly be attributed to research studies of Baoding Liu (2010).

There are numerous definitions of uncertainty obtainable in literature. The following

definitions of uncertainty were given by several authors in their peculiar scenarios.

Dungan, Gao and Pang (2001) has defined uncertainty as “a multi-faceted descrip-

tion about data or predictions made from data involving several concepts such as:

error, accuracy, validity, quality, noise, confidence and reliability”. It was stressed

further that “uncertainty seems to endogenously increase throughout economy reces-

sions, for the fact that lower economy growth results to a greater micro uncertainty

level as well as macro level of uncertainty” (Nicholas, 2014). During the time - pe-

riod of economy crisis, the prices of assets undergo stochastic form of variation in the

financial market most especially stock assets being a very risky asset type. There

exists much tendency for stock assets price fluctuations whenever the underlying

terms structures undergo some variations no matter how stereotypically such vari-
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ation may be, most especially the volatility term variation. However, the volatility

study in terms of stock prices is indispensable as a result of the effect it has on the

stocks prices in financial market.

Owing to uncertainty in financial market, authors have formulated some realistic

models which have come to stay because the models show an anticipated random

movement of tradeable instruments in the financial market. Stein and Stein (1991)

studied stock price distribution with respect to stochastic volatility, adopting ana-

lytic approach. Other stochastic volatility models are properly presented under the

review of stochastic volatility models section.

2.2 Options Pricing

As far as the history of option valuation is concerned, the popular Black - Scholes

model (Black & Scholes, 1973) which encouraged constant interest rate of return

as well as constant volatility has been criticized by various researchers. The fact

is that the classical Black-Scholes model could not wholly reflect the stochastic

behaviour anticipated in financial markets. The underlying deficiency observed in

the classical B-S model has prompted researchers to come out with other realistic

models capable of showing better random movement of tradeable assets prices in

financial markets. The example of the models include: single stochastic volatility

Heston model (Heston, 1993), Double Heston model (Christoffersen et al., 2009),

Regime switching models, the Double exponential jump models, etc. In the research

study of Song-Ping, Alexander and Xianoping (2012), it was stressed that “regime -

switching behaviour is able to capture changing preferences as well as the investors’

beliefs about asset prices whenever there exists a change in the financial market

state”. The concept of regime switching model for option value computation was

known to have been presented in the study by Hamilton (1998). Since then, a good

number of outstanding developments have taken place through the consideration of

his submission.
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2.3 Economy recession effects on investment

The price of stock market volatility or Gross Domestic Product has been mostly

used to determine the measure of uncertainty. This is due to the fact that a data

series forecast becomes more difficult if its volatility becomes very high, beyond a

considerable moderate level. According to Nicholas (2014), other common measures

of uncertainty consist of the pronouncement of uncertainties in news, productivity

shocks to firms’ dispersion or spreads, and forecaster disagreement. In the particular

study of Nicholas (2014), it was stressed further that “stock markets volatility, the

exchange rates, the bond markets as well as growth in the GDP usually increase

swiftly during economy recession”.

Bankole et al. (2017) emphasises “the negative growth in investment under economy

recession exposure”. However, this invariably poses challenges to investors in the

financial market because the decision of investors is also dependent on the daily

inflow of information into the financial market concerning the economy state.

2.4 Simple Economy recession decay model

Growth or decay modeling often involves exponential functions. If economy decay

of a nation under the threat of Economy recession is considered, the dynamics of

such economy could be modeled to include an exponential function. Suppose Erec
n

denotes the value (i.e worth) of an economy under the threat of economy recession.

Applying the knowledge of recurrence relation (Bankole et al., 2017), we gave a

simple decay model of the economy as follows:

Erec
n+1 = rnEn, n ∈ N, 0 < r < 1, En = the economy decay at n - months.

(2.4.1)

As an improvement on the simple economy decay model given above in (2.4.1), it

is worth noting that the trajectory of an economy wealth decay may be stochastic

in nature at times since the various factors for recession are stochastic in nature,

hence, we intend to add the noise term as an improvement on the above model. The
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equation (2.4.1) is then given as:

Erec
n+1 = rnEn + σdW (t), n ∈ N, 0 < r < 1, t ∈ T (2.4.2)

where the time t is within the time-horizon, the parameter σ is the instantaneous

volatility term of the recession aided by the white noiseW (t) or simply the Brownian

motion.

2.5 Review on Stochastic Volatility Models

In literature, various stochastic volatility models have been formulated by researchers

as a swift correction of the shortcomings observed in invariant volatility term models.

Some researchers, in their models formulation, considered the dynamics of an asset

price determined by a single stochastic volatility process, others with two stochastic

volatility processes in addition to random variables such as stochastic intensities,

stochastic interest rate, jump processes such as the Poisson process.

A reasonable number of such stochastic models in existence are reviewed in this

section. They include: the Detemple-Tian model (DTM), the SABR model, the

Constant-Elasticity-of-Variance (CEV) model, Grzelak Oosterlee Van Veeren (GOVV)

model, Heston model, Schöbel - Zhu model, Schöbel - Zhu - Heston model; while we

also considered two stochastic volatilities models structure popularly referred to as

Double Heston model (Christoffersen et al., 2009; Schöbel & Zhu, 1999).

2.5.1 The Detemple - Tian model (DTM)

In the DTMmodel (Detemple & Tian, 2002), the authors assumed that the dynamics

of a dividend paying asset price, St, is driven by stochastic interest rate at constant

volatilities, σi, i = 1, 2.

The model is given below as:
dSt
St

= (rt − δ)dt+ σ1dW1(t)

drt = a(r − rt)dt+ σ2dW2(t) ≡
(
θ(t)− art

)
dt+ σ2dW2(t)

(2.5.1)

where a, δ, σ1, σ2 are all constants, dividend rate is δ, the asset price volatility is σ1,

the interest rate speed of the model mean reversion is a with volatility σ2. W1 and
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W2 are standard Brownian motions furnished with a correlation coefficient denoted

by ρ, and θ(t) being a deterministic function. The authors applied the model in

valuation of American options price in which the exercise region depends on the

interest rate, likewise the dividend return. In the research study of Murara et al.,

(2016), a review on selected stochastic volatility models including the Detemple -

Tian model was done.

2.5.2 Constant Elasticity of Variance (CEV) model

The constant elasticity of variance (CEV) is a model in the form:

dSt = µStdt+ σSβt dWt (2.5.2)

where the µ is a constant drift term and the other term structure β ≥ 0 and volatility

σ ≥ 0 are both real-valued constants. The elasticity factor β distinguishes (CEV)-

model from Black-Scholes Merton model of 1973 (Black & Scholes, 1973). The

parameter β serves as a control factor between the asset price and its volatility in

the above (CEV)-model. The modifications in the value assumed by β results in the

evolution of other models. For example, if β = 0 in (2.5.2), the resulting model is the

Bachelier model (Bachelier, 1964) while β = 1 leads to Black-Scholes-Merton model

of 1973 (Black and Scholes, 1973). In the recent time, year 2019 precisely, Satoshi,

(2019) derived another option pricing formula which was based on the model of

Bachelier whereby comparisons with other prior researches include the studies of

Haug, (2007) was done. Some results were presented on page 24 of the research

study of Satoshi, (2019).

2.5.3 The Stochastic α.β.ρ (SABR) - model

The SABR model is a form of stochastic volatility model widely used in Math-

ematical finance as one of the models in an effort to capture volatility smile in

financial market dealing with derivatives securities. The model was formulated and

shown in the research study by Hagan, Kumar, Lesniewski, and Woodward (2002).

The acronym SABR simply refers to the stochastic parameters, “alpha, beta, rho

(α, β, ρ)”, in the models as applicable in derivatives pricing especially in interest
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rate derivative markets. The authors stressed that the evolution of a single forward

F (t), such as: a forward swap rate, a LIBOR forward rate, or simply a forward stock

price, could be described by the given stochastic differential equations (2.5.3) of the

form:  dF (t) = α(t)
(
F (t)

)β
dW1(t), F (0) = F0 > 0,

dα(t) = v(t)α(t)dW2(t), α(0) = α0 > 0;

(2.5.3)

where the parameter β satisfies the condition 0 ≤ β ≤ 1. v(t) is an instantaneous

variance parameter for the volatility process. ρ represents the instantaneous cor-

relation which exists between the underlying asset and the volatility process α(t),

while Wi(t), i = 1, 2 are two correlated Wiener processes driving the SABR model.

The role of v(t) is to control the height of the implied volatility level for the forward

stock price when it is at the money (ATM). In the case of forward stock price S(t),

the variable F (t) could be replaced in the model (2.5.3). Various extensions of the

SABR model have been considered by other researchers, the bottom line is that

the model, among other stochastic volatility models, has immensely attracted the

attention of many practitioners in the financial market trading derivatives securities.

2.5.4 Grzelak Oosterlee Van Veeren (GOVV)-model

The authors of GOVV-model (Grzelak et al, 2008) extend stochastic volatility mod-

els by choosing the interest rate process to satisfy that of Hull-White interest rate

process. In their formulation, an asset (stock) price S(t) at an arbitrary time, t,

is assumed governed by an SDE, that is, stochastic differential equation possessing

stochastic interest rate r(t), and stochastic volatility v(t). The GOVV- model is

expressed in the form:

dS(t)

S(t)
= r(t)dt+ vp(t)dW1(t), S(0) = S0 > 0,

dr(t) = λ
(
θ(t)− r(t)

)
dt+ ηdW2(t), r(0) = r0 > 0,

dv(t) = κ
(
v̄ − v(t)

)
dt+ γv1−p(t)dW3(t), v(0) = v0 > 0;

(2.5.4)

where p is constant, λ and κ denote the speed of the model mean reversion processes,

η denotes the volatility of the stochastic interest rate, γ denotes the volatility of
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volatility parameter, θ(t) denotes the model long run mean for the stochastic interest

rate, v̄ denotes the model long run mean for the stochastic volatility while the

Wi(t), i = 1, 2, 3 are correlated Brownian motions. The correlation factor of the

Wi, i = 1, 2, 3 are defined by

dWi(t)dWj(t) = ρij, i, j = 1, 2, 3.

A rigorous demonstration on the application of GOVV model in pricing European

style options was presented in Murara, et al., (2016). The result shows that the

stochastic volatility model is able to give better structure of the behaviour of asset

prices in comparison with deterministic terms structure options pricing models.

2.5.5 Schöbel - Zhu - Heston model

In their model formulation, the stochastic term structure of the underlying asset

(stock) price is governed by systems of stochastic differential equations (2.5.5) on

setting p = 1 in the model of (2.5.4) presented above. The Schöbel - Zhu - Heston

model is given as:
dS(t)

S(t)
= r(t)dt+ v(t)dW1(t), S(0) = S0 > 0,

dv(t) = κ
H

(
v̄
H
− v(t)

)
dt+ γ

H
dW3(t), v(0) = v0 > 0;

(2.5.5)

where κ
H
, v̄

H
, γ

H
denote the speed of mean reversion processes, the long-run mean,

and variance of the volatility (vol. of vol) constants respectively while the H is an

indicator that the parameters are Heston type. In Murara et al., (2016), the Schöbel

- Zhu - Heston model was given in an expanded form. Other parameters are of same

interpretation as obtainable in GOVV model 2.5.4.

2.5.6 Schöbel - Zhu model

A modified Schöbel - Zhu - Heston model by transforming the instantaneous stocks

variance parameter yielded another stochastic volatility model popularly referred to

as Schöbel - Zhu model. The model is given in an expanded form as:
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

dS(t)

S(t)
= r(t)dt+ ν(t)dW1(t), S(0) = S0 > 0,

dν(t) = 2κ
(
ν(t) + v(t)v +

γ2

2κ

)
dt+ 2γ

√
ν(t)

(
ρ12dW1(t) +

√
1− ρ212 dW2(t)

)
,

ν(0) = ν0 > 0,
(2.5.6)

where r denotes the constant interest rate, v(t) =
√
ν(t) represents the instanta-

neous stock variance, 2κ denotes the mean reverting rate of the stochastic volatility

process, −
(
v(t)v +

γ2

2κ

)
the mean in the long run, γ denotes the volatility of volatility

parameter, and theWi(t), i = 1, 2 are correlated Brownian motions. The correlation

factor of the Wi, i = 1, 2 are defined by

dWi(t)dWj(t) = ρij, i, j = 1, 2.

2.5.7 Heston Model

In Heston (1993), a single factor Stochastic volatility model was formulated to show

realistic behaviour of financial derivatives. The model is able to take care of the

slope of option smile but does not vividly capture largely independent fluctuations

that arise in the up and down stochastic movement due to risk associated with stocks

over time. The single factor Heston model is given by:
dS(t)
S(t)

=
(
r − q

)
dt+

√
v(t)dW (t), S(0) = S0 > 0

dv(t) = κ
(
θ − v(t)

)
dt+ σ

√
v(t)dŴ (t), v(0) = v0 > 0,

(2.5.7)

where the parameters; r, is the riskless interest rate, q denotes the dividend rate, κ

is the mean reverting rate, and θ, being the volatility of variance constant.

Other authors have extended the Heston, (1993) model to accommodate some other

variables such as jumps in asset price, parameter uncertainties etc. In the next

subsection, we consider two-factor stochastic volatility model popularly referred to

as “Double Heston Model”.

2.5.8 Double Heston Model (DHM)

In an attempt to improve the Steve Heston (1993) single-factor stochastic volatility

model, the authors: Christoffersen, Heston, and Kris (2009) introduced the double
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Heston model which is a two-factor stochastic volatility model.

The double Heston model is given by:

dS(t)

S(t)
=
(
r − q

)
dt+

√
v1(t)dW1(t) +

√
v2(t)dW2(t), S(0) = S0 > 0

dv1(t) = κ1
(
θ1 − v1(t)

)
dt+ σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0.

dv2(t) = κ2
(
θ2 − v2(t)

)
dt+ σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0.

(2.5.8)

where the parameters in the above model have the following denotation: r is the

given interest rate, q denotes the dividend rate, κj, j = 1, 2 are the mean reverting

rate, θj, j = 1, 2 are the volatility of variance (vol of vol) constant.

Rouah, (2013) provided Matlab and C# codes for option pricing in the Heston

model and double Heston model. Such models are solved in affine form involving

characteristic function derivation. We shall see the derivation of a characteristic

function in affine form for an affine model under the “Result 1” and “Result 4” in

chapter four for our models formulated in this study.

2.6 Review on Fast Fourier Transform (FFT)

Fourier transform approach for pricing options especially in the sense of European-

style have caught the attention of many authors. The one with tremendous value

known to us among the various formulations by other researchers was the Carr and

Madan (1999) model for pricing European call and put options. However, math-

ematical formulations for European options with respect to Fourier transform has

been well established in literature. Much attention of authors in studying FFT

method for options pricing has been devoted to European style options. The study

of Oleksandr (2010) stood out as FFT approach was extended to American put op-

tion valuation with stochastic volatility. Kazuhisa (2004) provides a more simplified

introduction to understanding the technique of Fourier transform for options price

computation. Among the prerequisite knowledge required to understand the ap-

plication of Fourier transform method in options computation is the characteristic

function. In the theory of probability, characteristic functions and moment gener-
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ating functions are among the crucial topics discussed at the elementary level up

to advanced level especially while dealing with stochastic processes. It is suggested

that the readers who doesn’t have broad knowledge of probability and stochastic

processes consult elementary level textbooks on probability theory with MAT 352

by Ugbebor (2011a) in order to have the better understanding of this study. The

study of Kazuhisa (2004) is also recommended for the basic understanding of Fourier

Transform technique as used in this study.

However, to the best of our knowledge, the concept of economy recession factor is

yet to be incorporated in option computation. A limited number of authors have

carried out studies with respect to Fourier Transform for computing American op-

tion values. Much attention has been devoted to pricing European options probably

owing to the complexity of American-style. The prominent study known to us is

the research study by Oleksandr in (2010) on American options valuation using

Fast Fourier Transform method. The author used the Geske Johnson scheme and

Richardson extrapolation type in order to extend FFT algorithm to American-type

financial security numerically. This was done by introducing varieties of probable

exercising times up to the time of the option maturity. Jiexiang, Wenli, and Xin-

feng (2014) used FFT technique to estimate options price in a stochastic volatility

with stochastic intensity model driven by double exponential jumps. They made

comparison between the options values obtained via fast Fourier Transform and

Monte Carlo simulation method. Their findings revealed that fast Fourier method

has speed advantage over the popular Monte Carlo method.

Zhao, (2016) also contributed to Stochastic volatility models with applications in

finance showing some computational methods. Ricardo Crisóstomo investigated

speed and biases of Fourier-based options pricing choices using numerical analysis.

His findings show that the strike optimized version of Carr and Madan’s formula is

simultaneously faster and more accurate than the direct fast Fourier transform (Ri-

cardo, 2017). The framework of economy recession prompted volatility uncertainty
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effect is missing in their formulation.

Samuel and Martin, (2018) considered “European option pricing with stochastic

volatility model”. An issue of parameter uncertainty was discussed in their study.

Uncertainty theory is considered crucial, as the behaviour of stocks generally exhibit

such feature. The notion of Uncertainty of volatility estimates following Heston

Greeks point of view was studied by PFante, and Bertschinger, (2018). However, we

are not aware of the notion of uncertainty in options pricing with respect to economy

recession in the formulation of various authors except economy recession probability

prediction study using probit model and ARCH-GARCH model. The predictions

may not be accurate at times and therefore cannot be guaranteed. That’s exactly

what uncertainty is all about. The good side of it is that it provides the investors

and all practitioners in financial markets information on forecasting what the end

product is likely to be from the present.

Nevertheless, formulation based on option valuation with economy recession uncer-

tainty or economy recession volatility uncertainty has not been modeled by authors

cited nor others as far as we know. Also, option valuation based on the framework of

economy recession has not been studied and such framework with fast Fourier Trans-

form technique of European-type and American-type option computation. Hence,

the concept of economy recession induced volatility in options valuation models,

Fourier transformation of the models to be formulated, derivation of characteristic

function for the models and computational issues are our priority in this study.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Chapter Overview

This chapter presents the methodology adopted in solving the models formulated in

this study. The following three major mathematical theories are used to drive the

solution of our models in this study. Probability distribution theory, Fast Fourier

transform, and Uncertainty theory. Under probability distribution theory, the fol-

lowing concepts were presented: Measurability, Stochastic process, Itô Calculus,

Characteristic functions, Axioms of characteristic functions, Moments and Cumu-

lants for a distribution function, Inversion theorem, Gaussian process, and Moment

generating functions.

Under Fast Fourier Transform (FFT), we consider definition of Fourier transform

technique, Inverse Fourier transform, Examples of Fourier transform, Essential prop-

erties of Fourier transforms, and Symmetric property of characteristic functions for

Fourier integrals simplification.

We further present uncertainty theory in the sense of Baoding Liu (2010). As this

study deals with the concept of uncertainty studies under the exposure of economy

recession, we consider uncertainty measures in addition to other forms of uncertain-

ties in financial stock market valuation.
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STUDY ONE

3.2 Probability Distribution Theory

Probability theory has been seen as a fundamental support for modern mathematics

by means of relations to other mathematical study areas such as analysis, algebra,

topology, geometry or dynamical systems. Probability theory includes a measure

theoretical structure on a given nonempty set Ω.

3.2.1 Measurability

Definition 3.2.1. Given a sample space Ω, the σ-algebra defined on Ω is a class

F comprising subsets of Ω, in such away that F is closed under complements and

countable intersections (also under countable union) and ∅ ∈ F , (hence, Ω ∈ F).

Definition 3.2.2. A measurable map say X, from (Ω,F) to a measurable space

(M, ε) is a map from Ω to M such that for any B ∈ ε, the set

X−1(B) := {ω ∈ Ω : X(ω) ∈ B}

belongs to F .

Note: For any given class H of subsets of Ω, we denote σ(H) the smallest σ−

algebra which contains H (≡ intersection of all the σ− algebras containing H). Let

T be some interval in R+. B(T) denotes the σ- algebra of Borel subsets of T.

Definition 3.2.3. A real valued random variable, X, defined on (Ω,F) is a mea-

surable map from (Ω,F) to (R,B) where B is the Borel σ- algebra, the smallest

σ- algebra containing open intervals in R and this implies closed, half open, semi-

infinite, belong to B.
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Definition 3.2.4. A probability measure IP defined on a measurable space (Ω,F)

is a mapping from F to [0, 1] such that:

(i) IP (Ω) = 1,

(ii) IP

( ∞⋃
i=1

Hi

)
=

∞∑
i=1

IP (Hi) for any given countable family of disjoint sets Hi ∈ F ,

i.e. such that

Hi ∩Hj = ∅ for i ̸= j.

Note: Whenever there is H ∈ F , IP (H) = 1− IP (Hc) where Hc is the complement

set of H, which implies that IP (∅) = 0.

3.2.2 Stochastic Process

Definition 3.2.5. A stochastic process H is said to be a Poisson process with pa-

rameter λ if the following holds:

(i) H0 = 0

(ii) for 0 ≤ s ≤ t, Ht −Hs is P0

(
λ(t− s)

)
- distributed.

(iii) For 0 = t0 < t1 < · · · < tm, we have that
{
Htk −Htk−i

: k = 1, · · ·,m
}

is a set of variables evolving independently.

Definition 3.2.6. A stochastic process X such that:

(i) X0 = 0 a.s.

(ii) almost all paths t→ Xt(ω)

(iii) for 0 ≤ s ≤ t, Xt −Xs is N
(
0, t− s

)
- distributed.
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(iv) for 0 = t0 < t1 < · · · < tm, we have
{
Xtk −Xtk−1

: k = 1, · · ·,m
}
represent

a set of random variables whose evolution is independent of each other, called

Brownian motion process, also popularly known as Wiener process.

Definition 3.2.7. Two processes say (Xt, t ≥ 0) and (Yt, t ≥ 0), possess the same

law if given any n and (t1, t2, · · ·, tn), (Xt1 , Xt2 , · · ·, Xt−n)
law
= (Yt1 , Yt2 , · · ·, Ytn). We

hereby write in short X
law
= Y, or X

law
= µ for a given probability law, say, µ on the

canonical space.

Definition 3.2.8. A stochastic process, f , on a filtered complete probability space

(Ω,F , IP,F) is said to be simple if it is possible to express f in the form

f(t, ω) = f0(ω)I{0}(t) +
∞∑
j=0

fj(ω)I(tj , tj+1](t) (3.2.1)

t ∈ R+, ω ∈ Ω for some strictly increasing sequence, {tj}∞j=0 ∈ R, such that t0 = 0

and lim
j→∞

tj = ∞, and a sequence {fj}∞j=0 of random variables satisfying sup
j≥0

∣∣fj(ω)∣∣ <
c, a positive constant with fj being Ftj - measurable for j ≥ 0.

3.2.3 Itô Calculus

Definition 3.2.9. Let X be a stochastic process defined on a filtered probability space(
Ω,B, IP, IF (B)

)
. Then the quadratic variation ⟨X⟩ on [0, t], t > 0 is the stochastic

process ⟨X⟩ defined as:

⟨X⟩(t) = lim
|P|→0

n∑
j=0

|X(tj+1)−X(tj)|2

where P = {0 = t0 < t1 < t2 < · · · < tn = t} is any partition of [0, t], and

P = max
0≤j≤n−1

|tj+1 − tj|.
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Theorem 3.2.1. Itô Formula:
(
Kloaden & Platen, 1992; Chiarella, He & Niki-

topoulos, 2015
)
:

Let
(
Ω,F , IP, IF (F)

)
be a filtered probability space and X = {Xt : t ≥ 0} be an adapted

stochastic process on
(
Ω,F , IP, IF (F)

)
possessing a quadratic variation ⟨X⟩, with a

stochastic differential equation defined as:

dX(t) = g
(
t,X(t)

)
dt+ f

(
t,X(t)

)
dW (t), t ∈ R+ (3.2.2)

and let w = u
(
t,X(t)

)
∈ C1×2(T× R), then

du
(
t,X(t)

)
=
∂u

∂t
dt +

∂u

∂x
dX(t) +

1

2

∂2u

∂x2
(
dX(t)

)2
(3.2.3)

By substituting (3.2.2) into (3.2.3) gives:

du
(
t,X(t)

)
=
∂u

∂t
dt+

∂u

∂x

[
g
(
t,X(t)

)
dt+ f

(
t,X(t)

)
dW (t)

]
+

1

2

∂2u

∂x2
(
dX(t)

)2

or

du
(
t,X(t)

)
=
[∂u
∂t

+ g
∂u

∂x
+

1

2
f 2∂

2u

∂x2

]
dt+ f

∂u

∂x
dW (t). (3.2.4)

The equation (3.2.4) is equivalently expressed in integral form as:

u
(
t,X(t)

)
= u

(
s,X(s)

)
+

∫ t

s

[∂u
∂t

+ g
∂u

∂x
+

1

2
f 2∂

2u

∂x2

]
dτ +

∫ t

s

f
∂u

∂x
dW (τ) (3.2.5)

Lemma 3.2.1. Itô’s Lemma:
(
Chiarella, He & Nikitopoulos, 2015; Ekhaguere,

2010
)
:

Let X = {Xt, t ≥ 0} be such that X = W in the above Lemma, then g ≡ 0 and

f ≡ 1, on T× R. Then,

24



u
(
t,W (t)

)
= u

(
s,W (s)

)
+

∫ t

0

[∂u
∂τ

+
1

2

∂2u

∂τ 2

]
ds+

∂u

∂x
dW (τ). (3.2.6)

The above expression is called Itô’s Lemma.

3.2.4 Characteristic Function

The concept of characteristic function is crucial while dealing with random vari-

ables with respect to Fourier transform. The closed form formula for the distribu-

tion function of some jump diffusion processes is not readily available, perhaps the

characteristic function could be explicitly determined. However, there exists “a one

to one relationship between the probability density and a characteristic function”

(Schmelzle, 2010). It is very interesting to know that the characteristic function is

determinable even if a particular random variable does not have a known analytical

expression in closed form, it is certain that the characteristic function exists for any

random variable.

Definition 3.2.10. Let X be an arbitrary random variable. The characteristic

function of X, is given by:

φX(ω) = IE(eiωX) =

∫ ∞

−∞
fX(x)e

iωxdx, ω ∈ R, (3.2.7)

where fX(x) is the probability density function (pdf) of the random variable X. The

above definition is similar to the inverse Fourier Transform of functions given in

equation (3.3.6) and equal if
1

2π
is excluded. For instance, let Nt be a Poisson

process with parameter λ, then the characteristic function is expressed as:

φN(ω) ≡ IE(eiωNt) = exp{λt(eiω − 1)}. (3.2.8)
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The concept of moment generating function is related to characteristic function. The

popular Euler’s Identity empowers us to express the term eiωX of the characteristic

function in (3.2.7) in terms of trigonometric functions; sine and cosine, for the

random variable, say X as:

eiωX = cos(ωX) + i sin(ωX) (3.2.9)

where i =
√
−1 is the imaginary unit.

3.2.5 Some Axioms of Characteristic Functions

The following highlighted axioms of characteristic functions are interesting to us

in this study. Suppose a characteristic function φX(ω) of an arbitrary random

variable X is absolutely integrable over the whole real line R. Then the variable

X possesses almost surely an absolutely continuous probability distribution which

obeys Lebesgue integrability belonging to L1(R). With reference to Schmelzle (2010)

and Ugbebor (2011a), we consider the following axioms for φX(ω):

� φX(ω) often exists surely as far as the expression
∣∣eiωX∣∣ is absolutely con-

tinuous and bounded function on R and by extension, we have an absolutely

convergence in integral for the pdf fX(x) given by

∣∣∣ ∫ ∞

−∞
fX(x)dx

∣∣∣ ≤
∫ ∞

−∞

∣∣fX(ω)∣∣dx (3.2.10)

� φX(ω = 0) ≡ IE(ei·0·X) = 1 for any arbitrary distribution.

� |eiωX | ≤ 1.
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� φX(ω) = φX(−ω) where φX(ω) denotes the complex conjugate of the char-

acteristic function φX(ω).

�

∣∣IE [φX(t)]
∣∣ =

∣∣IE [cos tX + i sin tX]
∣∣

≤ IE
∣∣ cos tX + i sin tX

∣∣
= IE (cos tX + i sin tX) (Z)

=
√

cos2(tX) + sin2(tX)

= 1.

� Let Y be another random variable such that Y := α + βX for α, β ∈ R,

takes real values. φY (ω) = eiωα φX(βω).

� For sequence of stochastic independent variables X1, X2, X3, · · · , Xn well

defined such that Z :=
n∑
i=1

Xi is another random variable, the sum of the

random variables Xi, i = 1, 2, · · · , n, then the characteristic function for the

new random variable Z is given by

φZ(ω) = φX1(ω) · φX2(ω) · φX3 . . . φXn(ω) (3.2.11)

with n ∈ N.

� Suppose that IE(|Xn|) <∞ for some n, then IE(|X|k) <∞ ∀ k ≤ n.See Ugbe-

bor, (2011a).

3.2.6 Moments and Cumulants for a distribution function

Let X be a random variable. Suppose the characteristic function is differentiable to

order k at the origin of ω. Then the k-th moment IE(Xk) of the distribution function
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provided it exists is given by:

IE(Xk) =
dkφX(ω)

ikdωk
, at ω = 0. (3.2.12)

From the above equation, it is easy to see that the characteristic function is a

generator of the moments. In a similar way, the characteristic function could be

used to generate the cumulants denoted ck(X). This is made possible by taking the

logarithm of the characteristic function. The formula is expressed as:

ck(X) =
dk lnφX(ω)

ikdωk
, at ω = 0 (3.2.13)

where lnφX(ω) is referred to as cumulant characteristic function. Next, we are ready

to give the inverse theorem in the next subsection. The “Inversion Theorem has

been taken as the Fundamental Theorem of the Theory of Characteristic Functions

because it connects the characteristic function to its probability distribution through

an inverse Fourier transform” (Ugbebor, 2011a; Schmelzle, 2010).

3.2.7 Inversion Theorem

We consider the fundamental theorem of the Theory of Characteristic functions in

probability distribution linking inverse Fourier Transformation in the sense of Gil-

Pelaez (1951). Several authors had given various representations. For a review of

inversion theorem, see Waller (1995) and Schmelzle (2010).

We consider the inversion algorithm of Gil- Pelaez for cumulative distribution func-

tion (CDF)

∫ x

−∞
fX(x)dx whereby the distribution function FX(x) is expressed as:

FX(x) = IP (X ≤ x) =
1

2
− 1

2π

∫ ∞

−∞

e−iωxφX(ω)

iω
dω. (3.2.14)
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By differentiating the distribution function FX(x) in (3.2.14), we have the probability

density function fX(x) given by:

fX(x) ≡ F−1 (φX(ω)) =
1

2π

∫ ∞

−∞
e−iωxφ(ω)dω. (3.2.15)

Remark 3.2.1. It is easy to see that the equations (3.2.14) and (3.2.15) are the

inverse of each other showing the relationship in distribution function and the prob-

ability density function of a random process.

3.2.8 Gaussian Densities

Definition 3.2.11. The Gaussian density equipped with variance τ is

gτ (x) =

(
1

2πτ

)d/2
e−|x|2/2τ .

Equivalently, the density of
√
τZ, where Z = (Z1, · · · , Zd) with Zi ∼ N(0, 1) inde-

pendent.

To compute the Fourier transformation directly, as well as showing that Fourier

inversion formula is valid. We start off with the case d = 1 and Z ∼ N(0, 1). The

computation of the Fourier transform for the characteristic function of the Gaussian

density follows.

Proposition 3.2.1. (Gordan, 2013)

Let Z ∼ N(0, 1). Then

ϕZ(a) = e−u
2/2.

It is not difficult to see that the above is Gaussian up to a factor of 2π.
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Proof. We have

ϕZ(u) = IE[eiuZ ]

=
1√
2π

∫
eiuxe−x

2/2 dx.

