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Abstract

The dynamics of the stock market indices log-returns (∆(lnS̃t)) have been charac-

terised by non-normal features such as upward and downward jumps of different

measures, asymmetric and leptokurtic features. The Bi-Power Variation (BPV)

process has been used to develop jump-estimators to detect jumps in (∆(lnS̃t).

However, the existing jump-estimators are restricted to the BPV case of the Re-

alised Multi-Power Variation (RMPV) processes, and existing models do not accom-

modate these features. Therefore, this study was designed to construct unrestricted

Particular Higher-Order Cases (PHOC) jump-estimators, and build suitable mod-

els that can accommodate the jumps and non-normal features found in (∆(lnS̃t).

The limits in probability and distribution were used to derive the Jump Test Mod-

els (JTM) in the PHOC of the RMPV processes. The JTM were used to test

for jumps under the null hypothesis (H0) of no jump in (∆(lnS̃t) at a 5% level

of significance in three stock markets, namely: Nigerian, UK, and Japan. These

were used to build the dynamics of (∆(lnS̃t). The convolution of densities and the

Lévy-Itô decomposition methods were used to derive the Probability Density Func-

tions (PDF) and the Lévy-Khintchine (LK) formulae of two novel skewed models.

The maximum likelihood estimation method was used to estimate the optimal val-

ues of the parameters in the models. The Kolmogorov-Smirnov, Anderson-Darling

statistics, and the basic moments were used to test the suitability of these models

to the empirical stock market data and compared with three existing models viz:

Black-Scholes (BS), normal and double-exponential jump-diffusion models.

The JTM derived for the PHOC of the RMPV processes were:

Ẑm = ∆−0.5

(
µ−m

2/m
{X}[r1,...,rm]

∆,t

{X}[2]
∆,t

− 1

)(
ϕRMPV

√
max

(
1, q̂

p̂2

))−1

, for m = 2 · · · 10,

where, {X}[r1,...,rm]
∆,t , {X}[2]

∆,t, ϕRMPV , p̂ and q̂ are the RMPV, realised variance, asymp-
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totic variance, estimators of bi-power and quad-power variation, respectively. Jumps

in ∆(lnS̃t) were observed and H0 was rejected. The dynamics of ∆(lnS̃t) was de-

rived as: ∆(lnS̃t) = (µ− 1
2
σ2)∆+σ∆Wt+J(Qu

j )∆N
u
t +J(Qd

j )∆N
d
t , where,µ, σ,Wt,

J(Qu
j ), J(Qd

j ), N
u
t and Nd

t are respectively drift and volatility parameters, standard

Brownian motion, upward and downward jump measures with intensities λuj and λdj ,

respectively. The PDF of the Asymmetric-Laplace (AL) and the Modified Double-

Rayleigh (MDR) were models derived were: f∆(ln S̃t)
(x) = (1−λ∆t)

σ
√

∆t
ϕ

(
x−(µ− 1

2
σ2)∆t

σ
√

∆t

)
+

∆t

(
pκα2λ

u
j exp

(
2α1µj+α1σ2∆t

2

)
exp

(
−
(
x−

(
µ− 1

2
σ2

)
∆t

)
α1

)
Φa

(
µj
)

+ qkα2λ
d
jexp

(
2α2µj+α2σ2∆t

2

)
exp

(
−
(
x−

(
µ− 1

2
σ2

)
∆t

)
α2

)
Φb

(
− µj

))
and

f∆(ln S̃t)x
= (1−λ∆t)

σ
√

∆t
ϕ

(
x−(µ− 1

2
σ2)∆t

σ
√

∆t

)
+

(
pηexp

(
θ2−ρ
ϑ

)
(
θ
2
exp

(
−(µj − θ)2

ϑ

)
+θ
√
πϑΦa(µj)−µj

√
πϑΦa(µj)

)
−qη̂exp

(
θ̂2−ρ̂
ϑ̂

)(
ϑ̂
2
exp

(
−(µj − θ̂)2

ϑ̂

)
+

θ
√
πϑ̂Φb(µj)− µj

√
πϑ̂Φb(−µj)

))
∆t,

where,

θ =
σuj (µd∆t)+µjσ

2∆t

(σuj +σ2∆t)
, ρ =

µ2
jσ

2∆t

(σuj +σ2∆t)
, ϑ =

2σ2∆tσuj
(σuj +σ2∆t)

, θ̂ =
σdj (µd∆t)+µjσ

2∆t

(σdj+σ2∆t)
, ρ̂ =

µ2
jσ

2∆t

(σdj+σ2∆t)
,

ϑ̂ =
2σ2∆tσdj

(σdj+σ2∆t)
, η =

λuj
(σuj )

ϕ
(
x−(µ− 1

2
σ2)∆t

σ
√

∆t

)
and η̂ =

λdj
(σdj )

ϕ
(
x−(µ− 1

2
σ2)∆t

σ
√

∆t

)
. The de-

rived LK formulae of the novel models were: ψ(u) = iuµ − 1
2
σ2u2 −

(
λuj pkα1

α1−iu +

λdj qkα2

α2+iu

)
eiuµj +λdjqk +λuj pk and ψ(u) = iuµ− 1

2
σ2µ2− pλuj

σuj
+

qλdj
σdj

+

(
pλuj
σuj

+
qλdj
σdj

)
eiuµj ,

respectively.The optimal values of the parameters: (µd, σ, α1, α2, pk, qk, λ
u
j , λ

d
j , µj)

and (µd, σ, σ
u
j , σ

d
j , p, qλ

u
j , λ

d
j , µj) in the models were obtained. The AL and MDR

were models fit the empirical distributions better than the existing models, having

the BS model in the worst-case scenario.

The jump test models of the particular higher-order cases were found to be better

jump-estimators. The asymmetric-Laplace and modified double-Rayleigh jump-

diffusion models proved more suitable for capturing jumps and non-normal features

in the stock market indices log-returns.

Keywords: Stock indices, Jump-processes, Asymmetric-Laplace jump-diffusion ,

modified double-Rayleigh, Jump-estimators. Word count: 466
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CHAPTER ONE

INTRODUCTION

1.1 Background to the study

The suitability of a model, which represents the real pattern of its random

process, is its ability to capture almost all the features associated with the sys-

tem’s uncertainties. For example, a deterministic model may not fit into any such

chaotic real-life process since its predictions are with full assurance. A stochastic

model, therefore, may give a better representation of such processes with unforetold

uncertainties.

The stock price S̃t at time t, has been found to be one of the most unstable

variables (Fama, 1965, 1995) in a stock market; its instability results from sudden

changes that occur very frequently and randomly in the market, everyday. This

has been a major concern for most investors who would want to know their fate

when they invest in stocks. Over the years, researchers have looked into obtaining

models that could best describe stock price behaviour, in order to advise investors

and owners of corporations looking for convenient ways to raise money (Adeosun

et al., 2015) via stock investment.

The Scottish Botanist, Robert Brown (as stated in Bachelier, 1900) observed

the random collision of some tiny particles with the molecules of the liquids; he

introduced what is called the Brownian motion (BM). The mathematics of the

Brownian motion, which include the derivation of equations of the BM, existence

of the BM and the Weiner measure that gives the probability distribution of the

BM were given by Albert Einstein and Norbert Wiener, in Akyildirim and Soner

(2014). Financial modelling under the category of stochastic stock price models

began with Bachelier’s work as also recorded in Akyildirim and Soner (2014). The

Bachelier model assumes that the dynamics of a stock price process S̃t, obeys the
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Stochastic Differential Equation (SDE):

dS̃t = S̃tσdWt (1.1)

where, σ is the volatility of the stock price and Wt is a standard Brownian motion.

It was later observed by Osborne (1952), that Bachieler’s model gave rise

to negative stock price value almost surely, which contradicts the real life

experience in the market. An improvement of Bachieler’s model is Osborne’s model,

which was later modified by Samuelson (1965), who introduced the Geometric

Brownian Motion (GBM) model. The dynamics of the GBM model was

described by Samuelson as:

dS̃t = S̃t
(
µdt+ σdWt

)
(1.2)

where, µ is the drift (mean) parameter and σ, S̃t and Wt are as defined above.

A model, known as the Black-Scholes (B-S) model used for pricing Options

which depends on the assumptions of the GBM model was introduced by Black

and Scholes (1973a).

Despite the wide acceptance of the B-S model, it was later found not to be

consistent with observed market prices (Schoutens, 2003). This inconsistency re-

sults from its unrealistic assumptions that the log returns of observed stocks prices

are normally distributed (which they are not), rather, they are in most cases neg-

atively skewed and leptokurtic (see also Trautmann and Beinent (1994), and

Adeosun et al. (2016) all of which contradict the real-life observed price move-

ments. The asymmetric property (skewness) is always different from zero, in

most cases, it gives rise to negative values which imply longer tail to the left

than the right. The frequent and large movements in most stock price processes

result in excess kurtosis, and their paths exhibit jumps of different measures.

More so, the market crash that occurred in 1997 resulted in huge investment loss

as a result of sudden downward jumps in market price. As suggested by

Kou (2002), a suitable model should capture some important empirical

features that are found in the real-life financial data.

Attempts have been made by researchers to modify the B-S model in order

to capture the above-listed features, in the sense that new models are obtained by

the addition of a jump term to the GBM in equation (1.2) above. These are the

jump-diffusion models according to Merton (1976), Duffie et al.(2000), Hanson and

Westman (2002), Kou (2002), Synowiec (2008) and Lau et al.(2019); they have it
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that the dynamics of the stock price process in its generalised form is assumed to

be:

dS̃t = S̃t
(
µdt+ σdWt + J(Qj)dNt

)
(1.3)

where, J(Qj) is a random jump process, and Nt is a discontinuous one-dimensional

standard Poisson process with jump rate λ, such that:

P(Nt = k) =
exp(λ∆t)(λ∆t)k

k!
(1.4)

The difference in the works of Merton (1976), Duffie et al.(2000), Hanson and

Westman (2002), Kou (2002), Synowiec (2008) and Lau et al. (2019); is found to

be as a result of different assumed measures of J(Qj), which could be symmetric

or asymmetric in some cases. The Merton and Kou models for example, have

addressed the leptokurtic property of J(Qj). The first assumes a symmetric normal

distribution for J(Qj), and the second assumes asymmetric double exponential

distribution for J(Qj). On the contrary, the distribution of the jumps that occur

in any price process may not only be symmetric according to Lau et al. (2019), it

could also be skewed in both the upward and downward jumps.

The economic activities in any nation’s stock market are of utmost concern

to marketers, investors, and the nation at large. In a stock market, the market

index is a true picture of the overall performance of the market, and

it is an estimator that reflects the daily general market value. The stock market

indices is a major indicator of the value of the market, since it is an instant

measure used to ascertain the direction of the market as well as giving a pic-

ture of the overall performance of the market. The All Share Index (ASI)

(for example) of the Nigeria Stock Market (NSM) is an example of a Market In-

dex. The availability of stock market index data varies from one market to the

other across the globe. High-frequency data are categorised into two types: the

inter-day daily data of high volume and the intra-day data: minutes and hourly

observations of high frequency (all of which are discrete observations). Processes

modelling financial data can be categorised into three, depending on the empiri-

cal findings from the real market situation over a period of time. These include

processes with continuous paths, discontinuous paths (jumps), and processes with

both continuous and discontinuous paths. Therefore, researchers must verify the

kind of stochastic process governing the underlying stock under study before mak-

ing assertions. To buttress the above-mentioned, Bandi and Renǿ (2016) suggested
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that since most financial data exhibit jumps in their price processes, the suit-

ability of a model is embedded in its ability to capture jumps in a price

process. To determine stock indices’ dynamics, there is a need to examine and

estimate some essential asymptotic features, the presence or absence of jumps in

available discretely-observed price data.

In view of the above, the stock market indices was considered as a discrete

observed process: X = {Xt}t≥0 defined on any given interval [0, t] such that the

observations are made for all discrete time 0 = t0, t1 . . . tn = t, where the jth

observed time is given as:

j∆ = j
t

n
, j = 1, 2, · · · , n (1.5)

where, n is the number of observations and ∆ is the time interval between two

successive observations, within [0, t], which are assumed to be of equal distance.

These observations are of utmost importance since they give the kind of stochastic

process governed by an underlying stock. The challenge of capturing jumps in

discretely-observed processes, in the face of available high-frequency data on the

Internet (especially when n is so large that ∆ is vanishingly small) is on the increase.

Given a positive real constant r, the rth - order realised power variation of

such a process is given as:

{X∆}(r) = ∆
1−r/2

[t/∆]∑
j=1

∣∣Xj∆ −X(j−1)∆

∣∣r (1.6)

where, Xj∆ is the jth observed log return price for j = 1, 2, · · · , n and [t/∆] is

the finite integer before n. The rth - order power variation process is given as the

probability limit of the rth-order realised power variation (RPV):

{X}(r) = P− lim
∆→0
{X∆}(r). (1.7)

An estimation of the Quadratic Variation (QV) defined by [X]t is obtained for

r = 2 of the realised variation in equation (1.7). In Barndorff-Nielsen and Shephard

(2003b), the Realised Variance (RV) was proven to be a consistent estimator (as

n → ∞) of [X]t, when X is assumed to belong to a class of continuous stochastic

volatility semimartingales (Svsmc).

Given that Xt ∈ Svsmc (Barndorff- Nielsen and Shephard, 2003b, He et al.,

2018) such that:

Xt =

∫ t

0

αsds+

∫ t

0

σsdWs (1.8)

4



where,
∫ t

0
αsds = At is an adapted, càdlàg process with finite variation which

implies that the variation of each path t→ At is bounded over each finite interval

in [0, t] and
∫ t

0
σsdWs = Mt is a local Martingale, which is continuous and an Itô

integral of the spot volatility process σt > 0 with respect to a standard Brownian

motion Wt; such that, the Integrated Volatility (IV) process is also assumed finite.

Then, the limit distribution of functions of equation (1.7) above, its convergence

in probability and the central limit theorem results were obtained in Barndorff-

Nielsen et al. (2006b). Based on the procedure given in Barndorff-Neilsen et al.

(2006b), a jump test method was achieved in Aït-Sahalia and Jacod (2009). The

main limitation of the results of the RPV, subject to an Svsmc process is that

when jumps are added to a class of models described in equation (1.8), the RV can

no longer estimate the IV, instead, it gives a result of the sum of the IV and the

QV of the jump component. Hence, the need for a robust process that cannot be

affected when jumps are incorporated into the process.

The realised multipower variation process defined on a one-dimensional semi-

martingale process in its generalised form is given as:

{X}(r1,...,rm)
∆,t = ∆1−δ(r1,...,rm)

c(t,m,∆)∑
j=1

f(xj, ri). (1.9)

as defined in Barndorff-Nielsen et al. (2006b), where δ(r1, . . . , rm) = 1
2

∑m
i=1 ri,

c(t,m,∆) = [t/∆] − (m − 1) and f(xj, ri) =
∏m−1

i=0

∣∣xj+i∣∣ri+1 for n > m. The

asymptotic properties of equation (1.9) above, were extensively given in Barndorff-

Neilsen et al. (2006b) and Kinnebrock and Podolskij (2008). Particular cases of

equation (1.9) are the Bipower, Tripower and the Quadpower processes which can

be found in Barndorff-Nielsen and Shephard (2006) and Ysusi (2006).

The BNS method for jump test named after Barndorff-Nielsen and Shephard

was established in Barndorff-Nielsen and Shephard (2006) for Xt ∈ Svsmc subject

to the above stated assumptions for the processes σ2
t , αt and Wt. This method was

basically derived from the asymptotic distribution of the difference of the realised

bipower variation process: {X}(1,1)
∆,t and the realised variance process [X]

(2)
∆,t. That

is, for m = 2, and r1 = r2 = 1 in equation (1.9), then,

∆−0.5
(
µ−2

1 {X}
(1,1)
∆,t − [X]

(2)
∆,t

)
√∫ t

0
σ4
sds

L→ N
(

0, ϕBPV

)
(1.10)

where, ϕBPV is the asymptotic variance of the convergence in law (distribution)
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result given in equation (1.10) above, such that:

ϕBPV = µ−4
1 + 2µ−2

1 − 5 ' 0.6091, µ1 =

√
2√
π

(1.11)

One of the contributions in this thesis to the description in equations (1.10) and

(1.11), as well as the work given in Barndorff-Nielsen and Shephard (2006) entails

a derivation of the asymptotic theories for particular cases of the realised mul-

tipower variation (RMPV ) process (the convergence in distribution (law)

of the difference of the realised variance RV and particular cases of

the RMPV process.). Hence, the asymptotic variances of the particular

cases that is, ϕRBV , ϕRTV , ϕQPV , ϕPPV , ϕHPV , ϕHPPV , ϕOpV , ϕNPV and

ϕDPV respectively for the realised Bipower, Tripower, Quadpower, Pent-

power, Hexpower, Heptpower, Octpower, Nonpower and Decpower vari-

ation processes were obtained. Based on the results obtained, jump test models

from the asymptotic properties of the particular higher-order cases of the RMPV

process. These results are extensions of the results in the works of Barndorff-Nielsen

and Shephard (2006), Barndorff-Nielsen et al. (2006a) and Ysusi (2006). These are

the generalisation of the BNS jump test model for detecting jumps in discretely-

observed data, and then suitable jump-diffusion models for the stock indices

were suggested. Hence, a family of skewed jump-diffusion models with

non-zero location parameters and scale parameters for upward and down-

ward distributions of the random jump processes was considered. The novel models

are: the Asymmetric Laplace jump-diffusion (ALJD) model (whose jump process

obeys the Asymmetric Laplace (AL) distribution which is a skewed-family of the

Laplace distribution, proposed by Kozubowski and Podgorski (2000) and Kotz et al.

(2012) and the modified double Rayleigh jump-diffusion (MDRJD) model

for the stock price indices.

1.2 Statement of the problem

Jumps are difficult to detect from discrete financial data (stock market indices

are available in the discrete form), but useful in asset pricing and risk management.

To suggest a suitable stochastic process that best describes stock indices data paths,

it is necessary to ascertain the presence or absence of jumps in the discrete data. In

this regard, many works have been done on jump test given discrete financial data,

especially concerning the realised quantities (realised power variation, realised
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bipower variation). The realised bipower variation is a consistent estimator of

the integrated variance (Barndorff-Nielsen et al. (2006c), Barndorff-Nielsen and

Shephard (2006), Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen et

al., 2006b) when jumps are present. However, the existing jump-estimators are

restricted to the bipower case of the realised multi-power variation processes,

and owing to the increasingly volatile nature of the stock indices, more robust

and better jump test models are required to capture these volatile features in

the market. A generalisation of the BNS jump test method and the particular

cases of the higher order of the realised multipower variation for jump test have

not been applied to stock indices in literature to the best of our knowledge.

Jump-diffusion processes applied to model stock indices have been noted in

literature. Categorically, the symmetric jump-diffusion (Merton’s model) and the

asymmetric jump-diffusions Kou (2002), Synowiec (2008) have taken care of the

deficiencies in the Black-Scholes model. However, most of the existing models are

geared towards exact analytical solutions for option pricing and not towards com-

patibility and suitability with the market price process’s behaviour, non-normal

and empirical features, and properties of the distributions of the stock market

price process. More so, in the existing jump-diffusion processes as described in

equation (1.3), the randomness of the jump term: J(Qj)dNt, is basically deter-

mined by two random processes (which in the actual sense is a compound Poisson

process). The first is the random jump times: Nt and the second is the random

measure J(Qj) of jump amplitudes (ie, a measure of the jump sizes). In the ex-

isting literature, the jump-intensity λ is assumed the same for both the upward

and downward jump processes. This does not depict the reality of the arrival

times of these jumps in the stock price process. There is, therefore, a need for

more suitable measures that can accommodate the above-mentioned features in the

dynamics of stock market indices.

This research, therefore, sought to address these existing gaps by developing

suitable jump test models and jump-diffusion models subject to the condition that

the distributions of their random jump processes are asymmetric with non-zero

location parameters. These were achieved by the proposed jump test models via

the RMPV processes, as well as the Asymmetric Laplace jump Diffusion, (ALJD)

and the Modified Double Rayleigh jump-diffusion (MDRJD) models.
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1.3 Research aim and objectives

The aim of this research is to construct Particular Higher-Order Cases (PHOC)

jump-estimators, and build suitable models that can accommodate the jumps and

non-normal features found in the stock markets indices. The objectives of the work

are to:

(1) Obtain jump test models based on particular higher-order cases’ asymptotic

properties in the realised multipower variation process.

(2) Investigate the presence of jumps via the jump test models of the realised mul-

tipower variation process in the stock indices.

(3) Obtain suitable skewed jump-diffusion models with non-zero location parame-

ters for the stock indices.

(4) Derive the probability density functions and the Lévy-Khintchine formula of

the log returns for the skewed jump-diffusion models.

(5) Obtain the initial appraisals of the parameters in the model from the stock

market data.

(6) Estimate the optimal values of the parameters in the models.

(7) Carry out sensitivity analyses of the varied threshold of jumps on the parame-

ters in the models.

(8) Check for the suitability of the models with the stock market indices data.

1.4 Research methodology

The probability limits and limit in distribution methods were used to obtain

the Jump-Test Models (JTM) for the Particular Higher-Order Cases (PHOC) of the

RMPV processes. The JTM were used to test for the presence of jumps under the

null hypothesis of no jump in the ∆(lnS̃t) via the RCodes in three stock markets,

namely: Nigerian, UK, and Japan, comprising, 5334, 2076, and 2076 stock market

daily indices observations respectively. The dynamics of the log-returns of the stock

price was assumed to be:

∆(ln S̃t) =

(
µ− 1

2
σ2

)
∆t+ σ∆Wt + J(Qu

j )∆N
u
t + J(Qd

j )∆N
d
t

where, µ, σ,Wt, J(Qu
j ), J(Qd

j ), N
u
t and Nd

t are respectively drift and volatility pa-

rameters, standard Brownian motion at time t, upward and downward jump mea-

sures, and upward and downward finite jump activities, having jump intensities λuj

and λdj , respectively. The method of convolution of densities and the Lévy-Itô de-
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composition method were used to derive the Probability Density Functions (PDF)

and the Lévy-Khintchine (LK) formula of two new skewed JD models: Asymmet-

ric Laplace JD (ALJD) and the Modified Double Rayleigh JD (MDRJD) models.

The maximum likelihood estimation method was used to estimate the parameters

in the models. A sensitivity analysis on the parameters to the varied threshold of

jumps was carried out. The Kolmogorov-Smirnov, Anderson-Darlng statistics and

the basic moments were used to investigate the suitability of these models to the

empirical stock market data, compared with three existing models viz: BS, normal

and Double-Exponential JD models.

1.5 Motivation for the study

Most financial data obtained from the market presents jumps in the asset price

process; hence, investigating the kind of stochastic process that best models the

stock price indices is very important. This will be useful for proper prediction,

risk hedging, and investment decision-making process.

Most of the existing jump-diffusion models are driven by the existence of

their exact analytical solutions, useful in Option Pricing. However, our motivation

here is based not only on exact solutions or closed-form solutions but also on the

consistency or compliance of models to the market price process.

The Lévy-jump diffusion models were considered more suitable for modelling

in the case of jumps than the existing diffusion models. This gives the motivation

for the study in the thesis. The work is also motivated by the jump test methods

in Barndorff-Nielsen et al. (2006c) and Aı̈t-Sahalia (2002), as well as the jump-

diffusion models given in Merton (1976), Gugole (2016), Yusof and Jaffar(2017),

Kou (2002), Kou (2000) and Synowiec (2008).

1.6 Justification of the study

The realised bipower variation process in the BNS jump test method has been

proven to be a consistent estimator of the integrated variance. In this thesis, this

concept was generalised by considering more efficient and suitable estimators of

the integrated variance. These estimators are the particular higher-order cases of

the realised multipower variation process. They give better results when applied

to jump test in the stock indices of finite jumps.
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Also, a generalisation of the existing jump-diffusion models is needed for

better representation of features found in the real market price process.

1.7 Significance of the study

The results of the analyses in this thesis will be of great benefits to market

participants, since the knowledge of the jump intensities obtained in the models,

will depict the measure of risk involved in the stock markets. It is also important to

note that investors are faced with higher risk in the markets when non compatible

models to empirical data obtained from the markets are used for future prediction

of price processes. Hence, the usefulness of the suitability analyses of the proposed

models in this thesis, with the empirical and distributional properties of the real

data from the stock market, will be useful for proper prediction. The occurrences

of jumps in the price process vary from market to market. Hence, the generalised

jump-test method provided in this work, is robust and will prove helpful to financial

analysts in jump-detection.

1.8 Scope of coverage

Stochastic models of stock price processes are grouped into diffusion, jump-

diffusion, and pure jump models. These can be further categorised into processes

with finite and infinite jump activities. This research focused on jump-diffusion

processes whose upward (Nu
t ) and downward (Nd

t ) jump activities are Poisson pro-

cesses, assumed to be finite, with jump intensities given as λuj and λdj respectively.

Specifically, the processes: J(Qu
j )dN

u
t and J(Qd

j )dN
d
t are compound Poisson pro-

cesses, such that J(Qu
j ) and J(Qd

j ) are non-standard asymmetrically distributed

jump amplitude.

The aspect of jump test via the realised multipower variation process is re-

stricted to the condition that the sum of the powers of the variation is equal to two

(that is, δ(r1, . . . , rm) = 2).

More so, the stock indices data set tested in this thesis were obtained from

three (3) stock markets, namely: the Nigerian All Share Index, UK Stock Market

Indices and Japan Stock Market Indices. The three stock markets were selected

based on the following reasons: The availability of the stock market price data and

the countries’ heterogeneous levels in terms of market pricing mechanism, available
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financial instruments, and sophistication of trading strategies used by agents in the

exchanges.

1.9 Organization of the thesis

This thesis is made up of six chapters, which were arranged sequentially from

the introduction of the research to the summary and conclusions.

Chapter one introduced the research topic and stated the aim and objectives

of the research. This chapter also contained the statement of the problem to be

solved. The motivation, justification, significance of the study and the scope of the

research, were presented in the chapter.

Chapter two gave a detailed review of the existing models for jump test in

discretely-observed price processes. A review of existing jump-diffusion models

that were used in literature was also given here. The chapter also highlighted the

gap in knowledge and the modifications that were made to the existing models.

Chapter three dealt with some basic definitions, concepts, and a clear descrip-

tion of the BNS jump test method and some existing jump-diffusion models that

were applied in this thesis.

In chapter four, the results based on the jump test via the RMPV models with

the stock indices data were obtained. The density functions of new jump-diffusion

models were derived. The chapter also contained the estimation of the optimal

values of the new models’ parameters. The suitability of these models was tested

with the empirical data sets obtained from the markets and detailed discussions on

the obtained results were given.

The discussions of results were presented in chapter five, and the summary,

conclusions, contributions to knowledge, and areas of further research were given

in chapter six.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Preamble

This thesis considered stock indices processes’ dynamics when jumps are de-

tected in available data from the stock markets. This is very important since the to-

tal variability of a stock price process is not just determined by the diffusion process

described by the Black-Scholes model in Black and Scholes (1973b), which assumes

normal distribution for the stock price, it also depends on the jump components,

(Trautmann and Beinent, 1994). Jump test methods for financial data have been

widely studied in literature, these include both the parametric, (Tauchen and Zhou,

2011) and the non- parametric (Barndorff-Nielsen et al., 2006c and Aı̈t-Sahalia and

Jacod, 2009) methods. These methods are restricted to the assumption that assets

return follow special cases of semimartingale processes. The above-mentioned helps

in financial modelling because they suggest the kind of stochastic models to be ap-

plied. Stochastic models with jumps have bridged the gap between the diffusion

models (e.g., B-S. models) and the pure jump models, e.g., the VG models, the

CGMY models, the NIG models, etc.

Given the above, this chapter reviewed some relevant literature on jump test

for stock market data and existing stochastic models when jumps are detected in

the stock market data.

2.2 Review of relevant literature

Here, some existing literature where proposed methods for detecting jumps in

the face of financial data and stochastic models with jumps were reviewed.
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2.2.1 Literature on jump test methods

Jumps are sudden discontinuities that occur spontaneously in the trajectories

of price processes as a result of large price movements. In literature, researchers

have adopted some methods built on large discrete observations of the price process

for each equidistant time interval in a fixed time-space [0, t]. For such observations,

the asymptotic theories for the variability of the price process have been widely

studied.

A vivid observation of a price process X = {Xt}t≥0 defined on a given interval

[0, t], such that the observations are made for all discrete times 0 = t0, t1, . . . tn = t,

where, the jth observed time is given as:

j∆ = j
t

n
=⇒ n =

t

∆
, j = 1, 2, · · · , n, (2.1)

where, n is the number of observations, owing to the recent availability of large

financial data, n tends to be so large that ∆’s tend to diminish. This depicts a

typical real-life intra-day observations of stock prices or inter-day daily data of

high volume, which results in high frequency. A considerable number of studies

have adopted jump test methods in the discrete case when high-frequency data are

available.

Now, owing to the discrete observations described above, a plot of discrete

values can be joined together to obtain a full sample path of both the observed

values (which could be discrete) and the unobserved values, thereby giving rise

to some continuous sample paths. The points of discontinuities in an underlying

process could be due to varying discretely-observed values or some valid proofs of

the presence of jumps in the process. The question as to whether or not discrete

data were generated from a continuous process or possibly discontinuous process

was first answered by Aı̈t-Sahalia (2002). The work of Aı̈t-Sahalia (2002) was built

on the argument proposed by Karlin and McGregor (1959), where the concept of

determining the transition densities of the diffusion process, when it is a markov

process was employed. The effect of the diffusion criteria on option pricing models

was also the focus of the work of Aı̈t-Sahalia (2002). However, it was later observed

that the method of Aı̈t-Sahalia (2002) was restricted to the one factor markov

property. Therefore, the problem of employing the diffusion criteria when the

sample paths of such observations are not markovian in a continuous case was
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addressed by Carr and Wu (2003).

It is important to note that an underlying price process comprises continuous

components, purely discontinuous components, or both. According to Carr and Wu

(2003), the rate (speed) at which an underlying price process converges is mainly

determined by the two factors: continuous, purely discontinuous components, and

the moneyness factors. Their results proved that the convergence rates of out

of the money (OTM) Option price process were faster, (as the maturity time T

tends to zero) in the case of the continuous martingale process as compared to

an infinite jump variation process. As an extension of the work of Carr and Wu

(2003), a nonparametric approach via the transition density of a discretely sampled

jump-diffusion model was proposed by Aı̈t-Sahalia et al. (2012).

To determine the dynamics of any process, there is the need to examine and

estimate some asymptotic features in discretely-observed price data. In this regard,

Andersen et al. (2004) and Huang and Tauchen (2005), among others, considered

some realised quantities (realised variation, quadratic variation, integrated vari-

ance/volatility, and realised power variation) in terms of the effects of jumps on

price variability of the process. Limit distribution, which includes the central limit

theorem for these quantities were obtained by Jacod (2008), and Barndorff-Nielsen

and Shephard (2003b). Lee and Mykland (2007), adopted a nonparametric ap-

proach to obtain jump arrival times and realised jump sizes in an underlying price

process, given multiple daily observations.

With regards to jump test by wavelet, Xue et al. (2014), applied the wavelet

methods designed by Wang (1995), Park and Kim (2004, 2006), Fan and Wang

(2007) to estimate jump arrival times, based on the asymptotic results of the

method. They empirically applied the jump test method by wavelet to the data of

the US equity markets. The application of Kernel estimators of continuous sample

paths by Wang and Yang (2009), Xia (1998) and Claeskens and Van Keilegom

(2004) as well as the Spline method by Koo (1997), was employed by Ma and Yang

(2011) in a jump test procedure.

A nonparametric jump test method based on the asymptotic distribution re-

sults of the realised power variation for a generalised power p and a Blumenthal-

Getoor Index was proposed for jump test by Aı̈t-Sahalia and Jacod (2009) to detect

the presence of jumps in high-frequency discrete data. And further to the work of

14



Aı̈t-Sahalia and Jacod (2009), for finite and infinite number of jumps, since such

data come with noise, Aı̈t-Sahalia and Jacod (2011) and Aı̈t-Sahalia (2012) have

proffered solutions to accommodate the effects of such a noisy high-frequency data

to the test method of Aı̈t-Sahalia and Jacod (2009). Gioa and Vieu (2016) have

categorised methods of analysing high-frequency information, and for jump detec-

tion.

Pure jump models such as the V G model by Madan and Seneta (1990) and

Madan et al. (1998), the CGMY model named after Carr, Geman, Madan and

Yor (Carr et al., 2002), the generalised hyperbolic model of Eberlein and Keller

(1995) that has its specification in the Normal Inverse Gaussian (NIG) model, were

generously applied to model asset price returns. As a result of the above provision,

Jing et al. (2012) proposed a method that can be used to check if these available

pure jump models were viable enough to fit into real-life situations in the market

when data are available in high frequency.

By assuming that the log returns of an asset price process Xt belongs to a class

of Brownian semimartingale (BSM) process or Stochastic Volatility semimartingale

(Svsm) process as described by Jacod and Shiryaev (2003), then, the RPV of such

a process which, according to Barndorff-Nielsen and Shephard (2003a) is defined

as the estimated sums of the absolute power of increments form the basis of

the jump-tests that were proposed in Barndorff-Nielsen and Shephard (2003a). It

is well known in literature (see Barndorff-Nielsen and Shephard, 2003a) that the

realised power variation process is an estimator of the integrated variance, which, in

turn, plays a major role in finding the integrated volatility given an Svsm process

without jumps. The concept of the jumps with volatility is essential in financial

modelling as it dictates the risk measure involved in any given price process. Hence,

the works of Merton (1980) and Nelson (1992) have shown that volatility can be

obtained by some stipulated methods when the market data is available in a high

frequency. The smooth sample paths of the models proposed by the above-named

authors were countered by some practical empirical shreds of evidence from the

market.

The stock price dynamics studied is synonymous with evaluating and predict-

ing the process of a risky asset since the stock itself is a risky asset. Consequently,

the risk is caused by some sudden shocks, which are driven by some unpredictable
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process. The continuous stochastic models of stock indices are not exempted from

these features. In addition to the existing risks in the market, when jumps are

introduced into existing models, based on some empirical real-life evidence of these

sudden movements, then it results in higher risk in the market, which will later

lead to changes in the dynamics of the process.

The presence of jumps in any underlying price process calls for additional

parameters in the model; these parameters include risk parameters resulting from

jumps, the price intensity of the risk, etc. Bajgrowicz et al. (2015) and Calcagnile

et al. (2018) have proved that a new inflow of information causes jumps in the

market, and these inflows are very unpredictable in themselves. In addition to the

above authors’ work, Aı̈t-Sahalia et al. (2015) showed that the presence of jumps

in a particular market can spread easily to the other markets across the globe.

Generally, the importance of the study of jumps in a price process can be

categorised into four groups. First, according to Bates (2008), Aı̈t-Sahalia et al.

(2011) and Liu et al. (2018), it was shown that the study of the presence of

jumps in a price process could help investors in the market to allocate assets in the

right proportion, as well as to make decisions based on optimal portfolio selection

since large price movement may result in much market loss. Second, Duffie and

Pan (1997) have shown that the study of jumps is relevant to the aspect of risk

management. Third, some other studies (Duffie et al., 2000 and Eraker et al., 2003),

have it that the presence of jumps could cause market incompleteness. Fourth, the

study of jumps will aid in asset pricing when available options cannot be replicated,

since some jump risks cannot be erased from the market, according to Duffie and

Pan (1997).

Owing to the availability of high-frequency data from the market, there have

been some controversial issues (such as heavy noise as a result of high frequency) as

regards volatility modelling, as reported by Aı̈t-Sahalia et al. (2005) and Andersen

et al. (2013). The applications of the concept of realised volatility have been treated

in the past two decades. Related works include those of Poterba and Summers

(1986), Hsieh (1991), Zhou (1996), Taylor and Xu (1997), Andersen et al. (2001a),

Andersen et al. (2001b) and Yaya et al. (2018).

In the quest for volatility estimation in the face of high-frequency data, the

realised variance converges in probability to the quadratic variation, in a class of
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continuous Svsm process. In view of this, Barndorff-Nielsen and Shephard (2002a)

and Barndorff-Nielsen and Shephard (2003b) obtained the central limit theorem for

a special class of stochastic volatility models under some weak conditions subject

to the price process. Similarly, estimators of the realised volatility which in turn

give estimates of the integrated volatility in the face of jumps were highlighted

as the bi-power variation, minimum realised variation, and medium realised vari-

ation, respectively, by Barndorff-Nielsen and Shephard (2002b), and Andersen et

al. (2012). And as such, a comparative analysis of the trio was given in Yaya et al.

(2018).

The reason for introducing the jump test method via the realised bi-power

variation (Barndorff-Nielsen et al., 2006a), is the limitation of the realised power

variation process when jumps are added to a continuous Svsm process. In other

words, when jumps are imputed into a class of continuous Svsm process, the re-

alised power variation process cannot estimate the integrated variance. Instead, it

results to the sum of integrated volatility and quadratic variation of the imputed

jump process, thus showing that the realised power variation is not robust to give

an exact estimate of the IV in the face of jumps. The BNS-jump test method

named after Barndorff-Nielsen and Shephard was therefore introduced for the

purpose of determining a tool for a process that proves more robust to jumps;

the realised bi-power variation process in Barndorff-Nielsen and Shephard (2001a,

2001b), Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen et al. (2006b)

and Barndorff-Nielsen and Shephard (2006) is therefore the first order particular

case of the realised multipower variation process. in literature, the BNS method

has been widely used to test for jumps given discretely-observed financial data of

high frequency. More so, Huang and Tauchen (2010) had applied the BNS jump

test method alongside Monte-Carlo’s analysis to high-frequency data. Their results

show that the behaviour of an underlying process changes at a slight touch of a

jump. A similar application of the method used in Huang and Tauchen (2010) can

also be found in Tauchen and Zhou (2011). More recent applications of the BNS

jump test can be found in the works of Xu et al. (2016), Gkillas et al. (2020a),

and Gkillas et al. (2020b).

