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Abstract

The concept of stability in differential equations is of immense importance par-

ticularly for determination of properties of solutions of nonlinear equations which

cannot be readily solved to obtain closed analytic solutions. Stability in the sense

of Hyers-Ulam(H-U) and Hyers-Ulam-Rassias(H-U-R) has been considered for lin-

ear Ordinary Differential Equations(ODE) due to their solutions which are easily

determined. However, cases of nonlinear ODE of second and third orders have

received little attention. This research was therefore designed to establish the sta-

bility of nonlinear second and third order in the sense of H-U and H-U-R.

Variants of the perturbed second order ODE of the form

u′′(t) + f(t, u(t), u′(t)) = P (t, u(t), u′(t)) and third order ODE of the form

u′′′(t) + f(t, u(t), u′(t), u′′(t)) = P (t, u(t), u′(t)) were reduced to their equivalent in-

tegral equations, where t is an independent real variable; f, P, and u are continuous

functions of their argument. Extension of Gronwall-Bellman-Bihari(G-B-B) type

inequalities having the same number of integrals as the equivalent integral equa-

tions were developed. These integral inequalities were used to prove the existence

of H-U and H-U-R stability. They were also used to estimate the H-U and H-U-R

constants for each of the variants of the equations.

The newly developed G-B-B type inequalities of nonlinear integrals obtained were:

u(t) ≤ u0 + L
∫ t
t0
f(s)u(s)ds+

∫ t
t0
f(s)r(s)(

∫ s
t0
ρ(τ)$(u(τ))dτ)ds

and u(t) ≤ u0 + T
∫ t
t0
r(s)β(s)ds+ L

∫ t
t0
h(s)$u(s))ds

where f, r, ρ, $, β and h are continuous functions and T, L and u0 are positive

constants. The nonlinear second order ODE were found to possess H-U stability

and H-U constants

K21 = L(1 + 1
2
λ2 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|+ |p(u(ρ), u′(ρ))|Ω−1(Ω(1) + neM)
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and K22 = ( L
α(ξ)

+ λ2

2α(ξ)
)Ω−1(Ω(1) + λ2

α(ξ)
n$(F−1(F (1) + λ2

α(ξ)
m))F−1(F (1) +m λ2

α(ξ)
),

respectively, where q, p,Ω,Ω−1, F, F−1, $, h are functions of their argument and

λ, ξ, ρ,M, n and m are constants. The newly developed G-B-B type inequality for

two nonlinear integrals u(t) ≤ ρ(t) + T
∫ t
t0
r(s)β(s)ds+ L

∫ t
t0
h(s)$(u(s))ds. where

ρ(t) a monotonic, nonnegative, continuous function, with this nonlinear second or-

der ODE were found to possess H-U-R stability and the H-U-R constants

Cϕ21 = Ω(Ω(1) +m(η + η2)$(F−1(F (1) + l))F−1(F (1) + l) and

Cϕ22 = Γ−1(Γ(1) +mηnγ(F−1(F (1) + l)))F−1(F (1) + l) where

Γ,Γ−1 and γ are functions of their argument and η, l are constants. The new G-B-B

type inequality for three nonlinear integrals was:

u(t) ≤ D + T
∫ t
t0
r(s)β(u(s))ds + B

∫ t
t0
h(s)$(u(s))ds + L

∫ t
t0
g(s)γ(u(s))ds, where

B and D are positive constants. The nonlinear third order ODE were found

to possess H-U stability with H-U constants given by K31 = L+Lψ
δ
F−1(F (1) +

d(λ)λ
δ
φ(SX))SX, where S = Ω−1(Ω(1) + nλ

δ
γ(X))X and X = F−1(F (1) +mλ2

δ
)

and K32 = L+|r(u(κ))|L
2φ|u′(ξ)| Γ−1(Γ(1) + C4qr(Ω

−1(Ω(1) + C3mg(H))Ω−1(Ω(1) + C2n)))

Ω−1(Ω(1) + C3mg)H, where H = F−1(F (1) + C2n), C2 = 2|u′(η)|λ
2φ|u′(ξ)| , C3 = λ2

2φ|u′(ξ)|

and C4 = λn+1

2φ|u′(ξ)| , δ, ψ constants and g, r, φ are functions of their argument. The

newly developed G-B-B type inequality with the three nonlinear integrals :

u(t) ≤ ρ(t) +T
∫ t
t0
r(s)β(u(s))ds+B

∫ t
t0
h(s)$(u(s))ds+L

∫ t
t0
g(s)γ(u(s))ds, where

ρ(t) a monotonic, nonnegative, nondecreasing and continuous function. The non-

linear third order ODE were also found to possess H-U-R stability with H-U-R

constants

Cϕ31 = 1
δ
Υ−1(Υ(1) + ηn

δ
ρ1γ(Ω−1(Ω(1) + 1

δ
ρ3α(Y ))y)Ω−1(Ω(1) + 1

δ
ρ3α(Y ))Y, where

Y = F−1(F (1)+η
δ
ρ1) and Cϕ32 = 1

δ
Ω−1(Ω(1)+d1λn

η
ω(F−1(F (1)+d2h(λ)

η
)))F−1(F (1)+

d2h(λ)
η

) with ρ1, ρ2 and ρ3 are constants.

A generalisation of the existing results on Hyers-Ulam and Hyers-Ulam-Rassias

stability to nonlinear ordinary differential equations was achieved. This can also

be used to achieve the stability of the other differential equations.

Key Words: Hyers-Ulam-Rassias stability, Integral equations, Perturbed second

order nonlinear differential equation, Perturbed third order nonlinear differential

equation.

Words count:498.
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Notations

Unless or otherwise stated first, second and third order derivatives of u(t) with

regard to the variable t is represented by u′(t), u′′(t) and u′′′(t) respectively. Let R,

R+ and I denote the intervals (−∞,∞), 0 ≤ t < ∞ and (0 < t ≤ b). R denotes

set of real numbers. For u(t) ∈ R, |u(t)| is an absolute value u(t).

List of Special Symbols

The symbols list below are followed by a brief statement of their meaning;

C(R+) space of continuously function,

C1(I,R+) space of continuously one df,

C2(I,R+) space of continuously twice df,

C3(I,R+) space of continuously thrice df.

and

∈ belong to, <, ≤, >, ≥ inequality signs,

|u(t)| absolute value of u(t),
∑

summation sign,

lim limit, ∀ for all,

→ converges to, � such that,∫
integral sign, exp or e exponential function,

≡ equivalent to, ∃ there exists

Rn n-Euclidean space, ‖X‖ is an Euclidean norm of, X,

∞ Infinity, C(I,R+) space of continuous function

G-B-B Gronwall-Bellman-Bihari, H-U Hyers-Ulam

H-U-R Hyers-Ulam-Rassias, DE differential equation

ODE Ordinary Differential Equation df differential function

m.c nondecreasing and continuous m.n monotonic nondecreasing

R.H.S Right Hand Side L.H.S Left Hand Side
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CHAPTER ONE

INTRODUCTION

1.0 Introduction

The introduction is discussed under the following sections, namely, background

of the study, preliminaries on basic concepts, statement of the problem, aim and

specific objectives of the study, justification for the study and the outline of the

whole work.

1.1 Background of the Study

The importance of inequalities has long been recognized in the field of mathe-

matics. The mathematical foundations of the theory of inequalities were established

during the 18th and 19th century. This had played vital role in mathematical mod-

els of most dynamic processes in engineering, physical and biological sciences which

often conveniently expressed in the form of linear or nonlinear ordinary Differential

equations (DEs). Behaviour of such solutions of the systems are easily considered

by the use of Gronwall-Bellman inequality or its extensions. Integral inequali-

ties have application to questions of stability, uniqueness of solutions, dichotomy,

asymptotic behaviour of solutions of differential equations.

Researchers that worked on integral inequalities and their applications include;

Gronwall (1919), Bellman (1943), Bihari (1956), Azebelev and Tsalyuk (1962),

Willet (1965), Willet and Wong (1967), Lakshimikantham and Leela (1969), Deo

and Murdeshewar (1972), Dhongade and Deo (1973), Pachpatte (1973), Pachpatte

(1974),Deo and Murdeshewar (1972), Beesack (1976), Agarwal and Thandapani

(1981), Young (1982), Dannan (1985), Dannan (1986), Young (1985), Popenda

(1986), Tsalyuk (1988), Pinto(1990), Oguntuase(2000), Abdelain(2011) and a host

of others.

This thesis is an investigation of stability that involves second and third order

nonlinear ordinary differential equations through Hyers-Ulam (H-U) and Hyers-

1



Ulam-Rassias (H-U-R) stabilities which are not common in the literature. This

study rests on the extensions of Grownwall-Bellman-Bihari(G-B-B) type inequali-

ties.

Hyers-Ulam stability started with the problem of functional equation which

began with the question concerning stability of group homomorphism proposed by

Ulam (1940) in Ulam(1960) during a talk before a Mathematics Club of the Univer-

sity of Wincosin. In 1941, Hyers (1941) gave a partial solution of Ulam’s problem

for the case of approximate additive mappings in the context of Banach spaces and

called the result H-U stability. Some years later precisely in 1978, Rassias (1978)

generalised the result of Hyers. The phenomenon of stability that was introduced

by Rassias is called the Hyers-Ulam-Rassias stability (or Generalised H-U Stabil-

ity). Thereafter, many authors have studied the stability problems of functional

equations which include: Aoki(1950), Bourgin (1951), Hyers et al.(1998), Jun and

Lee(1999), Park,(2002), Forti(2007), Jung(2011) and a host of others.

Researchers such as: Obloza(1993), Obloza(1997), Alsina and Ger(1998) were

first set of group who considered H-U stability of linear ordinary differential equa-

tions. Besides, several researchers have looked into the H-U stability of the various

linear differential equation of first order Takahasi et al.(2002), Miura et al.(2007),

Jung(2004), Jung(2005), Jung(2006), Wang, Zhou and Sun(2008), Popa and Rasa

(2011), Onitsuka and Shoji(2017) and a host of others. While the following re-

searchers Li and Shen (2009), Jung(2010), Li(2010), Li and Shen(2010), Javadian

et al.(2011), Gavruta, Jung and Li(2011), Xue (2014) , Ghaemi et al.(2012) and

host of others, investigated Hyers-Ulam and Hyers-Ulam-Rassias stability of differ-

ential equations which are linear.

Recently, H-U and H-U-R of third and fourth order linear differential equations

were investigated by the following researchers Abdollahpour and Najati (2012),

Abdollahpour et al.(2012), Tuns and Bicer(2013), Tripathy and Satapathy (2014),

Murali and Ponmanaselvan (2018a), Murali and Ponmanaselvan (2018). A few

of the researchers such as Rus(2009), Rus(2010), Gachpazan and Baghani(2010),

Qarawani(2012a), Huang et al.(2015), Ravi et al.(2016), Bicer and Tunc(2018)

and a host of others, have been able to investigate stability of second order non-

linear ordinary differential equations in the sense of H-U stability using different

approaches. Only Algifiary and Jung(2014) discussed Hyers-Ulam of nonlinear dif-

2



ferential equations using Gronwall lemma. The aforementioned researchers were

unable to discuss the Hyers-Ulam and Hyers-Ulam-Rassias stability of perturbed

nonlinear second and third order ordinary differential equations by the use of G-B-B

type inequalities which is the main problem tackled in this thesis.

1.2 Definition of Terms

This section is divided into two, the first part deals with definitions of some

basic concepts. Second part deals with some basic theorems and lemmas.

1.2.1 Definition of Some Basic Concepts

This subsection contains definition of some basic concepts that are required for

developing the extensions of G-B-B type inequalities, H-U and H-U-R stability of

second and third order nonlinear differential equation.

Definition 1.1:

A function $ : R+ → R+ is said to belong to class Ψ if

(i) $(u) > 0 is nondecreasing and continuous for u ≥ 0

(ii)
1

n
$(u) ≤ $

(u
n

)
, n > 0 is a monotonic, nondecreasing and continuous func-

tion on R+.

(iii)there exist a function φ, continuous on [0,∞) with $(αu) ≤ φ(α)$(u) for

α ≥ 0

Definition 1.2:

A function f(t) defined on a domain I = (0 < t ≤ b).

(i) Is said to be submultiplicative if

f(t1 × t2) ≤ f(t1)× f(t2) ∀t1, t2 ∈ I. (1.1)

(ii) Is said to be subadditive if

f(t1 + t2) ≤ f(t1) + f(t2) ∀t1, t2 ∈ I. (1.2)

1.2.2 Useful Basic Theorem and Lemma

Basic theorem and lemma which are needed in this work are stated as follows;

Theorem 1.1 (Generalised First Mean Value Theorem)

Murray(1974), Stephenson(1973):

If f(t) and g(t) are continuous in [t0, t] ⊆ I and f(t) does not change sign in the

interval, then there is a point ξ ∈ [t0, t] such that

3



∫ t

t0

g(s)f(s)ds = g(ξ)

∫ t

t0

f(s)ds

Lemma 1.1 Ince(1926):

Let f(t) be an integrable function then the n-successive integration of

f over the interval [t0, t] is given by∫ t

t0

· · ·
∫ t

t0

f(s)dsn =
1

(n− 1)!

∫ t

t0

(t− s)n−1f(s)ds. (1.3)

1.3 Statement of the Problem

It is amazing that many of the researchers who investigated H-U and H-U-

R stability gave maximum attention to first, second, third, fourth and nth order

of linear ordinary differential equations while few of them gave little attention to

nonlinear differential equation using the methods that are only limited to ordinary

differential equation such as

u′′(t) = f(t, u(t)).

This means that H-U and H-U-R stability of perturbed nonlinear ordinary differ-

ential equations of the form

u′′(t) + f(t, u(t), u′(t)) = P (t, u(t), u′(t))

and

u′′′(t) + f(t, u(t), u′(t), u′′(t)) = P (t, u(t), u′(t))

, and their variants through G-B-B are not paid attention to, which are the focused

of this thesis.

1.4 Aims and Objectives of the Study

The aim of this research work is to examine the Hyers-Ulam and Hyers-Ulam-

Rassias stability of perturbed nonlinear second and third order ordinary differential

equations. The specific objectives of this research work include the following :

(a) to develop the different extensions of Gronwall-Bellman-Bihari type inequality

consisting of one, two and three nonlinear integral terms.

(b) to illustrate the application of integral inequalities for investigating

Hyers-Ulam and Hyers-Ulam-Rassias stability.

(c) to convert all the nonlinear second and third order differential equations

consider to integral inequalities

(d) to investigate the stability in term of Hyers-Ulam and Hyers-Ulam-Rassias of

4



second and third order nonlinear differential equations with forcing terms.

(e) to obtain the positive Hyers-Ulam and Hyers-Ulam-Rassias constants of every

nonlinear second and third order differential equations considered.

1.5 Justification of the Study

Stability played crucial role in the field of mathematics, especially in nonlinear

differential equations. Hence, different methods have been be employed in phys-

ical and biological sciences, engineering and any other relevant areas to consider

stability of the behaviour of solutions of linear and nonlinear ordinary differential

equations. However, the study of stability of certain classes of nonlinear second and

third order ordinary differential equations in the sense of Hyers-Ulam and Hyers-

Ulam-Rassias stabilities through Gronwall-Bellman-Bihari type inequality has not

been extensively studied.

For this cause, this research work is developed to study the stability of certain

classes of nonlinear second and third order ordinary differential equations in the

sense of Hyers-Ulam and Hyers-Ulam-Rassias stabilities by converting them to

integral inequalities and later use the Gronwall-Bellman-Bihari type inequality, to

the best of our knowledge this has not been reported in the literature.

1.6 Motivation for the study

This study is motivated by the work of Algfiary and Jung (2014), who consid-

ered Hyers-Ulam stability of linear and nonlinear second order differential equations

through Gronwall’s lemma which is not sufficient to determine the Hyers-Ulam and

Hyers-Ulam-Rassias stabilities of the extension of nonlinear second order differen-

tial equations considered by Algfiary and Jung (2014) and Qarawani (2012a). Also,

through the work of Algfiary and jung(2014), this research work has extended the

scope of the study of Hyers-Ulam and Hyers-Ulam-Rassias stabilities to damped,

lienard, forcing terms and Euler type of third order nonlinear differential equa-

tions. Therefore, the major tool employs in this study to establish Hyers-Ulam

and Hyers-Ulam-Rassias stabilities of certain classes of nonlinear second and third

order ordinary differential equations is Gronwall-Bellman-Bihari type inequality.
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1.7 Outline

Here, we give a brief outline of how this research work is arranged. Chapter

one, contains background of the study, preliminaries and basic concepts, state-

ment of the problem, aims and specific objectives of the study, justification for

the study and outline. Chapter two, contains a review of literature consulted in

this research work. Chapter three, contains the methodology adopted in obtaining

the results of this work. That is the development of the integral inequalities with

one, two and three integral terms. Chapter four, contains Hyers-Ulam and Hyers-

Ulam-Rassias stability of perturbed nonlinear second and third order differential

equations. Chapter five, contains Hyers-Ulam and Hyers-Ulam-Rassias stabilities

of perturbed nonlinear third order differential equations. Chapter six, contains

summary, conclusion and recommendation, and further research.
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CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

The mathematical foundation of the theory of inequalities were established by

the following Mathematicians who saw the need. Gronwall (1919) established a

result termed as Gronwall inequality or Gronwall Lemma. Reid (1930) developed

an integral inequality similar to Gronwall inequality. Quade (1942) gave an integral

inequality which was an extension of Gronwall inequality. Bellman (1943) improved

on the result of Gronwall while Bihari (1956)extended the Bellman’s inequality to

nonlinear form. Thus, several researchers extended the result of Bihari to G-B-B

inequalities.

Ulam (1940) in Ulam(1960) started his study on Stability at the University

of Wincosin, which was extended by Hyers(1941) and the result was called Hyers-

Ulam stability. Further extension of their result was achieved by Rassias (1978)

and the result was called H-U-R stability. Thereafter, various extensions of their

results were discovered by many researchers.

2.1 Gronwall-Bellman-Bihari Type Inequalities

In this section, the work of Gronwall, Bellman, Bihari and

other researchers on integral inequalities are reviewed.

Lemma 2.1 Gronwall (1919)

Let f(t) and u(t) be nonnegative continuous functions on

I = [t0,∞) for which the inequality

u(t) ≤ c+

∫ t

t0

f(s)u(s)ds, t0 ≤ t ≤ ∞ (2.1)

holds, where c is a nonnegative constant. Then

u(t) ≤ c exp

(∫ t

t0

f(s)ds

)
, a ≤ t ≤ ∞. (2.2)

The following integral inequalities were developed from Gronwall’s lemma:
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Theorem 2.1 Reid (1930)

Let u(t) and f(t) be nonnegative continuous functions on (I,R+), and suppose

u(t) ≤ c+

∫ t

t0

f(s)u(s)|ds| t ∈ I (2.3)

where t ∈ I and c is a constant. Then

u(t) ≤ c

(∫ t

t0

f(s)|ds|
)

t ∈ I. (2.4)

Corollary 2.1 Quade (1942)

Let f(t) be a continuous function for t ≥ α, and suppose

u(t) ≤ ae−γ(t−s)[bu(s) + c]ds t ≥ t0 (2.5)

where t ≥ t0, a, c and γ 6= t are constants. Then

u(t) ≤ ae(b−γ)(t−t0) +
c

γ − b
[1− e(b−γ)(t−t0)] t ≥ t0. (2.6)

Lemma 2.2 Bellman (1943)

Let u(t) and f(t) be positive continuous functions on (I,R+). Let N > 0 and

M ≥ 0 be constants then the inequality

u(t) ≤ N +M

∫ t

α

f(s)u(s)ds, t ∈ I (2.7)

implies that

u(t) ≤ N exp

(
M

∫ t

α

f(s)ds

)
, t ∈ I. (2.8)

Lemma 2.3 Bellman(1953)

Let u(t) and f(t) be positive continuous functions on (I,R+), suppose

u(t) ≤ u(t0) +

∫ t

t0

f(s)u(s)ds, t, t0 ∈ I. (2.9)

Then for t0 ≤ t ≤ b

u(t0) exp

(
−
∫ t

a

f(s)ds

)
≤ u(t) ≤ u(t0) exp

(∫ t

a

f(s)ds

)
. (2.10)

Lemma 2.4 Bihari(1956)

Suppose u(t), f(t) be positive continuous functions defined on t0 ≤ t ≤ b(≤ ∞)

and N > 0, M ≥ 0, further let $(u) be a nonnegative, nondecreasing continuous

function for u ≥ 0, if the inequality

u(t) ≤ N +M

∫ t

t0

f(s)$(u(s))ds, t0 ≤ t < b (2.11)

holds, then

u(t) ≤ Ω−1
(

Ω(N) +M

∫ t

t0

f(s)ds

)
, t0 ≤ t ≤ b′ ≤ b, (2.12)

where

Ω(u) =

∫ u

u0

dt

$(t)
, 0 < u0 < u (2.13)

In the case $(0) > 0 or Ω(0+) is finite, one may take u0 = 0, and Ω−1 is the inverse

function of Ω and t must be in the subinterval [t0, b
′] of [t0, b] such that

Ω(N) +M

∫ t

t0

f(s)ds ∈ Dom(Ω−1)

8



Theorem 2.2 Bellman and Cook (1963)

Let n(t) be positive, monotonic, nondecreasing function and u(t) > 0, f(t) > 0.