By the boundedness of the function, differentiation is possible under the integral

sign. This yields:

ϕ′
Z(u) = IE[iZeiuZ ]

=
1√
2π

∫
ixeiuxe−x

2/2 dx

= −uϕZ(u),

the last equality is come by through integrating by parts. Hence, ϕZ(u) is a solution

of

ϕ′
Z(u) = −uϕZ(u).

Through integration, we see that

log ϕZ(u) = −1

2
u2 + C.

Therefore, we have

ϕZ(u) = Ce−u
2/2.

We know that C = 1, since ϕZ(0) = 1. So we have

ϕZ(u) = e−u
2/2.

Michaelmas (2016) presented a general case which is synonymous to what follows:
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Proposition 3.2.2. Let Z = (Z1, · · · , Zd) with Zj ∼ N(0, 1) independent. Then

√
τZ has density

gt(x) =
1

(2πτ)d/2
e−|x|2/(2τ).

with

ĝτ (u) = e−
|u|2τ

2 .

Proof. We have

ĝt(u) = IE[ei(u,
√
τZ)]

=
d∏
j=1

IE[ei(uj ,
√
τZj)]

=
d∏
j=1

ϕZ(
√
τuj)

=
d∏
j=1

e−τu
2
j/2

= e−|u|2τ/2.

Similarly, gτ and ĝt are almost surely the same, the only difference is the factor of

(2πτ)−d/2 attached and the shifting of τ ′s position. Hence, it is written as:

ĝτ (u) = (2π)d/2τ−d/2g1/τ (u).

It shows that

ˆ̂gτ (u) = (2π)dgτ (u).
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However, the symmetry property of the Gaussian distribution empowers us to obtain

gτ (x) = gτ (−x) = (2π)−d ˆ̂gτ (−x) =
(

1

2π

)d ∫
ĝτ (u)e

−i(u,x) du.

The Summary of characteristic functions and density function for some processes as

retrieved from Gordan (2013) is presented both in continuous and discrete distribu-

tion in the following tables 3.1 and 3.2 respectively.
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Table 3.1: Characteristic function and Density function for selected Continuous
distributions

S/N Name Parameters Density fX(x) Char. function φX(t)

1 Uniform a < b
1

b− a
I[a,b](x)

e−ita − eitb

it(b− a)

2 Symmetric Uniform a > 0
1

2a
I[−a,a](x)

sin(at)

at

3 Normal µ ∈ R, σ > 0
1√
2πσ2

exp(−(x− µ)2

2σ2
) exp

(
iµt− 1

2
σ2t2

)
4 Exponential λ > 0 λ exp(−λx)I[0,∞)(x)

λ

λ− it

5 Double Exponential λ > 0
1

2
λ exp(−λ|x|) λ2

λ2 + t2

6 Cauchy µ ∈ R, γ > 0
γ

π
(
γ2 + (x− µ)2

) exp
(
iµt− γ|t|

)
Source: Gordan, (2013).

The table 3.1 shows the characteristic function and density function summary for

some selected continuous distributions. The distributions are: Uniform distribution,

Symmetric Uniform, Normal distribution, Exponential distribution, Double expo-

nential distribution, and Cauchy distribution. Each of the distributions depends on

the specified parameters and conditions for their derivation as shown under the col-

umn for parameters in the table above. The characteristic functions and the density

functions for the specified processes are already available in literature. In the case

whereby a process has no already available density function, it is almost sure that

the corresponding characteristic function is derivable. The derivation may follow an

affine characteristic function derivation process. It is common to combine more than

one distribution in the formulation of a more complex model, especially in Financial

Mathematics modeling, which could lead to an affine process. The characteristic

function derivation for such an affine model follows an affine procedure as the case

may be.
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Table 3.2: Characteristic function and Density function for selected Discrete Distri-
butions

S/N Name Parameters Density µX Char. function φX(t)

7 Dirac c ∈ R δc exp(itc)

8 Biased Coin-toss p ∈ (0, 1) pδ1 + (1− p)δ−1 cos(t) + (2p− 1)i sin(t)

9 Geometric p ∈ (0, 1)
∑
n∈N0

pn(1− p)δn
1− p

1− eitp

10 Poisson λ > 0
∑
n∈N0

e−λ
λn

n!
δn, n ∈ N0 exp

(
λ(eit − 1)

)
Source: Gordan, (2013)

The table 3.2 shows the characteristic function and density function summary for

some selected discrete distributions. The distributions are: Dirac distribution, Bi-

ased Coin-toss, Geometric distribution, and Poisson distribution. Each of the distri-

butions depends on the specified parameters and conditions for their derivations as

shown under the column for parameters in the table. The variants of the above char-

acteristic functions and Density functions for the specified processes are available in

literature.
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3.2.9 Moment Generating Function

The moment generating function (MGF) of an arbitrary real-valued random variable

has an application in probability theory. It serves as alternate specification for the

probability distribution of any arbitrary random variable, Xt.

Definition 3.2.12. The MGF of an arbitrary random variable, X, is mathemati-

cally expressed as:

M(t) = IE(etX), t ∈ R, (3.2.16)

if the expectation exists.

Example 3.2.1. Consider a Poisson distribution with parameter λ, the moment-

generating function M(t) = eλ(e
t−1) while its characteristic function φ(t) = eλ(e

it−1).

In the case of a continuous type probability density function, we define the MGF

as:

M(t) =

∫ ∞

−∞
etxf(x)dx (3.2.17)

where f(x) represents the probability density function.

Definition 3.2.13. Consider a vector of stochastic variables X = (X1, · · · , Xd) on a

probability space (Ω,F , IP ) with IP a risk-neutral probability measure (i.e equivalent

martingale measure). Let the filtration {Ft : 0 ≤ t ≤ T} be generated by a stan-

dard d-dimensional Wiener process Wt and suppose that X under the risk-neutral

measure IP satisfies the stochastic differential equation:

dXt = µ(t,Xt)dt + ζ(t,Xt)dXt, (3.2.18)

where µ : [0, T ]× Rm → Rm and ζ : [0, T ]× Rm → Rm×d are the drift and diffusion
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term respectively.

Suppose further that the payoff of a financial asset is f(x) at a maturity time

T ∈ R+ \ {0} with a riskless interest rate (r(t),Xt). Then the asset price V (t,x)

under the risk-neutral measure is given by:

V (t,x) = IE

[
exp

(
−
∫ T

0

r(s,x)ds
)
f(XT )

∣∣∣Ft,Xt = x

]
. (3.2.19)

According to Andersen and Piterbarg, (2010), the asset price V (t,x) in equation

(3.2.19) with respect to the terminal value condition that V (t,x) = f(x), satisfies

the following partial differential equation:

∂V

∂t
+

m∑
i=1

µi(t,x)
∂V

∂xi
+

1

2

m∑
i=1

m∑
j=1

d∑
k=1

ζik(t,x)ζkj(t,x)
∂2V

∂xi∂xj
− r(t,x)V = 0.

(3.2.20)

STUDY TWO

3.3 Fourier Transform Methodology

Fourier transform in financial mathematics was first applied to estimate asset price

distribution employing inversion techniques for a class of stochastic volatility model”

(Stein and Stein, 1991). We consider the definitions, basic conditions sufficient for

existence of Fourier transform and inverse Fourier transform as follows.

Definition 3.3.1. Given a Lebesgue measurable function f(x) for x ∈ R, the L2-

norm of the function, f , is expressed as:

||f || =
(∫ ∞

−∞
|f(x)|2dx

) 1
2

(3.3.1)
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where

L2 = {f : ||f || <∞}. (3.3.2)

Alternatively, the piecewise integrable real-valued function, f(x), satisfies the condi-

tion: ∫ ∞

−∞
|f(x)|dx <∞. (3.3.3)

The existence of the Fourier transform as well as inverse Fourier transform of a

function demands absolute integrability over R, and in addition, the function should

have finite value as given in the equation (3.3.3). An absolutely integrable function

defined on an interval (a, b) is said to be on L1(a, b) space. However, the concept of

Fourier transform is extendable to the functions that are square integrable.

Definition 3.3.2. A square integrable functions is defined as:∫ ∞

−∞
|f(x)|2dx <∞. (3.3.4)

The square integrable functions space denoted by L2(R) is defined over the entire

real line, or simply on an open interval (a, b) ⊆ R.

Remark 3.3.1. We shall limit ourselves to L1-space.

3.3.1 Fourier and Inverse Fourier Transform

There are some conventional representations of Fourier transform found in use de-

pending on various fields of application. For instance, in Physics, Fourier transform

of a given function say, f(t), is done moving from time, t, domain into an angular

frequency, ω, domain measured in (radians/second), while in the case of Signal Pro-

cessing as a field of study, Fourier transform is done moving from time, t, domain

into frequency (cycles /second) domain in place of angular frequency, ω - domain.

Nevertheless, there is a relation between the transition from one domain to the other
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and both measure the same thing or yield similar results. The relation between the

frequency, f , and angular frequency, ω, is given by: ω = 2πf .

Definition 3.3.3. Let f : D ⊂ R → R be a real-valued function. Then for x ∈ D ⊂

R, the Fourier transform (FT) of the function f is given by:

F
(
f(x);w

)
= f̂(w) =

∫ ∞

−∞
f(x)eiωxdx, ω ∈ R, (3.3.5)

with i =
√
−1, ω is a parameter.

By inverse Fourier transform, it is possible to recover f(x) from f(ω).

Definition 3.3.4. An inverse Fourier transform (IFT) of a real-valued function,

f(x), is given as:

F−1
(
f̂(ω);x

)
= f(x) =

1

2π

∫ ∞

−∞
f̂(ω)e−iωxdω, x ∈ R (3.3.6)

which belongs to L1 - spaces.

3.3.2 Example of Fourier Transform

Example 1: Consider a piecewise function f(x) defined below:

f(x) =


1
4
, for −2 ≤ x < 0;

−1
4
, for 0 < x ≤ 2.

0; otherwise
(3.3.7)

Compute the Fourier transform for f(x).

Solution:

F
(
f(x) ;ω

)
= f̂(ω) =

∫ 0

−2

1

4
eiωxdx−

∫ 2

0

1

4
eiωxdx (3.3.8)
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f̂(ω) =
1

4

(eiωx
iω

)∣∣∣0
−2

− 1

4

(eiωx
iω

)∣∣∣2
0

=
1

4iω

(
eiω(0) − eiω(−2)

)
− 1

4iω

(
eiω(2) − eiω(0)

)
=

1

4iω

(
1− e−2iω

)
− 1

4iω

(
e2iω − 1

)
=

1

4iω

(
1− e−2iω − e2iω + 1

)
=

1

4iω

(
− e2iω − e−2iω + 2

)
= − 1

4iω

(
eiω − e−iω

)2

Applying Euler’s identity

eiω = cosω + i sinω, e−iω = cosω − i sinω

We have:

f̂(ω) = − 1

4iω

(
2i sinω

)2
= −i sin

2 ω

ω
.

We give the graphical representation in 2-dimension and 3-dimension of the

f̂(ω) = −i sin
2 ω

ω
respectively in sequel.
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Source: Author’s self plotted graph via Maple 2017
Figure 3.1: 2D plot of the Fourier transform f̂(ω) of the piecewise function f(x)
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Source: Author’s self plotted graph via Maple 2017
Figure 3.2: 3D-plot of the Fourier transform f̂(ω) of the piecewise function f(x)
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The figure 3.1 is the 2-dimensional graph of the Fourier transform f̂(ω) of the

piecewise function in equation (3.3.7). It was observed that the graph behaves

like signal processing. At a uniform spacing of the Fourier-based argument ω taking

interval of 20 each up to 120 points, the corresponding Fourier transform f̂(ω) were

obtained from 0.0− 0.7. From the graph, f̂(ω) was at its peak when the argument

ω = 0. There was contraction in value for increase in the argument ω up to 120. In

other words, the signal plots converges to zero for sufficient ω-values greater than

or equal to 120.

The figure 3.2 is the 3-dimensional plot of Fourier transform f̂(ω) of the piece-

wise constant function given in equation (3.3.7). The graph was like a signal pro-

cessing in nature. The argument ω- follows uniform spacing of π
2
in radians. By

symmetric property of Fourier transform, the graph of the Fourier transformed func-

tion, f̂(ω), shows equal visualisation for both the negative and positive values of the

argument, ω, in radians. In other words, the 3D-plot above verifies the symmet-

ric property of Fourier transform of an arbitrary piece-wise constant function. By

extension, the property holds for square integrable functions.
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Source: Author’s self plotted graph via Maple 2017.
Figure 3.3: Fast Fourier transform speed based on the order of computation.
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The figure 3.3 above shows computational complexities reduction based on the order

of fast-Fourier transformation. Various studies has proved that fast-Fourier trans-

form helps in reducing computational tussles of direct computation of the integrals

of functions in Fourier transform which operates on power of 2 for the grid points

N , that is N2, but through FFT-algorithm implementation on the Discrete Fourier

transform (DFT), the order computation is N log2N , that is O(N log2N), which

makes the computational burden less. In other words, FFT-algorithm increases the

speed of computation of the corresponding Discrete Fourier Transform faster than

the Direct Computation which operates on order O(N2). The blue curve shows how

slower the direct computation of the integrals was to the FFT computation of the

corresponding DFT of the function. That is, the plot in orange colour shows the

speed advantage of the FFT over direct computation.

3.3.3 Some Essential Properties of Fourier Transform

We maintained our representation of Fourier transform of a function f(x) denoted

as:

f̂(ω) = F
(
f(x);ω

)
=

∫ ∞

−∞
f(x)eiωxdx. (3.3.9)

� Translation property:

F
(
f(x− x0);ω

)
= eiωx0 f̂(ω) (3.3.10)

where x0 is a constant.

� Linear property: Let f(x) and g(x) be any two arbitrary piecewise continuous

functions in either L1 -space or in square integrable space L2. The Fourier

transform of the linearity of f and g is expressed as:
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F
(
af(x) + bg(x);ω

)
=

∫ ∞

−∞

(
a
(
f(x);ω

)
+ b
(
f(x);ω

))
eiωxdx (3.3.11)

=a

∫ ∞

−∞
f(x)eiωxdx+b

∫ ∞

−∞
g(x)eiωxdx (3.3.12)

= aF
(
f(x);ω

)
+ bF

(
g(x);ω

)
(3.3.13)

= af̂(ω) + bĝ(ω) (3.3.14)

where a and b are arbitrary non-zero numbers.

� Convolution property: This property is essential as convolution of any arbi-

trary well- defined two functions is mapped into the multiplication inside the

Fourier space. Suppose f, g ∈ L1-space. The convolution of the two functions

is defined by:

(
f ⋆ g

)
(x) =

∫ ∞

−∞
f(x− y)g(y)dy =

∫ ∞

−∞
f(y)g(x− y)dy (3.3.15)

The Fourier transform of convolution of the given functions, f , and g, with

convolution operator ⋆ is given as:

F
(
(f ⋆ g) ;ω

)
=

∫ ∞

−∞

[
f(x− y)g(y)dy

]
eiωxdx = f̂(ω)ĝ(ω) (3.3.16)

The equation (3.3.16) proof follows.

Proof:

F
(
(f ⋆ g) ;ω

)
=

∫ ∞

−∞

[ ∫ ∞

−∞
f(x− y)g(y)dy

]
eiωxdx (3.3.17)

=

∫ ∞

−∞

[ ∫ ∞

−∞
f(x− y)g(y)eiωxdy

]
dx (3.3.18)

=

∫ ∞

−∞

[ ∫ ∞

−∞
f(x− y)g(y)eiωxdx

]
dy (3.3.19)

=

∫ ∞

−∞
g(y)

[ ∫ ∞

−∞
f(x− y)eiωxdx

]
dy (3.3.20)
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We then have:

F
(
(f ⋆ g) ;ω

)
=

∫ ∞

−∞
g(y)eiωy

[ ∫ ∞

−∞
f(ζ)eiω(ζ+y)dζ

]
dy (3.3.21)

=

∫ ∞

−∞
g(y)e−iω(y)

[ ∫ ∞

−∞
f(ζ)eiωζdζ

]
dy (3.3.22)

= f̂(ω)

∫ ∞

−∞
g(y)eiωydy (3.3.23)

= f̂(ω)ĝ(ω). (3.3.24)

In similar way,

F(fg ;ω) = F
(
f(x ;ω)

)
⋆ F
(
g(x ;ω)

)
(3.3.25)

=

∫ ∞

−∞
f(x)eiωx ⋆

∫ ∞

−∞
g(x)eiωx (3.3.26)

= f̂(ω) ⋆ ĝ(ω). (3.3.27)

� Differentiation property: Let f be a piecewise n-times continuously differen-

tiable function such that f (n) is the derivative of order n ∈ N. Suppose each

of the derivative is absolutely integrable on the whole real line, the Fourier

transform of the derivative is then given by:

F
(
f (n)(x) ;ω

)
=

∫ ∞

−∞
f (n)(x)eiωxdx (3.3.28)

= (iω)n
∫ ∞

−∞
f(x)eiωxdx (3.3.29)

= (iω)nF
(
f(x) ;ω

)
(3.3.30)

= (iω)nf̂(ω). (3.3.31)

� Symmetric property:

F
(
f(x) ;ω

)
= f̂(ω) =⇒ F

(
f(−x) ;ω

)
= f̂(−ω). (3.3.32)
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There is a very close relation between Fourier transform and character-

istic function.

Definition 3.3.5. Let IP (x) denote the probability distribution function (pdf) for

x ∈ R. The definition of characteristic function ϕ(ω), forω ∈ R, coincides with the

Fourier transform of IP (x) expressed as:

F
(
IP (x) ;ω

)
≡ ϕ̂(ω) ≡

∫ ∞

−∞
IP (x) eiωxdω = E[eiωx] (3.3.33)

It is possible to recover the pdf (probability distribution function) IP (x), this is done

through the reverse process of Fourier transform of the characteristic function anal-

ogous to the inverse Fourier transform (IFT) definition in (3.3.6).

This we defined by:

IP (x) = F−1
(
ϕ̂(ω)

)
=

1

2π

∫ ∞

−∞
ϕ̂(ω) e−iωxdω. (3.3.34)

3.3.4 The Fast Fourier Transform (FFT)

The Fast Fourier transform is a mathematical powerful algorithm for computing the

Discrete Fourier Transform (DFT) of a sequence. The algorithm is capable of pre-

dicting future values in diverse of fields ranging from physics data, weather forecast

data, environmental data to financial data. The FFT method of valuation is often

applied by quantitative finance employing complex algorithmic trading strategies.

Definition 3.3.6. (Schmelzle, 2010):

The FFT has been reckoned with as a highly efficient implementation of discrete
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Fourier transform mapping a vector h = (hj)
N−1
j=0 onto some vector Dk(h) such that

Dk(h) =
N−1∑
j=0

e−i
2π
N
jkhj, k = 0, ..., N − 1. (3.3.35)

In applications, N is usually expressed as power of 2. This is so in order to reduce

the complexity of the FFT algorithm from an order of N2 for direct numerical

integration methods to that of N log2N operations to compute N values.

3.3.5 Symmetric Property of characteristic function for Fourier

Integrals simplification

In the complex plane, the real part of the characteristic function denoted by: R[φX(ω)]

is given by:

R[φX(ω)] =
φX(ω) + φX(−ω)

2
(3.3.36)

and the imaginary part, I[φX(ω)] is given by:

I[φX(ω)] =
φX(ω)− φX(−ω)

2i
, i =

√
−1 (3.3.37)

showing that the real part R[φX(ω)] of the characteristic function is even but the

imaginary part is odd for all ω. By the unique property of an even function, the

negative and positive halves are the same, it is easy to express probability density

function fX(x) in the simplification of Fourier integrals as shown in what follows:

fX(x) =
1

2π
R

[ ∫ 0

−∞
e−iωxφX(ω)dω

]
+

1

2π
R

[ ∫ ∞

0

e−iωxφX(ω)dω

]
,(3.3.38)

=
1

2π
R

[ ∫ 0

−∞
e−iωxφX(ω)dω

]
+

1

2π
R

[ ∫ ∞

0

e−iωxφX(ω)dω

]
,(3.3.39)

=
1

2π
R

[
2

∫ ∞

0

e−iωxφX(ω)dω

]
, (3.3.40)

=
1

π
R
[ ∫ ∞

0

e−iωxφX(ω)dω
]
. (3.3.41)
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The cumulative distribution function CDF is calculated similarly as follows:

FX(x) =
1

2
+

1

2π

∫ ∞

0

eiωxφX(−ω)− e−iωxφX(ω)

iω
dω, (3.3.42)

=
1

2
+

1

2π

∫ ∞

0

−e−iωxφX(ω)− e−iωxφX(ω)

iω
dω, (3.3.43)

=
1

2
− 1

π

∫ ∞

0

R

[
eiωxφX(ω)

iω

]
dω, (3.3.44)

=
1

2
− 1

π

∫ ∞

0

I

[
eiωxφX(ω)

ω

]
dω (3.3.45)

The complementary cumulative distribution function denoted F
′
X(x) follows using

the probability relation, F
′

X(x) + FX(x) = 1, with the probability,

IP (X > x) :=

∫ ∞

x

fX(x)dx ≡ F
′

X(x).

We thus obtain:

F
′

X(x) =
1

2
+

1

π

∫ ∞

0

R

[
eiωxφX(ω)

iω

]
dω, (3.3.46)

=
1

2
+

1

π

∫ ∞

0

I

[
eiωxφX(ω)

ω

]
dω. (3.3.47)

STUDY THREE

3.4 Uncertainty theory

Definition 3.4.1. (Baoding, 2010; Ugbebor, 2011): Let Γ be a non-empty set.

Then, a collection L containing the subsets of Γ is said to be an algebra over Γ

whenever the following conditions are satisfied:

(i) Γ ∈ L;

(ii) if ∧ ∈ L, then ∧c ∈ L; and

49



(iii) if ∧1,∧2, · · · ,∧n ∈ L, then

n⋃
i=1

∧i ∈ L.

Under the concept of countable union, if ∧1,∧2, · · · ,∧n ∈ L, such that

∞⋃
i=1

∧i ∈ L,

the collection L is a σ- algebra over Γ.

Example 3.4.1. Suppose ∧ is a proper subset of Γ. Then {∅,∧,∧c,Γ} formed

a σ-algebra on Γ.

Remark 3.4.1. The collection, Γ, is closed with respect to countable union, count-

able intersection, difference and limit.

Definition 3.4.2. (Ugbebor, 2011): Let Γ ̸= ∅ be a non-empty set. Suppose L is a

σ-algebra over Γ. Then the pair (Γ,L) is called a measurable space and any element

or member belonging to L is a measurable set.

Definition 3.4.3. (Ugbebor, 2011): A function ξ := (Γ,L) −→ R is measurable

whenever

ξ−1(B) =
{
γ ∈ Γ

∣∣ ξ(γ) ∈ B
}
∈ L (3.4.1)

where the space (Γ,L) measurable and B(R) is a Borel set defined on entire real line

R.

3.4.1 Uncertain Measure

The following properties holds for an uncertain process (Baoding, 2010).

Property 1 (Normality Property): M{Γ} = 1, for Γ being the universal set.
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Property 2 (Duality Property): M(∧) +M(∧c) = 1, for every even ∧.

Property 3 (Subadditivity Property): M
{ ∞⋃
i=1

∧i
}
≤

∞∑
i=1

M
{
∧i
}
for each count-

able sequence of events ∧1,∧2, . . . .
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Chapter Overview

This chapter consists of results presentation and discussions of our findings in this

study. We present a total of eleven (11) studies under the following tags: RESULT

1, RESULT 2, RESULT 3, and RESULT 4 respectively, in a more robust form.

RESULT 1 is titled “FFT Computation of American Options Prices with Economy

Recession induced Stochastic Volatility”. It consists of the following sections: In-

troduction, Justification for recession causing Jumps in the asset price, Jumps in

an underlying stock price, Some factors liable for stock’s price jumps, the model

assumptions, the model formulation, the model Solution, numerical Fourier based

transform of options, numerical experiment, Discussion of result 1, and Conclusion.

The title of RESULT 2 is “FFT Computation of Multi-assets Options with Economy

Recession Induced Uncertainties”. The sections involved are: An overview of the

result 2, Introduction, FFT Algorithm, The FFT of a class of multi-assets in finite

dimensions, Application on 3-dimensional Assets, Table of results 2, Discussion of

Result 2, and Conclusion.

The tag “RESULT 3” is titled “Accuracy of Fast Fourier Transform Method with

Control Fineness of Integration grid for Valuation of American Option”. It consists

of the following sections and subsections: An overview of Result 3, Introduction,

Factorial function based Black - Scholes PDE for option pricing, Moving boundary

for American options, Determination of Optimal Exercise Boundaries for American
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options, Fourier transform solution step of the Black - Scholes-like pde formulation

for American options, Fast Fourier transform for non-dividend paying American call

options, and Numerical results, and Result discussion.

The last result obtained tagged “Result 4” is titled “Triple Stochastic Volatil-

ity Heston-like model for option valuation in a Recessed Economy”. The sec-

tions involved are: An overview of the result 4, Introduction, Preliminaries to the

model formulation, A control regime-switching Triple Stochastic Volatility Heston-

like (TSVH) model, The PDE representation for TSVH model, Characteristic func-

tion derivation for the TSVHmodel, Numerical discretisation and Simulation schemes

for the TSVH model, Simulations and sample paths of the TSVH-model, and Dis-

cussion of result 4.
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RESULT 1

FFT Computation of American Options Prices with Eco-
nomic Recession induced Stochastic Volatility

4.2 STUDY ONE

4.2.1 Preamble

Financial Mathematics applies many mathematical concepts and tools. The con-

cepts include the following but not limited to: Probability theory, partial differen-

tial equations, Uncertainty theory, Control theory, Optimization theory, Ordinary

Differential Equations (ODEs), numerical analysis, Stochastic Differential Equa-

tions (SDEs), transformation and many more. Mathematical consistency is required

while formulating mathematical models in mathematical finance. Among numerous

mathematical transformation techniques are: Laplace transform, Mellin transform,

Hankel transform, Hilbert and Fourier transform. We apply fast Fourier transform

computational method to options on financial assets with focus on uncertainty in-

duced by economic recession on the option’s payoff or returns.

In recent time, Pfante, and Bertschinger, (2018) carried out research on “Uncertainty

of volatility estimates from the perspective of Heston Greeks”. Volatility has been

verified to be the major cause of numerous statistical properties of observed stock

price processes”. A variation in assets stochastic term structure such as volatility

poses a serious challenge on assets’ prices stability. In other words, stock asset price

instability is a function of uncertainty term structure associated with the stock asset

valuation in the financial markets. Hence, there is need for responsive study of stocks

prices volatility.

However, our stated objectives (i) and (ii) in chapter 1 were achieved under this

RESULT 1. Our contribution to knowledge on options valuation under the “Result

1” are highlighted in what follows:

(i) We incorporated the notion of volatility uncertainty with respect to economy re-
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cession in exponential jump model driven by stochastic volatility and intensity. The

proposed economy recession induced volatility is reckoned as an uncertain variable.

(ii) Characteristic function derivation of the affine model is carried out to involve

recession uncertainty effect.

(iii) Fourier transform of the proposed affine model.

(iv) The affine model characteristic function is extended to Carr & Madan (1999)

- type fast Fourier transform algorithm used in European options pricing. This al-

gorithm was extended to American style options valuation through the inclusion of

time premium in which its limit value goes to zero at the options expiration.

(v) The affine model volatility surface with respect to economy recession induced

uncertainty.

4.2.2 Justification for recession causing Jumps in the asset’s
price associated with Economic Recession

There are some major market parameters paramount to financial modelers in fi-

nancial models formulation. These include: price, riskless interest rate, volatility,

dividend rate and time. Asset prices undergo lots of fluctuations during recession

period. Assets such as stocks are never seen to be stable. Due to the behaviour

exhibited by stocks or risky assets generally, the interest rate and volatility param-

eter ought to be considered as stochastic in nature. In some exceptional cases, a

constant value is assigned to the interest rate, r, but in reality, stochastic volatility

should be considered because the market volatility behaviour does not seem to be

constant. The volatility of Stock is taken as a measure of uncertainty on the stock

asset’s returns or payoff which investors use in decision taking. The volatility vari-

ation during economy recession period is considered higher than when the economy

is in recession-free state. However, recession factor is taken into consideration in our

model formulations in this study.
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4.2.3 An Underlying Stock price jump

Let the stock price S(t) possesses dynamics given by

dS(t)

S(t)
=
(
r − q − λ(t)m

)
dt+

√
σ(t)dWs(t) + (eν − 1)dN(t) (4.2.1)

where r is taken as the risk-neutral interest rate, q as the dividend yield rate, the

N(t) is a Poisson process equipped with stochastic intensity parameter λ(t), and the

average jump amplitude is expressed asm = IEP̂ (eν − 1) where the jump size ν varies

randomly. The equation consists of two processes, that is, the diffusion process and

the jump process. The stock price is governed by two sources of fluctuations, and we

grouped them as “changes in the state of the economy” and “changes arising from

supply and demand factors”. However, the jump process in the model caters for the

arrival of some information into the stock market which could affect the performance

of stock price negatively.

4.2.4 Some factors causing Stock’s price Jumps

Among the factors responsible for stock asset price jumps highlighted in the study

by Matthew (2007), we include economy recession. However, the factors are hereby

grouped as follows:

(a) Firm specific jumps: These category of jumps arises due to news inflow to

the stock markets from time to time on firm’s profit/loss report.

(b) Industrial sector specific jumps: These arise as a result of unfavourable

news affecting specific company/ industry to include the news on sudden hol-

iday declaration.

(c) Market specific jumps: These type of jumps evolve if there is breaking news

on either rising or down trend of events, say the oil prices, the credit spreads,

etc which invariably could affect the stock market performance.
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(d) Economy recession jumps: The economy state news inflow to the stock

market including events such as economy crisis coupled with economy reces-

sion probability indicators. Other forms of sudden events is the Corona virus

pandemic (Covid-19) outbreak in the year 2019 which emanated from Wuhan

in China. The latter has affected the whole world health wise and by extension,

affected the global economy including Nigeria. These are some of the factors

that can lead to stock price uncertainties induced by economy recession jumps.

In the model formulation of our financial assets (stocks) price which focuses

on economy recession induced stochastic volatility effect on stocks, the high-

lighted factors above are further grouped as we can see as follows. The first

three factors, “(a)-(c)” were grouped into other sources and setting its volatil-

ity to be σ∗
t , while σ

rec
t is assigned to the economy recession induced volatility

source in the specified factor in (d).

Let N(t) be a well-defined Poisson process subject to the probability density

function (pdf) given by the equation:

P (Nt = ν) =
(λtν)

ν!
e−λt, ν = 0, 1, 2, · · · (4.2.2)

where λ denotes the intensity parameter. With reference to Matthew (2007),

we propose that whenever economy recession information and the likes from

other sources enter the stock market, there exists an instantaneous jump in

the price of the stocks from S(t) → νtS(t) where νt is the absolute magnitude

of the jump. Then the relative price change is given as:

dS(t)

S(t)
=
νtS(t)− S(t)

S(t)
=
S(t)(νt − 1)

S(t)
= νt − 1. (4.2.3)
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4.3 The Roadmap to the first model formulation

4.3.1 The Model Assumptions

Assumption 1: Let Xt be an asset under the influence of two sources of volatility.

That is, σrecXt
and σosXs

, which are respectively the market volatility prompted by

economy recession, and the market volatility from other sources such that

σmarketXs
= σrect + σoss . (4.3.1)

Assumption 2: The economy state is assumed unique always, uniqueness in the

sense that the economy is never seen to be in two states at a time concurrently.

Hence, the volatility parameter is ‘economy state dependent’ while pricing in the

stock market. For instance, during economy recession period, the volatility of

the stock is taken as σmarket = σrect + σoss , due to the effect of economy reces-

sion on the market price but during recession-free state, the stock market volatility

σmarkett = σoss that is the volatility from other sources, since σrecs = 0. Hereafter, we

define σoss := σ∗
s .