17



2.2.2 Literature on jump-diffusion models

Many works were carried out with regards to the studies on the existing jump-

diffusion models. The most celebrated option pricing model, the B-S model, is

found to be deficient in the empirical findings from most financial data. By com-

paring the features of the normal distribution of the Black-Scholes model to the

empirical distribution of log returns of the asset price, it has been observed that

the parameter that measures the asymmetric property (Skewness) in most finan-

cial price process gives values that are different from zero, whereas the skewness

is zero in the symmetric case of the B-S model. The skewness’s negative value

implies a longer tail to the left (the reverse of this implies positive skewness, which

shows a long tail to the right than to the left). The empirical skewness of returns

of stock indices has been proven to be negatively skewed (asymmetric). In addition

to the above, the large movements in the stock price process, which appears more

frequently than in the B-S’ type of model, results in a case of excess kurtosis or

fat tails and according to Schoutens (2003), this property is a pointer to the fact

that the stock indices price process needs to be represented via jump-diffusion or

jump models, as the case may be.

Attempts have been made by many authors to address the above-mentioned

lack of compatibility of the B-S model to the empirical distribution of the market

data’s real-life situation. Under this, Duffie et al. (2000) provided an analytical

solution in closed form (which is useful for option pricing), a platform to address

the leptokurtic features (excess kurtosis) found in empirical distribution. This is

very necessary since this feature subject to risk-neutral measure results in“volatility

smile” in option prices (see Synowiec, 2008). The proposed analytical platform gave

birth to an Affine jump-diffusion (AJD) model where the distribution of the jumps

is a Poisson process. When the distribution of the jump sizes in the AJD model

takes a normal path, then the AJD model becomes a normal jump-diffusion, as can

be found in the work of Hanson and Westman (2002). Their work showed that the

jumps in the model were able to track the S and P 500 stock index data in terms of

capturing large jumps, extreme outliers, the problem of negative skewness, and

leptokurtic features. A few authors have applied the work of Duffie et al. (2000)

to different fields. These include modelling and pricing electricity derivatives for

evaluating jump activities (Culot et al., 2006, Nomikos and Soldatos, 2008), as
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well as jump volatility in the commodity market (Da Fonseca and Ignatieva, 2019),

and stochastic volatility models of the AJD (Belaygorod and Zardetto, 2013). The

work of Glasserman and Kim (2009) extends the closed form of the AJD model to

a practicable technique. Broadie and Kaya (2006) introduced a method for finding

the exact simulation of the market price using the AJD model.

A simplified form of the normal jump-diffusion of Hanson and Westman (2002)

is the Merton model by Merton (1976) which was used in Gugole (2016) where,

it was proved to have performed better than the famous Black-Scholes model,

under a comparative analysis. The Merton jump-diffusion model is one of the

first improvements of the B- S model. It is a special kind of jump-diffusion that

has many similarities with the B-S model, except for the jump term, which is a

compound Poisson process comprising two random variables, namely: the jump

intensity (average number of jumps) which is a Poisson process, and the jump size

of the log-stock price which obeys normal distribution. Note that the jump intensity

and the log stock price’s jump size are assumed to be independent random variables

in the Merton model. Since Merton’s proposed work, there have been numerous

applications of the model to diverse fields in financial modelling. These include

the works of Black and Cox (1976), Geske (1977), Zhou (1997) and Zhou (2001),

which showed that the Merton model can be used to obtain the dynamics of a

firm’s value. The probability of companies’ and firms’ defaults has been used in

the Merton model by Yusof and Jaffar (2017) and Vestbekken and Engebretsen

(2016).

Apart from the Merton model, one of the extensions to the B-S model is the

Kou model in Kou (2000) and Kou (2002). This model, just like the Merton model,

addresses the leptokurtic features and the non-constant volatility of the returns of

stock prices. The measure of the jump size in the Merton model, which follows

a normal distribution, is replaced by a double exponential distribution to cater

for fat tails and high peaks found in empirical distributions. To accommodate

these empirical features, it was found in Kou (2002) that the double exponential

distribution possesses a high peak and heavy tail parameters. The work of Sezgin-

Alp (2016) proved that Kou’s model performs better than the B-S model in the

Turkish stock market, and the fuzzy version of Kou’s model was presented by Zhang

et al. (2012). A stochastic volatility model of interest rate was merged with Kou’s
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model to achieve an option pricing model in Chen et al. (2017). Applications of

the Kou model in literature include the pricing of a compound option. Real option

estimation via the double exponential jump-diffusion process has been reported by

Liu et al. (2018) and Hillman et al. (2018).

A replacement of the double exponential distribution in the Kou model is the

uniform distribution. The Uniform jump-diffusion (UJD) model was proposed by

Hanson et al. (2004b) because the normal jump-diffusion and double exponential

jump-diffusion models have just a small deviate from the diffusion models in the

sense of their distributional peak. The UJD model was used in place of the exist-

ing models to account for possible negative and positive jumps. Subsequently, a

stochastic volatility jump-diffusion by Yan and Hanson (2006) was introduced to

merge a particular stochastic volatility model with the UJD model. Owing to most

jump-diffusions’ intractable nature, Monte Carlo’s approach was adopted by Zhu

and Hanson (2005) as a tool for computing European option prices for a log uniform

jump-diffusion model. Ahlip and Prodan (2015) derived an analytical result for the

European call option following the format of the work of Zhu and Hanson (2005).

To obtain more suitable models that can fit the real market better than the B-S

models, so many works have been done in the sense of additional parameters to the

existing models. In line with the above-mentioned, the hyper-exponential jump-

diffusion model by Cai et al. (2009) and Crosby et al. (2010), the double Rayleigh

jump-diffusion model and the double normal jump-diffusion model by Synowiec

(2008) were added to the group of jump-diffusion models. The multiple parameter

models of the jump-diffusion process were proposed by Xu et al. (2016), namely:

the BS-SGT and the Kou-SGT models, which were obtained from the existing B-S

and the double exponential jump-diffusion models.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Preamble

In this chapter, some basic definitions, concepts and Mathematical descriptions

of some existing jump diffusion models to be applied in this thesis were presented.

Study one contains some basic definitions in Financial Mathematics, that

serves as the bedrock of stochastic calculus. The basic concepts of the Lévy

process and its properties, martingales and semimartingales, stochastic volatil-

ity semimartingales were given in study two. The realised power variation, the

realised variance, the realised multipower variation process as well as their asymp-

totic properties, which forms the basis for the jump-test method used in this thesis,

were contained in study three. In study four, a breakdown of some existing models

of the jump-diffusion process found in literature, stochastic formulas for solving

the dynamics of stochastic differential equation with and without jumps were pre-

sented.
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3.2 STUDY ONE

Introduction

In this study, some basic definitions in financial mathematics in relation to con-

cepts and models in stochastic calculus were presented. These form the bedrock for

the methods used in this thesis. These definitions, concepts and models were given

according to the following authors: Shreve (2004), Schoutens (2003), Kyprianou

(2006), Ugbebor (2009), Durrett (2019), Schoutens and Cariboni (2010), Ekha-

guere (2009) and Protter (2005).

3.2.1 Basic Definitions

Definition 3.1: A measurable space. (Ugbebor, 2009, Durrett, 2019)

Given a set Ω, collection of subsets F , which forms a σ-algebra, satisfying the fol-

lowing conditions:

1. Ω ∈ F

2. E ∈ F( =⇒ Ec ∈ F)

3. Let Ei; i = 1, 2, ..., n be such that E ∈ F and,
⋃n
i=1Ei ∈ F . Then, the pair

(Ω,F) is called a measurable space.

Definition 3.2: A set function (Ugbebor, 2009, Durrett, 2019)

A set function, Ψ is defined on a non-empty class C of sets in a space Ω by assigning

to each set E ∈ C a single number, Ψ(E), (finite or infinite) known as the value of

Ψ at E

Remark 3.1 (Durrett, 2019)

Suppose E1, E2 ∈ C, such that: Ψ(E1) = +∞ and Ψ(E2) = −∞

Then,

Ψ(Ω) = Ψ(E1) + Ψ(E1) = +∞ (3.1)

and

Ψ(Ω) = Ψ(E2) + Ψ(E2) = −∞ (3.2)

From equations (3.1) and (3.2) above, the value of Ψ(Ω) 6= Ψ(Ω) since Ψ is a

single-valued function, which is a contradiction.
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Definition 3.3: A additive set function (Ugbebor, 2009, Durrett, 2019)

A set function is said to be additive if for all sets E1, E2 such that E1 ∩ E2 = φ,

Ψ(E1 ∪ E2) = Ψ(E1) + Ψ(E2) and by finite additivity,

Ψ
( n⋃
i=1

Ei

)
=

n∑
i=1

Ψ(Ei) (3.3)

where, Ei ∩ Ej = φ for all i 6= j

This is called the finite additivity property of a set function.

An additive set function Ψ is a set of function which has the additivity prop-

erty, and in addition, one of the values +∞,−∞ is NOT allowed. To fix ideas,

Ψ 6= −∞

1. If all the values of Ψ are finite, then Ψ is said to be finite written as: |Ψ| ≤ ∞

2. If every set in the given class C at which Ψ is a countable unions of sets in C,

which Ψ is finite, then Ψ is said to be σ-finite.

Definition 3.5: A content (Ugbebor, 2009, Durrett, 2019)

A positive set function which is finitely positive is called a content.

Definition 3.6: A measure and positive measure (Ugbebor, 2009, Durrett 2019)

Given a countable class of disjoint setsE1, E2, · · ·En, if Ψ
(⋃N

n=1En

)
=
∑N

n=1 Ψ(En),

then Ψ is said to be a countably positive set function (σ-positive set function). A

set function which is σ-positive is called a measure. A positive measure is a set

function µ which is defined on a σ-algebra F given as:

µ : F → [0,∞] (3.4)

with range in [0,∞] and is countably σ− positive.

Definition 3.7: Continuity of a positive set function (Ugbebor, 2009)

A positive set function Ψ is said to be

1. continuous from below if Ψ(limn→∞En) = limn→∞Ψ(En) for every increasing

sequences {En} : E1 ⊂ E2 ⊂ E3 ⊂ · · ·

2. continuous from above if Ψ(limn→∞En) = limn→∞Ψ(En) for every decreasing

sequence {En} : E1 ⊃ E2 ⊃ E3 ⊃ · · · and Ψ(En) ≤ ∞ for some values of n = n0
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Remark 3.2: (Ugbebor, 2009)

The following remarks on the continuity of the positive set function are highlighted:

1. continuity at φ reduces to continuity from above.

2. continuity from above, the condition that Ψ(En) ≤ ∞ for some values of n = n0

is necessary.

3. A set function, Ψ is continuous, if it is continuous from above and continuous

from below.

Theorem 3.1: (Ugbebor, 2009)

Every σ-additive set function is finitely positive.

Theorem 3.2: (Ugbebor, 2009)

Let Ψ be finitely positive, finite and continuous at the empty set φ, then Ψ is σ-

additive.

Definition 3.8: A measure space (Ugbebor, 2009, Durrett, 2019)

Given a measure µ, which is a positive set function defined on (Ω,F) and given as:

µ : F → R (3.5)

satisfying the following conditions:

1. µ(φ) = 0

2. whenever E1, E2, E3 · · · is a class of pairwise sets such that,

µ(∪∞n=1En) =
∞∑
n=1

µ(En) (3.6)

Then, the triple (Ω,F , µ) is called a measure space.

Definition 3.9: Probability measure and probability space (Durrett, 2019)

A measure P such that P(Ω) = 1 is called a probability measure. The triple

(Ω,F ,P) is called a probability space where Ω is a sample space, F is a σ-algebra,

a subset of Ω.

Definition 3.10: A Filtration (Ekhaguere, 2009)

A non-decreasing family F = {Ft, 0 ≤ t ≤ T} of sub σ−algebra of F : Fs ⊂ Ft ⊂

FT ⊂ F for all 0 ≤ s ≤ t ≤ T ; where Ft stands for information available at time

t then F = {Ft : 0 ≤ t ≤ T} is called a filtration which represents information flow.
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Definition 3.11: A Filtered probability space (Ekhaguere, 2009)

Given a probability space (Ω,F ,P) and the filtration F = {Ft : t ∈ [0,∞)} satisfy-

ing the following conditions:

1. F0 contains all the P-null members of F , that is:

P(E) = 0 =⇒ E ∈ F (3.7)

2. Fs ⊆ Ft whenever 0 ≤ s ≤ t

3. F is right continuous in the sense that

Ft+ =
⋂
s>t

Fs (3.8)

Then, F = {Ft : t ∈ [0,∞)} is called a filtration of F and (Ω,F ,P,F) is called a

Filtered probability space or a Stochastic basis.

Definition 3.12: A random variable (Ugbebor, 2009)

Given a sample space Ω, a real-valued function defined on the sample space Ω, such

that

X̃ : Ω→ R (3.9)

is called a random variable, and X̃ may be discrete or continuous.

Definition 3.13: Distribution function (Durrett, 2019)

The distribution function of a random variable X̃ is given by F (x) = P (X̃ ≤ x),

where, dF (x) = f(x)dx and f(x) is the density function of X̃

Remark 3.3 (Ugbebor, 2009)

A random variable X̃ : Ω→ R is said to be integrable if:∫
Ω

∣∣∣X(ω)
∣∣∣dF(ω) =

∫
R
|x|f(x)dx <∞ (3.10)

where, ω ∈ Ω

Definition 3.14: Mathematical expectation/Variance of X̃. (Durrett, 2019)

Let X̃ ∈ L1(Ω,F ,P), then the mathematical expectation of X̃ is defined as:

E(X̃) =

∫
Ω

X̃(ω)Pdω) =

∫
R
X̃f(x)dx (3.11)

If X̃ ∈ L2(Ω,F ,P), then the Variance of X̃ is defined as:

V ar(X̃) = E(X̃ − E(X̃))2 (3.12)
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Definition 3.15: Conditional expectation (Durrett, 2019)

Let X̃ be a random variable with E(|X̃|) < ∞, then for X̃ ∈ L2(Ω,F ,P) and

Fs a sub σ-algebra of F , the random variable E(X̃|Fs) is called the Conditional

expectation of X̃ given Fs

Remark 3.4: Properties of Conditional expectation (Durrett, 2019)

Let α, β ∈ R, X̃, Ỹ , Sn, n = 1, 2, · · · , be R-valued members of L1(Ω,F ,P); and

F1,F2,F3 be sub σ-algebra of F , then the following is true:

1. The conditional expectation is linear:

E((αX̃ + β)|F) = αE(X̃|F) + βE(X̃|F)

almost surely.

2. The conditional expectation is positive preserving i.e, for a nonnegative random

variable X̃,

E(X̃|F) ≥ 0

3. E(1|F) = 1, in general, E(c|F) = c, where c is a constant.

(a) If X is F -measurable, then E(X̃|F) = X̃ almost surely.

(b) If X̃Ỹ ∈ L1(Ω,F ,P) and X̃ is F -measurable, then

E(X̃Ỹ |F) = X̃E(Ỹ |F)

4. Tower Property

If F1 ⊂ F2, then,

E(E(X̃|F2)|F1) = E(X̃|F1)

Similarly,

E(E(X̃|F1)|F2) = E(X̃|F1)

almost surely.

5. If S ∈ L1(Ω,F ,P) and Sn → S in L1(Ω,F ,P), then

E(Sn|F)→ E(S|F) ∈ L1(Ω,F ,P)

6. Jensen’s inequality

If f : R→ R is convex and f(x) ∈ L1(Ω,F ,P), then
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f(E(X̃|F)) ≤ E(f(X̃)|F)

In particular, since x→ |x|p, 1 ≤ p ≤ ∞, x ∈ R is convex, then,

||E(X|F)||p ≤ ||X||p

almost surely X̃ ∈ Lp(Ω,F ,P)

7. The random variable X̃ is independent of F iff for every measurable function

g : R→ R

such that g(X̃) ∈ L1(Ω,F ,F)

E(g(X̃)|F) = E(g(X̃))

Definition 3.16: Characteristic function and exponent (Schoutens, 2003)

Let X̃ be a random variable whose distribution function is given as:

F(x) = P(X ≤ x)

The Characteristic function φX(u) of the random variable X is the Fourier-Stieltjes

transform of the distribution.

Thus, φX̃(u) is defined as:

φX̃(u) = E
(
exp(iuX̃)

)
=

∫
R
exp(iuX̃)dF(x) (3.13)

where, i is the imaginary number (i = −1).

The characteristic exponent sometimes called the cumulant characteristics func-

tion.

ψ(u) = logE
(
exp(iuX̃)

)
= logφ(u) (3.14)

=⇒ φX̃(u) = exp
(
ψ(u)

)

Definition 3.17: Stochastic process (Schoutens, 2003, Ugbebor, 2009)

A Stochastic process, X = {Xt : 0 ≤ t ≤ T} is a family of random variables

defined on the same probability space (Ω,F ,P) indexed by a set T ⊂ R such that:

X : T → Rd (3.15)

t 7→ X(t)

i.e

X(t) : Ω→ Rd
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: ω 7→ X(t)(ω) = X(t, ω)

Remark 3.5 (Schoutens, 2003)

The following are remarked on the stochastic process:

1. The process Xt(ω) is said to be measurable if for all ω ∈ Ω, X(t, ω) : Ω→ R is

a measurable function.

2. The process Xt(ω) is adapted to the filtration F, or simply F-adapted, if Xt is

Ft-measurable (Xt ∈ Ft), this implies that the value of Xt is unknown at time t.

3. The process Xt(ω) is F - predictable if Xt ∈ Ft =
⋃
s<tFs which implies that

Xt is Ft-measurable that is the value of Xt is strictly known before time t.

4. The process Xt(ω) is Gaussian if for all t1 < t2 < · · · < tk the k-dimensional

random variables are normally distributed.

5. The process Xt(ω) is a Markov process if for all t1 < t2 < · · · < tk,

P
(
Xtk ≤ xtk |Xtk−1

, · · ·xt1
)

= P
(
Xtk ≤ xk|Xtk−1

)
(3.16)

6. The process Xt(ω) is said to be integrable if:∫
Ω

|Xt(ω)|dP(ω) =

∫
R
|x|P(x)dx <∞ (3.17)

Definition 3.18: A continuous stochastic process (Kyprianou, 2006)

A stochastic process Xt(ω) defined on the probability space (Ω,F ,P) is stochasti-

cally continuous or continuous in probability if for every ε > 0:

lim
s→t

P
(
|Xs(ω)−Xt(ω)| > ε

)
= 0 (3.18)

Definition 3.19: Independent increment of a stochastic process (Kyprianou, 2006)

The increments of a stochastic process Xt(ω) are called independent if increments

Xt1 −Xt2 and Xt3 −Xt4 are independent random variables, whenever the two time

intervals t1 ≤ t ≤ t2 and t3 ≤ t ≤ t4 do not overlap.

Definition 3.20: Stationary increments of a stochastic process (Kyprianou, 2006)

The increments of a stochastic process Xt(ω) are called stationary, if the probabil-

ity distribution of any increment Xs −Xt depends only on the length s− t of the

time interval, i.e increments with equal intervals are identically distributed.

Definition 3.21: A cádlág process (Kyprianou, 2006)

A stochastic process Xt(ω) is called a cádlág process if it is right continuous with
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left limit. That is,

X(t−) = lim
s→t
s<t

X(s); X(t+) = lim
s→t
s>t

X(s) (3.19)

and

X(t−) = X(t+)

for t ∈ [0, T ]

Definition 3.22: Jump process (Kyprianou, 2006)

The jump process ∆Xti of a stochastic process Xt with right continuity and left

limits is given as:

∆Xti = Xti −Xti−1
(3.20)

where, ti is the jump time of the process for i = 1, 2, . . . , n

Definition 3.23: Jump size (Kyprianou, 2006)

The jump size of a stochastic process Xt is given as:

∆X = X(t+)−X(t−), t > 0 (3.21)

Definition 3.24: A martingale (Schoutens, 2003, Durrett, 2019)

A stochastic process, X = Xt : 0 ≤ t ≤ T is a Martingale defined on a filtered

probability space (Ω,F ,P,F), if the following conditions are satisfied

1. X is F-adapted.

2. E(|Xt|) <∞ for all t ≥ 0.

3. E(Xt|Fs) = Xs, almost surely for 0 ≤ s ≤ t

Remark 3.6 (Durrett, 2019)

In the above, the stochastic process X = {Xt : t ≥ 0} is a submartingale and

supermartingale if the third condition given above is respectively, E(Xt|Fs) ≥ Xs

and E(Xt|Fs) ≤ Xs

Definition 3.25: Brownian motion (Kyprianou, 2006)

A stochastic process W = {Wt : t ≥ 0} defined on a probability space (Ω,F ,P)

is called a Brownian motion, if, the probability that the process starts at zero is

one that is, P(W0 = 0) = 1; it possesses stochastically independent increments
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such that Wt −Ws is independent of Wu −Wv for 0 ≤ v ≤ u ≤ s ≤ t; the incre-

ment: Wt −Ws is normally distributed with mean zero and variance (t − s) and

both Wt−Ws and Wt−s have the same distribution such that E[Wt−Ws] = E[Wt−s].

Definition 3.26: Geometric Brownian Motion (Kyprianou, 2006)

Let {Wt : t ≥ 0} be a Brownian motion, then a stochastic process {Xt : t ≥ 0}

satisfying the Stochastic Differential Equation (SDE):

dXt = Xt(µ̂dt+ σdWt), t ≥ 0 (3.22)

where, Xt0 = x0, µ̂ ∈ R and σ ≥ 0 is called a Geometric Brownian Motion.
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3.3 STUDY TWO

Basic concepts of the Lévy-process and semimartingales

In this study, the basic concepts of the Lévy-process, its properties which in-

clude the Lévy-Khintchine formula and some very important results are discussed.

The concepts of semimartingales in its continuous form (Svsmc) and discontinuous

form (Svsmj) are also highlighted.

3.3.1 Basic concepts of the Lévy process

The definition of the Lévy process, its properties, examples and some impor-

tant results of the Lévy process were given below.

Definition 3.27: A Lévy process

A stochastic process X = {Xt : t ≥ 0} defined on the probability space (Ω,F ,P)

with X0 = 0 is called a Lévy process if it possesses: independent increments, Sta-

tionary increments, Stochastic Continuity and the Cádlág properties as defined

in definition (3.17) - (3.20) above.

3.3.1.1 Properties of a Lévy process

Here, some very important properties of the Lévy process, which include the

infinitely divisibility of a Lévy process, the Lévy-Khintchine formula and Lévy-Itô

decomposition are discussed. In the sequel, the definition of infinitely divisible dis-

tribution is given.

Definition 3.28: Infinitely divisible distribution (Sato, 1999)

Suppose φ(u) is the characteristic function of a random variable X. If for every

positive integer n, φ(u) is also the nth power of the characteristics function, then,

the distribution is infinitely divisible. That is, in terms of X, it means that one

could write for any n:

X = Y
(n)

1 + Y
(n)

2 + . . .+ Y (n)
n (3.23)

where, Y
(n)
i , i = 1, 2, . . . , n are independent and identically distributed (i.i.d) ran-

dom variables all following a law with characteristics function (φ(z))
1
n .
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Example 3.1

The normal distribution
(
X̃ ∼ N(µ, σ2)

)
is infinitely divisible. That is,

φµ

(
u;µ, σ2

)
=
(
eiuµ · e(− 1

2n
σ2u2
)n

(3.24)

=
(
φn(u)

)n
where, φn(u) is the characteristic function of Y ∼ N(µ

n
, σ

2

n
), given that Y

(n)
i , i =

1, . . . , n are independent and identically distributed random variables and,

X = Y
(n)

1 + · · ·+ Y (n)
n ∼ N(µ, σ2) (3.25)

Remark 3.7 (Sato, 1999)

The next theorem gives a close relationship between the distribution of the Lévy

process at time t and the concept of infinitely divisible distribution as shown by

De Finetti (1992), (see Sato, 1999, for proof).

Theorem 3.3: Infinitely divisible distribution of a Lévy process. (Sato, 1999,

Schoutens, 2003)

Let X = {Xt : t ≥ 0} be a Lévy process, then X has an infinitely divisible distri-

bution F for every t. Conversely, if F is an infinitely divisible distribution, then

there exist a Lévy process X such that the distribution of X is given by F .

Theorem 3.4: Lévy-Khintchine formula for Lévy process. (Sato, 1999, Apple-

baum, 2009)

Suppose µ ∈ R, σ ≥ 0 and ν(dx) is a measure concentrated on R\{0} such that,∫
R
(1 ∧ x2)ν(dx) <∞ (3.26)

where, the Lévy triple
(
µ, σ2, ν(dx)

)
is defined for µ ∈ R. Then, there exist a

probability space (Ω,F ,P) on which a Lévy process is defined having a character-

istic exponent ψ(u), where,

ψ(u) = iµu+
1

2
σ2u2 +

∫
R

(
1− eiux − iux1{|x|<1}

)
ν(dx) (3.27)

for ψ(u) as given in definition (3.16) and 1{|x|<1} is an indicator function with:∫
R\{0}

(1 ∧ x2)ν(dx) <∞ (3.28)

Equation (3.27) is called the Lévy-Khintchine formula which gives an expression

for the characteristics exponent ψ(u) of a Lévy process.

32



Remark 3.8 (Sato, 1999)

From the above, Lévy process can be decomposed into three independent compo-

nents:

1. a deterministic drift with rate µ.

2. a continuous path diffusion volatility σ2

3. a jump process with Lévy measure ν(dx)

Thus, the triple
(
µ, σ2, ν(dx)

)
is referred to as Lévy triple.

Theorem 3.5: Lévy-Itô Decomposition. (Sato, 1999)

Given a Lévy-triple
(
µ, σ2, ν(dx)

)
where µ ∈ R, σ > 0 and ν(dx) is a measure sat-

isfying ({0}) = 0 and
∫
R(1 ∧ x2)ν(dx) <∞. Then, there exist a probability space(

Ω,F ,P
)

on which four independent Lévy process exist, X(1), X(2), X(3), and X(4)

where X(1) is a constant drift, X(2) is a Brownian motion, X(3) is a Compound

Poisson process and X(4) is a square integrable (pure jump) martingale with al-

most surely countable number of jumps of magnitude less than 1 on each finite

time interval. Taking X = X(1) +X(2) +X(3) +X(4), then, there exist a probability

space on which a Lévy process X = {Xt, t ≥ 0} with characteristics exponent.

ψ(u) = iµu+
iσ2u2

2
+

∫
R

(
(eiux − 1− iux)1{|x|<1}

)
ν(dx) (3.29)

for all u ∈ R is defined.

3.3.1.2 Examples of Lévy process

In this subsection, some examples of Lévy processes with regards to their density

functions were given.

Example 3.2 The Brownian Motion Process. (Applebaum, 2009, Schoutens and

Cariboni, 2010)

The Brownian motion process defined on a probability space (Ω,F ,P) is a Lévy

process W = {Wt, t ≥ o} satisfying the following conditions:

1. Wt ∼ N(0, t) for each t ≥ 0

2. Wt = {Wt, t ≥ o} has independent increment

3. Wt has continuous sample path

4. W = {Wt, t ≥ o} has stationary increments
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It is important to note that the most applied process in financial modelling is

the Geometric Brownian Motion formed from the Brownian Motion (Schoutens

and Cariboni, 2010). The famous Black-Scholes model for stock price dynamics in

continuous time is obtained from this process:

Thus, a stochastic process S = {St, t ≥ 0} is a geometric Brownian Motion if it

satisfies the stochastic differential equation.

dS(t) = µS(t)dt+ σS(t)dW (t), S0 > 0 (3.30)

where, W = {Wt, t ≥ 0} is a standard Brownian motion, µ and σ are respectively

the drift volatility parameters.

Example 3.3: The Poisson Process. (Applebaum, 2009)

The Poisson process Nt of intensity λ > 0 is a Lévy process which is defined on the

positive integers
(

N
⋃
{0}
)

given that each Nt ∼ π(λt) and it’s probability density

at the point N(t) = n is equal to:

P
(

N(t) = n
)

=
(λt)ne−λt

n!
, n = 0, 1, 2, . . . (3.31)

A Poisson process with intensity λ > 0 satisfies the following conditions:

1. The paths of Nt are P-almost surely right continuous, left limits.

2. P(N0 = 0) = 1.

3. For 0 ≤ s ≤ t, Nt −Ns is equal in distribution to Nt − s.

4. For 0 ≤ s ≤ t, Nt −Ns is independent of {Nu : u ≤ s}

5. For each t > 0, Nt is equal in distribution to a poisson random variable with

parameter λ.

3.3.2 Concepts of stochastic integrals and semimartingales

The concepts of stochastic integrals and semimartingales in this subsection,

were presented.

Definition 3.29: Finite Variation Process. (Jacod and Shiryaev, 2013)

A stochastic process defined as X = Xt : 0 ≤ t ≤ T is said to be of finite variation

on R+ if for each t ∈ R+, then there exist a finite constant k+ such that:
n∑
i=1

∣∣Xti −Xti−1

∣∣ ≤ k+ (3.32)
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for all finite partition 0 = t0 < t1 < · · · < tn = t of [0, t].

Definition 3.30: Stopping Time. (Protter, 1992)

Given an adapted, Cádlág Stochastic process

X : Ω→ R+ (3.33)

and the filtration Ft. Then the random variable

τ(w) = inf{t > 0 : Xt(w) ∈ Ft} (3.34)

is called a Stopping time.

Definition 3.31: Stopping time σ−algebra (Protter, 2005)

Let τ(w) be a stopping time, the stopping time σ−algebra Fτ is defined as:

{β ∈ F : β ∩ {τ ≤ t} ∈ Ft, ∀ t ≥ 0}

Definition 3.32: A Square Integrable Martingale Let X be a martingale as given

in Definition (3.24) in this thesis with X0 = 0 and E(|X2
t |) < ∞, for each t > 0

then, Xt is called a Square Integrable Martingale.

Definition 3.33: Uniformly Integrable Martingale. (Protter, 2005)

Let (Xn)n∈A be a family of some random variables, it is said to be uniformly

integrable if:

lim
n→∞

(
sup
n

∫
|Xn|≥N

|Xn|dP
)

= 0 (3.35)

Theorem 3.6 (pg. 9, Protter, 2005)

Given that Xt is a right continuous martingale, then, {Xt}t≥0 is said to be uni-

formly integrable if and only if Y = limt∈∞Xt exist almost surely where E(|Y |) <

∞ and {Xt}t≥0 is a Martingale.

Definition 3.34: Local martingales (Protter, 2005)

Let τ1 < τ2 < · · · be a sequence of increasing stopping times satisfying

lim
n→∞

τn = +∞ almost surely

and

Xt ∧ τn1{τn>0}
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(where t ∧ τn is min(t, τn)) which is also a stopping time) is a uniform integrable

Martingale for all n. Then the adapted Cádlág stochastic process {Xt}t≥0 is called

a local Martingale.

Definition 3.35: A simple predictable process (Lamberton and Lapeyre, 2011)

A process (Pt)t≥0 is called a simple predictable process if it can be expressed as:

Pt = P01{0}(t) +
n∑
i=1

Pi 1(τi,τi+1](t) (3.36)

where, 0 = τ1 ≤ τ2 ≤ · · · ≤ τn+1 < ∞ is a finite sequence of stopping times and

Pi is Fti− measurable and bounded
(
Pi ∈ Fti−1

and E(|Pi|) < ∞
)

almost surely,

0 ≤ i ≤ n

Remark 3.9 (Protter, 2005)

Note that in the above definition, τ1 = τ0 = 0 implies that there is no difference

between the stopping times τ0 and τ1. Equation (3.36) can also be expressed as:
n∑
i=1

Pi1(τi,τi+1](t) =
n∑
i=1

Pi

(
1τi+1

(t)− 1τi(t)

)
(3.37)

Definition 3.36: Stochastic integral of a simple predictable process (Lamberton

and Lapeyre, 2011)

The stochastic integral of a simple predictable process {Pt}t≥0 is given as the con-

tinuous process I{Pt}t≥0 defined for any τ ∈ (τk, τk+1].

IW (P )t =

∫ t

0

PsdWs (3.38)

Definition 3.37: A Total Semimartingale (Jacod and Shiryaev, 2013)

A process {Xt} is called a Total Semimartingale if X is a Cádlág, adapted and

IW (Xt) is continuous

Definition 3.38: A Classical Semimartingale (Jacod and Shiryaev, 2013)

A process {Xt} is said to be a continuous semimartingale if it can be decomposed

into two adapted, Cádlág process Mt and At where Xt is given as:

Xt = Mt + At (3.39)

where At is a locally finite variation process and Mt is a local martingale with

A(0) = M(0) = 0
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Definition 3.39: Stochastic volatility semimartingale (Jacod and Shiryaev, 2013)

Stochastic volatility semimartingale (Svsm) which is referred to as Brownian semi-

martingale by Barndorff-Nielsen and Shephard (2006) is a semimartingale Xt which

can be decomposed into two adapted and Cádlág processes: Xt = Mt +At where,

Mt is a continuous Itô stochastic integral of spot volatility process, σt with respect

to the standard Brownian motion Wt, that is: Mt =
∫ t

0
σsdWs Given that the spot

volatility process σt > 0 is with paths of finite variation, adapted, Cádlág and

bounded away from zero. Also, At is continuous, and is the Riemann integral of αt

(drift process), where αt is an adapted process with paths of finite variation, that

is, At =
∫ t

0
αsds. The above special kind of semimartingale is said to belong to a

class of continuous stochastic volatility semimartingale (denoted as Svsmc in this

thesis). Thus, if Xt ∈ Svsmc, then Xt can be expressed as:

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σsdWs (3.40)

where, αt and σt are respectively the drift and the volatility process and Wt is

standard Brownian motion process.

Definition 3.40: Purely discontinuous semimartingale (He et al., 2018)

A purely discontinuous semimartingale process Xt is a process whose quadratic

variation denoted by [X] are pure jump processes.

That is,

[X]t =
∑
s≤t

∆X2
s

where, ∆Xs is the size of jump of the process at time s.

Definition 3.41: Continuous stochastic volatility semimartingale with jumps (Svsmj)

Given that Xt is the log return of the stock price with a continuous part Xc
t

and a part Xj
t , That is, Xt = Xc

t + Xj
t , where, Xc

t ∈ Svsmc expressed as:

Xc
t =

∫ t
0
αsds +

∫ t
0
σsdWs and Xj

t is the discontinuous (jump) part defined as:

Xj
t =

∑N(t)
i=1 Qj where N(t) is a simple counting process which stands for the num-

ber of jumps at time t and Qj is a non- zero stochastic process. Then, Xt is

said to belong to a class of stochastic volatility semimartingale with added jumps
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(Xt ∈ Svsmj). Thus,

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σsdWs +

N(t)∑
i=1

Qj (3.41)

with the processes: αt, σt,Wt, Qj and N(t) as defined above.
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3.4 STUDY THREE

The realised power variation and the realised multipower variation process

In this study, basic concepts of the realised power variation, the quadratic

variance and the realised multipower variation process are discussed. More so,

the asymptotic properties of the difference of the quadratic variation, the realised

multipower variation and the realised variance were presented.

3.4.1 Realised power variation, quadratic variance and realised variance

Given a positive real constant (r > 0), the description in equation (1.6) on the

concepts of the rth-realised power variation, realised variance, quadratic variation

and the multipower variation process is employed.

Definition 3.44: The rth-order realised power variation (Barndorff-Nielsen and

Shephard, 2003b)

The rth-order RPV of the process Xt is defined as:

{X∆}(r)
t = ∆(1− r

2
)

[ t
∆

]∑
j=1

|xj|r (3.42)

where, r is a positive real constant ∆(1− r
2

) is the normalization in power variation,

the increasing sequence of discrete times 0 = t0 < t1 < · · · < tn = t, [ t
∆

] is an

integer =⇒ [ t
∆

] = n for simplicity, and the log return of stock price at the jth-time

is given as:

| xj |=| Xtj −Xtj−1
|=| Xj∆ −X(j−1)∆ | (3.43)

Definition 3.45: The rth-Order Power Variation (Barndorff-Nielsen and Shephard,

2003b)

The rth-order variation {X}(r)
t is defined as: the probability limit as ∆→ 0 (implies

n→∞) of the rth-order realised power variation process.

That is,

{X}(r)
t = P− lim

∆→0
{X}(r)

∆,t

= P− lim
∆→0

∆(1− r
2

)

[ t
∆

]∑
j=1

|Xj∆ −X(j−1)∆|r
(3.44)

where, r,∆(1− r
2

), |xj|r, [ t∆ ] and Xj∆ are as defined above.
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Remark 3.10 (Barndorff-Nielsen and Shephard, 2003b)

In the sequel, the convergence results of the above defined process in a class of

continuous stochastic volatility semimartingales (Svsmc) was considered

Theorem 3.7 (Barndorff-Nielsen and Shephard, 2003b)

Let Xt be the log returns of the stock price where Xt ∈ (Svsmc) as defined in

Definition 3.38. Let’s assume that the drift parameter αt is zero (αt = 0) and the

volatility σt is independent of the Brownian Motion Wt. Then,

{X}(r)
t = µr

∫ t

0

σrsds, (3.45)

where, µr = E(|ν|r) =
2
r
2 Γ

(
r
2

+ 1
2

)
√
π

, r > 0, ν ∼ N(0, 1), νi are independent and

identically distributed.

Definition 3.46: Quadratic Variation (Barndorff-Nielsen and Shephard, 2002a)

The Quadratic Variation (QV) process of the log returns Xt of the stock price is

defined as:

[X]t = P− lim
n→∞

(
n∑
j=1

(
Xtj −Xtj−1

)2
)

= P− lim
n→∞

n∑
j=1

|xj|2
(3.46)

where, xj = Xtj − Xtj−1
= Xj∆ − X(j−1)∆ since tj = j∆ for 0 = t0 < t1 < . . . <

tn = t with maxj

(
j∆− (j − 1)∆

)
→ 0 as n→∞.

Also, the realised QV process [X]∆,t is defined as:

[X]∆,t =
n∑
j=1

(xj)
2

=
n∑
j=1

(Xtj −Xtj−1
)2

(3.47)

Definition 3.47: Realised Variance (RV) Process (Barndorff-Nielsen and Shephard,

2002a, Barndorff-Nielsen and Shephard, 2003b, Barndorff-Nielsen and Shephard,

2004). The realised variance (RV) process of the log returns Xt of stock price (a
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semimartingale process) is defined as:

[X]
(2)
∆,t =

t
∆∑
j=1

x2
j (3.48)

Remark 3.11

The following theorem shows the relationship between the QV and RV processes.