If all these functions are continuous and if

u(t) ≤ n(t) +

∫ t

t0

f(s)u(s)ds, t0 ≤ t ≤ b, (2.14)

then

u(t) ≤ n(t) exp

(∫ t

t0

f(s)ds

)
. t0 ≤ t ≤ .b (2.15)

Theorem 2.3 Willett (1965)

Suppose

u(t) ≤ ω∗(t) + ω(t)

∫ t

t0

v(s)u(s)ds t ∈ I, (2.16)

where vω, vω∗, and vu are locally integrable on I. Then

u(t) ≤ ω∗(t) + ω(t)

(
exp

∫ t

t0

vω

)(∫ t

t0

vω∗

)
t ∈ I (2.17)

Theorem 2.4 Willett (1965)

Suppose that

u(t) ≤ ω0(t) +
n∑
i=1

ωi(t)

∫ t

t0

vi(s)u(s)ds t ∈ I, (2.18)

where viωj(i = 1, 2, ...., n, j = 0, 1......, n) and viu(i = 1, 2, 3, ....., n) are locally

integrable on I. Then

u(t) ≤ Enω0 (2.19)

where Ei(i = 0, 1, 2......n) is defined inductively as the composition of i+1 functional

operators,that is Ei = DiDi−1...Dn

D0ω = ω

Diω = ω + (Ej−1ωi)

(
exp

∫ t

t0

vjEj−1ωids

)∫ t

t0

vjωds j = 1, 2, ..n). (2.20)

Chu and Metcalf presented the following integral inequality which improved on the

results of Jones(1964), Willett(1965) and the similar results in Condington and

Levinson (1955)

Theorem 2.5 Chu and Metcalf (1967)

Let the functions u and f be continuous on the interval [0, 1] : let the function K

be continuous and nonnegative on the region 0 ≤ s ≤ t ≤ 1. If

u(t) ≤ f(t) +

∫ t

0

K(t, s)u(s)ds, t ∈ [0, 1], (2.21)

then

u(t) ≤ f(t) +

∫ t

0

H(t, s)f(s)ds, t ∈ [0, 1], (2.22)

where H(t, s) =
∑∞

i=1Ki(t, s), 0 ≤ s ≤ t ≤ 1, is the resolvent kernel and the

Ki(i = 1, 2, .......) are the iterated kernels of K.

Gollwitzer (1969) considered the following two functional inequalities as improve-
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ment on the results of previous researchers.

u(t) ≤ f(t) + g(t)G−1
(∫ t

t0

G(u(s))h(s)ds

)
t0 ≤ x ≤ t ≤ b, (2.23)

u(t) ≥ f(t)− g(t)G−1
(∫ t

t0

G(u(s))h(s)ds

)
t0 ≤ x ≤ t ≤ b, (2.24)

where the u, f, g and h are nonnegative and continuous on the interval [t0, b].

The function G(u) is continuous and strictly increasing for u ≥ 0, G(0) = 0,

limu→∞G(u) =∞ and G−1 denotes the inverse function of G. Deo and Murdeshwar

(1970) developed the following integral inequalities with their estimate bounds:

ui(t) ≤ ki +Mi

∫ t

0

Fi(s)ω(u(s))ds, t ∈ [0, α] (2.25)

ui(t) ≥ ki −Mi

∫ t

0

Fi(s)ω(u(s))ds, t ∈ [0, α−] (2.26)

f(ui(t)) ≤ ki +Mi

∫ t

t0

Fi(s)ω(u(s))ds, t ∈ [0, α] (2.27)

where ui, Fi are nonnegative continuous functions on

R+ and f(0) = ui0, f(∞) =∞

Deo and Murdeshwar obtained the upper and lower bounds for unknown function

u(t) in the following integral inequalities:

Theorem 2.6 Deo and Murdeshwar (1971)

(i) u, η and F are positive continuous functions on I,

(ii) $ a positive, continuous, subadditive and nondecreasing function on I

(iii)ψ : I→ I a non-decreasing continuous function on and

(iv) u(t) ≤ η(t) + ψ

(∫ t

0

F (s)$(u(s))ds

)
t ∈ (t0,∞),

then, for t ∈ I

u(t) ≤ η(t) + ψ

(
G−1

[
G

(∫ t

0

F (s)$(η(s))ds

)
+

∫ t

0

F (s)ds

])
(2.28)

where

G(u) =

∫ u

u0

ds

$(ψ(s))
0 < u0 ≤ u, (2.29)

G−1 is the inverse function of G and t is in the subinterval (0, b] of I so that

G

(∫ t

t0

F (s)$(η(s))ds

)
+

∫ t

t0

F (s)ds ∈ Dom(G−1)

Theorem 2.7 Deo and Murdeshwar (1971)

If in addition to the assumptions(i),(ii) and (iii) of Theorem 2.6 let $ be an even

function on (∞,∞), let

(iv′) u(t) ≥ η(t)− ψ
(∫ t

0

F (s)$(u(s))ds

)
, t ∈ (0,∞), then, for 0 < t∞

u(t) ≥ η(t)− ψ
(
G−1

[
G

(∫ t

0

F (s)$(η(s))ds

)
+

∫ t

0

F (s)ds

])
(2.30)
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where the function G is defined as equation(2.29)

Theorem 2.8 Dhongade and Deo(1973)

Let (i) u(t), r(t), g(t) : (0,∞)→ (0,∞) are continuous on (0,∞)

(ii) $(u) is a nonnegative, monotonic nondecreasing, continuous, submultiplicative

function for u > 0

if

u(t) ≤ k +

∫ t

0

r(s)u(s)ds+

∫ t

0

g(s)$(u(s))ds, 0 < t <∞ (2.31)

for k > 0, is a constant, then

u(t) exp

(
−
∫ t

0

r(s)ds

)
≤ Ω−1

(
Ω(k) +

∫ t

0

g(s)$

(
exp

∫ s

0

r(δ)dδ

)
ds

)
0 < t ≤ b

(2.32)

where Ω(u) is defined in(2.13) and Ω−1 is the inverse of Ω and t is in the subinterval

(0, b) of (0,∞) so that

Ω(k) +

∫ t

0

g(s)$

(
exp

∫ s

0

r(δ)dδ

)
ds ∈ Dom(Ω−1) (2.33)

Theorem 2.9 Dhongade and Deo (1973) Let

i u(t), r(t) : (0,∞)→ (0,∞) and continuous on (0,∞),

ii $ ∈ Ψ

iii n > 0 be monotonic, nondecreasing and continuous on (0,∞)

if

u(t) ≤ n(t) +

∫ t

0

f(s)$(u(s))ds, 0 < t <∞, (2.34)

then

u(t) ≤ n(t)Ω−1
(

Ω(1) +

∫ t

0

f(s)ds

)
0 < t ≤ b, (2.35)

where (0, b) ⊂ (0,∞), where Ω(u) is defined in (2.13) and Ω−1 is the inverse

of Ω and t is in the subinterval (0, b) is so chosen that

Ω(1) +

∫ t

0

f(s)ds ∈ Dom(Ω−1)

If the constant k > 0 is replaced by a continuous function y(t) in equation (2.31),

the function y(t) in equation (2.31) is continuous and additive.

Theorem 2.10 Dhongade and Deo (1973)

Let in addition to assumptions (i),(ii) of Theorem 2.7, the function $ be subaddi-

tive, the function y(t) > 0, ψ(t) ≥ 0 be nondecreasing in t and continuous on R+

for t > 0

u(t) ≤ y(t) +

∫ t

0

f(s)u(s)ds+ ψ

(∫ t

0

g(s)$(u(s))ds

)
0 < t <∞ (2.36)
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then

u(t) exp

(
−
∫ t

0

f(s)ds

)
≤ y(t) + ψ

[
G−1

(
G

(∫ t

0

g(s)$

(
y(s) exp

∫ s

0

f(δ)dδ

)
ds

)
+

∫ t

0

g(s)$

(
exp

∫ s

0

f(δ)dδ

)
ds

)]
, 0 < t ≤ b

(2.37)

where G(u) is defined as equation (2.29) and G−1 is the inverse of G and t is the

subinterval (0,∞) so that

G

(∫ t

0

g(s)$

(
y(s) exp

∫ s

0

f(δ)dδ

)
ds

)
+

∫ t

0

g(s)$

(
exp

∫ s

0

f(δ)dδ

)
ds ∈ Dom(G−1)

The next theorem provides a nonlinear generalisation of the Bihari lemma.

Theorem 2.11 Dhongade and Deo (1973)

Let condition (i),(ii) of Theorem 2.8 hold, and ω ∈ Ψ,

if

u(t) ≤ k +

∫ t

0

f(s)β(u(s))ds+

∫ t

0

g(s)$(u(s))ds, 0 < t ≤ ∞ (2.38)

for k > 0, a constant, then

u(t)

(
Ω−1

(
Ω(1) +

∫ t

0

f(s)ds

)−1)

≤ F−1
[
F (k) +

∫ t

0

g(s)$

[
Ω−1

(
Ω(1) +

∫ s

0

f(δ)dδ

)]
ds

]
t0 < t ≤ b

(2.39)

where Ω(u) is defined in equation (2.13), F is defined as

F (u) =

∫ u

u0

ds

β(s)
, 0 < u0 ≤ u, (2.40)

and Ω−1, F−1 are inverses of Ω, F respectively and t is the subinterval (0, b) of

(0,∞) such that

Ω(1) +

∫ t

0

f(s)ds Dom(G−1),

and

F (k) +

∫ t

0

g(s)$

[
Ω−
(

Ω(1) +

∫ s

0

f(δ)dδ

)]
ds ∈ Dom(F−1)

. If the constant k > 0 in equation (2.38) is replaced by a monotonically nonde-

creasing function y(t), we require $ to be subadditive.

Theorem 2.12 Dehongade and Deo (1973)

If, in addition to the assumption of Theorem 2.11, $ is subadditive, and the func-

tion y(t) > 0, ψ(t) ≥ 0 be nondecreasing, continuous on (0,∞), and if

u(t) ≤ y(t) +

∫ t

0

f(s)β(u(s))ds+ ψ

(∫ t

0

g(s)$(u(s))ds

)
, 0 < t <∞ (2.41)
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then

u(t)

(
Ω−1

(
Ω(1) +

∫ t

0

f(s)ds

)−1)

≤ y(t) + ψ

[
G−1

(
G

(∫ t

t0

g(s)$

(
y(s).Ω−1

(
Ω(1) +

∫ s

0

f(δ)dδ

))
ds

)
+

∫ t

0

g(s)$

(
Ω−1

(
Ω(1) +

∫ s

0

f(δ)dδ

))
ds

)]
0 < t ≤ b

(2.42)

where Ω is defined as equation (2.13) and G is defined in equation (2.29) where

Ω−1, G−1 have the same meaning as in Theorem 2.9 and t is in subinterval (0, b] so

that

Ω(1) +

∫ t

0

f(s)ds ∈ Dom(Ω−1)

and

G

(∫ t

0

g(s)$

(
y(s).Ω−1

(
Ω(1) +

∫ s

0

f(δ)dδ

))
ds

)
+

∫ t

0

g(s)$

(
Ω−1

(
Ω(1) +

∫ s

0

f(δ)dδ

))
ds ∈ Dom(G−1)

In 1973, Pachpatte developed the following integral inequalities as generalisation

of Bellman(1953).

Theorem 2.13 Pachpatte (1973)

Let u(t), f(t) and g(t) be real-valued nonnegative continuous functions defined

on I, for which the inequality

u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds, t ∈ I (2.43)

holds, where u0 is a nonnegative constant. Then

u(t) ≤ u0

(
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ))dτ

)
ds

)
t ∈ I (2.44)

Theorem 2.14 Pachpatte(1973)

Let u(t), f(t) and g(t) be real-valued nonnegative continuous functions defined

on I, for which the inequality

u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)up(τ)dτ

)
ds, t ∈ I (2.45)

holds, where u0 is a nonnegative constant and 0 ≤ p < 1. Then

u(t) ≤ u0 +

∫ t

0

f(s) exp

(∫ s

0

f(τ)dτ

)
.

[
u1−p0 + (1− p)

∫ s

0

g(τ) exp

(
−(1− p)

∫ τ

0

f(η)dη

)
dτ

] 1
1−p

ds ∀t ∈ I.

(2.46)

Let u0 in Theorem 2.13 be replaced with a positive, monotonic, nondecreasing

continuous function n(t) defined on I.

Theorem 2.15 Pachpatte (1973)

Let u(t), f(t) and g(t) be real-valued nonnegative continuous functions defined

on I, and n(t) be a positive, monotonic, nondecreasing continuous function defined
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on I, for which the inequality

u(t) ≤ n(t) +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds, t ∈ I (2.47)

holds. Then

u(t) ≤ n(t)

(
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ)) dτ

)
ds

)
t ∈ I (2.48)

Pachpatte applied Theorem 2.15 to establish the following integral inequalities

which consist of nonlinear term(s)

Theorem 2.16 Pachpatte (1975a)

Let u(t), f(t), h(t) and g(t) be real-valued nonnegative continuous functions

defined on I, $(u) be a positive, continuous, monotonic, nondecreasing and sub-

multiplicative function for u > 0 $(0) = 0 and suppose further that the inequality

u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds

+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds+

∫ t

0

h(s)$(u(s))ds, t ∈ I

(2.49)

is satisfied for all t ∈ I, where u0 is a positive constant. Then
u(t) ≤ Ω−1 [Ω(u0)

+

∫ t

0

h(s)$

(
1 +

∫ s

0

f(τ)u exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds

]
.

[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ)) dτ

)
ds

]
, 0 ≤ t ≤ b

(2.50)

where Ω is defined as equation (2.13) and Ω−1 is the inverse function of Ω, and t is

in the subinterval [0, b] of I so that

Ω(u0) +

∫ t

0

h(s)$

(
1 +

∫ s

0

f(τ)u exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds ∈ dom(Ω−1)

Pachpatte gave more general form of Theorem 2.15

Theorem 2.17 Pachpatte (1975b)

Let u(t), f(t), h(t) and g(t) be real-valued nonnegative continuous functions

defined on I, $(u) be a positive, continuous, monotonic, nondecreasing, subadditive

and submultiplicative function for u > 0 $(0) = 0; the function y(t) > 0, ψ(t) ≥ 0

be nondecreasing in t and continuous on I, ψ(0) = 0 and suppose further that the

inequality

u(t) ≤ y(t) +

∫ t

0

f(s)u(s)ds

+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds+ ψ

(∫ t

0

h(s)$(u(s))ds

)
, t ∈ I

(2.51)
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is satisfied for all all t ∈ I. Then

u(t) ≤
[
p(t) + ψ

(
G−1

[
G

(∫ s

0

h(s)

×ψ
(
p(s)

(
1 +

∫ s

0

f(τ) exp

(∫ τ

0

(f(k) + g(k)) dk

)
dτ

))
ds

)
+

∫
0

h(s)ψ

(
1 +

∫ s

0

f(τ) exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds

])]
×
[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ)) dτ

)
ds

]
, 0 ≤ t ≤ b.

(2.52)

where G(u) is defined as equation (2.29) and G−1 is the inverse function of G, and

t is in the subinterval [0, b] of I so that

G

(∫ s

0

h(s)ψ

(
p(s)

(
1 +

∫ s

0

f(τ) exp

(∫ τ

t0

(f(k) + g(k)) dk

)
dτ

))
ds

)
+

∫
0

h(s)ψ

(
1 +

∫ s

0

f(τ) exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds ∈ dom(G−1)

Theorem 2.18 Pachpatte (1975b)

Let u(t) g(t) be real valued positive continuous function defined on I, n(t) be a

positive, monotonic, nondecreasing continuous function defined on I, and $ ∈ Ψ,

for which the inequality

u(t) ≤ n(t) +

∫ t

0

g(s)

(
u(s) +

∫ s

0

g(τ)$(u(τ))dτ

)
ds, t ∈ I (2.53)

holds.Then

u(t) ≤ n(t)

(
1 +

∫ t

0

g(s)H−1
(
H(1) +

∫ s

0

g(τ)dτ

)
ds

)
t ∈ [0, b] (2.54)

where

H(u) =

∫ u

u0

ds

s+$(s)
, 0 < u0 ≤ u (2.55)

and H−1 is the inverse of H, and t is in the subinterval [0, b] of I so that

H(1) +

∫ t

0

g(s)ds ∈ Dom(H−1)

Pachpatte applied Theorem 2.18 to establish the following integral inequalities:

Theorem 2.19 Pachpatte (1975b)

Let u(t), g(t) and h(t) be real valued positive continuous function defined on I :

$1 ∈ Ψ and $ is the same function in Theorem 2.16, and suppose further that the

inequality.

u(t) ≤ u0 +

∫ t

0

g(s)

(
u(s) +

∫ s

0

g(τ)$(u(τ))dτ)

)
ds

+

∫ t

0

h(s)$(u(s))ds, t ∈ I

(2.56)
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holds for all t ∈ I, where u0 a positive constant. Then
u(t) ≤ Ω−1 [Ω(u0)

+

∫ s

0

h(s)$

(
1 +

∫ s

0

g(τ)H−1
(
H(1) +

∫ τ

0

g(k)dk

)
dτ

)
ds

]
.

[
1 +

∫ t

0

g(s)H−1
(
H(1) +

∫ s

0

g(τ)dτ

)
ds

]
0 ≤ t ≤ b

(2.57)

Where H and Ω are defined as equations (2.55) and (2.13) respectively. Further

more H−1 and Ω−1 are the inverses of H and Ω respectively and t is the subinterval

such of I that

H(1) +

∫ t

0

g(s)ds ∈ Dom(h−1)

and

Ω(u0) +

∫ s

0

h(s)$

(
1 +

∫ s

0

g(τ)H−1
(
H(1) +

∫ τ

0

g(k)dk

)
dτ

)
ds ∈ Dom(Ω−1)

Theorem 2.20 Pachpatte(1975b)

Let u(t), g(t) and h(t) be real valued positive continuous function defined on

I : $1 ∈ Ψ and $ is the same function in Theorem 2.19,the function y(t) > 0,

ψ(t) ≥ 0 be nondecreasing in t and continuous on I, ψ(0) = 0 and suppose that

the inequality

u(t) ≤ y(t) +

∫ t

0

g(s)

(
u(s) +

∫ s

0

g(τ)$(u(τ))dτ)

)
ds

+ψ

(∫ t

0

h(s)$(u(s))ds

)
, t ∈ I

(2.58)

holds for all t ∈ I. Then
u(t) ≤

[
y(t) + ψ

(
G−1[

G

(∫ t

0

h(s)ψ

(
y(s)

(
1 +

∫ s

0

g(τ)×H−1
(
H(1) +

∫ τ

0

g(k)dk

)
dτ

)))
+

∫ s

0

h(s)$

(
1 +

∫ s

0

g(τ)H−1
(
H(1) +

∫ τ

0

g(k)dk

)
dτ

)
ds

])]
×
[
1 +

∫ t

0

g(s)H−1
(
H(1) +

∫ s

0

g(τ)dτ

)
ds

]
0 ≤ t ≤ b

(2.59)

Where H and Ω are as equations (2.55) and (2.13) respectively. Further more H−1

and Ω−1 are the inverses of H and Ω respectively. For t is in the subinterval I such

that

H(1) +

∫ t

0

g(s)ds ∈ Dom(h−1)

and

Ω(u0) +

∫ s

0

h(s)$

(
1 +

∫ s

0

g(τ)H−1
(
H(1) +

∫ τ

0

g(k)dk

)
dτ

)
ds ∈ Dom(Ω−1)

Pachpatte (1975c) developed the following integral inequalities:

u(t) ≤ n(t) +

∫ t

0

f(s)$

(
u(s) +

∫ s

0

g(τ)$(u(τ))dτ

)
ds, t ∈ I (2.60)

where u(t), f(t) and g(t) be real nonnegative continuous function defined on R+,
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n(t) be a positive, monotonic, nondecreasing continuous function defined on R+

and $ ∈ Ψ

u(t) ≤ n(t) +

∫ t

0

f(s)$

(
u(s) +

∫ s

0

g(τ)$(u(τ))dτ

)
ds

+

∫ t

0

h(s)α(u(s))ds t ∈ I

(2.61)

where u(t), f(t), g(t) and h(t) be real nonnegative continuous function defined

on R+, n(t) be a positive, monotonic, nondecreasing continuous function defined

on R+, $ ∈ Ψ : α(u) be a positive, continuous, monotonic, nondecreasing and

submultiplicative function for u > 0.

u(t) ≤ n(t) +

∫ t

0

f(s)$

(
u(s) +

∫ s

0

g(τ)$(u(τ))dτ

)
ds

+h(t)ψ

(∫ t

0

h(s)α(s, u(s))ds

)
t ∈ I

(2.62)

where u(t), f(t), g(t), h(t)and n(t) be real nonnegative continuous function de-

fined on R+, n(t) be a positive, monotonic, nondecreasing continuous function

defined on R+, $ ∈ Ψ : α(t, u) be a nonnegative, continuous, monotonic, non-

decreasing in u, u > 0,for each fixed t ∈ I; the function n(t) > 0, ψ(t) > 0 be

nondecreasing in t and continuous on I, ψ(0) = 0.

u(t) ≤ n(t)$−1
[∫ t

0

f(s)$(u(s))ds+

∫ t

0

f(s)

(∫ s

0

g(τ)$(u(τ))dτ

)
ds

]
(2.63)

where u(t), f(t) and g(t) be real valued nonnegative continuous functions on R+ :

n(t) be a positive, monotonic, nondecreasing continuous function defined on R+;

$(u) be a positive, continuous, monotonic nondecreasing, subadditive and submul-

tiplicative function for u > 0, $(0) = 0, and $−1 denote the inverse function of

$.

u(t) ≤ n(t)$−1
[∫ t

0

f(s)$(u(s))ds+

∫ t

0

f(s)

(∫ s

0

g(τ)$(u(τ))dτ

)
ds

]
+

∫ t

0

h(s)α(u(s))ds t ∈ I

(2.64)

u(t) ≤ n(t)$−1
[∫ t

0

f(s)$(u(s))ds+

∫ t

0

f(s)

(∫ s

0

g(τ)$(u(τ))dτ

)
ds

]
+h(t)ψ

(∫ s

0

q(s)α(s, u(s))ds

)
t ∈ I

(2.65)

u(t) ≤ n(t) +

∫ t

0

f(s)$

(
u(s)

∫ s

0

f(τ)

(∫ τ

0

f(k)$(u(k))dk

)
dτ

)
ds (2.66)

u(t) ≤ u0 +

∫ t

0

f(s)$

(
u(s) +

∫ s

0

f(τ)

(∫ τ

0

f(k)$(u(k))dk

)
dτ

)
ds

+

∫ t

0

g((s)α(s, u(s))ds t ∈ I

(2.67)
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u(t) ≤ p(t) +

∫ t

0

f(s)$

(
u(s) +

∫ s

0

f(τ)

(∫ τ

0

f(k)$(u(k))dk

)
dτ

)
ds

+h(t)ψ

(∫ t

0

g((s)α(s, u(s))ds

)
t ∈ I

(2.68)

Theorem 2.21 Pachpatte (1975c)

Let u(t), f(t), and g(t) be a real-valued nonnegative continuous function defined on

R+, and n(t) be a positive, monotonic, nondecreasing continuous function defined

on R+, for which the inequality

u(t) ≤ n(t) + g(t)

(∫ t

0

f(s)u(s)ds

)
, t ∈ I (2.69)

holds. Then

u(t) ≤ n(t)

[
1 + g(t)