4.3.2 Uncertain variable with respect to Recession

Suppose ξ(γ) is an economy recession variable defined over an uncertain space,

(Γ,L,M), where γ = {γ1, γ2} such that

M{γ1} = α, M{γ2} = β.

Then

ξ(γ) =

{
0, if γ = γ1
1, if γ = γ2

(4.3.2)

is an uncertain variable. The following holds

M{ξ = 0} = M{γ
∣∣ ξ(γ) = 0} = M{γ1} = α
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and

M{ξ = 1} = M{γ
∣∣ ξ(γ) = 1} = M{γ2} = β

such that M{γ1}+M{γ2} ≡ α + β = 1.

Example 4.3.1. Suppose the economy recession-induced variation process ξ(γ)

given above is defined on the uncertain space, (Γ,L,M), where γ = {γ1, γ2} such

that

M{γ1} = 0.41, M{γ2} = 0.59

which satisfies equation (4.3.2), then

M{ξ = 0} = M{γ
∣∣ ξ(γ) = 0} = M{γ1} = 0.41

and

M{ξ = 1} = M{γ
∣∣ ξ(γ) = 1} = M{γ2} = 0.59

Suppose
(
Ω,Ft, P̂ ,F

)
is a filtered probability space such that Ft := F eco

t ⊆ Fmket
t

with Fmket
t and F eco

t describing the market filtration and the economy in which the

market activities takes place respectively. Fmket
t and F eco

t are the market and the

economic filtration at a given time t ∈ (0, T ] respectively.

Definition 4.3.1. (Wei-yin, 2014): “An uncertain random variable is defined as

a measurable function, say ξ ∈ Rp (resp. Rp×m), emanating from an uncertainty

probability space, (Γ × Ω, L ⊗ F , M× P ), to a nonempty set in Rp (resp. Rp×m),
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for any Borel set A ∈ Rp (resp,Rp×m), the given set

{ξ ∈ A} = {(γ, ω) ∈ Γ× Ω : ξ ∈ (γ, ω) ∈ A} ∈ L ⊗ F .

The mathematical expectation (i.e the expected value) of such uncertain random

variable, ξ, is defined by:

IE[ξ] = IEp

[
IEM[ξ]

]
=

∫
Ω

[ ∫ ∞

0

M{ξ ≥ r}dr
]
P (dω) −

∫
Ω

[ ∫ ∞

0

M{ξ ≤ r}dr
]
P (dω) (4.3.3)

where IEp and IEM represent the expected values under the uncertainty space and the

probability space, respectively”.

The definition given above shows the connection between the concept of probability

and uncertainty theory in the sense tha random variable is defined from a probability

space to an uncertainty space. An introduction of the concept of uncertainty theory

into financial model formulation makes sense taking into consideration stock asset

valuation during economy recession period or other forms of financial crisis arising

in the market.

Some authors such as Erik Lindström and Johan Str̊alfors, (2012) in their research

studies considered parameter uncertainty in financial models, but to the best of

our knowledge the concept of economy recession induced uncertainty has not been

introduced by any of the authors. Consequently, we therefore introduced the concept

of economy recession induced uncertainty to the stochastic volatility term structure

in our model formulation for option pricing.

4.4 The first Model

The first model is formulated as follows ‘an Uncertain Affine Exponential-Jump

Model (UAEM) with recession induced stochastic - volatility and stochastic - inten-

sity’. Let an asset, X, at a time, t, be a two-state regime switching process such
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that the asset prices could switch within the given two states defined as:

Xt =

{
1, if the economy is in the state of Expansion;
2, if the economy is in the state of Recession.

(4.4.1)

Suppose there exists a flow from one state to the other which follows a Poisson

process such that

P (t∗lm > t) = exp(−λ∗lmt), l,m = 1, 2; (4.4.2)

where λ∗lm is the transition rate from state l, to state m, while the time spent in the

state, l, prior to the transition to state, m, is t∗lm.

Let the price of the asset,X, be defined on a filtered probability space
(
Ω,Fmket

t ,P ,F
)

and assume the filtration of the market is generated by both standard Wiener pro-

cess and jump process in a specified time, t ∈ [0, T ]. Take P to be a risk-neutral

probability measure or an equivalent Martingale measure. The anticipating model

(UAEM) which governs the dynamics of the underlying stock price, S(t), is given

as:


dS(t) =

(
r − q − λ(t)m

)
S(t)dt+

√
σ(t)dWs(t) + (eν − 1)S(t)dN(t), S(0) = S0 > 0

dσ(t) = κσ

(
β∗ + βrec − σ(t)

)
dt+ ξσ

√
σ(t)dWσ(t), σ(0) = σ0 > 0

dλ(t) = κλ
(
θ − λ(t)

)
dt+ ξλ

√
λ(t)dWλ(t), λ(0) = λ0 > 0.

(4.4.3)

where, r is a risk-neutral interest rate, q is a dividend rate for a dividend paying

stock, N(t) is Poisson process subject to a stochastic intensity λ(t), and an average

jump amplitude is given as m = IEP (eν − 1) with jump size ν, which is a random

variable. The other parameters, ξσ > 0, and ξλ > 0, are specified constants with

mean - reverting rates, κσ, and κλ, which are all positive constants.
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The stochastic volatility, σ(t), of the stock market is given by:

σ(t) =

{
σrec + σ∗, when the economy is under recession ;
σ∗, when the economy is in expansion state (i.e recession-free state).

(4.4.4)

where σrec is the economy recession-induced volatility arising as a result of infor-

mation inflow into the stock market from the recessed economy, and σ∗ is the stock

market volatility from other sources. Moreover, the constants β∗ and βrec are re-

ferred to as the other sources long term volatility, and economy recession-induced

long term volatility during economy recession period respectively while θ denotes

the intensity constant.

The βrec is the economy recession-induced long-run volatility emanating from the

recessed economy complementing the usual long-run volatility, throughout the life-

span of the stocks’ option valuation. The Ws(t) and Wσ(t) are Wiener processes

whereby Wλ(t) evolves independent of the correlation of the Wiener processes Ws(t)

and Wσ(t) in the given model presented above. The correlation of Ws(t) and Wσ(t)

is such that
〈
Ws(t),Wσ(t)

〉
= ρdt and |ρ| is necessarily less than 1. The parameter,

m, has been taken to be an average jump amplitude as the stock price jumps could

either be upward or downward. Thus, we have

m =
p

1− ξu
+

q

1 + ξd
− 1 ≡

∫ ∞

−∞
eνf(ν)dν − 1 (4.4.5)

where p denotes the probability of the upward jumps and q, the downward jumps

respectively such that p+ q = 1.

Jiexiang et al. (2014) gave the mean positive jumps and negative jumps in their

model as 1
ξu

and 1
ξd
, respectively. The solution and some analysis of “double ex-

ponential jump model with respect to stochastic-volatility and stochastic-intensity”

was presented in their study (Jiexang et al., 2014). The uniqueness of our own

model is the concept of economy recession stochastic volatility inclusion which was
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not in their own model.

Remark 4.4.1. The stochastic volatility, σ(t)xt , in our model includes recession-

induced volatility uncertainties of stock prices.

4.4.1 Characteristic function

Definition 4.4.1. Let X be an arbitrary random variable. The characteristic func-

tion of X, is given as:

φX(ω) = IE(eiωX) =

∫ ∞

−∞
fX(x)e

iωxdx, ω ∈ R, (4.4.6)

where fX(x) denotes the probability density function (pdf) of the random variable

X. The above definition is similar to inverse Fourier Transform of function given

in equation (3.3.6) if 1
2π

is excluded. For instance, let Nt be a Poisson process with

parameter λ, then the characteristic function in discrete form is expressed as:

φN(ω) ≡ IE(eiωNt) = exp{λt(eiω − 1)}. (4.4.7)

However, the concept of moment generating function is related to characteristic

function. The moment generating function say, M, of an arbitrary real valued

random variable has applications in probability theory. One important difference

is that for characteristic function, |φx(t)| ≤ 1 whereas moment generating function

may not exists outside a small interval including zero (Ugbebor, 2011).

Definition 4.4.2. The moment generating function (MGF) of an arbitrary random

variable, X, is mathematically expressed as:

M(t) = IE(etX), t ∈ R, (4.4.8)
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if the expectation exists.

Example 4.4.1. Let P (λ) be a Poisson distribution. Then, the moment-generating

function M(t) = eλ(e
t−1) while its characteristic function φ(t) = eλ(e

it−1).

In the case of continuous probability density function, we define the moment-generating

function as:

M(t) =

∫ ∞

−∞
etxf(x)dx (4.4.9)

where f(x) represents the probability distribution function.

However, setting x(τ) := lnS(τ), and τ = T − t or τ = t∗ − t depending on

the consideration at hand where x(τ) is taken as the log stock asset price in the

model (4.4.3) and τ denotes the time difference in the option’s expiration time and

the present time or the time difference in the optimal time to exercise the option

and the present time. The latter is valid for early exercise possibility in American -

type option if the optimal exercise time for the option is determined or known. The

Feynman-Kac Formula is applied while deriving the characteristic function for the

UAEM in 4.4.3 as follows.

4.4.2 The Feynman-Kac formula

This formula makes it possible to obtain the probabilistic expectation with respect to

an Itô-diffusion process as a solution of the related partial differential equation. As

an illustration, consider a d-dimensional stochastic process, X(t) = (X ′
t, · · · , Xd

t ), a

solution of the stochastic differential equation

dX i
t = µi(t,Xt)dt+ σi(t,Xt)dW

i
t

whereW i
t , i = 1, · · · , d, are Wiener’s process equipped with the correlation given by〈

dW i
t , dW

j
t

〉
= ρijdt. Let Z(x) = Z(x1, · · · , xd) be some payoffs. Then the function

g(t, x) := IE
[
Z(XT )

∣∣Xt = x
]

(4.4.10)
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is a solution of the partial differential equation

∂g

∂t
+

d∑
i=1

µ(t, x)
∂g

∂xi
+

1

2

d∑
i,j=1

ρijσi(t, x)σj(t, x)
∂2g

∂xi∂xj
= 0 (4.4.11)

subject to the terminal condition g(t, x) = Z(x). In the case of a 1-dimensional

stochastic process, Xt. Suppose Xt is the solution of the stochastic differential

equation:

dXt = µ
(
t,Xt

)
dt+ σ(t,Xt)dWt. (4.4.12)

The Feynman-Kac formula for an arbitrary function say

g(t,Xt) = IE
[
g(t,Xt)

∣∣X(t)
]

(4.4.13)

is the solution to the partial differential equation

∂g

∂t
+ µ(t,Xt)

∂g

∂x
+

1

2
σ2(t,Xt)

∂2g

∂x2
= 0. (4.4.14)

The equation (4.4.13) can be extended to the concept of characteristic function as:

g(τ,Xτ ) = φ(ω,Xτ , τ) = eiωXτ . (4.4.15)

Similarly,

g(τ,Xt) = φ(ω,Xt, t) = eiωXt = IE
[
eiωXT

∣∣Xt

]
. (4.4.16)

Remark 4.4.2. (i) φ(ω,Xτ , τ) represents the characteristic function of Xτ .

(ii) The moment generating function M(ω) = φ(−iω).

In the next study, we present the solution of the UAEM model for options

valuation.
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4.5 STUDY TWO

4.5.1 The Model Solution

We present the solution of the first formulated model UAEM as follows.

Theorem 4.5.1. Let a stock asset under economic recession be driven by the for-

mulated model in equation (4.4.3). Then the closed form solution of the model for

the stock asset via characteristic function is given as:

M
(
ω, x(τ), σ(τ), λ(τ), τ

)
= e(r−q)τω + ωx(τ) + A(ω,τ) + B(ω,τ)σ(τ) + C(ω,τ)λ(τ) (4.5.1)

where

A(ω, τ)= −
{κσ(β∗ + βrec)

ξ2σ

[
ψ+τ + 2 ln

(ψ− + ψ+e
−ςτ

2ς

)]
+
κλθ

ξ2λ

[
ψ+τ + 2 ln

(χ− + χ+e
−ϵτ

2ϵ

)]}
B(ω, τ) = −(ω − ω2)

1− e−ςτ

ψ− + ψ+e−ςτ

C(ω, τ) = 2Λ
( 1− e−ϵτ

ψ− + ψ+ + e−ςτ

)
Λ(ω) =

∫ ∞

−∞
eνωf(ν)dν − 1− ω

(∫ ∞

−∞
eνf(ν)dν − 1

)
,

ϵ =
√
κ2λ − 2ξ2λΛ(ω)

χ± = ϵ∓ κλ

ψ± = ∓
(
κσ − ρξσω

)
+

√(
κσ − ρξσω

)2 − ξσ(ω − ω2)

ς =

√(
κσ − ρξσω

)2 − ξσ(ω − ω2).
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Proof:

Consider the model in equation (4.4.3) rewritten in the form:


dS(t)
S(t)

=
(
r − q − λ(t)m

)
dt+

√
σ(t)dWs(t) + (eν − 1)dN(t), S(0) = S0 > 0

dσ(t) = κσ

(
β∗ + βrec − σ(t)

)
dt+ ξσ

√
σ(t)dWσ(t), σ(0) = σ0 > 0

dλ(t) = κλ
(
θ − λ(t)

)
dt+ ξλ

√
λ(t)dWλ(t), λ(0) = λ0 > 0.

(4.5.2)

where ⟨dWs(t), dWσ(t)⟩ = ρdt and ⟨dWs(t), dWλ(t)⟩ = 0 = ⟨dWσ(t), dWλ(t)⟩ and

the volatility is σ(t) = σ∗ + σrec as defined in equation (4.4.4).

The partial integro-differential equation (PIDE) for the moment generating function,

M(ω) of xτ := lnSτ for the above model is expressed as:

Mτ+
(
r−q− 1

2
σ(τ)−λ(τ)m

)
Mx+

1

2
σMxx+κσ

(
β∗+βrec−σ(τ)

)
Mσ+

1

2
ξ2σσ(τ)Mσσ

+ ρξσMxσ + κλ
(
θ− λ(t)

)
Mλ+

1

2
ξ2λλMλλ+ λ

∫ ∞

−∞

(
M(x+ ν)−M(ν)

)
f(ν)dν = 0

(4.5.3)

where Mτ = ex(τ)ω, is the terminal condition and m =
∫∞
−∞ eνf(ν)dν − 1.

A guess at the solution of the PIDE (4.5.2) is of the form

M
(
ω, x(τ), σ(τ), λ(τ), τ

)
= exp

(
(r−q)τω + ωx(τ) + A(ω, τ) + B(ω, τ)σ(τ) + C(ω, τ)λ(τ)

)
.

(4.5.4)

By Substituting equation (4.5.4) into (4.5.3)

−
(∂A
∂τ

(ω, τ) +
∂B

∂τ
(ω, τ)σ(τ) +

∂C

∂τ
(ω, τ)λ(τ)

)
=

1

2
σ(τ)(̇ω2 − ω)− λ(τ)

(
mω −

∫ ∞

−∞
eνωf(ν)dν − 1

)
+κσ

(
β∗+βrec−σ(τ)

)
B(ω, τ)+

1

2
ξ2σσ(τ)B

2(ω, τ)+ ρξσσ(τ)ωB(ω, τ)

+ κλ
(
θ − λ(τ)

)
C(ω, τ) +

1

2
ξ2λλ(τ)C

2(ω, τ) (4.5.5)

We then rearranged the equation based on the state variables; the volatility σ(τ),
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and the intensity λ(τ), which leads to:

[∂B
∂τ

+
1

2
ξ2σB

2(ω, τ) + ρξσωB(ω, τ) − κσB(ω, τ) − 1

2
ω +

1

2
ω2
]
σ(τ)

+
[∂C(ω, τ)

∂τ
+

1

2
ξ2λC

2(ω, τ) − κλC(ω, τ) +
(
mω −

∫ ∞

−∞
eνωf(ν)dν − 1

) ]
λ(τ)

+
∂A(ω, τ)

∂τ
+ κσ(β

∗ + βrec)B(ω, τ) + κλθC(ω, τ) = 0 (4.5.6)

where ∫ ∞

−∞

(
eνω − 1

)
f(ν)dν = φjump(ω) (4.5.7)

is the equation for the moment generating function of the jump-size distribution,

and m is the amplitude of the average jump given earlier as

m =

∫ ∞

−∞
eνf(ν)dν − 1. (4.5.8)

Equating the term structures coefficients (= the stochastic volatility and the inten-

sity) in equation (4.5.7) to zero, the following ODEs were obtained:

∂A(ω, τ)

∂τ
= −

(
κσ(β

∗ + βrec)B(ω, τ) + κλθC(ω, τ)
)

(4.5.9)

∂B(ω, τ)

∂τ
= −1

2
ξ2σB

2(ω, τ) + (κσ − ρξσω)B(ω, τ) +
1

2
(ω − ω2) (4.5.10)

∂C(ω, τ)

∂τ
= −1

2
ξ2λC

2(ω, τ) + κλC(ω, τ) +
(∫ ∞

−∞
eνωf(ν)dν − 1−mω

)
(4.5.11)

The systems of solutions are presented in what follows. Consider the equation

(4.5.10). Firstly, it was observed that the equation (4.5.10) is a Ricatti-type differ-
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ential equation. Thus setting

B(ω, τ) = 2
D′(τ)

ξ2σD(τ)
(4.5.12)

in equation (4.5.10), and simplifying further yields a second order differential equa-

tion which is expressed as:

∂2D

∂τ 2
+
(
κσ − ρξσω

)∂D
∂τ

+
1

4
ξ2σ(ω − ω2)D(τ) = 0. (4.5.13)

The general solution of the given equation (4.5.13) is expressed as:

D(τ) = k1 exp(−
1

2
ψ−τ ) + k2 exp(

1

2
ψ+τ ) (4.5.14)

where

ψ± =
(
κσ − ρξσω

)
+

√(
κσ − ρξσω

)2 − ξσ(ω − ω2). (4.5.15)

Setting time τ = 0 in equation (4.5.14), the following boundary conditions are

satisfied:

D(0) = k1 + k2

D′(0) = 1
2
ψ+k2 − 1

2
ψ−k1 = 0.

(4.5.16)

The sum

ψ+ + ψ− = 2

√(
κσ − ρξσω

)2 − ξσ(ω − ω2) ≡ 2ς

with

ς =

√(
κσ − ρξσω

)2 − ξσ(ω − ω2)
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and the product

ψ− · ψ+ = −ξσ(ω − ω2).

The constants k1 and k2 have values ψ+D(0)
2ς

and ψ−D(0)
2ς

respectively by using the

boundary conditions given in the equation (4.5.19) and the initial conditions,

A(ω, 0) = B(ω, 0) = C(ω, 0) = 0.

By substituting the value for D′(τ) and D(τ) in equation (4.5.12)

B(ω, τ) = 2
D′(τ)

ξ2σD(τ)
.

Further simplification yields:

B(ω, τ) = −(ω − ω2)
e−

1
2
ψ+τ − e−

1
2
ψ−τ

ψ−e
− 1

2
ψ+τ + ψ+e

− 1
2
ψ−τ

(4.5.17)

= −(ω − ω2)
1− e−ςτ

ψ− + ψ+e−ςτ
. (4.5.18)

Following Artur (2003), it is possible to partition a function. Therefore, we expressed

A(ω, τ) as the sum of two functions E(ω, τ) and F (ω, τ) as:

A(ω, τ) ≡ E(ω, τ) + F (ω, τ).

The equation (4.5.9) is rewritten as:

∂A

∂τ
=
∂E

∂τ
(ω, τ) +

∂F

∂τ
(ω, τ) (4.5.19)

such that

∂E

∂τ
(ω, τ) = κσβ

∗B(ω, τ) + κσβ
recB(ω, τ) (4.5.20)

∂F

∂τ
(ω, τ) = κλθC(ω, τ). (4.5.21)
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Firstly, we integrate the equation (4.5.20) to obtain the following equations:

E(ω, τ) =

∫ τ

0

κσβ
∗B(ω, s)ds+

∫ τ

0

κσβ
recB(ω, s)ds

= κσβ
∗
∫ τ

0

B(ω, s)ds+ κσβ
rec

∫ τ

0

B(ω, s)ds

=
−2κβ∗

ξ2σ

∫ τ

0

D′(s)

D(s)
ds+

−2κβrec

ξ2σ

∫ τ

0

D′(s)

D(s)
ds

=
−2κ(β∗ + βrec)

ξ2σ
lnD(s)

∣∣∣s=τ
s=0

=
−2κ(β∗ + βrec)

ξ2σ
ln

[
D(τ)

D(0)

]
.

=
−2κ(β∗ + βrec)

ξ2σ
ln

[
ψ−e

− 1
2
ψ+τ + ψ+e

− 1
2
ψ−τ

2ς

]
.

The final result is given as:

E(ω, τ) =
−2κσ(β

∗ + βrec)

ξ2σ

[
ψ+τ + 2 ln

(ψ− + ψ+e
−ςτ

2ς

)]
. (4.5.22)

Similarly, by integrating the ordinary differential equation in (4.5.21), we obtained:

F (ω, τ) =
−κλθ
ξ2λ

[
ψ+τ + 2 ln

(χ− + χ+e
−ϵτ

2ϵ

)]
. (4.5.23)

Hence, expressing the explicit solution of A(ω, τ) as a sum of the solutions E(ω, τ)

and F (ω, τ) given in (4.5.22) and (4.5.23) respectively leads to:

A(ω, τ) = −

{
κσ(β

∗ + βrec)

ξ2σ

[
ψ+τ + 2 ln

(ψ− + ψ+e
−ςτ

2ς

)]
+
κλθ

ξ2λ

[
ψ+τ + 2 ln

(χ− + χ+e
−ϵτ

2ϵ

)]}
.

(4.5.24)

Similarly,

C(ω, τ) = 2Λ
( 1− e−ϵτ

ψ− + ψ+ + e−ςτ

)
(4.5.25)
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where

Λ(ω) =

∫ ∞

−∞
eνωf(ν)dν − 1− ω

(∫ ∞

−∞
eνf(ν)dν − 1

)
(4.5.26)

ϵ =
√
κ2λ − 2ξ2λΛ(ω) (4.5.27)

χ± = ϵ∓ κλ (4.5.28)

ψ± = ∓
(
κσ − ρξσω

)
+

√(
κσ − ρξσω

)2 − ξσ(ω − ω2) (4.5.29)

but ς =
√(

κσ − ρξσω
)2 − ξσ(ω − ω2).

The solution summary of the model (4.4.3) follows:

M
(
ω, x(τ), σ(τ), λ(τ), τ

)
= e(r−q)τω + ωx(τ) + A(ω,τ) + B(ω,τ)σ(τ) + C(ω,τ)λ(τ). (4.5.30)

where

A(ω, τ) = −
{
κσ(β

∗ + βrec)

ξ2σ

[
ψ+τ + 2 ln

(ψ− + ψ+e
−ςτ

2ς

)]
+
κλθ

ξ2λ

[
ψ+τ + 2 ln

(χ− + χ+e
−ϵτ

2ϵ

)]}
B(ω, τ) = −(ω − ω2)

1− e−ςτ

ψ− + ψ+e−ςτ

C(ω, τ) = 2Λ
( 1− e−ϵτ

ψ− + ψ+ + e−ςτ

)
Λ(ω) =

∫ ∞

−∞
eνωf(ν)dν − 1− ω

(∫ ∞

−∞
eνf(ν)dν − 1

)
,

ϵ =
√
κ2λ − 2ξ2λΛ(ω)

χ± = ϵ∓ κλ

ψ± = ∓
(
κσ − ρξσω

)
+

√(
κσ − ρξσω

)2 − ξσ(ω − ω2)

ς =

√(
κσ − ρξσω

)2 − ξσ(ω − ω2). ■

4.5.2 Further Results from the model (4.5.2) Solution

Consider a financial claim g(x, σ, λ, τ) governed by the Partial Integro-Differential

Equation (PIDE) expressed in equation (4.5.2) with the payoff function, f(ex, K),
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satisfied by the claim, g(x, σ, λ, 0) = f(ex, K). The Fourier transform of g(x) simply

defined on the PIDE following the equation (3.3.5) is expressed as:

ĝ(w) = F
(
g(x);ω

)
=

∫ +∞

−∞
g(x)eiωx dx. (4.5.31)

The corresponding inverse-Fourier transform which follows from the application of

equation (3.3.6) is expressed as:

g(x) = F−1
(
ĝ(ω);x

)
=

1

2π

∫ +∞

−∞
ĝ(ω)e−iωx dω. (4.5.32)

Considering Theorem 3.2 in Lewis (2001) and Theorem 3.1 on page 11 of the study

by Artur Sepp (2003), we present another version in the following based on the

derived characteristic function for the model studied here.

Theorem 4.5.2. : (Characteristic formula).

Suppose an asset price xτ = lnSτ has an affine analytic characteristic function,

φτ (w), at a specified time, τ ≤ T . Define a regularity strip

RegS :=
{
ω : α < ℑ(ω) < β

}
where ℑ(ω) denotes the imaginary part of w, which lies between α and β in the

regularity strip. Let e−ℑ(ω)xg(x) be defined on the space of L1(R), such that

ĝ(ω),ℑ(ω) ∈ Sg, with Sg being the payoff strip and ĝ(ω) satisfy the Fourier trans-

form expressed in equation (4.5.31). Then, the option value is expressed as:

g
(
x(t)

)
=

e−r(T−t)

2π

∫ iℑ(ω)+∞

iℑ(ω)−∞
φT (−ω)ĝ(ω) dω (4.5.33)

where ω ∈ Reg S ∩ Sg.
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Proof:

Consider the setting of a risk-neutral world, Q, we have:

g
(
x(t)

)
= IEQ

[
e−r(T−t)g

(
x(t)

∣∣FT

)]
, t < T. (4.5.34)

g
(
x(t)

)
= e−r(T−t)IEQ

[
g
(
x(T )

)]
= e−r(T−t)IEQ

[ 1

2π

∫ iℑ(ω)+∞

iℑ(ω)−∞
e−iωx(T ) ĝ(ω) dω

]
=

e−r(T−t)

2π

∫ iℑ(ω)+∞

iℑ(ω)−∞
e−iωx(T )IEQ

(
e−iωx(T )

)
ĝ(ω)

=
e−r(T−t)

2π

∫ iℑ(ω)+∞

iℑ(ω)−∞
e−iωx(T )φT (−ω)ĝ(ω)dω

Corollary 4.5.1. : (Characteristic formula for an early exercise Option).

Consider an American option within the time horizon, t ≤ τ ≤ T , with t being

the initial time, τ is the early exercise time, and T is the maturity time. Suppose

further that the optimal payoff time, τ ∗ < T , is feasible within a stopping region.

The claim g
(
x(τ)

)
early exercise payoff is then expressed as:

g
(
x(τ)

)
=
e−rτ

2π

∫ iℑ(ω)+∞

iℑ(ω)−∞
e−iωx(τ)φτ (−ω)ĝ(ω)dω (4.5.35)

when τ = τ ∗.
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Proof:

The proof follows from theorem 4.5.2 immediately with respect to optimality condi-

tion, which early exercise of American options permits each time the early exercise

time, τ = τ ∗. ■

The corollary is justified following the early exercise possibility of an American-

type option, since one is allowed to exercise at any time, t, even up to the maturity

time, t = T , of the option. By symmetric property as shown earlier in chapter 3,

there exists φτ (−ω) such that ω ∈ Reg S ∩ Sg, and the entire integrand holds by

extension whenever ω ∈ Reg S ∩ Sg.

4.6 STUDY THREE

4.6.1 Numerical Fourier based Transform of the UAEM to
European-style option

In literature including the research study of Carr & Madan (1999), it was said that

“once the characteristic function of a price process furnished with a risk-neutral

density is either known or derived, then an analytical representation of the process

Fourier transform becomes possible”.

Theorem 4.6.1. Let the derived affine characteristic function formula for the

UAEM given in theorem 4.5.2 above be valid. Then an analytic formula of a

European-style option price is:

EcallT (k) =
exp(−αk)

π

∫ ∞

0
e−(rT+iuk)φτ

(
u− (α+ 1)i

)
×
(

α2 + α− u2 − i(2α+ 1)u

α4 + 2α3 + α2 +
(
2(α2 + α) + 1

)
u2 + u4

)
du.

(4.6.1)

Proof:

Considering the characteristic function φ(iw,Xτ , τ), and from the moment-generating-
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function, M(w,Xτ , τ), derived above for the UAEM, we express:

φτ (w) = IE
(
exp(iwSτ )

)
=

∫ ∞

−∞
exp(iwSτ )qτ (Sτ )dSτ (4.6.2)

where τ := Optimal time lying within the time horizon {0 = t0 < t1 < t2 < . . . <

tn = T}.

For a European call Ecall
T (k) which will mature at time t = T given the exercising

price K = ek defined over an underlying stock, S, and qT (s) is the probability

density function of sT = lnST , the fair price, Ecall
T (k), is expressed as the present

value of the expected payoff function given by:

Ecall
T (k) = e−rT

∫ ∞

k

(
es − ek

)
qT (s)ds. (4.6.3)

Carr & Madan (1999) framework which initiated the concept of damping factor in

FFT technique for better numerical results, we express the modified call price by

using a damping factor, α ∈ R+, such that cT (k) = eαk × Ecall
T (k).

To this end, we define ψτ (u) as the Fourier transform depiction of cT (k) and we

have:

ψT (u) =

∫ ∞

−∞
eiukcT (k)dk. (4.6.4)

Then the function describing the call option price is expressed as:

Ecall
T (k) =

exp(−αk)
2π

∫ ∞

−∞
e−iukψT (u)du (4.6.5)

=
exp(−αk)

π

∫ ∞

0

e−iukψT (u)du. (4.6.6)
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ψτ (u) in (4.6.6) is nothing else but the call price Fourier transform expressed as:

ψτ (u) =

∫ ∞

−∞
exp (iuk)cτ (k)dk (4.6.7)

=

∫ ∞

−∞
exp (iuk)× exp(−rT )

∫ ∞

k

exp (αk)
(
es − ek

)
qT (s)dsdk(4.6.8)

=

∫ ∞

−∞
exp(−rT )qT (s)

∫ s

−∞

(
es+αk+iuk − e(α+1+iu)k

)
dkds (4.6.9)

=

∫ ∞

−∞
exp(−rT )qT (s)

∫ s

−∞

(
es+(α+iu)k − e(1+α+iu)k

)
dkds (4.6.10)

By integrating the second integral term with respect to k yields:

ψτ (u) =

∫ ∞

−∞
exp(−rT )qT (s)

[e(α+1+iu)s

α + iu
− e(α+1+iu)s

α + 1 + iu

]
ds (4.6.11)

Further simplification gives:

ψτ (u) = exp(−rT )
[ φτ

(
u− (α + 1)i

)
α2 + α− u2 + i(2α + 1)u

]
(4.6.12)

Rationalising the base gives:

ψτ (u) = exp(−rT )

[
φτ

(
u− (α + 1)i

)
×
((
α2 + α− u2

)
− i(2α + 1)u

)
(
α2 + α− u2︸ ︷︷ ︸

a

+ i(2α + 1)u︸ ︷︷ ︸
b

)(
α2 + α− u2︸ ︷︷ ︸

a

− i(2α + 1)u︸ ︷︷ ︸
b

)]

(4.6.13)

= exp(−rT )

[
φτ

(
u− (α + 1)i

)
×
((
α2 + α− u2

)
− i(2α + 1)u

)
(
α2 + α− u2 + i(2α + 1)u︸ ︷︷ ︸

(a+b)

)(
α2 + α− u2 − i(2α + 1)u︸ ︷︷ ︸

(a−b)

)]

(4.6.14)

Applying the concept of factorisation by the difference of two squares implies the
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denominator could reduce to:

ψτ (u) = exp(−rT )× φτ

(
u− (α + 1)i

)[ (
α2 + α− u2

)
− i(2α + 1)u(

α2 + α− u2
)2

︸ ︷︷ ︸
a2

−
(
i2(2α + 1)2u2

)
︸ ︷︷ ︸

b2

]

(4.6.15)

The negative sign in the denominator became positive since i2 = −1, thus we ob-

tained

ψτ (u) = exp(−rT )φτ
(
u−(α+1)i

)
×

[ (
α2 + α− u2

)
− i(2α + 1)u(

α2 + α− u2
)2

+
(
(2α + 1)2u2

)
︸ ︷︷ ︸

q︷ ︸︸ ︷
a2 + b2

]
(4.6.16)

Henceforth, we suppress a and b as they were just for simplification ease purpose.