Theorem 3.8 (Barndorff-Nielsen and Shephard, 2003a)

Let Xt ∈ Svsmc with its dynamics given as:

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σsdWs (3.49)

where, At =
∫ t

0
αsds is the drift process ( a finite variation process) and Mt =∫ t

0
σsdWs is the stochastic volatility process (a Cádlág adapted process). Then

the quadratic variation (QV) process of Xt converges in probability to the realised

variance (RV) of Xt which is an estimator of the integrated volatility process.

Hence,

[X]t
P→ [X]

(2)
∆,t =

t
∆∑
j=1

x2
j

P→
∫ t

0

σsds (3.50)

Remark 3.12

The asymptotic property of the difference between the RV process and the QV

process is given in the next theorem without proof. See also, Barndorff-Nielsen et

al. (2006c) and Barndorff-Nielsen et al. (2006a).

Theorem 3.9 (Barndorff-Nielsen and Shephard, 2003b)

Let Xt ∈ Svsmc, such that, Xt = X0 +
∫ t

0
αsds+

∫ t
0
σsdWs, given that the processes

αt, and σt satisfies the following weak conditions (Barndorff-Nielsen and Shephard,

2003b):

1. The volatility process σt is (pathwise) locally bounded away from 0 and satisfies

the property

lim
∆→0

(
∆

1
2

[ t
∆

]∑
j=1

∣∣∣ω2
ξj
− ω2

θj

∣∣∣) = 0 (3.51)

given that ω2
t =

∫ t
0
σ2
sds for any ξj = ξj(∆) and θj = θj(∆) such that

0 ≤ ξ1 ≤ θ1 ≤ ∆ ≤ ξ2 ≤ θ2 ≤ 2∆ ≤ . . . ≤ ξn ≤ θn ≤ n∆ = t
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2. The drift(mean) process αt is continuous, satisfying:

lim
∆→0

(
max
1≤j≤n

∆−1
∣∣αj∆ − α(j−1)∆

∣∣) <∞ (3.52)

Then,

∆
1
2

(
[X]

(2)
∆,t − [X]t

)
√
ω4
t

L→
∼
V (3.53)

where
∼
V ∼ N(0, ϕRV ), ωt =

∫ t
0
σsds and ϕRV = V ar(|ν|2), ν ∼ N(0, 1). Thus by

calculation ϕRV = 2

Theorem 3.10: QV of Svsmc plus jumps (Barndorff-Nielsen et al., 2006a)

Let Xt ∈ Svsmj such that Xt is given as:

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σsdWs +

N(t)∑
i=1

Qj (3.54)

where αt is a finite variation process, Cádlág and adapted, σt is locally bounded

away from zero, Cádlág and adapted, Nt is a simple counting process for all t and

Qj is a positive random variable.

Then,

[X]t =

∫ t

0

σ2
sds+

Nt∑
j=1

Q2
j (3.55)

Remark 3.13

The result given in theorem (3.10) indicates that when jumps are added to a class

of continuous stochastic volatility semimartingale process, the quadratic variation

gives the sum of the integrated volatility and the sum of the squares of the jumps

in the process.

3.4.2 Realised multipower variation process

In financial modelling, to determine the right dynamics for a process, a major

feature to consider in any stock process under observation is the “presence” or

“absence” of jumps in the process. In the previous subsection, it was observed that

there is a relationship between the RV and the QV processes in the class of Svsmc

process. The question as to what happens to this process when jumps are added
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to this class was considered in this subsection.

In view of the above, a more robust process- the Realised Multipower Vari-

ation (RMPV) and its asymptotic properties were presented in this subsection.

Considering the discrete observation described in subsection 3.4.1, the (MPV) pro-

cess and its realised version are defined below.

Definition 3.48: Realised multipower variation (RMPV) process

The realised multipower variation process defined on a one-dimensional semimartin-

gale process in its generalised form is given as:

{X}(r1,...,rm)
∆,t = ∆1−δ(r1,...,rm)

c(t,m,∆)∑
j=1

f(xj, ri). (3.56)

as defined in Barndorff-Nielsen et al. (2006d)
”

where δ(r1, . . . , rm) = 1
2

∑m
i=1 ri, c(t,m,∆) = [t/∆] − (m − 1) and f(xj, ri) =∏m−1

i=0

∣∣xj+i∣∣ri+1 for n > m. The asymptotic properties of equation (3.56) above,

were extensively given in Barndorff-Nielsen et al. (2006b) and Kinnebrock and

Podolskij (2008). Also, the multipower variation of the process Xt is defined as:

the probability limit (as ∆→ 0 =⇒ n→∞) of the realised MPV process.

{X}[r1,r2,...,rm]
t = P− lim

∆→0
{X}(r1,r2,...,rm)

∆,t

= P− lim
∆→0

(
∆1−δ(r1,...,rm)

c(t,m,∆)∑
j=1

f(xj, ri)

)
(3.57)

with δ(r1, r2, . . . , rm), n and m as defined above.

Remark 3.14

1. The first (1st) order particular case of the above defined realised multipower

variation process is the Bipower variation (BVP) process defined for m = 2 as:

{X}[r1,r2]
∆,t = ∆1−δ(r1,r2)

n∑
j=2

(
|xj|r1|xj−1|r2

)
(3.58)

with δ(r1, r2) = 1
2
(r1 + r2), n = [ t

∆
] an integer and n > 2.

2. There are other particular cases of the multipower variation process that were

studied in literature: the tripower (TP) variation process, and the quadpower vari-

ation process (QPV) as can be found in Barndorff-Nielsen and Shephard (2006) and

Barndorff-Nielsen et al. (2006a). were shall extend in this thesis the existing re-

sults to particular cases of higher order: m = 5, 6, 7, 8, 9, 10 as Pentpower variation

(PPV), Hexpower variation (HPV), Heptpower variation (HV), Octpower variation
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(OPV), Nonpower variation (NPV), and Decpower variation (DPV) respectively in

the next chapter.

3. In the next theorem, the convergence result of a special case of the Bipower

variation (BPV) process, (that is, where r1 = r2 = 1), which proves robust to

jumps was presented. Given that:

{X}[1,1]
t = P− lim

∆→0

n∑
j=2

|xj||xj−1| (3.59)

Theorem 3.11 (Barndorff-Nielsen and Shephard, 2006)

Let Xt ∈ Svsmj such that Xt is defined as:

Xt =

∫ t

0

αsds+

∫
s

σsdWs +
Nt∑
j=1

Qj (3.60)

That is, Xt = Xc
t +Xj

t , where, Xc
t =

∫ t
0
αsds+

∫
s
σsdWs is the continuous part of

Xt and, Xj
t =

∑Nt
j=1Qj is the jump part of Xt. Then the (1, 1)-Bipower variation

process is:

{X}(1,1)
t = µ2

1

∫ t

0

σssds (3.61)

where µ1 = E(|ν|) = 2
1
2 (π)−0.5, where, ν ∼ N(0, 1).

Remark 3.15

If Xt ∈ Svsmj, then the QV of the process Xt is the sum of the integrated volatility∫ t
0
σsds and the sum of the squares of the jumps in Xt as shown in theorem (3.7).

In summary,

[X]t =

∫ t

0

σsds+
Nt∑
j=1

Q2
j

and

µ−2
1 {X}

(1,1)
t =

∫ t

0

σsds

By subtracting the above two expressions, gives:

[X]t − µ−2
1 {X}

(1,1)
t =

Nt∑
j=1

Q2
j (3.62)

Thus, equation (3.62) forms the basis for the BNS jump test method proposed by

Barndorff-Nielsen and Shephard (2006). Details of this method will be discussed

in the next section of this chapter.
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3.4.3 Asymptotic properties of the realised multipower variation process

Having defined the realised multipower variation process in definition (3.48),

the asymptotic properties of the process were presented here. These comprise

the convergence in probability result of the multipower variation process as can

be found in Barndorff-Nielsen and Shephard (2006) and Barndorff-Nielsen et al.

(2006c), as well as the convergence in law (distribution) result of the difference of

the realised variance and the realised multipower variation process in the class of

Svsm as can be found in Barndorff-Nielsen and Shephard (2006) and Ysusi (2010).

These theories form the basis for the jump test analysis in the next chapter.

3.4.4 Convergence in probability of the realised multipower variation process

In subsection 3.4.1, the realised rth order variation process {X}(r)
∆,t was shown

to converge in probability to the integrated volatility process. Here, the same re-

sult is given for a generalised multipower variation case via same method used in

subsection 3.4.1.

Theorem 3.12 (Barndorff-Nielsen et al., 2006a, Ysusi, 2006)

Let the process Xt belong to a class of continuous stochastic volatility semimartin-

gale (Svsmc) processes, such thatXT is defined on (Ω,F ,P,F) and can be expressed

as:

Xt = X0 +

∫ t

0

αsds+

∫ t

0

σsdWs (3.63)

where, Wt is a Brownian motion process, αt is a locally bounded and predictable

drift process and σt is an adapted, Cádlág volatility process. Then, for αt = 0, the

multipower variation process:

{X}[r1,...,rm]
t

P→ µr1 , . . . , µri

∫ t

0

|σs|2(δ(r1,...,rm))ds

,

where,

2δ(r1, . . . , rm) =
m∑
i=1

ri, µri = E(|ν|r), ν ∼ N(0, 1)
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Proof:

Given that Xt ∈ Svsmc defined on (Ω,F ,P,F), Wt is a Brownian motion process,

αt is a locally bounded and predictable drift process and σt is an adapted, Cádlág

volatility process. Therefore, for, αt = 0, then:

{X}t = {M}t (3.64)

Thus, the expression in equation (3.63) based on the Markov inequality condition,

goes to zero as n→∞ (∆→ 0). That is, the expectation of

∣∣∣∣{M}[r1,...,rm)
∆,t − (µr1 , . . . , µrm)

∫ t

0

|σs|2(δ(r1,...,rm))ds

∣∣∣∣ (3.65)

goes to zero. Given a simple volatility process σt defined by

σt =
k∑
j=1

ψj1(tj−1,tj ] (3.66)

where, 0 = t0 < t1 < t2 < . . . < tk = t and ψj is Ftj−1
-measurable and bounded.

Then, the stochastic integral of σt is given as:

I(σt) = Mt =
k∑
j=1

ψj
(
Wtj −Wtj−1

)
(3.67)

Considering the sub intervals (t0, t1], (t1, t2], . . . , (tk, tk−1] of [0, t], the realised mul-

tipower variation process for {M}t in each of the subintervals is constructed below.

Hence, from the above, the realised multipower variation process {M}[r1,...,rm]
∆,t1

, for

the interval (0, t1] is defined as:

{M}[r1,...,rm)
∆,t1

= ∆1−δ(r1,...,rm)

[
t1
∆

]∑
j=m

(
m−1∏
i=0

∣∣ψ1

(
Wtj−1

−Wtj−i−1

)∣∣ri+1

)
(3.68)

where, n′ = [ t1
∆

], n′ > m′ and δ(r1, . . . , r
′
m) = 1

2

∑m′

r=1 ri

Then, the expectation of the above is obtained as:
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E
(
{M}[r1,...,r′m)

∆,t1

)
= E

(
∆1−δ(r1,...,rm)

[
t1
∆

]∑
j=m

(m′−1∏
i=0

∣∣ψ1

(
Wtj−1

−Wtj−i−1

)∣∣ri+1 ))

= ∆1−δ(r1,...,r′m)E

( [
t1
∆

]∑
j=m′

(m′−1∏
i=0

∣∣ψ1

(
Wtj−1

−Wtj−i−1

)∣∣ri+1 ))

= ∆1−δ(r1,...,r′m)

( [
t1
∆

]∑
j=m′

E
(m′−1∏

i=0

∣∣ψ1

(
Wtj−1

−Wtj−i−1

)∣∣)ri+1

since |ψ1(Wtj−1
−Wtj−i−1

|)ri+1 for i = 0, . . . ,m− 1 are independent increments and

identically distributed standard Brownian motion, then,

E

(
m′−1∏
i=0

∣∣ψ1

(
Wtj−1

−Wtj−i−1

)∣∣ri+1

)
= E

(
m′−1∏
i=0

∣∣ν√tj−1 − tj−i−1

∣∣ri+1

)

where, ν(·) ∼ N(0, 1). Thus,

E
(
{M}[r1,...,rm′ ]

∆,t1

)
= ∆1−δ(r1,...,rm)

[
t1
∆

]∑
j=m′

(
m′−1∏
i=0

|ψ1|ri+1E
(m′−1∏

i=0

∣∣ν√tj−1 − tj−i−1

∣∣ri+1
))

= ∆1−δ(r1,...,rm)

[
t1
∆

]∑
j=m

ψ
2δ(r1,...,rm)
1 E

(m′−1∏
i=0

∣∣ν√tj−1 − tj−i−1

∣∣ri+1
)

= ∆1−δ(r1,...,rm)

[
t1
∆

]∑
j=m

ψ
2δ(r1,...,rm)
1 E

(m′−1∏
i=0

|ν|ri+1

)
E
( ∣∣√tj−1 − tj−i−1

∣∣ri+1
)

But, tj−1 − tj−i−1 = ∆ which is positive and deterministic for j = 1, . . . , k and

i = 0, . . . ,m− 1 (since the subintervals are of equal distance).

Then,

E
(
{M}(r1,...,rm)

∆,t1

)
= ∆1∆−δ(r1,...,rm)

[
t1
∆

]∑
j=m′

ψ
2δ(r1,...,rm)
1 ∆δ(r1,...,rm)

m−1∏
i=0

(
E|ν|ri+1

)

=
m−1∏
i=0

(
E|ν|ri+1

) [
t1
∆

]∑
j=m′

ψ
2δ(r1,...,rm)
1 ∆

=
m−1∏
i=0

µri

[
t1
∆

]∑
j=m′

ψ
2δ(r1,...,rm)
1 ∆

(3.69)

where, µri = E|ν|ri and (3.3.28) gives the expectation of the process {M}(r1,...,rm)
∆,t1
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for the subinterval (0, t1].

Hence, for the subinterval (t1, t2],

E
(
{M}(r1,...,rm)

∆,t2

)
=

m∏
i=1

µri

[
t1
∆

]∑
j=m

ψ
2δ(r1,...,rm)
1 ∆ (3.70)

To obtain the realised multi power variation for the interval [0, t], the sum of the

above for all k subintervals is taken. Thus,

E
(
{M}(r1,...,rm)

∆,t

)
=

m∏
i=1

µri

k∑
i=1

φ
2δ(r1,...,rm)
i ∆ (3.71)

Taking the limit of both sides as ∆→ 0 gives:

lim
∆→0

E
(
{M}(r1,...,rm)

∆,t

)
= lim

∆→0

m∏
i=1

µri

k∑
i=1

φ
2δ(r1,...,rm)
i ∆

=
m∏
i=1

µri

∫ t

0

σ2δ(r1,...,rm)
s ds

(3.72)

This implies that:

lim
∆→0

(
E
(
{M}(r1,...,rm)

∆,t

))
−

m∏
i=1

µri

∫ t

0

σ2δ(r1,...,rm)
s ds = 0 (3.73)

which also implies that the limit of the absolute value of the expression in equation

(3.73) is also zero. This implies limit in probability. Therefore,

{M}(r1,...,rm)
t =P− lim

∆→0
{M}(r1,...,rm)

t

=µr1 , . . . , µrm

∫ t

0

σ2δ(r1,...,rm)
s ds

(3.74)

Under the condition that αt = 0, Then,

{X}(r1,...,rm)
t = {M}(r1,...,rm)

t (3.75)

Hence, from equations (3.74) and (3.75),

{X}(r1,...,rm)
t =

m∏
i=1

µri

∫ t

0

σ2δ(r1,...,rm)
s ds (3.76)
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where, δ(r1, . . . , rm) = 1
2

∑m
i=1 ri;µri = E(|ν|ri) and ν ∼ N(0, 1)

3.4.4.1 Asymptotic theory for the difference between the RMPV and the RV
process

The linear jump test of the BNS method for detecting jumps in a high frequency

financial data in Barndorff-Nielsen and Shephard (2006) is basically derived from

the asymptotic distribution of a difference between the RV process and a particular

case of the RMPV processes, specifically for m = 2 and for r1 = r2 = 1.

The generalised case of the above description was considered here. Hence,

the need to study the asymptotic behaviour of the difference of the RV process

and the RMPV processes with an intention of investigating the robustness of such

processes.

In the next theorem, the asymptotic property of the difference between the

RV process and the RMPV processes is stated; making reference to the working

paper of Ysusi (2006), the work of Barndorff-Nielsen and Shephard (2006) and

Barndorff-Nielsen et al. (2006a).

Theorem 3.13 (Barndorff-Nielsen et al. (2006c), Barndorff-Nielsen and Shephard

(2002a) and Barndorff-Nielsen et al., 2006a)

Let Xt ∈ Svsmc, then as ∆→ 0, and At = 0

1√
∆
∫ t

0
σ4ds

(
µ−m2
m

{X}(r1,...,rm)
∆,t −

[
X
](2)

∆,t

)
L→ N(0, ϕMPV ) (3.77)

where, ϕMPV ) is the asymptotic variance of the multipower variation process

given as: ϕMPV (m, vi) = V ar(|ν|2)+µ−2m
2
m

ω2
m−µ−m2

m

mCov
(
|ν|2,

∏m
i=1 |νi|

2
m

)
, µ 2

m
=

E(|ν| 2
m ) =

2
1
m Γ(m+ 1

2
)√

π
and ω2

m = V ar
(∏m

i=1 |νi|
2
m

)
+2
∑m−1

j=1 Cov

(∏m
i=1 |νi|

2
m ,
∏m

i=1 |νi+j|
2
m

)

Remark 3.16

The asymptotic property of the difference between the RMPV and the RV pro-

cesses will form the basis for the jump test of stock indices data in the next chapter

of this thesis.
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3.5 STUDY FOUR

Basic Methods

In this study, the BNS jump test for stock indices data set, as well as some

stochastic methods for determining the solutions of the dynamics of a Lévy-jump

diffusion models that were used in literature, were reviewed. The above-mentioned

formed the methodology of this work.

3.5.1 The BNS jump test method in stock data

The BNS method for jump test was proposed by Barndorff-Nielsen and Shep-

hard (2006) for Xt ∈ Svsmc based on the assumption that the volatility process

σ2
t is pathwise bounded away from zero and independent of the Brownian process

WT . This method was basically derived from the asymptotic distribution of the

difference between a particular realised bipower variation process: {X}(1,1)
∆,t and the

realised variance process [X]
(2)
∆,t.

That is, for m = 2, and r1 = r2 = 1 then,

∆
−1
2

(
µ−2

1 {X}
(1,1)
∆,t − [X]

(2)
∆,t

)
√∫ t

0
σ4
sds

L→ N
(

0, ϕBPV

)
(3.78)

where, ϕBPV = µ−4
1 + 2µ−2

1 − 5 ' 0.6091, µ1 =
√

2√
π
.

The BNS jump-test is classified into the feasible linear jump test, the ratio-jump

test and the adjusted ratio test. The linear test is based on the result given in

equation (3.78), while the ratio test is obtained by dividing the numerator and the

denominator of equation (3.78) by [X]
(2)
∆,t to obtain an infeasible ratio test given as:

∆
−1
2

(
µ−2

1 {X}
(1,1)
∆,t

µ−2
1 [X]

(2)
∆,t

− 1

)
√ ∫ t

0 σ
4
sd

(
∫ t
0 σ

4
sds)

2

L→ N
(

0, ϕBPV

)
(3.79)

In a real life high frequency financial data, the quantity
∫ t

0
σ4
sds is inestimable and

as such, an estimator for
∫ t

0
σ4
sds is needed to obtain a feasible test. Thus by

replacing the quantity
∫ t

0
σ4
sds by the realised quadpower variation µ−4

1 {X}
[1,1,1,1]
∆,t
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and
∫ t

0
σ2
sds is replaced by µ−2

1 {X}
(1,1)
∆,t . Since,

{X}[1,1,1,1]
∆,t =

[ t
∆

]∑
j=4

|xj||xj−1||xj−2||xj−3|
P→ µ4

1

∫ t

0

σ2
sds (3.80)

and

{X}(1,1)
∆,t =

[ t
∆

]∑
j=4

|xj||xj−1|
P→ µ2

1

∫ t

0

σ2
sds (3.81)

Then, the feasible linear jump test, ratio test and adjusted ratio test were given

respectively as:

P̂ =
∆
−1
2

(
µ2

1{X}
(1,1)
∆,t − [X]

(2)
∆,t

)
√
µ4

1{X}
[1,1,1,1]
∆,t

L→ N
(

0, ϕBPV

)
(3.82)

Q̂ =
∆
−1
2

(
µ2

1{X}
(1,1)
∆,t /[X]

(2)
∆,t − 1

)
√
{X}[1,1,1,1]

∆,t /
(
{X}(1,1)

∆,t

)2

L→ N
(

0, ϕBPV

)
(3.83)

R̂ =
∆
−1
2

(
µ2

1{X}
(1,1)
∆,t /[X]

(2)
∆,t − 1

)
max

(
1
t
,

√
{X}[1,1,1,1]

∆,t /
(
{X}(1,1)

∆,t

)2) L→ N
(

0, ϕBPV

)
(3.84)

where, ϕBPV = µ−4
1 + 2µ−2

1 − 5 ' 0.6091, µ2
1 = π

2
.

The hypotheses for the test are:

H0 : Xt ∈ Svsmc (3.85)

H1 : Xt ∈ Svsmj (3.86)

3.5.2 Stochastic formula for solving the dynamics of jump-diffusion models

Here, stochastic formula for solving the dynamics of diffusion and were pro-

cesses, respectively, the Itô′s formula for diffusion Process and jump-diffusion pro-

cess were stated. These were given according to: Bichteler and Klaus (2002), Cont

and Tankov (2004) and Oskendal and Sulem (2005); the Itô′s formulae for diffusion

and jump diffusion processes were stated without proof.
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Theorem 3.14: Itô′s formula for diffusion process (Bichteler and Klaus, 2002)

Let the SDE of the process {Xt}t≥0 be given as:

dXt = α(t, ω)Xtdt+ σ(t, ω)XtdWt (3.87)

for, t ≥ 0, with initial value X0 = 0 where α(t, ω) and σ(t, ω) are two predictable

stochastic processes.

Consider a function f : [0,∞) × R → R, which is differentiable with respect to t

and twice continuously differentiable with respect to x which implies the functions

∂f(t), ∂f(x) and ∂2f(x) exist and are continuous. Then, the stochastic differential

of the process: Y (t) = f(t,X(t)) is given as:

dY (t) := df(t,Xt) =
(∂f(t,Xt)

∂t
+ α(t, ω)Xt

∂f(t,Xt)

∂x

+
1

2
σ2(t, ω)X2

t

∂2f(t,Xt)

∂2x

)
dt+ σ(t, ω)Xt

∂f(t,Xt)

∂x
dWt, t ≥ 0

Theorem 3.15: Itô’s formula for Lévy- jump processes (Cont and Tankov, 2004)

Let Xt be a Lévy process with jumps given in its stochastic integral form:

Xt = X0 +

∫ t

0

α(s, ω)ds+

∫ t

0

σ(s, ω)dWs +

∫ t

0

∫
R
ν(s, ω)N(ds, dx) (3.88)

where,

∼
N(ds, dz) =

N(ds, dz)− ν(dz)ds if |Z| < R
∼
N(ds, dz) if |Z| ≥ R

(3.89)

for R ∈ [0,∞), where
∼
N(ds, dz) − ν(dz)ds is the compensated Poisson random

measure of Xt and Wt is an independent Brownian motion.

Given the SDE of Xt as:

dXt = α(t, ω)Xtdt+ σ(t, ω)XtdWt +

∫
R
Q(t, z, ω)N(dt, dz) (3.90)

Let the function Yt = f(t,Xt) be differentiable with respect to t and twice contin-
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uously differentiable with respect to x, that is (f ∈ C2(R2)).

Then,

dY (t) := df(t,Xt) =
(∂f(t,Xt)

∂t
+ α(t, ω)

∂f(t,Xt)

∂x

+
1

2
σ2(t, ω)

∂2f(t,Xt)

∂2x

)
dt+ σ(t, ω)

∂f(t,Xt)

∂x
dWt

+
(
f(t,Xt− + ∆Xt)− f(t,Xt−)

)
dNt, t ≥ 0
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3.6 STUDY FIVE

Basic Models: Stock price models

In this study, two categories of stock price models (dynamics of stock price) as

well as their respective probability density functions were discussed. The first was

in the category of the diffusion models-the Geometric Brownian Motion (GBM)

model as in Black and Scholes (1973a); and the second category was the jump-

diffusion models of different forms depending on the distributions of their jump

amplitude which can be found in Hanson and Westman (2002), Duffie et al. (2000)

and Kou (2002).

3.6.1 Geometric Brownian motion model

Let (Ω,F ,P) be a probability space as given in definition (3.9) and F = {Ft :

t ∈ [0,∞)} a filtration satisfying the conditions in definition (3.10). Let S̃t be the

price of stock at time t, which evolves according to the SDE:

dS̃t = µS̃tdt+ σS̃tdWt (3.91)

The above dynamics is termed as the GBM model for the stock price S̃t at time

t; where S0 ≥ 0, µ is the drift coefficient also known as as the expected rate of

return of S and σ is the diffusion coefficient (volatility), Wt is a standard Brownian

motion with respect to F . The solution of the dynamics given in (3.91) via the

Itô’s formula in Theorem 3.14 can be obtained. Equation (3.91) can be expressed

as:

dS̃t

S̃t
= µdt+ σdWt (3.92)

=⇒ d(lnS) = µdt+ σdWt (3.93)

Let u(t, S̃t) = lnS then, ∂u
∂t

= 0, ∂u
∂S

= 1
S

and ∂2u
∂S2 = −1

S2

Thus, by the Itô’s formula (Theorem 3.14),

u(t, S̃t) = u(t0, St0) +

∫ t

t0

(
∂u

∂t
+ g

∂u

∂S
+

1

2
f 2 ∂

2u

∂S2

)
dt+

∫ t

t0

f
∂u

∂S
dWt (3.94)
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S̃t = S0exp

((
µ− σ2

2

)
t+ σWt

)
(3.95)

Suppose, u ∼ N(µ, σ2), then the probability density function of u is given as:

f(u) =
1

σ
√

2π
e
−1
2

(
u−µ
σ

)2

;u ∈ (−∞,∞), µ ∈ (−∞,∞) σ > 0 (3.96)

The lognormal pdf of the stock price S̃t can be obtained as follows:

f(u)du = g(S̃t)dS̃t =⇒ g(S̃t) =
f(u)du

dS̃t
(3.97)

Let, u = lnS̃t and du = dS̃t
S̃t

in equation ((3.96)),

g(S̃t) =
1

S̃tσ
√

2π
e
−1
2

(
ln S̃t−µ

σ

)2

(3.98)

3.6.2 Jump - diffusion models

Models derived from the diffusion process like the GBM model upon which

the famous B-S model was built, have some deficiencies.

The distribution of the GBM model is a normal one; and this contradicts the

empirical log returns of most financial data obtained from the stock market; it is

always found to be negatively skewed (asymmetric) and with sharp peak (leptokur-

tic). In the B-S model, the implied volatility is found to be a constant instead of

a convex function of a strike price that looks like a ”Smile” (Synowiec, 2008). Also

the GBM model is devoid of jumps, but most financial data in reality present jumps

in their price processes.

In order to take care of the above-mentioned deficiencies of the GBM model,

many efficient models were suggested in the past few years. These models include

the jump - diffusion models like the AJD model in Duffie et al. (2000); which

was able to capture the leptokurtic property of the process. A special form of the

AJD model is the normal JD model given in Hanson and Westman (2002). Others
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include the Merton model in Merton (1976); Double exponential jump diffusion

(DEJD) model in Kou (2002) and Uniform Jump Diffusion (UJD) Model (Hanson

et al., 2004).

A review of two of the above-mentioned, considering the densities of the log re-

turn of the stock-price process subject to the distributions of their jump amplitudes

were considered.

3.6.3 The normal jump-diffusion model

The dynamics of the stock price S̃t (when jumps are present), defined on a

filtered probability space (Ω, F,P,F), were given as:

dS̃t = µS̃tdt+ σdS̃tdWt + S̃tJ(Q)dNt (3.99)

where, S0 > 0, µ is mean return rate of the diffusive process, σd is the diffusive

volatility, Wt is a standard Brownian Motion, Nt is a Poisson process with respect

to the filtration F having a constant jump rate η, and J(Qj) is a non-constant jump

amplitude. Note that in equation (3.99), the random variables, Wt, Nt and J(Q)

are independent, and the jump process in the model is given as:

∫ t2

t1

J(Qj)dNt =

Nt2−t1∑
i=1

J(Qj), t2 > t1 (3.100)

such that the Q′js are i.i.d random variables, the pdf of Nt is

P(Nt = k) =
(λt)ke−λt

k!
(3.101)

The solution of the SDE with jumps in equation (3.99) via the Itô’s formula for

jump-diffusion given in Theorem (3.15) can be determined.

Thus, equation (3.99) can be written as:

dS̃t

S̃t
= µdt+ σddWt + J(Q)dNt

=⇒ d(ln S̃t) = µdt+ σddWt + J(Q)dNt (3.102)
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Let, u(t, S̃t) = lnS, =⇒ ∂u

∂t
= 0,

∂u

∂x
=

1

S
and

∂2u

∂S2
=
−1

S2

Thus,

d(ln S̃t) = (0 + µS̃t
1

S
− σ2S

2
t

2
· −1

S2
t

)dt+ σS · 1

S
dWt + lnQt

d(ln S̃t) = (µ− σ2

2
)dt+ σdWt + lnQt

Integrating over (t, t+ ∆t) gives

lnSt+∆t = ln S̃t + (µ− σ2
d

2
)t+ σdWt +

Nt∑
j=0

lnQj

=⇒ ln(
St+∆t

S̃t
) = (µ− σ2

d

2
)t+ σdWt +

Nt∑
j=0

lnQj

For the interval (0,t),

S̃t = S0e(µ− 1
2
σ2

d)t+σdWt+
∑Nt

j=0 ln Qj

Moreso, upon integration of equation (3.102), (3.103) was obtained as follows:

∆(ln S̃t) = (µ− 1

2
σ2
d)∆t+ σd∆Wt +Q∆Nt (3.103)

where,

∆(ln S̃t) = lnSt+∆t − ln S̃t

∆Wt = Wt+∆t −Wt

∆Nt = Nt+∆t −Nt

∆t is a small increment change in time. It is clear from the above that the densi-

ties of the price process in equation (3.99) and the log returns process in equation

(3.103) are basically determined by the distribution of the jump amplitude Q. In the

next theorem, the probability density function of the process in equation ((3.103)),

when Q is normally distributed as in Hanson and Westman (2002), was stated.

Theorem 3.16 (Hanson and Westman, 2002, Synowiec, 2008)

The probability density for the jump-diffusion log return ∆(ln S̃t) is given by

g∆(ln S̃t)
(x) =

∞∑
k=0

Pk(λ∆t)φ(xi; (µ− 1

2
σ2
d))∆t+ µjk, σ2∆t+ σ2

jk) (3.104)

where x ∈ R; Pk(λ∆t) = Pk(Nt = k) = (λt)ke−λt

k!
, and the normal density φ is
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given as:

gQj(x) = φ(x; µj, σ
2
j ) =

1√
2πσ2

e
−(x−µj)

2

2σj (3.105)

3.6.4 The double exponential jump-diffusion model (The Kou model)

In the next theorem, a particular jump diffusion driven by a double-exponential

distribution was considered; this is called the Kou Model. The difference between

the normal - jump diffusion process (model ) and the Kou model is that the upward

trend of jumps and the downward trend of jumps are treated separately in the Kou

model such that the mean intensity of the upward jump and the downward jumps

are respectively 1
η1

and 1
η2

.

Theorem 3.17 (Kou, 2002, Synowiec, 2008)

The probability density for the double exponential jump-diffusion log return ∆(ln S̃t)

is given by

f∆(ln S̃t)
(x) =

1− λ∆t

σ
√

∆t
φ

(
x−

(
µ−1 /2σ

2
d

)
∆t

σ
√

∆t

)
+ λ∆t (M(x;µ, σd, η1, η2, p, q))

(3.106)

where,

M(x) =pη1e
1/2η2

1σ
2∆te−

(
x−
(
µ−1/2σ2

)
∆t
)
η1Φ

(
x− (µ− 1/2σ

2
d)∆t+ η1σ

2
d∆t

σ
√

∆t

)
+ qη2e

1/2η2
2σ

2∆te

(
x−
(
µ−1/2σ2

)
∆t
)
η2Φ

(
x− (µ− 1/2σ

2
d)∆t+ η2σ

2
d∆t

σ
√

∆t

)
(3.107)
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CHAPTER FOUR

RESULTS

4.1 Preamble

The main focus was to develop models that best fit the dynamics of stock price

processes obtained from the stock markets when jumps are detected.

In this chapter, the results for detecting jumps via models from the asymptotic

theories of particular cases of the realised multipower variation (RMPV) process

in the Nigerian All Shares Index (NASI), Japan stock Indices, and the UK stock

Indices data were obtained. These results comprised the asymptotic theories for

particular cases of the RMPV process, the convergence in distribution (law) of

the difference of the realised variance (RV) and particular cases of the RMPV

process. To achieve the aim, the asymptotic variances of the particular cases that is,

ϕRBV , ϕRTV , ϕQPV , ϕPPV , ϕHPV , ϕHPPV , ϕOpV , ϕNPV and ϕDPV respectively for the

realised bipower, tripower, quadpower, pentpower, hexpower, heptpower, octpower,

nonpower and decpower variation processes were calculated. Then, the jump test

models from the asymptotic properties of the particular cases of the RMPV process

were also developed; these results were the extensions of the results in Barndorff-

Nielsen and Shephard (2006), Barndorff-Nielsen et al. (2006a) and Ysusi (2006).

The results enabled us determine more robust models than the existing BNS jump

test method in literature. It was later established that the empirical data sets of

the stock indices process present jumps, as could be seen in the plots of the stock

indices processes.

Most of the existing jump-diffusion models in literature are driven by their

exact analytical solutions, useful for Option Pricing. However, the motivation here

was based not only on exact or closed-form solutions, but also on the consistency

or compliance of models to the market price process. Hence, a family of skewed

jump-diffusion models, with non-zero location parameters and scale parameters

for upward and downward measures of the random jump processes was consid-
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ered, for the dynamics of the stock’s log returns price process. Therefore, new

models that belong to the family of the skewed jump-diffusion models, namely:

the Asymmetric Laplace jump-diffusion (ALJD) and the modified double Rayleigh

jump-diffusion (MDRJD) models for the stock price process were proposed. The

upward and downward random jump processes’ measures were assumed to obey

the asymmetric Laplace distribution and the modified double Rayleigh distribu-

tion with probabilities: p and q, where p, q ≥ 0; p+ q = 1. The probability density

functions were derived via the convolution of densities for the log returns dynam-

ics, and the Lévy-Khintchine formulae were obtained for the models, which were

useful for the computation of moments of the processes. Also, given the log return

processes’ probability density functions, the optimal values of the parameters in

the models were determined via the maximum likelihood estimation method.