(∫ t

0

f(s) exp

(∫ s

0

g(τ)f(τ)dτ

)
ds

)]
, t ∈ I (2.70)

Theorem 2.22 Pachpatte (1975c)

Let u(t), f(t), g(t) and h(t) be a real-valued nonnegative continuous function

defined on R+, and n(t) be a positive, monotonic, nondecreasing continuous func-

tion defined on R+, let $(u) be a positive continuous,monotonic, nondecreasing

and submultiplicative function for u > 0, $(0) = 0, and suppose further that

inequality

u(t) ≤ u0 + g(t)

(∫ t

0

f(s)u(s)ds

)
+

∫ t

0

h(s)$(u(s))ds, t ∈ I (2.71)

is satisfied for all t ∈ I, where u0 is a positive constant. Then

u(t) ≤ Ω−1
[
Ω(u0) +

∫ t

0

h(s)

×$
(

1 + g(s)

(∫ s

0

f(τ) exp

(∫ τ

0

g(k)f(k)dk

)
dτ

))
ds

]
×
[
1 + g(t)

(∫ t

0

f(s) exp

(∫ s

0

g(τ)f(τ)dτ

)
ds

)]
, t ∈ I

(2.72)

where Ω is defined in equation(2.13) and Ω−1 is the inverse function of Ω, and t is

in the subinterval [0, b] of I so that

Ω(u0)+

∫ t

0

h(s)×$
(

1 + g(s)

(∫ s

0

f(τ) exp

(∫ τ

0

g(k)f(k)dk

)
dτ

))
ds ∈ Dom(Ω−1)

Theorem 2.23 Pachpatte (1975c)

Let u(t), f(t), g(t) and h(t) be a real-valued nonnegative continuous function

defined on R+, and n(t) be a positive, monotonic, nondecreasing continuous func-

tion defined on R+, let $(u) be a positive continuous,monotonic, nondecreasing

and submultiplicative and subadditive function for u > 0, $(0) = 0, let p(t) > 0,

ψ(t) ≥ 0 be nondecreasing in t and continuous on R+, ψ(0) = 0 : and suppose

further that the inequality

u(t) ≤ p(t) + g(t)

(∫ t

0

f(s)u(s)ds

)
+ ψ

(∫ t

0

h(s)$(u(s))ds

)
, (2.73)
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is satisfied for all t ∈ I. Then

u(t) ≤
[
p(t) + ψ

(
G−1

[
G

(∫ t

0

h(s)

×$
(
p(s)

[
1 + g(s)

(∫ s

0

f(τ) exp

(∫ s

τ

g(k)f(k)dk

)
dτ

)])
ds

)
+

∫ t

0

h(s)$

(
1 + g(s)

(∫ s

0

f(τ) exp

(∫ s

τ

g(k)f(k)dk

)
dτ

))
ds

]
ds

)]
×
[
1 + g(t)

(∫ t

0

f(s) exp

(∫ t

0

g(τ)f(τ)dτ

)
ds

)]
, t ∈ I

(2.74)

where G(u) is defined in equation(2.29) and G−1 is the inverse function of Ω, and

t ∈ [0, b] ⊆ I so that

G

(∫ t

0

h(s)×$
(
p(s)

[
1 + g(s)

(∫ s

0

f(τ) exp

(∫ s

τ

g(k)f(k)dk

)
dτ

)])
ds

)
+

∫ t

0

h(s)$

(
1 + g(s)

(∫ s

0

f(τ) exp

(∫ s

τ

g(k)f(k)dk

)
dτ

))
ds ∈ Dom(Ω−1)

Theorem 2.24 Pachpatte(1975c)

Let u(t), f(t), g(t) h(t) and q(t) be a real-valued nonnegative continuous function

defined on R+, let $(t, u) be a positive, monotonic, continuous, nondecreasing in

u, u > 0 for each fixed t ∈ I; let the functions p(t) > 0, ψ(t) ≥ 0 be nonincreasing

in t and continuous on R+, $(0) = 0; and suppose further that the inequality

u(t) ≤ p(t) + g(t)

(∫ t

0

f(s)u(s)ds

)
+ h(t)ψ

(∫ t

0

h(s)$(u(s))ds

)
, t ∈ I (2.75)

is satisfied for all t ∈ I. Then

u(t) ≤ k(t) [p(t) + h(t)ψ(r(t))] , t ∈ I (2.76)

where

k(t) = 1 + g(t)

(∫ t

0

f(s) exp

(∫
0

sg(τ)f(τ)dτ

)
ds

)
(2.77)

and r(t) is the maximal solution of

r′(t) = q(t)$ (t, k(t) [p(t) + h(t)ψ(r(t))]) , r(0) = 0 (2.78)

existing on R+. Pachpatte provided bounds for the following nonlinear inequalities,

the detail is in Pachpatte(1975d)

u(t) ≤ n(t) +$−1
[
φ

(∫ t

0

f(s)$(u(s))ds

)]
, t ∈ I (2.79)

where φ ∈ Ψ and defined

P (u) =

∫ t

0

ds

1 + φ(s)
, u ≥ u0 > 0, (2.80)

From integral inequality (2.11) the author developed

u(t) ≤ u0 +$−1
[
φ

(∫ t

0

f(s)$(u(s))ds

)]
+

∫ t

t0

g(s)$(u(s))ds, t ∈ I (2.81)

where u0 is a positive constant.

u(t) ≤ p(t) +$−1
[
φ

(∫ t

0

f(s)$(u(s))ds

)]
+ ψ

(∫ t

0

g(s)$(u(s))ds

)
, t ∈ I
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(2.82)

where ψ(t) ≥ 0 and p(t) > 0, ψ(0) = 0

u(t) ≤ p(t) +$−1
[
φ

(∫ t

0

f(s)$(u(s))ds

)]
+ h(t)ψ

(∫ t

0

g(s)$(u(s))ds

)
, (2.83)

where h(t) be real-valued positive continuous function defined on R+ and with φ,

$ ∈ Ψ defined as

Q(u) =

∫ u

u0

ds

$(1 + φ(s))
, u ≥ u0 > 0. (2.84)

Chandra and Davis(1976) studied the linear integral inequalities such as

u(t) ≤ a(t) +G(t)

∫ t

t0

H(s)u(s)ds t0 ≤ t (2.85)

where G(t), H(t) be continuous, nonnegative matrices for t0 ≤ t Pachpatte(1976)

gave four main theorems about Gronwall’s inequality as follow:

u(t) ≤ n(t) + g(t)

(∫ t

0

h(s)uα(s)ds

) 1
α

, t ∈ I (2.86)

where 1 ≤ α <∞

u(t) ≤ u0 + g(t)

(∫ t

0

h(s)uα(s)ds

) 1
α

+

∫ t

0

p(s)$(u(s))ds, t ∈ I (2.87)

where u0 is positive constant

u(t) ≤ f(t) + g(t)

(∫ t

0

h(s)uα(s)ds

) 1
α

+ φ

(∫ t

0

p(s)$(u(s))ds

)
, t ∈ I (2.88)

u(t) ≤ f(t) + g(t)

(∫ t

0

h(s)uα(s)ds

) 1
α

+ q(t)φ

(∫ t

0

p(s)$(u(s))ds

)
. (2.89)

Dehongade and Deo(1976) considered the inequality dealing with generalisation of

Bihari’s integral inequality in the form

u(t) ≤ f(t) +
n∑
i=1

∫ t

0

hi(s)$i(u(s))ds t ∈ I (2.90)

where

Ωk(u) =

∫ u

u0

ds

$k(s)
, 0 < u0, u > 0 (2.91)

and $ ∈ Ψ. Agarwal and Thandapani(1981) gave the following integral inequalities

of the form

u(t) ≤ p(t) + q(t)Σn
r=1Er(t, u) (2.92)

The inequality (2.92) is considered when p(t) is not nondecreasing and when it is

nondecreasing.

u(t) ≤ p(t) + Σn
r=1gr(t)Er(t, u) (2.93)

where gi(t) ≥ 1(i = 1, 2, .......n) and the inequality (2.93) is not nondecreasing and

when it is nondecreasing.

u(t) ≤ p(t) + q(t)Σn
r=1Qr(t, u) (2.94)

where

Qr(t, u) = Er(t, u) + er(t, u)
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Other integral inequalities considered by Agarwa and Thandapani(1981) are given

below:

u(t) ≤ ω(t) +

∫ t

0

K(t, s)u(s)ds (2.95)

where the functionK(t, s) is continuous, differentiable with respect to t onR+×R+.

Further more K(t, t) ≥ 0,
∂K(t, s)

∂t
≥ 0 but K(t, s) or

∂K(t, s)

∂t
is not necessarily

separable as considered by Willett(1965) In the next integral inequality, K(t, s) ≤∑n
r=i gr(t)hr(s) is considered as follow:

u(t) ≤ ω(t) +
n∑
r=1

gr(t)

∫ t

0

hr(s)u(s)ds (2.96)

where:

(i) ω(t) is nondecreasing

(ii) gr(t) ≥ 1 (i = 1, 2, ......, n) and are nondecreasing for i ≥ 2.

The authors also considered the following nonlinear generalisation of Gronwall type

inequalities of the form

u(t) ≤ p(t) [u0 + Σn
r=1E

∗
r (t, u)] (2.97)

where

E∗r (t, u) =

∫ t

0

fr1(t1)u
k
r1(t1)

∫ t

0

fr2(t2)u
k
r2(t2).......∫ tr−1

0

frr(tr)u
k
rr(tr)dtr.dtr−1.....dt1

and kij(i = 1, 2, ..., n, j = 1, 2, ....n) are nonnegative real numbers and u0 > 0.

The further consideration of nonlinear generalisation of integral inequality yield

the following:

u(t) ≤ p(t) + q(t)Σn
r=1Er(t, u) + Σm

r=1gr(t)

∫ t

0

hr(s)ωr(u(s))ds. (2.98)

The next linear integral inequalities considered is given as:

u(t) ≤ p(t) + q(t)Σn
r=1Er(t, u) + g(t)

∫ t

0

h1(t1)

∫ t

0

h2(t2)......∫ tm−1

0

hm(tm)ω(u(tm))dtmdtm−1..dt1.

(2.99)

Akinyele(1984) gave the following integral inequalities which extended the results

of Yeh and shih (1982) and Pachpatte(1975)

Theorem 2.25 Akinyele(1984)

Let u(t), f(t) and g(t) be real nonnegative continuous functions on R+ and n(t)

be a positive ,nondecreasing continuous function on R+. Suppose σ and p ∈ Ψ and

q(t) ≥ 1 is a real valued continuous function defined on R+. Let the functional

inequality

u(t) ≤ p(t) + q(t)

[∫ t

t0

f(s)u(σ(s))ds+

∫ t

t0

f(s)

(∫ s

t0

g(x)u(p(x))dx

)
ds

]
(2.100)
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hold for t ∈ R+. with t ≥ t0. Then for all t ∈ R+ with t ≥ 0

u(t) ≤ q(t)n(t)× exp

(∫ t

t0

{
f(s)q(σ(s))n(σ(s)) + g(s)q(p(s))n(p(s))

n(σ(s))

}
ds

)
(2.101)

and

q(t)n(t)

[
1 +

∫ t

t0

f(s)q(σ(s))

× exp

(∫ s

t0

{
f(x)q(σ(x))n(σ(x)) + g(x)q(p(x))n(p(x))

n(σ(x))

}
dx

)
ds

] (2.102)

Theorem 2.26 Akinyele(1984)

Let u(t), f(t), g(t), q(t), σ(t), and p(t) be as in Theorem 2.25. Let h(t) be a

real valued nonnegative continuous defined on R+ ⊂ Rn, and H(u) be a positive ,

continuous,monotonic, nondecreasing and submultiplicative function for u > 0 and

H(0) = 0. If for t ∈ R+ with t ≥ t0, and DkH(u(t)) ≥ 0 for k = 2, 3....n

u(t) ≤ u0 + q(t)

[∫ t

t0

f(s)u(σ(s))ds+

∫ t

t0

f(s)

(∫ s

t0

g(x)u(σ(x))dx

)
ds

]
+

∫ t

t0

h(s)$(u(p(s))ds

(2.103)

then

u(t) ≤ q(t) exp

(∫ t

t0

q(σ(s))

{
f(x) + g(x)

}
dx

)
×
[
Ω−1 (Ω(u0)

+

∫ t

t0

h(s)$

[
q(p(s))× exp

(∫ p(s)

t0

q(σ(x))

{
f(t) + g(x)

}
dx

)]
ds

)] (2.104)

and

u(t) ≤ E(t)

[
1 +

∫ t

t0

f(s)q(σ(s))× exp

(∫ s

t0

q(σ(x))

{
f(x) + g(x)

}
dx

)]
(2.105)

where

E(t) = q(t)Ω−1
[
Ω(u0) +

∫ t

t0

h(y)

×$

(
q(p(y))

{
1 +

∫ p(y)

t0

f(s)q(σ(s))A(s)ds

})
dy

]
with

A(t) = exp

(∫ t

t0

q(σ(s))

{
f(s) + g(s)

}
ds

)
where Ω is defined in equation (2.13)

Dannan(1985) developed the following integral inequalities by using multiplier func-

tions φ and h(t)

Theorem 2.27 Dannan (1985)

Assume that u(t) and f(t) are positive continuous functions on R+ $(u) ∈ Ψ with

corresponding multiplier function φ and h(t) > 0 is monotonic, nondecreasing and

continuous on R+.
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If

u(t) ≤ h(t) +

∫ t

0

f(s)$(u(s))ds, t ∈ I (2.106)

then

u(t) ≤ h(t)Ω−1
[
Ω(1) +

∫ t

0

f(s)
φ(h(s))

h(s)
ds

]
, 0 ≤ t ≤ b (2.107)

where Ω is defined as equation(2.13) Ω−1 is the inverse of Ω and (0, b) is the

subinterval for which

Ω(1) +

∫ t

0

f(s)
φ(h(s))

h(s)
ds ∈ Dom(Ω−1).

Corollary 2.2 Dannan (1985)

Let u,f ,$,h,Ω all be as in Theorem 2.26 and suppose b(t) is nonnegative, continuous

and nondecreasing on R+. if

u(t) ≤ h(t) + b(t)

∫ t

0

f(s)$(u(s))ds, t ∈ I (2.108)

then

u(t) ≤ h(t)Ω−1
[
Ω(1) + b(t)

∫ t

0

f(s)
φ(h(s))

h(s)
ds

]
, 0 ≤ t ≤ b. (2.109)

where Ω is defined as equation (2.13), Ω−1 as inverse of Ω and [0, t0] is subinterval

for which

Ω(1) + b(t0)

∫ t

0

f(s)
φ(h(s))

h(s)
ds ∈ Dom(Ω−1).

Dannan (1985) extended the Theorem 2.26 to the following theorem:

Theorem 2.28 Dannan (1985)

Let u(t), f(t) be positive continuous functions on R+ and $(u) ∈ H with corre-

sponding multiplier function φ, for which the inequality

u(t) ≤ u0 +

∫ t

0

f(s)$(u(s))ds+

∫ t

0

g(s)

(∫ s

0

f(τ)$(u(τ))dτ)

)
ds, t ∈ I (2.110)

holds, where u0 > 0 is constant. Then
u(t) ≤ u0A(t)E(t)Ω−1 [Ω(1)

+u−10 E(t)

∫ t

0

f(s)
φ(u0A(s)E(s))

A(s)E(s)
ds

]
for 0 ≤ t ≤ b,

(2.111)

where

E(t) ≡ exp

(∫ t

0

g(s)ds,

)

A(t) ≡


∫ t

0

g(s)ds

E(t)

 ,

Ω(u)is defined in equation (2.13). Ω−1 is the inverse of Ω and t is in the subinterval

[0, t0] so that

Ω(1) + u−10 E(t)

∫ t

0

f(s)
φ(u0A(s)E(s))

A(s)E(s)
ds ∈ Dom(Ω−1).
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Theorem 2.29 Dannan (1986)

Let u(t), f(t), g(t), p(t) and k(t) be real valued positive functions defined on

R+, let $(u) ∈ Ψ with corresponding multiplier function φ and let k(t) also be a

monotonic, nondecreasing function, for which the inequality

u(t) ≤ k(t) + p(t)

∫ t

0

f(s)$(u(s))ds+

∫ t

0

g(s)$(u(s))ds, t ∈ I. (2.112)

Then

u(t) ≤ k(t)r(t)Ω

[
Ω(1) +

∫ t

0

1

k(s)
g(s)φ(k(s))φ(r(s))ds

]
(2.113)

for t ∈ [0, b] where

r(t) = 1 + p(t)

[∫ t

0

exp

(∫ t

0

p(θ)f(θ)dθ

)
ds

]
, t ∈ I (2.114)

where Ω is defined as equation (2.13) and Ω−1 is the inverse function of Ω, and

t ∈ [0, b] ⊂ I so that

Ω(1) +

∫ t

0

1

k(s)
g(s)φ(k(s))φ(r(s)) ∈ Dom(Ω−1)

Theorem 2.30 Dannan (1986)

Let u(t), a(t), k(t) and h(t) be real valued nonnegative continuous functions de-

fined on I = [0, β). Let g(u) ∈ M with corresponding function φ on an interval

R+ such that u(J) ⊂ R+ and a(J) ⊂ R+. Suppose also that the function h is

monotonic, nondecreasing on an interval K such 0 ∈ K, h(K) ⊂ R+. Then

u(t) ≤ a(t) + h

[∫ t

0

k(s)g(u(s))ds

]
(2.115)

implies

u(t) ≤ a(t) + h

(
G−1

[∫ t

0

k(s)ds+G

(∫ t

0

φ(a(s))ds

)])
(2.116)

for 0 ≤ t < β1, where G(u) is defined as equation (2.29) for β1 = min(u1, u2, u3)

with

u1 = sup

{
u ∈ J : a(t) + h

(∫ t

0

k(s)g(u(s))ds

)
∈ R+, 0 ≤ t ≤ u

}
u2 = sup

{
u ∈ J :

∫ u

u0

k(s)

[
φ(a(s)) + goh

(∫ t

0

k(θ)g(u(θ))dθ

)]
ds ∈ K

}
u3 = sup

{
u ∈ J :

∫ u

u0

k(s)ds+G

(∫ T

0

k(s)φ(u(s))ds

)
∈ G(K), 0 ≤ t ≤ T ≤ u

}
Pinto 1990 considered integral inequalities with several nonlinear terms.

Theorem 2.31 Pinto(1990)

Suppose the following two hypotheses

(H1) The functions $i, i = 1, 2, 3, ........, n are continuous and nondecreasing on

R+ and positive on R+ such that $1 ∝ $2 ∝ $3 ∝ ...... ∝ $n. (H2) The functions

u, {λ}ni−1 are continuous and nonnegative on I− [a, b] and c is a positive constant.
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if

u(t) ≤ c+
n∑
i=1

∫ t

t0

λi(s)$i(u(s))ds, t ∈ I (2.117)

then

u(t) ≤ Ω−1n

[
Ωn(cn−1) +

∫ t

t0

λn(s)ds

]
(2.118)

for t ∈ [t0, b1] where Ωk is defined in equation (2.91) and Ω−1k is the inverse of the

of Ωk.

The constants ck are given by c0 = c and

ck = Ω−1k [Ωk(ck−1) + ||λ||b1 ] k = 1, 2......., n− 1

The number b1 ⊂ I is the largest number such that

||λ||b1 =

∫ b1

t0

λk(s)ds ≤
∫ ∞
ck−1

ds

ωk(s)
, k = 1, 2, ....n

Theorem 2.32 Pinto (1990)

Assume that u and λi, i = 1, 2, ......, n are continuous and nonnegative functions

on [t0, b], $i ∈ Ψ, i = 1, 2.........., n with corresponding multiplier functions ri i =

1, 2, ...... such that $1 ∝ $2 ∝ $3 ∝ ...... ∝ $n. and c is a positive constant. if

u(t) ≤ c+

∫ t

t0

λ0(s)u(s)ds+
n∑
i=1

∫ t

t0

λi(s)$i(u(s))ds, t ∈ I (2.119)

then for all t ∈ [t0, b1]

u(t) ≤ E(t).Ω−1n

[
Ωn(cn−1) +

∫ t

t0

λn(s).
rn(E(s))

E(s)
ds

]
, (2.120)

where the notations are the same as in Theorem 2.31 by replacing λi by λiri(E)/E

with E(t) = exp
(∫ t

t0
λ0(s)ds

)
.

Theorem 2.33 Pinto (1990)

Let u, λi, $i i = 1, 2, ......, n be as in Theorem 2.31 and suppose that $i ∈ Ψ, i =

1, 2.........., n with corresponding multiplier functions ri i = 1, 2, ...... and h > 0 is

a continuous function on [t0, b]. if

u(t) ≤ h(t) +
n∑
i=1

∫ t

t0

λi(s)$i(u(s))ds, t ∈ [t0, b] (2.121)

then for all t ∈ [t0, b1]

u(t) ≤ h(t)Ω−1n

[
Ωn(cn−1) +

∫ t

t0

λn(s)rn(h(s))ds

]
, (2.122)

where the notations are the same as in Theorem 2.31 by replacing λi by λi.ri(h)

and c0 = 1.

Corollary 2.3 Pinto (1990) Let u, λi, $i i = 1, 2, ......, n and h be as in Theorem

2.33 and suppose that f(t)i, i = 1, 2.........., n are nonnegative, continuous and

nondecreasing functions on [t0, b]. if

u(t) ≤ h(t) +
n∑
i=1

fi(t)

∫ t

t0

λi(s)$i(u(s))ds, t ∈ [t0, b] (2.123)
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then for all t ∈ [t0, b1]

u(t) ≤ h(t)Ω−1n

[
Ωn(cn−1) + fn(t)

∫ t

t0

λn(s)rn(h(s))ds

]
, (2.124)

where the notations are the same as in Theorem 2.31 by replacing

λi by f(bi).λi.ri(h) 1 ≤ i ≤ n and c0 = 1.