ψτ (u) = e−rTφτ

(
u− (α+ 1)i

)
×

[ (
α2 + α− u2

)
− i(2α+ 1)u(

α4 + 2α3 + α2 − 2(α2 + α)u2 + u4
)
+
(
4α2 + 4α+ 1

)
u2

]
(4.6.17)

Finally,

ψτ (u) = e−rTφτ

(
u− (α + 1)i

)
×

(
α2 + α− u2 − i(2α + 1)u

α4 + 2α3 + α2 +
(
2(α2 + α) + 1

)
u2 + u4

)
(4.6.18)

Upon the substitution of equation (4.6.18) into (4.6.7), the analytical form of the

option price is given as:

EcallT (k) =
exp(−αk)

π

∫ ∞

0
e−iuke−rTφτ

(
u− (α+ 1)i

)
×
(

α2 + α− u2 − i(2α+ 1)u

α4 + 2α3 + α2 +
(
2(α2 + α) + 1

)
u2 + u4

)
du.

(4.6.19)

The analytic formula of the European-style option price in (4.6.19) is equivalently
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stated as:

EcallT (k) =
exp(−αk)

π

∫ ∞

0
e−(rT+iuk)φτ

(
u− (α+ 1)i

)
×
(

α2 + α− u2 − i(2α+ 1)u

α4 + 2α3 + α2 +
(
2(α2 + α) + 1

)
u2 + u4

)
du.

(4.6.20)
This concludes the proof.

4.6.2 Extension of the formulation to American-type op-
tions

In order to extend the formulation to American-type options, we consider summing

both the European call Fourier price Ecall
T (k) and the early exercise premium price

P (t) to attain the American call price At≤T given by:

At≤T = Ecall
T (k) + Pt, where k = logeK. (4.6.21)

The early premium price Pt is a well-defined determinable price function such

that lim
t→T

Pt = 0, for the American call option because at maturity time, the

continuation region varnishes and therefore, there does not exist waiting time to

any further extent. This implies that as the option attains its maturity date, it

must be exercised at time t = T if it is yet to be exercised at early time t < T prior

to the maturity time T . This means that American option prices will be exactly

equal to the price of European option when the maturity date, T , is reached.

Therefore,

At(k) =
exp(−αk)

π

∫ ∞

0

e−(rT+iuk)×
(φτ(u− (α + 1)i

)(
α2 + α− u2 − i(2α + 1)u

)
α4 + 2α3 + α2 +

(
2(α2 + α) + 1

)
u2 + u4

)
du + Pt.

(4.6.22)

In order to extend FFT algorithm to American options computation for the model

presented above, with emphasis on economy recession induced uncertainty, we revisit

79



the definition of Fast Fourier Transform (FFT) in what follows

H(k) =
N−1∑
j=1

e−i
2π
N

(j−1)(k−1)yj, 1 ≤ k ≤ N. (4.6.23)

Applying FFT algorithm to (4.6.22) yields:

Aτ (ku) ≈
exp(−αk)

π

N∑
j=1

e−iuj(−ϖ + ζ(u−1)) ψT (uj)η + Pt. 1 ≤ u ≤ N, (4.6.24)

where 1 ≤ u ≤ N , ku = −ϖ + ζ(u− 1) and 2ϖ = ζN.

ζ represents the consistent spacing size in N values of the logarithm strikes K. By

setting uj = (j − 1)η, and substituting in equation (4.6.24), we have

Aτ (ku) ≈
exp(−αk)

π

N∑
j=1

e−iujζη(j−1)(u−1) eiϖujψT (uj)η + Pt. 1 ≤ u ≤ N. (4.6.25)

The consistent spacing size, ζ, in N -values of k is related as shown below

ζ =
2π

ηN
⇐⇒ ζη =

2π

N
. (4.6.26)

It is easy to observe such relation if one compares the equations (4.6.23) and (4.6.25).

Smaller values assigned to η improves the fineness of the integration grid. The

converse is that the larger the values of η, the worse the integration grid becomes.
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4.7 STUDY FOUR

4.7.1 Numerical Experiment

We present simulation results based on the first formulation in the following.

Let S be an American-style tradeable stock with initial price S0 = 100, the strike

price K = 80, the risk-neutral interest rate, r = 0.04, the dividend rate q = 0.002,

the time to expiration T = 1year, Volatilities σ∗ = 0.1, σrec = {0.00, 0.025}, the

integrability parameter α = 0.25, and the fineness of integration grid set to N = 212.

The value of the call option on the chosen underlying American-style tradeable stock

is presented in the table below.
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Table 4.1: The Options value comparison via FFT method versus BSM & American
option Pricing solver

Volatility Dividend BSM American Option FFT Exercising
{σ∗, σrec} (q) Price Pricing Solver Price Time (yr.)

0.1, 0.000 0.002 20.249557 20.249556 20.398278
1

12

0.1, 0.025 0.002 20.249557 20.249556 20.398278
1

12
0.1, 0.000 0.002 20.746027 20.746026 20.894006 0.25
0.1, 0.025 0.002 20.746157 20.746127 20.894135 0.25
0.1, 0.000 0.002 21.484649 21.484550 21.631524 0.5
0.1, 0.025 0.002 21.491432 21.490722 21.638307 0.5
0.1, 0.000 0.002 22.949394 22.948914 23.094093 1
0.1, 0.025 0.002 23.009897 23.009970 23.154597 1

Source: Author’s simulation result.

The table 4.1 shows the options prices comparison among FFT-method, Black-

Scholes-Merton prices and American pricing solver App. Considering four (4) panels

of results with respect to economy recession volatility uncertainty values incorpo-

rated, we compared the option’s returns for the economic states. The output is

invariant in price with a very small fraction of maturity time of 1
12

for the two

states of the economy in panel 1. In the second panel where the exercising time

was 0.25year (i.e 3 months), the option’s returns varies at the two economy states,

as the recession volatility causes price inflation which was not different from the

experience of Nigeria recession of 2016. Many investors/traders took advantage of

recession to inflate the price of their goods and services. Similar situation was ob-

served in the last two panels when the exercising time was carried out at 0.5year

and 1year respectively. The recession volatility impacted the option’s prices, being

a call-option type, the payoffs increases a little bit than when the economy was to

be in a recessed-free state. Graphical illustration are given as follows.
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Figure 4.1: The Call options values from FFT versus BSM & American-style option
pricing Solver in recession-free state.
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Figure 4.2: The call options output of FFT versus BSM & American-style option
pricing solver under recession induced volatility change.
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Figure 4.3: The Nigerian Flourmill stock price dynamics under economy recession out-
break in 2016 and the Recovery year 2017
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Figure 4.1 shows the graphical representation of the options prices comparison

among Black-Sholes-Merton (BSM), American option solver App. & Fast-Fourier

Transform (FFT) in recession-free state. The graph shows that the FFT-prices out-

performed the other two approaches. No significant variation in options returns

obtained via the BSM & American option solver App. Knowing fully that every

‘kobo’ (Nigerian infinitesimal monetary value) gained or lost in investment counts

a lot and every investor will always wish to guard against losing any amount no

matter how infinitesimal the loss may be. It means that the FFT-price returned

on investment as obtained in the above table will be preferable to investors under

normal circumstances.

Figure 4.2 shows the graphical representation of the options prices comparison

among Black-Sholes-Merton (BSM), American option solver App. & Fast-Fourier

Transform (FFT) during recession state of the economy. Figure 4.2, the FFT-prices

was still seen to have performed better in comparison with the other two approaches.

Significant price variation was observed during the recession state.

Figure 4.3 is a ribbon plot for Nigerian Flourmill stock prices. Two panels of stock

prices of Nigerian Flourmill were collected. The first panel consists of the Nigerian

Flourmill stock prices during the period of economy recession 2016 while the second

panel consists of the Nigerian Flourmill stock prices during the recovery year 2017.

Figure 4.3, the blue surface shows the stock performance as well as the variance

in the prices within the range of time while the wine colour surface generated was

for the Nigerian Flourmill stock prices in the economy recovery year 2017. It was

observed that after some time steps, the Flourmill Stock performance was better

during recovery year compared to when the economy was in recession state. The

implication is that recession has a negative effect on the performance of the stock

price.
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Figure 4.4: The Stock price performance in the time of Nigeria Economy Recession 2016
& Recovery year 2017 of Flourmill stock.

Source: Author’s plotted graph using Flourmill data from Nigerian Stock Exchange website.
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Figure 4.5: The Bar charts presentation of Nigerian Flourmill stock price perfor-
mance during economy recession in 2016 & economy recovery in 2017

Source: Author’s plotted graph using Flourmill data from Nigerian Stock Exchange website.
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Figure 4.6: Nigerian Fourmill stock prices performance in the period of Economy Reces-
sion 2016 & Recovery year 2017

Source: Author’s generated graph left view for Flourmill data during years 2016 & 2017
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Figure 4.7: Surface plot of Flourmill stock data during Nigerian 2016 recession.

Source: Author’s generated graph right view for Flourmill data during years 2016 & 2017
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4.8 Discussion of Result 1

The options values obtained in the table (4.1) shows the effectiveness of the model

formulated. The options prices obtained during recession period very different from

that of the recession-free state indicating recession effect on the stock return. We

also noticed that the options prices obtained via FFT method outperformed those of

the BSM prices and American option pricing Solver software. The figure 4.1 shows

the graphical representation of the options prices comparison among Black-Sholes-

Merton (BSM), American option solver App. & Fast-Fourier Transform (FFT) in

recession-free state. The graph shows that the FFT-prices outperformed the other

two approaches. No significant variation in options returns obtained via the BSM &

American option solver App. Knowing fully that every ‘kobo’ (Nigerian infinitesimal

monetary value) gained or lost in investment counts a lot and every investor will

always wish to guard against losing any amount no matter how infinitesimal the loss

may be, this is significant.

Figure 4.2 is a graphical representation of the options prices comparison among

Black-Sholes-Merton (BSM), American option solver App. & Fast-Fourier Trans-

form (FFT) during recession state of the economy. In figure 4.2, the FFT-prices

performed better in comparison with the other two approaches. Significant price

variation was observed during the recession state.

Figure 4.3 is a ribbon plot for Nigerian Flourmill stock prices. Two panels of stock

prices of Nigerian Flourmill were collected. The first panel consists of the Nigerian

Flourmill stock prices during the period of economy recession 2016 while the second

panel consists of the Nigerian Flourmill stock prices during the recovery year 2017.

In Figure 4.3, the blue surface shows the stocks performance as well as the variance in

the prices within the range of time while the wine colour surface generated was for the

Nigerian Flourmill stock prices in economy recovery year 2017. It was observed that

after some time steps, the Flourmill Stock performance was better during recovery

year compared to when the economy was in recession state. The implication is that
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recession has negative effect on the performance of the stock price.

4.9 Conclusion

We introduced the concept of economy recession here under the Result 1 in this

thesis. The effect of economy recession on volatility with respect to options payoff

under some given assumptions was part of our investigation. The characteristic

function of the proposed model UAEM was derived in a closed form and the model

fast Fourier transform was implemented. A numerical based fast Fourier transform,

a variant of Carr & Madan (1999) FFT algorithm was applied to compute the

European call Fourier prices. Under additional assumption suitable for American-

type option valuation, we extended the FFT algorithm to American-type call options

computation by summing up the premium price and the European-type call options

prices.

As part of our findings, we further reported the Nigerian Flourmill stock performance

during recession state and economy recovery year in the study under the same

“Result 1”. This was done to have more insight to the stocks performance in addition

to the assumptions made in our model. The volatility has been seen as the key

parameter for measuring the uncertainty on the stocks output (returns). In other

words, the volatility level determines the magnitude of uncertainties on the stocks’

returns. The stocks volatility rate becomes higher in the state of recession than

recession-free state. It is worth noting that volatility in real life, financial stock

market situation is never constant. The Nigerian Flourmill stock price data was

used for calibration purpose to show that the stocks became more volatile during

the Nigerian recession of 2016 compared to one other period when the economy

is free from recession. Based on the “Assumption 1” under Result 1, Historical

data before recession is hereby suggested to determine the magnitude of economic

recession uncertainty posed on stock’s return.
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RESULT 2

FFT Computation of a class of Multi-assets Options with
Economy Recession Induced Uncertainties

4.10 STUDY FIVE

4.10.1 An overview of the Result 2

The FFT method for a class of correlated Multi-Assets option valuation with respect

to economic recession induced volatility uncertainties is presented under the Result

2. We applied the FFT algorithm of Carr & Madan to compute the option on multi-

assets with emphasis on multi-dimension. Our presentation harnesses the concept

of economy recession induced stochastic volatility uncertainties which is one of the

major foci of this thesis. We present numerical results considering assets in 3-

dimensions for the purpose of an illustration. The major importance of this Result

2 revealed options valuation in both lower and higher dimensions with respect to

FFT algorithm.

4.10.2 Introduction

Generally, multi-assets options are seen as options set in which payoffs are governed

by either double or multi-underlying assets. There are several types of multi-assets

options. A basket of options simply called “Basket Option” is a distinctive class

(i.e example) of Multi-assets option. It is a type of options which operates on the

existence of more than one underlying assets. The underlying assets ranges from

two and above. There exists European type basket option which could be a call or

put option. Moreover, the general value of a basket of assets play significant role for

option on the underlying assets. Without loss of generalities, there exits a form of

American basket option based on the principle of early exercising permissibility up

to the maturity date. Other categories of multi-assets options in existence involve:

Rainbow options, Exchange options, spread option, quanto options etc. Based on

payoff function, several types of multi-assets options are describable.
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Some researchers have worked on multi options pricing (Kwok, Wu, & Yu, 2011;

Yijuan, & Xiuchuan, 2019). The authors Kwok, Yue and Wu, Lixin and Yu,

Hong, (2011) gave an approach for Multi-Asset Options valuation taking into con-

sideration an external barrier. In a more recent year 2019, Yijuan and Xiuchuan,

presents “Variance and dimension reduction which follows Monte Carlo technique

for European-type multi-asset options valuation with stochastic volatilities”. Carol

Alexander et al, (2009) also present “analytic form of approximations for multi-assets

option price valuation”. Nevertheless, the approach used in this part of the thesis

is quite different from that of the above authors but have correlation with some of

the word registers used in options pricing and practices in fast Fourier transform

technique. Such correlation could vividly be seen in Carr & Madan, (1999) method

of using fast Fourier transform algorithm for pricing a single factor European style

options. In recent time, Ulrich and Xiaonyu, (2018) presents “an existence of so-

lutions for a class of stochastic control problem in multi-dimension with a singular

state constraint”.

However, most researchers focused on two-dimensional multi-asset options valuation.

The formulation given by some authors in their studies was in terms of BS-PDE and

further extended considered numerical method to obtain the options prices. The

reader can see study carried out by Yuwei, (2017). In this part of this study, an

attention is given to multi-assets options computation in the presence of economy

recession volatility effect and issue of multi-dimension problem in the valuation

process using the FFT methodology of Carr & Madan, (1999). We present a more

general framework for multi-asset options computation in multi-dimensions.

With reference to Yuwei, (2017), “most multi-asset European-type options as well as

the American-type options has no analytical formula for direct computation of their

prices. Hence, numerical methods are pragmatically applied to obtain numerical

approximations of the prices”. An economy instability effects pose challenges of

uncertainty on assets payoffs especially risky assets such as stock assets. The acute
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economy factor considered in this formulation is recession. As a result of economy

recession, volatility variation is imposed on the term structure of the options pricing

during economy recession state (period) referred to as “economy recession induced

volatility” adding to the usual volatility uncertainty in the financial market which

impacts the price changes.

We applied FFT algorithm in the solution of our formulated pricing model. Many

authors had carried out useful studies on Fourier transform in options valuation.

For instance, see the studies by: Carr & Madan (1999), Oleksandr (2010), Jiexiang,

Wenli, and Xinfeng (2014) among others.

In what follows, we consider options payoff uncertainty posed by economic recession

felt in the volatility parameter of the option prices.

Assumption: Suppose there exists bi-volatility source on the assets classified into

“economic recession induced volatility”, vrec, and the “volatility from other sources”,

v∗, which evolves stochastically in nature. Then the option’s total volatility is

defined as:

V (t) =


vrec + v∗, if the economy is in recession;

v∗, if economy is recession free.

(4.10.1)

where vrec denotes the economy recession induced stochastic volatility of the stocks

in the market attributable to the filtration (that is, the flow of information) from

a recessed economy, and v∗ is taking to be the volatility already available in the

market emanating from other sources.

Under this Result 2, we achieved our stated objective of study (iii). Our major con-

tribution could be felt in a class of multi-assets options computation based on multi-

dimension with respect to economy recession. The remaining part of the “Result

2” is organised in the following sections. Preliminaries on Fast Fourier Transform,

Computational Approach, consisting of the sections: Fast Fourier Transform of a
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class of correlated multi-assets in finite dimensions, Application on three correlated

stock assets, Numerical result presentation in 3-dimensions and conclusion.

4.10.3 The Fast Fourier Transform (FFT) Algorithm

The Fast Fourier Transform (FFT) algorithm is shortly highlighted below.

1. First determine the characteristic function for the asset distribution if not

already known.

2. Derive an analytic representation using Fourier Transform technique for the

modified options price with respect to the characteristic function (ch.f).

3. Find the inverse Fourier transform of the pricing function (p.f).

4. Do the Discrete Fourier Transform (DFT) in the above steps and use Trape-

zoidal rule.

5. Take uniform grid size for the FFT computation in step 4 above.

6. Assigning values to the computational parameters such as the grid size N ,

fineness of integration parameter and the decaying term (α) for optimality,

the risk-neutral interest rates and other parameters in the model required for

the computation.

4.10.4 Fast Fourier Transform of a class of correlated multi-
assets in finite dimension

Suppose there are an n-factor underlying assets Sj, j = 1, 2, · · · , n. Define the

options payoff function H(S,K) at exercising time (maturity time) τ on the chosen

underlying multi-assets by:

H(S,K) =
n∏
j=1

(
c(Sj −Kj)

+
)
. (4.10.2)

The options’ payoff function is further written as:

H(S,K) =
(
c(S1 −K1)

+ · c(S2 −K2)
+ · c(S3 −K3)

+ · · · c(Sn −Kn)
+
)

(4.10.3)
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where the Sj and Kj represent the assets and strike prices respectively. The

(Sj −Kj)
+ =

(
max(Sj −Kj, 0), for each j = 1, 2, ..., n

)
.

In order to maintain transition from call to put option prices, a control switch pa-

rameter c is introduced. Taking the c- value as defined in (4.10.2) and (4.10.3) to

be −1, then put option will be formed and suppose c = +1, then there exists a call

option.

Suppose further that we consider kj, sj
∣∣j = 1, 2, · · · , n as logarithm of the strikes Kj

and take assets Sj prices one after the other. Then, the option values in n-dimension

is given by:

VT (k1, k2, · · · , kn) = IEQ
(
e−rT

(
S1(T )−K1(T )

)+ ·
(
S2(T )−K2(T )

)+ · · ·
(
Sn(T )−Kn(T )

)+)
(4.10.4)

where Q is taken to be an equivalent Martingale measure (risk neutral measure)

while the joint density function is given as qT for each sj(T ), j = 1, 2, · · · , n.

The integral representation of the above equation (4.10.4) is given as:

VT (k1, k2, · · · , kn) =
∫ ∞

k1

∫ ∞

k2

· · ·
∫ ∞

kn

e−rT (es1 − ek1)(es2 − ek2) · · · (esn − ekn)

× qT (s1, s2, · · · , sn)dsn, · · · ds2ds1.
(4.10.5)

Let the characteristic function which corresponds to the joint density be expressed

as:

φ(u1, u2, · · · , un) = IEQ(e∑ iujsj(T )
)

(4.10.6)

φ(u1, u2, · · · , un) =

∫ ∞

−∞
eiu1s1+iu2s2+···+iunsnqT (s1, s2, · · · , sn)dsn · · · ds2ds1.(4.10.7)
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Ensuring the right hand side (RHS) of equation (4.10.5) is square integrability de-

mands taking the product of the decaying term α over kj.

This is given by:

cT (k1, k2, · · · , kn) = eα1k1+α2k2+···+αnkn × VT (k1, k2, · · · , kn), (4.10.8)

where α1, α2, . . . , αn > 0.

The Fourier transform (FT) of the modified call option prices is expressed as:

ψT (u1, u2, ..., un) =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
ei(u1k1+u2k2+···+unkn)cT (k1, k2, · · · , kn)dkn · · · dk2dk1

(4.10.9)

ψT (u1, u2, ..., un) =

∫
· · ·
∫
Rn

e(α1+iu1)k1+(α2+iu2)k2+···+(αn+iun)kn ×

×
∫ +∞

kn

· · ·
∫ +∞

k2

∫ +∞

k1

e−rT
(
(es1 − ek1)(es2 − ek2) · · · (esn − ekn)

)
× qT (s1, s2, · · · , sn) dkn · · · dk2dk1 dsn · · · ds2ds1

(4.10.10)

Further simplification is done as follows:

ψT (u1, u2, ..., un) =

∫
· · ·
∫
Rn

e−rT qT (s1, s2, · · · , sn)

×
∫ sn

−∞
· · ·
∫ s2

−∞

∫ s1

−∞
e−rT

(
(es1 − ek1)(es2 − ek2) · · · (esn − ekn)

)
e(α1+iu1)k1+(α2+iu2)k2+···+(αn+iun)kn× dkn · · · dk2dk1 dsn · · · ds2ds1

(4.10.11)
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which leads to:

ψT (u1, u2, ..., un) =

∫
· · ·
∫
Rn

e−rT qT (s1, s2, · · · , sn) ×

( (
e(1+α1+iu1)s1+(1+α2+iu2)s2+···+(1+αn+iun)sn

)
(α1 + iu1)(1 + α1 + iu1)(α2 + iu2)(1 + α2 + iu2) · · · (αn + iun)(1 + αn + iun)

)
dsn · · · ds2ds1

(4.10.12)

For a calculated affine characteristic function φT or a known characteristic func-

tion of a random process, the derivation of an analytic closed form formula for

ΨT (u1, u2, ..., un) is possible. By definition, the inverse Fourier transform of (4.10.4)

through (4.10.11 - 4.10.12) is given as:

VT (k) =
e−(α1k1+α2k2+...+αnkn)

(2π)n

∫
· · ·
∫
Rn

e−i(u1k1+u2k2+···+unkn)ψT (u1, u2, · · · , un) duk · · · du2du1

(4.10.13)

where k = k1, k2, · · · , kn.

In series form, the integrals could be rewritten by using trapezoidal rule such that the

equation (4.10.13) is transformed to the form:

VT (k) =
e−(α1k1+α2k2+...+αnkn)

(2π)n

N1∑
m1=1

N2∑
m2=1

· · ·
Nn∑

mn=1︸ ︷︷ ︸
n−tuple

e−i(u1,m1k1+u2,m2k2)ψT (u1,m1 , u2,m2 , · · · , un,mn)

︸ ︷︷ ︸
Ω(k1,k2,··· ,kn)

n∏
j=1

hj

(4.10.14)

where

k = k1, k2, · · · , kn;
n∏
j=1

hj = h1h2 · · ·hn, and hj , j = 1, 2, ..., n denotes integration steps here.

If one considers a single asset for instance, see the FFT equation expressed in (4.6.23)

above. Hence, not deviating from the pattern of equation (4.6.23), an n−dimension version
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of yj , j = 1, 2, ..., n, is given in a manner that captures the imaginary part obtainable in

the complex form of yj , which is all encompassing in Fourier transform. We thus have:

ξj |j = 1, 2, ..., n :=

N1−1∑
m1=1

N1−1∑
m2=1

· · ·
N1−1∑
mn=1

e
−i
(

2π
N1

j1m1+
2π
N2

j2m2+···+ 2π
Nn

jnmn

)
yj , j = 1, 2, ..., n.

(4.10.15)

where m1 = 1, 2, ..., N1 − 1,m2 = 1, 2, ..., N2 − 1 respectively.

The steps of integration hj , j = 1, 2, ..., n, in (4.10.14) is chosen uniformly such that

h1 =
u1,m1(
m1 − N

2

) , h2 =
u2,m2(
m2 − N

2

) , · · · , hn =
un,mn(

mn − N
2 ,
)

To this end, consider a uniform grid size of N ×N array.

The uniform spacing size ζ between the N values of vector k with respect to integration

steps hj , j = 1, 2, ..., n and equation (4.10.15) are related as follows.

ζ1h1 = ζ2h2 = · · · = ζnhn =
2π

N
(4.10.16)

The prices of the options VT over logarithm strikes from equation (4.10.14) is thus given

by:

VT (k1,p1 , k2,p2 · · · , kn,pn) ≈ e−(α1k1,p1+α2k2,p2+...+αnkn,pn )

(2π)n
Ω(k1,p1 , k2,p2 , · · · , kn,pn)

n∏
j=1

hj ,

(4.10.17)

where 0 ≤ p1, p2, · · · , pn ≤ N − 1 and

Ω(k1,p1 , k2,p2 , · · · , kn,pn) =

N1−1∑
m1=1

N1−1∑
m2=1

· · ·
N1−1∑
mn=1

e−
2π
N

(
(m1−N

2
)(p1−N

2
)+(m2−N

2
)(p2−N

2
)+···+(mn−N

2
)(pn−N

2
)
)

× ψT (u1, u2, · · · , un)

Remark 4.10.1. (i) Our result given in equation (4.10.17) above is hereby referred
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to as fast Fourier transform formula for computing the price of European call options

on finite n-dimensional underlying multi-assets.

(ii) The European put options value could also be obtained setting the control

parameter c = −1 in equations (4.10.2) - (4.10.3) implies that negative sign is

attached to the logarithm strikes and logarithm assets variation in equation (4.10.4),

and the similar technique is followed throughout to attain at (4.10.17). Alternatively,

applying the principle of put-call parity, the put options values could be obtained.

(iii) Our result here is the extension of Carr & Madan type FFT in R-domain to Rn.

In otherwords, we have been able to extend options valuation on a single underlying

asset to that of options on n-dimensions valuation of European type with Carr &

Madan FFT technique.

4.10.5 Application on three correlated stocks Assets.

Considering asset in 3-dimensions (or three assets). Let Sj | j = 1, 2, 3 be three

underlying assets and strike prices Kj | j = 1, 2, 3 respectively. The payoff function

is defined following the equation (4.10.3) as:

H(S,K) =
(
c(S1 −K1)

+ · c(S2 −K2)
+ · c(S3 −K3)

+
)
, c = +1 for call option.

(4.10.18)

where the Sj and Kj are asset and strike prices respectively.

The option values computational equation in 3-dimension is given as:

VT (k1, k2, k3) = IEQ
(
e−rT

(
S1(T )−K1(T )

)+ ·
(
S2(T )−K2(T )

)+ ·
(
S3(T )−K3(T )

)+)
(4.10.19)
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where Q is an equivalent Martingale Measure (i.e. risk neutral measure) and qT is

taking to be the joint density function of each sj(T ), j = 1, 2, 3.

The integral representation of equation (4.10.19) is given by:

VT (k1, k2, k3) =

∫ ∞

k1

∫ ∞

k2

∫ ∞

k3

e−rT (es1−ek1)(es2−ek2)(es3−ek3)qT (s1, s2, s3)ds3ds2ds1.

(4.10.20)

The characteristic function equivalent to the joint density is explicitly expressed as:

φ(u1, u2, u3) = IEQ(e∑ iujsj(T )
)
, j = 1, 2, 3. (4.10.21)

φ(u1, u2, u3) =

∫ ∞

−∞
eiu1s1+iu2s2+iu3s3qT (s1, s2, s3)ds3ds2ds1. (4.10.22)

Multiply the right hand side of equation (4.10.20) and the decaying term, α, over

k1, k2, k3 for square integrable purpose, the result is thus expressed as:

cT (k1, k2, k3) = eα1k1+α2k2+α3k3 × VT (k1, k2, k3), α1, α2, α3 > 0. (4.10.23)

The modified call option prices Fourier transform is given by:

ψT (u1, u2, u3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ei(u1k1+u2k2+u3k3)cT (k1, k2, k3)dk3dk2dk1 (4.10.24)

ψT (u1, u2, u3) =

∫
R3

e(α1+iu1)k1+(α2+iu2)k2+(α3+iu3)k3 ×

×
∫ +∞

k3

∫ +∞

k2

∫ +∞

k1

e−rT
( (
es1 − ek1

)
(es2 − ek2)(es3 − ek3)

)
× qT (s1, s2, s3) dk3dk2dk1 ds3ds2ds1

(4.10.25)
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Further simplification leads to:

ψT (u1, u2, u3) =

∫
R3

e−rT qT (s1, s2, s3)

×
∫ s3

∞

∫ s2

∞

∫ s1

∞
e−rT

(
(es1 − ek1)(es2 − ek2)(es3 − ek3)

)
× e(α1+iu1)k1+(α2+iu2)k2+(α3+iu3)k3dk3dk2dk1 ds3ds2ds1

(4.10.26)

which reduces to:

ψT (u1, u2, u3) =

∫
R3

e−rT qT (s1, s2, s3)

×
[ (

e(1+α1+iu1)s1+(1+α2+iu2)s2+(1+α3+iu3)s3
)

(α1 + iu1)(1 + α1 + iu1)(α2 + iu2)(1 + α2 + iu2)(α3 + iu3)(1 + α3 + iu3)

]
ds3ds2ds1

(4.10.27)

For a known characteristic function φT of the given distribution, a close form formula

for ΨT (u1, u2, u3) analytically corresponding to the inverse Fourier transform (IFT)

of the chosen 3-dimensional underlying multi-assets is expressed as:

VT (k1, k2, k3) =
e−(α1k1+α2k2+α3k3)

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−i(u1k1+u2k2+u3k3)ψT (u1, u2, u3) du3du2du1.

(4.10.28)

The integrals is rewritten in series form and by trapezoidal rule, (4.10.28) is hence

expressed as:

VT (k1, k2, k3) =
e−(α1k1+α2k2+α3k3)

(2π)3

N1∑
m1=1

N2∑
m2=1

N3∑
m3=1

e−i(u1,m1k1+u2,m2k2)ψT (u1,m1 , u2,m2 , u3,m3)︸ ︷︷ ︸
Ω(k1,k2,k3)

h3h2h1

(4.10.29)

where h1h2h3, is the product of the integration steps.

Recalling that the general equation for FFT is usually expressed in the form:

H(k) =
N−1∑
j=1

e−i
2π
N

(j−1)(k−1)yj, 1 ≤ k ≤ N. (4.10.30)
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for a single underlying asset. Therefore, the 3−dimensional version of yj, j = 1, 2, 3,

in (4.10.30) having it in mind to capture imaginary part of the complex form of yj,

is expressed as:

ξj|j = 1, 2, 3 :=

N1−1∑
m1=1

N1−1∑
m2=1

N1−1∑
m3=1

e
−i
(

2π
N1

j1m1+
2π
N2

j2m2+
2π
N3

j3m3

)
yj, j = 1, 2, 3. (4.10.31)

where m1 = 1, 2, ..., N1 − 1,m2 = 1, 2, ..., N2 − 1,m3 = 1, 2, ..., N2 − 1 respectively.