Furthermore, owing to different values of the jump threshold, and by compar-

ing the models’ simulated densities with the densities of the empirical log returns

of the stock indices data, a goodness of fit test to determine the best fit to the

market was carried out. These models were compared with the Geometric Brow-

nian Motion model in Black and Scholes (1973a), the symmetric Jump diffusion

model (Merton’s model) in Merton (1976) and Hanson and Westman (2002), and

the asymmetric jump-diffusion model (Kou’s model) in Kou (2002) to ascertain

their compatibility with the dynamics of the stock price indices process obtained

from the market.
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4.2 STUDY ONE

Asymptotic properties of particular higher-order cases of the realised multipower
variation process

The asymptotic properties of the realised multipower variation process in its gen-

eralised form were extensively discussed in chapter three in this thesis. Let the

log return process Xt be in the class of the continuous stochastic volatility model

(Svsmc), then as ∆→ 0

∆−1/2√∫ t
0
σ4ds

(
µ−m2/m{X}

(r1,...,rm)
∆,t − {X}(2)

∆,t

)

tends in law to N(0, ϕRMPV )

where,

ϕRMPV = V ar
(
|ν|2
)

+ µ
−2/m
2/m ω2

m − 2mµ−m2/mCov
(
|ν|2,

m∏
i=0

|νi|2/m
)

(4.1)

and

µri = E(|νi|2) =
2r/2Γ(r/2 + 1/2)√

π
, ν ∼ N(0, 1) (4.2)

4.2.1 The bipower variation process

The bipower variation process is the first order of the particular case of the gen-

eralised process, whose asymptotic distribution is given in equation (4.1), that is,

for m = 2. That is, the particular case of the following convergence result was

considered:

∆−1/2√∫ t
0
σ4ds

(
µ−2

1 {X}
(1,1)
∆,t − {X}

(2)
∆,t

)
L→ N(0, ϕRBV ) (4.3)

In equation (4.3), the value ϕRMPV (r1, r2, 2, νi) is the asymptotic variance of the

realised bipower variation process given as:

ϕRBV = γ̂1 + µ−4
1 ω2

2 − 2µ−2
1 γ̂2 (4.4)
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where,

γ̂1 = V ar
(
|ν|2
)

γ̂2 = 2Cov
(
|ν|2, |ν1||ν2|

)
ω2

2 = V ar
(
|ν1||ν2|

)
+ 2Cov

(
|ν1||ν2|, |ν2||ν3|

)
Given that νis are independent, νi ∼ N(0, 1), and µr = E(|ν|r) = 2r/2Γ(r/2+1/2)√

π

For V ar(A) = E(A2)− (E(A))2, Cov(A,B) = E(A ·B)− E(A)E(B) and µ2 = 1,

Then,

γ̂1 = V ar
(
|ν|2
)

= 2

γ̂2 = 2Cov
(
|ν|2, |ν1||ν2|

)
= 2
(
µ3µ1 − µ2µ

2
1

)
ω2

2 = V ar
(
|ν1||ν2|

)
+ 2Cov

(
|ν1||ν2|, |ν2||ν3|

)
ω2

2 = 1− 3µ4
1 + 2µ2

1

(4.5)

Thus, from equation (4.4),

ϕRBV = µ−4
1 + 2µ−2

1 − 5 ≈ 0.60907 (4.6)

4.2.2 The tripower variation process

Given the tripower variation process, the convergence result of the difference

of the realised tripower variation and the realised variance is given as:

∆−1/2√∫ t
0
σ4ds

(
µ−3

2/3{X}
(2/3,2/3,2/3)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRTV ) (4.7)

where, ϕRTV is the asymptotic variance of the realised tripower variation process

defined as:

ϕRTV = γ̂1 + µ−6
2/3ω

2
3 −

(
µ−3

2/3γ̂2 + µ−3
2/3β̂2

)
Since, γ̂2 = β̂2, Then,

ϕRTV = γ̂1 + µ−6
2/3ω

2
3 − 2µ−3

2/3γ̂2 (4.8)
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where,

γ̂2 = 3Cov
(
ν2, ν

2/3
1 ν

2/3
2 ν

2/3
3

)
ω2

3 = V ar
( 3∏
i=1

|νi|2/3
)

+ 2Cov
( 3∏
i=1

|νi|2/3,
4∏
i=2

|νi|2/3
)

+ 2Cov
( 3∏
i=1

|νi|2/3,
5∏
i=3

|νi|2/3
)

Calculating γ̂2 and ω2
3, gives:

γ̂2 = 3Cov
(
ν2,

m∏
i=1

|νi|2/3
)

= 3
(
µ8/3µ

2
2/3 − µ3

2/3

)
ω2

3 = µ3
4/3 − µ6

2/3 + 2(µ2
4/3µ

2
2/3 − µ6

2/3) + 2(µ4/3µ
4
2/3 − µ6

2/3)

Thus, from equation (4.8),

ϕRTV = µ4/3µ
−2
2/3

(
µ2

4/3µ
−4
2/3 + 2µ4/3µ

−2
2/3 + 2

)
− 7 ≈ 1.0613 (4.9)

4.2.3 The quadpower variation process

The convergence in distribution (law) result for the difference of the QPV and

RV process for r1 = r2 = r3 = r4 = 1/2 and m = 4 is obtained as:

∆−1/2√∫ t
0
σ4ds

(
µ−4

1/2{X}
(1/2,1/2,1/2,1/2)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRQV ) (4.10)

where,

ϕRQV = γ̂1 + µ−8
1/2ω

2
4 − 2µ−4

1/2γ̂2 (4.11)

Thus,

γ̂2 = 4Cov
(
ν2,

4∏
i=1

|νi|1/2
)

(4.12)

ω2
4 = V ar

( 4∏
i=1

|νi|1/2
)

+ 2Cov
( 4∏
i=1

|νi|1/4,
5∏
i=2

|νi|1/2
)

+ 2Cov
( 4∏
i=1

|νi|1/2,
6∏
i=3

|νi|1/2
)

+ 2Cov
( 4∏
i=1

|νi|1/2,
7∏
i=4

|νi|1/2
)

(4.13)
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Calculating γ̂2 and ω2
4, gives:

γ̂2 = 4Cov
(
µ5/2µ

3
1/2 − µ4

1/2

)
ω2

4 = µ4
1 − µ8

1/2 + 2(µ3
1µ

2
1/2 − µ8

1/2) + 2(µ2
1µ

4
1/2 − µ8

1/2) + 2(µ1µ
6
1/2 − µ8

1/2

Hence, equation (4.11) becomes:

ϕRQV = µ1µ
−2
1/2

(
µ3

1µ
−6
1/2 + 2µ2

1µ
−4
1/2 + 2µ1µ

−2
1/2 + 2

)
− 9 ≈ 1.37702 (4.14)

4.2.4 The pentpower variation process

Definition 4.1: The pentpower variation process

1. Realised pentpower variation Process: The realised pentpower variation pro-

cess (RPPV) is an estimator of the pentpower process (RPPV) and is defined as:

{X}(r1,r2,...,r5)
∆,t = ∆1−δ(r1,...,r5)

c(t,5,∆)∑
j=1

f(xj, ri).

where, f(xj, ri) =
∏4

i=0

∣∣xj+i∣∣ri+1

2. Pentpower variation (PPV) process is defined as the limit of the realised pent-

power variation.

{X}(r1,...,r5)
t = P− lim

∆→0
{X}(r1,r2,...,r5)

∆,t (4.15)

where, P− lim∆→0 denotes probability limit of the sum.

The realised pentpower variation process RPV is a particular case of RMPV pro-

cesses. The convergence result of the difference between the RPV and RV process

is obtained from the generalised form in equation (4.1) as: (for ri = 2/5,m = 5).

∆−1/2√∫ t
0
σ4ds

(
µ−5

2/5{X}
(2/5,2/5,2/5,2/5,2/5)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRPV ) (4.16)

where,

ϕRPV = γ̂1 + µ10
2/5ω

2
5 − 2µ−5

2/5γ̂2 (4.17)
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and

γ̂2 = 5Cov
(
|ν2
i |,

5∏
i=1

|νi|2/5
)

ω2
5 = V ar

( 5∏
i=1

|νi|2/5
)

+ 2Cov
( 5∏
i=1

|νi|2/5,
6∏
i=2

|νi|2/5
)

+2Cov
( 5∏
i=1

|νi|2/5,
7∏
i=3

|νi|2/5
)

+2Cov
( 5∏
i=1

|νi|2/5,
8∏
i=4

|νi|2/5
)

+2Cov
( 5∏
i=1

|νi|2/5,
9∏
i=5

|νi|2/5
)

The values of γ̂2 and ω
2
5 were calculated to obtain:

γ̂2 = 5
(
µ12/5µ

4
2/5 − µ5

2/5

)
for (µ2 = 1)

ω2
5 = µ5

4/5 − µ10
2/5 + 2(µ4

4/5µ
2
2/5

− µ10
2/5) + 2(µ3

4/5µ
4
2/5 − µ10

2/5) + 2(µ2
4/5µ

6
2/5

− µ10
2/6) + 2(µ4/5µ

8
2/5 − µ10

2/5)

Therefore, equation (4.17) becomes:

ϕRPV = µ4/5µ
−2
2/5

(
µ4

4/5µ
−8
2/5 + 2µ3

4/5µ
−6
2/5 + 2µ2

4/5µ
−4
2/5 + 2µ4/5µ

−2
2/5 + 2

)
− 11 ≈ 1.60534

(4.18)

4.2.5 The hexpower variation process

Definition 4.2: The hexpower variation process

1. Realised Hexpower Variation Process: The realised Hexpower variation process

(RHXV ) is an estimator of the Hexpower process (HXV ) and is defined as:

{X}(r1,r2,...,r6)
∆,t = ∆1−δ(r1,...,r6)

c(t,6,∆)∑
j=1

f(xj, ri).

where, f(xj, ri) =
∏5

i=0

∣∣xj+i∣∣ri+1

2. Hexpower variation (HXV ) process is defined as the limit of the realised Hex-

power variation.
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{X}(r1,...,r6)
t = P− lim

∆→0
{X}[r1,r2,...,r6]

∆,t (4.19)

where, P− lim∆→0 denotes probability limit of the sum.

4.2.5.1 Asymptotic property of the realised hexpower variation process

The convergence in law result for a particular case of the RHxV process was

obtained here, for r1 = r2 = . . . = r6 = 1/3 and for m = 6.

Thus,

∆−1/2√∫ t
0
σ4ds

(
µ−6

1/3{X}
[1/3,1/3,1/3,1/3,1/3,1/3]
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRHXV ) (4.20)

where, ϕRHXV is the asymptotic variance of the convergence result of the difference

between the RHXV and the RV processes.

Thus,

ϕRHXV = γ̂1 + µ−12
1/3 ω

2
6 − 2µ−6

1/3γ̂2 (4.21)

where,

γ̂2 = 6Cov
(
|ν2
i |,

6∏
i=1

|νi|1/3
)

ω2
6 = V ar

( 6∏
i=1

|νi|1/3
)

+ 2Cov
( 6∏
i=1

|νi|1/3,
7∏
i=2

|νi|1/3
)

+2Cov
( 6∏
i=1

|νi|1/3,
8∏
i=3

|νi|1/3
)

+2Cov
( 6∏
i=1

|νi|1/3,
9∏
i=4

|νi|1/3
)

+2Cov
( 6∏
i=1

|νi|1/3,
10∏
i=5

|νi|1/3
)

+2Cov|
(∏
i=1

|ν1|1/3,
11∏
i=6

|νi|1/3
)
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Upon solving, the values for γ̂2 and ω2
6 were obtained as:

γ̂2 = 6
(
µ7/3µ

5
1/3 − µ6

1/3

)
for (µ2 = 1)

ω2
6 = µ6

2/3 − µ12
1/3 + 2(µ5

2/3µ
2
1/3

− µ12
1/3) + 2(µ4

2/3µ
4
1/3 − µ12

1/3) + 2(µ3
2/3µ

6
1/3

− µ112
1/3) + 2(µ2

2/3µ
8
1/3 − µ12

1/3)

+ 2(µ2/3µ
10
1/3 − µ12

1/3)

Thus, substituting into equation (4.21) it follows that:

ϕRHXV = µ2/3µ
−2
1/3

(
µ5

2/3µ
−10
1/3 + 2µ4

2/3µ
−8
1/3 + 2µ3

2/3µ
−6
1/3

+ 2µ2
2/3µ

−4
1/3 + 2µ2/3µ

−2
1/3 + 2

)
− 13 ≈ 1.776889

(4.22)

4.2.6 The Heptpower variation process

Definition 4.3: The Heptpower variation process

1. Realised Heptpower Variation Process:. The realised Heptpower variation

process (RHpV ) is an estimator of the Heptpower variation (HpV ) process and is

defined as:

{X}(r1,r2,...,r7)
∆,t = ∆1−δ(r1,...,r7)

c(t,7,∆)∑
j=1

f(xj, ri).

where, f(xj, ri) =
∏6

i=0

∣∣xj+i∣∣ri+1

2. The Heptpower variation process is defined as the limit of the (RHpV ) process

given as:

{X}(r1,...,r7)
t = P− lim

∆→0
{X}(r1,r2,...,r7)

∆,t (4.23)
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4.2.6.1 Asymptotic properties of the realised heptpower variation process

With reference to theorem (3.11), and for the RHpV process,

∆−1/2√∫ t
0
σ4ds

(
µ−7

2/7{X}
(2/7,2/7,2/7,2/7,2/7,2/7,2/7)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRHpV ) (4.24)

where, ϕRHpV is the asymptotic variance of the convergence result of the RHpV

process. Now, the value of the ϕRHpV was obtained as follows:

ϕRHXV = γ̂1 + µ−14
2/7 ω

2
7 − 2µ−7

2/7γ̂2 (4.25)

where,

γ̂2 = 7Cov
(
|ν2
i |,

7∏
i=1

|νi|2/7
)

ω2
7 = V ar

( 7∏
i=1

|νi|2/7
)

+ 2Cov
( 7∏
i=1

|νi|2/7,
8∏
i=2

|νi|2/7
)

+2Cov
( 7∏
i=1

|νi|2/7,
9∏
i=3

|νi|2/7
)

+2Cov
( 7∏
i=1

|νi|2/7,
10∏
i=4

|νi|2/7
)

+2Cov
( 7∏
i=1

|νi|2/7,
11∏
i=5

|νi|2/7
)

+2Cov
( 7∏
i=1

|νi|2/7,
12∏
i=6

|νi|2/7
)

+2Cov
( 7∏
i=1

|νi|2/7,
13∏
i=1

|νi|2/7
)

To obtain ϕRHpV in equation (4.25), the values of γ̂1, γ̂2, and ω
2
7 were computed to

get:
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γ̂1 = 2

γ̂2 = 7
(
µ16/7µ

6
6/7 − µ7

2/7

)
for (µ2 = 1)

ω2
7 = µ7

4/7 − µ14
2/7 + 2(µ6

4/7µ
2
2/7 − µ14

2/7)

+ 2(µ5
4/7µ

4
2/7 − µ14

2/7) + 2(µ4
4/7µ

6
2/7 − µ14

2/7)

+ 2(µ3
4/7µ

8
2/7 − µ14

2/7) + 2(µ2
4/7µ

10
2/7 − µ14

2/7)

+ 2(µ4/7µ
12
2/7 − µ14

2/7)

Thus, it follows from equation (4.25) that:

ϕRHpV = µ4/7µ
−2
2/7

(
µ6

4/7µ
−12
2/7 + 2µ5

4/7µ
−10
2/7 + 2µ4

4/7µ
−8
2/7 + 2µ3

4/7µ
−6
2/7

+ 2µ2
4/7µ

−4
2/7 + 2µ4/7µ

−2
2/7 + 2

)
− 15 ≈ 1.910028

(4.26)

4.2.7 The octpower variation process

Definition 4.4: The octpower variation process

1. The realised octpower variation (ROpV ) process is an estimator of the octpower

variation (OpV ) process and its defined as:

{X}(r1,r2,...,r8)
∆,t = ∆1−δ(r1,...,r8)

c(t,8,∆)∑
j=1

f(xj, ri).

where, f(xj, ri) =
∏7

i=0

∣∣xj+i∣∣ri+1

2. The octpower Variation (OpV ) process is defined as the probability limit of the

(ROpV ) process given as:

{X}[r1,...,r8]
t = P− lim

∆→0
{X}(r1,r2,...,r8)

∆,t (4.27)

where, P− lim(.) is as defined above.

4.2.7.1 Asymptotic property of the octpower variation Process

Now, it follows from theorem (3.11), that the asymptotic property of the par-

ticular case of the ROpV process, that is, for m = 8, and ri = 1/4, i = 1, . . . , 8,

gives:
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∆−1/2√∫ t
0
σ4ds

(
µ−8

1/4{X}
(1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕROpV ) (4.28)

where, ϕROpV is the asymptotic variance of the convergence result of the difference

between the ROpV and the RV processes.

Thus,

ϕROpV = γ̂1 + µ−16
1/4 ω

2
8 − 2µ−8

1/4γ̂2 (4.29)

The value of ϕROpV , given above, was calculated by finding the values of γ̂2 and

ω2
8.

γ̂2 = 8Cov
(
|ν2
i |,

8∏
i=1

|νi|2/7
)

ω2
8 = V ar

( 8∏
i=1

|νi|1/4
)

+ 2Cov
( 8∏
i=1

|νi|1/4,
9∏
i=2

|νi|1/4
)

+2Cov
( 8∏
i=1

|νi|1/4,
10∏
i=3

|νi|1/4
)

+2Cov
( 8∏
i=1

|νi|1/4,
11∏
i=4

|νi|1/4
)

+2Cov
( 8∏
i=1

|νi|1/4,
12∏
i=5

|νi|1/4
)

+2Cov
( 8∏
i=1

|νi|1/4,
13∏
i=6

|νi|1/4
)

+2Cov
( 8∏
i=1

|νi|1/4,
14∏
i=7

|νi|1/4
)

+2Cov
( 8∏
i=1

|νi|1/4,
15∏
i=8

|νi|1/4
)

Then, the values of γ̂1, γ̂2, and ω
2
8 were obtained as follows:
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γ̂1 = V ar(|ν|2) = 2

γ̂2 = 8
(
µ9/4µ

7
1/4 − µ8

1/4

)
ω2

8 = µ8
1/2 − µ16

1/4 + 2(µ7
1/2µ

2
1/4 − µ16

1/4)

+ 2(µ6
1/2µ

4
1/4 − µ16

1/4) + 2(µ5
1/2µ

6
1/4 − µ16

1/4)

+ 2(µ4
1/2µ

8
1/4 − µ16

1/4) + 2(µ3
1/2µ

10
1/4 − µ16

1/4)

+ 2(µ2
1/2µ

12
1/4 − µ16

1/4) + 2(µ1/2µ
14
1/4 − µ16

1/4

Thus, from equation (4.29) the value of ϕROpV was obtained as follows:

ϕROpV = µ1/2µ
−2
1/4

(
µ7

1/2µ
−14
1/4 + 2µ6

1/2µ
−12
1/4

+ 2µ5
1/2µ

−10
1/4 + 2µ4

1/2µ
−8
1/4 + 2µ3

1/2µ
−6
1/4 + 2µ2

1/2µ
−4
1/4

+ 2µ1/2µ
−2
1/4 + 2

)
− 17 ≈ 2.016148

(4.30)

Therefore, equation (4.30) gives an expression for ϕROpV in terms of µri .

4.2.8 The nonpower variation process

Definition 4.5: The nonpower variation process

1. The realised Nonpower variation (RNV ) process is an estimator of the Non-

power variation NV process and its defined as:

{X}(r1,r2,...,r9)
∆,t = ∆1−δ(r1,...,r9)

c(t,9,∆)∑
j=1

f(xj, ri).

where, f(xj, ri) =
∏8

i=0

∣∣xj+i∣∣ri+1

2. The nonpower variation (NV) process is defined as the probability limit of the

(RNV) process and given as:

{X}(r1,...,r9)
t = P− lim

∆→0
{X}[r1,r2,...,r9]

∆,t (4.31)

where, P− lim(.) is as defined above.
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4.2.8.1 Asymptotic property of the nonpower variation process

The asymptotic property of the difference of the RV process and the RNV

process, that is, for m = 9, and ri = 2/9, i = 1, . . . , 9 was obtained in this subsec-

tion.
∆−1/2√∫ t

0
σ4ds

(
µ−9

2/9{X}
(2/9,2/9,2/9,2/9,2/9,2/9,2/9,2/9,2/9)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRNV )

(4.32)

where, ϕRNV is the asymptotic variance of the convergence in law of the difference

of the RNV and RV processes which is obtained as:

ϕRNV = γ̂1 + µ−18
2/9 ω

2
9 − 2µ−9

2/9γ̂2 (4.33)

where,

γ̂2 = 9Cov
(
|ν2
i |,

9∏
i=1

|νi|2/9
)

and

ω2
9 = V ar

( 9∏
i=1

|νi|2/9
)

+ 2Cov
( 9∏
i=1

|νi|2/9,
10∏
i=2

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
11∏
i=3

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
12∏
i=4

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
13∏
i=5

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
14∏
i=6

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
15∏
i=7

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
16∏
i=8

|νi|2/9
)

+2Cov
( 9∏
i=1

|νi|2/9,
17∏
i=9

|νi|2/9
)
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4.2.8.2 The asymptotic variance in terms of µr

Here, the asymptotic variance ϕRNPV of the realised nonpower variation (RNPV)

process given its expression in terms of µr’s was calculated. Recall that:

µr =
2r/2Γ(r/2 + 1/2)√

π
(4.34)

The values of γ̂1, γ̂2 and ω2
9 in terms of µr were obtained.

Therefore,

γ̂1 = 2

γ̂2 = 9
(
µ20/9µ

8
2/9 − µ9

2/9

)
ω2

9 = µ9
4/9 − µ18

2/9 + 2(µ8
4/9µ

2
2/9 − µ18

2/9)

+ 2(µ7
4/9µ

4
2/9 − µ18

2/9) + 2(µ6
4/9µ

6
2/9 − µ18

2/9)

+ 2(µ5
4/9µ

8
2/9 − µ18

2/9) + 2(µ4
4/9µ

10
2/9 − µ18

2/9)

+ 2(µ3
4/9µ

12
2/9 − µ18

2/9) + 2(µ2
4/9µ

14
2/9 − µ18

2/9

+ 2(µ4/9µ
16
2/9 − µ18

2/9)

Substituting the above expression for γ̂1, γ̂2 and ω2
9 into equation (4.33) gives:

ϕRNV = µ4/9µ
−2
2/9

(
µ8

4/9µ
−16
2/9 + 2µ7

4/9µ
−14
2/9

+ 2µ6
4/9µ

−12
2/9 + 2µ5

4/9µ
−10
2/9 + 2µ4

4/9µ
−8
2/9 + 2µ3

4/9µ
−6
2/9

+ 2µ2
4/9µ

−4
2/9 + 2µ4/9µ

−2
2/9 + 2

)
− 19 ≈ 2.102613

(4.35)

Hence, equation (4.35) gives an expression for ϕRNV in terms of µri .

4.2.9 The decpower variation process

Definition 4.6: The decpower variation process

1. The Realised Decpower variation (RDV ) process is an estimator of the Decpower

variation DV process and defined as:
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{X}(r1,r2,...,rm)
∆,t = ∆1−δ(r1,...,r10)

c(t,10,∆)∑
j=1

f(xj, ri).

where, f(xj, ri) =
∏9

i=0

∣∣xj+i∣∣ri+1

2. The decpower variation (DV) process is the probability limit of the (RDV )

process and it’s given as:

{X}(r1,...,r10)
t = P− lim

∆→0
{X}(r1,r2,...,rm)

∆,t (4.36)

where P− lim(.) is as defined above.

4.2.9.1 Asymptotic property of the decpower variation Process

Here, the asymptotic property of the difference of the RV process and the

RDV process was obtained. That is, for m = 10, and ri = 1/5, i = 1, . . . , 10.

Hence, were have that the convergence in distribution of a difference of the RV

and the RDV processes is given for ri = 1/5, i = 1, . . . , 10 and for m = 10 as:

∆−1/2√∫ t
0
σ4ds

(
µ−10

1/5 {X}
[1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5]
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRDV )

(4.37)

where, ϕRDV is the asymptotic variance of the convergence in law of the difference

of the RDV and RV processes which is obtained as:

ϕRDV = γ̂1 + µ−20
1/5 ω

2
10 − 2µ−10

1/5 γ̂2 (4.38)

where,

γ̂2 = 10Cov
(
|ν2
i |,

10∏
i=1

|νi|1/5
)
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ω2
10 = V ar

( 10∏
i=1

|νi|1/5
)

+ 2Cov
( 10∏
i=1

|νi|1/5,
11∏
i=2

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
12∏
i=3

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
13∏
i=4

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
14∏
i=5

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
15∏
i=6

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
16∏
i=7

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
17∏
i=8

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
18∏
i=9

|νi|1/5
)

+2Cov
( 10∏
i=1

|νi|1/5,
19∏
i=10

|νi|1/5
)

4.2.9.2 The asymptotic variance of the realised decpower variation Process

The asymptotic variance ϕRDV of the realised Decpower variation (RDV) pro-

cess in terms of µr’s was obtained here. Recall that:

µr =
2r/2Γ(r/2 + 1/2)√

π
(4.39)

In this case, ri = 1/5, i = 1, . . . , 10 and
∑10

i=1 ri = 2 Thus, the values of γ̂1, γ̂2 and ω
2
10

in terms of µr were obtained.
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Therefore,

γ̂2 = 10
(
µ11/5µ

9
1/5 − µ10

1/5

)
ω2

10 = µ10
2/5 − µ20

1/5 + 2(µ9
2/5µ

2
1/5 − µ20

1/5)

+ 2(µ8
2/5µ

4
1/5 − µ20

1/5) + 2(µ7
2/5µ

6
1/5 − µ20

1/5)

+ 2(µ6
2/5µ

8
1/5 − µ20

1/5) + 2(µ5
2/5µ

10
1/5 − µ20

1/5)

+ 2(µ4
2/5µ

12
1/5 − µ20

1/5) + 2(µ3
2/5µ

14
1/5 − µ18

1/5

+ 2(µ2
2/5µ

16
1/5 − µ20

1/5) + 2(µ2/5µ
18
1/5 − µ20

1/5)

Substituting, for γ̂1, γ̂2 and ω
2
10 in equation (4.38), gives:

ϕRDV = µ2/5µ
−2
1/5

(
µ9

2/5µ
−18
1/5 + 2µ8

2/5µ
−16
1/5

+ 2µ7
2/5µ

−14
1/5 + 2µ6

2/5µ
−12
1/5 + 2µ5

2/5µ
−10
1/5 + 2µ4

2/5µ
−8
1/5 + 2µ3

2/5µ
−6
1/5

+ 2µ2
2/5µ

−4
1/5 + 2µ2/5µ

−2
1/5 + 2

)
− 21 ≈ 2.174364

(4.40)

Hence, equation (4.40) gives the value of ϕRDV in terms of µr.
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4.3 STUDY TWO

The jump test models

This thesis considered the stock indices price process as a jump-diffusion model.

As a result, the presence or absence of jumps in stock indices data was first investi-

gated. This was achieved by applying jump test method derived from an extension

of the BNS-jump test to the data. Under the null hypothesis, that the log returns

process belongs to the Svsmc and under the alternative hypothesis, that it belongs

to Svsmj.

Given the above-mentioned, the jump test models for the particular cases of

the RMPV processes from the asymptotic results obtained in section (4.1) of this

thesis, were derived and applied to the stock indices data.

4.3.1 The RMPV jump test models

In the work of Barndorff-Nielsen and Shephard (2006), three types of test for

jumps based on the (1, 1)-bipower variation process are observed. These are the

linear jump test, the ratio jump test and adjusted ratio jump test. In the case of

the generalised realised multipower variation (RMPV) process {X}(r1,r2,...,rm)
∆,t , the

linear jump test is based on the asymptotic properties discussed in section (4.1).

That is,

∆−1/2√∫ t
0
σ4ds

(
µ−m2/m{X}

(r1,...,rm)
∆,t − {X}(2)

∆,t

)
L→ N(0, ϕRMPV ) (4.41)

where, ϕRMPV is the asymptotic variance of the convergence in distribution of the

difference of the RV and the RMPV processes. Given that {X}(2)
∆,t

L→
∫ t

0
σ2ds,

then, the ratio jump test was obtained from equation (4.41) by dividing through

by {X}(2)
∆,t =

∫ t
0
σ2ds. Hence,

(
µm2/3

{X}(r1,...,rm)
∆,t

{X}(2)
∆,t

− 1

)

∆1/2ϕRMPV

√ ∫ t
0 σ

4ds

(
∫ t
0 σ

2ds)2

L→ N(0, 1) (4.42)

In this work, real life empirical observations of the stock market indices were dealt

with, which are not continuous in the actual sense, hence, the feasible adjusted ra-
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tio jump test for the particular cases of the model in equation (4.42) were obtained

by the following steps:

1. The values of the component
∫ t

0
σ4
sds and

∫ t
0
σ2
sds cannot be observed when

working with the discrete data, estimators for the quantities are needed.

2. Let q̂ be the estimator for
∫ t

0
σ4
sds and p̂ be the estimator for

∫ t
0
σ2
sds where, p̂

is the realised quad power variation {X}[1,1,1,1]
∆,t process given as:

q̂ = µ−4
1

n∑
j=4

|xj||xj+1||xj+2||xj+3| = µ−4
1

n∑
j=4

3∏
i=0

|xj+i| (4.43)

and the estimator for
∫ t

0
σ2
sds is the realised bipower variation process {X}(1,1)

∆,t , p̂

given as;

p̂ = µ−2
1

n∑
j=2

|xj||xj+1| = µ−2
1 {X}

(1,1)
∆,t (4.44)

3. Now, a feasible ratio jump test for the RMPV model was obtained and given as:(
µ−m2/m

{X}(r1,...,rm)
∆,t

{X}(2)
∆,t

− 1

)
ϕRMPV ∆1/2

√
q̂
p̂2

= ẑ (4.45)

where, ẑ ∼ N(0, 1).

4. By Jensen’s inequality, in the feasible test (Barndorff-Nielsen and Shephard,

2003b);
q̂

p̂2
≥ 1

Hence, the adjusted ratio for the estimators q̂
p̂2 was employed to get:

max
(

1,
q̂

p̂2

)
Thus, the feasible adjusted ratio jump test for the RMPV model was obtained as

follows:

ẑm =

(
µ−m

2/m
{X}(r1,...,rm)

∆,t

{X}(2)
∆,t

− 1

)

ϕRMPV ∆1/2

√
max

(
1, q̂

p̂2

) (4.46)

Equation (4.46) is the jump test model that will be used in this work for particular
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cases, subject to the following hypotheses:

H0 : Xt ∈ Svsmc

.

H1 : Xt ∈ Svsmj

Thus, for the BP case, it followed from equation (4.46) that:

ẑ2 =

(
µ−2

1 {X}
(1,1)
∆,t

{X}(2)
∆,t

− 1

)

ϕBP∆1/2

√
max

(
1, q̂

p̂2

) (4.47)

where, ϕBP = 0.6090.

For the realised tripower variation process, were have that:

ẑ3 =

(
µ−3

2/3
{X}(2/3,2/3,2/3)

∆,t

{X}(2)
∆,t

− 1

)

ϕTP∆1/2

√
max

(
1, q̂

p̂2

) (4.48)

where, ϕRTP ≈ 1.0613

The RQV jump test model is given as:

Ẑ4 =

(
µ−4

1/2
{X}[1/4,1/4,1/4,1/4]

∆,t

{X}(2)
∆,t

− 1

)

ϕRQV ∆1/2

√
max

(
1, q̂

p̂2

) (4.49)

where, ϕRQP ≈ 1.3770

The RPV jump test model is given as:

ẑ5 =

(
µ−5

2/5
{X}[2/5,2/5,2/5,2/5,2/5]

∆,t

{X}(2)
∆,t

− 1

)

ϕRPV ∆1/2

√
max

(
1, q̂

p̂2

) (4.50)

where, ϕRPV ≈= 1.6053

The RHXV jump test model is given as:
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Ẑ6 =

(
µ−6

1/3
{X}[1/3,1/3,1/3,1/3,1/3,1/3]

∆,t

{X}(2)
∆,t

− 1

)

ϕRHXV ∆1/2

√
max

(
1, q̂

p̂2

) (4.51)

where, ϕRHXV ≈ 1.7769

The RHpV jump test model is given as:

Ẑ7 =

(
µ−7

2/7
{X}[2/7,2/7,2/7,2/7,2/7,2/7,2/7]

∆,t

{X}(2)
∆,t

− 1

)

ϕRHpV ∆1/2

√
max

(
1, q̂

p̂2

) (4.52)

where, ϕRHpV ≈ 1.9100

The ROpV jump test model is given as:

Ẑ8 =

(
µ−8

1/4
{X}[1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4]

∆,t

{X}(2)
∆,t

− 1

)

ϕROpV ∆1/2

√
max

(
1, q̂

p̂2

) (4.53)

where, ϕROpV ≈ 2.0161

The RNV jump test model is given as:

Ẑ9 =

(
µ−9

2/9
{X}[2/9,2/9,2/9,2/9,2/9,2/9,2/9,2/9,2/9]

∆,t

{X}(2)
∆,t

− 1

)

ϕRNV ∆1/2

√
max

(
1, q̂

p̂2

) (4.54)

where, ϕRNV ≈ 2.1026

The RDV jump test model is given as:

Ẑ10 =

(
µ−10

1/5
{X}[1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5]

∆,t

{X}(2)
∆,t

− 1

)

ϕRDV ∆1/2

√
max

(
1, q̂

p̂2

) (4.55)

where, ϕRDV ≈ 2.1744

Hence, the particular higher-order cases of the RMPV processes have been used to

obtain the jump test models for detecting the presence or absence of jumps in finan-

cial data under the assumption that the log returns obeys a continuous stochastic
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volatility semimartingale process. The models given in equations (4.47)-(4.55) were

the jump test models for bipower, tripower, quadpower, pentpower, hexpower, hep-

tpower, octpower, nonpower and decpower variation processes. It was noted that

the asymptotic variances obtained in each case varied one to another.
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4.4 STUDY THREE

Stock market indices realisation and description

The descriptions of the stock data’s empirical features obtained from the Nige-

rian stock market, Japan stock market, and the UK stock market were given in

this study. The three stock markets were selected based on the following reasons:

The first reason for performing the analysis for these selected countries stems

from the available stock market price data in the exchanges located in these coun-

tries.

These countries have heterogeneous levels of developed exchanges reflected in

the differences in market pricing mechanism, available financial instruments, and

sophistication of trading strategies used by agents in the exchanges, all of which

feed into the observed price in the market. This heterogeneity has been documented

in literature, that is, comparing emerging markets vis-à-vis developed markets (see

Dong et al., 2020 and Jin et al., 2020).

The heterogeneity between UK and Japan based on this dimension might

be small, however, the flow of information that is time-varying can lead to the

transmission of volatility between stock markets. This is not peculiar to these

countries, but such observations between UK and Japan can be very peculiar due

to differences in peak trading period (Tokyo is 8 hours ahead of London).

Although, one might argue that price shocks from published news should affect

all markets at the same time, albeit in different ways because the significance of a

piece of news may vary from country to country. Nevertheless, not all information,

nor the ability to process it, is public. Valuable information is contained in the

prices that other traders are willing to pay. Hence, individuals trading in London

may feel that information is revealed by the price changes in the Tokyo stock

exchanges. These observations of prices driven by micro-structural behaviours of

different agents can lead to differences in jumps that occur at different times. This

will most likely be the case in sophisticated exchanges characterised by different

peak trading times.

The inclusion of Nigeria in the analysis alongside Japan and the UK helps us

examine the differences in jumps between developed and emerging stock markets.

While the behaviour of jumps between Japan and the UK helps us characterise the

differences in jumps as time difference in the propagation of information shocks.
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4.4.1 The Nigerian ASI data realisation and description

The Nigerian All Share Index (NASI) data was obtained from the Nigerian

Stock Exchange (NSE). The sample period was twenty-two-years, from January

2, 1998, to February 21, 2020, which consist of 5334 trading days. The reason

for choosing the All-share Indices (ASI) data was that, it gives a true picture of

the movement of the price in the Nigerian stock market and depicts the general

behaviour of all the shares traded on the Nigerian Stock Exchange daily. Since the

NASI is short of intra-day data, the available NASI inter-day data (that is, one

observation in a day) were obtained. In the sequel, vivid descriptions of the sample

paths of the price process and log returns were given. Graphical descriptions of the

ASI data and its log-returns were presented in Figures 4.1 and 4.2 below.
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Figure 4.1: Price process (S̃nigt ) of the Nigerian All Share Index from January 2,
1998, to February 21, 2020
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Figure 4.1 shows the price process (S̃nigt ) of the Nigerian All Share Index from

January 2, 1998, to February 21, 2020, comprising 5334 daily observations of the

All Share Indices (ASI). The values of the ASI were found to be relatively high in

the year 2007 and low in the year 2000 and also display a high sense of variability.

There was a drastic decrease in the value of S̃nigt in 2008/2009, this could have been

caused by economic meltdown effect in 2007, Owoloko and Okeke (2014) buttressed

this fact too.
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The plot of the log-returns of the Nigerian ASI was presented in Figure 4.2. It

can be clearly seen from Figure 4.2 that there are small and large spikes of different

sizes, indicating that jumps are likely to be present in the log-returns. This gives

us the motivation to investigate empirically the absence or presence of jumps in

the log-returns and also to vary the threshold of jumps in this thesis. The mean

of the empirical log return of the NASI data is found to be: E(NASI) = 2.7× 10−4,

the variance is V(NASI) = 1.1363 × 10−4, with a high kurtosis of Q(NASI) = 29.31.

In turn, its skewness is S(NASI) = −0.18423, which depicts negative skewness, the

maximum and minimum values of the log returns are found to beX
(max)
(NASI) = 0.12149

and X(min) = −0.1763 respectively. The value obtained for S(NASI) = −0.18423,

which falls between - 0.5 and 0.5, shows that the data is highly skewed and for

Q(NASI) = 29.31, it is observed to be too peaked.

87



4.4.2 The UK stock indices data realisation and description

The data of the UK Stock Market Indices (UKSMI) was obtained from the

ForexTime (FXTM) Global trading platform via https//:www.forextime.com. The

data set comprised of a sample size of 2076 daily closing price observations, re-

stricted to only trading days (excluding public holidays and weekends) from April

23, 2012 to July 6, 2020. Graphical descriptions of the UK stock market data and

its log-returns were presented in Figures 4.3 and 4.4 below.
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Figure 4.3: Price process (S̃ukt ) of the UK Stock Market Indices from April 23, 2012
to July 6, 2020
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The plot of the UKSMI price process (S̃ukt ) was presented in Figure 4.3. A

drastic increase in S̃ukt from the year 2012 to the year 2015 was observed. More so,

sudden and spontaneous changes were observed in the paths of S̃ukt .
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The plot of the UKSMI stock price log returns (ln
Sukt+∆t

S̃t
) was presented in

Figure 4.4. The descriptive statistics of the UKSMI log returns were given as

follows: E(UKSMI) = 4.8 × 10−5, V(UKSMI) = 1.0629 × 10−2 Q(UKSMI) = 23.35,

S(UKSMI) = −1.3436, X
(max)
(UKSMI) = 0.088898 and X

(min)
(UKSMI) = −0.12193. Owing to

the values obtained for the above descriptions, it can be clearly seen that the paths

of ln
Sukt+∆t

S̃t
cannot fit into a normal distribution. Moreso, in Figure 4.4, there are

evidences of spikes in different sizes.
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4.4.3 The Japan stock indices data realisation and description

Similarly, the Japan Stock Market Indices (JSMI) data was also obtained from

the same webpage with the UKSMI, as stated in the previous section. The JSMI

data set comprise of a sample size of 2075 daily closing price observations from

July 5, 2012 to July 6, 2020. Graphical representations of the Japan stock market

indices data and its log-returns were presented in Figures 4.5 and 4.6 below.
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Figure 4.5: Price process (S̃jpt ) of the Japan stock market indices from July 5, 2012
to July 6, 2020
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The plot of the price process (S̃jpt ) of the JSMI was presented in Figure 4.5

above. S̃jpt was observed to be very low at the early stage of the year 2021 with

some high values in the year 2018. Similar to the observations made on S̃ukt , sudden

and spontaneous changes are also observed in the paths of S̃jpt , more in the latter

dates.
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The plot of the JSMI log returns is given in Figure 4.6 and the descriptive

statistics of the JSMI log returns were given as follows: E(UKSMI) = 4.4 × 10−4,

V(JSMI) = 1.3814 × 10−2, Q(JSMI) = 11.233, S(JSMI) = −0.5635, X
(max)
(JSMI) =

0.089785 and X
(min)
(JSMI) = −0.10987. In Figure 4.6, there are more smaller spikes

than larger ones, which is not the case in the Nigerian and UK stock markets.

However, larger spikes were observed in the downward trends of the distribution of

the log returns.
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4.5 STUDY FOUR

Detecting jumps in the stock market indices data

In this study, the jump test models derived in section 4.2 to detect jumps in

the Nigerian, UK, and, Japan stock market indices data were applied.

4.5.1 Jump test in the NASI data via the particular RMPV models

The jump test for the empirical data of Nigerian All Share Index via the mod-

els given in equations (4.47)-(4.55) shall be conducted using a 5%(0.05) level of

significance. In view of the above, the hypotheses were set as:

H0 : X
(NASI)
(∆,t) ∈ Smsvc

.