Corollary 2.4 Pinto (1990)

Let u, λi, $i ri, i = 1, 2, ......, n be as in Theorem 2.33 and f(t)i, i = 1, 2.........., n

as in Corollary 2.5. Suppose that h and f are continuous and positive function on

[t0, b] such that f ∝ h. if

u(t) ≤ h(t) + f(t)
n∑
i=1

fi(t)

∫ t

t0

λi(s)$i(u(s))ds, t ∈ [t0, b] (2.125)

then for all t ∈ [t0, b1]

u(t) ≤ h(t)

f(t)
Ω−1n

[
Ωn(cn−1) +

∫ t

t0

λn(s)rn(f(s))rn(h(s))/f(s)ds

]
, (2.126)

where the notations are the same as in Theorem 2.31 by replacing λi by

f(bi).λi.ri(f)ri(h/f) 1 = 1, 2....., n and c0 = 1. Pinto (1990) established his result

for n = 1 only

Theorem 2.34 Pinto (1990)

Let u, λi, i = 1, 2, 3, $i i = 1, 2, 3, and c be as in Theorem 2.31. If

u(t) ≤ c+

∫ t

t0

λ1(s)$1(u(s))ds+

∫ t

t0

λ2$2

(∫ s

t0

λ3(τ)$3(u(τ))dτ

)
ds, t ∈ I (2.127)

then, for t ∈ [t0, b1],

u(t) ≤ Ω−13

[
Ω3(c2) +

∫ t

t0

λ3(s)ds

]
(2.128)

where the notations are the same as in Theorem 2.31. Lipovan (2000) generalised

the Gronwall inequality as follow:

Theorem 2.35 Lipovan (2000)

Let u, f ∈ C(I,R+). Suppose $ ∈ C(R+,R+) be nondecreasing with $(u) > 0

on R+ and α ∈ C1(I,R+ be nondecreasing with α(t) ≤ t on I. If

u(t) ≤ u0 +

∫ α(t)

α(0)

f(s)$(u(s))ds 0 ≤ t ≤ b (2.129)

where u0 is a nonnegative constant, then for 0 ≤ t < t1

u(t) ≤ Ω−1

(
Ω(u0) +

∫ α(t)

α(0)

f(s)ds

)
(2.130)

where Ω is defined in equation (2.13) and t1 ∈ (0, b) is chosen so that

Ω(u0) +

∫ α(t)

α(0)

f(s)ds ∈ Dom(Ω−1)

for all t lying in the interval [t0, t1]. Oguntuase (2000) obtained bounds to the linear

Gronwall-Bellman-Bihari type integral inequalities for a more general kernel k(t, s)

and a product kernel.
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Theorem 2.36 Oguntuase(2000)

Let k(t, s) be a good kernel, u(t) is a real valued nonnegative continuous function

on R+ and g(t) be a positive, nondecreasing continuous function on R+. Suppose

that the following inequality.

u(t) ≤ g(t) +

∫ t

t0

k(t, s)u(s)ds (2.131)

holds for all t ∈ I with t ≥ t0, then

u(t) ≤ g(t)

[
1 +

∫ t

t0

k(s, s) exp

(∫ s

t0

k(δ, δ)dδ

)
ds

]
(2.132)

Oguntuase obtained bounds to the following integral inequalities

Theorem 2.37 Oguntuase (2001)

Let u(t) and f(t) be nonnegative continuous functions in a real interval I. Suppose

that k(t, s) and its partial derivative kt(t, s) exist and are continuous function for

every t, s ∈ I. Suppose k(t, s) ≥ 0, kt(t, s) ≤ 0 and that inequality

u(t) ≤ c+

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)u(τ)dτ

)
ds t ∈ I (2.133)

holds where c is a nonnegative constant. Then

u(t) ≤ c

[
1 +

∫ t

t0

f(s) exp (f(τ) +K(τ, τ)dτ) ds

]
(2.134)

As a direct consequence of Theorem 2.37, in which k(t, s) = h(t)g(s). The following

integral inequalities stated thus;

Corollary 2.5 Oguntuase (2001)

If h′(t) ≤ 0 and c ≥ 0 is a constant, then

u(t) ≤ c+

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)h(s)

(∫ s

t0

g(τ)u(τ)dτ

)
ds t ∈ I (2.135)

implies

u(t) ≤ c

[
1 +

∫ t

t0

f(s) exp (f(τ) + h(τ)g(τ)dτ) ds

]
(2.136)

Theorem 2.38 Oguntuase (2001)

Let u(t) and f(t) be nonnegative continuous functions in a real interval I. Suppose

that k(t, s) and its partial derivative kt(t, s) exist and are continuous functions for

every t, s ∈ I. Suppose k(t, s) ≥ 0, kt(t, s) ≤ 0 and that inequality

u(t) ≤ c+

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)up(τ)dτ

)
ds t ∈ I (2.137)

holds, where 0 ≤ p < 1 and c > 0 are constants. Then for t ∈ I,

u(t) ≤ c+

∫ t

t0

f(s) exp

(∫ s

t0

f(τ)dτ

)
[
c1−p + (1− p)

∫ t

t0

k(τ, τ) exp

(
−(1− p)

∫ τ

t0

f(δ)dδ

) 1
1−p

ds

] (2.138)
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Theorem 2.39 Oguntuase (2001) If h′(t) ≤ 0 and c ≥ 0 is a constant, then

u(t) ≤ c+

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)h(s)

(∫ s

t0

g(τ)up(τ)dτ

)
ds t ∈ I (2.139)

holds, where 0 ≤ p < 1, q = 1− p > 0 and c > 0 are constants. Then for t ∈ I,

u(t) ≤ c+

∫ t

t0

f(s) exp

(∫
t0

f(τ)dτ

)
[
c1−p + (1− p)

∫ t

t0

h(τ)f(τ) exp

(
−(1− p)

∫ δ

t0

f(δ)

)
dδ

] 1
1−p

(2.140)

In 2014 Akhan established new explicit bounds on the following integral inequali-

ties.

Theorem 2.40 Khan(2014)

Let u(t), f(t) and g(t) be nonnegative continuous functions defined for I = [0.∞).

Let K(t) > 1 defined for K(t) > 1 and also k′(t) be nonnegative continuous func-

tions defined for K(t) > 1 if

u(t) ≤ k(t) +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(∂)u(∂)d∂

)
ds,∀t ∈ (I) (2.141)

then

u(t) ≤ k(t) + k(0)

∫ t

0

f(s) exp

(
k(s)− k(0) +

∫ s

0

(f(∂)

+g(∂)) d∂) ds ∀t ∈ I.

(2.142)

Theorem 2.41 Khan (2014)

Let u(t), f(t) and g(t), k(t) and k′(t) be defined in Theorem 2.40. If

u(t) ≤ k(t) +

∫ t

0

f(s)u(s)ds

+

∫ t

0

f(s)

(
f(τ)

(∫ s

0

g(∂)u(∂)d∂

)
dτ

)
ds,∀t ∈ (I)

(2.143)

then

u(t) ≤ k(t) +

∫ t

0

f(s) [k(s)

+k(0)

∫ s

0

f(τ) exp

(
k(τ)− k(0) +

∫ r

0

(f(∂) + g(∂))d∂

)
dτ

]
ds ∀t ∈ I.

(2.144)

In 2015, Wang obtained a result for the following integral inequality

w(u(t)) ≤ K +
n∑
i=1

∫ αi(t)

αi(t0)

fi(s)Π
m
j=1Hij(u(s))Gij( max

s−h≤ξ≤s
u(ξ))ds, (2.145)

t0 ≤ t < T.

In 2019, Hussain, Sadia and Aslam established the following integral inequalities

up ≤ a(t) + b(t)

∫ t

0

uq(s)ds+ g(t)

∫ t

0

(t− s)α−1uq(s)ds (2.146)

where a(t), b(t), g(t) and u(t) be nonnegative on I = [0, T ), T ≤ +∞ α ∈ (0, 1).

up ≤ a(t) + b(t)

∫ t

0

uq(s)ds+ g(t)

∫ t

0

(t− s)α−1L(s, uq(s))ds (2.147)

for this p ≥ 1

Tian and Fan(2020) considered the new nonlinear integral inequalities in the fol-
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lowing form:

u(t) ≤ a(t) +

∫ α(t)

0

b(s)

(
um(s) +

∫ s

0

c(ξ)un(ξ)dξ

)p
ds (2.148)

where m,n, p are nonnegative constants satisfying 0 < m,n ≤ 1, p > 1. α is

nondecreasing with α ∈ C1(R+,R+), α(t) ≤ t, α(0) = 0, u, a, b, c ∈ C(R+,R+)

uq(t) ≤ a(t) +

∫ α(t)

0

b(s)

(
um(s) +

∫ s

0

c(ξ)un(ξ)pdξ

)p
ds (2.149)

with q ≥ m > 0, q ≥ n > 0, p > 0, α(t) is nondecreasing with α ∈ C1(R+,R+)

α(t) ≤ t, α(0) = 0, u, a, b, c ∈ C(R+,R+)

2.2 Hyers-Ulam and Hyers-Ulam-Rassias Stability
of Linear Ordinary Differential Equations

Mathematical models of most dynamic processes in engineering, physical and

biological sciences are conveniently expressed in the form of linear and nonlinear

ordinary differential equations. In recent years numerous methods have been devel-

oped to tackle the qualitative behaviour of solutions of ordinary differential equa-

tions. A.M. Lyapunov introduced a method, which was called the second or direct

method,which was used to establish stability theorems, this was made known in a

memoir published in Russian in 1892. The method gained tremendous popularity

among many authors. Years later, precisely in 1940, the stability problem of func-

tional equations with the question concerning stability of group homomorphisms

proposed by Ulam(1940)in Ulam(1960) came into existence through a wide-rage

talk before the Mathematics Club of the University of Wisconsin in which he dis-

cussed a number of important unsolved problems. Among these was the question

concerning the stability of homomorphisms. On stability of functional equation,

Ulam proposed the following problem: "Give condition in order for a linear map-

ping near an approximately linear mapping to exist". This problem was also put in

the sense: "For what metric group G is necessarily near to a strict automorphism?"

In 1941, Hyers(1941) solved the problem of Ulam for additive functions defined on

Banach spaces thus: If X and Y are real Banach spaces and ε ≤ 0. Then for every

function f : X→ Y satisfying

||f(x+ y)− f(x)− f(y)|| ≤ ε, for all x, y,∈ X, (2.150)

there exists a unique additive function A : X→ Y with the property

‖f(x)− A(x)‖ ≤ ε (2.151)
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for all x ∈ X. The result by Hyers is called the Hyers-Ulam stability of the additive

Cauchy equation

f(x+ y) = f(x) + f(y). (2.152)

After a decade Aoki(1950) generalised the result given by Hyers and made the result

of Aoki an extension of Hyers’result. Bourgin(1951) worked on the extension of

Hyers’ result and had a publication tittle " Classes of transformations and bordering

transformations". In 1978, Rassias(1978) introduced a new functional inequality

called Cauchy-Rassias inequality and also succeeded in extending the result of

Hyers, by weakening the condition for the Cauchy differences to unbounded map

as follows: "If there exists ε ≥ 0 and 0 ≤ p < 1 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (2.153)

for allx, y ∈ X, then there exist a unique additive mapping A : X→ Y such that

‖f(x)− A(x)‖ ≤ 2ε

|2− 2p|
‖x‖p for every x ∈ X. (2.154)

The result of Rassias was called Hyers-Ulam-Rassias stability. In 1991, Gajda(1991)

solved the problem for 1 < p, the result established stated as thus, let X and Y be

two (real) norm linear spaces and assumed that Y is complete. Let f : X→ Y be

a mapping for which there exist two constants ε ∈ [0,∞) and p ∈ (R− {1}) such

that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε (‖x‖p + ‖y‖p) (2.155)

for all x, y ∈ X. Then, there exists a unique additive mapping T : X → Y such

that

‖f(x)− T (x)‖ ≤ δ ‖x‖p (2.156)

for all x ∈ X, where

δ =


2ε

2− 2p
for p < 1

2ε

2p − 2
for p > 1

for each x ∈ X the transformation T such that x → f(x) is continuous, then the

mapping T is linear. The result of Rassias is true for 1 < p; Gajda gave an example

to show that the above result failed to hold for p = 1. Rassias and Semrl (1992) gave

an example to show that Hyers-Ulam stability does not occur for approximately lin-

ear mapping and also investigated the behaviour of such mapping by expressing the

results in two directions, in the first result the researchers investigated the behav-

ior of approximately linear mappings between Euclidean spaces and in the second

result, they investigated the behavior of mappings that are approximately linear in
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the sense of inequality. After Hyers, many Mathematicians had extended the sta-

bility of functional equations extensively. These researchers include Forti (1995),

Jung(1996), Hyers, Isac and Rassias (1998), Lee and Jun(1999), Rassias (2000),

Jung( 2001), Park (2002), Miura, Takahasi and Choda(2001), Gavruta(1994), Jun

and Lee(2004), Park, Cho and Han( 2007), Jung(2011) and a host of others. A gen-

eralisation of Ulam’s problem recently proposed by replacing functional equations

with the differential equation;

α(f(t), u(t), u′(t), ......u(n)(t)) = 0 (2.157)

and stated that (2.157) has Hyers-Ulam stability if for a given ε > 0 and a function

u(t) such that

|α(f(t), u(t), u′(t), ......u(n)(t))| ≤ ε (2.158)

there exists a solution of u0(t) of the differential equation (2.157) satisfying

|u(t)− u0(t)| ≤ K(ε)

and

lim
ε→0

K(ε) = 0

If ε and K(ε) is replaced by ϕ(t) and η(t), where ϕ, η are appropriate functions not

depending on u(t) and u0(t) explicitly, then the corresponding differential equation

has the generalised Hyers-Ulam-Rassias stability.

Obloza(1993) and Obloza(1997) investigated Hyers-Ulams stability of the lin-

ear differential equation. Thereafter, Alsina and Ger(1998) handled the Hyers-

Ulam stability of the linear differential equation

u′(t) = u(t) (2.159)

It was stated that If a differentiable function u(t) is a solution of the inequality

|u′(t)− u(t)| ≤ ε

for any t ∈ (t0,∞), then there exits a positive constant c such that

|u(t)− c exp(t)| ≤ 3ε

for all t ∈ (a,∞). The above results by Obloza, Alsina and Ger on linear differential

equations were extended by several authors. These authors include: Miura, Taka-

hasi and Choda(2001), Miura (2002) and Takahasi, Miura and Miyajima (2002)

generalised the result of Alsina and Ger by considering Hyers-Ulam stability of the

differential equation

u′(t) = λu(t). (2.160)

Jung(2007) investigated the generalised Hyers-Ulam stability or Hyers-Ulam-Rassias
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stability of the first order linear differential equation(2.160). Miura, Miyajima

and Takahasi [Miuraet al(2003) investigated the Hyers-Ulam stability of equation

(2.160) as

u′(t) + g(t)u(t) = 0 (2.161)

where λ is replaced with a continuous function g(t),. While Jung (2004) proved

the equation(2.159)in the form

ϕ(t)u′(t) = u(t). (2.162)

Thereafter, Takahasi, Takagi, Miura and Miyajima (2004), Miura,Hirasawa, Taka-

hasi (2004) and Jung (2006) discussed the Hyers-Ulam stability of the nonhomo-

geneous linear differential equation of first order

u′(t) + p(t)u(t) + q(t) = 0. (2.163)

This is improved result of Jung(2004) and Miuraet al(2003). Wang, Zhou and

Sun(2008) considered the Hyers-Ulam stability of

q(t)u′(t)− p(t)u(t)− r(t) = 0 (2.164)

which is an extension of equation(2.163). In another development Jung(2005) con-

sidered the generalised Hyers-Ulam stability of the following nonhomogeneous lin-

ear differential equations.

tu′(t) + αu(t) + βtrx0 = 0, (2.165)

the result obtained from equation (2.164) assisted the researcher to investigate

further the Hyers-Ulam stability of second order linear differential equation

u′′(t) + αtu′(t) + βu(t) = 0. (2.166)

Years later, Onitsuka and Shoji(2017) investigated Hyers-Ulam stability of the

first order linear differential equation

u′(t)− au(t) = 0 (2.167)

where a is a non-zero real number. Li and Shen (2009) investigated the Hyers-Ulam

stability of differential equation of second order

u′′(t) + p(t)u′(t) + r(t) = 0 (2.168)

under some special conditions. The group of these researchers remarked that if f is

an approximate solution of the equation(2.168), then there exists an exact solution

of the equation near f. Gavruta, Jung and Li, (2011)discussed Hyers-Ulam stability

of linear differential equation of second order of the form

u′′(t) + β(t)u(t) = 0 (2.169)
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with the boundary conditions

u(t0) = u′(t′0) = 0.

or with initial condition

u(t0) = u′(t0) = 0.

Li and Shen(2010) investigated the Hyers-Ulam stability of the following linear

differential equations of second order;

u′′(t) + αu′(t) + βu(t) = 0 (2.170)

and

u′′(t) + αu′(t) + βu(t) = f(t). (2.171)

by applied the condition that the characteristics equation has two different positive

roots. The equation considered by Li and Shen generalised the equation considered

by Gavruta, Jung and Li(2011). Xue(2014) made an improvement on the result

of Li and Shen(2010) by investigating the Hyers-Ulam stability of equation (2.170)

and (2.171), by not considering the nature of their characteristic roots either the

roots are real or complex. The results obtained improved and extended the results

of Li and Shen. Li(2010) was motivated by the result of the following researchers

Takahas, Miura and Miyajim(2002) and Wang,Zhuo and sun (2008) which enabled

Li to consider the stability in the sense of Hyers-Ulam stability of second order

linear differential equation

u′′(t) = λ2u. (2.172)

Jung (2005) considered the Hyers-Ulam stability of the second order Euler equation

of the form

t2u′′(t) + αtu′(t) + βu(t) = 0, (2.173)

this equation is sometimes called the Cauchy equation. Jung(2010) solved the

nonhomogeneous differential equation of the form

y′′(t) + 2ty′ − 2ny =
∞∑
m=0

amt
m

where n is a nonnegative integer, and apply this result to the proof of a local

Hyers-Ulam stability of the differential equation

y′′(t) + 2ty′ − 2ny = 0

in a special class of analytic function. In [Javadian et al,2010] the stability of an

extension of the equation(2.168) was considered as equation

u′′(t) + p(t)u′(t) + q(t)u(t) = f(t) (2.174)

by considering its generalised Hyers-Ulam stability with the condition that there
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exits a nonzero u1 : I→ u in C2(I) such that

u′′1 + p(t)u′1 + q(t)u1 = 0 (2.175)

has its solutions in an open interval. Furthermore, Popa and Rasa(2011) obtained

some results on generalised Hyers-Ulam stability of the linear differential equation

u′(t)− λ(t)u(t) = f(t) t ∈ I (2.176)

in a Banach spaces. Gavruta, Jun and Li (2011) investigated Hyers-Ulam stability

of the linear differential equations

u′′ + β(t)u = 0 (2.177)

with boundary conditions and initial conditions. Abdollahpour et al(2012) proved

the Hyers-Ulam stability of the perfect linear differential equation of the form

f(t)u′′(t) + f1(t)u
′(t) + f2(t)u(t) = Q(t) (2.178)

by transforming the equation (2.178) to a perfect differential equation written as
d

dt
[f ′(t)u′(t) + (f ′1(t)− f ′(t))u(t)] = Q(t) (2.179)

after the transformation, Hyers-Ulam stability of the perfect equation obtained.

Further development, Li and Huang(2013) proved the Hyers-Ulam stability of linear

second order differential equations

u′′(t) + αu′(t) + βu(t) = 0 (2.180)

and

u′′(t) + αu′(t) + βu(t) = f(t) (2.181)

in complex Banach spaces. Modebei et al, (2014) investigated generalised Hyers-

Ulam stability of second order ordinary differential nonhomogeneous equation

u′′(t) + β(t)u(t) = f(t) (2.182)

with initial condition

u(t0) = u′(t0) = 0

where u(t) ∈ C2[t0, b], β ∈ C[t0, b]. Javadian et al(2011) investigated the generalised

Hyers-Ulam stability of differential equations of the form

u′′(t) + p(t)u′(t)q(t)u = f(t), (2.183)

the author made the equation different from Li and Huang by introducing the

continuous function p(t). Jung, Kim and Rassias(2008) proved the Hyers-Ulam

stability of a special type of systems of Euler differential equations of first order.

Jung and Lee (2007) investigated Hyers-Ulam-Rassias stability of linear differential

of second order In June 2015, Mohapatra(2015) proved the Hyers-Ulam stability

and Hyer-Ulam-Aoki-Rassias or simply Hyers-Ulam-Rassias stability of the n-th
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order ordinary linear differential equation with smooth coefficients on compact

and semi-bounded intervals using successive integration by part. Furthermore, the

following author Li and Shen(2009) discussed much on Hyers-Ulam stability of

nonhomogeneous linear differential equations of second order.

In another development, Tunc and Bicer(2013) discussed the stability in the

sense of Hyers-Ulam stability of nonhomogeneous Euler equations of third and

fourth order:

t3u′′′(t) + αt2u′′′(t) + βtu′′(t) + γu(t) = F (t) (2.184)

and

t4u′′′′(t) + α1t
3u′′′(t) + β1t

2u′′(t) + γ1tu
′(t) + ζu(t) = G(t) (2.185)

using transformation method. Murali and PonmanaSelvan(2018a) Investigated the

Hyers-Ulam stability of the homogeneous linear differential equation of third order

u′′′(t) + α(t)u′′(t) + β(t)u′(t) + (γ(t)− p(t))u(t) = 0 (2.186)

with initial conditions

u(t0) = u′(t0) = u′′(t0) = 0

and boundary conditions with the help of Taylor’s series Formula. Tripathy and

Satapathy(2014) investigated the generalised Hyers-Ulam stability of third order

Euler’s differential equations of the form

t3u′′′(t) + αt2u′′(t) + βtu′(t) + γu(t) = 0 (2.187)

on any open interval. Murali and Ponmana(2018b) investigated the Hyers-Ulam-

Rassias stability of the homogenous and nonhomogeneous linear differential equa-

tion

u′′′(t) + α(t)u(t) = 0 (2.188)

and

u′′′(t) + α(t)u(t) = ϕ(t) (2.189)

by approximation method of solution. Abdollahpour et al(2012) investigated the

Hyers-Ulam stability of the perfect linear differential equation

f(t)u′′(t) + f1(t)u
′(t) + f2(t)u(t) = Q(t) (2.190)

by setting

f2(t) = f ′1(t)− f ′′(t). (2.191)

which the authors used to transform the equation (2.191) for easy investigation of

stability via Hyers-Ulam stability. Abdollahpour and Najati(2011) proved that the
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third order differential equation

u′′′(t) + αu′′(t) + βu′(t) + γu(t) = f(t)

has the Hyers-Ulam stability. In the following year, Abdollahpour and Najati(2012)

investigated the Hyers-Ulam stability of the linear differential equation

u′′′(t)− f(t)u′′(t) + u′(t)− f(t)u(t) = H(t) (2.192)

which extended the linear differential equation considered in 2011 by making the

following transformations

g(t) = u′′(t) + u(t), F (t) = exp

(∫ t

t0

f(s)ds

)
z(t) =

g(b)

F (b)
F (t)− F (t)

∫ b

t

H(t)

F (t)
dt

for all t ∈ [t0, b]

Finally, Lee and Jun(2016)considered the generalisation of Hyers-Ulam-Rassias

stability of Jensen equation. Li, Zada and Faisal(2016) investigated the Hyers-Ulam

stability of nth order linear differential equations with non constant coefficients, the

author proved that Hyers-Ulam stability by using open mapping theorem. The au-

thor further investigated generalised Hyers-Ulam stability of the same nth order

linear differential equations.