The integration steps hj, j = 1, 2, 3, in (4.10.29) is uniformly chosen in the sense

that

h1 =
u1,m1(
m1 − N

2

) , h2 =
u2,m2(
m2 − N

2

) , h3 =
u3,m3(
m3 − N

2

)
Consider a uniform grid size N ×N array. Setting the uniform spacing parameter

ζ size between N values of the vector k, with regards to the integration steps hj, j =

1, 2, 3 and equation (4.10.31), the following relation hold

ζ1h1 = ζ2h2 = ζ3h3 =
2π

N
(4.10.32)

The options prices VT over logarithm strikes in equation (4.10.29) is expressed as:

VT (k1,p1 , k2,p2 , k3,p3) ≈ e−(α1k1,p1+α2k2,p2+α3k3,p3 )

(2π)3
Ω(k1,p1 , k2,p2 , k3,p3)h1h2h3, (4.10.33)

where 0 ≤ p1, p2, p3 ≤ N − 1, and

Ω(k1,p1 , k2,p2 , k3,p3) =

N1−1∑
m1=1

N1−1∑
m2=1

N1−1∑
m3=1

e−
2π
N

(
(m1−N

2
)(p1−N

2
)+(m2−N

2
)(p2−N

2
)+(m3−N

2
)(p3−N

2
)
)

× ψT (u1, u2, u3)
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Remark 4.10.2. The next section shows options value using the above method on

three underlying assets or a single asset consisting of three sub-assets.

4.11 STUDY SIX

4.11.1 Application of the method to three correlated stocks
assets.

Consider European call option on vector of underlying assets with Strikes prices

expressed as:

S :=


S1 = 100;

S2 = 105;

S3 = 110.

(4.11.1)

K :=


K1 = 80;

K2 = 85;

K3 = 90.

(4.11.2)

respectively.

Specifying the following parameters: risk neutral interest rate r = 0.04, the dividend

rate d = 0.015, and the exercising time T = {0.5, 1} for all the assets.

Using the FFT-algorithm, and simulation via maplesoft, the results generated were

presented in the following tables. Taking the value of fineness of integration grid

N = 212 and using the same value for integrability parameter α := {α1 = α2 =

α3} = 0.25. Suppose the volatilities evolves stochastically in away that one can

apply the randn(· , ·) function to generate three (3) array of real numbers within the
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open interval (−2, 2) for volatilities from the two sources defined in equation (4.10.1)

in each case. The following results were gotten and documented in the tables below.
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4.11.2 Tables of Result 2

Table 4.2: A dividend compensating (paying) multi-assets European-type call op-
tions returns under double source of volatility

Three underlying Strike prices Volatility Exercising Call Options

Assets prices, S K {σ∗, σrec} Time (year) Prices (FFT)

S1 = 100 80 0.93001, 0.074916 0.5 36.50909180

S2 = 105 85 -1.85574, -0.098738 0.5 58.48441338

S3 = 110 90 0.89337, 1.139327 0.5 62.35039645

S1 = 100 80 0.31079, -0.052239 1 21.65478068

S2 = 105 85 -1.38470, 1.571944 1 21.08179072

S3 = 110 90 0.71091, −0.912938 1 21.13924135

Source: Author’s model simulation result analysis

Table 4.2 shows Call option prices obtained on three underlying assets under the bi-

volatility sources presented above. The Other non-specified parameters values used

are fineness of integration grid point, N = 212, integrability parameter α := {α1 =

α2 = α3} = 0.25, risk-neutral interest rate, r = 0.04, the dividend rate, q = 0.015,

and exercising time, T := {0.5, 1} for all the assets. However, in the market, we

assumed that recession volatility may be measured based on the market price index

with respect to timely recession filtration data. It could also be determined from

Historical volatility of the options which is economy state dependent.
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Table 4.3: Non-dividend paying multi-assets European call options returns under
double source of volatility

Three underlying Strike prices Volatility Exercising The Call Options

Assets prices, S K {σ∗, σrec} Time (year) Prices (FFT)

S1 = 100 80 0.93001, 0.074916 0.5 37.073957451

S2 = 105 85 -1.85574, -0.098738 0.5 59.106692530

S3 = 110 90 0.89337, 1.139327 0.5 63.001682466

S1 = 100 80 0.31079, -0.052239 1 25.097452976

S2 = 105 85 -1.38470, 1.571944 1 24.001337261

S3 = 110 90 0.71091, −0.912938 1 24.407361676

Source: Author’s model simulation result analysis

Considering the similar data used for the parameters specified in Table 4.2 but the

dividend parameter q = 0 being a non-dividend paying type. The result obtained is

presented in the Table 4.3 for European call option prices obtained via FFT-method

on three underlying assets under the bi-volatility sources defined in equation 4.10.1.

The other non-specified parameters values used are fineness of integration grid point,

N = 212, integrability parameter α := {α1 = α2 = α3} = 0.25, risk-neutral interest

rate r = 0.04 and the exercising time, T := {0.5, 1}. It is observed that the FFT-

call options payoff in the table 4.3 outperformed the option prices in the Table 4.2

because 4.3 is a non-dividend paying type. However, the recession volatility has

contributed to the options price variation.
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4.12 Conclusion

Fast Fourier Transform algorithm to compute options price on an underlying multi-

assets with rigorous mathematical computation procedures were fully documented

under the “Result 2”. The highlights of the result presented incorporated the con-

cept of economic recession induced volatility. The Carr & Madan (1999) - type

algorithm of FFT in European-type call options computation proposed for a sin-

gle underlying asset is extended to a class of correlated multi-assets with finite-

dimension. For illustration purpose, numerical values for the approach discussed

here were experimented using maple software. The major importance of the ‘Result

2’ presented here among others are: Rigorous mathematical computational proce-

dure via fast Fourier transform algorithm, extension of Fast Fourier Transform to

a class of multi-assets options valuation, multi-dimensional study, and economic

recession induced volatility concept introduced.
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RESULT 3

Accuracy of Fast Fourier Transform Method with
Control Fineness of Integration grid for Valuation
of American Option

4.13 An overview of Result 3

We present Fast Fourier Transform method with control fineness of integration grid

for the valuation of a non-dividend and dividend compensating American options.

Fourier Transform technique was used in deriving an integral representations for an

American-type options price as well as its moving (free) boundary conditions. The

results was further extended to arrive at a fundamental analytical valuation for-

mula for computing an American call and put options price. Numerical experiments

were presented to show the importance of controlling the fineness of integration

grid parameter. In general, the Fast Fourier Transform method has speed advan-

tage, flexible to implement, and produces accurate prices for an optimal exercise

boundary of the American call option over a wide range of parameters. Without

Loss of generalities, the findings showed that when the integration grid parameter

value becomes minimal, the payoff of the option prices via FFT diverges beyond

normal compared to the payoff obtained through analytical solution via Black Sc-

holes model. Accurate result of the option prices are then obtained when we control

the fineness of integration grid parameter to take values from 23 and above in com-

parison with analytical option prices produced by Black Scholes model. Hence, the

Fast Fourier Transform method with control fineness of integration grid is reliable

and in agreement with the option values obtained through the analytical valuation

formula of Black- Scholes model.
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4.13.1 Introduction

In this Result 3, we achieved our stated objective of study (iv), (v) and (vi). An

American options computation problem is very domineering in mathematical theory

applicable in the field of modern finance. This task involves finding a rational price

satisfying the no-arbitrage principle of the option as well as an optimal stopping

time τ at which the option is to be exercised. Most of the standard options pricing

found in practice are American style in nature due to the early exercise privilege

prior and up to the expiry date. The typical difference between an American option

and European options is in terms of the exercising time. European option is only

exercisable if the maturity date (expiry date) is reached while the American option

is allowed to be exercised by its holder at any time t ≤ T up to the expiry date

T . Whence, American option is more supple (flexible) and eye-catching (attention

grabbing) for investors. Also, the American options owner has more exercise chances

than the owner of the corresponding European options. This makes American op-

tions more expensive than the equivalent European options. An exact solution for

European style options are readily available unlike American style options. It is very

essential to use Numerical experiments while determining the value of an American

style options and for many exotic options. It is common to use uniform spacing

while pricing options via Fast Fourier Transform technique. We wish to investigate

the control fineness of integration grid effect on options computation while using this

technique of fast Fourier transform among other findings under the heading “Result

3”.
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There are scenarios whereby one comes across computation of integral(s) in financial

computation or quantitative analysis of finance. At times the integrals can be com-

puted analytically but in some cases, the integrals can be computed through partial

differential equation, or transformed to numerical integration form before compu-

tation is carried out. In the next study, we gave Factorial function Black-Scholes

PDE.

4.14 STUDY SEVEN

4.14.1 Factorial function Black - Scholes PDE formulation
for Option Pricing

Definition 4.14.1. Let n ∈ N be set of natural numbers. The factorial function

denoted by n! is the function that computes the product of the first n natural

numbers defined by:

n! = n(n− 1) · · · 3 · 2 · 1. (4.14.1)

For large values of n, n! ∼ nne−n, equation (4.14.1) is equivalent to the restriction

of the gamma function to positive integers. The restriction fE(x) of a function f(x)

to a given non-empty set E is the set of pairs ⟨x, y⟩ such that y = f(x) and x ∈ E.

For integral n, the factorial function

n! = Γ(n+ 1) (4.14.2)

Definition 4.14.2. A Gamma function is one of the special functions with the

property that

Γ(z + 1) =

∫ ∞

0

xze−xdx = z Γ(z) (4.14.3)

112



with the real part of z denoted ℜ(z) > −1. Factorial function, which it thus extends

to all real or complex z. The definition in (4.14.3) is due to Euler. Another standard

definition given due to Gauss with z being a non-negative integer is given as:

Γ(z + 1) = lim
n→∞

(
n!nz

(z + 1)(z + 2) . . . (z + n)

)
. (4.14.4)

Proposition 4.14.1. Consider a filtered probability space
(
Ω,F , IP, IF (F)

)
and

X = {Xt : t ≥ 0} an adapted stochastic process satisfying the Stochastic Differen-

tial Equation

dX(t) = n!
(
αX(t)dt+ σX(t)dW (t)

)
, X(t0) = x0 (4.14.5)

where W =
{
W (t) : t ∈ [t ≥ 0]

}
is a Brownian motion, α ∈ R and σ > 0. Then,

the stochastic process X = {Xt : t ≥ 0} known as a geometric or exponential

Brownian motion has an explicit solution given by:

X(t) = x0 exp
{
n!
(
α− σ2

2

)
(t− t0) + n!σ

(
W (t)−W (t0)

)}
(4.14.6)

Theorem 4.14.1. Let S(t) be the price of underlying asset, σ the volatility, r the

risk interest rate and W (t), the Wiener process. Suppose further that the underly-

ing price of the asset S(t) satisfies a random process in the Stochastic Differential

Equation (SDE) given below

dS(t) =
(
n!r +

1

2
n!(n− 1)σ2

)
S(t)dt+ n!σS(t)dWt (4.14.7)
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An explicit solution of the underlying asset price is given as

S(T ) = S(t0) exp
[
n!
(
r +

1

2
(n− 1)σ2

)
(T − t0) + n!σ

(
W (T )−W (t0)

)]
(4.14.8)

Proof. Let

u
(
S(t), t

)
= lnS(t) (4.14.9)

By differentiating equation (4.14.9) partially with respect to S(t) and t, we have:

∂u

∂t
= 0,

∂u

∂S(t)
=

1

S(t)
,

∂2u

∂S2(t)
=

−1

S2(t)
(4.14.10)

On application of Itô’s lemma, with respect to equation (4.14.7), we have:

du
(
S(t), t

)
=
(∂u
∂t

+ f
∂u

∂S(t)
+

1

2
g2

∂2u

∂S2(t)

)
dt+ g

∂u

∂S(t)
dW (t) (4.14.11)

The corresponding values for the functions f and g from the equation (4.14.7) are

given as: 
f =

(
n! r + 1

2
n!(n− 1)σ2

)
S(t)

g = n! σS(t)

(4.14.12)

By substituting equation (4.14.9), (4.14.10) and (4.14.12) into (4.14.11), we have:

d lnS(t) =
[(

0 + n! r +
1

2
n!(n− 1)σ2

)
S(t) · 1

S(t)

]
dt

+
[(n! σS(t)

2

)2
· 1

S2(t)

]
dt+

(
n! σS(t) · 1

S(t)

)
dWt

(4.14.13)

d lnS(t) =
[
n! r +

1

2
n!(n− 1)σ2 −

(
n! σ

)2
2

]
dt+ n! σdW (t) (4.14.14)

The log asset price in (4.14.14) above is seen to be Brownian motion in nature with
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drift and variance parameters n!
(
r + 1

2
(n− 1)σ2

)
− n!2σ2

2
and n!σ respectively.

Integrating the sides of (4.14.14) from t0 to T gives the following equations.

∫ T

t0

d lnS(t) =

∫ T

t0

[
n!
(
r +

1

2
(n− 1)σ2

)
− n!2 σ2

2

]
dt+ n!σdW (t), n ∈ [0, 1).

(4.14.15)

lnS(T )− lnS(t0) =

∫ T

t0

[
n!
(
r +

1

2
(n− 1)σ2

)
− n!2 σ2

2

]
dt+ n!σdW (t), n ∈ [0, 1).

(4.14.16)

ln
(S(T )
S(t0)

)
=

∫ T

t0

n!
(
r +

1

2
(n− 1)σ2

)
dt+ n!

∫ T

t0

σdW (t), n ∈ [0, 1). (4.14.17)

ln
(S(T )
S(t0)

)
= n!

(
r +

1

2
(n− 1)σ2

)∣∣∣T
t0
+ n!σW (t)

∣∣∣T
t0
, n ∈ [0, 1). (4.14.18)

ln
(S(T )
S(t0)

)
= n!

(
r+

1

2
(n−1)σ2

)(
T−t0

)
+n!σ

(
W (t)−W (t0)

)
, S(t0) ̸= 0). (4.14.19)

Taking the exponential of the entire sides yields:

S(T )

S(t0)
= exp

[
n!
(
r +

1

2
(n− 1)σ2

)(
T − t0

)
+ n!σ

(
W (t)−W (t0)

)]
, S(t0) ̸= 0).

(4.14.20)

Equivalent result to equation (4.14.20) is:

S(T ) = S(t0) exp
[
n!
(
r +

1

2
(n− 1)σ2

)(
T − t0

)
+ n!σ

(
W (t)−W (t0)

)]
, S(t0) ̸= 0).

(4.14.21)

Remark 4.14.1.

(i) Setting n = 0, t0 = 0, we know zero factorial is one, then we obtained

S(T ) = S(0) exp
[(
r − 1

2
σ2
)(
T
)
+ σW (T )

]
, S(0) ̸= 0). (4.14.22)
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(ii) Suppose we set W (T ) = Z
√
T .

Then we have

S(T ) = S(0) exp
[(
r − 1

2
σ2
)(
T
)
+ σZ

√
T
]
, S(0) ̸= 0). (4.14.23)

(iii) The equation (4.14.23) is a log-normal distribution of the underlying stock.

Equivalently, one will say that plain vanilla option is log-normally distributed.

To this end, we wish to give an explicit formula for an arbitrary financial derivative

written on Stock S(t) in the form of partial differential equation in (4.14.24) based

on our formulation in the following sense:

Let h ∈ Cn, n ≥ 2 ∈ Z, be an arbitrary at least twice continuously differentiable

function written on S(t).

The partial differential equation for h is written as:

∂h

∂t
+ n!

(
r +

1

2
(n− 1)σ2

)
S(t)

∂h

∂S(t)
+

1

2

(
n!σS(t)

)2 ∂2h

∂
(
S(t)

)2 − rh = 0 (4.14.24)

The popular Black - Scholes PDE can be obtained from equation (4.14.24) above

by setting n = 1 as 1! = 1.

Hence (4.14.24) reduces to:

∂h

∂t
+ rS(t)

∂h

∂S(t)
+

1

2
σ2S2(t)

∂2h

∂S2(t)
= rh (4.14.25)

which is Black and Scholes pde.

Without loss of generality, many standard options may be written in the form of

(4.14.24) with their respective boundary conditions.
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For example, consider a non dividend paying European style option E
(
S(t), t = T

)
.

For European call and put option on S(t), setting h = Ecall
(
S(t), T

)
≡ Ecall and

Eput
(
S(t), T

)
= Eput respectively, we have:

∂Ecall

∂t
+n!

(
r+

1

2
(n−1)σ2

)
S(t)

∂Ecall

∂S(t)
+
1

2

(
n!σS(t)

)2∂2Ecall

∂S2(t)
−rEcall = 0 (4.14.26)

subject to boundary conditions:

lim
S(t)→∞

Ecall
(
S(t), T

)
= ∞ on [0, T ], S > 0. (4.14.27)

Ecall
(
S(t), T

)
= ϕ

(
S(t)

)
=
(
S(t)−K

)+
on [0, T ] (4.14.28)

Ecall
(
0, T

)
= 0 on [0, T ]. (4.14.29)

Similarly, for put, we have:

∂Eput

∂t
+n!

(
r+

1

2
(n−1)σ2

)
S(t)

∂Eput

∂S(t)
+

1

2

(
n!σS(t)

)2∂2Eput

∂S2(t)
− rEput = 0 (4.14.30)

subject to boundary conditions:

lim
S(t)→∞

Eput
(
S(t), T

)
= 0 on [0, T ], S(t) > 0. (4.14.31)

Eput
(
S(t), T

)
= ϕ

(
S(t)

)
=
(
K − S(t)

)+
0n [0, T ] (4.14.32)

Eput
(
0, T

)
= Ke−r(T−t) on [0, T ]. (4.14.33)
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The equations (4.14.26) and (4.14.30) are the generalisation of the popular Black

and Scholes PDE for European options with specified values for n ∈ Z. The solution

are easy to be obtained following the same procedure for solving Black and Scholes

PDE.

Remark 4.14.2. For American-style options, we use moving boundary conditions

(free boundary conditions) as shown in what follows.

4.14.2 Moving Boundary for American Options

A striking difference in European and American style options with respect to the

equations (4.14.26) to (4.14.30) is that we must formulate American style options

in subject to moving (free) boundary problems. The task is to determine the ap-

propriate exercise time for the option knowing fully that American options can be

exercised at any time up to expiry date.

4.14.3 Determination of Optimal Exercise Boundaries for

American Put Options

Suppose Aput
(
S(t), T

)
is the value of an American put option at a given time, t, on

an asset S(t) = S. Then we have the expression below that:

Aput
(
S(t), T

)
≥ max

(
K − S(t), 0

)
. (4.14.34)

This is necessary to prevent an arbitrage opportunity.

Naturally, one will exercise the American put option Aput
(
S(t), T

)
when S(t) = S,

becomes very negligible. In this case, it is expedient to have an optimal exercise
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boundary given by S∗ = S∗(t). Whenever S∗ ≤ S∗(t) at a time, t, the put option

must be exercised but if S > S∗(t), then it is not optimal to exercise the option at

the time, t < T .

Hence, for S > S∗(t), the American put option:

Aput
(
S, T

)
> max

(
K − S(t), t

)
. (4.14.35)

In a continuation region defined by

C :=
{(
S, t
) ∣∣∣S > S∗(t)

}
, (4.14.36)

the price of the option satisfy the classical Black − Scholes pde by setting n = 0 in

equation (4.14.24) which we write as:

∂Aput

∂t

(
S(t), T

)
+

1

2
σ2S2∂

2Aput

∂S2(t)

(
S(t), T

)
+ rS

∂Aput
(
S(t), T

)
∂S(t)

= rAput
(
S(t), T

)
(4.14.37)

subject to, S > S∗(t), t < T.

We need some other additional conditions that must be satisfied in order to have

a suitable explicit formula for the American put option, this we discuss in what

follows.

If S = S∗(t), one can exercise the option and then its payoff will be exactly its

exercise value leading to the boundary condition given by:

Aput
(
S(t), t

)
= max

(
K − S∗(t), 0

)
= K − S∗(t). (4.14.38)
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The condition given in equation (4.14.38) above is for equation (4.14.37).

Another boundary condition which we impose on the pricing problem of American

put option is given by:

Aput
(
S(t), T

)
= max

(
K − S, 0

)
, (4.14.39)

which implies that the option must be exercised at the maturity date, T , if we have

not exercised the option at time, t < T .

The final condition to uniquely solve the problem is the smooth pasting condition

which we defined by:

∂Aput

∂S

(
S(t), t

)
=

∂

∂S

(
K − S∗(t)

)
= −1. (4.14.40)

The equations (4.14.37)-(4.14.40) form the anticipated moving (free) boundary prob-

lem for the American put option.

4.15 STUDY EIGHT

4.15.1 Fourier transform Solution steps of the Factorial func-
tion Black-Scholes pde formulation for American Op-
tions

In attempt to solve the pde representation of the American Option depicted in

equation (4.14.37) subject to the moving boundary conditions in equation (4.14.38,

4.14.39, 4.14.40) respectively highlighted earlier, we adopted Fourier transform ap-

proach using some properties of Fourier transform and change of variables technique.

Suppose the stochastic variation of an American Stock, S, is driven by the Stochastic
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Differential Equation

dS(t) =
(
n!r +

1

2
n!(n− 1)σ2 − q

)
xt
S(t)dt+ n!σxtS(t)dWt (4.15.1)

whose pde representation is given as:

∂Aput

∂t

(
S(t), T

)
+

1

2
σ2S2∂

2Aput

∂S2(t)

(
S(t), T

)
+ rS

∂Aput
(
S(t), T

)
∂S(t)

= rAput
(
S(t), T

)
.

(4.15.2)

The following change of variables were made at constant interest rate r, and volatility

σ.

Let τ : t 7→ T − t such that ∂A
∂t

7→ −∂A
∂τ
. The pde (4.15.2) in backward time becomes:

−∂A
put

∂τ

(
S(t), T

)
+
1

2
σ2S2∂

2Aput

∂S2(t)

(
S(t), T

)
+ rS

∂Aput
(
S(t), T

)
∂S(t)

− rAput
(
S(t), T

)
= 0.

(4.15.3)

Equivalently given as:

∂Aput

∂τ

(
S(t), T

)
=

1

2
σ2S2∂

2Aput

∂S2(t)

(
S(t), T

)
+ rS

∂Aput
(
S(t), T

)
∂S(t)

− rAput
(
S(t), T

)
(4.15.4)

By considering the logarithm of the American stock defined by y := ln(S(t)) as

S(t) 7→ lnS(t) whose options value is denoted by A(S, t) in the pde at a time t base

on the new variables. The derivatives are now transformed as follows.

∂A(S, t)

∂S(t)
=

∂A(S, t)

∂y
· ∂y

∂S(t)
=
∂A(S, t)

∂y
· ∂ lnS(t)
∂S(t)

(4.15.5)
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which reduces to:

∂A(S, t)

∂S(t)
=

1

S(t)

∂A(S, t)

∂y
. (4.15.6)

Similarly,

∂2A(S, t)

∂S2(t)
=

∂

∂S(t)
· ∂A(S, t)

∂S(t)
=

∂

∂S(t)

( 1

S(t)

∂A(S, t)

∂y

)
(4.15.7)

∂2A(S, t)

∂S2(t)
=

1

S(t)

∂

∂S(t)

∂A(S, t)

∂y
+ − 1

S2(t)

∂A(S, t)

∂y
(4.15.8)

∂2A(S, t)

∂S2(t)
=

1

S(t)

( ∂y

∂S(t)
· ∂

∂y

)∂A(S, t)
∂y

− 1

S2(t)

∂A(S, t)

∂y
(4.15.9)

Substituting for
∂y

∂S(t)
=

1

S(t)
yields the following

∂2A(S, t)

∂S2(t)
=

1

S(t)

( 1

S(t)

)
· ∂

∂y

∂A(S, t)

∂y
− 1

S2(t)

∂A(S, t)

∂y
(4.15.10)

∂2A(S, t)

∂S2(t)
=

1

S2(t)
· ∂

2A(S, t)

∂y2
− 1

S2(t)

∂A(S, t)

∂y
(4.15.11)

Factorising
1

S2(t)
, we obtained

∂2A(S, t)

∂S2(t)
=

1

S2(t)

(
∂2A(S, t)

∂y2
− ∂A(S, t)

∂y

)
. (4.15.12)

Next, we substitute equation (4.15.6) and (4.15.12) in the pde representation given

in (4.15.4) as follow.

∂Aput

∂τ

(
S(t), T

)
=

1

2
σ2S2∂

2Aput

∂S2(t)

(
S(t), T

)
+ rS

∂Aput
(
S(t), T

)
∂S(t)

− rAput
(
S(t), T

)
(4.15.13)

Based on the initial dynamics of the stock given as:

dS(t) =
(
n!r +

1

2
n!(n− 1)σ2 − q

)
xt
S(t)dt+ n!σxtS(t)dWt (4.15.14)

122



We first revert the pde (4.15.13) to the form:

∂Aput

∂τ

(
S(t), T

)
=

1

2
(n!)2σ2S2 ∂

2Aput

∂S2(t)

(
S(t), T

)
+n!

(
r− 1

2
(n− 1)σ2

)
S(t)

∂Aput
(
S(t), T

)
∂S(t)

− rAput
(
S(t), T

)
(4.15.15)

and then make the substitution for the derivatives so that we have the following

equations.

∂A

∂τ

(
St, T

)
=

1

2
(n!)2σ2S2

t

1

S2
t

(
∂2A(S, t)

∂y2
− ∂A(S, t)

∂y

)
+n!

(
r− 1

2
(n−1)σ2

)
St

1

St

∂A(S, t)

∂y
− rA

(
St, T

)
(4.15.16)

which reduces to:

∂A

∂τ

(
St, T

)
=

1

2
(n!)2σ2

(
∂2A(S, t)

∂y2
− ∂A(S, t)

∂y

)
+n!

(
r− 1

2
(n−1)σ2

) ∂A(S, t)
∂y

−rA
(
St, T

)
. (4.15.17)

∂A

∂τ

(
St, T

)
=

1

2
(n!)2σ2 ∂

2A(S, t)

∂y2
+ n!

(
− n!σ2

2
+
(
r− (n− 1)σ2

2

))∂A(S, t)
∂y

− rA
(
St, T

)
(4.15.18)

We are now set to take the Fourier transform of the derivatives with respect to the

independent variable y := lnS(t) as follows:

F
(∂A
∂τ

(
St, T

))
=

(n!)2

2
σ2 F

(∂2A(S, t)
∂y2

)
+n!

(
−n!σ

2

2
+
(
r− (n− 1)σ2

2

))
F
(∂A(S, t)

∂y

)
−F

(
rA
(
St, T

))
.

(4.15.19)

The above transformation results to an ordinary differential equation of the form:

∂Â

∂τ

(
St, T

)
= −1

2
(n!)2σ2 ω2Â(St, T ) +n!

(
− n!σ2

2
+
(
r− (n− 1)σ2

2

))
iωÂ− rÂ

(
St, T

)
(4.15.20)

Solving the above equation yields:

Â = Â0 e
−rτ exp

[
− 1

2
(n!)2σ2 ω2τ + iωn!

(
− n!σ2

2
+
(
r − (n− 1)σ2

2

))
τ

]
, Â0 ̸= 0, n ∈ Z+

(4.15.21)

With different values of n ∈ Z+, various solution will emanate from the generalized

solution (4.15.21). For an illustration, setting n = 0 with 0! = 1, we have a solution
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of the form:

Â = Â0 e
−rτ exp

[
− σ2

2
ω2τ + iω

(
r +

σ2

2

)
τ

]
(4.15.22)

For n = 1, 1! = 1, the solution in equation (4.15.21) reduces to the form:

Â = Â0 e
−rτ exp

[
− σ2

2
ω2τ + iω

(
r − σ2

2

)
τ

]
(4.15.23)

Next by considering Fourier transform such that we set say µ =
(
σ2

2
− r
)
τ and

s = σ
√
τ . The term:

e−rτ exp

(
− σ2

2
ω2τ + iω

(
r − σ2

2

)
τ

)
= F

[
1

σ
√
2πτ

exp

(
− 1

2

(y − (σ2

2 − r
)
τ

σ
√
τ

)2)]
(4.15.24)

Choosing the solution in equation (4.15.23) with respect to (4.15.24) yields:

Â(y, τ) = Â0
1

σ
√
2πτ

e−rτF

[
A0 · exp

(
− 1

2

(y − (σ2

2
− r
)
τ

σ
√
τ

)2)]
(4.15.25)

In the next step of solution, we take the inverse Fourier transform in order to revert

to the normal form as follows.

A(y, τ) =
1

σ
√
2πτ

e−rτ
∫ ∞

−∞
A0(z) exp

(
− 1

2

(
y − z −

(
σ2

2
− r
)
τ

σ
√
τ

)2
)
dz (4.15.26)

Equivalently stated as:

A(y, τ) =
1

σ
√
2πτ

e−rτ
∫ ∞

−∞
A0(z) exp

(
− 1

2

(z − (y + (r − σ2

2

)
τ
)

σ
√
τ

)2
)
dz

(4.15.27)

The final step of solution which entails switching back to the original variables

suitable for the initial setting such that logarithm of the initial American stock

price is defined by y := lnS(t0) and S(t) 7→ lnS(t) whose options value was initially
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denoted by A(S, t). It remains to change the variable z back such that the American

stock price Sτ = ez implies z := lnSτ≤T and the known initial American stock price

at time t0 = 0 is S0. With the possible change of variables highlighted, we have an

analytic formula for the American stock of the form:

A(S, τ) =
1

σ
√
2πτ

e−rτ

∫ ∞

0

A0(ST )
1

ST
exp

(
− 1

2

( lnST −
(
lnS0 +

(
r − σ2

2

)
τ
)

σ
√
τ

)2
)
dST .

(4.15.28)

Equivalently stated as:

A(S, τ) =
1

σ
√
2πτ

e−rτ

∫ ∞

0

A0(ST )
1

ST
exp

(
− 1

2

(
ln
(
ST

S0

)
−
(
r − σ2

2

)
τ

σ
√
τ

)2
)
dST . (4.15.29)

Remark 4.15.1.

(i) The analytical formula for the American option given above demands that the

time τ is the optimal exercising time for the option satisfying τ ≤ T where

T is the maturity time for the option. In other words, the optimal time τ

is an early exercising time which American options allow before expiration of

options’ time life.

(ii) In a setting of log normal distribution, the probability density function (pdf)

for the option’s price is given as:

f(Sτ ) =
1

STσ
√
2πτ

exp

(
− 1

2

(
ln
(
ST

S0

)
−
(
r − σ2

2

)
τ

σ
√
τ

)2
)
. (4.15.30)

Setting parameters, interest rate r = 0.2, σ = 0.02, S0 = 100, and T ime, T = 1

year, the following figures for the probability density function were obtained for

range of values of the Option prices S(τ).
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Figure 4.8: Plots of Probability density function f(Sτ ) for a shorter range of Options
prices.

Source: Author’s generated graph for pdf result analysis of equation 4.15.30.
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Figure 4.9: Probability density function f(Sτ ) plots wrt variants of Options prices.
Source: Author’s generated graph for pdf result analysis of equation 4.15.30.
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The figure 4.8 is a graph of probability density function in equation 4.15.30 for a

range of values for St from 100 to 120. The parameters used for the simulation are

declared as: interest rate, r = 0.2, constant volatility rate, σ = 0.02, and exercising

time, T = 1year, the initial asset price, S0 = 100. The mathematical software used

is Maple 2017. The major observation is that the graph begins to curve at ST = 110

up to 120. In order to behold the behaviour of the density function at a wider range

of stocks prices, we extended the range of values for ST and the following graphs

provide more information.