H1 : X
(NASI)
(∆,t) ∈ Smsvj

In the analysis, the Rcodes were used to compute asymptotic variance ϕRMPV for

the particular cases, that is ϕRBV , ϕRTV , ϕRQV , ϕRPV , ϕRHXV , ϕRHpV , ϕROV , ϕRNV ,

and ϕRDV were computed. The different values of Ẑm for each of the value of

m = 2, . . . , 10 as given in equations (4.47)-(4.55) as well as their respective p-values

(estimate probability value which was used to reject or not the null hypothesis) were

also computed. Moreso, the realised variance {X}(2)
∆,t of the NASI data and the

respective rth power variation process were calculated. The test criterion: Reject

H0, If p-value < 0.05. The following results were obtained from the jump test

analysis using the NASI data in the particular RMPV models and were presented

in Table 4.1.

98



Table 4.1: Results of the jump test in the NASI data via the RMPV model

{X}(r1,...,rm)
∆,t ϕRMPV (m,µr) Ẑm p-value {X}(2)

∆,t rth RPV

m=2 0.6090 3.8995 9.64 e-05 0.7251 0.6715
m=3 1.0613 8.0285 9.87 e-15 0.7251 0.5794
m=4 1.3770 8.7791 1.65 e-18 0.7251 0.5436
m=5 1.6053 9.3854 6.26 e-21 0.7251 0.5156
m=6 1.7769 9.8718 5.52 e-23 0.7251 0.4932
m=7 1.9100 10.2100 1.79 e-24 0.7251 0.4765
m=8 2.0161 10.6183 2.45 e-26 0.7251 0.4594
m=9 2.1026 10.9508 6.59 e-28 0.7251 0.4453

m=10 2.1744 11.2778 1.69 e-29 0.7251 0.4321

Table 4.1 reports the computed results for the particular cases of the jump test

model in the NASI data. The components of the model include {X}(r1,...,rm)
∆,t , ϕRMPV ,

Ẑm, p-value, {X}(2)
∆,t, and the RMPV rth power variation. The particular values of

the asymptotic variances ϕRMPV are obtained using rcodes in terms of µr given in

study one. The values of Ẑm, which range between 3.8995 and 11.2778, represent

the test statistics on a 5%(0.05) level of significance under the null hypothesis (H0)

of no jump in the NASI log returns. The p-values range between 9.64 e-05 and

1.69e-29, which is the probability of rejecting H0 or not. {X}(2)
∆,t was obtained as

a constant in all the particular cases,which is the realised variance needed in com-

putation of Ẑm. The null hypothesis was rejected based on the shreds of evidence

in Table 4.1 and concerning the p-values obtained, which falls far below 0.05. This

means that there are jumps in the NASI log returns.
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4.5.2 Jump test in the UKSMI data via the particular RMPV models

Similarly, the presence of jumps in the empirical data of the UK Stock Indices

via the models given in subsection 4.3.1 was tested.

The hypotheses were given as:

H0 : X
(UKSMI)
(∆,t) ∈ Smsvc

H1 : X
(UKSMI)
(∆,t) ∈ Smsvj

The jump test on a significant level, which was chosen as 5%(0.05), was carried

out in this subsection. In the analysis, the Rcodes were used to compute asymp-

totic variance ϕRMPV for the particular cases, given as: ϕRBV , ϕRTV , ϕRQV , ϕRPV ,

ϕRHXV , ϕRHpV , ϕROV , ϕRNV , and ϕRDV . The different values of Ẑm, were computed

for each of the value of m = 2, . . . , 10 as given in equations (4.47)-(4.54) as well

as their respective p-values (estimated probability value which was used to reject

the null hypothesis or not to reject H0). Also, the realised variance {X}(2)
∆,t of the

UKSMI data and the respective rth power variation process were calculated. The

test criterion: Reject H0, If p-value < 0.05. The following results were obtained

from the jump test analysis using the UKSMI data in the particular RMPV models

and presented in Table 4.2.
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Table 4.2: Results of the jump test in the UKSMI data via the RMPV model

{X}(r1,...,rm)
∆,t ϕRMPV (m,µr) Ẑm p-value {X}(2)

∆,t rth RPV

m=2 0.6090 2.4553 5.64e− 04 0.5354 0.4715
m=3 1.0613 5.0285 9.87e− 11 0.5354 0.3794
m=4 1.3770 5.7791 1.65 e-12 0.5354 0.3854
m=5 1.6053 6.3854 6.26 e-15 0.5354 0.3632
m=6 1.7769 6.8718 5.52 e-18 0.5354 0.3214
m=7 1.9100 8.2100 1.79 e-21 0.5354 0.3154
m=8 2.0161 8.6183 2.45 e-24 0.5354 0.2954
m=9 2.1026 8.9508 6.59 e-25 0.5354 0.2623

m=10 2.1744 9.2778 1.69 e -27 0.5354 0.2412

The Table 4.2 shows the computed results of the jump test particular cases in

the UKSMI log-return, which include: {X}(r1,...,rm)
∆,t , ϕRMPV , Ẑm, p-value, {X}(2)

∆,t,

and the RMPV rth power variation. The values of Ẑm in the UKSMI data ranged

between 2.4553 and 9.2778, the p-values ranged between 5.64e-04 and 1.69e-27,

{X}(2)
∆,t was found to be 0.5354 in all the particular cases. The null hypothesis was

rejected in all the particular cases based on the shreds of evidence in Table 4.2 and

concerning the p-values obtained, which fell below 0.05. This means that there are

jumps in the UKSMI log returns.
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4.5.3 Jump test in the JSMI data via the Particular RMPV models

Here, the presence of jumps in the empirical data of the Japan Stock Indices

via the models given in subsection 4.3.1 was tested.

The hypotheses were given as

H0 : X
(JSMI)
(∆,t) ∈ Smsvc

H1 : X
(JSMI)
(∆,t) ∈ Smsvj

The jump test on a significant level, which was chosen as 5%(0.05), was carried

out in this subsection. In the analysis, the Rcodes were used to compute asymp-

totic variance ϕRMPV for the particular cases, given as: ϕRBV , ϕRTV , ϕRQV , ϕRPV ,

ϕRHXV , ϕRHpV , ϕROV , ϕRNV , and ϕRDV . The different values of Ẑm, were computed

for each of the value of m = 2, . . . , 10 as given in equations (4.47)-(4.54) as well as

their respective p-values (estimated probability value which was used to reject H0

or not). Also, the realised variance {X}(2)
∆,t of the JSMI data and the respective rth

power variation process were calculated. The test criterion: Reject H0, If p-value

< 0.05. The following results were obtained from the jump test analysis using the

JSMI data in the particular RMPV models and presented in Table 4.3.
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Table 4.3: Results of the jump test in the JSMI data via the RMPV model

{X}(r1,...,rm)
∆,t ϕRMPV (m,µr) Ẑm p-value {X}(2)

∆,t rth RPV

m=2 0.6090 3.4553 5.64e− 03 0.4554 0.4715
m=3 1.0613 6.0285 9.87e− 11 0.4554 0.3794
m=4 1.3770 6.7791 1.65 e-12 0.4554 0.3854
m=5 1.6053 7.3854 6.26 e-15 0.4554 0.3632
m=6 1.7769 8.8718 5.52 e -18 0.4554 0.3214
m=7 1.9100 9.2100 1.79 e -21 0.4554 0.3154
m=8 2.0161 9.6183 2.45 e -24 0.4554 0.2954
m=9 2.1026 10.9508 6.59 e -25 0.4554 0.2623

m=10 2.1744 11.3178 1.69 e -27 0.4554 0.2412

Table 4.3 above shows the computed results for the jump test particular cases,

which include: {X}(r1,...,rm)
∆,t , ϕRMPV , Ẑm, p-value, {X}(2)

∆,t, and the RMPV rth power

variation in the JSMI log returns. The values of Ẑm in the JSMI data range between

3.4553 and 11.3178, the p-values range between 5.64e-03 and 1.69e-27, {X}(2)
∆,t was

found to be 0.4554 in all the particular cases. Based on the shreds of evidence in

Table 4.3, concerning the p-values obtained, which fall below 0.05, H0 was rejected

in all cases. This means that there are jumps in the JSMI log returns.
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4.5.4 Plots showing visible jumps in the sampled paths of the stock market
indices log returns

The empirical evidence of the presence of jumps via the RMPV jump test

models in the stock market log returns has been established in subsections 4.4.1-

4.4.3. The evidence of jumps in ∆(lnSt) were buttressed further by observing

the jumps in the sampled paths of the three stock market indices log returns (see

Figures 4.7, 4.8 and 4.9 below). These observations were necessary to visualise

the upward and downward jumps, in different sizes and enabled us build suitable

dynamics for the log returns.
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Figure 4.7: The jumps in the sampled NASI log returns
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Figure 4.8: The jumps in the sampled UKSMI log returns
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Figure 4.9: The jumps in the sampled JSMI log returns
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The sample paths showing the jumps or discontinuous paths were presented

in Figures 4.7, 4.8 and 4.9. In order to observe these jumps vividly, a smaller

sample comprising 2334 observations was selected in the case of the Nigerian stock

market, as shown in Figure 4.7. The jumps in the price process in the three stock

markets were quite visible as shown in Figures 4.7-4.8. Also, upward and downward

jumps of different jump sizes were observed in Figures 4.7-4.9, showing that arrival

times, jump size and intensities are independent. However, more larger jumps were

observed between 1500 and 2000 observations in the Japan market as can be seen

in Figure 4.9.
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4.6 STUDY FIVE

Generalised asymmetric jump-diffusion processes for stock price modelling

In this study, a family of skewed jump-diffusion models with non-zero location

parameters and scale parameters for upward and downward distributions of the

random jump processes given the dynamics of the log returns of stock price process

was considered.

4.6.1 An asymmetric jump-diffusion model driven by the AL distribution

An extension of a stock price model which is driven by diffusion was considered

here. Let S̃t be the price of a stock, which satisfies the Markov process defined on

a filtered probability space (Ω,F ,P, F ) such that the dynamics of S̃t is given as:

dS̃t = µS̃tdt+ σS̃tdWt + S̃tJ(Qj)dNt (4.56)

where, µ is the mean return rate of the diffusive process, and σ is the diffusive

volatility, Wt is a standard Brownian motion, Nt is a Poisson process with respect

to the filtration F having a constant jump rate (jump intensity) λ; and J(Qj) is

a non-constant jump amplitude (random jump process), where also, the random

variables Wt, Nt and J(Qj) are independent. The random jump process above can

be expressed as:

∫ ζt+∆t

ζt

J(Qj)dNt =
∆Nt∑
j=1

J(Qj), ζt+∆t − ζt = ∆Nt (4.57)

given that the Qj’s are i.i.d random variables, the probability density function of

Nt is

P(Nt = k) =
(λ∆t)kexp(−λ∆t)

k!
(4.58)

The solution of equation (4.56) can be obtained by the Itô′s formula for jump dif-

fusion and is obtained as:

∆(ln S̃t) =

(
µ− 1

2
σ2

)
∆t+ σ∆Wt + J(Qj)∆Nt (4.59)
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In the work of Kou (2002), the jump intensity λ, was assumed as the jump intensity

for both the upward and downward jump processes. However, based on the results

obtained from recent empirical studies in Lau et al. (2019), it was found that the

jump intensities of both processes are independent. Therefore, in this research,

skewed jump-diffusion models with independent jump intensities λuj and λdj ; with

jump frequencies n(Qu
t ) and n(Qd

j ) for Qu
j and Qd

j were proposed.

So,

J(Qj)∆Nt = J(Qu
j )∆N

u
t + J(Qd

j )∆N
d
t (4.60)

Then, equation (4.59) can be expressed as:

∆(ln S̃t) =

(
µ− 1

2
σ2

)
∆t+ σ∆Wt + J(Qu

j )∆N
u
t + J(Qd

j )∆N
d
t (4.61)

4.6.1.1 Asymmetric Laplace distribution and its properties

The asymmetric Laplace distribution henceforth named as AL∗(µ, σ2, κ) dis-

tribution according to Kozubowski and Podgorski (2000) and Kotz et al (2001); is

a three parameter skewed Laplace distribution with a location and scale param-

eter which are respectively µ and σ, its skewness is indexed by the parameter κ > 0.

Definition 4.7: Probability density function of the AL∗(µ, σ, κ) distribution

The AL∗(µ, σ2, κ) distribution has a probability density function (pdf) given as:

f(x;µ, σ, κ) =

√
2

σ

κ

(1 + κ2)



exp

(
−
√

2κ
σ

(x− µ)

)
, x ≥ µ

exp

(
−
√

2
σκ

(x− µ)

)
, x < µ

(4.62)

where, σ > 0,−∞µ <∞(µ ∈ <).

The cumulative density function (cdf) is
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F (x;µ, σ, κ) =

√
2

σ



1− κ
(1+κ2)

exp

(
−
√

2κ
σ

(x− µ)

)
, x ≥ µ

κ
(1+κ2)

exp

(
√

2
σκ

(x− µ)

)
, x < µ

(4.63)

The AL∗(µ, σ2, κ) distribution is a flexible and robust kind of distribution and has

some very interesting properties which can be useful in financial modelling.

Remark 4.1

The probability density function of the AL∗(µ, σ, κ) distribution given in equation

(4.62) can be expressed as a mixture of two exponential densities (see Kotz et al.,

2001, pg. 172) given below:

f(x) = pκα1exp(−α1(x− µ))1[µ,∞)(x) + qκακexp(α2(x− µ))1(−∞,µ)(x) (4.64)

where, pκ = 1
1+κ2 , qκ = k

(1+κ2)
, α1 =

√
2κ
σ
, α2 =

√
2

σκ
, pκ, qκ ≥ 0, pκ + qκ = 1

Note also that P(x < µ) = 1 − F (µ) = 1
1+κ2 = pκ, which implies that κ controls

the tail probabilities.

4.6.2 The density function of the asymmetric Laplace jump-diffusion process

Considering the processes in equations (4.56) and (4.59), their densities are

majorly determined by the distribution of the jump process Qj, which gives the

different types of jump-diffusion models in literature. However, the distributions of

J(Qu
j ) and J(Qd

j ) was assumed as an Asymmetric Laplace distributions, such that,

Qu
j ∼ AL∗(µj, (σ

u
j )2, κ) and Qd

j ∼ AL∗(µj, (σ
d
j )

2, κ), where, µ is the mean of the

jump process, σ is the volatility of the jump process and κ controls the skewness

of the distribution of the jump sizes, were viewed here. In the next subsection,

the density of the process subject to Qj ∼ AL∗(µ, σ2, κ) was obtained. In the next

theorem, the density of the jump diffusion process of the log returns ∆(ln S̃t) when

Qj ∼ AL∗(µ, σ2, κ) was determined.
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Theorem 4.1

The probability density of the AL∗(µ, σ2, κ) jump diffusion process is given by

f∆(ln S̃t)
(x) =

(1− λ∆t)

σ
√

∆t
ϕ

(
x− (µ− 1

2
σ2)∆t

σ
√

∆t

)
+ ∆t

(
pκα2λ

u
j exp

(
2α1µj + α1σ

2∆t

2

)
exp

(
−
(
x−

(
µ− 1

2
σ2

)
∆t

)
α1

)
Φa

(
µj
)

+ qkα2λ
d
jexp

(
2α2µj + α2σ

2∆t

2

)
exp

(
−
(
x−

(
µ− 1

2
σ2

)
∆t

)
α2

)
Φb

(
− µj

))
(4.65)

where, Φa(µj) and 1 − Φb(µj) = Φb(−µj) are the cumulative normal distributions

of x ∼ N(x; (−µd∆t) − α1σ
2∆t, 2σ2∆t) and x ∼ N(x; (−µd∆t) + α2σ

2∆t, 2σ2∆t)

respectively at x = µj and x = −µj.

Proof.:

Let S̃t be the stock price process defined on (Ω, F,P,F) such that the dynamics of

S̃t is given by:

dS̃t = µS̃tdt+ σS̃tdWt + S̃tJ(Qj)dNt (4.66)

where, S0 > 0, µ, σ,Wt are as previously defined. The random jump process in

equation (4.66) above is given as:

∫ ζt+∆t

ζt

J(Qj)dNt =
∆Nt∑
i=1

J(Qj), (4.67)

where, {Nt}t≥0 is a Poisson process with intensity rate λ and density

P(Nt = k) =
(λ∆t)kexp(λ∆t)

k!
(4.68)

By the Itô′s lemma, the dynamics in equation (4.66) can be obtained as equation

(4.59).

Thus, equation (4.59) implies S̃t = S0exp(µ− 1
2
σ2)∆t+ σ∆Wt +

∑∆Nt
i=1 Qj

Also, equation (4.59) is approximately:
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∆(ln S̃t) = (µ− 1

2
σ2)∆t+ σ

√
∆tWt + V Qj (4.69)

where, V is a Bernoulli random variable such that P(V = 1) = λ∆t and P(V =

0) = 1− λ∆t

Hence, the random jump process Qj above satisfies:

∆Nt∑
j=1

Qj
d
=


Q, P = λ∆t.

0, P = 1− λ∆t

(4.70)

Thus, the density of the process in equation (4.69), can be expressed as:

f∆(ln S̃t)
(x) = (1− λ∆t)fXt(x) + λ∆tfXt+Qt(x) (4.71)

From the above, given that Xt = (µ − 1
2
σ2)∆t + σ∆Wt and Qt =

∑∆Nt
j=1 Qj =∑∆Nu

t
i=1 Qu

j +
∑∆Nd

t
i=1 Qd

j , such that

fQut (x) = pkα1λ
u
j exp(−α1(x− µ))1[µ,∞)(x) (4.72)

and

fQdt (x) = qkα2λ
d
j exp(α2(x− µ))1(−∞,µ)(x) (4.73)

Then,

fXt(x) =
1√

2πσ2∆t
exp

(
−

(x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
= ϕ

(
x− (µ− 1

2
σ2)∆t

σ
√

∆t

)
(4.74)

and

fQt(x) = pkα1λ
u
j exp(−α1(x− µ))1[µ,∞)(x) + qkα2λ

d
j exp(α2(x− µ))1(−∞,µ)(x)

(4.75)

In equation (4.74), the density fXt(x) is known already, and hence, fXt+Qt(x) by

the convolution of densities was obtained. It followed for z ∈ R that:
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fXt+Qt(x) =

∫ ∞
−∞

fX(z − x)fQ(x)dx (4.76)

It followed from the above that:

,

fXt+Qt(x) =

∫ ∞
−∞

1√
2πσ2∆t

exp

(
−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
(
pkα1λ

u
j exp

(
− α1(x− µj)

))
1[µ,∞)(x)

+ qkα2λ
d
jexp(α2(x− µj))1(−∞,µ)(x)

)
dx

(4.77)

=

∫ ∞
µj

(
1√

2πσ2∆t
exp

(
−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
Pkα1λ

u
j exp

(
− α1(x− µ)

))
dx

+

∫ µj

∞j

(
1√

2πσ2∆t
exp

(
−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
qkα2λ

d
jexp

(
− α2(x− µj)

))
dx

=

∫ ∞
µj

(
1√

2πσ2∆t
pkα1λ

u
j exp

(
−α1(x− µj)−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

))
dx

+

∫ µj

−∞

(
1√

2πσ2∆t
qkα2λ

d
jexp

(
−α2(x− µj)−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

))
dx

(4.78)

Let the diffusive drift µd = µ− 1
2
σ2, then, equation (4.78) is expressed as:

fXt+Qt(x) =

∫ ∞
µj

(
1√

2πσ2∆t
pkα1λ

u
j exp (M)

)
dx

+

∫ µj

−∞

(
1√

2πσ2∆t
qkα2λ

d
jexp (N )

)
dx

where,

M =
−2α1σ

2∆t(x− µj)− (x2 − 2x(z − µd∆t) + (z − µd∆t)2

2σ2∆t
and

N =
2α2σ

2∆t(x− µj)− (x2 − 2x(z − µd∆t) + (z − µd∆t)2

2σ2∆t
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Then,

fXt+Qt(x) =pkα1λ
u
j exp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α1µjσ

2∆t

2σ2∆t

)
.

∫ ∞
µj

(
1√

2πσ2∆t

(
−2α1σ

2∆tx− (x2 − 2x(z − µd∆t)
2σ2∆t

))
dx

+ qkα2λ
d
jexp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α2µjσ

2∆t

2σ2∆t

)
.

∫ µj

−∞

(
1√

2πσ2∆t

(
2α2σ

2∆ty − (x2 − 2x(z − µd∆t))
2σ2∆t

))
dx

(4.79)

=pkα1λ
u
j exp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α1µjσ

2∆t

2σ2∆t

)
.

∫ ∞
µj

(
1√

2πσ2∆t

(
−x2 + 2x((z − µd∆t)− α1σ

2∆t)

2σ2∆t

))
dx

+ qkα2λ
d
jexp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α2µjσ

2∆t

2σ2∆t

)
.

∫ µj

−∞

(
1√

2πσ2∆t

(
−x2 + 2x((z − µd∆t)− α2σ

2∆t)

2σ2∆t

))
dx

(4.80)

Using y2 − 2yb = (y − b)2 − b2 in equation (4.80),

fXt+Qt(x) =pkα1λ
u
j exp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α1µjσ

2∆t

2σ2∆t

)∫ ∞
µj

(
1√

2πσ2∆t

exp

(
−(x− (z − µd∆t)− α1σ

2∆t)2 − ((z − µd∆t)− α1σ
2∆t)2

2σ2∆t

))
dx

+ qkα2λ
d
jexp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α2µjσ

2∆t

2σ2∆t

)∫ µj

−∞

(
1√

2πσ2∆t

exp

(
−(x− (z − µd∆t) + σ2∆t)2 − ((z − µd∆t)− α2σ

2∆t)2

2σ2∆t

))
dx

=pkα1λ
u
j exp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α1µjσ

2∆t

2σ2∆t

)
exp

(
((z − µd∆t)− α1σ

2∆t)2

2σ2∆t

)
∫ ∞
µj

(
1√

2πσ2∆t
exp

(
−(x− (z − µd∆t)− α1σ

2∆t)2

2σ2∆t

))
dx+ qkα2λ

d
jexp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α2µjσ

2∆t

2σ2∆t

)
exp

(
((z − µd∆t) + α2σ

2∆t)2

2σ2∆t

)∫ µj

−∞

(
1√

2πσ2∆t

exp

(
−(y − (z − µd∆t) + α2σ

2∆t)2

2σ2∆t

))
dx
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fXt+Qt(x) =pkα1λ
u
j exp

(
2α1µjσ

2∆t

2σ2∆t

)
exp

(
−2α1σ

2∆t

2σ2∆t

)
exp

(
((z − µd∆t)− α1σ

2∆t)2

2σ2∆t

)
∫ ∞
µj

(
1√

2πσ2∆t
exp

(
−(x− (z − µd∆t)− α1σ

2∆t)2

2σ2∆t

))
dx+ qkα2λ

d
j

exp

(
−(z − µd∆t)2

2σ2∆t

)
exp

(
2α2µjσ

2∆t

2σ2∆t

)
exp

(
((z − µd∆t) + α2σ

2∆t)2

2σ2∆t

)
∫ µj

−∞

(
1√

2πσ2∆t
exp

(
−(x− (z − µd∆t) + α2σ

2∆t)2

2σ2∆t

))
dx

=pkα1λ
u
j exp(α1µj)exp(−(z − µd∆t)α1)exp

(
α1σ

2∆t

2

)
∫ ∞
µj

(
1√

2πσ2∆t
exp

(
−(x− (z − µd∆t)− α1σ

2∆t)2

2σ2∆t

))
dx

+ qkα2λ
d
jexp(α2µj)exp((x− µd∆t)α2)

(
α2σ

2∆t

2

)
∫ µj

−∞

(
1√

2πσ2∆t
exp

(
−(x− (z − µd∆t) + α2σ

2∆t)2

2σ2∆t

))
dx

(4.81)

fX+Q(x) =pkα1λ
u
j exp

2α1µj + α1σ
2∆t

2
exp(−(z − µd∆t)α1)Φa(µj)

+ qkα2λ
d
jexp

(
(2α2µj + α2σ

2∆t)

2

)
exp((z − µd∆t)α2)Φb(−µj)

(4.82)

where, Φa(µj) and 1−Φb(µj) = Φb(−µj) are the cumulative normal distributions of

x ∼ N(x; (z−µd∆t)−α1σ
2∆t, 2σ2∆t) and x ∼ Nxy; (z−µd∆t) +α2σ

2∆t, 2σ2∆t)

respectively at x = µj and x = −µj
Putting equation (4.82) into equation (4.71) with µd = µ − 1

2
σ2 gives the desired

result.

4.6.3 The modified double Rayleigh jump-diffusion model

Here, a new model which belongs to the family of the skewed jump-diffusion

models called the modified Double Rayleigh jump diffusion (MDRJD) model for

stock price process was proposed. The distribution of the upward and downward

jump processes are assumed to obey the extended Rayleigh distribution of two pos-

itive parameters (location and scale parameters) with probabilities p, q ≥ 0, p+q =

1. In this case, the jump amplitude is driven by the modified (two-parameter)

double Rayleigh distribution given in the definition below:
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Definition 4.8: Probability density function of the modified double Rayleigh ran-

dom variable

Let Y be a Rayleigh random variable, then the Probability density function of the

modified double Rayleigh random variable is given as:

fY (y) = p
y − u
b2

exp

(
−(y − µ)2

2b

)
1[µ,∞)(y)− qy − u

a2
exp

(
−(y − µ)2

2a

)
1(−∞,µ)(y)

(4.83)

where a, b, µ > 0 p, q ≥ 0 and p+ q = 1

4.6.4 The density of the modified double Rayleigh jump-diffusion process

Now, let S̃t be the price process of the stock, which satisfies the Markov process

defined on a filtered probability space (Ω, F,P,F). Consider that the dynamics of

S̃t is given as:

dS̃t = µS̃tdt+ σS̃tdWt + S̃tJ(Qj)dNt (4.84)

where, S0 ≥ 0, µ the mean return rate of the diffusive process, σ is the diffusive

volatility, Wt is a standard Brownian motion, Nt is a Poisson process with respect

to the filtration F having a constant jump rate λ; and J(Qj) is a non-constant

jump amplitude (random jump process), where also, the random variables Wt, Nt

and J(Qj) are independent. The random jump process above can be expressed as:

∫ ζt+∆t

ζt

J(Qj)dNt =
∆Nt∑
j=1

J(Qj), ζt+∆t − ζt = ∆Nt (4.85)

given that the Q′js are i.i.d random variables, the probability density function of

Nt is:

P(Nt = k) =
(λ∆t)kexp(−λ∆t)

k!
(4.86)

The solution of equation (4.84) can be obtained by the Itô’s formula for jump dif-

fusion and the log returns is obtained as:
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∆(ln S̃t) = (µ− 1

2
σ2)∆t+ σ∆Wt + J(Qj)∆Nt (4.87)

Next, the probability density function of the process in equation (4.87) subject to

the fact that the Q′js satisfies equation (4.83) was determined. In this model, the

jump amplitude Qj in equation (4.87) was separated into two: the upward ran-

dom jump process Qu
j with probability p and the downward random jump process

Qd
j with probability q. The processes are assumed to be the modified Rayleigh

distributions of two parameters: Qu
j ∼ MDR(µj, σ

u
j ) and Qd

j ∼ MDR(µj, σ
d
j ) re-

spectively, given as the upward and downward jump processes with mean rates and

volatilities. It is also assumed that Qu
j and Qd

j are independent and identically

distributed (i.i.d) random variables. The choice of the MDR distribution for the

random jump process is to give a generalisation of a jump-diffusion model which

is skewed with non-zero location parameters for both the upward and downward

jump processes.

Owing to the above-mentioned, the probability density function of Q under the

MDRJD model was defined as:

fQ(y) =p
(y − µj)

(σuj )2
exp

(
−(y − µj)2

2σuj

)
1[µj ,∞)(y)

− q (y − µj)
(σdj )

2
exp

(
−(y − µj)2

2σdj

)
1(−∞,µj)(y)

(4.88)

In the next Theorem, the probability density function of the log returns of the

jump-diffusion process when Q satisfies equation (4.88) was derived.

Theorem 4.2

The probability density for the MDR jump-diffusion process is given by

f∆(ln S̃t)x
=

(1− λ∆t)

σ
√

∆t
ϕ

(
x− (µ− 1

2
σ2)∆t

σ
√

∆t

)
+

(
pηexp

(
θ2 − ρ
ϑ

)(
θ

2
exp

(
−(µj − θ)2

ϑ

)
+ θ
√
πϑΦa(µj)− µj

√
πϑΦa(µj)

)
− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(
ϑ̂

2
exp

(
−(µj − θ̂)2

ϑ̂

)

+ θ
√
πϑ̂Φb(µj)− µj

√
πϑ̂Φb(−µj)

))
∆t

(4.89)
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where, θ =
σuj (µd∆t)+µjσ

2∆t

(σuj +σ2∆t)
, ρ =

µ2
jσ

2∆t

(σuj +σ2∆t)
, ϑ =

2σ2∆tσuj
(σuj +σ2∆t)

, θ̂ =
σdj (µd∆t)+µjσ

2∆t

(σdj+σ2∆t)
,

ρ̂ =
µ2
jσ

2∆t

(σdj+σ2∆t)
, ϑ̂ =

2σ2∆tσdj
(σdj+σ2∆t)

, η =
λuj

(σuj )
ϕ
(

(µ− 1
2
σ2)∆t

σ
√

∆t

)
and η̂ =

λdj
(σdj )

ϕ
(

(µ− 1
2
σ2)∆t

σ
√

∆t

)
Proof.:

Let S̃t be the stock price process defined on (Ω, F,P,F) such that the dynamics of

S̃t is given by:

dS̃t = µS̃tdt+ σS̃tdWt + S̃tJ(Qj)dNt (4.90)

where, S0 > 0, µd = µ − 1
2
σ2, σ,Wt are as previously defined. The random jump

process J(Qj) in equation 4.90 above, is given as:

∫ ζt+∆t

ζt

J(Qj)dNt =
∆Nt∑
j=1

J(Qj) (4.91)

where Nt(t ≥ 0) is a Poisson process with intensity rate λ and density

P(Nt = k) =
(λ∆t)kexp(−λ∆t)

k!
(4.92)

By the Itˆ̂o′s lemma, the dynamics in equation (4.90) can be obtained and given as

equation (4.59):

Also, owing to the condition given above for J(Qj),

∆(ln S̃t) =

(
µ− 1

2
σ2

)
∆t+ σ∆Wt + J(Qu

j )∆N
u
t + J(Qd

j )∆N
d
t (4.93)

This implies S̃t = S0exp((µ− 1
2
σ2))∆t+ σ∆Wt +

∑∆Nu
t

i=1 Qu
j +

∑∆Nd
t

i=1 Qd
j

Let’s assume that the random jump process satisfies equation (4.70):

Then, the density of the process in equation (4.93), can be obtained via:

f∆(ln S̃t)
(x) = (1− λ∆t)fXt(x) + λ∆tfXt+Qt(x) (4.94)

From the above, given that

Xt = (µ− 1

2
σ2)∆t+ σ∆Wt
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and

Qt =

∆Nu
t∑

i=1

Qu
j +

∆Nd
t∑

i=1

Qd
j

Then,

fXt(x) =
1√

2πσ2∆t
exp

(
−

(x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
= ϕ

(
x− (µ− 1

2
σ2)∆t

σ
√

∆t

)
(4.95)

and

fQ(x) =pλuj
(x− µj)

(σuj )2
exp

(
−(x− µj)2

2σuj

)
1[µj ,∞)(x)

− qλdj
(x− µj)

(σdj )
2
exp

(
−(x− µj)2

2σdj

)
1(−∞,µj)(x)

(4.96)

In equation (4.94) above, the density fXt(x) is known already, and fXt+Qt(x) was

determined by the convolution of densities, it follows for z ∈ R that:

fX+Q(x) = G(x) =

∫ ∞
−∞

fX(z − x)fQ(x)dx (4.97)

=

∫ ∞
−∞

(
1√

2πσ2∆t
exp

(
−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)(
pλuj

(x− µj)
(σuj )2

exp

(
−(x− µj)2

2σuj

)
1[µj ,∞)(x)− qλdj

(x− µj)
(σdj )

2
exp

(
−(x− µj)2

2σdj

)
1(−∞,µj)(x)

))
dx

G(x) =

∫ ∞
−µj

1√
2πσ2∆t

exp

(
−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
pλuj

(x− µj)
(σuj )2

exp

(
−(x− µj)2

2σuj

)
dx

−
∫ µj

−∞

1√
2πσ2∆t

exp

(
−

(z − x− (µ− 1
2
σ2)∆t)2

2σ2∆t

)
qλdj

(x− µj)
(σdj )

2
exp

(
−(x− µj)2

2σdj

)
dx

(4.98)

For simplicity, let the diffusive drift be µd = µ− 1
2
σ2, then equation (4.98) can be

rewritten as:
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G(x) =
pλuj

(σuj )2

∫ ∞
−µj

1√
2πσ2∆t

(x− µj)exp
(
−(z − x− µd∆t)2

2σ2∆t

)
exp

(
−(x− µj)2

2σuj

)
dx

−
qλdj

(σdj )
2

∫ µj

−∞

1√
2πσ2∆t

(x− µj)exp
(
−(z − x− µd∆t)2

2σ2∆t

)
exp

(
−(x− µj)2

2σdj

)
dx

(4.99)

=
pλuj

(σuj )2

∫ ∞
−µj

1√
2πσ2∆t

(x− µj)exp
(
−(z − x− µd∆t)2

2σ2∆t
− (x− µj)2

2σuj

)
dx

−
qλdj

(σdj )
2

∫ µj

−∞

1√
2πσ2∆t

(x− µj)exp

(
−(z − x− µd∆t)2

2σ2∆t
− (x− µj)2

2σdj

)
dx

=
pλuj

(σuj )2

∫ ∞
−µj

1√
2πσ2∆t

(x− µj)exp (V ) dx−
qλdj

(σdj )
2

∫ µj

−∞

1√
2πσ2∆t

(x− µj)exp (U) dx

where,

V = −x
2 − 2x(z − x− µd∆t)− (z − x− µd∆t)2

2σ2∆t
− (x− µj)2

2σuj
and

U = −x
2 − 2x(z − x− µd∆t)(z − x− µd∆t)2

2σ2∆t
− (x− µj)2

2σdj

Now, for ∧1 = −x2−2x(z−µd∆t)
2σ2∆t

− (x−µj)2

2σuj
and ∧2 = −x2−2x(z−µd∆t)

2σ2∆t
− (x−µj)2

2σdj
, we have

G(x) =
pλuj

(σuj )2

1√
2πσ2∆t

exp

(
−(x− µd∆t)2

2σ2∆t

)∫ ∞
−µj

(x− µj)exp (∧1) dx

−
qλdj

(σdj )
2

1√
2πσ2∆t

exp

(
−(z − µd∆t)2

2σ2∆t

)∫ µj

−∞
(x− µj)exp (∧2) dx

G(x) =
pλuj

(σuj )2
ϕ

(
z − (µ− 1

2
σ2)∆t

σ
√

∆t

)∫ ∞
−µj

(z − µj)exp (∧1) dx

−
qλdj

(σdj )
2
ϕ

(
z − (µ− 1

2
σ2)∆t

σ
√

∆t

)∫ µj

−∞
(x− µj)exp (∧2) dx

(4.100)

Let, pη =
pλuj

(σuj )2ϕ

(
z−(µ− 1

2
σ2)∆t

σ
√

∆t

)
and qη̂ =

qλdj
(σdj )2ϕ

(
z−(µ− 1

2
σ2)∆t

σ
√

∆t

)
in equation (4.100),

then we have:
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G(x) =pη

∫ ∞
−µj

(x− µj)exp
(
−x

2 − 2x(z − µd∆t)
2σ2∆t

− (x− µj)2

2σuj

)
dx

− qη̂
∫ µj

−∞
(x− µj)exp

(
−x

2 − 2x(z − µd∆t)
2σ2∆t

− (x− µj)2

2σdj

)
dx

(4.101)

=pη

∫ ∞
−µj

(x− µj)exp
(
−
σuj (x2 − 2x(z − µd∆t)) + σ2∆t(x− µj)2

2σ2∆tσuj

)
dx

− qη̂
∫ µj

−∞
(x− µj)exp

(
−
σdj (x

2 − 2x(z − µd∆t)) + σ2∆t(x− µj)2

2σ2∆tσdj

)
dx

(4.102)

=pη

∫ ∞
−µj

(x− µj)exp
(
−
σuj x

2 − 2xσuj (z − µd∆t) + x2σ2∆t− 2xµjσ
2∆t+ µ2

jσ
2∆t

2σ2∆tσuj

)
dx

− qη̂
∫ µj

−∞
(x− µj)exp

(
−
σdjx

2 − 2xσdj (z − µd∆t) + x2σ2∆t− 2xµjσ
2∆t+ µ2

jσ
2∆t

2σ2∆tσdj

)
dx

=pη

∫ ∞
−µj

(x− µj)exp
(
−

(σuj + σ2∆t)x2 − 2y(σuj (x− µd∆t) + µjσ
2∆t) + µ2

jσ
2∆t

2σ2∆tσuj

)
dx

− qη̂
∫ µj

−∞
(x− µj)exp

(
−

(σdj + σ2∆t)x2 − 2y(σdj (x− µd∆t) + µjσ
2∆t) + µ2

jσ
2∆t

2σ2∆tσdj

)
dy

=pη

∫ ∞
−µj

(x− µj)exp

−
x2 − 2y

(σuj (z − µd∆t) + µjσ
2∆t)

(σuj + σ2∆t)
+

µ2
jσ

2∆t

(σuj +σ2∆t)

2σ2∆tσuj
(σuj +σ2∆t)

 dx

− qη̂
∫ µj

−∞
(x− µj)exp

−x
2 − 2x

(σdj (z−µd∆t)+µjσ
2∆t)

(σuj +σ2∆t)
+

µ2
jσ

2∆t

(σdj+σ2∆t)

2σ2∆tσdj
(σdj + σ2∆t)

 dx

For.