2.3 Hyers-Ulam and Hyers-Ulam-Rassias Stability
of Nonlinear Ordinary Differential Equations

Large number of authors studied Hyers-Ulam and Hyers-Ulam-Rassias stability

of linear differential equations compared to nonlinear differential equations. In this

section the results of some few authors who studied the Hyers-Ulam and Hyers-

Ulam-Rassias stability of nonlinear differential equations are reviewed. Rus(2009)

presented four types of Ulam stability for ordinary differential equations, they are:

Hyers-Ulam stability, general Hyers-Ulam stability, Hyers-Ulam-Rassias stability

and generalised Hyers-Ulam-Rassias stability. Rus (2009) gave the following the

following equation and inequalities:

u′(t) = f(t, u(t)) forall t ∈ [t0, b), (2.193)

|u′(t)− f(t, u(t))| ≤ ϕ(t) for all t ∈ [t0, b), (2.194)

|u′(t)− f(t, u(t))| ≤ ε for all t ∈ [t0, b), (2.195)

and

|u′(t)− f(t, u(t))| ≤ εϕ(t) for all t ∈ [t0, b). (2.196)
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Rus(200) gave also the following definitions:

Definition 1.1

The equation (2.193) is Hyers-Ulam stable if there exists a real number cf > 0 such

that for each ε > 0 and for each solution u(t) ∈ C1([a, b),B) of equation (2.193)

there exists a solution u0(t) ∈ C1([a, b),B) of equation (2.194) with

|u(t)− u0(t)| ≤ Cfε, ∀t ∈ [a, b)

Definition 1.2

The equation (2.193) is generalised Hyers-Ulam stable if there exists θf ∈ C(R,R), θf (0) =

0, such that for each solution u(t) ∈ C1([a, b),B of equation (2.195) there exists a

solution u(t) ∈ C1([a, b),B) of equation (2.193) with

|u(t)− u0(t)| ≤ βf (ε), ∀t ∈ [a, b)

Definition 1.3

The equation (2.193) is Hyers-Ulam-Rassias stable with respect to ϕ if there exists

Cf,ϕ > 0 such that for each ε > 0 and for each solution u(t) ∈ C1([a, b),B) of

equation (2.196) there exists a solution u(t) ∈ C1([a, b),B) of equation (2.193)

with

|u(t)− u0(t)| ≤ Cf,ϕεϕ(t), ∀t ∈ [a, b)

Definition 1.4

The equation (2.193) is generalised Hyers-Ulam-Rassias stable with respect to ϕ if

there exists Cf,ϕ > 0 such that for each solution u(t) ∈ C1([a, b),B) of equation

(2.196) there exists a solution u0(t) ∈ C1([a, b),B) of equation (2.193) with

|u(t)− u0(t)| ≤ Cf,ϕϕ(t), ∀t ∈ [a, b).

Rus(2010) used these definitions to investigate the stability of the nonlinear differ-

ential equation

u′(t) = A(u(t)) + f(t, u(t)), t ∈ I ⊂ R. (2.197)

Qarqwani(2012a) investigated the stability of a generalised nonlinear second order

differential equation

u′′(t)− F (t, u(t)) = 0 (2.198)

with the initial condition

u(t0) = u′(t0) = 0

by making use of Gronwall lemma. In addition, the author proved the Hyers-Ulam

stability of a special case of equation (2.198) called Emden-Fowler type equation
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of the form

u′′(t)− h(t) |u|α sgnu = 0 (2.199)

with initial conditions

u(t0) = u′(t0) = 0.

Qarawani(2012b), further the investigation of Hyers-Ulam stability of nonlin-

ear differential equation

u′′ + p(t)u′ + q(t)u = h(t) |u|β e(
β−1
2

)
∫
p(t)dtsgnu β ∈ (0, 1) (2.200)

with the initial conditions

u(t0) = u′(t0) = 0.

Qarawani(2013) improved on the earlier result by considering Hyers-Ulam stability

of nonlinear differential equation

un = f(t, u(t), u′(t), u′′(t) · · ·u(n−1)) (2.201)

with initial conditions

u(t0) = u0, u
′(t0) = u1 · · · , u(n−1)(t0) = un−1 = 0.

In Qarawani(2014) stability of nonlinear differential equations of first order in the

sense of Hyers-Ulam-Rassias stability was considered using equation

u′ + p(t)u = G(t, u) (2.202)

with initial condition

u(t0) = u0 = 0

. The author also considered the Hyers-Ulam-Rassias stability of Bernoulli’s equa-

tion

u′ + p(t)u = q(t)un. (2.203)

Alqifiary and Jung(2014) used Grownwall inequality to investigate the Hyers-Ulam

stability of second order differential equations

u′′(t) + F (t, u(t)) = 0. (2.204)

Huanget al(2015) investigated the Hyers-Ulam stability of nonlinear differential

equations of the form

un(t) = F
(
t, u(t), u′(t), · · · , u(n−1)(t)

)
(2.205)

by applying Lipschitz condition and fixed point method. In 2016, Li et al(2016)

established Hyers-Ulam stability of
n∑
i=0

βn−i(t)u
(n−i)(t) = α(t) (2.206)
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and the generalised Hyers-Ulam stability of

u(n)(t) +
n∑
i=0

Qn−i(t)u
n−1(t) = f(t) (2.207)

by using basic theory of differential equation. Raviet al(2016) investigated the

Hyers-Ulam stability of a general nth order nonlinear differential equation of the

form

u(n) − F (t, u(t)) = 0 (2.208)

with the initial condition

u(t0) = u0, u
′(t0) = u1 · · · , u(n−1)(t0) = un−1 = 0,

the author also proved the Hyers-Ulam stability of the Emden-Fowler type of non-

linear differential equation of nth order

u(n)(t)− h(t) |u(t)|α sgnu(t) = 0. (2.209)

Recently, Bicer and Tunc(2018) investigated the Hyers-Ulam stability of second

order nonlinear differential equation with multiple variable time lags of the form
d2u

dt2
+ F (t, u(t))

du

dt
+H(t, u(t)) = 0. (2.210)

by using fixed point theorem.

In this research work, our results on Hyers-Ulam and Hyers-Ulam-Rassias

stability will extend all the results of aforementioned authors.
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CHAPTER THREE

METHODOLOGY

3.0 Introduction

The origin of integral inequalities to be used here could be traced to the Gronwall

inequality which is embraced by many researchers. This also opened the usefulness

of integral inequalities to the world of mathematicians. The development of the

integral inequalities are considered under the following headings:

Integral inequality with one nonlinear term

Integral inequality with two nonlinear terms

Integral inequality with three nonlinear terms

3.0.1 Integral Inequality with One Nonlinear Term

This section is devoted to consider the development of integral inequalities with

two terms of integrals, one containing a linear term and the other a nonlinear term.

Theorem 3.1:

Suppose u(t) and f(t) are nonnegative, and continuous functions on R+ . Suppose

that K(t, s) and its partial derivative Kt(t, s) exist and are continuous for every

t, s ∈ I and Kt(t, s) ≤ 0 . Moreover, let $ ∈ C(R+,R+) be nondecreasing with

$(u) > 0 on R+ for which the inequality

u(t) ≤ u0 + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds (3.1)

holds, where u0 and L are positive constants then,

u(t) ≤ Ω−1
(

Ω(u0) + L

∫ t

t0

f(s)K(s, s)

(
u0Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
, (3.2)

where,

Q(t) = expL

∫ t

t0

f(s)ds, (3.3)

Ω(u) is defined as equation(2.13) and t1 ∈ [t0,∞) is chosen so that(
Ω(u0) + L

∫ t

t0

f(s)K(s, s)

(
u0Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
∈ Dom(Ω−1)
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for all t lying in the subinterval [t0, t1] of I. Ω−1 is the inverse of the function Ω,.

Note Ω−1 is also a nondecreasing function.

Proof:

Since u0 > 0 and denote the r.h.s of inequality (3.1) by z(t);

z(t) = u0 + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds. (3.4)

From equation (3.4) and inequality (3.1) we have

u(t) ≤ z(t), z(t0) = u0 (3.5)

Differentiate (3.4) with respect to t yields

z′(t) = Lf(t)u(t) + f(t)

∫ t

t0

K(t, τ)$(u(τ))dτ (3.6)

Using (3.5) in (3.6) the result is

z′(t) ≤ Lf(t)

(
u(t) + f(t)

∫ t

t0

K(t, τ)$(u(τ))dτ

)
.

It is clear that

z′(t) ≤ Lf(t)M(t), (3.7)

where

M(t) = z(t) +

∫ t

t0

K(t, τ)$(z(τ))dτ. (3.8)

Differentiate (3.8) we have

M ′(t) = z′(t) +K(t, t)$(z(t)) +

∫ t

t0

∂

∂t
K(t, τ)$(z(τ))dτ.

Since K(t, s) and its partial derivative Kt(t, s) exist and are continuous with

Kt(t, s) ≤ 0, the result is

M ′(t) ≤ z′(t) + P (t), (3.9)

where

P (t) = K(t, t)$(z(t)), t ∈ [t0,∞). (3.10)

Let T ∈ [t0,∞) be any arbitrary number such that

M ′(t) ≤ Lf(t)M(t) + P (T ) forall t0 ≤ t ≤ T (3.11)

Solving the first order differential inequality (3.11)by using integrating factor de-

fined as

µ(t) = exp(−L
∫ t

t0

f(s)ds), (3.12)

the result yields

M(T ) ≤ u0 exp(L

∫ T

t0

f(s)ds) + P (T )

(∫ T

t0

(
exp(L

∫ T

t0

f(τ)dτ)

)
ds

)
. (3.13)

Substituting M(T ) in equation (3.7) yields

z′(T ) ≤ Lf(T )

(
u0 exp(L

∫ T

t0

f(s)ds) + P (T )

∫ T

t0

(
exp(L

∫ T

t0

f(τ)dτ)

)
ds

)
(3.14)
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Let P (T ) > 1, then

z′(T ) ≤ LP (T )f(T )

(
u0 exp(L

∫ t

t0

f(s)ds) +

∫ t

t0

(
exp(L

∫ t

t0

f(τ)dτ)

)
ds

)
(3.15)

By equation (2.13), letting z0 = z(t0), t = T, then
dΩ(z(t))

dt
≤ Lf(t)K(t, t)

(
u0Q(t) +

∫ t

t0

Q(s)ds

)
Q(t) is defined in equation (3.3), integrating equation(3.15) from t0 to t we get

z(t) ≤ Ω−1
(

Ω(u0) + L

∫ t

t0

f(s)K(s, s)

(
u0Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
Since u(t) ≤ z(t), we arrive at the result (3.4).

Theorem 3.2:

Let all the conditions of Theorem 3.1 remain valid and let n(t) be nonnegative,

nondecreasing, monotonic continuous function on R+, then the inequality

u(t) ≤ n(t) + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds (3.16)

holds, L a positive constant, then

u(t) ≤ n(t)Ω−1
(

Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds,

)
(3.17)

where Ω(u) is defined in (2.13), t1 ∈ [t0,∞) is chosen so that(
Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
∈ Dom(Ω−1),

for all t ∈ [t0, t1] ⊂ I. Ω−1 a nondecreasing function and the inverse of the function

Ω.

Proof:

Since n(t) is positive, monotonic, nondecreasing continuous function on R+.By

putting z(t) = u(t)
n(t)

in equation (3.16) we have
u(t)

n(t)
≤ 1 + L

∫ t

t0

f(s)
u(s)

n(s)
ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$

(
u(τ)

n(τ)

)
dτ

)
ds (3.18)

Let z(t) =
u(t)

n(t)
, equation (3.18) is written as

z(t) ≤ 1 + L

∫ t

t0

f(s)z(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(z(τ))dτ

)
ds (3.19)

By applying the Theorem 3.1 we obtain

z(t) ≤ Ω−1
(

Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
.

Substituting z(t) in the above equation, then, we arrive at inequality (3.19)

Remark 3.1:

The results obtained, extended the result obtained by Oguntuase (2001) and Pach-

patte (1975a).

Consequence of Theorems 3.1 and Theorem 3.2 is given as thus:

Theorem 3.3:

Let K(t, s) = r(t)p(s), where r(t) and p(s) are continuous on R+, and r′(t) ≤
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0, p′(t) ≤ 0 and u0 > 0 a constant. Then, the inequality (3.3) in Theorem 3.1

reduce to

u(t) ≤ u0 + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)r(s)

(∫ s

t0

p(τ)$(u(τ))dτ

)
ds (3.20)

by Theorem 3.2, we have

u(t) ≤ Ω−1
[
Ω(u0) + L

∫ t

t0

f(s)r(s)p(s)

[
u0Q(s) +

∫ s

t0

Q(τ)dτ

]
ds

]
, (3.21)

if we choose t1 ∈ I so that

Ω(u0) + L

∫ t

t0

f(s)r(s)p(s)

[
u0Q(s) +

∫ s

t0

Q(τ)dτ

]
ds ∈ Dom(Ω−1) (3.22)

for all t lying in the interval [t0, t1] ⊂ I, where Ω−1 be the inverse of Ω. Where

Ω(u) and Q(t) are defined in (2.13) and (3.3) respectively.

Proof:

Define the function v(t) as

v(t) = u0 + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)r(s)

(∫ s

t0

p(τ)$(u(τ))dτ

)
ds (3.23)

It is clear that from equation (3.23) we have

u(t) ≤ v(t), v(t0) = u0 (3.24)

Differentiate (3.23) we obtain

v′(t) = Lf(t)v(t) + f(t)r(t)

∫ t

t0

p(τ)$(v(τ))dτ.

Using inequality (3.24) we arrive at

v′(t) ≤ Lf(t)

[
v(t) + r(t)

∫ t

t0

p(τ)$(v(τ))

]
dτ (3.25)

Inequality (3.25) reduces to

v′(t) ≤ Lf(t)M(t), (3.26)

where M(t) is defined as

M(t) = v(t) + r(t)p(t)

∫ t

t0

$(v(τ))dτ. (3.27)

Differentiate (3.27) respect to t we nave

M ′(t) = v′(t) + r′(t)p(t)

∫ t

t0

$(v(τ))dτ + p(t)r(t)

∫ t

t0

$(v(τ))dτ

+r(t)p(t)$(v(τ)).

Since r′(t) ≤ 0, and p′(t) ≤ 0 we get

M ′(t) = v′(t) + r(t)p(t)$(v(t)). (3.28)

Since M(t) is nondecreasing and nonnegative function on R+,without loss of gen-

erality, from inequality (3.27) we obtain

v(t) ≤M(t) (3.29)

Using (3.29) in (3.28) to have

M ′(t) ≤ Lf(t)M(t) +R(t) (3.30)
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where

R(t) = r(t)p(t)$(v(t)) (3.31)

Now, let T ∈ I be any arbitrary number let R(T ) > 1, then equation (3.30) becomes

M ′(t) ≤ Lf(t)M(t) +R(T ) (3.32)

Using integrating factor defined in equation (3.12),we get

M(T ) ≤ u0 exp(L

∫ T

t0

f(s)ds) +R(T )

(∫ T

t0

(
exp(L

∫ T

t0

f(τ)dτ)

)
ds

)
. (3.33)

Substituting M(t) in (3.30), we obtain

v′(T ) ≤ Lf(T )

(
u0 exp(L

∫ T

t0

f(s)ds) +R(T )

∫ T

t0

(
exp(L

∫ T

t0

f(τ)dτ)

)
ds

)
(3.34)

Let R(T ) > 1, then

v′(t) ≤ LR(t)f(t)

(
u0 exp(L

∫ t

t0

f(s)ds) +

∫ t

t0

(
exp(L

∫ t

t0

f(τ)dτ)

)
ds.

)
(3.35)

If t = T, equation (3.35) becomes

v′(t) ≤ LR(t)f(t)

[
u0Q(t) +

∫ t

t0

Q(s)ds

]
(3.36)

By equation(3.31) with equation(2.13), we obtain
dΩ(v(t))

dt
≤ Lf(t)r(t)g(t)

[
u0Q(t) +

∫ t

t0

Q(s)ds

]
(3.37)

Integrating (3.37) from t0 to t,

v(t) ≤ Ω−1
[
Ω(u0) +

∫ t

t0

f(s)r(s)p(s)

[
u0Q(s) +

∫ s

t0

Q(τ)dτ

]
ds

]
(3.38)

Using this in (3.24), we arrive at the inequality (3.21).

Theorem 3.4:

Let all the conditions of Theorem 3.1 remain valid and let n(t) be nonnegative,

nondecreasing, monotonic continuous function on R+, the inequality

u(t) ≤ n(t) + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds (3.39)

holds, L is a positive constant, then

u(t) ≤ n(t)Ω−1
(

Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
(3.40)

where Ω(u) is defined in (2.13), t1 ∈ [t0,∞) is chosen so that(
Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
∈ Dom(Ω−1)

for all t ∈ [t0, t1] ⊂ I. Ω−1 a nondecreasing function and the inverse of the function

Ω.

Proof:

Since n(t) is positive, monotonic, nondecreasing continuous function on R+. Then

equation (3.11) become
u(t)

n(t)
≤ 1 + L

∫ t

t0

f(s)
u(s)

n(s)
ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$

(
u(τ)

n(τ)

)
dτ

)
ds (3.41)
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Let z(t) =
u(t)

n(t)
, equation (3.18) reduce to

z(t) ≤ 1 + L

∫ t

t0

f(s)z(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(z(τ))dτ

)
ds (3.42)

By applying Theorem 3.1 we have

z(t) ≤ Ω−1
(

Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
Substituting z(t) in the above equation, then, we arrive at inequality (3.21)

Remark 3.2:

If r(t) = 1, $(u) = u, and L = 1 in Theorem 3.1, the result obtained is the

same as in Pachpatte Pachpatte(1975a). Furthermore, these results also extended

Pachpatte(1975a) and Oguntuase(2001). Let <(u) be defined as

<(u) =

∫ r

r0

ds

2s+$(s)
. (3.43)

Theorem 3.5:

Let u(t), r(t) be nonnegative, nondecreasing and continuous functions on C(I,R+)

and r′(t) ≤ 0. Suppose

u(t) ≤ u0 +N

∫ t

t0

f(s)u(s)ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(u(τ))dτ+∫ s

t0

g(τ)(u(τ))dτ

)
ds,

(3.44)

holds, where N, M are positive constants, then,

u(t) ≤ <−1
(
<(u0) + C

∫ t

t0

f(s)r(s)g(s)ds

)
(3.45)

for C = NM > 0, where u0 > 0 and <(u) is given as (3.43). For t1 ∈ I chosen such

that(
<(u0) + C

∫ t

t0

f(s)r(s)g(s)ds

)
∈ Dom(<−1),

for all t lying in the interval [t0, t1] ∈ I. <−1 is the inverse of <.

Proof Define

z(t) = u0 +N

∫ t

t0

f(s)u(s)ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(u(τ))dτ

+

∫ s

t0

g(τ)(u(τ))dτ

)
ds,

(3.46)

then

u(t) ≤ z(t), z(t) = u0 (3.47)

Differentiating (3.46) to get

z(t) = Nf(t)u(t) +Mf(t)r(t)

(∫ t

t0

g(τ)$(u(τ))dτ +

∫ t

t0

g(τ)(u(τ))dτ

)
,

Applying equation(3.47) to have

z′(t) ≤ Nf(t)(z(t) +Mf(t)r(t)

(∫ t

t0

g(τ) ($(z(τ)) + z(τ)) dτ

)
.
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Simplify further to obtain

z′(t) ≤ Cf(t)

(
z(t) + r(t)

(∫ t

t0

g(τ) ($(z(τ)) + z(τ)) dτ

))
, (3.48)

where C = NM. Inequality (3.48) reduce to

z′(t) ≤ Cf(t)m(t) (3.49)

where

m(t) = z(t) + r(t)

(∫ t

t0

g(τ) ($(z(τ)) + z(τ)) dτ

)
. (3.50)

Without loss of generality

z(t) ≤ m(t) (3.51)

Differentiating the equation (3.50)

m.(t) = z′(t) + r′(t)

(∫ t

t0

g(τ) ($(z(τ)) + z(τ)) dτ

)
+ r(t)(g(t)$(z(t) + z(t)).

Put r′(t) ≤ 0, by inequalities (3.49) and (3.51), we have

m′(t) ≤ Cf(t)m(t) + r(t)g(t) ($(m(τ)) +m(t)) (3.52)

Let f(t) > 1, r(t) > 1 and g(t) > 1, to have
m′(t)

2m(t) +$(m(τ))
≤ Cf(t)r(t)g(t) (3.53)

By equation(3.43), we arrive at

m(t) ≤ Ω−1
(

Ω(u0) + C

∫ t

t0

f(s)r(s)g(s)ds

)
(3.54)

Using inequality (3.51)

z(t) ≤ Ω−1
(

Ω(u0) + C

∫ t

t0

f(s)r(s)g(s)ds

)
(3.55)

By inequality (3.47), we arrive at the result.

Let u0 in Theorem 3.5 be replaced with function L(t) a nondecreasing, nonnegative,

monotonic continuous function on R+. Then the next result follows:

Theorem 3.6:

Let u(t), r(t), L(t) be nonnegative, nondecreasing and continuous functions on

C(I,R+) and r′(t) ≤ 0. Suppose $ ∈ Ψ. If

u(t) ≤ L(t) +N

∫ t

t0

f(s)u(s)ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(u(τ))dτ+∫ s

t0

g(τ)(u(τ))dτ

)
ds,

(3.56)

holds, then the estimate of u(t) is given as

u(t) ≤ L(t)Ω−1
(

Ω(1) + C

∫ t

t0

f(s)r(s)g(s)ds

)
(3.57)

where L(t), nondecreasing, nonnegative monotonic function on R+ and the <(u)

is defined in (3.43)

t1 ∈ I chosen such that(
<(1) + C

∫ t

t0

f(s)r(s)g(s)ds

)
∈ Dom(<−1).
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for all t lying in the interval [t0, t1] ∈ I. <−1 is the inverse of <.