The figure 4.9 shows the graph of the equation 4.15.30 which is the density function

for the model considered. The plot is for range of values for St from 90 to 180. The

same set of parameters used in 4.8 was maintained for the simulation of the figure

4.9 except that a wider range of values for ST was considered. The basic parameters

are: interest rate, r = 0.2, constant volatility rate, σ = 0.02, and exercising time,

T = 1year, the initial asset price, S0 = 100. It was observed that the graph forms

a normal distribution curve although not perfectly visible as normal curve towards

the left hand side.
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Figure 4.10: Plots of Probability density function f(Sτ ) for range of Options prices.
Source: Author’s generated graph for pdf result analysis of equation 4.15.30.
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Figure 4.11: Plots of Probability density functions f(Sτ ) for range of Option prices
with respect to time variation.

Source: Author’s generated Normal Distribution Curve result analysis from equation 4.15.30.
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The figure 4.10 is a graph of the equation 4.15.30, the density function for the fac-

torial function based BS-model. The pdf f(Sτ ) was graphed for a range of stocks

prices, ST , over a range of values from 100 to 190 subject to the model basic pa-

rameters used in the simulation result given in table 4.8. The basic parameters

are: interest rate, r = 0.2, constant volatility rate, σ = 0.02, and exercising time,

T = 1year, the initial asset price, S0 = 100. The shape of the graph is still a normal

distribution but not totally visible for some values at the left hand side.

The figure 4.11 shows the time variation effect on the density function of the

equation (4.15.30). In the above graph, we define the probable exercising time

of an option price on an underlying stock asset Sτ such that τ := {T1, T2, T3} =

{1year, 1.1year, 1.2year} respectively. The aforementioned basic parameters in the

density function remained valid for the above graph. That is, the risk-neutral in-

terest rate, r = 0.2, the constant volatility rate, σ = 0.02, and the initial stock

asset price, S0 = 100. The plot is for a range of values for STi , i = 1, 2, 3 from

60 to 200. Three normal distribution plots was obtained from the plotting of the

derived density function, f(Sτ ) over the specified range for Sτ . From the graph, it

was observed that the options’ probable exercising time T1 = 1year would give a

shorter range of options prices but the highest amplitude along the vertical axis of

the density function F (Sτ ). The highest exercising time T3 = 1.2years would give

the highest range of options prices, i.e the curve in red colour, but has the least am-

plitude among it’s counterpart. The graph is a true representation of an expected

probable option’s returns in a certain condition, that is, the longer the life span of

a traded asset, the better the asset returns (payoff) should be, but the reverse may

be the case under uncertainties situation not limited to economy recession alone.
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4.16 STUDY NINE

4.16.1 Valuation of a dividend paying American put option
under Economy recession induced Volatility uncer-
tainty

Let the stochastic variation of an American Stock, X, be driven by the stochastic

Differential Equation:

dS(t) =
(
n!r +

1

2
n!(n− 1)σ2 − q

)
xt
S(t)dt+ n!σxtS(t)dWt (4.16.1)

where X is a two-state Markov chain which is free to jump from one state to the

other. The parameters in the SDE are interest rate r, volatility σ, dividend rate q,

the underlying stock price S(t), Wiener process Wt and factorial function, n!, with

n ∈ Z+∪{0}. The Wiener process W and the stochastic process X are independent

but both the drift term and the volatility are functions of Xt.

Define

Xt =


1, if the Econonmy is in Expansion state;

2, if the Econonmy is in Recession state.

(4.16.2)

Suppose further that in the stock market, the American style stock X can switch

between the two states described above in the (4.16.2) depending on the state of the

economy. Song-Ping et al., (2012) stressed that the risk associated with switching

from one regime to another is diversifiable and this was in line with the opinion

of Naik, (1993) that one only needs to adjust the rate parameters of the transition

process accounting for non-diversifiable risk. In this study, we incorporate recession

induced volatility uncertainty parameter σxt,2 if the economy is in the state 2 (re-
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cession state) with the assumption that the volatility rate σxt,1 (expansion state) is

less than that of recession state, i.e. σxt,1 < σxt,2 .

Let the transition from one state to the other evolve as a Poisson process such that:

P (τm,n > t) = exp(−λmnt), m, n = 1, 2, m ̸= n (4.16.3)

where λmn denotes the transition rate from m- state to an n- state and τmn is the

time spent in m- state before transiting to n- state. Consider the partial differential

equation representation for a dividend paying American put option Aput(S(t), t) for

(4.16.1) in the light of equation (4.14.30) given as:

∂Aput

∂t
+n!

(
r+

1

2
(n−1)σ2−q

)
S(t)

∂Aput

∂S(t)
+
1

2

(
n!σS(t)

)2∂2Aput
∂S2(t)

−rAput = 0 (4.16.4)

subject to the boundary conditions highlighted in (4.14.38)-(4.14.40) which is nec-

essary to be satisfied by American options in the context of moving boundary. Up-

holding the assumption that risk associated with regime switching is diversifiable

(Song-Ping et al., 2012; and Naik, 1993), the equation (4.16.4) is re-written as:

∂Aput1

∂t
+n!

(
r+

1

2
(n−1)σ2−q

)
S(t)

∂Aput1

∂S(t)
+
1

2

(
n!σS(t)

)2∂2Aput1

∂S2(t)
−rAput1 = λ12(A1−A2)

(4.16.5)
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subject to the boundary conditions:



S > S∗, t < T,

A1(0, t) = Ke−r(T−t),

A1(S, t) = max
(
K − S∗(t), 0

)
= K − S∗(t), if S = S∗.

A1(S(t), T ) = max(K − S, 0), for S = S∗

∂A1

∂S

(
S(t), t

)
= ∂

∂S

(
K − S∗(t)

)
= −1

and when transiting from state 2 back to state 1, we have:

∂Aput2

∂t
+n!

(
r+

1

2
(n−1)σ2−q

)
S(t)

∂Aput2

∂S(t)
+
1

2

(
n!σS(t)

)2∂2Aput2

∂S2(t)
−rAput2 = λ12(A2−A1)

(4.16.6)

subject to the boundary conditions:



S > S∗, t < T,

A2(0, t) = Ke−r(T−t),

A2(S, t) = max
(
K − S∗(t), 0

)
= K − S∗(t), if S = S∗.

A2(S(t), T ) = max(K − S(T ), 0), for S = S∗

∂A2

∂S

(
S(t), t

)
= ∂

∂S

(
K − S∗(t)

)
= −1

where t is the current time, S is the underlying American asset value (stock) value,

r is the interest rate (which we assume to be constant here), K is the strike price,

Am(S, T ) with m = 1, 2 is the option’s value when in state m of the economy and

T is the maturity time of the option if not exercised earlier, at time t < T , and S∗

remain as the optimal exercise boundary. Since we are dealing with an American

option, owing to the fact that an American style option can be exercised at any
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time up to the maturity time. An investor may exercise the option at an optimal

stopping time, t∗, prior to the time of expiry, T , within the region of the optimal

exercise boundary.

Remark 4.16.1. It should be noted that A1 ̸= A2 on the right hand side of the

equations (4.16.5) and (4.16.6) owing to the transition between states and the effect

of recession factor on the stock while in state 2.

On the application of change of variable technique to ease the process of solving

partial differential equation, see (Heston, 1993; Song-Ping et al., 2012), the equations

(4.16.5) and (4.16.6) are written such that Fourier transform technique is applicable

in sequel.

Setting

τm =
σ2
m

2
(T − t)

x = log
( S
K

)
fm(x, τm) =

exAm
K

(S, t ≤ T )

S → x, t→ τ, A→ f

for states m = 1, 2. The above variables are dimensionless and the equations (4.16.5)

- (4.16.6) are transformed to the form:

−∂f1
∂τ1

+
∂2f1
∂x2

+
(2r
σ2
1

− 3
)∂f1
∂x

−
(4r
σ2
1

+ α12 − 2
)
f1 = −β12f2 (4.16.7)
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subject to the boundary conditions:


f1(x, 0) =

(
ex(1− ex)

)+ ≡ (ex − e2x)+

limx→−∞ f1(x, τ1) = 0

limx→∞ f1(x, τ1) = 0

and

−∂f2
∂τ2

+
∂2f2
∂x2

+
(2r
σ2
1

− 3
)∂f2
∂x

−
(4r
σ2
2

+ α21 − 2
)
f2 = −β21f1 (4.16.8)

subject to the boundary conditions:


f2(x, 0) =

(
ex(1− ex)

)+ ≡ (ex − e2x)+

limx→−∞ f2(x, τ1) = 0

limx→∞ f2(x, τ1) = 0

such that from τm =
σ2
m

2
(T − t), we have T − t =

2τm
σ2
m

.

Setting T − t = γm ≡ 2

σ2
m

τm︸︷︷︸
=r

, this implies that γm =
2r

σ2
m

and αmn ≡ 2λmn
σ2
m

, m, n = 1, 2, for m ̸= n.

Remark 4.16.2. All the drift parameters including the interest rate and the divi-

dend have been transformed. We envisage that the volatility in the two states cannot

be equal. In accordance with Bankole et al., (2017), volatility tends to increase dur-

ing economy recession compared to when the economy is in the expansion (growth)

state. Hence, there is need to show relativity between the transition rate from one

state to the other and the volatility from that state which is the major reason for
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writing αmn = 2λmn

σ2
m
.

Before solving the equations (4.16.7) and (4.16.8) using Fourier Transform method,

we wish to examine briefly the solution of differential equations by transformation.

4.16.2 Fourier Transform of Ordinary Differential Equations

Example 4.16.1. Consider an Airy equation of the form g′′ − xg = 0, with the

boundary condition lim|x|→∞ g(x) = 0.

Solution:

Applying Fourier transform of derivative for both x and ω, we have:

F(g′′ − xg) = F(0)

⇒ (iω)2g̃(ω)− ig̃′(ω) = 0

−ω2ĝ(ω)− iĝ′(ω) = 0 (4.16.9)

Equation (4.16.9) is still an ODE which can also be solved through separation of

variables as follows.

iĝ′(ω) = −ω2ĝ(ω) (4.16.10)

ĝ′(ω) =
−ω2ĝ(ω)

i
(4.16.11)

ĝ′(ω)

ĝ(ω)
= −ω

2

i
(4.16.12)
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Integrating the entire sides:

∫
ĝ′(ω)

ĝ(ω)
=

∫
−ω2

i
dω

ln ĝ(ω) = −ω
3

3i
+ c

ĝ(ω) = e
−ω3

3i · ec

ĝ(ω) = ke
−ω3

3i where k = ec; is a constant of integration

∴ ĝ(ω) = ke
−ω3

3 ∵
−1

i
≡ i.

Taking the inverse Fourier transform, one will have:

g(w) =
k

2π

∫ ∞

−∞
ei(wx+

w3

3
)dw. (4.16.13)

Setting k = 1 gives the desired Airy function:

Ai(x) =
1

2π

∫ ∞

−∞
ei(wx+

w3

3
)dw ≡ 1

π

∫ ∞

0

ei(wx+
w3

3
)dw.

4.16.3 Fourier Transform of Partial Differential Equation

Consider PDE in two variables. Transform is done by reducing the number of vari-

ables with derivatives to one and then apply ODE method.

Example 4.16.2. Solve the Laplace equation on the half plane:

∂2u

∂x2
+
∂2u

∂y2
= 0 (4.16.14)
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with boundary conditions

−∞ < x <∞, y > 0, u(x, 0) = g(x), lim
y→∞

u(x, y) = 0.

Solution:

Transforming in the x- variable, the equation below holds:

F (w, y) =

∫ ∞

−∞
e−iωxu(x, y)dx. (4.16.15)

Since the derivative in y commutes with the Fourier integral in x, denote the trans-

form of uyy as Fyy. Therefore the Fourier transform of the equation (4.16.14) became:

F(uxx + uyy) = F(0) subject to the boundary conditions in (4.16.14)

(iω)2F + Fyy = 0

−ω2F + Fyy = 0

F (w, 0) = ĝ(ω), lim
y→∞

F (w, y) = 0.

Solving the set of the ODEs above for w one for each, we obtain:

F = k1E
+|w|y+k2e−|w|y

, (4.16.16)

the constants k1 and k2 depends on w. With respect to the boundary conditions, F

can only varnish at infinity provided we set the first term to be zero. Hence using

F (w, 0) = ĝ(w), then

F (w, y) = ĝ(w)e−|w|y. (4.16.17)
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The inverse Fourier transform consists of a convolution and exponential in w. Taking

the inverse Fourier Transform invF of equation 4.16.17, the following equations holds:

u(x, y) = g(x) ∗ invFT (e−|w|y)

= g(x) ∗
( y

π(x2 + y2)

)

u(x, y) =
1

π

∫ ∞

−∞

yg(x0)

(x− x0)2 + y2
dx0. (4.16.18)

Remark 4.16.3. Following the knowledge of Fourier transform of differential equa-

tions presented in the examples above and using the conventional representation

given by Song-Ping et al., (2012), we proceed the transformation of the equations

(4.16.7) and (4.16.8) in what follows.

F
(
fm(x, τm)

)
= F

(exAm(S, t ≤ T )

K

)
(4.16.19)

F
(
fm(x, τm)

)
=

∫ ∞

−∞
e−iωx fm(x, τm)dx = f̂m(ω, τm) (4.16.20)

where i =
√
−1.

The following systems of ODE emerged from (4.16.7) and (4.16.8) respectively given

by: ( d

dτ1
+ α12(ω)

)
f̂1(ω, τ1) = β12f̂2(ω, τ1) (4.16.21)

with the boundary conditions:


f̂1(x, 0),= f̂0 = F

(
ex(1− ex)

)+
=

∫ ∞

−∞

(
ex(1− ex)

)
e−iωxdx =

1

(1− iω)(2− iω)

df̂1
dτ1

∣∣∣
τ1=0

+ α12(ω)f̂0 = β12f̂0
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and ((σ1
σ2

)2 d

dτ1
+ α21(ω)

)
f̂2(ω, τ1) = β12f̂1(ω, τ1) (4.16.22)

with boundary conditions:


f̂2(x, 0) ≡ f̂0 = F

(
ex(1− ex)

)+
=

∫ ∞

−∞

(
ex(1− ex)

)
e−iωxdx =

1

(1− iω)(2− iω)
,(σ1

σ2

)2df̂2
dτ1

∣∣∣
τ1=0

+ α21(ω)f̂0 = β21f̂0

with αmn(ω) = ω2 − iω(γm − 3) + (2γm + βmn − 2), m, n = 1, 2, m ̸= n, γm =
2r

σ2
m

and βmn ≡ 2λmn
σ2
m

, m, n = 1, 2 for m ̸= n.

The solution of the first-order system of linear ordinary differential equations is given

respectively by:



f̂1(ω, τ1) = f̂0

([
β12 − k2 − α12(ω)

]
ek1τ1 −

[
β12 − k1 − α12(ω)

]
ek2τ1

k1 − k2

)
, k1 ̸= k2,

f̂2(ω, τ2) = f̂0

([
β21 − Φk2 − α21(ω)

]
eΦk1τ2 −

[
β21 − Φk2 − α21(ω)

]
eΦk2τ2

(k1 − k2)Φ

)
, k1 ̸= k2

where Φ =
(σ1
σ2

)2
, and f̂0 = F

(
ex(1− ex)

)+
=

∫ ∞

−∞

(
ex(1− ex)

)
e−iωxdx

=
1

(1− iω)(2− iω)
,

k1,2 = −α12(ω)

2
− α21(ω)

2Φ
±

√[
Φα12(ω)− α21(ω)

]2
+ 4Φβ21β12

2Φ

From equation (4.16.20), using the property of inverse Fourier transformation which

is required to recover the options value, we have:

fm(x, τm) = F−1

(
F
(
fm(x, τm)

))
=

1

2π

∫ ∞

−∞
f̂m(ω, τm)e

−iωxdω, m = 1, 2

(4.16.23)
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The equation (4.16.23) is the solution of the transformed ODEs presented for the

option prices which incorporated moving boundary condition for American options

valuation in this case. The numerical value of the options prices are now computed

using FFT algorithm with the focus on determining the appropriate values of grid

point for obtaining a better performance of options returns. However, an American

options require the determination of the appropriate time to exercise the option.

So we invoke optimal stopping problem formulation into FFT algorithm in Carr &

Madan, (1999).

Definition 4.16.1. A stopping time, t∗, can be well-thought-out as a function

taking value in an interval [0, T ] such that the decision to stop at a time t∗ is

determined based on the information available concerning the asset’s price path say

Su, 0 ≤ u ≤ t∗.

Remark 4.16.4. It is remarkable to point out here that an analytic solution for

European option valuation to a related ODEs problem was presented by Song-Ping

et al, (2012). However, we consider more variables in our formulation and the

boundary conditions considered are more for American options.

4.17 Numerical Results

This section shows numerical approximations of American call options valuated

using FFT and compare with analytic Black - Scholes model prices. The analytic

Black-Scholes payoffs were taken as the benchmark for comparing the payoffs of the

option at various grid points for fast Fourier transform prices (FFT). Considering

the flexibility of American style options that permits early exercise, we express the
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American Fourier prices as the sum of early exercise premium and European Fourier

prices using FFT algorithm of Carr & Madan (1999) to handle the European Fourier

prices. Let the value of American option VAmer be expressed as the addition of

European option VEur(T ) and the Early exercise premium price P (t). This we give

as:

VAmer = VEur(T ) + Pt, (4.17.1)

where lim
t→T

P (t) → 0.

4.17.1 American call Option Payoffs with Dividend

Consider a stock with an initial price S0 = 110, Strike price K = 100, Risk-neutral

interest rate r = 0.05, Dividend rate q = 0.03, Time to Maturity, T = 4years,

Volatility σ = 0.35, Integrability Parameter α = 3, Fineness of integration grid

point N = 2n, n = 1, 2, 3, · · · , 15. The above specified basic parameters values were

used to generate the simulation results in the following tables 4.4 - 4.7 in addition

to the specified grid points in each case.
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Table 4.4: A dividend paying American call Option prices under variant Grid points

FFT Grid Points BSM Price FFT Price Metrics

BSM-FFT

21 33.12906368 59.1502292543738 26.021165574

22 33.12906368 35.3173716785242 2.188307999

23 33.12906368 33.1303231018313 0.001259422

24 33.12906368 33.1253535065033 0.003710173

25 33.12906368 33.1253534977647 0.003710182

26 33.12906368 33.1253532564758 0.003710424

27 33.12906368 33.1303231018313 0.001259422

28 33.12906368 33.1253535065033 0.003710173

29 33.12906368 33.1253534977647 0.003710182

210 33.12906368 33.1253532564758 0.00371042

211 33.12906368 33.1253532564758 0.00371042

212 33.12906368 33.1303231018313 0.001259428

213 33.12906368 33.1253535065033 0.003710173

214 33.12906368 33.1253534977647 0.003710182

215 33.12906368 33.1253532564758 0.003710424

Source: Author’s simulation result analysis 1 via Maple 2017

The table 4.4 shows the simulation results for an American call option price compar-

ison with analytic Black-Scholes model (BSM) and Fast-Fourier-Transform (FFT)

method. For the FFT-price, it was observed that the options price at grid point,

N = 21, 22 were far huge than the benchmark price set as the BSM analytic method.

The metrics BSM-FFT column shows the detail. However, FFT-price for the Amer-

ican option converges to a neighbourhood of the desirable benchmark prices (BSM)

from grid points N3 to N16.
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Table 4.5: The Option prices comparison at specified grid points for FFT method
with BSM price as the benchmark price.

S0 Strike Price K BSM Price FFT @ N = 2 FFT @ N = 23 FFT @ N = 25

100 80 26.0367509 21.9482362226 26.0827767722 26.03618568596

100 90 19.89044278 15.9805352839 19.6997354115 19.89002174025

100 100 14.91294422 11.8010959959 14.6431003793 14.91262066770

100 110 11.01054502 8.84160136154 10.7817092149 11.01029009354

Source: Author’s simulation result analysis 2 using Maple 2017

The Table 4.5 above shows numerical values of the American call option payoff

at various grid points for FFT in comparison with analytic Black - Scholes Model

(BSM). For rate of return r = 0.02, Volatility rate σ = 0.35, dividend rate q = 0.02,

Time t = 1year, Integrability parameter α = 2.5. The FFT-prices at grid point,

N = 2, was far less than the corresponding benchmark prices (BSM). However, for

N = 23, the FFT-prices get better while compared to the analytic Black-Scholes

model pricess (BSM). The best result was achieved for the FFT method at grid

point set to N = 25 as the prices obtained were almost surely converged to the

targeted benchmark prices (BSM).
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Table 4.6: The Option prices at various grid points using integrability parameter
α = 4.9

N S0 K BSM Price FFT Price T year(s)

26 100 80 22.91724060 22.9172404308017 0.5

210 100 80 22.91724060 22.9172405529068 0.5

218 100 80 22.91724060 22.9172404308017 0.5

26 100 80 26.03675091 26.0367506722856 1

210 100 80 26.03675091 26.0367508524346 1

218 100 80 26.03675091 26.0367506722856 1

26 100 80 30.8593226612 30.8593226612457 2

210 100 80 30.8593226612 30.8593229199321 2

218 100 80 30.8593226612 30.8593226612457 2

Source: Author’s simulation result analysis 3 via Maple 2017

In the Table 4.6 above, we show the payoffs of American call options choosing

a higher integrability parameter α = 4.9 for the FFT method, initial asset price

S0 = 100, Strike price K = 80, risk-neutral rate of return r = 0.05, the dividend

rate q = 0.02, volatility rate σ = 0.35, grid pointsN = 2n, n = 6, 10, 18, excercising

time T = 0.5, 1, 2 years. At the three specified grid points, the options price obtained

via the FFT-method were very close to that of the BSM for each maturity time.

The major observation is that the longer the lifespan of options in the market, the

better the options returns. This is synonymous to an anticipating returns of lower

risk investments with compounding interest strategy. However, for risky assets such

as stocks especially under the exposure of uncertainties not excempting recession,

the anticipating investment payoff may not be profitable.
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Table 4.7: The Option prices at various grid points using integrability parameter
α = 2.5

N S0 K BSM Price FFT Price T year(s)

26 100 80 22.91724060 22.9166697933614 0.5

210 100 80 22.91724060 22.9166697809921 0.5

219 100 80 22.91724060 22.9166697859229 0.5

26 100 80 26.03675091 26.0361856517776 1

210 100 80 26.03675091 26.0361856791478 1

219 100 80 26.03675091 26.0361856433266 1

26 100 80 30.85932482 30.8587705200271 2

210 100 80 30.85932482 30.8587705976372 2

219 100 80 30.85932482 30.8587705100108 2

Source: Author’s simulation result analysis 4 via Maple 2017

In the table 4.7 above, we show the payoffs of American call options choosing an

integrability parameter α = 2.5 for the FFT method subject to the same values of

the parameters used in the table 4.6 above. Taking initial asset price S0 = 100, the

strike price K = 80, the options rate of return r = 0.05, dividend rate q = 0.02,

volatility rate σ = 0.35, grid points N = 2n, n = 6, 10, 18, time t = 0.5, 1, 2 years.
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Remark 4.17.1. We compared the performance of using a higher integrability

parameter α = 4.9 to α = 2.5 for Option prices. The numerical results presented

in the tables (4.4) - (4.7) shows that integrability parameter α = 4.9 outperformed

that of α = 2.5 for the FFT method in this study. However, the value assigned to

the parameter, alpha, usually depends on the nature of the model.

4.17.2 Non-dividend paying American call Option Payoffs

In the Table 4.8 in the following page, we show the payoffs for a non-dividend

paying American call options choosing a higher integrability parameter α = 4.9 for

the FFT method, initial Asset price S0 = 100, the Strike price K = 80, options rate

of return r = 0.05, volatility rate σ = 0.35, grid points N = 2n, n = 6, 10, 18, time

t = 0.5, 1, 2 years.
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Table 4.8: The Option prices at various grid points using integrability parameter
α = 2.5

N S0 K BSM Price FFT Price T year(s)

26 100 80 23.77859595 23.778595756644 0.5

210 100 80 23.77859595 23.7785958869413 0.5

218 100 80 23.77859595 23.7785957489258 0.5

26 100 80 27.66637407 27.6663737994014 1

210 100 80 27.66637407 27.6663739954822 1

218 100 80 27.66637407 27.6663737904213 1

26 100 80 34.01615097 34.0161469197921 2

210 100 80 34.01615097 34.0161472109604 2

218 100 80 34.01615097 34.0161469087509 2

Source: Author’s simulation result analysis 5 via Maple 2017

The table 4.8 is a non-dividend paying version of the American call option presented

in the table 4.6. The major observation in the two results is that the non-dividend

paying option prices were more than that of the dividend-paying version. This

result of course is economically feasible as a non-dividend paying investment is more

profitable to the holder than dividend paying type. However, in the table 4.8 above,

the two methods (that is, BSM and FFT) gave almost surely same options payoffs.
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4.18 The Result 3 Analysis

We compared the performance of using a higher integrability parameter α = 4.9 to

α = 2.5 for the Option prices. It is observed that the numerical results presented in

the tables (4.4) - (4.7) with integrability parameter α = 4.9 outperformed that of

α = 2.5 for the FFT method in this study. Hence, models performance in the sense

of FFT for some models requires a careful selection of the fineness of integrability

parameter to achieve better option prices.

4.19 Conclusion

As the fineness of the grid increases, the aliasing error in the return of the option

prices decreases. In other words, increase in the fineness of the grid points for FFT

enhances the convergence of the prices of the options or the underlying assets prices.

From the above table, we obtained more accurate option value at lower grid point of

N = 23 in comparison with Analytical payoff by the BSM. At very lower grid points

below 23, the payoff were not comparable with the BSM as the values of the option

were so high. Hence, in a market where the BSM is the bench mark for option price

evaluation, to alternatively compute option prices via FFT, the fineness of the grid

parameter should be controlled to compute option values at grid points greater than

or equal to 8. However, it is advisable to consider a grid point value up to N = 4096

for an optimal comparable result with other widely used analytical solution via Black

- Scholes model. Finally, the fast Fourier transform method has been commended

to have the capability of increasing the speed of options’ computation as reported

in many literature on Fourier transform of options prices in comparison with most

other methods.
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RESULT 4

A Control Regime - Switching Triple Stochastic
Volatility Heston-like model for Options valuation
in a Recessed Economy

4.20 An Overview of the Result 4

A control regime-switching triple stochastic volatility Heston-like (TSVH) model

is proposed for options valuation in a recessed economy. The model description

involves inclusion of an economy recession induced volatility process driven by its

own Stochastic Differential Equation (SDE) with respect to Double Heston model.

The third volatility process is considered necessary when there is transition of an

economy from the state of normalcy to recession state. Mathematical formulation

and rigorous solution of the proposed triple stochastic volatility Heston-like model

is presented and solved. Some numerical simulations are carried out to compare

volatility smile during recession period and that of Double Heston model during

state of normalcy. The triple Stochastic volatility Heston-like model was able to

capture volatility smile posed by recession factor on the Double Heston model. A

new option pricing model emerged and capable of capturing extra volatility smile

during economy recession on Options. Numerical results were presented to compare

the effectiveness and reliability of the model to the existing ones. The results confirm

that the proposed model is effective and reliable.

4.21 STUDY TEN

The TSVH model

4.21.1 Introduction

The result presented in this part of the thesis shows a new intuition to double Heston

model while pricing an options in a recessed economy. The proposed model as we

shall see shortly allow an inclusion of a recession induced volatility driven by its

own stochastic differential equation to the double Heston model. A binary control

parameter was introduced such that one can switch between the original double
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Heston model proposed by Christoffersen et al., (2009) and the TSVH- model we

proposed here in terms of economy recession induced volatility. However, our stated

objectives (vii), (viii) and (ix) in the Chapter 1 of this thesis were achieved under

this Result 4 as we shall see in the sequel.

4.21.2 Preliminaries to the model formulation

There are standard options pricing models which are considered better in comparison

with the classical Black-Scholes model in terms of generating volatility smile. The

reason is that Black - Scholes model lacks some reality structures. Among the

well known stochastic models used in finance, Heston model is one used for pricing

options. The model can be calibrated utilising the prices of vanilla option and

thereafter used in exotic derivatives pricing. Another stochastic volatility model

among others considered better, an extension of the univariate version of the Heston

stochastic volatility model (Heston, 1993) is Double Heston model (Christoffersen

et al., 2009). The double Heston model was proposed by Christoffersen et al. in

which a second source of variance was introduced to the univariate version of Heston

model 1993 driven by its own Stochastic Differential Equation (SDE). The set of

the SDEs emerged are given in what follows:



dS(t)
S(t)

=
(
r − q

)
dt+

√
v1(t)dW1(t) +

√
v2(t)dW2(t), S(0) = S0 > 0

dv1(t) = κ1
(
θ1 − v1(t)

)
dt+ σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0.

dv2(t) = κ2
(
θ2 − v2(t)

)
dt+ σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0.

(4.21.1)
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subject to the following stochastic correlation structure:

cor
(
dW1, dW2

)
t

= cor
(
dW1, dŴ2

)
t
= cor

(
dW2, dŴ1

)
t
= cor

(
dŴ1, dŴ2

)
t
= 0

cor
(
dW1, dŴ1

)
t

= ρ1dt

cor
(
dW2, dŴ2

)
t

= ρ2dt.

The parameters in the above model have the following names: r is the interest rate,

q is the dividend rate, κj, j = 1, 2 are the mean reverting rate, θj, j = 1, 2 are the

volatility of variance (vol of vol) constant.

4.21.3 The control regime-switching Triple Stochastic Volatil-
ity Heston-like (TSVH) model formulation

Consider an unstable economy which could change from one state to the other.

Suppose the Economy can only switch between two states: that is, State of normalcy

and state of recession. During recession, the uncertainty level of financial security

is inevitable to be on the high side, especially stock assets. Suppose further that

economy recession induces another source of volatility uncertainty on a stock market

in a recessed economy in addition to two other sources of volatility emphasised

in the double Heston model, such that the economy recession induced volatility

process is driven by its own Stochastic Differential Equation. One major point to

note is that an assumption of constant volatility is not suitable in an ideal real

life situation battling with uncertainty. However, the fluctuations in stock prices

during recession is on the high side compared to recession-free period. In order

to account for stochastic volatility during the period of recession, or applying the

double Heston model in the valuation of options in a recessed economy compels us to

come up with an intuition for proposing the three stochastic volatility processes here.

Consequently, an options pricing in a recessed double Heston world is proposed to

be referred to as “ a control regime-switching Triple Stochastic Volatility Heston-like

model (TSVH)” in this thesis.
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The proposed (TSVH) model is presented as:



dS(t)
S(t)

=
(
r − q

)
dt+

√
v1(t)dW1(t) +

√
v2(t)dW2(t) + α

(√
v3(t)dW3(t)

)
, S(0) = S0 > 0

dv1(t) = κ1
(
θ1 − v1(t)

)
dt+ σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0.

dv2(t) = κ2
(
θ2 − v2(t)

)
dt+ σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0.

dv3(t) = α
(
κ3
(
θ3 − v3(t)

)
dt+ σ3

√
v3(t)dŴ3(t)

)
recession

, v3(0) = v30 > 0

(4.21.2)

where α is a binary control parameter defined as:

α :=


0, if the economy is not in recession;

1, if the economy is in recession.

used to switch between the double Heston and the proposed Triple Stochastic Volatil-

ity (TSVH) model depending on the state of the Economy. This is so in order to

ensure the model is applicable in any state of the economy.

The control parameter is considered useful as it ensures that the TSVH - model

will still be relevant to options valuation when the economy recession varnishes by

setting the control parameter to zero (0). If this happens, then we have the double

Heston model presented in (4.21.1).

S(t) is the underlying asset at time t, r is the interest rate, dividend rate, q, the

first two volatilities, v1, v2 have their bearing from the double Heston model while

v3 emerged from economy recession induced volatility process, κ1, κ2, κ3 are mean

reverting rates for the three volatility processes respectively, θ1, θ2, θ3 are long term

volatility constants and σ1, σ2, σ3 are volatility of variance (vol of vol) constants
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which are all positive. The constant θ3 is assumed to be less than θ1, and θ2 since

there is possibility of an economy taking a shorter period to recover from recession.