Θ1 = −

(
x−

σuj (z − µd∆t) + µjσ
2∆t)

(σuj + σ2∆t)

)2

−
(
σuj (z − µd∆t) + µjσ

2∆t)

(σuj + σ2∆t)

)2

+
µ2
jσ

2∆t

(σuj + σ2∆t)

2σ2∆tσuj
(σuj + σ2∆t)

and
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Θ2 = −

(
x−

σdj (z − µd∆t) + µjσ
2∆t

(σdj + σ2∆t)

)2

−
(
σdj (x− µd∆t) + µjσ

2∆t)

(σdj + σ2∆t)

)2

+
µ2
jσ

2∆t

(σdj + σ2∆t)

2σ2∆tσdj
(σdj + σ2∆t)

Then,

G(x) =pη

∫ ∞
−µj

(x− µj)exp (Θ1) dx− qη̂
∫ µj

−∞
(x− µj)exp (Θ2) dx (4.103)

Let, θ =
σuj (z − µd∆t) + µjσ

2∆t)

(σuj + σ2∆t)
, ρ =

µ2
jσ

2∆t

(σuj + σ2∆t)
, ϑ =

2σ2∆tσuj
(σuj + σ2∆t)

θ̂ =
σdj (z − µd∆t) + µjσ

2∆t

(σdj + σ2∆t)
, ρ̂ =

µ2
jσ

2∆t

(σdj + σ2∆t)
and ϕ̂ =

2σ2∆tσdj
(σdj + σ2∆t)

in equation

(4.103)

Then,

G(x) =pη

∫ ∞
−µj

(x− µj)exp

(
−
(
x− θ

)2 −
(
θ
)2

+ ρ

ϑ

)
dx

− qη̂
∫ µj

−∞
(x− µj)exp

(
−
(
x− θ̂

)2 −
(
θ̂
)2

+ ρ̂

ϑ̂

)
dx

(4.104)

=pηexp

(
θ2

ϑ

)
exp

(
−ρ
ϑ

)∫ ∞
−µj

(x− µj)exp

(
−
(
x− θ

)2

ϑ

)
dx

− qη̂exp

(
θ̂2

ϑ̂

)
exp

(
−ρ̂
ϑ̂

)∫ µj

−∞
(x− µj)exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

=pηexp

(
θ2

ϑ

)
exp

(
−ρ
ϑ

)(∫ ∞
µj

xexp

(
−
(
x− θ

)2

ϑ

)
dx− µj

∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dx

− qη̂exp

(
θ̂2

ϑ̂

)
exp

(
−ρ̂
ϑ̂

)∫ µj

−∞
yexp

(
−
(
x− θ̂

)2

ϑ̂

)
dx− µj

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

Let, x = (x − θ) + θ and x = (x − θ̂) + θ̂ be used in the first and third integrals

respectively above, we get:
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G(x) =pηexp

(
θ2

ϑ

)
exp

(
−ρ
ϑ

)(∫ ∞
µj

((x− θ) + θ)exp

(
−
(
x− θ

)2

ϑ

)
dx

− µj
∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dx− qη̂exp

(
θ̂2

ϑ̂

)
exp

(
−ρ̂
ϑ̂

)
(∫ µj

−∞

((
x− θ̂ + θ̂

)
exp

(
−
(
y − θ̂

)2

ϑ̂

)
dx− µj

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

)

=pηexp

(
θ2 − ρ
ϑ

)(∫ ∞
µj

(x− θ)exp

(
−
(
x− θ

)2

ϑ

)
dx

+ θ

∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dx− µj

∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dx

)

− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(∫ µj

−∞

((
x− θ̂

)
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

+ θ̂

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx− µj

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

)
(4.105)

Applying integration by substitution in equation (4.105) to the 1st and 4th integral,

let u = (x−θ)2

ϑ
=⇒ dx = ϑ

2(x−θ)du and v = − (x−θ̂)2

ϑ̂
=⇒ dx = −ϑ̂

2(x−θ̂)dv respectively.

Then, equation (4.105) gives the expression below:

G(x) =pηexp

(
θ2 − ρ
ϑ

)(∫ ∞
(µj − θ)2

ϑ

(x− θ)exp (−u)
ϑ

2(y − θ)
du

+ θ

∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dx− µj

∫ ∞
µj

exp

(
−
(
y − θ

)2

ϑ

)
dx

)

− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(∫ −(µj − θ)2

ϑ

−∞

((
x− θ̂

)
exp (v)

−ϑ̂
2(y − θ̂)

dv

+ θ̂

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx− µj

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

)
(4.106)
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G(x) =pηexp

(
θ2 − ρ
ϑ

)(
θ

2
exp

(
−(µj − θ)2

ϑ

)
+ θ

∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dy

− µj
∫ ∞
µj

exp

(
−
(
x− θ

)2

ϑ

)
dx

)
− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(
ϑ̂

2
exp

(
−(µj − θ̂)2

ϑ̂

)

+ θ̂

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx− µj

∫ µj

−∞
exp

(
−
(
x− θ̂

)2

ϑ̂

)
dx

)
(4.107)

In equation (4.107),

exp

(
−
(
x− θ

)2

ϑ

)
= exp

−
(
x−

σuj (x− µd∆t) + µjσ
2∆t

(σuj + σ2∆t)

)2

2σ2∆tσuj
σuj + σ2∆t

 (4.108)

and

exp

(
−
(
x− θ̂

)2

ϑ̂

)
= exp

−
(
x−

σdj (x− µd∆t) + µjσ
2∆t

(σdj + σ2∆t)

)2

2σ2∆tσuj
σdj + σ2∆t

 (4.109)

Recall that N(x;µ, σ2) = 1√
2πσ2

exp

(
− (x−µ)2

2σ2

)

Thus,

exp

−
(
x−

σuj (z − µd∆t) + µjσ
2∆t

(σuj + σ2∆t)

)2

2σ2∆tσuj
σuj + σ2∆t



=

√
2πσ2∆tσuj
σuj +σ2∆t√
2πσ2∆tσuj
σuj +σ2∆t

exp

−
(
x−

σuj (z − µd∆t) + µjσ
2∆t

(σuj + σ2∆t)

)2

2σ2∆tσuj
σuj + σ2∆t


=

√
2πσ2∆tσuj
σuj + σ2∆t

N

(
x,
σuj (z − µd∆t) + µjσ

2∆t

(σuj + σ2∆t)
,

2πσ2∆tσuj
σuj + σ2∆t

)
(4.110)
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where, N

(
x,
σuj (z − µd∆t) + µjσ

2∆t

(σuj + σ2∆t)
,

2πσ2∆tσuj
σuj +σ2∆t

)
is a normal probability density

function with mean
σuj (z − µd∆t) + µjσ

2∆t

(σuj + σ2∆t)
and variance

2πσ2∆tσuj
σuj +σ2∆t

Similarly, in equation (4.107),

exp

−
(
x−

σdj (z − µd∆t) + µjσ
2∆t

(σdj + σ2∆t)

)2

2σ2∆tσdj
σuj + σ2∆t



=

√
2πσ2∆tσuj
σuj +σ2∆t√
2πσ2∆tσdj
σuj +σ2∆t

exp

−
(
x−

σdj (z − µd∆t) + µjσ
2∆t

(σuj + σ2∆t)

)2

2σ2∆tσuj
σuj + σ2∆t


=

√
2πσ2∆tσuj
σuj + σ2∆t

N

(
x;
σdj (x− µd∆t) + µjσ

2∆t

(σuj + σ2∆t)
,

2σ2∆tσdj
σdj + σ2∆t

)
,

(4.111)

where, N

(
x;
σdj (x− µd∆t) + µjσ

2∆t

(σdj + σ2∆t)
,

2σ2∆tσuj
σdj+σ2∆t

)
is a normal probability density

function with mean
σdj (x− µd∆t) + µjσ

2∆t

(σdj + σ2∆t)
and variance

2σ2∆tσuj
σdj+σ2∆t

But

√
2πσ2∆tσuj
σuj + σ2∆t

N

(
x;
σdj (x− µd∆t) + µjσ

2∆t

(σuj + σ2∆t)
,

2σ2∆tσdj
σdj + σ2∆t

)
=
√
πϑN (x; θ, ϑ)

(4.112)

and

√
2πσ2∆tσuj
σuj + σ2∆t

N

(
x;
σdj (x− µd∆t) + µjσ

2∆t

(σuj + σ2∆t)
,

2σ2∆tσdj
σdj + σ2∆t

)
=
√
πϑ̂N (x; θ̂, ϑ̂)

(4.113)

Substituting equations (4.112) and (4.113) into equation (4.111), gives:
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G(x) =pηexp

(
θ2 − ρ
ϑ

)(
θ

2
exp

(
−(µj − θ)2

ϑ

)
+ θ
√
πϑ

∫ ∞
µj

N (x; θ, ϑ)dx

− µj
√
πϑ

∫ ∞
µj

N (x; θ, ϑ)dx

)
− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(
ϑ̂

2
exp

(
−(µj − θ̂)2

ϑ̂

)

+ θ̂
√
πϑ̂

∫ µj

−∞
N (x; θ̂, ϑ̂)dx− µj

√
πϑ̂

∫ µj

−∞
N (x; θ̂, ϑ̂)dx

)

=pηexp

(
θ2 − ρ
ϑ

)(
θ

2
exp

(
−(µj − θ)2

ϑ

)
+ θ
√
πϑΦa(µj)− µj

√
πϑΦa(µj)

)
− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(
ϑ̂

2
exp

(
−(µj − θ̂)2

ϑ̂

)
+ θ̂
√
πϑ̂Φb(µj)− µj

√
πϑ̂Φb(−µj)

)
(4.114)

where, Φa(µj) and 1 − Φb(µj) are the cumulative normal distribution of x ∼

N(x;θ, ϑ) and x ∼N(x;θ̂, ϑ̂) respectively at x = µj and x = −µj
Thus, it followed from equation (4.114) that

fXt+Qt =pηexp

(
θ2 − ρ
ϑ

)(
θ

2
exp

(
−(µj − θ)2

ϑ

)
+ θ
√
πϑΦa(µj)− µj

√
πϑΦa(µj)

)
− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(
ϑ̂

2
exp

(
−(µj − θ̂)2

ϑ̂

)
+ θ
√
πϑ̂Φb(µj)− µj

√
πϑ̂Φb(−µj)

)
Hence, the probability density function of the MDRJD model was obtained as:

f∆(ln S̃t)
(x) =

(1− λ∆t)

σ
√

∆t
ϕ

(
x− (µ− 1

2
σ2)∆t

σ
√

∆t

)
+

(
pηexp

(
θ2 − ρ
ϑ

)(
θ

2
exp

(
−(µj − θ)2

ϑ

)
+ θ
√
πϑΦa(µj)

− µj
√
πϑΦa(µj)

)
− qη̂exp

(
θ̂2 − ρ̂
ϑ̂

)(
ϑ̂

2
exp

(
−(µj − θ̂)2

ϑ̂

)

+ θ
√
πϑ̂Φb(µj)− µj

√
πϑ̂Φb(−µj)

))
∆t

4.6.5 The Lévy-Khintchine formulae for the ALJD and the MDRJD processes

Next, the Lévy-Khintchine formulae for the AL and MDR jiump-diffusion pro-

cesses was derived.
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Theorem 4.4

The Lévy-Khintchine (LK) formula of the ALJD process is given as:

ψaljd(u) = iuµ− 1

2
σ2u2 −

(
λuj pkα1

α1 − iu
+
λdjqkα2

α2 + iu

)
eiuµj + λdjqk + λuj pk (4.115)

where, µ ∈ R and σ > 0 are respectively the diffusive drift and volatility, pk, qk > 0

controls the skewness of the jump measure and λuj , λ
d
j are the jump-intensities of

the upward and downward jump processes.

Proof.:

Recall that by for a Lévy- Process Xt, given its Lévy triple as (µ, σ2, v(dx)); an

expression for the characteristic exponent ψ(µ) = logφXt(u), u ∈ R where φXt(u)

is the characteristic function of Xt.

Then,

ψ(u) = iuµ− 1

2
σ2u2 +

∫
R
(eiux − 1− iux1{|x|≤1})v(dx) (4.116)

In this case, by definition, the ALJD process has finite number of jumps in a finite

period of time. Hence,

ψ(u) = iuµ− 1

2
σ2u2 +

∫
<

(eiux − 1)ν(dx) (4.117)

where, ν(dx) = λf(x)

Recall from equation (4.117) above that the Lévy-density or measure of the jump

size of the ALJD process is given as:

λf(x) = λuj pkα1exp(−α1(x− µj))1[µj , ∞](x)

+ λdjqkα2exp(α2(x− µj))1(−∞, µj)(x)
(4.118)

According to equation (4.117),
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ψ(u) = iuµ− 1

2
σ2u2 +

∫
R

(
(eiux − 1)

(
λuj pkα1exp(−α1(x− µj))1[µj ,∞](x)

+ λqkα2exp(α2(x− µj))1(−∞,µj)(x)

))
dx

= iuµ− 1

2
σ2u2 +

∫ ∞
µj

(eiux − 1)λuj pkα1e−α1(x−µj)dx

+

∫ µj

−∞
(eiux − 1)λdjqkα2eα2(x−µj)dx

=iuµ− 1

2
σ2u2 + λuj pkα1

∫ ∞
µj

(
eiuxe−α1(x−µj) − e−α1(x−µj)

)
dx

+ λdjqkα2

∫ µj

−∞

(
eiuxe−α2(x−µj) − e−α2(x−µj)

)
dx

=iuµ− 1

2
σ2u2 + λuj pkα1

∫ ∞
µj

(
e−(α1−iu)x+α1µj − e−α1x+α1µj)

)
dx

+ λdjqkα2

∫ µj

−∞

(
e(α2+iu)x−α2µj − eα2x−α2µj

)
dx

=iuµ− 1

2
σ2u2 + λuj pkα1

(
−1

α1 − iu
e−(α1−iu)x+α1µj +

1

α1

e−α1x+α1µj

∣∣∣∣∞
µj

)
+ λdjqkα2

(
−1

α2 + iu
e(α2+iu)x−α2µj − 1

α2

eα2x−α2µj

∣∣∣∣µj
−∞

)

=iuµ− 1

2
σ2u2 + λuj pkα1

(
−1

α1 − iu
e−α1−iuµj+α1µj +

1

α1

e−α1µj+α1µj

∣∣∣∣∞
µj

)
+ λdjqkα2

(
−
(

1

α2 + iu
eα2µj+iuµj−α2µj − 1

α2

e−α2µj−α2µj

))

= iuµ− 1

2
σ2u2 + λuj pkα1

(
−eiuµj

α1 − iu
+

1

α1

)
+ λdjqkα2

(
−eiuµj

α2 + iu
+

1

α2

)

= iuµ− 1

2
σ2u2 −

λuj pkα1eiuµj

α1 − iu
+ λuj pk −

λdjqkα2eiuµj

α2 + iu
+ λdjqk

Therefore, the characteristic exponent obtained from the Lévy-Khintchine Theo-

rem for the ALJD process is given as:
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ψaljd(u) = iuµ− 1

2
σ2u2 −

(
λuj pkα1

α1 − iu
+
λdjqkα2

α2 + iu

)
eiuµj + λdjqk + λuj pk (4.119)

Theorem 4.3

Given a jump measure λfQ(x), of the MDRJD process, such that:

λfQ(x) = pλuj

(
x− µj
(σuj )2

)
e
−

(x−µj)2

2σu
j 1[µj ,∞)(x) + qλdj

(
x− µj
(σdj )

2

)
e
−

(x−µj)2

2σd
j 1[−∞,µj)(x)

(4.120)

Then, the LK formula for the MDRJD process is:

ψmdrjd(u) = iuµ− 1

2
σ2u2 −

pλuj
σuj

+
pλdj
σdj

+

(
pλuj
σuj
−
pλdj
σdj

)
eiuµj (4.121)

Proof.:

By the Lévy-Itô decomposition of a Lévy process,

ψ(u) = iuµ− 1

2
σ2u2 +

∫
R
(eiux − 1− iux1{|x|≤1})ν(dx) (4.122)

By definition, n(∆(Xt)) <∞ in [0, t] in the MDRJD process. Hence,

ψ(u) = iuµ− 1

2
σ2u2 +

∫
R
(eiux − 1)ν(dx) (4.123)

where, ν(dx) = λf(x)

Note that the Lévy-density or jump measure of the MDRJD process satisfies equa-

tion (4.120).

Then, it follows from equations (4.120) and (4.123) that:

ψmdrjd(u) = iuµ− 1

2
σ2u2 +

∫
R
(eiux − 1)

(
pλuj

x− µj
(σuj )2

e
−

(x−µj)2

2σu
j 1[µj ,∞)(x)

+ qλdj
x− µj
(σdj )

2
e
−

(x−µj)2

2σd
j 1[−∞,µj)(x)

)
dx

(4.124)
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ψmdrjd(u) =iuµ− 1

2
σ2u2 +

∫ ∞
µj

(eiux − 1)pλuj
x− µj
(σuj )2

e
−

(x−µj)2

2σu
j dx

+

∫ µj

−∞
(eiux − 1)qλdj

x− µj
(σdj )

2
e
−

(x−µj)2

2σd
j dx

(4.125)

=iuµ− 1

2
σ2u2 + pλuj

∫ ∞
µj

x− µj
(σuj )2

(
e
iux−

(x−µj)2

2σu
j − e

−
(x−µj)2

2σu
j

)
dx

+ qλdj

∫ µj

−∞

x− µj
(σdj )

2

(
e
iux−

(x−µj)2

2σd
j − e

−
(x−µj)2

2σd
j

)
dx

(4.126)

In equation (4.126), let

I1 =

∫ ∞
µj

x− µj
(σuj )2

(
e
iux−

(x−µj)2

2σu
j − e

−
(x−µj)2

2σu
j

)
dx

and

I2 =

∫ µj

−∞

x− µj
(σdj )

2

(
e
iux−

(x−µj)2

2σd
j − e

−
(x−µj)2

2σd
j

)
dx

To keep notations simple, let µj = α, σuj = β and σdj = γ.

Then,

I1 =

∫ ∞
α

x− α
β2

(
eiux−

(x−µj)2

2β − e−
(x−α)2

2β

)
dx

= lim
n→∞

∫ n

α

x− α
β2

(
eiux−

(x−µj)2

2β − e−
(x−α)2

2β

)
dx

=
eiuµj − 1

(σuj )2
.σuj

(
1− lim

n→∞

(
e
−(µj−n)2

2σu
j

))
=

eiuµj − 1

σuj

(4.127)

and

I2 = lim
n→∞

∫ n

α

x− α
β2

(
eiux−

(x−µj)2

2γ − e−
(x−α)2

2γ

)
dx

=
eiuµj − 1

σdj

(4.128)

Therefore, it follows from equations (4.126), (4.127) and (4.128) that:

ψmdrjd(u) = iuµ− 1

2
σ2u2 −

pλuj
σuj

+
qλdj
σdj

+

(
pλuj
σuj
−
qλdj
σdj

)
eiuµj (4.129)
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4.7 STUDY SIX

Parameter Estimation

In this thesis, novel asymmetric jump-diffusion models for the stock indices

data were considered. Hence, the the existing models: the GBM, the symmetric

NJD and the asymmetric DEJD models were compared with the novel asymmetric

jump-diffusion models described in the previous section.

4.7.1 Initial Parameter Estimation in the AL jump-diffusion Model

The parameters’ initial values based on the empirical stock indices data were

obtained. For ∆t = 1
252

(average of 252 trading days in a year), a decision on the

occurrence of a jump in the process was based on:

Xj
∆,t = ∆(lnS̃t) > ε (4.130)

where, ε > 0, a threshold for jumps in the plots of the log returns. Hence, the

estimate for λ (the intensity of jumps) was given as:

λ̂ =
n(Qj)

(n(∆(lnS̃t))− 1)∆t
=

n(Qu
i ) + n(Qd

i )

(n(∆(lnS̃t))− 1)∆t
(4.131)

The initial estimates of the jump intensities for the upward and downward pro-

cesses were given respectively as:

λ̂uj =
n(Qu

i )

(n(∆(lnS̃t))− 1)∆t
(4.132)

and

λ̂dj =
n(Qd

i )

(n(∆(lnS̃t))− 1)∆t
(4.133)

The initial estimates of the parameters enable us to find the optimal values for the

parameters that can maximize the Log-likelihood function of the models’ densities.

In the GBM model, when jumps are assumed to be absent in the stock-indices log

returns,
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E{Xd
∆t} = E(Xd

∆t|Nt+∆t −Nt = 0)

= E

((
µ− 1

2
σ2

))
∆t+ σ(Wt+∆t −Wt) +

∆Nt=0∑
i=1

Qj

)
= E

((
µ− 1

2
σ2

))
∆t+ σ(Wt+∆t −Wt) + E

∆Nt=0∑
i=1

Qj

)

E(Xd
∆t) =

((
µ− 1

2
σ2

))
∆t since E(Wt+∆t −Wt) = 0 (4.134)

Also,

V ar(Xd
∆t) = V ar

((
µ− 1

2
σ2

))
∆t+ σ(Wt+∆t −Wt) + E

∑∆Nt=0
i=1 Qj

= σ∆t (4.135)

Hence, the initial values of the mean and volatility parameters are respectively:

µ̂d =
2E(Xd

∆t) + V ar(Xd
∆t)

2∆t
(4.136)

and

σ̂2
d =

V ar(Xd
∆t)

∆t
(4.137)

Owing to the condition stated in equation (4.130) for ε, under the diffusion models

with jump process, we split the empirical log returns of the stock indices into two

sets, namely: sets P and Q, where P ∩Q = ∅ is defined as:

P =
{
|Xd

∆t| : X∆t = ∆(lnS̃t) ≤ ε; ε > 0
}

(4.138)

and

Q =
{
|Xj

∆t| : X∆t = ∆(lnS̃t) > ε; ε > 0
}

(4.139)

Also, in the asymmetricjump-diffusion models, set Q was splitted into two subsets.

That is,
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Qu =
{
|Xj

∆t|
u = Qu

j : X∆t = ∆(lnS̃t) > ε; ε > 0
}

(4.140)

and

Qd =
{
|Xj

∆t|
d = Qd

j : X∆t = ∆(lnS̃t) < −ε; ε > 0
}

(4.141)

The initial parameters of the the jump process under the symmetric NJD model

jump-diffusion given as:

µ̂j = E
(
Xj

∆t

)
−
(
µ− σ2

2

)
∆t (4.142)

and

σ̂2
j = V ar(Xj

∆t)− σ̂
2
d∆t (4.143)

In the asymmetric DEJD model, the initial estimates of: p, q, η1 and η2 are obtained

from the stock indices empirical data set based on:

p̂ =
n(Qu

j )

n(Qu
j ) + n(Qd

j )
, q̂ =

n(Qd
j )

n(Qu
j ) + n(Qd

j )
(4.144)

and

η̂1 = (E(Qu
j ))
−1, η̂2 = (E(Qd

j ))
−1 (4.145)

4.7.2 Derivation of the basic moments of the ALJD process via
the Lévy-Khintchine (LK) formula

The basic moments of the ALJD process via the nth cumulant of the ALJD process

given the LK formula was derived. The nth cumulant of the characteristic exponent

ψ(u) is given as:

kn =
1

in
ψ(n)(u)|u=0 (4.146)
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such that:

k1 = m1 = Ealjd(∆(lnSt)

k2 = m2 = Valjd(∆(lnSt)

k3 =
m3

m
3/2
2

= γaljd1 (∆(lnSt)

k4 =
m4

m2
2

− 3 = γaljd2 (∆(lnSt)

where, mn = 1
in
φ(n)(u), φ(u) for u ∈ R, is the characteristic function of Xt,

E,V , γ1, γ2 are respectively the mean, variance, skewness and kurtosis of ∆(lnSt).

It follows from the above, that

Ealjd(∆(lnSt) = (µ− 1/2σ2)∆t− λuj
(
pk
α1

+ µjpk

)
− λdj

(
qk
α2

+ µjqk

)
(4.147)

Valjd(∆(lnSt) = σ2
d∆t−

2λuj pk

α3
1

+ 2µj

(
λuj pk

α1

+
λdjqk

α2

)
+

(
λuj pk + λdjqk

)
µ2
j

(4.148)

γaljd1 (∆(lnSt) =
M̂(
Θ
) 3

2

(4.149)

where,

M̂ =
8λuj pk

α4
1

+
2λuj pk

α3
1

µj

+ 8µj

(
λuj pk

α2
1

+
λdjqk

α2
2

)
+ 2µj

(
λuj pk

α1

+
λdjqk

α2

)
+ µ2

j

(
λuj pk

α1

+
λdjqk

α2

)
+ µ3

j

(
λuj pk + λdjqk

)
and

Θ =σ2
d∆t−

2λuj pk

α3
1

+ 2µj

(
λuj pk

α1

+
λdjqk

α2

)
+

(
λuj pk + λdjqk

)
µ2
j

γaljd2 (∆(lnSt) =
N̂(
Γ

)2 − 3 (4.150)
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where,

N̂ =8µ2
j

(
λuj pk

α2
1

+
λdjqk

α2
2

)
+ 2µ2

j

(
λuj pk

α1

+
λdjqk

α2

)
+ µ3

j

(
λuj pk

α1

+
λdjqk

α2

)
+ µ4

j

(
λuj pk + λdjqk

)
and

Γ =σ2
d∆t−

2λuj pk

α3
1

+ 2µj

(
λuj pk

α1

+
λdjqk

α2

)
+

(
λuj pk + λdjqk

)
µ2
j

4.7.3 The derivation of the moments of the MDRJD process via
the LK formula

Similarly, E,V , γ1, γ2 for the MDRJD process was derived as:

Emdrjd(∆(lnSt) =

(
µ− 1

2σ2

)
∆t+ µj

(
pλuj
σuj

+
qλdj
σdj

)
∆t

Vmdrjd(∆(lnSt) = σ2
d∆t+ µj

(
pλuj
σuj

+
qλdj
σdj

)
∆t

γmdrjd1 (∆(lnSt) =

µ3
j

(
pλuj
σuj

+
qλdj
σdj

)
∆t(

σ2
d∆t+ µj

(
pλuj
σuj

+
qλdj
σdj

)
∆t

)3/2

γmdrjd2 (∆(lnSt) =

µ4
j

(
pλuj
σuj

+
qλdj
σdj

)
∆t(

σ2
d∆t+ µj

(
pλuj
σuj

+
qλdj
σdj

)
∆t

)2 − 3

4.7.4 Optimal parameter estimation in the stock price models

In the sequel, the Maximum Likelihood Estimation (MLE) method was employed

to obtain the optimal parameters in the models, given the likelihood function of

their respective probability density functions given as:
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L(xi; θ) =
n∏
i=1

g∆(lnSt)(xi) (4.151)

Maximizing the log of equation (4.151) is equivalent to minimizing the negative

log-likelihood function given as:

−lnL(xi; θ) = −
n∑
i=1

lng∆(lnSt)(xi) (4.152)

Thus, the models’ optimal values were computed using equation (4.152) in the R-

CODES.

4.7.5 Results of parameter estimation in the GBM model

In order to fit the empirical stock indices data obtained from the three stock

markets, into the GBM model, it is important to determine the initial and optimal

values of the drift and volatlity parameters (µd and σ2) associated with the GBM

model. Hence, using equations (4.136) and (4.137) the initial values for µd and

σ were obtained. Also, equation (4.152) shall be employed to obtain the optimal

parameters. The initial and optimal estimates of µd and σ were given respectively in

Tables 4.4 and 4.5 below. The above mentioned were obtained via the Rcodes and

henceforth the initial estimates were represented with int and optimal estimates

were represented with opm.
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Table 4.4: Estimated initial parameters in the GBM model for the Stock indices.

θ̂ NASI UKSMI JSMI
µ̂intd 0.083 0.136 0.026
σ̂intd 0.169 0.219 0.169

The Table 4.4 reports the initial estimates of the parameters in the geometric

Brownian model described in chapter three of this thesis. These include the drift

and volatility respectively, µ̂ and σ̂d. The initial values: µ̂intd and σ̂intd for the three

stock markets were obtained using equations (4.136) and (4.137). In the Table

4.4, concerning σ̂intd , the results show that the diffusive process possesses a higher

randomness in the UK stock market than the Nigerian and Japan markets.
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Table 4.5: Estimated optimal parameters in the GBM model for the Stock indices

θ̂ NASI UKSMI JSMI
µ̂opmd 0.083 0.147 0.035
σ̂opmd 0.169 0.219 0.169

The Table 4.5 reports the optimal values of µ̂ and σ̂d for the three stock

markets. The values are obtained by inputting the initial estimates reported in

Table 4.4 above into the GBM log-returns density in equation (3.95) and then, via

equation (4.152). The values of σ̂opmd were found to be the same as the values of

σ̂intd .
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4.7.6 Comparison of the densities of the modelled GBM with stock indices

Next, the optimal values of µd and σ2 were used to plot the probability density

function of the GBM-modelled log returns, compared with the empirical densities

of the NASI, UKSMI, and the JSMI log returns. The Figures 4.10 - 4.12, gives

the graphs of the densities of the modelled GBM and empirical log returns of the

three stock markets. The peakedness of the modelled GBM density was found to

be very different from that of the empirical densities especially in the Nigerian case.

However, good fits of the tails of the modelled GBM with regards to the empirical

were observed.
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Figure 4.10: Graphs of the densities of modelled GBM and empirical log returns
of the NASI
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Figure 4.11: Graphs of the densities of modelled GBM and empirical log returns
of the UKSMI
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Figure 4.12: Graphs of the densities of modelled GBM and empirical log returns
of the JSMI
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4.7.7 Results of parameter estimation in the NJD model

In the symmetric NJD model, the initial values of the five parameters, respec-

tively : µd, σ, µjσj and λ for the empirical NASI, UKSMI, and JSMI data were

found. A threshold of jumps ε = 0.02 was assumed for the empirical log returns,

such that it was assumed that a jump occur if |X∆,t| ≥ ε. Then, the optimal pa-

rameters in the model via the method in equation (4.152), given the density of the

model in equation (3.104). The results obtained were presented in Tables 4.6 and

4.7.
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Table 4.6: Initial parameters in the symmetric NJD model for the stock indices

θ̂int NASI UKSMI JSMI
µ̂intd 0.033 0.089 0.228
σ̂intd 0.111 0.112 0.136
µ̂intj 0.003 -0.005 -0.004

σ̂intj 0.032 0.035 0.033

λ̂int 16.40 13.00 26.25

The Table 4.6 reports the initial estimates of the parameters in the NJD de-

scribed in equation (3.103). These include: µ̂d, σ̂d, µ̂j, σ̂, and λ̂, respectively,

diffusive drift, volatility, mean and volatility of the jump size, and the jump in-

tensity. These values were obtained for the three stock markets using equations

(4.131), (4.136), (4.137), (4.142) and (4.143).

145



Table 4.7: Optimal parameters in the symmetric NJD model for the Stock indices

θ̂opm NASI UKSMI JSMI
µ̂opmd -0.047 0.136 0.320
σ̂opmd 0.074 0.097 0.148
µ̂opmj 0.001 -0.002 -0.005

σ̂opmj 0.013 0.017 0.024

λ̂opm 122.1 54.2 43.4

The Table 4.7 gives the optimal parameter estimates for the NJD model via

the maximum likelihood estimation method in equation (4.152). The values of

µ̂opmj (the mean of the jump size) obtained for the three stock markets depict more

upward jumps in the Nigerian case and more downward jumps in the UK and Japan

markets. Based on the values of λ̂opm, the jump intensity was found to be higher

in the Nigerian market, showing that there were more jumps in the price process

of the NASI price process than the UKSMI and JSMI.
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4.7.8 Comparison of the densities of the modelled NJD with stock indices

The optimal parameters obtained in the tables above were fitted into the

density function of the symmetric NJD-modelled log returns and compared with

the empirical density functions of the NASI, UKSMI and JSMI log returns. The

graphs of the densities were given in Figures 4.13, 4.14 and 4.15 below. It was

obvious that the peakedness in the densities of the modelled NJD model was found

to be better than the GBM modelled densities in terms of its fitness with the

empirical densities.
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Figure 4.13: Graphs of the densities of modelled NJD and empirical log returns of
the NASI
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Figure 4.14: Graphs of the densities of modelled NJD and empirical log returns of
the UKSMI
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Figure 4.15: Graphs of the densities of modelled NJD and empirical log returns of
the JSMI
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4.7.9 Results of parameter estimation in the DEJD model

In a similar manner, the initial parameters in the asymmetric DEJD model as

described in the previous section for µd, σ, η1, η2, p, q and λ for the empirical NASI,

UKSMI, and JSMI data were obtained. Under the family of the skewed jump-

diffusion model, it was assumed that the jump process is splitted into two, namely,

the upward jump process (Xu
∆,t) and the downward jump-process (Xd

∆,t), such that

an upward jump was said to have occurred if X∆,t > ε, and a downward jump was

said to have occurred if X∆,t < −ε. Here, we assume that the threshold of jumps

ε = 0.02. Then, we shall also obtain the optimal parameters in the model via

the method in equation (4.152), given the density of the DEJD model in equation

(3.106). The results obtained were presented in Tables 4.8 and 4.9.
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Table 4.8: Initial parameters in the asymmetric DEJD model for the Stock indices

θ̂int NASI UKSMI JSMI
µ̂intd 0.0343 0.0993 0.2388
σ̂int 0.1070 0.1086 0.1522

λ̂int 18.618 14.945 15.6741
p̂int 0.5406 0.035 0.4186
q̂int 0.4593 13.00 0.5814
η̂int.1 35.8056 35.2546 26.9886
η̂int2 35.7536 32.0274 26.4789

Table 4.8 above gives the initial values of the parameters: µd, σdλp, q, η1, η2 in

the double exponential jump-diffusion model using the the three stock market data

via equations (4.131), (4.136), (4.137), (4.144) and (4.145). The jump intensities

were found to be higher under the DEJD model than the NJD model.
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Table 4.9: Optimal parameters in the asymmetric DEJD model for the Stock indices

θ̂opm NASI UKSMI JSMI
µ̂opmd 0.0323 0.0993 0.2388
σ̂opm 0.1123 0.1086 0.1522

λ̂opm 16.618 26.2449 13.6741
p̂opm 0.5476 0.4676 0.4486
q̂opm 0.4524 0.5324 0.5514
η̂opm1 34.5112 33.3438 33.9321
η̂opm2 34.171 30.9421 30.1072

The results of the optimal parameters in the DEJD model were presented in

Table 4.9 above. The values obtained for λ̂opm showed that the number of jumps

are more in the UKSMI market than the NASI and JSMI. However, the values

of p̂opm and q̂opm obtained show that the upward jump frequency was higher in

NASI and downward jump frequency was higher in the UKSMI and JSMI markets.

Recall from equation (4.145), that the mean upward and downward jump sizes were

respectively, η̂1 = (E(Qu
j ))
−1 and η̂2 = (E(Qd

j ))
−1. The values obtained for η̂1 and

η̂2 indicate bigger downward jumps in the Nigerian market than the UK and Japan

markets.
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4.7.10 Comparison of the densities of the modelled DEJD with stock indices

Next, the density function of the asymmetric DEJD-modelled log returns and

the empirical densities of the NASI, UKSMI, and the JSMI log returns were com-

pared, based on the estimated optimal parameters obtained in Table 4.9 above.