Proof:

Since L(t) is nondecreasing, nonnegative, monotonic function and $ ∈ Ψ, then

inequality (3.56) reduce to
u(t)

L(t)
≤ 1 +N

∫ t

t0

f(s)

(
u(s)

L(s)

)
ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$

(
u(τ)

L(τ)

)
dτ+∫ s

t0

g(τ)

(
u(τ)

L(τ)

)
dτ

)
ds.

(3.58)

Let inequality (3.58) be

P (t) ≤ 1 +N

∫ t

t0

f(s)P (s)ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(P (τ))dτ+∫ s

t0

g(τ)P (τ)dτ

)
ds.

(3.59)

Where
u(t)

L(t)
= P (t). (3.60)

The inequality (3.59) satisfies the same condition with the inequality (3.44). Then

by applying Theorem 3.5, we obtain

P (t) ≤ <−1
(
<(1) +

∫ t

t0

f(s)r(s)g(s)ds

)
(3.61)

Replacing P (t) with (3.60), we arrive at the result of the theorem.

3.0.2 Integral Inequality with Two Nonlinear Terms

This section begins with the consideration of integral inequalities derived from

Dehongade and Deo (1973) results.

Theorem 3.7:

Suppose u(t), r(t), h(t) ∈ C(I,R+) and $(u), β(u) ∈ Ψ be nonnegative, monotonic,

nondecreasing, continuous and ω(u) be a submultiplicative function for u > 0. Let

u(t) ≤ E + T

∫ t

t0

r(s)β(u(s))ds+ L

∫ t

t0

h(s)$(u(s))ds (3.62)

for E, T and L are positive constants, then

u(t) ≤ Ω−1
(

Ω(E) + L

∫ t

t0

h(s)$
(
F−1 (F (1) +B(s))

)
ds

)
F−1 (F (1) +B(t)) ,

(3.63)

where β(u) 6= $(u),

B(t) = T

∫ t

t0

r(s)ds, (3.64)
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Ω is defined in equation (2.13) and F (u) is defined in equation (2.40) Where F−1,

Ω−1 are the inverses of F, Ω respectively and t is in the subinterval (0, b) ∈ I,

F (1) +B(t) ∈ Dom(F−1)

and

Ω(E) + L

∫ t

t0

h(s)$
(
F−1 (F (1) +B(s))

)
ds ∈ Dom(Ω−1)

Proof:

Define

q(t) = E + L

∫ t

t0

h(s)$(u(s))ds t ∈ I. (3.65)

We write inequality (3.62) as

u(t) ≤ q(t) + T

∫ t

t0

r(s)β(u(s))ds t ∈ I. (3.66)

q(t) is nonnegative,nondecreasing, monotonic and continuous function on R+. By

Theorem 2.9 and inequality (2.40), we obtain

u(t) ≤ q(t)F−1 (F (1) +B(t)) , t ∈ I. (3.67)

Since $ is submultiplicative, we have

u(t) ≤ $(q(t)F−1 (F (1) +B(t))), t ∈ I.

It clear that

u(t) ≤ $(q(t))$
(
F−1 (F (1) +B(t))

)
, t ∈ I.

It follows that
$(u(t))Lh(t)

$(q(t))
≤ Lh(t)$

(
F−1 (F (1) +B(t))

)
(3.68)

By(2.13) we obtain

q(t) ≤ Ω−1
(

Ω(E) + L

∫ t

t0

h(s)$
(
F−1(F (1) +B(s))

)
ds

)
(3.69)

Substituting for q(t) in (3.67), this concludes the proof.

corollary 3.1

Suppose ρ(t) is a nonnegative, monotonic, nondecreasing continuous function on

R+. Let

u(t) ≤ ρ(t) + T

∫ t

t0

r(s)β(u(s))ds+ L

∫ t

t0

h(s)$(u(s))ds (3.70)

for T and L are positive constants, then

u(t) ≤ ρ(t)Ω−1
(

Ω(1) + L

∫ t

t0

h(s)$
(
F−1 (F (1)

+B(s))) ds)F−1 (F (1) +B(t)) t ∈ I

(3.71)

where B(t), Ω(u) and F (u) are defined as in (3.64), (2.13) and (2.40) respectively.

Proof:

Since ρ(t) is nonnegative, monotonic, nondecreasing on R+, with $, β ∈ Ψ and
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then, we write (3.70) as
u(t)

ρ(t)
≤ 1 + T

∫ t

t0

r(s)β

(
u(s)

ρ(s)

)
ds+ L

∫ t

t0

h(s)$

(
u(s)

ρ(s)

)
ds (3.72)

Setting
u(t)

ρ(t)
= z(t) (3.73)

Using(3.83) in (3.72), we obtain

z(t) ≤ 1 + T

∫ t

t0

r(s)z(s)ds+ L

∫ t

t0

h(s)$(z(s))ds (3.74)

Applying Theorem 3.7 to inequality (3.74) for = 1, we arrive at

z(t) ≤ Ω−1
(

Ω(1) + L

∫ t

t0

h(s)$
(
F−1 (F (1) +B(s))

)
ds

)
F−1 (F (1) +B(t)) t ∈ I

(3.75)

Substituting for z(t) in inequality (3.75),this concludes the proof.

In the next theorems, we consider three terms of integrals where only one is linear

and the other two are nonlinear.

Theorem 3.8:

Let u(t), r(t), g(t), l(t) : I→ R+ be continuous and $(u), β(u) ∈ Ψ be nondecreas-

ing, nonnegative and u > 0, β(u) a submultiplicative. If

u(t) ≤ u0 + A

∫ t

t0

r(s)u(s)ds+B

∫ t

t0

g(s)$(u(s))ds+ C

∫ t

t0

l(s)β(u(s))ds t ∈ I

(3.76)

holds. Then

u(t) ≤ F−1
(
F (u0) + C

∫ t

t0

l(s)β(Λ(s))Q(s)ds

)
Λ(t)Q(t) (3.77)

where

Λ(t) = Ω−1
(

Ω(1) +B

∫ t

t0

g(s)$ (Q(s)) ds

)
(3.78)

Q(t) is defined in (3.5), Ω(r) is defined as (2.13) and F (u) is defined in equation

(2.40),

F

(
Ω−1

(
Ω(1) +B

∫ t

t0

g(α)$ (Q(α)) dα

)
Q(s)

)
∈ Dom(F−1)

and(
Ω(1) +B

∫ s

t0

g(α)$ (Q(α)) dα

)
∈ Dom(Ω−1)

Proof:

Define

n(t) = u0 + C

∫ t

t0

l(s)β(u(s))ds (3.79)

we re-write (3.76) as

u(t) ≤ n(t) + A

∫ t

t0

r(s)u(s)ds+B

∫ t

t0

g(s)$(u(s))ds (3.80)
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For n(t) is a nondecreasing, nonnegative and monotonic function.

It follows that
u(t)

n(t)
≤ 1 + A

∫ t

t0

r(s)

(
u(s)

n(s)

)
ds+B

∫ t

t0

g(s)$

(
u(s)

n(s)

)
ds (3.81)

By Theorem 2.8, we obtain

u(t) ≤ n(t)Ω−1
(

Ω(1) +B

∫ t

t0

g(s)$ (Q(s)) ds

)
Q(t) (3.82)

Since β is submultiplicative, we obtain

β(u(t)) ≤ β(n(t))β

(
Ω−1

(
Ω(1) +B

∫ t

t0

g(s)$ (Q(s)) ds

)
Q(t)

)
(3.83)

By applying the equation(2.40),we obtain

n(t) ≤ F−1
(
F (u0)) + C

∫ t

t0

l(s)β
(
Ω−1 (Ω(1)+

B

∫ s

t0

g(α)$ (Q(α)) dα

)
Q(s)

)
ds

) (3.84)

Replacing n(t) in equation (3.82) with (3.84).

This concludes the proof.

Theorem 3.9:

Suppose u(t), r(t), g(t), l(t) ∈ R+ are continuous function. Further more,χ(t) be

nondecreasing, monotonic, continuous function on R+ and $(u), β(u) belong to

the class Ψ for u > 0. Let β(u) be a submultiplicative. The inequality

u(t) ≤ χ(t) + A

∫ t

t0

r(s)u(s)ds+B

∫ t

t0

g(s)$(u(s))ds+ C

∫ t

t0

l(s)β(u(s))ds t ∈ I

(3.85)

holds. Then

u(t) ≤ χ(t)H−1
(
H(1) + C

∫ t

t0

l(s)β (Λ(s)Q(s)) ds

)
Λ(t)Q(t) (3.86)

Where Λ(t) and Q(t) are defined in equations (3.78)and (3.5) respectively, also

Ω(u) and F (r) are defined in (2.13) and (2.40) respectively. where

F (1) + C

∫ t

t0

l(s)β (Λ(s)Q(s)) ds ∈ Dom(F−1)

and(
Ω(1) +B

∫ s

t0

g(α)$ (Q(α)) dα

)
∈ Dom(Ω−1)

Proof:

Since χ(t) is nondecreasing,nonnegative monotonic function and β.$ ∈ Ψ from

(3.85), we have
u(t)

χ(t)
≤ 1 + A

∫ t

t0

r(s)
u(t)

χ(t)
ds+B

∫ t

t0

g(s)$

(
u(t)

χ(t)

)
ds+

C

∫ t

t0

l(s)β

(
u(t)

χ(t)

)
ds t ∈ I

(3.87)
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Let
u(t)

χ(t)
= η(t) (3.88)

Inequality (3.85) is written as

η(t) ≤ 1 + A

∫ t

t0

r(s)η(s)ds+B

∫ t

t0

g(s)$ (η(s)) ds+ C

∫ t

t0

l(s)β (η(s)) ds t ∈ I

(3.89)

Application of Theorem 3.8 on inequality (3.87) gives

η(t) ≤ F−1
(
F (1) + C

∫ t

t0

l(s)β (Λ(s)Q(s)) ds

)
Λ(t)Q(t) (3.90)

Replacing the η(t) in equation(3.88). This concludes the proof of the theorem.

Theorem 3.10:

Suppose that u(t), f(t) and b(t) are nonnegative and continuous functions on R+.

Let K(t, s) and its partial derivative Kt(t, s) exists and be continuous for every

t, s ∈ I and Kt(t, s) ≤ 0 . Moreover, let $, β ∈ C(R+,R+) be nondecreasing with

$(u), β(u) > 0, and β,$ ∈ ψ, are submultiplicative. The inequality

u(t) ≤ u0 + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds

+

∫ t

t0

b(s)β(u(s))ds

(3.91)

holds, for u0 and L are positive constants then,

u(t) ≤ F−1
(
F (u0) +

∫ t

t0

b(s)β(N(s))ds

)
N(t) (3.92)

where

N(t) = Ω−1
(

Ω(u0) + L

∫ t

t0

f(s)K(s, s)

(
u0Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
(3.93)

Q(t) is defined by (3.5), Ω(u) and F (u) is defined by (2.13) and(2.40) respectively.

Choosing t1 ∈ [t0,∞) so that

F (u0) +

∫ t

t0

b(s)β(N(s))ds ∈ Dom(F−1)

and(
Ω(u0) + L

∫ t

t0

f(s)K(s, s)

(
u0Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
∈ Dom(Ω−1)

for all t lying in the subinterval [t0, t1] of I. Ω−1 and F−1 are the inverses of the

functions Ω and F respectively.

Proof:

Define

n(t) = u0 +

∫ t

t0

b(s)β(s)ds (3.94)

where n(t0) = u0, then we have

u(t) ≤ n(t) + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds (3.95)
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Applying Theorem 3.8 to inequality (3.95), it yields

u(t) ≤ n(t)N(t) (3.96)

Since β is submultiplicative, it follows that
b(t)β(u(t))

β(n(t))
≤ b(t)β(N(t)) (3.97)

By equation (2.40), we get

n(t) ≤ F−1
(
F (n(t0)) +

∫ t

t0

b(s)β(N(s))ds

)
(3.98)

Substituting this into (3.96), we arrive at the result.

The next theorem is given with u0 = p(t) a nondecreasing, nonnegative, monotonic

continuous function on R+,.

Theorem 3.11:

Let all the conditions of Theorem 3.10 remained valid. Let β, $ ∈ Ψ, the inequality

u(t) ≤ p(t) + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

K(s, τ)$(u(τ))dτ

)
ds

+

∫ t

t0

b(s)β(u(s))ds

(3.99)

holds, then

u(t) ≤ p(t)F−1
(
F (1) +

∫ t

t0

b(s)β(N(s)ds

)
N(t) (3.100)

where Q(t) and N(t) are defined in equations (3.5) and (3.93) respectively, Ω(r) is

by (2.13) and F (u) is defined by (2.40). Choosing t1 ∈ [t0,∞) so that

F (1) +

∫ t

t0

b(s)β(N(s)ds ∈ Dom(F−1)

and(
Ω(1) + L

∫ t

t0

f(s)K(s, s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
∈ Dom(Ω−1)

for all t lying in the subinterval [t0, t1] of I. Ω−1 and F−1 are the inverses of the

functions Ω and F respectively.

Proof:

Since p(t) is nondecreasing, monotonic and nonnegative and β, $Ψ then
u(t)

p(t)
≤ 1 +

∫ t

t0

f(s)
u(s)

p(s)
ds

+

∫ t

t0

f(s)K(s, s)

(∫ s

t0

g(τ)$(
u(τ)

p(τ)
)dτ

)
ds+

∫ t

t0

b(s)β(
u(s)

p(s)
)ds

(3.101)

By application of Theorem 3.10, let ω(t) =
u(t)

p(t)
. we obtain

ω(t) ≤ F−1
(
F (1) +

∫ t

t0

b(s)β(N(s))ds

)
N(t) (3.102)

Substituting ω(t), we arrive at the result (3.100).

Let K(t, s) = h(t)q(s) where the functions h(t) and b(s) are continuous on R+, we

have the following results.
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Theorem 3.12:

Let u(t), b(t), q(t), h(t), f(t) : I→ R+ and h′(t) ≤ 0 and Let $, β ∈ C(R+,R+) be

nondecreasing and monotonic function with β, $ belong to class Ψ and let β(u)

be a submultiplicative. If

u(t) ≤ u0 + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)h(s)

(∫ s

t0

q(τ)$(u(τ))dτ

)
ds

+

∫ t

t0

b(s)β(u(s))ds

(3.103)

holds. Then,

u(t) ≤M(t)F−1
(
F (u0) +

∫ t

t0

b(s)β(M(s))ds

)
. (3.104)

Ω(u) is defined in (2.13) and F is defined in (2.40).

Defined

M(t) = Ω−1
(

Ω(1) + L

∫ t

t0

f(s)h(s)q(s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds

)
(3.105)

and Q(t) in equation(3.5). Where F−1 and Ω−1 are the inverse functions of F and

Ω respectively and t is the subinterval [t0, t1] ⊂ I such that

F (u0) +

∫ t

t0

b(s)β(M(s))ds ∈ Dom(F−1)

and

Ω(1) + L

∫ t

t0

f(s)h(s)q(s)

(
Q(s) +

∫ s

t0

Q(α)dα

)
ds ∈ (DomΩ−1)

Proof:

Define function C(t) as

C(t) = u0 +

∫ t

t0

b(s)β(u(s))ds (3.106)

Using this in (3.103), we get

u(t) ≤ C(t) + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)

(∫ s

t0

q(τ)$(u(τ))dτ

)
ds (3.107)

Applying Theorem 3.2 to inequality (3.107), we have

u(t) ≤ C(t)M(t) (3.108)

Since β is submultiplicative, it follows that

β(u(t)) ≤ β(C(t))β(M(s)) (3.109)

By equation (2.40), we have the following

C(t) ≤ F−1
(
F (u0) +

∫ t

t0

b(s)β(M(s))ds

)
. (3.110)

By (3.108) and (3.110), we arrive at equation(3.104).

Let the function γ(t) ∈ C(I,R+) be a monotonic,

nondecreasing and nonnegative. The following theorem is given as thus:
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Theorem 3.13:

Let u(t), f(t), h(t), q(t), γ(t) ∈ C(I,R+) remain the same as in Theorem 3.12. Let

u(t) ≤ γ(t) + L

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)h(s)

(∫ s

t0

q(τ)$(u(τ))dτ

)
ds

+

∫ t

t0

b(s)β(u(s))ds

(3.111)

By Theorem 3.12, it Implies that

u(t) ≤ γ(t)M(t)F−1
(
F (1) +

∫ t

t0

b(s)β(M(s))ds

)
(3.112)

where Q(t) and M(t) are defined in equations (3.5) and (3.105)respectively,

Ω(u) and F (u) are defined in (2.13) and (2.40) respectively. for F−1 and Ω−1 are

the inverse functions of F and Ω respectively and t is the subinterval [t0, t1] ⊂ I

such that

F (1) +

∫ t

t0

b(s)β(M(s))ds ∈ Dom(F−1)

and

Ω(1) +

∫ t

t0

(
f(s)h(s)g(s) exp

(∫ s

t0

f(τ)dτ

)
+

∫ s

t0

Q(α)dα

)
ds ∈ (DomΩ−1)

Proof:

Since γ(t) is nondecreasing, monotonic,nonnegative function on R+ and β, $ ∈ Ψ.

Then

r(t) ≤ 1 +

∫ t

t0

f(s)r(s)ds+

∫ t

a

f(s)h(s)

(∫ s

t0

q(τ)$(r(τ))dτ

)
ds

+

∫ t

t0

b(s)β(r(s))ds,

(3.113)

where r(t) =
u(t)

γ(t)
. Therefore, by application of Theorem 3.12 we obtain

r(t) ≤M(t)F−1
(
F (1) +

∫ t

t0

b(s)β(M(s))ds

)
(3.114)

By replacing r(t) in (3.114) concludes the proof.

The following integrals are the extensions of Theorem 3.3.

Theorem 3.14:

Let u(t), r(t) ∈ C(I,R+) and r′(t) ≤ 0. If

u(t) ≤ u0 +N

∫ t

t0

f(s)u(s)ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(u(τ))dτ

+

∫ s

t0

g(τ)(u(τ))dτ

)
ds+

∫ t

t0

b(s)β(u(s))ds

(3.115)

holds, where M and N are positive constants, then

u(t) ≤ F−1
(
F (u0) +

∫ t

t0

b(s)β(W (s)ds

)
W (t) (3.116)

Define

W (t) = <−1
(
<(1) + C

∫ t

t0

f(s)r(s)g(s)ds

)
(3.117)
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where u0 > 0 and the definition of <(u) is given in (3.43) and t1 ∈ I is chosen such

that(
<(u0) +

∫ t

t0

f(s)r(s)g(s)ds

)
∈ Dom(<−1).

and

F (u0) +

∫ t

t0

b(s)β(W (s))ds ∈ Dom(F−1)

for all t lying in the interval [t0, t1] ∈ I. <−1, H−1 are the inverses of < and F .

Proof:

Define

n(t) = u0 +

∫ t

t0

b(s)β(u(s))ds. (3.118)

Inequality (3.115) is written as

u(t) ≤ n(t) +N

∫ t

t0

f(s)u(s)ds+M

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(u(τ))dτ

+

∫ s

t0

g(τ)(u(τ))dτ

)
ds,

(3.119)

where n(t) is nondecreasing, nonnegative, monotonic continuous function on R+.

By Theorem 3.3, we obtain

u(t) ≤ n(t)W (t) (3.120)

By submultiplicative property of β, we have

u(t) ≤ β(n(t))β

(
<−1

(
<(1) + C

∫ t

t0

f(s)r(s)g(s)ds

))
(3.121)

By equation(3.43),we arrive at

n(t) ≤ F−1
(
F (n(t0)) +

∫ t

t0

b(s)β(W (s))ds

)
. (3.122)

Substituting this in (3.120), we have the result. This concludes the proof.

Letm(t) be nonnegative, nondecreasing and monotonic continuous function onR+,

Theorem 3.15:

Let u(t), r(t),m(t) ∈ C(I,R+) and r′(t) ≤ 0. If

u(t) ≤ m(t) +N

∫ t

t0

f(s)u(s)ds+

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(u(τ))dτ

+

∫ s

t0

g(τ)(u(τ))dτ

)
ds+

∫ t

t0

b(s)β(u(s))ds

(3.123)

holds, then

u(t) ≤ m(t)F−1
(
F (1) +

∫ t

t0

b(s)β(W (s))ds

)
W (t) (3.124)

where <(u) and W (t) are defined in equations (3.50) and (3.127) respectively, t1 ∈ I

is chosen such that(
<(u0) +

∫ t

t0

f(s)r(s)g(s)ds

)
∈ Dom(<−1).
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and

F (u0) +

∫ t

t0

b(s)β(W (s))ds ∈ Dom(F−1)

for all t lying in the interval [t0, t1] ∈ I. <−1, F−1 are the inverses of < and F .

Proof:

Dividing both sides of (3.123) by m(t), we get

z(t) ≤ 1 +

∫ t

t0

f(s)r(s)

(∫ s

t0

g(τ)$(z(τ))dτ +

∫ s

t0

g(τ)z(τ)dτ

)
ds

+

∫ t

t0

b(s)β(z(s))ds

(3.125)

Where

z(t) =
u(t)

m(t)
, (3.126)

By applying the Theorem 3.14 gives

z(t) ≤ F−1
(
F (1) +

∫ t

t0

b(s)β(W (s))ds

)
W (t) (3.127)

Substituting for z(t) by using equation(3.126)

3.0.3 Integral Inequality with Three Nonlinear Terms

In this section, we consider the development of integral inequalities with three

nonlinear terms which are the special case of integral inequalities developed by

Dehongade and Deo (1976), Agarwal and Thandapain (1981) and Pinto (1990).

Most of the results in the previous sections are needed in this section.

Theorem 3.16:

Let u(t), r(t), h(t), g(t) ∈ C(I,R+) and ω, f, γ ∈ Ψ be nonnegative, monotonic,

nondecreasing continuous functions. Let γ be a submultiplicative for u > 0.