The Wiener process, W3, describes the Brownian movement in the stock prices em-

anating during the period of recession while W1 and W2 originated from the Double

Heston model. The remaining Wiener processes Ŵj, j = 1, 2, 3, shows the stochastic

movement of the stock volatilities from the three sources.

The model is subjected to the following stochastic correlation structure:



cor
(
dW1, dW2

)
t
= cor

(
dW1, dW3

)
t
= cor

(
dW2, dW3

)
t
= 0

cor
(
dW1, dŴ2

)
t
= cor

(
dW2, dŴ1

)
t
= cor

(
dŴ1, dŴ2

)
t
= 0

cor
(
dW1, dŴ3

)
t
= cor

(
dW2, dŴ3

)
t
= cor

(
dŴ1, dŴ3

)
t
= cor

(
dŴ2, dŴ3

)
t
= 0

cor
(
dW1, dŴ1

)
t
= ρ1dt

cor
(
dW2, dŴ2

)
t
= ρ2dt

cor
(
dW3, dŴ3

)
t
= ρ3dt.

(4.21.3)

Remark 4.21.1. The inclusion of the third volatility process emanated from econ-

omy recession factor which results in three different correlations as given in the

above model.

4.22 Options computation in the control regime-
switching Triple Stochastic Volatility Heston-
like model (TSVH)

It is possible to derive the partial differential equation (PDE) form of the proposed

Triple Stochastic Volatility (TSVH) model. In order to do this, we consider the

application of Ito’s lemma to the logarithm stock price say yt = logSt.
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Hence, the model presented in equation (4.21.2) is therefore restated as:



dyt =
(
r − q

)
dt+

√
v1(t)dW1(t) +

√
v2(t)dW2(t) + α

(√
v3(t)dW3(t)

)
, S(0) = S0 > 0

dv1(t) = κ1
(
θ1 − v1(t)

)
dt+ σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0.

dv2(t) = κ2
(
θ2 − v2(t)

)
dt+ σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0.

dv3(t) = α

(
κ3
(
θ3 − v3(t)

)
dt+ σ3

√
v3(t)dŴ3(t)

)
, v3(0) = v30 > 0

(4.22.1)

Following Rouah (2013) and Zhao (2016) in the Double Heston model, we made the

following parametrization for the Wiener processes in our TSVH model.

Letting 

W1 = Z1

W2 = Z2

W3 = Z3

W1 = ρ1Ŵ1(t) +
√

1− ρ21 Z1(t)

W2 = ρ2Ŵ2(t) +
√

1− ρ22Z2(t)

W1 = ρ3Ŵ3(t) +
√

1− ρ23Z3(t)

(4.22.2)

where each Ŵj, j = 1, 2, 3 and each Zj, j = 1, 2, 3 are Brownian motions which

evolve independently. We wish to write the system of SDEs for the process yt =

(y, v1, v2, v3) in the model (4.22.1).
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Suppose the process yt is an n-dimensional stochastic process written in the form:

dyt = µ(yt, t) + σ(yt, t)dZt (4.22.3)

where Zt is a Q- Brownian motion of dimension m, yt and µ(yt, t) are taken to be

n-dimensional vectors respectively and σ(yt, t) is a volatility matrix of size n ×m.

Then, we write equation (4.22.3) in the form:


dy1(t)

...

dyn(t)

 =


µ1(y1, t)

...

µ(yn, )

 dt +


σ11(yt, t) . . . σ1m(yt, t)

...
. . .

...

σn1(yt, t) . . . σnm(yt, t)




dZ1(t)

...

dZm(t)

 (4.22.4)

In an attempt to solve the TSVH-model presented in equation (4.22.1), we first give

the matrix representation of the drift and volatility terms in sequel.

The drift term is given as:

µ =



r − q − 1
2
(v1 + v2 + v3)

κ1(θ1 − v1)

κ2(θ2 − v2)

ακ3(θ3 − v3)


(4.22.5)

and the volatility,

σ(yt, t) =



√
v1

√
v2

√
v3 0 0 0

σ1
√
v1ρ1 0 0 σ1

√
v1(1− ρ21) 0 0

0 σ2
√
v2ρ1 0 0 σ2

√
v2(1− ρ22) 0

0 0 ασ3
√
v3ρ3 0 0 ασ3

√
v3(1− ρ23)


(4.22.6)
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The transpose matrix σT of the above volatility processes is given as:

σT (yt, t) =



√
v1 σ1

√
v1ρ1 0 0

√
v2 0 σ2

√
v2ρ1 0

√
v3 0 0 σ3

√
v3ρ3

0 σ1
√
v1(1− ρ21) 0 0

0 0 σ2
√
v2(1− ρ22) 0

0 0 0 ασ3
√
v3(1− ρ23)



(4.22.7)

The product of the volatility matrices in equations (4.22.6) and (4.22.7) gives the

volatility matrix below:

σσT =



v1 + v2 + v3 σ1v1ρ1 σ2v2ρ2 σ3v3ρ3

σ1v1ρ1 σ2
1v1 0 0

σ2v2ρ2 0 σ2
2v2 0

α2σ3v3ρ3 0 0 α2σ2
3v3



(4.22.8)

The volatility matrix (4.23.1) makes the coefficients of terms associated with a par-

tial differential equation formulation for the Triple stochastic volatility Heston-like

(TSVH) model easy to see. This we shall see in the next section.

158



4.23 A control regime-switching Triple Stochastic
Volatility Heston-like model (TSVH) PDE
form

Let f(yt, v1, v2, v3) be a twice continuously differentiable function with respect to

Itô’s Calculus. Assume further that the f(yt, v1, v2, v3) satisfies the TSVH model in

equation (4.22.1), then the partial differential equation PDE representation is given

as:

∂f
∂t

= 1
2
(v1 + v2 + v3)

∂2f
∂y2

+
(
r − q − 1

2
(v1 + v2 + v3)

∂f
∂y

)
+ 1

2
σ2
1v1

∂2f
∂v21

+1
2
σ2
2v2

∂2f
∂v22

+ 1
2
σ2
3v3

∂2f
∂v23

+ ρ1σ1v1
∂2f
∂y∂v1

+ ρ2σ2v2
∂2f
∂y∂v2

+ ρ3σ3v3
∂2f
∂y∂v3

+κ1(θ1 − v1)
∂f
∂v1

+ κ2(θ2 − v2)
∂f
∂v2

+ κ3(θ3 − v3)
∂f
∂v3

(4.23.1)

From equations (4.16.15)-(4.16.21), we restated Feynman-Kac formula for TSVH-

model as follow.

Theorem 4.23.1. (Feynman-Kac formula)

Let f(y, t) be C2− differentiable function with respect to some Itô diffussion pro-

cesses. Then the partial differential equation of f(y, t) is given by:

∂f

∂t
+ Gf(y, t)− r(y, t) = 0 (4.23.2)

subject to the boundary condition (fτ , τ). The solution is given in the form:

f(yt, t) = IEQ

[
exp

(∫ τ

t

r(yu, u)du
)
f(yτ , τ)

∣∣∣Ft

]

where Ft is the filtration up to time t.
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G is an infinitesimal generator of the TSVH-model partial differential equation

form defined by:

G :=
n∑
i=1

µi
∂

∂yi
+

1

2

n∑
i=1

n∑
j=1

(
σσT

)
ij

∂2

∂yi∂yj
(4.23.3)

with y = lnS(t), µ and (σσT ) remains as defined in equations (4.22.5) and (4.23.1)

above.

This implies that G could generate the right hand side of the TSVH pde and thus,

equation (4.23.1) is equivalently stated as:

∂f

∂t
= Gyt,v1(t),v2(t),v3(t)f (4.23.4)

subject to terminal condition, f(ω, 0, y) = exp(iωy)

with

Gyt,v1(t),v2(t),v3(t)f =
1

2
(v1 + v2 + v3)

∂2f

∂y2
+
(
r − q − 1

2
(v1 + v2 + v3)

∂f

∂y

)
+

1

2
σ2
1v1

∂2f

∂v21

+
1

2
σ2
2v2

∂2f

∂v22
+

1

2
σ2
3v3

∂2f

∂v23
+ ρ1σ1v1

∂2f

∂y∂v1
+ ρ2σ2v2

∂2f

∂y∂v2
+ ρ3σ3v3

∂2f

∂y∂v3

+κ1(θ1 − v1)
∂f

∂v1
+ κ2(θ2 − v2)

∂f

∂v2
+ κ3(θ3 − v3)

∂f

∂v3
(4.23.5)

4.24 Characteristic function derivation for the TSVH
model

The TSVH-model is affine in nature. On the application of Duffie et al., (2000)

result, we gave the characteristic function f
(
ω0, ω1, ω2, ω3; yt, v1(t), v2(t), v3(t)

)
for
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(
yT , v1(T ), v2(T ), v3(T )

)
in log linear form as:

f
(
ω0, ω1, ω2, ω3; yt, v1(t), v2(t), v3(t)

)
= IE

(
eiω0yt+iω1v1(t)+iω2v2(t)+iω3v3(t)

)
= e

(
A(τ,ω)+B0(τ,ω)yt+B1(τ,ω)v1(t)+B2(τ,ω)v2(t)+B3(τ,ω)v3(t)

)
(4.24.1)

where A,B0, B1, B2, and B3 are coefficients terms of the stochastic processes;

yt, v1(t), v2(t), v3(t) which depends on the time to expiry τ = T − t and each

ωi, i = 0, 1, . . . , 3.

Duffie et al., (2000) has also established the fact that characteristic function could be

given as a system of Ricatti equations which many authors such as: Rouah (2013)

and Zhao, (2016); to mention but few, used in the recent time in their research

studies.

Thus, the system of Ricatti equations (differential) for our TSVH model is given as:



∂B0

∂t
= −JT1 β − 1

2
βTH1β

∂B1

∂t
= −JT2 β − 1

2
βTH2β

∂B2

∂t
= −JT3 β − 1

2
βTH3β

∂B3

∂t
= −JT4 β − 1

2
βTH4β

∂A
∂t

= −JT0 β − 1
2
βTH0β

(4.24.2)

where βT := (B0, B1, B2, B3) and the boundary conditions to the above Ricatti
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equations are given as: 

B0(0) = iω0

B1(0) = iω1

B2(0) = iω2

B3(0) = iω3

A(0) = 0

(4.24.3)

The coefficient matrices terms Ji, Hi, i = 1, 2, · · · , 4 emanated from the drift term

µ(yt) and σT in equations (4.22.5) and (4.23.1) respectively.

The values are given as:

J0 =



r − q

κ1θ1

κ2θ2

κ3θ3


, J1 =



0

0

0

0


, J2 =



−1
2

−κ1

0

0


, J3 =



−1
2

0

−κ2

0


, J4 =



−1
2

0

0

−κ3


satisfying

µ = J0 + J1y + J2v1 + J3v2 + J4v3 (4.24.4)

while

H0 = H1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, H2 =



1 σ1ρ1 0 0

σ1ρ1 σ2
1 0 0

0 0 0 0

0 0 0 0


,
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H3 =



1 0 σ2ρ2 0

0 0 0 0

σ2ρ2 0 σ2
2 0

0 0 0 0


, and H4 =



1 0 0 σ3ρ3

0 0 0 0

0 0 0 0

σ3ρ3 0 0 σ3
3


such that

σσT = H0 +H1y +H2v1 +H3v2 +H4v3. (4.24.5)

Next, upon the use of the boundary conditions highlighted in equation (4.24.3), the

first Ricatti differential equation in (4.24.2) with respect to its own boundary con-

dition yields a solution B0(τ) = iω0.

The Ricatti differential equations in (4.24.2) are further transformed upon substi-

tuting the boundary condition for other terms and reversing the sign so as to get

derivatives in form of time - to - maturity τ leads to:



∂B1

∂τ
=

1

2
σ2
1B

2
1 −

(
κ1 − iω0ρ1σ1

)
B1 −

1

2
ω0(ω0 + i)

∂B2

∂τ
=

1

2
σ2
2B

2
2 −

(
κ2 − iω0ρ2σ2

)
B2 −

1

2
ω0(ω0 + i)

∂B3

∂τ
=

1

2
σ2
3B

2
3 −

(
κ3 − iω0ρ3σ3

)
B3 −

1

2
ω0(ω0 + i)

∂A

∂τ
= κ1θ1B1 + κ2θ2B2 + κ3θ3B3.

(4.24.6)

The fourth equation in the above set of transformed Ricatti differential equations

only requires a straightforward integration while the first three equations are just
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1-dimensional Ricatti equations. The initial conditions for (4.24.6) reduces toB1(0) =

B2(0) = B3(0) = 0 but B0(0) = iω as obtained earlier while A(0) = 0 so that we can

set ω = ω0. The decision is based on the fact that the characteristic function for the

log stock price yT = lnST is of paramount interest to us rather than joint character-

istic function for the stochastic processes
(
yT , v1(T ), v2(T ), v3(T )

)
. The solution for

B1(τ), B2(τ) and B3(τ) follows the pattern of univariate and bivariate counterparts.

Hence, we gave the solution of the Ricatti equations (4.24.6) for the TSVH model

as:



A(ω, τ) = (r − q)ω1(τ) +
κ1θ1
σ2
1

[(
κ1 − ρ1σ1ω1i+ d1

)
τ − 2 ln

(
1−g1ed1τ

1−g1

)]

+ (r − q)ω2(τ) +
κ2θ2
σ2
2

[(
κ2 − ρ2σ2ω2i+ d2

)
τ − 2 ln

(
1−g2ed2τ

1−g2

)]

+ (r − q)ω3(τ) +
κ3θ3
σ2
3

[(
κ3 − ρ3σ3ω3i+ d3

)
τ − 2 ln

(
1−g3ed3τ

1−g3

)]

B1(ω, τ) = 1
σ2
1

(
κ1 − ρ1σ1ωi+ d1

)[
1−g1ed1τ

1−g1

]

B2(ω, τ) = 1
σ2
2

(
κ2 − ρ2σ2ωi+ d2

)[
1−g2ed2τ

1−g2

]

B3(ω, τ) = 1
σ2
3

(
κ3 − ρ3σ3ωi+ d3

)[
1−g3ed3τ

1−g3

]
(4.24.7)
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where 

d1 =
√
(κ1 − ρ1σ1ωi)2 + σ2

1ω(ω + i)

d2 =
√
(κ2 − ρ2σ2ωi)2 + σ2

2ω(ω + i)

d3 =
√
(κ3 − ρ3σ3ωi)2 + σ2

3ω(ω + i)

g1 = κ1−ρ1σ1ωi−d1
κ1−ρ1σ1ωi+d1

g2 = κ2−ρ2σ2ωi−d2
κ2−ρ2σ2ωi+d2

g3 = κ3−ρ3σ3ωi−d3
κ3−ρ3σ3ωi+d3 .

Remark 4.24.1. There is an alternate representation for the solution presented

above following the suggestion of Albrecher et al., (2007) popularly known as “The

Little Heston Trap” which was formulated for univariate version of Heston model.

This involves replacing the positive sign attached to the term dj, j = 1, · · · , 3 by

negative sign. In our own case, we set cj =
1
gj
. A comparison can be made between

the two approaches (Albrecher, 2007; Gauthier, and Possamaÿ, 2010).

Thus, ensuring that one has a well-behaved integrand for the proposed TSVH

model demands setting cj =
1
gj
.
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This gives:



A(ω, τ) = (r − q)ω1(τ) +
κ1θ1
σ2
1

[(
κ1 − ρ1σ1ω1i− d1

)
τ − 2 ln

(
1−c1e−d1τ

1−c1

)]

+ (r − q)ω2(τ) +
κ2θ2
σ2
2

[(
κ2 − ρ2σ2ω2i− d2

)
τ − 2 ln

(
1−c2e−d2τ

1−c2

)]

+ (r − q)ω3(τ) +
κ3θ3
σ2
3

[(
κ3 − ρ3σ3ω3i− d3

)
τ − 2 ln

(
1−c1e−d3τ

1−c3

)]

B1(ω, τ) = 1
σ2
1

(
κ1 − ρ1σ1ωi+ d1

)[
1−c1e−d1τ

1−c1

]

B2(ω, τ) = 1
σ2
2

(
κ2 − ρ2σ2ωi+ d2

)[
1−c2e−d2τ

1−c2

]

B3(ω, τ) = 1
σ2
3

(
κ3 − ρ3σ3ωi+ d3

)[
1−c3e−d3τ

1−c3

]
(4.24.8)
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where 

d1 =
√
(κ1 − ρ1σ1ωi)2 + σ2

1ω(ω + i)

d2 =
√
(κ2 − ρ2σ2ωi)2 + σ2

2ω(ω + i)

d3 =
√
(κ3 − ρ3σ3ωi)2 + σ2

3ω(ω + i)

c1 = κ1−ρ1σ1ωi−d1
κ1−ρ1σ1ωi+d1

c2 = κ2−ρ2σ2ωi−d2
κ2−ρ2σ2ωi+d2

c3 = κ3−ρ3σ3ωi−d3
κ3−ρ3σ3ωi+d3 .

The call price could be obtained once we determine the characteristic function

f
(
ω0, ω1, ω2, ω3; yt, v1(t), v2(t), v3(t)

)
= IE

(
eiω0yt+iω1v1(t)+iω2v2(t)+iω3v3(t)

)
= e

(
A(τ,ω)+B0(τ,ω)yt+B1(τ,ω)v1(t)+B2(τ,ω)v2(t)+B3(τ,ω)v3(t)

)
(4.24.9)

with respect to the information provided in equation (4.24.1).

In a similar fashion to the double Heston-model but different in terms of an

additional volatility imposed due to recession, the call pricing formula is then given

as:

C(K) = Ste
−qτP1 −Ke−rτP2 (4.24.10)
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such that

P1 =
1

2
+

1

π

∫ ∞

0

ℜ

[
exp(−iω lnK) f

(
ω − i; yt, v1(t), v2(t), v3(t)

)
iωSte(r−q)τ

]
dω

P2 =
1

2
+

1

π

∫ ∞

0

ℜ

[
exp(−iω lnK) f

(
ω; yt, v1(t), v2(t), v3(t)

)
iω

]
dω

(4.24.11)

where the characteristic function f
(
ω − i; yt, v1(t), v2(t), v3(t)

)
is exactly equal to

the one given in equation (4.24.1).

The corresponding sample path for the proposed TSVH-model is presented taking

various sample points in the section tagged simulations of the TSVH-model. The

sample paths are generated using maple 2017. The codes can be found under Ap-

pendix.

4.25 STUDY ELEVEN

4.25.1 Numerical discretisation and Simulation schemes for
the TSVH model

In practice, there are various existing discretisation schemes found useful in nu-

merical analysis and their usage in financial mathematics cannot be overempha-

sised. Among such discretisation schemes are the Euler scheme, Predictor-Corrector

scheme and Alfonsi scheme. Authors such as Gauthier and Possamaÿ, (2010), and

Rouah, (2013) have used the above discretisation scheme on double Heston model.

The TSVH model we presented here is an extension of the double Heston model in

which a marginal volatility on the double Heston model arising as a result of econ-

omy recession which we referred to as economy recession induced stochastic volatility

was considered.
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Considering a discounted stock price, we intend to present a predictor-correction

scheme for the TSVH model which is one of the discretisation schemes that have

gained ground in financial mathematics. The scheme has been presented for double

Heston model in the study by Gauthier and Possamäı (2010). We adapt the scheme

on TSVH model as follows. Suppose a discounted stock price, S, follows the TSVH

model (4.22.1), then on application of Itô’s formula for the logarithm discounted

stock, we have:

d
(
ln(e−rtSt)

)
= −(r − q)dt+

dSt
St

− 1

2S2
t

〈
dSt, dSt

〉
(4.25.1)

d
(
ln(e−rtSt)

)
= −1

2

( 3∑
i=1

Vi(t)
)
dt+

√
v1(t)dŴ1(t)+

√
v2(t)dŴ2(t)+α

(√
v3(t)dŴ3(t)

)
. (4.25.2)

Integrating the sides over the interval of [t, t+ δt] and using the correlations high-

lighted in (4.21.3) yields the following equations:

ln

(
e−r(t+δt)St+δt

e−rtSt

)
= −1

2

∫ t+δt

t

(
v1(s) + v2(s) + αv3(s)

)
ds

+

∫ t+δt

t

(√
v1(s)dW1(s) +

√
v2(s)dW2(s) + α

(√
v3(s)dW3(s)

))
(4.25.3)

subject to correlations written for the Wiener process driving the stochastic process

in the form: 

W1(t) = ρ1Ŵ1(t) +
√

1− ρ21 Z1(t)

W2(t) = ρ2Ŵ2(t) +
√

1− ρ22 Z2(t)

W3(t) = ρ3Ŵ3(t) +
√

1− ρ23 Z3(t)

(4.25.4)

The Wiener processes Z1, Z2, Z3 are independent of Ŵ1, Ŵ2, Ŵ3 respectively.
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This is further expanded as:

ln
(e−r(t+δt)St+δt

e−rtSt

)
= −1

2

∫ t+δt

t

(
v1(s) + v2(s) + αv3(s)

)
ds

+

∫ t+δt

t

√
v1(s) ρ1dŴ1(s) +

∫ t+δt

t

√
1− ρ21

√
v1(s) dZ1(s)

+

∫ t+δt

t

√
v2(s) ρ2dŴ2(s) +

∫ t+δt

t

√
1− ρ22

√
v2(s) dZ2(s)

+

∫ t+δt

t

α
(√

v3(s) ρ3dŴ3(s) +

∫ t+δt

t

√
1− ρ23

√
v3(s) dZ3(s)

)
(4.25.5)

Considering the variance processes in (4.21.2), carrying out the integration of the

processes resulted in:

v1(t+ δt) = v1(t) +

∫ t+δt

t

κ1
(
θ1 − v1(s)

)
ds + σ1

∫ t+δt

t

√
v1(s) dŴ1(s)

v2(t+ δt) = v2(t) +

∫ t+δt

t

κ2
(
θ2 − v2(s)

)
ds+ σ2

∫ t+δt

t

√
v2(s) dŴ2(s)

α v3(t+ δt) = α

(
v3(t) +

∫ t+δt

t

κ3
(
θ3 − v3(s)

)
ds + σ3

∫ t+δt

t

√
v3(s) dŴ3(s)

)
(4.25.6)

By making the stochastic term the subject of the formulae in (4.25.6).

We have:

σ1

∫ t+δt

t

√
v1(s) dŴ1(s) = v1(t+ δt)− v1(t)−

∫ t+δt

t

κ1
(
θ1 − v1(s)

)
ds

σ2

∫ t+δt

t

√
v2(s) dŴ2(s) = v2(t+ δt)− v2(t)−

∫ t+δt

t

κ2
(
θ2 − v2(s)

)
ds

σ3

∫ t+δt

t

√
v3(s) dŴ3(s) = α

(
v3(t+ δt)− v3(t)−

∫ t+δt

t

κ3
(
θ3 − v3(s)

)
ds
)

(4.25.7)
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Dividing through by the σ term yields:

∫ t+δt

t

√
v1(s) dŴ1(s) =

1

σ1

(
v1(t+ δt)− v1(t)−

∫ t+δt

t

κ1
(
θ1 − v1(s)

)
ds

)

∫ t+δt

t

√
v2(s) dŴ2(s) =

1

σ2

(
v2(t+ δt)− v2(t)−

∫ t+δt

t

κ2
(
θ2 − v2(s)

)
ds

)

∫ t+δt

t

√
v3(s) dŴ3(s) =

α

σ3

(
v3(t+ δt)− v3(t)−

∫ t+δt

t

κ3
(
θ3 − v3(s)

)
ds

)
(4.25.8)

Further simplification and evaluation of the integral at the right hand side of the

above equation leads to:

∫ t+δt

t

√
v1(s) dŴ1(s) =

1

σ1

(
v1(t+ δt)− v1(t)− κ1 θ1 δt+ κ1

∫ t+δt

t

v1(s)ds

)

∫ t+δt

t

√
v2(s) dŴ2(s) =

1

σ2

(
v2(t+ δt)− v2(t)− κ2 θ2 δt+ κ2

∫ t+δt

t

v2(s)ds

)

∫ t+δt

t

√
v3(s) dŴ3(s) =

α

σ3

(
v3(t+ δt)− v3(t)− κ3 θ3 δt+ κ3

∫ t+δt

t

v3(s)ds

)
(4.25.9)

The idea used here is to reduce the integration to be carried out in (4.25.5). We can
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now substitute the right hand side of (4.25.8)into (4.25.5) on page (170) to obtain:

ln
(e−r(t+δt)St+δt

e−rtSt

)
= −1

2

∫ t+δt

t

(
v1(s) + v2(s) + αv3(s)

)
ds

+
ρ1
σ1

(
v1(t+ δt)− v1(t)− κ1 θ1 δt

)
+
ρ1κ1
σ1

∫ t+δt

t

v1(s)ds

+
√
1− ρ21

∫ t+δt

t

√
v1(s) dZ1(s)

+
ρ2
σ2

(
v2(t+ δt)− v2(t)− κ2 θ2 δt

)
+
ρ2κ2
σ2

∫ t+δt

t

v2(s)ds

+
√
1− ρ22

∫ t+δt

t

√
v2(s) dZ2(s)

+
αρ3
σ3

(
v3(t+ δt)− v3(t)− κ3 θ3 δt

)
+
αρ3κ3
σ3

∫ t+δt

t

v3(s)ds

+α
√

1− ρ23

∫ t+δt

t

√
v3(s) dZ3(s)

(4.25.10)

The equation for the log asset discounted price after further simplifications reduced
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to the form:

ln
(e−r(t+δt)St+δt

e−rtSt

)
=

ρ1
σ1

(
v1(t+ δt)− v1(t)− κ1 θ1 δt

)
+

(
ρ1κ1
σ1

− 1

2

)∫ t+δt

t

v1(s)ds

+
√

1− ρ21

∫ t+δt

t

√
v1(s) dZ1(s)

+
ρ2
σ2

(
v2(t+ δt)− v2(t)− κ2 θ2 δt

)
+

(
ρ2κ2
σ2

− 1

2

)∫ t+δt

t

v2(s)ds

+
√

1− ρ22

∫ t+δt

t

√
v2(s) dZ2(s)

+
αρ3
σ3

(
v3(t+ δt)− v3(t)− κ3 θ3 δt

)
+

(
ρ3κ3
σ3

− 1

2

)
α

∫ t+δt

t

v3(s)ds

+α
√

1− ρ23

∫ t+δt

t

√
v3(s) dZ3(s)

(4.25.11)

4.26 Sample paths of the stochastic volatility pro-
cesses v1(t), v2(t) & v3(t)

We present the simulated sample paths for the stochastic volatility processes v1(t), v2(t) & v3(t)

respectively as follows.
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Figure 4.12: Three Sample paths for the stochastic process v1(t)
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Figure 4.13: A sample path for the stochastic volatility process V2(t)
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Figure 4.14: A sample path for the stochastic volatility process V3(t) due to recession
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The Figure 4.12 shows the sample path of the volatility process v1(t) with three

replications. Despite the fact that the same stochastic volatility process was used

to generate the sample paths, the three sample paths still vary. This shows that a

stochastic process should not be expected to have the same output during different

simulations at same specified time. Various factors in the financial market and even

the economic factor could contribute some level of instability to the process.

The sample path of the stochastic volatility process v2(t) generated via Maple 2017

was shown in the Figure 4.13. The time range of t := 0..12s was maintained in

the sample path generation. It was observed that the sample paths generated is a

true representation of stock asset price. No stability was detected for the stochastic

process. Such variation could be tailored to the Wiener process driving the stochastic

volatility process.

The Figure 4.14 is the third stochastic volatility sample paths generated via Maple

2017 software for v3(t). It was observed that the sample path still follows diffusion

pattern. The sample path indicated the downward and upward volatility movement

of a stock asset defined on the volatility process. The dynamics is never smooth

which confirms the non-differentiability of a Brownian motion. The sample paths

show a more realistic property usually exhibited by stock assets.
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4.27 Simulations and Sample paths of the TSVH-
model

Figure 4.15: TSVH sample path at N = 10000
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Figure 4.16: TSVH sample path at N = 5000
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Figure 4.17: TSVH sample path at N = 1000
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The Figure 4.15 is a sample path generated under the TSVH-model for a stock asset.

The time steps, N , used for the simulation was 10000. The initial stock price value

S0 = 100. The worst stock performance observed in the graph was at time step

N = 1450 with stocks price value of 50. The best performance of the stock was

recorded at time step N = 9234 with stock output of 150. The overall performance

of the stock was observed to be on average as the downward and upward variation

in the stock price was not too varied.

The Figure 4.16 is a sample path generated for stock price S(t) via the TSVH-model.

The time steps, N , used for the simulation was 5000. At initial stock price S0 = 100,

it was observed that the stock price dynamics was good as the stocks returns did

not fall beyond the initial stock price within the short life span of the stocks St.

Hence, an investor who invested in a stock asset whereby the stock’s growth follows

the sample path shown above makes huge profit as the stock’s returns did not fall

below the start value S0 = 100 at any time step.

The Figure 4.17 generated at time step N = 1000 for a stock whose sample path

was demonstrated above is at a great loss. It was observed that the stock’s returns

was downward throughout the life span of the stock below the initial stock’s value.
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Figure 4.18: Stocks values Sample path generated under the TSVH- model at N =
500
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Figure 4.19: The TSVH-model Surface plot at N = 5000
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Figure 4.20: Stocks returns listplot with N = 1000 under TSVH-model
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The figure 4.18 illustrates the sample path for a stock asset at time stepN = 500

under the TSVH-model. The sample path generated shows huge performance of the

stocks value.

At number of steps N = 5000, subject to the simulation parameters specified in the

Table 4.10 with initial stock price S0 = 100, TSVH-model surface plot was generated

as shown in the Figure 4.19 above. It was observed that the surface plot was not

flat unlike what is usually obtainable in terms of Black-Scholes model. It shows that

the TSVH-model is able to account for the stochastic nature of the stock’s volatility

which is more realistic as obtainable in the financial market. In other words, the

non-constant volatilities defined in the TSVH model make the volatility surface to

be a curve which is a better expected structure. Hence, the TSVH-model is another

better alternative for fitting market data smile especially in a recessed economy.