The graphs of the densities were given in Figures 4.16, 4.17 and 4.18 below. The

peakedness of the densities of the DEJD modelled log returns was seen to be better

than that of the GBM and NJD models.
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Figure 4.16: Graphs of the densities of modelled DEJD and empirical log returns
of the NASI
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Figure 4.17: Graphs of the densities of modelled DEJD and empirical log returns
of the UKSMI
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Figure 4.18: Graphs of the densities of modelled DEJD and empirical log returns
of the JSMI
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4.7.11 Results of parameter estimation in the ALJD model

To obtain the initial parameters’ estimates in the Asymmetric Laplace jump-

diffusion (ALJD) model with parameters : µd, σ, µj, pκ, qκ α1, α2 and λ, it followed

from equation (4.75) that the density of Qj ∼ AL∗(µj, σ
2, κ) is given as:

fQt(x) = pκα1exp(−α1(x− µj))1[µj ,∞)(x)

+ qκα2 exp(α2(x− µj))1(−∞,µj)(x)
(4.153)

In the above, pκ and qκ are the tail probabilities assigned to each sides of µj. Hence,

qκ = P(Qj > µj) = 1− Φ(Qj ≤ µj) = 1− Φ(µj) (4.154)

and,

pκ = 1− qκ =
1

1 + κ2
(4.155)

Also, 1
α1

and 1
α2

are respectively the means of Qu
j and Qd

j respectively. Thus

α1 =

(
E(Qu

j )

)−1

=
(κ
√

2)

σ
; α2 =

(
E(Qd

j )

)−1

=

∣∣∣∣√2

σκ

∣∣∣∣ (4.156)

Similarly, the estimates of λ̂, µ̂d, σ̂ and µ̂j can be obtained respectively from equa-

tions (4.131), (4.136) and (4.137) above. Owing to the same conditions for Qu
∆,t

and Qd
∆,t, the threshold of jumps ε was taken as 0.02. Using the above descriptions

of the parameters, the initial estimates for the stock market indices were obtained

and presented in Tables 4.10 and 4.11 below.
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θ̂int NASI UKSMI JSMI
µ̂d 0.0335 0.2277 0.0890
σ̂ 0.1106 0.1363 0.1118
α̂1 34.5112 33.3438 33.9321
α̂2 34.1371 30.9421 30.1072

λ̂u 8.9781 8.2719 5.8322

λ̂d 7.4187 7.9730 7.1688
p̂κ 0.5476 0.4676 0.4486
q̂κ 0.4524 0.5324 0.5514
µ̂j 0.0001 0.0002 0.0002

Table 4.10: Estimated initial parameters in the ALJD model for the Stock indices

In Table 4.10, the details of the initial parameters in the ALJD model: µ̂, σ̂, α̂1, α̂2

λ̂u, λ̂d, p̂κ, q̂κ, µ̂j were presented. These values were obtained using equations (4.154,

4.155, 4.154 4.132, 4.133) with the stock markets data. Here, the jump intensities

λ̂uj and λ̂dj were assumed to be independent and a new parameter (µj) that differs

from the existing ones in literature was introduced.
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Table 4.11: Optimal parameters in the ALJD model for the Stock indices

θ̂opm NASI UKSMI JSMI
µ̂d 0.0335 0.3715 0.8262
σ̂ 0.1453 0.0278 0.1124
α̂1 29.6117 26.8358 38.2628
α̂2 35.5559 33.2650 31.8505

λ̂u 8.6894 8.7694 5.8874

λ̂d 7.0137 7.5479 7.3417
p̂κ 0.5476 0.5674 0.4412
q̂κ 0.4524 0.4326 0.5888
µ̂j 0.7024 0.7771 0.4269

Based on the MLE method and subject to the density function of the ALJD

model in equation (4.65), the optimal values were also obtained for the parameters

and presented in Table 4.11 above. The results showed a higher drift in the JSMI

and higher volatility in NASI. The upward jump sizes are found to be higher in

the NASI and UKSMI. Similarly, the jump intensities were found to be higher in

NASI and UKSMI stock markets. The non zero parameter µj obtained, differed in

a great sense from its initial estimates. The optimal values obtained for µj showed

a positive shift in the distribution of the jump process.
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4.7.12 Comparison of the densities of the modelled ALJD with stock indices

In the sequel, the density function of the ALJD-modelled log returns and the

empirical NASI, UKSMI, and the JSMI log returns was obtained, based on the

estimated optimal parameters obtained in Table 4.11 above. The graphs of the

densities were given in Figures 4.19, 4.20 and 4.21 below.
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Figure 4.19: Graphs of the densities of modelled ALJD and empirical log returns
of the NASI
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Figure 4.20: Graphs of the densities of modelled ALJD and empirical log returns
of the UKSMI
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Figure 4.21: Graphs of the densities of modelled ALJD and empirical log returns
of the JSMI
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4.7.13 Results of parameter estimation in the MDRJD model

The results of the initial and optimal parameters in the modified double

Rayleigh jump-diffusion model were obtained and presented below. The initial es-

timates of the parameters: µd, σ, σ
u
j , σ

d
j , λ

u
j , λ

d
j , p, q were obtained empirically using

equations (4.133), (4.134), (4.135), (4.136), (4.139) and (4.140) for the empirical

NASI, UKSMI, and JSMI data. In the analysis, an upward jump was said to

have occurred if X∆,t > ε, (under the assumption that the threshold of jumps was

ε = 0.02) and a downward jump was said to have occurred if X∆,t < −ε. Then,

the optimal parameters in the model via the method in equation (4.152), given the

density of the MDR jump-diffusion model in equation (4.89) were obtained. The

results were presented in Tables 4.12 and 4.13.
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Table 4.12: Initial parameters in the MDRJD model for the Stock indices

θ̂int NASI UKSMI JSMI
µ̂intd 0.034 0.228 0.089
σ̂int 0.111 0.136 0.112
σ̂uj 0.023 0.024 0.024

σ̂dj 0.023 0.026 0.027

λ̂uj 8.9797 12.2779 5.8350

λ̂dj 7.4201 13.9797 7.1722

p̂int 0.548 0.468 0.449
q̂int 0.452 0.532 0.551
µ̂intj 0.000 0.000 0.000

Table 4.12 gives the estimated initial values of the parameters in the MDRJD

model via equations (4.136), (4.137), (4.144), (4.145), (4.132) and (4.133) with the

stock market indices data.
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Table 4.13: Optimal parameters in the MDRJD model for the stock indices

θ̂opm NASI UKSMI JSMI
µ̂opmd 0.0562 0.2317 0.1235
σ̂opm 0.0860 0.1226 0.0765
σ̂uj 0.0054 0.0147 0.0074

σ̂dj 0.0519 0.0370 0.0566

λ̂uj 9.4197 12.3929 5.8251

λ̂dj 7.4499 14.1039 7.1932

p̂opm 0.5571 0.4872 0.4494
q̂opm 0.4443 0.5324 0.5506
µ̂opmj 0.0412 0.0842 0.0329

Table 4.13 gives the optimal values of the MDRJD model in the NASI, UKSMI

and JSMI markets. The volatility, upward and downward jump intensities under

the UKSMI market were found to be higher. However, the jump intensity for the

up jumps was found to be higher than for the down jumps. The above results also

showed that the number of up jumps were found to be more in the Nigerian market

than the UK and Japan markets. A positive shift in the jump process was also

observed for the MDRJD model. And finally it was observed that the density of

J(Qu
j ) peaked at 0.0054, 0.0147 and 0.0074 respectively in the NASI, UKSMI and

JSMI; and the density of J(Qd
j ) peaked at 0.0519, 0.0370 and 0.0566. Notably, the

parameters: σ̂uj and σ̂dj evince this.
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4.7.14 Comparison of the densities of the modelled MDRJD with stock indices

Here, the densities of the MDRJD-modelled log returns were compared with

the empirical NASI, UKSMI, and the JSMI log returns, using the estimated optimal

parameters obtained in Table 4.13 above. The graphs of the densities were given

in Figures 4.22, 4.23 and 4.24 below.
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Figure 4.22: Graphs of the densities of modelled MDRJD and empirical log returns
of the NASI
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Figure 4.23: Graph of the denisities of the modelled MDRJD and empirical log
returns of the UKSMI
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Figure 4.24: Graphs of the densities of modelled MDRJD and empirical log returns
of the JSMI
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4.8 STUDY SEVEN

Sensitivity analysis of varied jump-threshold on the parameters in the models

Determining the threshold of jumps in the plots of the log returns is very im-

portant and its choice depends on the empirical data set under study. For example

in the plots of the stock Indices log returns given in the Figure 4.25 below, by

assuming that ε = max

(
∆(lnS̃t)

)
, then n(Qu

j ) = 0 and n(Qd
j ) = 0. Given that

the value of ε, is taken to be as small as min

(
∆(lnS̃t)

)
, then, it implies that the

entire process becomes a jump-process, which is not true (based on the evidences

in Figures 4.7-4.9) in the actual sense. The choice of the threshold of jumps is a

major determinant of the output of the results obtained for the initial and optimal

parameters in the models. Therefore, a sensitivity analysis of the varied threshold

of jumps on the parameters of the jump-diffusion models was carried out.
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Figure 4.25: Plot showing the varied threshold of jumps in the log returns
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4.8.1 Sensitivity Analysis of varied jump-threshold on the parameters in the
NJD model

Here, a sensitivity analysis of the threshold of jumps under the symmetric NJD

model for the NASI, UKSMI and the JSMI data was carried out. Assume that

ε ∈ (0.01, 0.025), specifically, five threshold of jumps, that is, ε1 = 0.013, ε2 =

0.016, ε3 = 0.019, ε4 = 0.021 and ε5 = 0.023. The Tables 4.14, 4.15 and 4.16

below report the results of the sensitivity analysis for the different threshold of

jumps, where the initial and optimal parameters were represented as θ̂int and θ̂opm,

respectively.
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Table 4.14: Sensitivity analysis of ε on the parameters in the symmetric NJD model
for the Nigerian Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂j 0.07 -0.05 0.07 -0.05 0.08 -0.05 0.07 -0.05 0.02 -0.05
σ̂d 0.16 0.07 0.16 0.07 0.15 0.07 0.14 0.07 0.11 0.07

λ̂ 0.33 122.1 0.33 122.1 0.76 122.1 3.83 122.1 14.32 122.1
µ̂j 0.03 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00
σ̂j 0.12 0.01 0.12 0.01 0.09 0.01 0.05 0.01 0.03 0.01

Table 4.14 shows the sensitivity of the parameters in the NJD model for the

Nigerian market to the varied threshold of jumps. The different values of epsilon

ε1, ε2, ε3, ε4 and ε5 depict five jump threshold. The results obtained show that the

optimal parameters were not sensitive to the varied threshold of jumps since they

remain the same under different threshold.
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Table 4.15: Sensitivity analysis of ε on the parameters in the symmetric NJD model
for the UK Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂j 0.238 -0.04 0.232 -0.04 0.211 -0.04 0.199 -0.04 0.176 -0.04
σ̂d 0.126 0.02 0.154 0.02 0.167 0.02 0.174 0.02 0.183 0.02

λ̂ 0.265 26.93 0.702 26.95 0.748 26.93 0.94 26.93 0.594 26.93
µ̂j - 0.001 3.50 -0.007 3.50 -0.010 3.50 -0.012 3.50 -0.011 3.50
σ̂j 0.033 2.05 0.040 2.05 0.048 2.05 0.054 2.05 0.46 2.05

The Table 4.15 presents the sensitivity of the parameters in the NJD model for

the UK stock market to the varied threshold of jumps. The results obtained show

that the optimal parameters were not sensitive to the varied threshold of jumps

since they remain the same under different threshold.
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Table 4.16: Sensitivity analysis of ε on the parameters in the symmetric NJD model
for the Japan Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂j 0.095 0.296 0.082 0.296 0.097 0.296 0.094 0.296 0.092 0.296
σ̂d 0.090 0.786 0.101 0.786 0.109 0.786 0.114 0.786 0.122 0.786

λ̂ 0.077 36.514 0.263 36.514 0.581 36.514 0.543 36.514 0.776 36.514
µ̂j -0.002 2.096 -0.003 2.096 -0.005 2.096 - 0.007 2.096 -0.009 2.096
σ̂j 0.025 0.105 0.029 0.105 0.033 0.105 0.036 0.105 0.041 0.105

The Table 4.16 reports the sensitivity of the parameters in the NJD model

for the Japan stock market to the varied threshold of jumps. The results obtained

showed that the optimal parameters were not sensitive to the varied threshold of

jumps since they remain the same under different jump threshold.

177



4.8.2 Sensitivity analysis of varied jump-threshold on the parameters in the
DEJD model

A sensitivity analysis of the threshold of jumps under the asymmetric DEJD

model for the NASI, UKSMI and the JSMI data was carried out. Assume that

ε+ ∈ (0.01, 0.025), and ε− ∈ (−0.025,−0.01), specifically, five threshold of jumps,

that is, ε1 = 0.013, ε2 = 0.016, ε3 = 0.019, ε4 = 0.021 and ε5 = 0.023. Tables 4.17-

4.19 below report the results of the sensitivity analysis for the different threshold

of jumps, where the initial and optimal parameters were represented as θ̂int and

θ̂opm, respectively.
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Table 4.17: Sensitivity analysis of ε on the parameters in the asymmetric DEJD
model for the Nigerian Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂j -0.012 0.112 0.010 0.213 0.033 0.263 0.045 0.224 0.054 0.472
σ̂d 0.087 0.912 0.098 0.184 0.108 0.019 0.113 0.142 0.122 0.217
η̂1 45.816 46.324 40.056 39.998 35.468 36.468 33.229 32.124 29.817 29.351
η̂2 44.923 45.923 39.352 40.352 35.288 35.867 33.383 31.879 30.148 31.152

λ̂ 35.439 35.346 25.139 24.897 18.003 18.642 14.827 13.964 10.396 9.877
p̂ 0.5557 0.5280 0.5545 0.5732 0.5430 0.5620 0.5350 0.578 0.532 0.601
q̂ 0.4443 0.4720 0.4455 0.4268 0.4570 0.4380 0.4650 0.422 0.468 0.399

Table 4.17 above gives the sensitivity of the parameters in the DEJD model

for the Nigerian market to the varied threshold of jumps. The different values of

epsilon ε1, ε2, ε3, ε4 and ε5 depict five jump threshold. The results obtained showed

that the optimal parameters were quite sensitive to the varied threshold of jumps

since they change with the varied threshold.
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Table 4.18: Sensitivity analysis of ε on the parameters in the asymmetric DEJD
model for the UK Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂j 0.159 0.067 0.197 0.897 0.209 0.087 0.242 0.092 0.239 0.213
σ̂d 0.101 0.099 0.119 0.214 0.131 0.112 0.139 0.143 0.151 0.102
η̂1 46.925 46.462 39.925 38.461 35.293 36.157 31.973 31.973 27.496 26.596
η̂2 41.846 40.982 36.216 36.216 31.963 34.386 30.334 31.426 26.853 25.342

λ̂ 61.117 61.024 41.555 40.486 29.647 28.896 24.058 25.061 16.403 16.997
p̂ 0.527 0.564 0.503 0.552 0.488 0.443 0.450 0.450 0.422 0.422
q̂ 0.473 0.436 0.497 0.448 0.512 0.557 0.551 0.551 0.578 0.578

Table 4.18 shows the sensitivity of the parameters in the DEJD model for the

UK stock market to the varied threshold of jumps. The different values of epsilon:

ε1, ε2, ε3, ε4 and ε5 depict five jump thresholds. The results obtained showed that

the optimal parameters were quite sensitive to the varied threshold of jumps since

they change with the varied threshold.

180



Table 4.19: Sensitivity analysis of ε on the parameters in the asymmetric DEJD
model for the Japan Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂j 0.095 0.084 0.082 0.818 0.097 0.099 0.094 0.086 0.092 -0.086
σ̂d 0.689 0.569 0.101 0.099 0.109 0.016 0.114 0.126 0.122 0.120
η̂1 47.622 46.864 41.012 41.022 35.028 35.028 32.267 32.186 27.9317 27.152
η̂2 43.114 42.340 36.023 36.346 31.655 31.355 29.055 30.121 29.315 30.231

λ̂ 32.077 32.198 21.263 21.599 14.580 13.348 11.541 12.012 7.776 8.001
p̂ 0.477 0.467 0.480 0.480 0.442 0.442 0.436 0.432 0.406 0.419
q̂ 0.523 0.533 0.520 0.520 0.558 0.558 0.569 0.568 0.594 0.591

Table 4.19 the sensitivity of the parameters in the DEJD model for the Japan

stock market to the varied threshold of jumps. The different values of ε: ε1, ε2, ε3, ε4

and ε5 depict five jump thresholds. The results obtained showed that the optimal

parameters were also quite sensitive to the varied threshold of jumps since they

change with the varied threshold.

181



4.8.3 Sensitivity analysis of varied jump-threshold on the parameters in the
ALJD model

The sensitivity analysis of the threshold of jumps under the Asymmetric Laplace

JD model, is very important since for the first time, the intensities of the jumps in

the process were viewed under two processes. This analysis was geared towards de-

tecting the effect of the varied threshold of jumps on the parameters associated with

the intensity of jumps. Assume that ε+ ∈ (0.01, 0.025), and ε− ∈ (−0.025,−0.01),

specifically, five threshold of jumps, that is, ε1 = 0.013, ε2 = 0.016, ε3 = 0.019, ε4 =

0.021 and ε5 = 0.023. Tables 4.20, 4.21 and 4.22 below report the results of the sen-

sitivity analysis for the different threshold of jumps, where the initial and optimal

parameters were represented as θ̂int and θ̂opm, respectively.
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Table 4.20: Sensitivity analysis of ε on the parameters in the asymmetric Laplace
JD model for the Nigerian Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂d -0.012 0.661 0.010 0.351 0.033 0.716 0.045 0.591 0.054 0.959
σ̂d 0.087 0.800 0.098 0.269 0.108 0.342 0.113 0.381 0.122 0.413
α̂1 45.816 43.368 40.056 38.904 35.468 36.459 33.229 35.945 29.817 22.177
α̂2 44.922 42.096 39.352 35.610 35.288 30.549 33.383 25.928 30.148 34.046

λ̂u 19.75 13.94 9.78 7.35 6.27 6.98 5.23 5.91 5.21 4.98

λ̂d 15.69 11.19 8.64 6.37 5.45 5.67 5.11 4.28 4.72 4.01
p̂ 0.557 0.689 0.555 0.705 0.543 0.584 0.535 0.564 0.532 0.553
q̂ 0.443 0.311 0.446 0.294 0.457 0.416 0.465 0.437 0.468 0.447
µ̂j 0.0001 0.328 0.0001 0.439 0.0001 0.331 0.0001 0.575 0.0001 0.381

Table 4.20 the sensitivity of the parameters in the asymmetric ALJD model for

the Nigerian stock market to the varied threshold of jumps. The results obtained

showed that the initial and optimal parameters were also quite sensitive to the

varied threshold of jumps since they change with the varied threshold, with the

exception of the parameter µj in the case of the initial.
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Table 4.21: Sensitivity analysis of ε on the parameters in the asymmetric Laplace
JD model for the UK Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂d 0.160 0.704 0.197 0.690 0.209 0.917 0.242 0.793 0.239 0.267
σ̂d 0.101 0.088 0.119 0.655 0.132 0.993 0.139 0.806 0.151 0.245
α̂1 46.925 45.554 39.325 36.675 35.223 33.509 31.972 32.862 27.496 29.176
α̂2 41.846 41.775 36.214 35.494 31.963 28.755 30.334 31.862 26.853 27.643

λ̂u 15.25 12.94 10.78 10.35 8.16 7.47 7.23 6.19 6.21 5.98

λ̂d 13.19 12.43 9.64 7.37 6.45 6.67 6.11 5.28 4.72 4.01
p̂ 0.527 0.647 0.503 0.513 0.488 0.419 0.450 0.400 0.422 0.417
q̂ 0.473 0.353 0.497 0.487 0.513 0.581 0.551 0.600 0.578 0.583
µ̂j -0.001 0.521 -0.001 0.277 0.001 0.623 0.002 0.961 0.0002 0.589

Table 4.21 gives the sensitivity of the parameters in the asymmetric ALJD

model for the UK stock market to the varied threshold of jumps. It could be seen

from the Table that the initial and optimal parameters were quite sensitive to the

varied threshold of jumps since they change with the varied threshold. The jump

intensities were found to be on the decrease as ε increases.

184



Table 4.22: Sensitivity analysis of ε on the parameters in the asymmetric Laplace
JD model for the Japan Stock Market

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂d 0.095 0.453 0.082 0.075 0.097 0.004 0.092 0.308 0.092 0.218
σ̂d 0.090 0.599 0.101 0.959 0.109 0.727 0.114 0.486 0.122 0.714
α̂1 47.622 44.271 41.012 37.662 35.029 35.232 32.265 31.393 27.932 30.211
α̂2 43.114 41.969 36.023 35.884 31.656 27.834 29.055 25.6393 25.315 18.600

λ̂u 15.75 13.94 14.87 12.11. 12.27 11.98 11.23 10.91 10.21 11.98

λ̂d 18.69 17.19 18.64 18.37 17.45 16.67 15.11 14.28 14.72 14.01
p̂ 0.477 0.382 0.480 0.434 0.442 0.458 0.432 0.432 0.406 0.389
q̂ 0.523 0.617 0.520 0.566 0.558 0.542 0.568 0.568 0.594 0.611
µ̂j 0.0002 0.851 0.0003 0.8940 0.0002 0.884 0.0002 0.457 0.0002 0.347

Table 4.22 gives the sensitivity of the parameters in the asymmetric ALJD

model for the Japan stock market to the varied threshold of jumps. The initial

and optimal parameters were sensitive to the varied threshold of jumps since they

change with the varied threshold.

185



4.8.4 Sensitivity analysis of varied jump-threshold on the parameters in the
MDRJD model

The sensitivity analysis of the threshold of jumps under the modified dou-

ble Rayleigh JD model was motivated by the standard Rayleigh distribution that

peaks at the value ε+ = σuj and ε− = σdj , as described by Synowiec (2008).

Since a generalised form of the above described was considered, then the thresh-

old of jumps was varied to enable us detect its sensitivity to the parameters

in the modified double Rayleigh JD model. Therefore, ε+ ∈ (0.01, 0.025), and

ε− ∈ (−0.025,−0.01) were assumed, specifically, five threshold of jumps, that is,

ε1 = 0.013, ε2 = 0.016, ε3 = 0.019, ε4 = 0.022 and ε5 = 0.024. Tables 4.23, 4.24 and

4.25 below report the results of the sensitivity analysis for the different threshold

of jumps, where the initial and optimal parameters were represented as θ̂int and

θ̂opm, respectively.
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Table 4.23: Sensitivity analysis of ε on the parameters in the modified double
Rayleigh JD model for the NASI

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂d -0.012 -0.061 0.228 0.232 0.033 0.061 0.054 0.045 0.049 0.041
σ̂d 0.087 0.088 0.136 0.123 0.108 0.081 0.117 0.115 0.125 0.104
σ̂uj 0.017 0.070 0.023 0.015 0.023 0.052 0.025 0.060 0.028 0.007

σ̂dj 0.018 -0.003 0.026 0.037 0.023 0.052 0.025 0.060 0.001 0.064

λ̂u 18.75 17.94 19.78 18.35 16.27 16.98 15.23 15.91 14.21 14.98

λ̂d 17.69 16.19 18.64 17.37 15.45 15.67 15.11 14.28 14.72 14.01
p̂ 0.557 0.568 0.468 0.487 0.543 0.544 0.525 0.536 0.547 0.540
q̂ 0.443 0.432 0.532 0.513 0.457 0.456 0.475 0.464 0.453 0.460
µ̂j 0.000 0.043 0.000 0.084 0.000 0.037 0.000 0.074 0.000 0.060

Table 4.23 gives the sensitivity of the parameters in the modified double

Rayleigh JD model for the Nigerian stock market to the varied threshold of jumps.

The initial and optimal parameters were sensitive to the varied threshold of jumps

since they change with the varied threshold. The jump intensities values were found

to decrease with larger values of ε
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Table 4.24: Sensitivity analysis of ε on the parameters in the modified double
Rayleigh JD model for the UKSMI

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂d 0.049 0.041 0.197 0.194 0.209 0.236 0.237 0.263 0.232 0.248
σ̂d 0.125 0.104 0.119 0.099 0.132 0.115 0.144 0.116 0.154 0.129
σ̂uj 0.028 0.007 0.020 0.005 0.023 0.016 0.026 0.003 0.030 0.063

σ̂dj 0.028 0.063 0.022 0.037 0.025 0.038 0.028 0.027 0.031 0.050

λ̂u 16.75 16.94 15.78 13.35 13.45 11.67 11.11 12.28 11.72 11.01

λ̂d 13.69 14.19 14.64 13.07 14.27 12.98 13.23 13.91 12.21 11.98
p̂ 0.547 0.540 0.503 0.522 0.482 0.482 0.444 0.467 0.422 0.403
q̂ 0.453 0.460 0.497 0.478 0.518 0.518 0.556 0.533 0.578 0.597
µ̂j 0.000 0.060 0.000 0.055 0.000 0.075 0.000 0.075 0.000 0.094

Table 4.24 reports the sensitivity of the parameters in the modified double

Rayleigh JD model for the UK stock market to the varied threshold of jumps. The

initial and optimal parameters were sensitive to the varied threshold of jumps since

they change with the varied threshold. The jump intensities values were found to

decrease with larger values of ε.
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Table 4.25: Sensitivity analysis of ε on the parameters in the modified double
Rayleigh JD model for the JSMI

θ
ε1 = 0.013 ε2 = 0.016 ε3 = 0.019 ε4 = 0.021 ε5 = 0.024

θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm θ̂int θ̂opm

µ̂d 0.095 0.114 0.082 0.101 0.097 0.122 0.097 0.122 0.091 0.097
σ̂d 0.089 0.062 0.101 0.078 0.109 0.084 0.109 0.084 0.123 0.094
σ̂uj 0.017 0.040 0.020 0.004 0.023 0.000 0.023 0.000 0.030 0.009

σ̂dj 0.019 0.045 0.022 0.042 0.025 0.053 0.025 0.053 0.033 0.053

λ̂u 12.75 12.94 11.78 11.35 11.45 12.67 10.11 11.28 10.72 9.01

λ̂d 13.69 14.19 14.64 13.07 14.27 12.98 13.23 13.91 12.21 11.98
p̂ 0.477 0.491 0.480 0.490 0.442 0.436 0.442 0.422 0.397 0.366
q̂ 0.523 0.509 0.520 0.510 0.558 0.564 0.558 0.578 0.603 0.634
µ̂j 0.000 0.022 0.000 0.034 0.000 0.040 0.000 0.040 0.000 0.050

Table 4.25 reports the sensitivity of the parameters in the modified double

Rayleigh JD model for the Japan stock market to the varied threshold of jumps.

The initial and optimal parameters are sensitive to the varied threshold of jumps

since they change with the varied threshold. The upward jump intensity value is

found to decrease with larger values of ε. The initial estimate of µj is not sensitive

with the varied jump threshold.
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4.9 STUDY EIGHT

Suitability analysis of the models to the empirical stock market data

One of the objectives of this research was to evaluate the suitability of the

distributions of the existing and proposed stock price models to the actual distri-

butions of the empirical stock data obtained from the markets. To achieve this,

a measure of the extent to which the obtained optimal parameters in the models

affect their fitness to the empirical data was carried out. The suitability analysis

was carried out using three methods. The first two methods were the test statistics

namely: Kolmogorov and Anderson-Darling test statistics, and the third method

is by comparing the basic moments of the distributions of the models with the

empirical moments.

4.9.1 Suitability analysis via KS and AD statistics

The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) statistics were

given by:

b̂(n,α) = maxx

(∣∣∣∣F̂model(x)− F̂emp.(x)

∣∣∣∣) (4.157)

and

Ĝ(n,α) = n

∫ ∞
−∞

[F̂model(x)− F̂emp.(x)]2

Fmodel(x)(1− Fmodel(x))
dFmodel(x) (4.158)

where, F̂model(x) and F̂emp.(x) are respectively the models’ and the empirical dis-

tributions, under a significance level of α = 0.05. Equation (4.157) will be used to

ascertain the model with a better goodness of fit to the empirical sampled data.

Owing to the above, the extent to which the empirical data sets follow the distri-

butions of the modelled GBM, NJD, asymmetric DEJD, asymmetric Laplace JD,

and MDR JD models was determined. In order to achieve this, the test hypotheses

are defined as:

H0 : F̂model(x) = F̂emp(x); H1 : F̂model(x) 6= F̂emp(x) (4.159)

under which, H0 was rejected, for the p − value < α, at the significance level of

α = 0.05. The results of the KS and AD test statistics were presented in Tables

4.26 and 4.27, respectively.
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Table 4.26: K-S test results of the fitness of the models to the log returns of the
market data

MKT
GBM NJD DEJD ALJD MDRJD

K̂(n,α) p K̂(n,α) p K̂(n,α) p K̂(n,α) p K̂(n,α) p
NSM 0.115 2.2e-16 0.079 1.0e-10 0.043 6.7e-3 0.031 1.4e-4 0.002 5.8e-1
UKSM 0.064 3.2e-7 0.028 6.3e-5 0.063 5.9e-4 0.003 2.3e-1 0.002 7.3e-1
JSM 0.122 2.2e-16 0.054 0.004 0.038 7.8e-2 0.027 9.8e-2 0.001 5.6e-1

Table 4.26 presents the suitability results of a measure of the suitability of the

models to the stock market via the KS method. The results showed that the null

hypothesis (H0), at a significance level α = 0.05, was rejected for the GBM and

NJD models in all the stock market indices. However, the DEJD model gave a

better fit to the empirical stock market data than the GBM and NJD models. The

p−value obtained in the KS statistic under the JSMI data depicts the non-rejection

of H0. The results also showed that the ALJD and MDRJD models fit the empirical

distributions better than the GBM, NJD and DEJD in all the stock market indices.

Notwithstanding, H0 was rejected for the ALJD model in the Nigerian case
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Table 4.27: A-D test results of the fitness of the models to the log returns of the
market data

MKT
GBM NJD DEJD ALJD MDRJD

Ĝ(n,α) p Ĝ(n,α) p Ĝ(n,α) p Ĝ(n,α) p Ĝ(n,α) p
NSM 0.030 2.5e-4 0.010 1.6e-2 0.008 2.5e-3 0.006 2.5e-2 0.003 5.3e-1
UKSM 0.007 2.5e-4 0.005 1.2e-3 0.004 2.5e-4 0.002 2.4e-1 0.001 3.7e-1
JSM 0.029 2.5e-4 0.007 3.4e-2 0.005 2.5e-4 0.004 1.3e-1 0.001 2.1e-1

Table 4.27 shows the compatibility analysis results of a measure of the fitness

of the models to the stock markets. A high rejection rate of the null hypothesis

(H0) was observed in the GBM, NJD and DEJD models having the GBM in the

worse-case scenario. The fitness of these models to the empirical was shown by the

values of the test statistics: Ĝ(n,α). According to the values obtained for Ĝ(n,α),

the MDRJD model was found to fit the empirical densities better than others,

especially in the JSMI case.
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4.9.2 Results of the moments of empirical and modelled distributions

Here, the results of the basic empirical moments (mean, variance, skewness and

kurtosis) of the log returns of the data sets and the moments of the distributions

of the models were presented in Tables 4.28-4.30
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Table 4.28: Results of the moments of empirical log-NASI and modelled distribu-
tions

XXXXXXXXXXXXmodels
moments

mean variance skewness kurtosis

EmpNASI 2.71e− 4 1.13e− 4 −0.18 29.31

GBM 2.71e− 4 1.13e− 4 0 3
NJD 2.34e− 3 1.23e− 2 0.13 6.14

DEJD 3.36e− 2 1.23e− 2 −0.17 8.01

ALJD 8.46e− 4 3.89e− 3 0.02 9.01

MDRJD 2.83e− 4 1.34e− 4 0.13 18.29

The Table 4.28 gives the results of the basic moments of the Nigerian stock

market log returns as compared to the moments of the modelled densities. The

derived basic moments of ALJD and MDRJD models can be found in subsections

(4.6.2) and (4.6.3). The results in the above Table showed that the mean and

variance of the GBM model were the same with the empirical NASI, The values

obtained under the skewness and kurtosis depict much deviants from the empirical

NASI. The distribution of the NJD, ALJD and MDRJD was found to be positively

skewed, while the DEJD distribution had a negative skewness. The MDRJD was

found to have a better kurtosis compared with the empirical NASI process.
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Table 4.29: Results of the moments of empirical log-UKSMI and modelled distri-
butions

XXXXXXXXXXXXmodels
moments

mean variance skewness kurtosis

EmpUKSMI 4.82e− 4 1.06e− 2 −0.56 23.35

GBM 4.41e− 4 1.90e− 4 0 3
NJD 2.32e− 2 1.86e− 2 −0.19 6.32

DEJD 1.83e− 3 3.16e− 2 −0.43 7.13

ALJD 6.15e− 4 1.78e− 2 −0.97 13.01

MDRJD 3.7e− 4 2.71e− 2 0.17 14.35

The Table 4.29 gives the results of the basic moments of the UK stock market

log returns as compared to the moments of the modelled densities. The derived

basic moments of ALJD and MDRJD models can be found in subsections (4.6.2)

and (4.6.3). The results in the above Table showed that the mean of the GBM model

was found to be the same with the empirical UKSMI, the values obtained under

the skewness and kurtosis of the GBM depict much deviants from the empirical’s

skewness and kurtosis. The distributions of the NJD, ALJD and DEJD were found

to be negatively skewed, while the MDRJD distribution had a positive skewness.

The MDRJD was found to have a better kurtosis compared with the empirical

UKSMI process.
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Table 4.30: Results of the moments of empirical JSMI and modelled distributions

XXXXXXXXXXXXmodels
moments

mean variance skewness kurtosis

EmpJSMI 4.4e− 4 1.38e− 2 −0.56 11.23

GBM 1.04e− 4 6.69e− 4 0 3
NJD 4.3e− 3 1.25e− 2 −0.27 5.53

DEJD 3.11e− 3 1.42e− 2 −0.57 6.83

ALJD 6.97e− 4 2.60e− 2 −0.62 7.52

MDRJD 3.34e− 4 1.71e− 2 0.25 9.06

Table 4.30 reports the results of the basic moments of the Japan stock market

log returns as compared to the moments of the modelled densities. The derived

basic moments of ALJD and MDRJD models can be found in subsections (4.6.2)

and (4.6.3). The results in the above Table showed that the mean of the GBM

model was found to be the same with the empirical JSMI, the values obtained

under the skewness and kurtosis of the GBM depict much deviants from the em-

pirical’s skewness and kurtosis. The distributions of the NJD, ALJD and DEJD

were found to be negatively skewed, while the MDRJD distribution had a positive

skewness. The MDRJD presents a better kurtosis as compared with the empirical

JSMI process.
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CHAPTER FIVE

DISCUSSION

5.1 Preamble

In this chapter, discussion of all the results obtained in chapter four, in relation

to the specific objectives and the existing literature were presented.

5.2 Discussion of results on the asymptotic variances of the particular RMPV
processes

Assume that Xt ∈ Svsmj, such that Xt = Xc
t + Xj

t , then the quadratic

variation of Xj
t can be obtained by X

(1,1)
∆,t − X

(2)
∆,t, which establishes a jump test

method according to Barndorff-Nielsen et al. (2006c), Barndorff-Nielsen and Shep-

hard (2004), and most recently applied in Gkillas et al. (2020b). A generalisation

of the above concept has been carried out in this thesis. The jump test models in

equations (4.47)-(4.55) for higher-order particular cases of the realised multipower

variation process were shown to be alternative and better estimators or measures of

jumps than X
(1,1)
∆,t in a discretely-observed data. The asymptotic variances obtained

in the particular cases satisfy the inequality:

ϕRBV < ϕRTV < ϕRQV < ϕRPV < ϕRHV < ϕRHpV < ϕROV < ϕRDV <∞ (5.1)

This suggest that as m increases in equation (4.46), the value of ϕRMV also in-

creases.

5.3 Discussion of results on jump test via the RMPV models in the stock
market data

Tables 4.1, 4.2, and 4.3, report the jump test results carried out on the NASI,

UKSMI and JSMI data sets which were described in study three of chapter four.

From the shreds of evidence produced in Tables 4.1, 4.2 and 4.3, based on a 5%

level of significance (α = 0.05), the null hypothesis was rejected (in all the par-
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ticular cases), that the data sets follow a diffusion process Smsvc. Also, based on

the results of the p-values and test statistics (Zm), and the market price process

presents jumps. According to the test criterion of rejecting the null hypothesis,

H0, that is, if the p− val < 0.05, it was observed from the results of the analysis,

that as m increases, the rejection rate of H0 increases. However, in comparing the

jump test results obtained in this work with the empirical analysis of Gkillas et.

al (2020b), it was observed that the p − values obtained for the particular higher

cases are quite smaller. This implies that the higher-order particular cases of the

RMPV processes were better estimators than the bipower variation process used

in Barndorff-Nielsen et al. (2006c) and Gkillas et. al (2020b). Evidence of jumps

in the market price processes were found in Figures 4.7, 4.8, and 4.9.

5.4 Discussion of results on the estimated parameters in the GBM, NJD
and DEJD models

The difference in the analysis in this work under the GBM, NJD and DEJD

as compared with the estimation of the parameters in the normal and double ex-

ponential jump diffusion models in Synowiec (2008), is the initial estimates of the

parameters in the models. In the existing literature, arbitrary values were assumed

for the values of the parameters in the models when the maximum likelihood esti-

mation is applied. However, in our analysis, the initial estimation of the parameters

stems from the stock market process, which gives the actual estimates. This gives

the empirical analysis in this thesis an hedge over the methods in literature, owing

to the fact that the initials estimates give a true picture of the parameters in the

models with regards to the actual stock market price process.

The estimates of the parameters in the GBM, NJD and DEJD models respec-

tively, θ̂GBM = (µd, σd), θ̂
NJD = (µd, σd, λ, µj, σj) and θ̂DEJD = (µd, σd, η1, η2, p, q, λ)

were reported in Tables 4.4- 4.9 under the NASI, UKSMI and the JSMI data. The

initial estimates θ̂int., of the parameters were obtained from the empirical stock data

based on the moments of the distributions of the respective models. Also, the opti-

mal parameters θ̂opm. were obtained via optimising numerically, the log-likelihood

of the probability density functions using the RCodes.

The results obtained for the initial and optimal parameters in the GBM model

as reported in Tables 4.4 and 4.5 , showed higher mean and volatility of the diffusion
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process in the UK stock market than the other stock markets under study. However,

all the values of the optimal parameters are the same compared to the initial

parameters with a slight difference in the optimal means of the UK and Japan

markets. This shows that the method used to estimate the optimal parameters is

quite robust in the GBM model; this was buttressed by Yang and Aldous (2015).

The optimal mean and volatility of the Nigerian stock obtained as contained in

Table 4.5 showed different values from the values obtained in Owoloko and Okeke

(2014).

In the NJD and DEJD models, the jumps which were found to be present in

the stock markets data, via the RMPV jump test method, were incorporated into

the GBM model but with different assumptions. In the NJD model, the mean and

the volatility of the jump sizes Qj were estimated as µ̂j and σ̂j respectively, such

that Qj ∼ N(µj, σj), and λ̂ is the estimated jump intensity. The results given in

Tables 4.6 and 4.7 with respect to the parameter µ̂j, show that there are more

upward jumps in the Nigerian stock market and more downward jumps in the UK

and Japan stock markets. The results of σ̂j, indicates that the jumps in the Japan

stock are more volatile than the other markets. However, the jump intensity was

relatively higher in the Nigerian market than the UK and Japan stock markets.

In the asymmetric DEJD model, the parameters were connected to exponen-

tially distributed processes with means: E(Qu
i ) = 1

η1
and E(Qd

i ) = 1
η2

, given also

that the probability of obtaining an upward jump is p and q = 1− p. More so, the

intensity of jumps under the asymmetric DEJD is λ as stated in equation (4.131).

The Tables 4.8 and 4.9 give the initial and optimal estimates of the parameters

in the model. The jump intensity λ̂UKSMI is relatively higher than λ̂NASI and

λ̂JSMI . This shows that there are more frequent jumps in the UK stock market.

The means of the downward jump sizes were found to be greater than the means

of the upward jump sizes in the three markets. However, there are more upward

jumps in the Nigerian stock market than the UK and Japan stock markets. In

the work of Sezgin-Alp (2016), it is observed that the Turkish stock market is less

volatile compared to the Nigerian, UK and Japan stock markets under the DEJD

model. The values of σ̂opm obtained evince this fact.
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5.5 Discussion of results on the estimated parameters in the asymmetric
Laplace JD model

The independent jump intensities (λuj and λdj ) in this work have not been

considered in the existing literature (see Synowiec (2008) and Sezgin-Alp (2016)).

Here, the downward and upward jump processes were considered independently

in the new models. The Tables 4.10 and 4.11 give the results obtained from the

estimation of the parameters in the asymmetric Laplace JD model. Here, the oc-

currence of the upward jumps are modelled separately from the downward jump

times. Thus, the upward and downward jump intensities are respectively assumed

to be: λuj and λdj , where λ = λuj + λdj . The results obtained show that the Nigerian

stock market data presents a higher jump intensity than the other two markets.

This is further buttressed by the results of pk and qk in the three stock markets.

It can also be seen that the values of λ are found to be smaller under the ALJD

model than the NJD and asymmetric DEJD models above and also in the work of

Synowiec (2008). This stems from the dynamics of Qj ∼ AL(µj, σj, k) in the model.