If

u(t) ≤ K + A

∫ t

t0

r(s)β(u(s))ds+B

∫ t

t0

h(s)$(u(s))ds+

L

∫ t

t0

g(s)γ(u(s))ds

(3.128)

for K,A,B and L are positive constants and t ∈ I, then

u(t) ≤ Υ−1
[
Υ(K) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)$ (T (α)) dα

)
T (s)

]
ds

]
Ω−1

(
Ω(1) +B

∫ t

t0

h(s)$ (T (s)) ds

)
T (t)

(3.129)

where T (t) is defined as

T (t) = F−1
(
F (1) + A

∫ t

t0

r(s)ds

)
, (3.130)
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Ω, and F are defined in (2.13),(2.40) .

Υ(r) =

∫ t

t0

ds

γ(s)
0 < r0 ≤ r (3.131)

and H−1, Ω−1 and Υ−1 are the inverses of H, Ω, G respectively t is in the

subinterval (0, b) ∈ (I). So that

G(K) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)$ (T (α)) dα

)
T (s)

]
ds ∈ Dom(Υ−1

Proof:

Define

n(t) = K + L

∫ t

t0

g(s)γ(u(s))ds (3.132)

we re-write (3.130) as

u(t) ≤ n(t) + A

∫ t

t0

r(s)β(u(s))ds+B

∫ t

t0

h(s)$(u(s))ds (3.133)

Since, n(t) is monotonic, nondecreasing on R+

Applying Corollary 3.1, we obtain

u(t) ≤ n(t)Ω−1
(

Ω(1) +B

∫ t

t0

h(s)$ (T (s)) ds

)
T (t) (3.134)

Hence,

γ(u(t)) ≤ γ

[
n(t)Ω−1

(
Ω(1) +B

∫ t

t0

h(s)$ (T (s)) ds

)
T (t)

]
(3.135)

By submultiplicative property of γ(u), we get
γ(u(t))

γ(n(t))
≤ γ

[
Ω−1

(
Ω(1) +B

∫ t

t0

h(s)$ (T (s)) ds

)
T (t)

]
(3.136)

By equation (3.131), we arrive at
n(t) ≤ Υ−1 [Υ(n(t0))

+L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)$ (T (α)) dα

)
T (s)

]
ds

] (3.137)

Substituting for n(t) in (3.134), we arrive at the result

Theorem 3.17:

Let u(t), r(t), h(t), g(t), β(t) and b(t) be as in Theorem 3.16 and $(u), f(u), γ(u) ∈

ψ be nonnegative,monotonic, nondecreasing continuous functions. Let γ(u) be a

submultiplicative for u > 0. If

u(t) ≤ β(t) + A

∫ t

t0

r(s)β(u(s))ds+B

∫ t

t0

h(s)$(u(s))ds+

L

∫ t

t0

g(s)γ(u(s))ds

(3.138)

for K,A,B and L are positive constants, then

u(t) ≤ β(t)Υ−1
[
Υ(1) + L

∫ t

t0

g(s)γ
[
Ω−1(

Ω(1) +B

∫ s

t0

h(α)$ (T (α)) dα

)
T (s)

]
ds

]
Ω−1

(
Ω(1) +B

∫ t

t0

h(s)$ (T (s)) ds

)
T (t),

(3.139)
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where Ω, Υ, and F are defined in (2.13),(3.131) and (2.40)respectively,

for F−1, Ω−1 and Υ−1 are the inverses of F, Ω and Υ respectively such that t

is in the subinterval (0, b) ∈ (R+). So that

Υ(1) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)$ (T (α)) dα

)
T (s)

]
ds ∈ Dom(Υ−1)

Proof:

Since β(t) a monotonic, nondecreasing and nonnegative continuous function on

R+, then Inequality (3.139) reduce to
u(t)

β(t)
≤ 1 + A

∫ t

t0

r(s)f(
u(s)

β(s)
)ds+B

∫ t

t0

h(s)$(
u(s)

β(s)
)ds

+L

∫ t

t0

g(s)γ(
u(s)

β(s)
)ds

(3.140)

It follows that

z(t) ≤ 1 + A

∫ t

t0

r(s)f(z(s))ds+B

∫ t

t0

h(s)$(z(s))ds

+L

∫ t

t0

g(s)γ(z(s))ds

(3.141)

Where
u(t)

βt
= z(t).

Applying the Theorem 3.16 and putting K = 1, we arrive at

z(t) ≤ Υ−1
[
G(1) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)$ (T (α)) dα

)
T (s)

]
ds

]
Ω−1

(
Ω(1) +B

∫ t

t0

h(s)$ (T (s)) ds

)
T (t)

(3.142)

Now if z(t) is replaced in (3.142), we arrive at (3.139).

The next chapter consists of application of integral inequalities.
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CHAPTER FOUR

MAIN RESULTS

4.1 Hyers-Ulam Stability of Perturbed and Nonperturbed Nonlinear
second Order Differential Equations

4.1.1 Introduction

Here, we provide results which satisfy the objectives in chapter 1 of this work.

Some researchers refer to Hyers-Ulam stability as a special case of Hyers-Ulam-

Rassias stability. This shows that Hyers-Ulam-Rassias stability is more advanced

than Hyers-Ulam stability in scope. The major tools used are the inequalities

developed in chapter three. The method will be to reduce all perturbed and non-

perturbed nonlinear second order DE to equivalent integral forms.

4.1.2 Hyers-Ulam Stability of u′′(t) + f(t, u(t)) = P (t, u(t))

We begin this section by considering Hyers-Ulam stability of a perturbed non-

linear second order differential equation is given as

u′′(t) + f(t, u(t)) = P (t, u(t)) (4.1)

with initial conditions u(t0) = u′(t0) = 0, where P (t, 0) = 0, f, P ∈ C(I×R,R).

Definition 4.1:

Equation (4.1) is Hyers-Ulam stable with initial data if for every ε > 0, constant

K > 0 and t ∈ I sufficiently large there exists a solution u(t) ∈ C2(I,R+) satisfying

|u′′ + f(t, u(t))− P (t, u(t))| ≤ ε (4.2)

such that

|u(t)− u0(t)| ≤ Kε,

where u0(t) ∈ C2(I,R+) is the solution of nonlinear differential equation(4.1) and

K is the Hyers-Ulam constant.

Theorem 4.1:

Let

|P (t, u(t))| ≤ α(t)β(|u(t)|) (4.3)
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and

|f(t, u(t))| ≤ h(t)$(|u(t)|) (4.4)

where β(u), $(u) are nonnegative, nondecreasing, continuous functions, suppose

β, $ ∈ Ψ, and the functions α(t), h(t) are continuous functions on R+, then,

equation (4.1) is stable in the sense of Hyers-Ulam, if the following additional

conditions hold:

C1 |f(t, u(t))| ≥ 1 for all t ≥ t0.

C2
f ′(t, u(t))u(t)

f(t, u(t))
= q(t, u(t), u′(t)),

are satisfied.

Proof:

Multiplying inequality (4.2) by |u′(t)| to get

−ε|u′(t)| ≤ u′(t)u′′(t) + f(t, u(t))u′(t)− P (t, u(t))u′(t) ≤ ε|u′(t)| (4.5)

for all t ≥ t0. Integrating each term from t0 to t and applying Lemma 1.1 , we

obtain

−ε
∫ t

t0

|u′(s)|ds ≤ 1

2
u′(t)2 +

∫ t

t0

f(s, u(s))u′(s)ds−
∫ t

t0

P (s, u(s))u′(s)ds

≤ ε

∫ t

t0

|u′(s)|ds.
(4.6)

For t ≥ t0, let∫ ∞
t0

|u′(s)|ds ≤ L, equation (4.6) becomes

−εL ≤ 1

2
u′(t)2 +

∫ t

t0

f(s, u(s))u′(s)ds−
∫ t

t0

P (s, u(s))u′(s)ds ≤ εL (4.7)

Integrating by part, let fu(t, u(t)) ≤ 0. we get

f(t, u(t))u(t) ≤ εL− 1

2
u′(t)2 +

∫ t

t0

f ′(s, u(s))u(s)

f(s, u(s))
f(s, u(s))ds

+

∫ t

t0

P (s, u(s))u′(s)ds

(4.8)

Application of condition c2 yields

f(t, u(t))u(t) ≤ εL− 1

2
u′(t)2 +

∫ t

t0

q(t, u(s), u′(t))f(s, u(s))ds

+

∫ t

t0

P (s, u(s))u′(s)ds.

(4.9)

Taking the absolute value, using condition c1 and Theorem 1.1 ,there exists ξ ∈

[t0, t] such that

|u(t)| ≤ εL+
1

2
|u′(t)|2 + |q(ξ, u(ξ), u′(ξ)|

∫ t

t0

|f(s, u(s))|ds

+|u(t)|
∫ t

t0

|P (s, u(s))|ds.
(4.10)
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Setting |u′(t)| ≤ λ, where λ > 0, by hypothesis of the Theorem 4.1 and εL > 0, we

get
|u(t)|

ε
(
L+ 1

2
λ2
) ≤ 1 + |q(ξ, u(ξ), u′(ξ))|

∫ t

t0

φ(s)$

(
|u(s)|

ε
(
L+ 1

2
λ2
)) ds+

λ

∫ t

t0

|α(s)β

(
|u(s)|

ε
(
L+ 1

2
λ2
)) ds. (4.11)

Using the Theorem 3.7, we obtain

|u(t)| ≤ ε

(
L+

1

2
λ2
)

Ω−1
(

Ω(1) + λ

∫ t

t0

α(s)$
(
F−1 (F (1) + |q((ξ), u(ξ), u′(ξ))|∫ s

t0

φ(δ)dδ

))
ds

)
F−1

(
F (1) + |q((ξ), u(ξ), u′(ξ))|

∫ t

t0

φ(s)ds

)
.

(4.12)

Setting limt→∞

∫ t

t0

α(s)ds = m < ∞, limt→∞

∫ t

t0

φ(s)ds = n < ∞. Using this in

equation(4.12)

|u(t)| ≤ ε

(
L+

1

2
λ2
)

Ω−1
(
Ω(1) +mλ$

(
F−1 (F (1)

+n|q(ξ, u(ξ), u′(ξ))|)))F−1 (F (1) + n|q((ξ), u(ξ), u′(ξ))|) .
(4.13)

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ ε

(
L+

1

2
λ2
)

Ω−1
(
Ω(1) +mλ$

(
F−1 (F (1)

+n|q((ξ), u(ξ), u′(ξ))|)))F−1 (F (1) + n|q((ξ), u(ξ), u′(ξ))|) ,
(4.14)

where
K =

(
L+

1

2
λ2
)

Ω−1
(
Ω(1) +mλ$

(
F−1 (F (1)

+n|q((ξ), u(ξ), u′(ξ))|)))F−1 (F (1) + n|q((ξ), u(ξ), u(ξ), u′(ξ))|) .
(4.15)

Thus (4.15) reduce to

|u(t)− u0(t)| ≤ Kε.

Hence, equation(4.1) is Hyers-Ulam stable.

This ends the proof.

Special case of equation (4.1) is given as

u′′(t) + c(t)f(u(t)) + u(t) = hun(t). (4.16)

Theorem 4.2:

Suppose u(t) is twice differentiable continuous function on R+. Let h(t), α(t) ∈

C(R+) and suppose f(u) belongs to class Ψ. Then equation (4.16) with initial

condition u(t0) = u′(t0) = 0 is said to be Hyers-Ulam stable with Hyers-Ulam

constant

K =

(
L+ Lηh(ξ) +

1

2
λ2
)

Ω−1 (Ω(1) +mλ) . (4.17)
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Proof:

From (4.2), we have

−ε ≤ u′′(t) + c(t)f(u(t)) + u(t)− hun(t) ≤ ε. (4.18)

Multiplying through by u′(t),

−ε ≤ u′′(t)u, (t) + c(t)f(u(t))u′(t) + u(t)u′(t)− u′(t)hun(t) ≤ ε.

Integrating from t0 to t, using initial conditions, we obtain
1

2
(u′(t))2 + u′(t)

∫ t

t0

c(s)f(u(s))ds+ G(u(t)− un(t)

∫ t

t0

h(s)u′(s)ds

≤ ε

∫ t

t0

u′(s)ds.

(4.19)

where

G(u(t)) =

∫ u(t)

u(t0)

sds (4.20)

By Theorem 1.1, there exists t0 ≤ ξ ≤ t such that
1

2
(u′(t))2 + u′(t)

∫ t

t0

c(s)f(|u(s)|)ds+ G(u(t))− un(t)h(ξ)

∫ t

t0

u′(s)ds

≤ ε

∫ t

t0

u′(s)ds.

(4.21)

Re-arrange the inequality (4.21) to have

G(u(t)) ≤ ε

∫ t

t0

u′(s)ds− 1

2
(u′(t))2 − u′(t)

∫ t

t0

c(s)f(u(s))ds

+un(t)h(ξ)

∫ t

t0

u′(s)ds,

Taking the absolute value to obtain

|G(u(t))| ≤ ε

∫ t

t0

|u′(s)|ds+
1

2
|(u′(t))|2 + |u′(t)|

∫ t

t0

c(s)f(|u(s)|)ds

+un(t)h(ξ)

∫ t

t0

|u′(s)|ds,

setting
∫ t

t0

|u′(s)|ds ≤ L, where L > 0, it clear that

|G(u(t))| ≤ εL+
1

2
u′(t)2 + |u′(t)|

∫ t

t0

c(s)f(|u(s)|)ds+ Lun(t)|h(ξ)| (4.22)

Setting |u(t)| ≤ |G(u(t))|, |un(t)| ≤ η and

|u′(t)| ≤ λ, where λ > 0, we have

|u(t)| ≤ εL+ Lη|h(ξ)|+ 1

2
λ2 + λ

∫ t

t0

c(s)f(|u(s)|)ds. (4.23)

Let ε
(
L+ Lη|h(ξ)|+ 1

2
λ2
)

= E, we obtain
|u(t)|
E
≤ 1 + λ

∫ t

t0

c(s)f

(
|u(s)|
E

)
ds. (4.24)

By applying Lemma 2.4 we get

|u(t)| ≤ EΩ−1
(

Ω(1) + λ

∫ t

t0

c(s)ds

)
, t0 ≤ t (4.25)
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Let limt0→∞

∫ t

t0

c(s)ds = m <∞, m > 0, we have

|u(t)| ≤ EΩ−1 (Ω(1) +mλ) , t0 ≤ t (4.26)

Replacing E we get

|u(t)| ≤ ε

(
L+ Lηh(ξ) +

1

2
λ2
)

Ω−1 (Ω(1) +mλ) , t0 ≤ t (4.27)

Therefore, equation(4.27) is in the form

|u(t)− u(t0)| ≤ |u(t)| ≤ Kε.

where K is given as

K =

(
L+ Lηh(ξ) +

1

2
λ2
)

Ω−1 (Ω(1) +mλ) .

4.1.3 Hyers-Ulam Stability of u′′(t) + f(t, u(t), u′(t)) = P (t, u(t))

Now we consider the Hyers-Ulam stability of

u′′(t) + f(t, u(t), u′(t)) = P (t, u(t)) (4.28)

with initial conditions u(t0) = u′(t0) = 0, where u(t) ∈ C2(R+,R+), I = [0,∞),

P (t, 0) = 0, P ∈ C(I×R,R), f ∈ C(R+ ×R2,R),

Definition 4.2:

Equation (4.28) is Hyers-Ulam stable if for every ε > 0, constant K > 0 called

Hyers-Ulam constant and t ∈ I sufficiently large there exists a solution u(t) ∈

C2(I,R+) satisfying

|u′′ + f(t, u(t), u′(t))− P (t, u(t))| ≤ ε (4.29)

such that

|u(t)− u0(t)| ≤ εK.

where u0(t) ∈ C2(I,R+) is the solution of nonlinear differential equation(4.28) with

initial condition u(t0) = u′(t0) = 0.

Theorem 4.3:

Suppose the function u(t) ≤ f(t, u(t), u′(t))u(t) and |f(t, u(t), u′(t))| ≤

h(t)$(|u(t)|)|u′(t)|,
∫ t

t0

|u′(s)|ds ≤ L, where constant L > 0, for h(t), α(t) positive,

nondecreasing continuous functions on R+ and $(u) belongs to class Ψ. Then,

equation (4.29) is stable in the sense of Hyers-Ulam and Hyers-Ulam constant is

given as

K = L(1 +
1

2
λ2 + α(ρ)M)

(
Ω−1 (Ω(1) + dλ|q(ξ, u(ξ), u′(ξ), u′′(ξ))|)

)
. (4.30)

Proof:

Multiplying (4.29) by |u′(t)| we get

−ε|u′(t)| ≤ u′(t)u′′(t) + f(t, u(t), u′(t))u′(t)− P (t, u(t))u′(t) ≤ ε|u′(t)| (4.31)

63



for all t ≥ t0. Integrating from t0 to t, we obtain

−ε
∫ t

t0

|u′(s)|ds ≤ 1

2
u′(t)2 +

∫ t

t0

f(s, u(s), u′(s))u′(s)ds

−
∫ t

t0

P (s, u(s))u′(s)ds ≤ ε

∫ t

t0

|u′(s)|ds
(4.32)

for any t ≥ t0.

Integrating by part and by hypothesis of the Theorem 4.3, we get

f(t, u(t), u′(t))u(t) ≤ εL− 1

2
u′(t)2 +

∫ t

t0

f ′(s, u(s), u′(s))u(s)ds

+

∫ t

t0

P (s, u(s))u′(s)ds,

(4.33)

for

f ′u(s, u(s), u′(s))u′(s) + f ′u′(s, u(s), u′(s))u′′(s) ≤ 0, (4.34)

By hypothesis of the Theorem 4.3 we get

u(t) ≤ εL− 1

2
u′(t)2 +

∫ t

t0

q(s, u(s), u′(s), u′′(s))f(s, u(s), u′(s))ds

+

∫ t

t0

P (s, u(s))u′(s)ds,

(4.35)

where
f ′(t, u(t), u′(t))u(t)

f(t, u(t), u′(t))
= q(t, u(t), u′(t), u′′(t)), (4.36)

for q(t, u(t), u′(t), u′′(t)) a continuous function on I×R3.

By Theorem 1.1, there exits points ξ, ρ ∈ [t0, t] such that

|u(t)| ≤ εL+
1

2
|u′(t)|2 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|

∫ t

t0

|f(s, u(s), u′(s))|ds

+|P (ρ, u(ρ))|
∫ t

t0

|u′(s)|ds
(4.37)

Setting |u′(t)| ≤ λ and |P (ρ, u(ρ))| ≤ α(ρ)|u(t)| it follows that

|u(t)| ≤ εL+
1

2
λ2 + Lα(ρ)M + |q(ξ, u(ξ), u′(ξ))|

∫ t

t0

h(s)ω(|u(s)|)|u′(s)|ds

≤ εL(1 +
1

2
λ2 + α(ρ)M) + |q(ξ, u(ξ), u′(ξ))|

∫ t

t0

h(s)ω(|u(s)|)|u′(s)|ds

|u(ρ)| ≤ M

Suppose that
u(t)

B
≤ u′(t) = z(t), where B = εL+ 1

2
λ2 + Lα(ρ)M,, Therefore,

|z(t)| ≤ 1 + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

h(s)$(|z(s)|)|z(s)|ds. (4.38)

By applying Lemma 2.4, where $(|z(t)) ≤ $(|z(t)|)|z(t)| and

M = |q((ξ), u(ξ), u′(ξ), u′′(ξ))|, we get

|z(t)| ≤ Ω−1
(

Ω(1) + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

h(s)ds

)
. (4.39)
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By replacing the z(t) we obtain
|u(t)|
B

≤ Ω−1
(

Ω(1) + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

h(s)ds

)
for t ≥ t0

≤ Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ), u(ξ))|s) as t→∞

provided limt0→∞

∫ t

t0

h(s)ds = d <∞, d > 0

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε

Therefore,

K = L(1 +
1

2
λ2 + α(ρ)M)(

Ω−1 (Ω(1) + d|q(ξ, u(ξ), u′(ξ), u′′(ξ))|)
)
.

Let |P (t, u(t))| ≤ A|u(t)| where constant A > 0. Then, the following results are

established.

Corollary 4.1:

Let |P (t, u(t))| ≤ A|u(t)|, P (t, 0) = 0, whereA > 0 . Let the function f(t, u(t), u′(t))

be continuous and satisfies the same conditions as in Theorem 3.17. Then, equa-

tion (4.28) is Hyers-Ulam stable if inequality (4.29) is satisfied with Hyers-Ulam

constant

K = L(1 + AM)
(
Ω−1 (Ω(1) + λd|q(ξ, u(ξ), u′(ξ), u′′(ξ))|)

)
. (4.40)

Provided
∫ ∞
t0

h(s)ds = d <∞, d > 0

Proof:

Let the proof begins from equation (4.33) and by applying the Theorem 1.1 there

exits points ξ ∈ [t0, t] such that

f(t, u(t), u′(t))u(t) ≤ εL+ q(ξ, u(ξ), u′(ξ), u′′(ξ))

∫ t

t0

f(s, u(s), u′(s))ds

+

∫ t

t0

P (s, u(s))u′(s)ds

(4.41)

Taking the absolute value and Let |f(t, u(t), u′(t))||u(t)| ≥ |u(t)|, by the hypothesis

of the Corollary we have

|u(t)| ≤ εL+ |q(ξ, u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

|f(s, u(s), u′(s))|ds

+A

∫ t

t0

|u′(s)||u(s)|ds
(4.42)

By Theorem 1.1 there exits points ρ ∈ [t0, t] such that

|u(t)| ≤ εL+ |q(ξ, u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

|f(s, u(s), u′(s))|ds

+A|u(ρ))|
∫ t

t0

|u′(s)|ds
(4.43)
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We have that

|u(t)| ≤ εL+ LA|u(ρ)|+ |q(ξ, u(ξ), u′(ξ), u′′(ξ))||u′(s)|
∫ t

t0

h(s)$(|u(s)|)ds

|u(t)| ≤ εL+ LAM + |q(ξ, u(ξ), u′(ξ), u′′(ξ))||u′(s)|
∫ t

t0

h(s)$(|u(s)|)ds

≤ εL(1 + AM) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))||u′(s)|
∫ t

t0

h(s)$(|u(s)|)|u′(s)|ds

|u(ρ)| ≤ M

|u′(t)| ≤ λ

Hence,
|u(t)|
B
≤ 1 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λ

∫ t

t0

h(s)$

(
|u(s)|
B

)
ds (4.44)

Where B = εL+ LAM , setting z = R.H.S of (4.44)

Therefore,

z(t) ≤ 1 + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|λ
∫ t

t0

h(s)$(z(s))ds (4.45)

0 < ω(z(t)) ≤ $(v(t))

for v(t) = R.H.S of (4.45)
v′(t)

$(v(t))
≤ |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λh(t)

dΩ(v(t))

dt
≤ |q((ξ), u(ξ), u′(ξ), u′′(ξ))|λh(t)

Integrating

Ω(v(t))− Ω(v(t0)) ≤ |q((ξ), u(ξ), u′(ξ), u(ξ))|λ
∫ t

t0

h(s)ds

since v(t0) = 1 and Ω−1(u) is an increasing function also we have

z(t) ≤ v(t) ≤ Ω−1
(

Ω(1) + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|λ
∫ t

t0

h(s)ds

)
|u(t)|
B

≤ Ω−1
(

Ω(1) + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

h(s)ds

)
for t ≥ t0

≤ Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λd) as t→∞

provided limt0→∞

∫ t

t0

h(s)ds ≤ d <∞

that is

|u(t)| ≤ εK,

where,

K = L(1 + AM)
(
Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λd)

)
forall t ≥ t0.