The figure 4.20 illustrates the stocks returns listplot at N = 1000 under the

TSVH-model. In what follows, we present the table of option values using the TSVH

model.
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Table 4.9: Monte Carlo Simulation of Bonds Price under the TSVH model

No Bond Final Stocks value Model Model Model

of Price Spot S(t) under Estimated Estimated Estimated Skewness Kurtosis

Simulations Price S(t) recession Mean value Variance Volatility

1 164 159 150 0.000197 0.000116 0.010753 −0.4245 6.6809

2 164 138 104 6.47× 10−5 6.42× 10−5 8.01× 10−3 −6.56× 10−2 5.2697

3 164 397 106 2.76× 10−4 7.34× 10−5 8.57× 10−3 1.82× 10−2 4.9309

4 164 207 157 1.46× 10−4 6.22× 10−5 7.89×−3 5.88× 10−2 4.8462

5 164 271 103 2.00× 104 6.02× 10−5 7.76× 10−3 −0.1549 5.9512

Average Sum 164 234.4 124 0.000176 7.51×10−5 0.008596 -0.1136 5.53578

The above Table 4.9 shows Monte Carlo Simulation of Bonds prices under the TSVH

model. Model estimated mean value, model estimated Variance, estimated volatil-

ity, Skewness and Kurtosis. The simulation was repeated five times setting the same

value for the bond. It was discovered that the final Spot price returns, the Stock re-

turns under recession, and the values for the estimated variance, estimated volatility,

skewness and kurtosis under the TSVH-model varies in each simulation. This shows

the true behaviour of Stocks value generally and it connotes the uncertainty effect

of risky assets which has motivated various authors to study stochastic volatility

models. In the above table, we calculated the average sum of the values obtained

from the five simulations. the average value could then be used as the expected

value for decision making. However, one may increase the number of simulations for

better prediction of future output of risky assets under uncertainty scenario.
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Table 4.10: Table of Parameters used for the simulation of the TSVH model

Initial volatility v0i Sigma σi value Kappa κi value Rho ρi values Theta θi value
v01 = 0.62 σ1 = 0.10 κ1 = 0.90 ρ1 = −0.4 θ1 = 0.10
v02 = 0.72 σ2 = 0.15 κ2 = 0.80 ρ2 = −0.3 θ2 = 0.10
v03 = 0.92 σ3 = 0.13 κ3 = 0.70 ρ3 = −0.3 θ3 = 0.0001

We set the control parameter α = 1, indicating that the economy is in recession

state. Other parameters not specified in the table (4.10) above are reported in the

Matlab codes for the TSVH model in the Appendix section. The simulation result

is shown in the following table.
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Table 4.11: Comparison Stocks output based on Trapezoidal and Gauss-Laguerre
for TSVH model

TSVH Trapezoidal TSVH Gauss-Laguerre

Strike K Original LittleTrap Original LittleTrap

101.90 5.3406 5.3406 5.3406 5.3406

101.90 20.3361 20.3361 20.3361 20.3361

71.33 19.0183 19.0183 19.0183 19.0183

71.33 29.5494 29.5494 29.5494 29.5494

86.62 12.1629 12.1629 12.1629 12.1629

86.62 24.9420 24.9420 24.9420 24.9420

89.67 10.7962 10.7962 10.7962 10.7962

89.67 24.0207 24.0207 24.0207 24.0207

91.71 9.8857 9.8857 9.8857 9.8857

91.71 23.4066 23.4066 23.4066 23.4066

96.81 7.8510 7.8510 7.8510 7.8510

96.81 21.8713 21.8713 21.8713 21.8713

The above Table 4.11 shows the options prices obtained on the underlying stocks

based on Trapezoidal and Gauss-Laguerre for the TSVH model. The options values

obtained from the model simulation presented in the table 4.11 are similar. This

shows the effectiveness and the efficiency of the two numerical approaches used for

the TSVH-model simulation. The simulation was carried out on a laptop HP intel

with processor Intel(R) Celeron(R) CPU (N3060) @ 1.60GHz, 1601 MHz, 2 Cores,

2 Logical processor(s), 4GB RAM.
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CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

Generally, Options valuation with uncertainties on the payoff based on economy

recession induced volatility was presented in this thesis. In this chapter, we present

the summary and conclusions drawn from each of the chapters in this study. We

further give recommendations, contributions to knowledge as well as suggestions for

further research studies on the study. In the appendix sections, we presented some

Maple and MATLAB codes used in our simulations. However, some mathematical

computations were carried out and adapted to Carr and Madan FFT algorithm of

1999 embedded in maple to obtain a comparison option prices in Result 2.

5.2 Summary

Wholistically in this thesis, we have discussed fast Fourier transform and formula-

tion of economy recession induced stochastic volatility uncertainty models for options

value computation. The thesis has five chapters in all. Chapter 1 is introduction,

Chapter 2 is review of relevant literature, Chapter 3 presents the mathematical

methodology adopted, Chapter 4 contains results and discussions, and lastly sum-

mary and conclusions in Chapter five.

The major mathematical framework adopted in the thesis are: fast Fourier trans-

form, probability theory and stochastic measure with characteristic function deriva-
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tion for stochastic models, uncertainty measure theory and stochastic differential

equations (SDEs). Our main contribution is on incorporation of economic recession

induced uncertainties in option valuation models formulation. Two major models

are formulated and solved. Simulation of the models are carried out with appli-

cations in options prices computation. Four broad results were obtained generally

and presented in Chapter 4. Each result is presented on the tags: “RESULT 1”,

“RESULT 2”, “RESULT 3”, and “RESULT 4” consecutively.

Under RESULT 1: An American option prices computation with respect to economy

recession stochastic volatility is presented. An uncertain exponential jump model

in affine form with respect to recession stochastic volatility and Intensity” was for-

mulated and applied in options pricing. The proposed model characteristic function

was derived in a close form. A modified Carr and Madan (1999) was implemented

to compute the European-type call Fourier prices. Under some additional assump-

tions suitable for American option valuation, we extended the FFT-algorithm to

American-type call options price computation whereby premium price is added to

the European-type call options prices. We further consider Nigerian stock perfor-

mance during economy recession outbreak and recovery year. This was done to have

more insight to the stocks’ performance in addition to the assumptions made in our

model. The figures showed more information on the performance of the simulated

stock prices based on the states of the economy. See the options values in the table

(4.1). The options prices obtained during recession period revealed that economy

recession have effect on stock’s return. It was further noticed that the options prices

obtained via FFT method outperformed that of the BSM prices and American op-

tion pricing Solver software. In addition, the figures (4.1 and 4.2) gave more insight

to the performance of the prices obtained via FFT method in comparison with the

other methods compared above.

In RESULT 2: Fast - Fourier Transform and computation of multi-assets option with

economy recession induced uncertainties was presented. The major importance of
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the ‘Result 2’ among others is the rigorous mathematical computational procedure

of fast Fourier transform algorithm technique, an extension of Fast Fourier Trans-

form to multi-assets option valuation, economy recession induced volatility concept

introduced in this thesis.

RESULT 3 was titled “Accuracy of Fast Fourier Transform Method with Control

Fineness of Integration grid for Valuation of American Option”. One of the major

contribution here is the Fourier transform Solution step of the Black - Scholes pde

formulation for American Options presented. The result obtained further shows the

relevance of controlling the fineness of the grid points in FFT algorithm in error

minimization. It was noticed that increase in the fineness of the grid points for FFT

algorithm enhances the convergence of the prices of the options.

RESULT 4 titled “A control regime-switching Triple Stochastic Volatility Heston-

like model for Options valuation in a Recessed Economy” and referred to as TSVH-

model. The model description involves inclusion of an economy recession induced

volatility process driven by its own Stochastic Differential Equation (SDE) with

respect to Double Heston model. The third volatility process is considered effective

when there is transition of an economy from the state of normalcy to recession.

A control switching parameter α was introduced in our second model formulation

for the purpose of switching between the TSVH-model and Double Heston model

depending on the state of the economy. Series of simulations of the model was

carried out and we present the sample paths of the TSVH-model in the figures:

4.12, 4.13, 4.14, 4.15, 4.16, 4.19, 4.17, 4.20, 4.18 and the options values obtained in

the tables: 4.9 and 4.11.

However, the findings of this thesis revealed that the models formulated and pre-

sented are true representation of what they are anticipated to measure in a recessed

economy, as an improvement on some other existing valuation models and methods.

The economy recession effect on the options prices obtained via the models, uniquely

revealed the true behaviour of stocks prices in the real financial stock market world.
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5.3 Conclusion

In this studies, full attention was given to options pricing in a turbulence economy

in respect of economy recession. The concept of economy recession induced stochas-

tic volatility and uncertainty was incorporated in option pricing taking Nigerian

economy recession outbreak in the year 2016 as a national point of reference. We

formulated two options pricing models such that economy recession factor was one

of the major parameters of focus. Fast Fourier transform method driven by the

tools of probability theory was adopted in conjunction with some other mathemat-

ical methods via-a-viz numerical analysis and simulations, uncertainty theory, and

partial differential equations.

However, the results presented in Chapter 4 are believed to enhance better way of

options valuation in a recessed economy. The contribution to knowledge section

gives more significance of this thesis. Without loss of generalities, a detailed options

valuation in a recessed economy was presented in this study and very informative.

In conclusions, uncertainty level of stocks returns was observed to be at the high

side when the economy is in the state of recession compare to the recession-neutral

state.

5.4 Recommendations

As economy recession is becoming recurring phenomenon, it is recommended that

more attention should be given to options valuation in a recessed economy. Many

researchers and practitioners in financial sectors pay rapt attention and devote rea-

sonable time for research in this direction. We further recommend that grants should

be given to researchers to carry out more research in this direction.
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5.5 Contributions to knowledge

The contributions to knowledge in this study are highlighted as follows:

(i). The concept of economic recession induced stochastic volatility in options’ pric-

ing was incorporated.

(ii). Formulate an economic recession induced stochastic volatility models for Op-

tions price computation.

(iii). An American option price computation with Economy Recession induced

Stochastic Volatility via fast-Fourier transform was presented.

(iv). The FFT computation of Multi-assets option under economy recession induced

volatility and a framework for extending the FFT-method to multi-dimensional

correlated assets were presented.

(v). A new class of Black-Scholes PDE model based on Factorial function for pricing

options is formulated and transformed using Fourier transform technique of

differentiation;

(vi). The FFT method with control fineness of integration grid for Valuation of

American option was presented.

(vii). A control regime-switching Triple Stochastic Volatility Heston-like model

(TSVH) for pricing Options with economy recession induced stochastic volatil-

ity was developed; and

(viii). Simulations of sample paths and volatility surface for the proposed control

regime-switching Triple Stochastic Volatility Heston-like model (TSVH) for

pricing Options with economy recession induced stochastic volatility was in-

vestigated.
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5.6 Suggestions for further research

The following suggestions for further study are put forward:

(i) Further investigations on economic recession effect on option prices could be

engaged in future researches.

(ii) Mathematical transformations other than Fourier transform of the models for-

mulated can be further explored.

(iii) Further classes of volatility models could be formulated in relation to economy

recession and application in options pricing.

(iv) Further simulation studies of stochastic volatility models to include other un-

certainty parameters not specified in this study could be explored.

(v) More investigation on Recession volatility measures should be explored.
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APPENDICES

Appendix I

Simulation Codes

The Maple codes for generating the sample paths and listplots for the TSVH model

proposed in Result 4.

restart;

with(stats);

“′dS[t] = mu ∗S[t] ∗ dt+ sqrt(v[1][t]) ∗S[t] ∗ dB[1][t] + sqrt(v[2][t]) ∗S[t] ∗ dB[2][t] +

sqrt(v[3][t]) ∗ S[t] ∗ dB[3][t]′;

′dv[1][t] = kappa[1] ∗ (theta[1]− v[1][t]) ∗ dt+ sigma[1] ∗ sqrt(v[1][t]) ∗ dZ[1][t]′;
′dv[2][t] = kappa[2] ∗ (theta[2]− v[2][t]) ∗ dt+ sigma[2] ∗ sqrt(v[2][t]) ∗ dZ[2][t]′;
′dv[3][t] = kappa[3] ∗ (theta[23− v[3][t]) ∗ dt+ sigma[3] ∗ sqrt(v[3][t]) ∗ dZ[3][t]′;
′dZ[1][t] = rho[1] ∗ dB[1][t] + sqrt(−rho[1]2 + 1) ∗ dW [1][t]′;

′cov(dB[1][t], dZ[1][t]) = rho[1] ∗ dt′;
′dZ[2][t] = rho[2] ∗ dB[2][t] + sqrt(−rho[2]2 + 1) ∗ dW [2][t]′;

′cov(dB[2][t], dZ[2][t]) = rho[2] ∗ dt′;
′dZ[3][t] = rho[3] ∗ dB[3][t] + sqrt(−rho[3]2 + 1) ∗ dW [3][t]′;

′cov(dB[3][t], dZ[3][t]) = rho[3] ∗ dt′;
′S[k + 1]′ =′ S[k] +mu ∗ S[k] ∗ dt+ sqrt(v[1][k] ∗ dt) ∗ S[k] ∗B[1][k] + sqrt(v[2][k] ∗

dt) ∗ S[k] ∗B[2][k] + sqrt(v[3][k] ∗ dt) ∗ S[k] ∗B[3][k]′;

′v[1][k + 1]′ =′ v[1][k] + kappa[1] ∗ (theta[1]− v[1][k]) ∗ dt+ sigma[1] ∗ sqrt(v[1][k] ∗

dt) ∗ Z[1][k]′;
′v[2][k + 1]′ =′ v[2][k] + kappa[2] ∗ (theta[2]− v[2][k]) ∗ dt+ sigma[2] ∗ sqrt(v[2][k] ∗

dt) ∗ Z[2][k]′;
′v[3][k + 1]′ =′ v[3][k] + kappa[3] ∗ (theta[3]− v[3][k]) ∗ dt+ sigma[3] ∗ sqrt(v[3][k] ∗

dt) ∗ Z[3][k]′;
′Z[1][k]′ =′ rho[1] ∗B[1][k] + sqrt(−rho[1]2 + 1) ∗W [1][k]′;
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′Z[2][k]′ =′ rho[2] ∗B[2][k] + sqrt(−rho[2]2 + 1) ∗W [2][k]′;

′Z[3][k]′ =′ rho[3] ∗B[3][k] + sqrt(−rho[3]2 + 1) ∗W [3][k]′

mu := 0.25e− 1;

sigma[1] := .30;

kappa[1] := 1.20;

theta[1] := 0.2e− 1;

rho[1] := −.50;

S0 := 100.0;

V 01 := 0.2e− 1;

V 02 := 0.3e− 1;

V 03 := 0.3e− 1;

sigma[2] := .15;

kappa[2] := 1.20;

theta[2] := 0.3e− 1;

rho[2] := −.30;

kappa[3] := 1.20;

sigma[3] := .5;

theta[3] := 0.4e− 1;

rho[3] := −.20

N := 500;

dt := 1/252.0;

st := time();

S := array(1..N);

S[1] := S0;

v[1][t] := V 01;

v[2][t] := V 02;

v[3][t] := V 03; randomize();

B[1] := [stats[random, normald[0, 1]](N + 1)];

B[2] := [stats[random, normald[0, 1]](N + 1)];
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B[3] := [stats[random, normald[0, 1]](N + 1)];

W [1] := [stats[random, normald[0, 1]](N + 1)];

W [2] := [stats[random, normald[0, 1]](N + 1)];

W [3] := [stats[random, normald[0, 1]](N + 1)];

Z[1] := zip(proc(x, y)optionsoperator, arrow;

evalf(rho[1] ∗ x+ sqrt(−rho[1]2 + 1) ∗ y)endproc, B[1],W [1]);

Z[2] := zip(proc(x, y)optionsoperator, arrow;

evalf(rho[2] ∗ x+ sqrt(−rho[2]2 + 1) ∗ y)endproc,

B[2],W [2]);Z[3] := zip(proc(x, y)optionsoperator, arrow;

evalf(rho[3] ∗ x+ sqrt(−rho[3]2 + 1) ∗ y)endproc, B[3],W [3]);

‘runtimerandomgenerationseconds‘ = time()− st;

for k toN − 1 do

S[k+1] := evalf(S[k] +mu ∗S[k] ∗ dt+ sigma[1] ∗ sqrt(v[1][t] ∗ dt) ∗S[k] ∗B[1][k] +

sigma[2]∗sqrt(v[2][t]∗dt)∗S[k]∗B[2][k]+sigma[3]∗sqrt(v[3][t]∗dt)∗S[k]∗B[3][k]);

v[1][t] := abs(evalf(v[1][t]+kappa[1]∗(theta[1]−v[1][t])∗dt+sigma[1]∗sqrt(v[1][t]∗

dt) ∗ Z[1][k]));

v[2][t] := abs(evalf(v[2][t]+kappa[2]∗(theta[2]−v[2][t])∗dt+sigma[2]∗sqrt(v[2][t]∗

dt) ∗ Z[2][k]));

v[3][t] := abs(evalf(v[3][t]+kappa[3]∗(theta[3]−v[3][t])∗dt+sigma[3]∗sqrt(v[3][t]∗

dt) ∗ Z[3][k]))enddo;

k :=′ k′; ‘runtimetotalseconds‘ = time()− st; “;

years = evalf [3](N ∗ dt);

plots[listplot](S);′′

We vary the values of N in the codes to generate different sample paths displayed

under Simulations of the TSVH-model above.
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Appendix II

MATLAB codes for the TSVH-model, an extension of Double Heston

model

% The control regime-switching Triple Stochastic Volatility Heston-like
% (TSVH) model simulation.
clc; clear;
% The spot price, the risk free rate, the dividend yield
S = 101.90;
rf = 0.05;
q = 0;
% The parameters values used:
v01 = 0.6^2;
v02 = 0.7^2;
v03 = 0.9^2;
sigma1 = 0.10;
sigma2 = 0.15;
sigma3 = 0.13;
kappa1 = 0.90;
kappa2 = 0.80;
kappa3 = 0.70;
rho1 = -0.4;
rho2 = -0.3;
rho3 = -0.3;
theta1 = 0.10;
theta2 = 0.10;
theta3 = 0.0001;
% Stacking the parameters into just a single vector
param(1) = kappa1;
param(2) = theta1;
param(3) = sigma1;
param(4) = v01;
param(5) = rho1;
param(6) = kappa2;
param(7) = theta2;
param(8) = sigma2;
param(9) = v02;
param(10) = rho2;
param(11) = kappa3;
param(12) = theta3;
param(13) = sigma3;
param(14) = v03;
param(15)= rho3;
% Declare the strikes and the maturities percent
= [1.0 1.0 0.7 0.7 0.85 0.85 0.88 0.88 0.9 0.90 0.95 0.95 0.98 1.3 1.3 1 2];

K = S.*percent;
T = [1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10];
PutCall = ’C’;
%% Obtain call prices
% Using the derived characteristic function for the TSVH model
% and the "Little Trap" characteristic function (CF)
a = 1e-20;
b = 100;
N = 500;
[x w] = GenerateGaussLaguerre(32);
for j=1:16
OriginalTrapz(j) = TripleHestonPriceTrapezoidal(PutCall,S,K(j),T(j),

rf,q,param,1,a,b,N);
GauthTrapz(j) = TripleHestonPriceTrapezoidal(PutCall,S,K(j),T(j),

rf,q,param,0,a,b,N);
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OriginalGLa(j) = TripleHestonPriceGaussLaguerre(PutCall,S,K(j),T(j),
rf,q,param,1,x,w);

GauthGLa(j) = TripleHestonPriceGaussLaguerre(PutCall,S,K(j),T(j),
rf,q,param,0,x,w);

TSVH(j) = TripleHestonPriceGaussLaguerre(PutCall,S,K(j),T(j),
rf,q,param,1,x,w);

TSVH(j) = TripleHestonPriceGaussLaguerre(PutCall,S,K(j),T(j),
rf,q,param,0,x,w);

end
%% Display the call prices}}
fprintf(’Comparison of output based on Trapezoidal and

Gauss-Laguerre for TSVH model\n’)
fprintf(’ TSVH Trapezoidal TSVH Gauss-Laguerre\n’)
fprintf(’Strike Original LittleTrap Original LittleTrap\n’)
fprintf(’======================================================\n’)
for j=1:12

fprintf(’%5.2f %10.4f %10.4f %10.4f %10.4f\n’,K(j),
OriginalTrapz(j),GauthTrapz(j),OriginalGLa(j),GauthGLa(j));

end
fprintf(’=======================================================\n’)

function y = TripleHestonPriceGaussLaguerre(PutCall,S,K,T,rf,q,param,trap,x,w)
% The TSVH call or put price by Trapezoidal rule
% The original TSVH formulation of the characteristic function,
% or the "Little Heston Trap" a formulation of Albrecher et al.
% THE INPUTS =====================================================
% PutCall = ’C’ Call or ’P’ Put
% S = Spot price.
% K = Strike
% T = Time to maturity.
% rf = Risk free rate.
% q = Dividend yield
% param = Three sets of TSVH parameters
% [kappa1 theta1 sigma1 v01 rho1,
% kappa2 theta2 sigma2 v02 rho2,

kappa3 theta3 sigma3 v03 rho3]
% trap: 1 = "Little Trap" a formulation (Gauthier and Possamai)
% 0 = Original TSVH formulation ()
% b = the Upper limit for Newton-Cotes
% a = the Lower limit for Newton-Cotes
% N = the number of integration points
% THE OUTPUT =======================================================
% The TSVH call or put price
N = length(x);
for k=1:N;
u = x(k);
f2(k) = TripleHestonCF(u ,param,T,S,rf,q,trap);
f1(k) = TripleHestonCF(u-i,param,T,S,rf,q,trap);
int2(k) = w(k) * real(exp(-i*u*log(K))*f2(k)/i/u);
int1(k) = w(k) * real(exp(-i*u*log(K))*f1(k)/i/u/S/exp((rf-q)*T));
end
% The ITM probabilities
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
% The TSVH call price
TSVH_Call = S*exp(-q*T)*P1 - K*exp(-rf*T)*P2;
% The put price by put-call parity
TSVH_Put = TSVH_Call - S*exp(-q*T) + K*exp(-rf*T);
% Output the option price
if strcmp(PutCall,’C’)
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y = TSVH_Call;
else
y = TSVH_Put;
end

function y =TripleHestonPriceTrapezoidal(PutCall,S,K,T,rf,q,param,trap,a,b,N)
% The TSVH call or put price using Trapezoidal rule
% The original TSVH formulation of the characteristic function,
% popularly called the "Little Heston Trap" Albrecher et al. formulation.
% THE INPUTS =============================================================
% PutCall = ’C’ Call or ’P’ Put
% S = the Spot price.
% K = the Strike
% T = the Time to maturity.
% rf = the Risk free rate.
% q = the Dividend yield
% param = Two sets of Double Heston parameters
% [kappa1 theta1 sigma1 v01 rho1,
% kappa2 theta2 sigma2 v02 rho2,
% kappa3 theta3 sigma3 v03 rho3]
% trap: 1 = "Little Trap" formulation (Gauthier and Possamai)
% 0 = Original TSVH formulation (TSVH)
% b = the Upper limit for Newton-Cotes
% a = the Lower limit for Newton-Cotes
% N = the number of integration points
% THE OUTPUT ===============================================================
% The TSVH call price or put price
h = (b-a)/(N-1);
phi = [a:h:b];
w = h.*[1/2 ones(1,N-2) 1/2];
for k=1:length(phi);
u = phi(k);
f2(k) = TripleHestonCF(u ,param,T,S,rf,q,trap);
f1(k) = TripleHestonCF(u-i,param,T,S,rf,q,trap);
int2(k) = w(k)*real(exp(-i*u*log(K))*f2(k)/i/u);
int1(k) = w(k)*real(exp(-i*u*log(K))*f1(k)/i/u/S/exp((rf-q)*T));
end
% The in-the-money (ITM) probabilities:
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
% The TSVH call price:
TSVH_Call = S*exp(-q*T)*P1 - K*exp(-rf*T)*P2;
% The put price by put-call parity:
TSVH_Put = TSVH_Call - S*exp(-q*T) + K*exp(-rf*T+3);
% Output the option price:
if strcmp(PutCall,’C’)
y = TSVH_Call;
else
y = TSVH_Put;
end
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function y = TripleHestonCF(phi,param,tau,S,rf,q,trap);
% The TSVH model parameters well-defined: A variation of the Double Heston.
% Returns the integrand for the risk neutral probabilities P1 and P2.
% phi = integration variable
% TSVH parameters information:
% kappa = the volatility mean reversion speed parameter.
% theta = the volatility mean reversion level parameter.
% lambda = the risk parameter
% rho = the correlation between two Brownian motions.
% sigma = the volatility of variance (\textbf{vol. of vol.})
% v = the initial variance.
% The Option features:
% S = the spot price
% rf = the risk free rate
% trap = 1 "The Little Trap" formulation
% 0 The Original Heston formulation
% The first set of parameters declaration:
kappa1 = param(1);
theta1 = param(2);
sigma1 = param(3);
v01 = param(4);
rho1 = param(5);
% The Second set of parameters declaration:
kappa2 = param(6);
theta2 = param(7);
sigma2 = param(8);
v02 = param(9);
rho2 = param(10);
% The third set of parameters declaration:
kappa3 = param(11);
theta3 = param(12);
sigma3 = param(13);
v03 = param(14);
rho3 = param(15);
x0 = log(S);
alpha = 1; % during economic recession state
if trap==1
d1 = sqrt((kappa1-rho1*sigma1*i*phi)^2 + sigma1^2*phi*(phi+i));
d2 = sqrt((kappa2-rho2*sigma2*i*phi)^2 + sigma2^2*phi*(phi+i));

d3 = sqrt((kappa3-rho3*sigma3*i*phi)^2 + sigma3^2*phi*(phi+i));
G1 = (kappa1-rho1*sigma1*phi*i-d1) / (kappa1-rho1*sigma1*phi*i+d1);
G2 = (kappa2-rho2*sigma2*phi*i-d2) / (kappa2-rho2*sigma2*phi*i+d2);

G3 = (kappa3-rho3*sigma3*phi*i-d2) / (kappa3-rho3*sigma3*phi*i+d2);
B1 = (kappa1-rho1*sigma1*phi*i-d1)*(1-exp(-d1*tau)) / sigma1^2 /

(1-G1*exp(-d1*tau));
B2 = (kappa2-rho2*sigma2*phi*i-d2)*(1-exp(-d2*tau)) / sigma2^2 /

(1-G2*exp(-d2*tau));
B3 = (kappa3-rho3*sigma3*phi*i-d2)*(1-exp(-d2*tau)) / sigma3^2 /

(1-G3*exp(-d2*tau));
X1 = (1-G1*exp(-d1*tau))/(1-G1);
X2 = (1-G2*exp(-d2*tau))/(1-G2);

X3 = (1-G3*exp(-d3*tau))/(1-G3);
A = (rf-q)*phi*i*tau ...
+ kappa1*theta1/sigma1^2*((kappa1-rho1*sigma1*phi*i-d1)*tau - 2*log(X1)) ...
+ kappa2*theta2/sigma2^2*((kappa2-rho2*sigma2*phi*i-d2)*tau - 2*log(X2))...
+ alpha(kappa3*theta3/sigma3^2*((kappa3-rho3*sigma3*phi*i-d3)*tau
- 2*log(X3)));

else
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d1 = sqrt((kappa1-rho1*sigma1*phi*i)^2 + sigma1^2*(phi*i+phi^2));
d2 = sqrt((kappa2-rho2*sigma2*phi*i)^2 + sigma2^2*(phi*i+phi^2));

d2 = sqrt((kappa3-rho3*sigma3*phi*i)^2 + sigma3^2*(phi*i+phi^2));
g1 = (kappa1-rho1*sigma1*phi*i+d1)/(kappa1-rho1*sigma1*phi*i-d1);
g2 = (kappa2-rho2*sigma2*phi*i+d2)/(kappa2-rho2*sigma2*phi*i-d2);

g3 = (kappa3-rho3*sigma3*phi*i+d2)/(kappa3-rho3*sigma3*phi*i-d3);
B1 = (kappa1-rho1*sigma1*phi*i+d1)*(1-exp(d1*tau))/sigma1^2/

(1-g1*exp(d1*tau));
B2 = (kappa2-rho2*sigma2*phi*i+d2)*(1-exp(d2*tau))/sigma2^2/

(1-g2*exp(d2*tau));
B3 = (kappa3-rho3*sigma3*phi*i+d2)*(1-exp(d2*tau))/sigma3^2/

(1-g3*exp(d2*tau));
X1 = (1-g1*exp(d1*tau))/(1-g1);
X2 = (1-g2*exp(d2*tau))/(1-g2);

X3 = (1-g3*exp(d2*tau))/(1-g3);
A = (rf-q)*phi*i*tau ...
+ kappa1*theta1/sigma1^2*((kappa1-rho1*sigma1*phi*i+d1)*tau - 2*log(X1)) ...
+ kappa2*theta2/sigma2^2*((kappa2-rho2*sigma2*phi*i+d2)*tau - 2*log(X2))...

+ alpha(kappa3*theta3/sigma3^2*((kappa3-rho3*sigma3*phi*i-d2)*tau
- 2*log(X3)));

end
% The characteristic function (CF).
y = exp(A + B1*v01 + B2*v02 + B3*v03 + i*phi*x0);

208


	Title Page
	Certification
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Basic Notations
	CHAPTER ONE
	INTRODUCTION
	Background to the study
	Statement of the Problem
	Motivation for the Study
	Objectives of the Study
	Significance of the study
	Structure and arrangement of the thesis

	CHAPTER TWO
	LITERATURE REVIEW
	Chapter Overview
	Options Pricing
	Economy recession effects on investment
	Simple Economy recession decay model
	Review on Stochastic Volatility Models 
	The Detemple - Tian model (DTM)
	Constant Elasticity of Variance (CEV) model
	The Stochastic .. (SABR) - model
	Grzelak Oosterlee Van Veeren (GOVV)-model
	Schöbel - Zhu - Heston model
	Schöbel - Zhu model
	Heston Model
	Double Heston Model (DHM)

	Review on Fast Fourier Transform (FFT)

	CHAPTER THREE
	MATERIALS AND METHODS
	Chapter Overview
	STUDY ONE
	Probability Distribution Theory
	Measurability
	Stochastic Process
	Itô Calculus
	Characteristic Function
	Some Axioms of Characteristic Functions
	Moments and Cumulants for a distribution function
	Inversion Theorem
	Gaussian Densities
	Moment Generating Function




	STUDY TWO
	Fourier Transform Methodology 
	Fourier and Inverse Fourier Transform
	Example of Fourier Transform
	Some Essential Properties of Fourier Transform
	The Fast Fourier Transform (FFT)
	Symmetric Property of characteristic function for Fourier Integrals simplification


	STUDY THREE
	Uncertainty theory
	Uncertain Measure


	CHAPTER FOUR 
	RESULTS AND DISCUSSIONS
	Chapter Overview
	RESULT 1
	STUDY ONE
	Preamble
	Justification for recession causing Jumps in the asset's price associated with Economic Recession
	An Underlying Stock price jump
	Some factors causing Stock's price Jumps

	The Roadmap to the first model formulation
	The Model Assumptions
	Uncertain variable with respect to Recession 

	The first Model
	Characteristic function
	The Feynman-Kac formula

	STUDY TWO
	The Model Solution
	Further Results from the model (4.5.2) Solution

	STUDY THREE
	Numerical Fourier based Transform of the UAEM to European-style option
	Extension of the formulation to American-type options

	STUDY FOUR
	Numerical Experiment

	Discussion of Result 1
	Conclusion
	RESULT 2
	STUDY FIVE
	An overview of the Result 2
	Introduction
	The Fast Fourier Transform (FFT) Algorithm 
	Fast Fourier Transform of a class of correlated multi-assets in finite dimension
	Application on three correlated stocks Assets.

	STUDY SIX
	Application of the method to three correlated stocks assets.
	Tables of Result 2

	Conclusion
	RESULT 3
	An overview of Result 3
	Introduction

	STUDY SEVEN
	Factorial function Black - Scholes PDE formulation for Option Pricing
	Moving Boundary for American Options
	Determination of Optimal Exercise Boundaries for American Put Options

	STUDY EIGHT
	Fourier transform Solution steps of the Factorial function Black-Scholes pde formulation for American Options 

	STUDY NINE
	Valuation of a dividend paying American put option under Economy recession induced Volatility uncertainty
	Fourier Transform of Ordinary Differential Equations
	Fourier Transform of Partial Differential Equation

	Numerical Results
	American call Option Payoffs with Dividend
	Non-dividend paying American call Option Payoffs

	The Result 3 Analysis
	Conclusion
	RESULT 4
	An Overview of the Result 4
	STUDY TEN
	Introduction
	Preliminaries to the model formulation
	The control regime-switching Triple Stochastic Volatility Heston-like (TSVH) model formulation 

	Options computation in the control regime-switching Triple Stochastic Volatility Heston-like model (TSVH)
	A control regime-switching Triple Stochastic Volatility Heston-like model (TSVH) PDE form
	Characteristic function derivation for the TSVH model
	STUDY ELEVEN
	Numerical discretisation and Simulation schemes for the TSVH model 

	Sample paths of the stochastic volatility processes v1(t), v2(t)  &  v3(t)
	Simulations and Sample paths of the TSVH-model

	CHAPTER FIVE
	SUMMARY, CONCLUSION AND RECOMMENDATIONS
	Introduction
	Summary
	Conclusion
	Recommendations
	Contributions to knowledge
	Suggestions for further research

	REFERENCES
	APPENDICES