5.6 Discussion of results on the estimated parameters in the modified double
Rayleigh JD model

In Synowiec (2008), standard forms of the jump processes, Qu
j and Qd

j were

treated. Here, a generalisation of the work of Synowiec by considering a modified

version of the double Rayleigh jump-diffusion model was given. One of the motiva-

tions for choosing the MDRJD model was that, the densities of Qu
j and Qd

j should

peak at a non-zero value (according to Synowiec (2008)). That is, ε+, ε− 6= 0, hence

the choice ε+ = 0.02 and ε− = −0.02. The results of the parameters estimated in

the MDRJD model were presented in Tables 4.12 and 4.13. The values of the up-

ward and downward jump intensities are found to be small compared with those

of the ALJD model. The probabilities p and q, are seen to satisfy the same con-

ditions obtained for pk and qk in the ALJD model. The results of the parameters:

σuj and σdj looks slightly different (which could be as a result of the generalisation

of the model) from the ones obtained in the work of Synowiec (2008). The re-

sult in Table 4.13, implies that the densities of Qu
j under the NASI, UKSMI, and

JSMI peaks respectively at 0.0054, 0.0147 and 0.0074. Also, the densities of Qd
j

under the NASI, UKSMI, and JSMI peaks respectively at 0.0519, 0.0370 and 0.057.
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5.7 Discussion of results on the comparison of the graphs of the modelled
and empirical densities

The work in the existing literature (Synowiec (2008)) compared the graphs of

the densities of existing models: GBM, NJD and DEJD etc, to the tails of the

distributions of empirical data sets. In this work, new outlooks were presented in

this regard. The peakedness and tails of the densities new models were compared

with the tails and peakedness of empirical stock market distributions.

The plots of the modelled density functions for the GBM, symmetric NJD,

asymmetric DEJD, ALJD, and MDRJD models, with the empirical densities for

the NASI, UKSMI and the JSMI were presented in Figures 4.15 - 4.29. It was

observed that the peak of the density function of the GBM model, as compared

with the empirical densities’ peaks was found to be the lowest. The peak of the

density function of the symmetric NJD, was better placed than the GBM density.

The ALJD and the MDRJD models have the highest peaks that are well fitted

to the empirical densities. However, the tails of the NJD and DEJD densities fit

better than those of the ALJD and MDRJD densities; showing longer tails to the

right than the left in the case of the NJD and the reverse in the DEJD model. The

ALJD density presents longer tail to the left in the case of the empirical log returns

of the NASI than in the other markets. There was also found a longer tail to the

right in the density of the modelled MDRJD for the log returns of the UKSMI.

5.8 Discussion of results on the sensitivity analysis of varied jump-threshold
on the parameters in the models

The sensitivity analysis of varied threshold of jumps on the parameters in a

family of symmetric and asymmetric jump-diffusion models is new in literature

(see Synowiec (2008), Gkillas et. al (2020b), Sezgin-Alp (2016)), to the best of

our knowledge. Hence, the sensitivity analysis to obtain the extent to which these

parameters respond to the varied jump-threshold were carried out.

The results of the sensitivity analyses on the choice of the threshold of jumps

to the parameters in the models were presented in the Tables 4.14-4.25. The results

in Tables 4.14, 4.15 and 4.16, show that the estimated optimal parameters remain
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constant, under the different values of the threshold of jumps. This implies that

the method of estimation applied, does not depend on ε. Although, the choice of

ε cannot outrightly be neglected in the sense that, if ε > Xmax
∆,t , then λ = 0 and

automatically it will not be possible to estimate the parameters with the jump

process.

Based on the shreds of evidence produced in Tables 4.17-4.25, it was shown

that the optimal parameters are very sensitive to the varied threshold of jumps.

Hence, the estimation method strongly depends on the varied threshold of jumps

in the DEJD, ALJD and the MDRJD models.

5.9 Discussion of results on the suitability analysis of the models to empirical
data

The suitability of the modelled-distributions to the empirical distributions

of the stock market indices log returns, was measured via the KS and AD test

statistics, as well as by comparing the empirical moments to the basic moments of

the modelled-distributions.

The KS results given in the Table 4.26 show that the null hypothesis (H0), at

a significance level α = 0.05, was rejected for the GBM and NJD models in all the

stock market indices. However, the DEJD model gives a better fit to the empirical

stock market data than the GBM and NJD models. The p−value obtained in the

KS statistic under the JSMI data depicts the non-rejection of H0. The results also

show that the ALJD and MDRJD models fit the empirical distributions better than

the GBM, NJD and DEJD in all the stock market indices. Notwithstanding, H0

was rejected for the ALJD model in the Nigerian case.

The larger KS statistic value obtained for the GBM model, especially in the

NASI and JSMI data, depicts a high deviant of the peakedness of the density of

the modelled-GBM from the empirical density as could be clearly seen in Figures

4.15 and 4.17. It was also observed that the values of the AD statistics as reported

in Table 4.27, are smaller than the KS statistics in Table 4.26. This commemorates

the observations made by Synowiec (2008) in a similar analysis. According to

Synowiec (2008), the AD statistic gives better picture of the compatibility of the

tails of the distributions than the KS statistic.

The null hypothesis, according to the AD statistics was rejected for the GBM,
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NJD and DEJD models in the NASI, UKSMI and JSMI data. The ALJD and

MDRJD model fit the empirical log returns better than the GBM, NJD and DEJD

models. However, the ALJD was also rejected in the NASI log returns.

The results of the compatibility analysis via comparing the empirical and

the modelled-moments are reported in Tables 4.28, 4.29 and 4.30. They present

very high kurtosis and negatively skewed properties for the NASI data; very high

negative skewness and kurtosis for the UKSMI and the JSMI data. The results of

moments of the NJD, DEJD, ALJD and MDRJD models, in the Nigerian market

depict higher kurtosis as compared to that of the GBM model. Although, with the

exemption of the DEJD model, in the Nigerian market, the others are positively

skewed. The reverse is the case in the skewness property of NJD and ALJD in the

UKSMI and JSMI data. In conclusion, the GBM model in all the stock markets

gives the worst-case scenario.
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

6.1 Preamble

This chapter entails the summary and concluding remarks of the overall re-

search, and enumerates some vital recommendations, contributions to knowledge

as well as suggestions for further research.

6.2 Summary

The main determinants of the dynamics of most discretely-observed data are

their empirical features and distributional properties. These include non-normality

properties such as discontinuous paths (jumps) in most stock indices log returns,

asymmetry and high-peakedness in the distribution.

The stock markets are encompassed with numerous challenges such as, the

right dynamics to enhance proper prediction of future stock prices, optimality, asset

pricing modelling etc. The choice of the dynamics used to represent the trend of

market price process can proffer solutions to most of these challenges. This study,

therefore, carried out an investigation to detect some non-normality features, so

as to detect jumps in a discretely-observed process. Hence, the particular cases of

higher-order realised multipower variation process with regards to their asymptotic

properties (probability limits and limit distribution) were studied. Models, based

on the asymptotic results, for detecting jumps in discretely-observed sampled data

from the stock markets were developed.

An improvement in the geometric Brownian motion model when jumps are

detected was also carried out. Novel and more robust skewed jump-diffusion models

were suggested to cater for the upward and downward jump processes, J(Qu
j ) and

J(Qd
j ), respectively. These processes have finite jump activities Nu

t and Nd
t , with

their respective jump intensities given as: λuj and λdj , could capture asymmetry

and high-peakedness. Also, the processes were assumed to obey the asymmetric
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Laplace and the modified double Rayleigh distributions. Hence, the asymmetric

Laplace jump-diffusion (ALJD) and the modified double Rayleigh jump-diffusion

(MDRJD) models for stock price modelling were proposed.

The probability density functions of the new skewed jump-diffusion processes

were obtained via the convolution of densities method and also subject to the

condition that the coefficient of the jump process V is a Bernoulli random variable

satisfying P(V = 1) = λ∆t and P(V = 0) = 1−λ∆t; where, λ = λuj +λdj . The Lévy-

Khintchine formula for obtaining the basic moments was obtained for the ALJD

process. Since this research is geared towards obtaining models that are driven

by the market trends, were obtained the initial appraisal of the parameters in the

models from the log returns of the empirical data sets. The maximum likelihood

estimation method was used to obtain the optimal values in the models. The initial

and optimal parameters were obtained under varied threshold of jumps, specifically

five threshold of jumps. Furthermore, a sensitivity analysis to show the extent to

which the optimal parameters respond to the varied threshold of jumps was done.

The suitability of five stock models viz: geometric Brownian motion, NJD, DEJD,

ALJD and MDRJD models of the stock market empirical data was investigated

via the Kolmogorov-Smirnov and Anderson-Darling test statistics, as well as by

comparing the basic moments of the empirical data sets with the moments of the

modelled distributions.

The methods and models described above were tested on three stock mar-

ket indices obtained from the web platforms: https//:www.forextime.com and the

Nigerian stock exchange web platform. The data sets comprise 5334, 2076 and

2076 stock market indices daily observations, respectively, for the Nigerian, UK

and Japan stock markets.

The results obtained from the above analysis showed that the higher-order

particular cases of the RMPV processes are better estimators of jumps than the

bipower variation process used in Barndorff-Nielsen and Shephard (2006). Hence,

jumps were vividly seen in the stock market price processes via the RMPV models.

The optimal parameters obtained in the NJD, DEJD, ALJD and the MDRJD

models show that the mean of the jump sizes in the price process are greater in the

Nigerian stock market price process, than the UK and Japan stock market price

process. Also, it was observed that the jumps were more frequent in the UKSMI
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than the NASI and JSMI. Based on the ALJD and MDRJD models, the intensity

of the upward jump process was found to be higher in the Nigerian market than

the intensity of the downward jump process; in the UK and Japan stock markets,

the reverse was the case.

The comparison between the plots of the modelled and empirical densities, in

terms of high-peakedness, showed a worst scenario in the GBM case, and the best

in the MDRJD. However, the tails of the density of the NJD model was seen to

be well fitted to the empirical densities than the others. The sensitivity analysis

results to the varied threshold of jumps showed that the optimal parameters in

the NJD models are not sensitive to the varied threshold of jumps, while strong

sensitivity was observed in the DEJD, ALJD and MDRJD models.

Finally, the suitability or compatibility analysis results showed that the ALJD

and MDRJD models fit the empirical distributions better than the existing models

used in literature.

6.3 Conclusion

In conclusion, based on the models, analyses and results obtained in this

research, the jump test models of the particular higher-order cases were found to

be better jump-estimators. The asymmetric-Laplace and modified double-Rayleigh

jump-diffusion models proved more suitable for capturing jumps and non-normal

features in the stock market indices.

Although the existing jump-diffusion models conform to some non-normal em-

pirical features found in reality, the novel jump-diffusion models proved better and

more robust than the existing ones and can be used for optimality analysis, risk

hedging management and future prediction.

6.4 Contributions to knowledge

This research has contributed to existing knowledge in the following ways:

1. The work established a generalised jump test method by introducing the partic-

ular higher order cases of the realised multipower variation process in the study of

risk management.
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2. The assertion of jump components via the realised multipower variation process

is new particularly in the Nigerian market. This will be an added advantage to

financial analyst in the Nigerian market.

3. The study has also added to extant literature by picturing the asymmetric

properties and jump intensities of the jumps separately.

4. The study has presented new dynamics of stock price processes and suggested

the asymmetric Laplace and the modified double Rayleigh distributions for the

jump processes.

5. The added advantage of the study to market risk managers is that a true picture

of jumps engendered by the influx of good and bad news into the stock markets

was shown. Notably, the parameters associated with the upward and downward

trends evince this.

6.5 Suggestions for further research

Presently, our analysis in this study was restricted to models with constant

parameters. This could be extended in future research to modelling the stock

market dynamics with models driven by non-constant parameters. This may further

strengthen the claim of Areerak (2014) that parameters associated with stock price

models are not constants in the actual sense, since they depend on time.

Owing to the closed form solution of the densities and the characteristic func-

tions derived in the jump-diffusion models given in this research, Option pricing

can be achieved in the future work, by using some numerical methods or numerical

integration techniques.

Furthermore, numerical implementation of Option prices can be done via de-

riving the partial integro differential equations based on the models in this work.
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Appendices

Appendix I: Jump test analysis for the higher-order particular cases of the

RMPV processes with Rcodes

rm( l i s t = l s ( ) ) ; l i b r a r y ( ggp lot2 ) ; l i b r a r y ( dplyr )

jumptest <= f unc t i on (dp , method = ’ ’) ; #METHOD: Bipower

i f ( method==’Bipower ’ ) {

mu43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

# asymptotic var i ance

a <= ( p i /2) ˆ2 + pi =5; l <= l ength (dp) # data l ength

rv <= sum(dpˆ2) # r e a l i s e d var iance

# bipower var iance ( b i a s adjusted es t imator )

bv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

mu43 <= 1/ s q r t ( p i ) *2ˆ(2/3) *gamma((4/3+1) /2)

tp <= mu43ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2) ] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) *abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tp/bvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rv=bv ) / rv ; Den <= s q r t ( a*max(1 , b) )

z . r j t <= Num/Den ; out = {} ; out$asymptoticVar = a ;

ou t $ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ; ou t$ r ea l i s edVar = rv ;
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out$Bipowervar = bv ; re turn ( out ) ; } e l s e i f ( method==’

Tripower ’ ) {

# tr ipower v a r i a t i o n

mu43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

mu23 <= (1/ s q r t ( p i ) ) * (2ˆ(1/3) ) *gamma((2/3+1) /2) #Asym Var

a <= (mu43/(mu23ˆ2) ) * ( (mu43ˆ2) /(mu23ˆ4) + 2*(mu43/mu23ˆ2) +

2) = 7

l <= l ength (dp) # data l ength ; rv <= sum(dpˆ2)

# i n t e g r a t e d var iance

# bipower var iance ( b i a s adjusted es t imator )

bv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )

rtp <= mu23ˆ(=3)* l /( l =2)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)=2) ] )

*abs (dp [ 2 : ( l ength (dp)=1) ] ) *abs (dp [ 3 : l ength (dp) ] ) ) ˆ(2/3) ) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

tp <= mu43ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2) ] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) *abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tp/bvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rv=rtp ) / rv ; Den <= s q r t ( a*max(1 , b) )

z . r j t <= Num/Den ; out = {} ; out$asymptoticVar = a ;

ou t$ z t e s t = z . r j t ; o u t $ c r i t i c a l . va lue=qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ;

ou t$ r ea l i s edVar = rv ; out$TripowerVar = rtp ;

r e turn ( out ) ;} e l s e i f ( method==’Quadpower ’ ) {

# quadpower v a r i a t i o n

mu43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

mu1 <= (1/ s q r t ( p i ) ) * (2ˆ(1/2) ) *gamma((1+1) /2)

mu12 <= (1/ s q r t ( p i ) ) * (2ˆ(1/4) ) *gamma((1/2+1) /2)

a <= (mu1/(mu12ˆ2) ) * ( (mu1ˆ3) /(mu12ˆ6) + 2*(mu1ˆ2/mu12ˆ4)

+2*(mu1/mu12ˆ2)+ 2) = 9 # asymptotic var i ance

l <= l ength (dp) # data l ength

rv <= sum(dpˆ2) # r e a l i s e d var iance
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# bipower var iance ( b i a s adjusted es t imator )

bv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )

# d a i l y r e a l i s e d t r

rqp <= mu12ˆ(=4)* l /( l =3)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)=3) ] ) *

abs (dp [ 2 : ( l ength (dp)=2) ] ) *abs (dp [ 3 : ( l ength (dp)=1) ] ) *

abs (dp [ 4 : l ength (dp) ] ) ) ˆ(1/2) ) )

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

tp<=mu43ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2) ] ) *abs (

dp [ 2 : ( l ength (dp)=1) ] ) *

abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) ) ; b <= tp/bvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rv=rqp ) / rv ; Den <= s q r t ( a*max(1 , b) )

z . r j t <= Num/Den ; out = {} ;

out$asymptoticVar = a ; ou t$ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ; ou t$ r ea l i s edVar = rv ;

out$QuadpowerVar = rqp ; re turn ( out )

#hexpower v a r i a t i o n

mu43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

mu23 <= (1/ s q r t ( p i ) ) * (2ˆ(1/3) ) *gamma((2/3+1) /2)

mu13 <= (1/ s q r t ( p i ) ) * (2ˆ(1/6) ) *gamma((1/3+1) /2)

a <= (mu23/(mu13ˆ2) ) * ( (mu23ˆ5) /(mu13ˆ10) + 2*(mu23ˆ4/mu13

ˆ8)+

2*(mu23ˆ3/mu13ˆ6)+ 2*(mu23ˆ2/mu13ˆ4) +

2*(mu23/mu13ˆ2)+ 2) = 13 # asymptotic var iance

l <= l ength (dp) # data l ength

rv <= sum(dpˆ2) # r e a l i s e d var iance0

# i n t e g r a t e d var iance

# bipower var iance ( b i a s adjusted es t imator )

bv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )

# d a i l y r e a l i s e d hexapower v a r i a t i o n

rhv <= mu13ˆ(=6)* l /( l =5)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)=5) ] ) *

abs (dp [ 2 : ( l ength (dp)=4) ] ) *abs (dp [ 3 : ( l ength (dp)=3) ] ) *
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abs (dp [ 4 : ( l ength (dp)=2) ] ) *abs (dp [ 5 : ( l ength (dp)=1) ] ) *

abs (dp [ 6 : l ength (dp) ] ) ) ˆ(1/3) ) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3 ( b i a s adjusted

es t imator )

tp <= mu43ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2) ] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) *

abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tp/bvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rv=rhv ) / rv

Den <= s q r t ( a*max(1 , b) )

z . r j t <= Num/Den

out = {} ;

out$asymptoticVar = a ;

ou t$ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ;

ou t$ r ea l i s edVar = rv ;

out$HexpowerVar = rhv ;

re turn ( out )

} e l s e i f ( method==’Heptpvowere r ’ ) {

varphi43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

varphi47 <= (1/ s q r t ( p i ) ) * (2ˆ(2/7) ) *gamma((4/7+1) /2)

varphi27 <= (1/ s q r t ( p i ) ) * (2ˆ(1/7) ) *gamma((2/7+1) /2)

a <= ( varphi47 /( varphi27 ˆ2) ) * ( ( varphi47 ˆ6) /( varphi27 ˆ12) +

2*( varphi47 ˆ5/ varphi27 ˆ10) +2*( varphi47 ˆ4/ varphi27 ˆ8)

+ 2*( varphi47 ˆ3/ varphi27 ˆ6) +2*( varphi47 ˆ2/ varphi27 ˆ4)

+ 2*( varphi47 / varphi27 ˆ2)+2) = 15 # asymptotic var iance

l <= l ength (dp) # data l ength

rpv <= sum(dpˆ2) # r e a l i s e d var iance

# bipower var iance ( b i a s adjusted es t imator )

bpv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )
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# d a i l y r e a l i s e d heptapower v a r i a t i o n

rhpv <= varphi27 ˆ(=7)* l /( l =6)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)=6)

] ) *

abs (dp [ 2 : ( l ength (dp)=5) ] ) *abs (dp [ 3 : ( l ength (dp)=4) ] ) *

abs (dp [ 4 : ( l ength (dp)=3) ] ) *abs (dp [ 5 : ( l ength (dp)=2) ] ) *

abs (dp [ 6 : ( l ength (dp)=1) ] ) *abs (dp [ 7 : l ength (dp) ] ) ) ˆ(2/7) ) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

tpv <= varphi43 ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2)

] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) *abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tpv/bpvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rpv=rhpv ) / rpv ; Den <=s q r t ( a*max(1 , b) )

z . r j t <= Num/Den ; out = {} ;

out$asymptoticVar = a ; ou t$ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ; ou t$ r ea l i s edVar = rpv ;

out$Heptpvowere rpvar = rhpv ; re turn ( out ) } e l s e i f ( method

==’Octapower ’ ) {

varphi43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

varphi12 <= (1/ s q r t ( p i ) ) * (2ˆ(1/4) ) *gamma((1/2+1) /2)

varphi14 <= (1/ s q r t ( p i ) ) * (2ˆ(1/8) ) *gamma((1/4+1) /2)

#Asymptotic Variance

a <= ( varphi12 /( varphi14 ˆ2) ) * ( ( varphi12 ˆ7) /( varphi14 ˆ14) +

2*( varphi12 ˆ6/ varphi14 ˆ12) +2*( varphi12 ˆ5/ varphi14 ˆ10)

+ 2*( varphi12 ˆ4/ varphi14 ˆ8) + 2*( varphi12 ˆ3/ varphi14 ˆ6)

+ 2*( varphi12 ˆ2/ varphi14 ˆ4) +2*( varphi12 / varphi14 ˆ2) +2) =

17

l <= l ength (dp) # data l ength

rpv <= sum(dpˆ2) # r e a l i s e d var iance

# bipower var iance ( b i a s adjusted es t imator )

bpv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )
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# d a i l y r e a l i s e d Octapower v a r i a t i o n

rov <= varphi14 ˆ(=8)* l /( l =7)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)=7)

] ) *

abs (dp [ 2 : ( l ength (dp)=6) ] ) *abs (dp [ 3 : ( l ength (dp)=5) ] ) *

abs (dp [ 4 : ( l ength (dp)=4) ] ) *abs (dp [ 5 : ( l ength (dp)=3) ] ) *

abs (dp [ 6 : ( l ength (dp)=2) ] ) *abs (dp [ 7 : ( l ength (dp)=1) ] ) *abs (dp

[ 8 : l ength (dp) ] ) ) ˆ(1/4) ) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

tpv <= varphi43 ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2)

] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) *abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tpv/bpvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rpv=rov ) / rpv ; Den <= s q r t ( a*max(1 , b) )

z . r j t <= Num/Den ; out = {} ;

out$asymptoticVar = a ; ou t$ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ;

ou t$ r ea l i s edVar = rpv ; out$Octapowerpvar = rov ;

r e turn ( out ) ; } e l s e i f ( method==’Nonpower ’ ) {

varphi43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

varphi49 <= (1/ s q r t ( p i ) ) * (2ˆ(2/9) ) *gamma((4/9+1) /2)

varphi29 <= (1/ s q r t ( p i ) ) * (2ˆ(1/9) ) *gamma((2/9+1) /2)

#Asymptotic Variance

a <= ( varphi49 /( varphi29 ˆ2) ) * ( ( varphi49 ˆ8) /( varphi29 ˆ16)+2

*( varphi49 ˆ7) /( varphi29 ˆ14) +2*( varphi49 ˆ6/ varphi29 ˆ12)+

2*( varphi49 ˆ5/ varphi29 ˆ10) +2*( varphi49 ˆ4/ varphi29 ˆ8) +2*(

varphi49 ˆ3/ varphi29 ˆ6) +2*( varphi49 ˆ2/ varphi29 ˆ4)+

2*( varphi49 / varphi29 ˆ2) +2) = 19

l <= l ength (dp) # data l ength

rpv <= sum(dpˆ2) # r e a l i s e d var iance

# bipower var iance ( b i a s adjusted es t imator )
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bpv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )

# d a i l y r e a l i s e d Nonpower v a r i a t i o n

rNv <= varphi29 ˆ(=9)* l /( l =8)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)=8)

] ) *

abs (dp [ 2 : ( l ength (dp)=7) ] ) *abs (dp [ 3 : ( l ength (dp)=6) ] ) *

abs (dp [ 4 : ( l ength (dp)=5) ] ) *abs (dp [ 5 : ( l ength (dp)=4) ] ) *

abs (dp [ 6 : ( l ength (dp)=3) ] ) *abs (dp [ 7 : ( l ength (dp)=2) ] ) *

abs (dp [ 8 : ( l ength (dp)=1) ] ) *abs (dp [ 9 : l ength (dp) ] ) ) ˆ(2/9) ) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

tpv <= varphi43 ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2)

] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) * abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tpv/bpv ˆ2 ; # Test s t a t i s t i c

Num <= s q r t ( l ) *( rpv=rNv) / rpv ; Den <=s q r t ( a*max(1 , b) )

z . r j t <= Num/Den ; out = {} ;

out$asymptoticVar = a ; ou t$ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ; ou t$ r ea l i s edVar = rpv ;

out$Nonpowerpvar = rNv ; re turn ( out )

} e l s e i f ( method==’Decpower ’ ) {

varphi43 <= (1/ s q r t ( p i ) ) * (2ˆ(2/3) ) *gamma((4/3+1) /2)

varphi25 <= (1/ s q r t ( p i ) ) * (2ˆ(1/5) ) *gamma((2/5+1) /2)

varphi15 <= (1/ s q r t ( p i ) ) * (2ˆ(1/10) ) *gamma((1/5+1) /2)

#Asymptotic Variance

a <= ( varphi25 /( varphi15 ˆ2) ) * ( ( varphi25 ˆ9) /( varphi15 ˆ18)

+2*( varphi25 ˆ8) /( varphi15 ˆ16) +2*( varphi25 ˆ7/ varphi15 ˆ14)

+2*( varphi25 ˆ6/ varphi15 ˆ12) +2*( varphi25 ˆ5/ varphi15 ˆ10)

+2*( varphi25 ˆ4/ varphi15 ˆ8) +2*( varphi25 ˆ3/ varphi15 ˆ6)

+2*( varphi25 ˆ2/ varphi15 ˆ4) +2*( varphi25 / varphi15 ˆ2) +2)= 21

l <= l ength (dp) # data l ength

rpv <= sum(dpˆ2) # r e a l i s e d var iance

# bipower var iance ( b i a s adjusted es t imator )
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bpv <= pi /2* l /( l =1)*sum( abs (dp[= l ength (dp) ] ) *abs (dp [=1]) )

# d a i l y r e a l i s e d Nonpower v a r i a t i o n

rDv <= varphi15 ˆ(=10)* l /( l =9)*sum ( ( ( abs (dp [ 1 : ( l ength (dp)

=9) ] ) *abs (dp [ 2 : ( l ength (dp)=8) ] ) *abs (dp [ 3 : ( l ength (dp)=7) ] ) *

abs (dp [ 4 : ( l ength (dp)=6) ] ) *abs (dp [ 5 : ( l ength (dp)=5) ] ) *

abs (dp [ 6 : ( l ength (dp)=4) ] ) *abs (dp [ 7 : ( l ength (dp)=3) ] ) *

abs (dp [ 8 : ( l ength (dp)=2) ] ) *abs (dp [ 9 : ( l ength (dp)=1) ] ) *

abs (dp [ 1 0 : l ength (dp) ] ) ) ˆ(1/5) ) )

# Integ ra t ed q u a r t i c i t y

# r e a l i s e d t r ipower v a r i a t i o n with r=s=u=4/3

tpv <= varphi43 ˆ(=3)* l ˆ2/( l =2)*sum ( ( abs (dp [ 1 : ( l ength (dp)=2)

] ) *

abs (dp [ 2 : ( l ength (dp)=1) ] ) *abs (dp [ 3 : l ength (dp) ] ) ) ˆ(4/3) )

b <= tpv/bpvˆ2

# Test s t a t i s t i c

Num <= s q r t ( l ) *( rpv=rDv) / rpv ; Den <=s q r t ( a*max(1 , b) )

z . r j t <= Num/Den

out ={}; out$asymptoticVar = a ;

ou t$ z t e s t = z . r j t ;

# o u t $ c r i t i c a l . va lue = qnorm( c ( 0 . 0 5 , 0 . 9 5 ) ) ;

out$pvalue = 2*pnorm(=abs ( z . r j t ) ) ;

ou t$ r ea l i s edVar = rpv ; out$Decpowerpvar= rDv ;

re turn ( out )

#Empir ica l Ana lys i s

data1 <= read . csv ( ”D: / Back Up/ l a t e s t p r o j e c t / Ana lys i s ”)

data1$dates <= format ( as . Date (data1$DATES , format = ”%d/%m/%

Y”) ,”%m/%Y”)

days <= c ( unique ( data1$dates ) ) ; Result <= c ( )

ndays <= l ength ( days ) ; f o r ( i in 1 : ndays ){

data<= data1 [ data1 [ ,4]== days [ i ] , ]

l og re turn<= d i f f ( l og (data$CLOSE) )

## Jump Test : Choose one o f Bipower , Tripower , e t c .

jTes t <= jumptest ( l og re turn , method=’Decpower ’ )
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Result <= c ( jTest , Result )}

Result <= data . frame ( matrix ( Result , byrow=F, nco l =5,

dimnames=l i s t ( days=c ( unique ( data1$dates ) ) ,

S t a t i s t i c s=c ( ”asymptoticVar ” , ” z t e s t ” , ”pvalue ” , ” r e a l i s e dV a r

” , ”Decpowerpvar ”) ) ) )

Decpower<= data . frame ( matrix ( u n l i s t ( Result ) , nco l = 5 , byrow

= T, dimnames=l i s t ( days=c ( unique ( data1$dates ) ) ,

S t a t i s t i c s

=c ( ”asymptoticVar ” , ” z t e s t ” , ”pvalue ” , ” r e a l i s e dV a r ” , ”

Decpowerpvar ”) ) ) )

Decpower$ID <= seq . i n t ( nrow ( Decpower ) )

Decpower <= Decpower [ , c ( 6 , 1 : 5 ) ]

Decpower <= data . frame ( Decpower )

ggp lot ( Decpower )+ geom l ine ( aes ( x=ID ,

y=Nonpowerpvar , c o l =’Decpowerpvar ’ ) , s i z e =1.5)+

geom l ine ( aes ( x = ID , y =rea l i s edVar ,

c o l = ’ r ea l i s edVar ’ ) , s i z e =0.8)+xlab ( ’ Obserpvations ’ ) + ylab

( ’ ’ ) +theme ( panel . background =element blank ( ) )+theme (

legend . t i t l e = element blank ( ) )

Appendix II: Estimation of the parameters in the models using Rcodes

rm( l i s t = l s ( ) ) ; setwd ( ”D: / Back Up/ l a t e s t p r o j e c t / Ana lys i s

”)

l i b r a r y ( Est imat ionTools ) ; l i b r a r y ( r eadx l )

l i b r a r y (BBmisc ) ; S <= r e a d e x c e l ( ”data3 . x l sx ”)

n = length ( S$Price ) ; dt = 1/252

t = seq ( 0 , ( n = 1) *dt , l ength=n) ; R =d i f f ( l og ( S$Price ) )

e p i s l o n = 0.02

#i f true , we cons id e r the equat ion value as jump

jumpupindex = which (R > e p i s l o n ) ; jumpdownindex = which (R <

=e p i s l o n )

l ength ( jumpupindex )

lambdauhat = length ( jumpupindex ) / ( ( l ength ( S$Price )=1)*dt )

lambdadhat = length ( jumpdownindex ) / ( ( l ength ( S$Price )=1)*dt )
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l ength ( jumpdownindex )

lambdahat = lambdauhat +lambdadhat

#d i f f u s i o n

d i f f u s i o n i n d e x = which ( abs (R) <= e p i s l o n )

R d i f f u s i o n = R[ d i f f u s i o n i n d e x ]

sigmahat = sd ( R d i f f u s i o n ) /( s q r t ( dt ) )

muhat = (2*mean( R d i f f u s i o n )+(sigmahat ˆ2) *dt ) /(2* dt )

#P robab i l i t y o f upward and downward jumps

pk = length ( jumpupindex ) /( l ength ( jumpupindex )+length (

jumpdownindex ) )

qk = length ( jumpdownindex ) /( l ength ( jumpupindex )+length (

jumpdownindex ) )

k=(1/p=1) ˆ0 .5

Rjumpup = R[ jumpupindex ]

Rjumpdown = R[ jumpdownindex ]

alpha1hat = 1/mean(Rjumpup)

alpha2hat = 1/ abs (mean(Rjumpdown) )

mu jhat= (1/( p* lambdauhat=q* lambdadhat ) *dt ) *(mean(R) = (

mu hat=sigmahat ˆ2/2) *dt )=(lambdauhat*p/ eta1hat +

lambdadhat*q/ eta2hat ) *dt

#i n i t i a l Parameter

theta0 <= c (muhat , sigmahat , eta1hat , eta2hat , lambdauhat ,

lambdadhat , p , q , mu jhat )

theta0

l i b r a r y ( k n i t r ) ; l i b r a r y ( rpmuti l )

#I n t e g r a l Function

sigma = sigmahat ; mu =muhat

alpha1 = eta1hat ; alpha2 = eta2hat

lambdau = lambdauhat ; lambdad = lambdadhat

mu j = mu jhat ; p=p ; q=q

Fx = func t i on ( r ) {(((=( r=(mu=sigma ˆ2/2) *dt ) )=(eta1 * sigma ˆ2*

dt ) ) ˆ2

/((2* sigma ˆ2*dt ) *( s q r t (2* pi * sigma ˆ2*dt ) ) ) )}
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v int <= Vecto r i z e (Fx)

Gx = func t i on ( r ) {(((=( r=(mu=sigma ˆ2/2) *dt ) ˆ2)

+(eta2 * sigma ˆ2*dt ) ) ˆ2/((2* sigma ˆ2*dt ) *( s q r t (2* pi * sigma ˆ2*dt

) ) ) )}

v int2 = Vecto r i z e (Gx) ; maxkous <= f unc t i on ( theta , r ){

mu <= theta [ 1 ] ; sigma <= theta (2 )

eta1 <= theta [ 3 ] ; eta2 <= theta [ 4 ]

lambdau <= theta [ 5 ] ; lambdad <= theta [ 6 ]

p <= theta [ 7 ] ; q <= theta [ 8 ] ; mu j<= theta [ 9 ]

i f ( ( lambdau+lambdad ) >0){

A = ((1=(( lambdau+lambdad ) *dt ) / sigma* s q r t ( dt ) ) *exp(=( r=(mu

=(sigma ˆ2) /2) *dt ) ˆ2)

/(2* sigma ˆ2*dt ) )

C =(lambdau*dt*p* eta1 *exp ( eta1 *mu j ) *exp(=( r=(mu=(sigma ˆ2)

/2) *dt ) ) * eta1 )

*exp ( ( sigma ˆ2* eta1 *dt ) /2) *( i n t e g r a t e ( vint , lower=mu j ,

upper =1000000) $value )

D = ( lambdad*dt*q* eta2 *exp ( eta2 *mu j )

*exp ( ( r=(mu=(sigma ˆ2) /2) *dt ) ) * eta2 )

*exp ( ( sigma ˆ2* eta1 *dt ) /2) *( i n t e g r a t e ( vint2 , lower ==1000000,

upper=mu j ) $value )

l e f t p v a r t = (C+D) ; r i gh tpva r t = A

maxk= =sum( r i gh tpva r t + l e f t p v a r t )

} e l s e {

maxk = =sum( log ( (1/ s q r t (2* pi * sigma ˆ2)

*exp(=( r=(mu=sigma ˆ2/2) *dt ) ˆ2/(2*( sigma ˆ2*dt ) ) ) ) ) )

r e turn (maxk)

}

A = optim ( theta0 , maxkous , r=R) ; A

mut <= c (A) $par

theta1 <= cbind ( ’mu’=mut [ 1 ] , ’ sigma ’=mut (2 ) , ’ eta1 ’=mut [ 3 ] , ’

eta2 ’=mut [ 4 ] ,

’ lambdau ’=mut [ 5 ] , ’ lambdad ’=mut [ 6 ] , ”p”=mut [ 7 ] , ”q”=mut [ 8 ] , ”
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muj”=mut [ 9 ] )

p r i n t ( kable ( cbind ( ’ i n i t i a l ’ =c ( ’mu’=muhat , ’ sigma ’=sigmahat

, ’ eta1 ’= eta1hat , ’ eta2 ’= eta2hat , ’ lambdau ’=lambdauhat , ’

lambdad ’=lambdadhat , ”p”=p , ”q”=q , ”muj”=muj ) , ’ optim ’=

A$par ) , d i g i t s =4) )

#Simulated value

l o g a l j d r n d <= f unc t i on ( dt ,mu, sigma , eta1 , eta2 , lambdau ,

lambdad , p , q , muj , t , Ns){

dN = r p o i s ( l ength ( t )=1,abs ( lambdau+lambdad ) *dt )

dW = s q r t ( dt ) *rnorm ( length ( t ) =1 ,0 ,1)

Y = ( ( ( muj+1/eta1 ) *p = (muj+1/eta2 ) *q ) ) *dN + ( ( ( muj=(2*muj/

eta1 )=(2/ eta1 ˆ2) ) *p = (mujˆ2=(2*muj/ eta2 ) +(2/ eta2 ˆ2) ) *q )

) *dN* r u n i f ( l ength ( t )=1,Ns)

Rsim = (mu = sigma ˆ2/2) *dt + ( sigma*dW) + Y

}

RSim <= ( l o g a l j d r n d ( dt , theta0 [ 1 ] , theta0 (2 ) , theta0 [ 3 ] , theta0

[ 4 ] , theta0 [ 5 ] , theta0 [ 6 ] , theta0 [ 7 ] , theta0 [ 8 ] , theta0 [ 9 ] , t

, 1 ) )

B = optim ( theta0 , maxkous , r=RSim)

p r in t ( kable ( cbind ( ’ simu ’ =c ( ’mu’=mut [ 1 ] , ’ sigma ’=mut (2 ) , ’

eta1 ’=mut [ 3 ] , ’ eta2 ’=mut [ 4 ] , ’ lambdau ’=mut [ 5 ] , ’ lambdad ’

=mut [ 6 ] , ’p’=mut [ 7 ] , ’ q’=mut [ 8 ] , ’muj’=mut [ 9 ] ) , ’ optim ’=

B$par ) , d i g i t s =3) )

k s t e s t<=ks . t e s t (R, RSim) ; k s t e s t

l i b r a r y ( kdens i ty ) ; l i b r a r y (EQL)

cdf1 = kdens i ty (R) ; cd f2 = kdens i ty (RSim)

p l o t ( cdf1 , main = ”” , c o l = ”blue ” , xlim=c ( =0 .1 ,0 .1 ) , yl im=c

(0 ,80 ) , x lab=”Log=r e tu rn s ” , lwd=2)

l i n e s ( cdf2 , c o l = ”red ” , lwd=2)

legend ( ” t o p l e f t ” , l egend=c ( ”JSMI ” , ”ALJD”) , f i l l =c ( 1 : 4 ) )

#i n s t a l l . packages ( ”twosamples ”)

l i b r a r y ( twosamples ) ; adtest<=a d t e s t (R, RSim)

adte s t ; adstat<=ad s ta t (R, RSim) ; adstat
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