Corollary 4.2:

Let all the conditions of Theorem 4.3 remained valid. Suppose

|f(t, u(t), u′(t))| ≤ h(t)|u′(t)| ($(|u(t)|) + 2|u(t)|) (4.46)
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and

|P (t, u(t))| ≤ α(t)|u′(t)|n

where $ belongs to the class Ψ and h, α ∈ C(I,R+). Then, equation (4.28) is stable

in the sense of Hyers-Ulam stability with Hyers-Ulam constant

K = L(1 + α(ξ)δn)
(
Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ))|λd)

)
. (4.47)

Proof:

Using (4.33) with the Theorem 1.1, there exits points ξ, ρ ∈ [t0, t] such that

f(t, u(t), u′(t))u(t) ≤ εL+ q(ξ, u(ξ), u′(ξ), u′′(ξ))

∫ t

t0

f(s, u(s), u′(s))ds

+P (ρ, u(ρ))

∫ t

t0

u′(s)ds.

(4.48)

Taking the absolute value, using the hypothesis in Corollary 4.1 together with hy-

pothesis in Theorem 4.3 and setting |f(t, u(t), u′(t))||u(t)| ≥ |u(t)|, |f(t, u(t), u′(t))||u(t)| ≥

|u(t)|,
|u(t)|
B
≤ 1 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λ

∫ t

t0

h(s)

(
$

(
|u(s)|
B

)
+ 2
|u(s)|
B

)
ds, (4.49)

where B = εL (1 + α(ρ)Mn), setting z = L.H.S of (4.49).

Therefore,

z(t) ≤ 1 + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|λ
∫ t

t0

h(s) ($(z(s)) + 2z(s)) ds (4.50)

0 < $(z(t)) ≤ ω(v(t)) (4.51)

for v(t)= R.H.S of (4.51)
v′(t)

$(v(t)) + 2v(t)
≤ |q(ξ, u(ξ), u′(ξ), u(ξ))|λh(t) (4.52)

Using Lemma 2.4 by defining <(u) as in equation (3.43) we obtain
|u(t)|
B

≤ <−1
(
<(1) + |q((ξ), u(ξ), u′(ξ), u′′(ξ))|λ

∫ t

t0

h(s)ds

)
for t ≥ t0

≤ <−1 (<(1) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λd) as t→∞

provided limt0→∞

∫ t

t0

h(s)ds ≤ d <∞ that is

|u(t)| ≤ εK

Furthermore, we have

|u(t)− u(t0)| ≤ |u(t)| ≤ εK

Where,

K = L(1 + α(ρ)δn)
(
<−1 (<(1) + |q(ξ, u(ξ)u′(ξ), u′′(ξ))|λm)

)
forall t ≥ t0.

Corollary 4.3:

Let |P (t, u(t))| ≤ α(t)|u(t)|n, P (t, 0) = 0, where α(t) nonnegative, nondecreasing

continuous function and n ∈ N . Let the function f(t, u(t), u′(t)) be expressed

as in Theorem 4.3. Then, equation (4.28) is Hyers-Ulam stable with Hyers-Ulam
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constant given as

K = (1 + α(ρ)|u(ρ)|n)Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λm) .

Provided
∫ ∞
t0

h(s)ds = d <∞ d > 0

Proof:

From equation (4.29), we obtain

u(t) ≤ Lε+

∫ t

t0

q(s, u(s), u′(s))f(s, u(s), u′(s))ds+

∫ t

t0

P (s, u(s))u′(s)ds

Applying the Theorem 1.1, that is there exist ξ, ρ ∈ [t0, t] such that

|u(t)| ≤ εL+ |q(ξ, u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

|f(s, u(s), u′(s))|ds

+|P (ρ, u(ρ))|
∫ t

t0

|u′(s)|ds.
(4.53)

Using the hypothesis of this Corollary and Theorem 4.3, with application of The-

orem 1.1 there exists η ∈ [t0, t] such that

|u(t)| ≤ εL+ |q(ξ, u(ξ), u′(ξ), u′′(ξ))||u′(t)||$(η)|
∫ t

t0

h(s)ds+ Lα(ρ)|u(ρ)|n. (4.54)

It follows that

|u(t)| ≤ Lε(1 + α(ρ)|u(ρ)|n) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))||u′(t)|
∫ t

t0

h(s)$(|u(s)|)ds

By application of Lemma 2.4 and some hypothesis of this Corollary, we arrived at

|u(t)| ≤ εL(1 + α(ρ)|u(ρ)|n)Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λm)

where |u′(t)| ≤ λ and Hyers-Ulam constant is given as

K = (1 + α(ρ)|u(ρ)|n)Ω−1 (Ω(1) + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|λm)

This concludes the proof.

In the next theorem, we consider the Hyers-Ulam stability of special case of equa-

tion(4.28) in the form

u′′(t) + 2f(t)α(u(t))u′(t) + u(t) + P (t, u(t)) = 0. (4.55)

with initial conditions u(t0) = u′(t0) = 0.

Theorem 4.4:

Equation (4.55) is Hyers-Ulam stable if there exists constants K ≥ 0, ε > 0 and

the solution u(t) ∈ C2(I,R+) of

|u′′(t) + 2f(t)α(u(t))u′(t) + u(t) + P (t, u(t))| ≤ ε (4.56)

such that

|u(t)− u0(t)| ≤ Kε

for u0(t) ∈ C2(I,R+) is a solution of equation (4.55), where

|P (t, u(t))| ≤ α(t)$(|u(t)|) and K is H-U constant given as

K = (L+
1

2
λ2)Ω−1

(
Ω(1) + λjω

(
F−1

(
F (1) + 2λ2l

)))
F−
(
F (1) + 2λ2j

)
(4.57)
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Proof:

From (4.56), we obtain

−ε ≤ u′′(t) + 2f(t)α(u(t))u′(t) + u(t)− P (t, u(t)) ≤ ε (4.58)

Multiplying through by u′(t), we get
−u′(t)ε ≤ u′′(t)u′(t) + 2f(t)α(u(t))u′(t)u′(t) + u(t)u′(t)

−P (t, u(t))u′(t) ≤ u′(t)ε

Integrating from t0 to t,∫ t

t0

u′(s)εds ≤
∫ t

t0

u′′(s)u′(s)ds+

∫ t

t0

2f(s)α(u(s))u′(s)u′(s)ds

+

∫ t

t0

u(s)u′(s)ds−
∫ t

t0

P (s, u(s))u′(s)ds

Using equation (4.20) to have∫ t

t0

u′(s)εds ≤
∫ t

t0

u′′(s)u′(s)ds+

∫ t

t0

2f(s)α(u(s))u′(s)u′(s)ds

+

∫ t

t0

d

ds
G(u(s))ds−

∫ t

t0

P (s, u(s))u′(s)ds

Evaluate the integration by applying the initial conditions and using the hypothesis

of Theorem 4.4 we have

|G(u(t))| ≤ Lε+
1

2
(u′(t))2 + 2

∫ t

t0

f(s)α(|u(s)|)(|u′(s|))2ds

+

∫ t

t0

|P (s, u(s))||u′(s)|ds.
(4.59)

Using the hypothesis of the Theorem 4.4, let |u′(t)| ≤ λ, λ > 0, and

G(|u(t)|) ≥ |u(t)|
|u(t)|
A
≤ 1 + 2λ2

∫ t

t0

f(s)α(
|u(s)|
A

)ds+ λ

∫ t

t0

α(s)ω(
|u(s)|
A

)ds, (4.60)

for A = (L+
1

2
λ2)ε

Applying Theorem 3.7, we obtain

|u(t)| ≤ (L+
1

2
λ2)εΩ−1

(
Ω(1) + λ

∫ t

t0

α(s)ω

(
F−1

(
F (1) + 2λ2

∫ s

t0

f(δ)dδ

))
ds

)
F−1

(
F (1) + 2λ2

∫ t

t0

f(s)ds

)
Let limt→∞

∫ t

t0

f(s)ds = l <∞, limt→∞

∫ t

t0

α(s)ds = j <∞. for l, j > 0

it follows that
|u(t)| ≤ ε(L+

1

2
λ2)Ω−1

(
Ω(1) + λj$

(
F−1

(
F (1) + 2λ2l

)))
F−1

(
F (1) + 2λ2j

) (4.61)

|u(t)− u0(t)| ≤ |u(t)| ≤ ε(L+
1

2
λ2)Ω−1

(
Ω(1) + λjω

(
F−1

(
F (1) + 2λ2l

)))
F−1

(
F (1) + 2λ2j

) (4.62)
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Hence, Hyers-Ulam constant is given as

K = (L+
1

2
λ2)Ω−1

(
Ω(1) + λjω

(
F−1

(
F (1) + 2λ2l

)))
F−1

(
F (1) + 2λ2j

)
.

4.1.4 Hyers-Ulam Stability Nonlinear Differential Equation with Forc-
ing Term

In this subsection, equation

u′′(t) + f(t, u(t), u′(t)) = P (t, u(t), u′(t)) (4.63)

initial condition u(t0) = u′(t0) = 0 is considered, where P, f ∈ C(I ×R2) is going

to be considered.

Definition 4.3:

The equation (4.63) with the initial conditions u(t0) = u′(t0) = 0 has Hyers-Ulam

stability if there exists a positive constant K with following property. For every

ε > 0 u ∈ C2(R+), if

|u′′(t) + f(t, u(t), u′(t))− P (t, u(t), u′(t))| ≤ ε (4.64)

then, there exists a solution u0(t) ∈ C2(R+) of the equation (4.63), such that

|u(t)− u0(t)| ≤ Kε

Theorem 4.5:

The equation (4.63) with its initial value is said to be Hyers-Ulam stable if

|f(t, u(t), u′(t))| ≤ f(t)|u(t)|+ f(t)h(t)

(∫ t

t0

g(s)$(|u(s)|)ds
)
, (4.65)

where Ψ and h, f, g ∈ C(I,R+). with Hyers-Ulam constant

K = L(1 +
1

2
λ2 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|+ |p(u(ρ), u′(ρ))|)Ω−1 (Ω(1) + nQ) (4.66)

Proof:

Multiplying (4.64) by |u′(t)|, to get

|u′(t)|ε ≤ |u′(t)|u′′(t) + f(t, u(t), u′(t))|u′(t)| − |u′(t)|P (t, u(t), u′(t))| ≤ |u′(t)|ε.

Integrating from t to t0 to obtain

−ε
∫ t

t0

|u′(s)|ds ≤ 1

2
u′(t)2 +

∫ t

t0

f(s, u(s), u′(s))u′(s)ds

−
∫ t

t0

P (u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

|u′(s)|ds
(4.67)

Integrating by part and using initial condition and let f(t, u(t), u′(t))u(t) ≥ u(t),

u(t) ≤ εL+
1

2
u′(t)2 +

∫ t

t0

q(s, u(s), u′(s), u′′(s))f(s, u(s), u′(s))ds

+

∫ t

t0

P (u(s), u′(s))u′(s)ds

(4.68)

70



where
f ′(s, u(s), u′(s))u(s)

f(s, u, u′)
= q(t, u, u′, u′′)

By Theorem 1.1 there exist points ξ, ρ ∈ (t0, t) such that

u(t) ≤ εL+
1

2
u′(t)2 + q((ξ), u(ξ), u′(ξ), u′′(ξ))

∫ t

t0

f(s, u(s), u′(s))ds

+P (u(ρ), u′(ρ))

∫ t

t0

u′(s)ds

(4.69)

Taking the absolute value, setting |u′(t)| ≤ λ and by the hypothesis of this Theorem

4.5

≤ B +

∫ t

t0

f(s)|u(s)|ds+

∫ t

t0

f(s)h(s)

(∫ s

t0

g(τ)$(|u(τ)|)dτ
)
ds, (4.70)

where

B = εL(1 +
1

2
λ2 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|+ |p(u(ρ), u′(ρ))|)

|u(t)|
B
≤ 1 +

∫ t

t0

f(s)
|u(s)|
B

ds+

∫ t

t0

f(s)h(s)(∫ s

t0

g(τ)$

(
|u(τ)|
B

)
dτ

)
ds

(4.71)

By Theorem 3.10, we have
|u(t)|
B
≤ Ω−1

(
Ω(1) +

∫ t

t0

f(s)h(s)g(s)

(
Q(s) +

∫ s

t0

Q(τ)dτ

)
ds

)
, (4.72)

where Q(t) is defined in equation (3.3).

Setting limt0→∞

∫ t

t0

f(s)ds ≤ l <∞, Q = exp l as t→∞, and

limt→∞

∫ t

t0

sf(s)h(s)g(s)ds ≤ n <∞, then

|u(t)|
G
≤ Ω−1 (Ω(1) +Qn) (4.73)

Hence,

|u(t)| ≤ εK

K = L(1 +
1

2
λ2 + |q(ξ, u(ξ), u′(ξ), u′′(ξ))|+ |p(u(ρ), u′(ρ))|)Ω−1 (Ω(1) + nQ)

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε.

This completes the proof.

In the subsequent theorem, we consider Hyers-Ulam Stability of a perturbed Lien-

ard equation

u′′ + c(t)f(u(t))u′(t) + α(t)φ(u(t)) = P (t, u(t), u′(t)) (4.74)

with conditions u(t0) = u′(t0) = 0, where f, φ ∈ C(R+,R+), α, c,∈ C(I,R+).

The following definitions are presented here to assist in the proof of our results.

Definition 4.4:

Equation (4.74) is Hyers-Ulam stable, if there exists a constants K > 0 and ε > 0
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such that for u(t) ∈ C2(I,R+), satisfying

|u′′ + c(t)f(u(t))u′(t) + α(t)φ(u(t))− P (t, u(t), u′(t))| ≤ ε (4.75)

there exists a solution u0(t) ∈ C2(I,R+) of the equation (4.74), such that

|u(t)− u0(t)| ≤ Kε.

Where K is called Hyers-Ulam constant.

Theorem 4.6:

Let the functions f, c, φ, α and P be continuous. Suppose that

lim
t→∞

∫ t

t0

c(s)ds = m <∞ (4.76)

and

lim
t→∞

∫ t

t0

β(s)ds = n =<∞ (4.77)

then equation(4.74) is Hyers-Ulam stable with the Hyers-Ulam constant

K =

(
L

α(ξ)
+

λ2

2α(ξ)

)
Ω−1

(
Ω(1) +

λ2

α(ξ)
n$

(
F−1

(
F (1) +

λ2

α(ξ)
m

)))
F−1

(
F (1) +

λ2

α(ξ)
m

) (4.78)

with Ω defined in (2.13)

Proof:

From the inequality (4.75) and by multiplying by u′(t),
−εu′(t) ≤ u′′(t)u′(t) + c(t)f(u(t))(u′(t))2 + α(t)φ(u(t))u′(t)

−P (t, u(t), u′(t))u′(t) ≤ εu′(t)
(4.79)

Integrating (4.79) from t0 to t, we have
1

2
(u′(s))2 +

∫ t

t0

c(s)f(u(s))(u′(s))2ds+

∫ t

t0

α(t)φ(u(t))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.80)

By Theorem 1.1 there exist ξ ∈ [t0, t] such that
1

2
(u′(s))2 +

∫ t

t0

c(s)f(u(s))(u′(s))2ds+ α(ξ)

∫ t

t0

φ(u(t))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.81)

Using

Φ(u(t)) =

∫ u(t)

u(t0)

φ(u(s))ds (4.82)

Equation (4.81) becomes
1

2
(u′(s))2 +

∫ t

t0

c(s)f(u(s))(u′(s))2ds+ α(ξ)

∫ t

t0

d

ds
Φ(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds
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Integrating, taking the absolute value of both sides and setting∫ t

t0

|u′(s)|ds ≤ L,

|u′(t)| ≤ λ and |P (t, u(t), u′(t))| ≤ β(t)ρ(u)|u′(t)|

|φ(u(t))| ≤ ε

(
L

λ2α(ξ)
+

λ2

2α(ξ)

)
+

λ2

α(ξ)

∫ t

t0

c(s)f(|u(s))|ds

+
λ2

α(ξ)

∫ t

t0

β(s)ρ(u(s))ds

(4.83)

Let |φ(u(t)| ≥ |u(t)|, then

|u(t)| ≤ S +
λ2

α(ξ)

∫ t

t0

c(s)f(|u(s))|ds+
λ2

α(ξ)

∫ t

t0

β(s)ρ(u(s))ds (4.84)

where

S = ε

(
L

λ2α(ξ)
+

λ2

2α(ξ)

)
By Theorem 3.10 we have
|u(t)|
S
≤ Ω−1

(
Ω(1) +

λ2

α(ξ)

∫ t

t0

β(s)$

(
F−1

(
F (1) +

λ2

α(ξ)

∫ s

t0

c(δ)dδ

))
ds

)
F−1

(
F (1) +

λ2

α(ξ)

∫ t

t0

c(s)ds

)
(4.85)

Using (4.76) and (4.77), by substituting the value of S

|u(t)| ≤ ε

(
L

α(ξ)
+

λ2

2α(ξ)

)
Ω−1

(
Ω(1) +

λ2

α(ξ)
n$

(
F−1

(
(1) +

λ2

α(ξ)
m

)))
F−1

(
F (1) +

λ2

α(ξ)
m

) (4.86)

Hence,

K =

(
L

α(ξ)
+

λ2

2α(ξ)

)
Ω−1

(
Ω(1) +

λ2

α(ξ)
n$

(
F−1

(
F (1) +

λ2

α(ξ)
m

)))
F−1

(
F (1) +

λ2

α(ξ)
m

)
Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε.

Now, let us examining

u′′ + c(t)f(u(t))u′(t) +Bg(u(t)) = P (t, u(t), u′(t)) (4.87)

with initial value u(t0) = u′(t0) = 0, for f ∈ C(R+,R+), g ∈ C(R+,R+), c ∈

C(I,R+), for R+ = [t0,∞), I = (t0, b)(b ≤ ∞), P ∈ C(I × R2
+,R+) and

constant B > 0.

Theorem 4.7:

Let the functions f, c, g and P be continuous functions on C(R+). Equation (4.87)

is said to be stable in the sense of Hyers-Ulam stability if g(u(t)) a nonnegative,

continuous function on (R+), constant B > 0, |P (t, u(t), u′(t))| ≤ A|u(t)||u′(t)|n,
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for n ∈ Z+, A > 0 is a constant and inequality

|u′′ + c(t)f(u(t))u′(t) +Bg(u(t))− P (t, u(t), u′(t))| ≤ ε (4.88)

is satisfied, with Hyers-Ulam constant

K =
1

B
(L+ LAλn|u(ξ)|) Ω−1

(
Ω(1) +

λ2

B
m

)
(4.89)

Proof:

From inequality

−ε ≤ u′′ + c(t)f(u(t))u′(t) +Bg(u(t))− P (t, u(t), u′(t)) ≤ ε,

where B a positive constant. Define G(u(t)) as

G(u(t)) =

∫ u(t)

u(t0)

g(s)ds (4.90)

Now integrating from t0 to t∫ t

t0

c(s)f(u(s))(u′(s))2ds+B

∫ t

t0

d

ds
G(u(s))ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.91)

Integrating, by hypothesis of the Theorem 4.7 and setting, |G(u(t)| ≥ |u(t)|,∫ t

t0

|u′(s)|ds ≤ L for constant L > 0.

|u(t)| ≤ 1

B
εL+

1

B

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds+
1

B
A

∫ t

t0

|u(s))||u′(s)|n+1ds (4.92)

By Theorem 1.1, for t0 < ξ < t, and |u′(t)| ≤ λ, for λ > 0 we have

|u(t)| ≤ 1

B
εL+

1

δ
LAλn|u(ξ)|+ λ2

B

∫ t

t0

c(s)f(|u(s)|)ds (4.93)

Setting

D =
1

B
ε (L+ LAλn|u(ξ)|) (4.94)

Since f ∈ Ψ, we obtain

z(t) ≤ 1 +
λ2

B

∫ t

t0

c(s)f(z(s))ds, (4.95)

for
|u(t)|
D

= z(t)

Let ω(z(t)) = f(z(t)) By Lemma 2.4 and using (4.76)

|u(t)| ≤ ε
1

B
(L+ LAλn|u(ξ)|) Ω−1

(
Ω(1) +

λ2

B
m

)
(4.96)

Hence,

K =
1

B
(L+ LAλn|u(ξ)|) Ω−1

(
Ω(1) +

λ2

B
m

)
Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε

This ends the proof of the Theorem.
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4.1.5 Hyers-Ulam Stability of Nonperturbed Differential Equation

In this section we first consider the Hyers-Ulam stability of the nonlinear second

order differential equation

u′′(t) + f(t, u(t)) = 0 (4.97)

with initial conditions u(t0) = u′(t0) = 0 where P (t, u(t)) = 0.

Definition 4.5:

The equation(4.97) with its initial conditions has Hyers-Ulam stability if there

exists a positive constant K such that for every solution u(t) ∈ C2(R+) satisfying

|u′′(t) + f(t, u(t))| ≤ ε (4.98)

for ε > 0, then, there exists a solution u0(t) ∈ C2(R+) of the equation (4.97) such

that

|u(t)− u0(t)| ≤ Kε

Theorem 4.8:

Suppose inequality (4.98) is satisfied where $ ∈ Ψ and Ω is defined in(2.13),

equation(4.97) is said to be Hyers-Ulam stable with Hyers-Ulam constant

K =

(
L+

1

2
λ2
)(

Ω−1 (Ω(1) + |g(ξ, u(ξ), u′(ξ))|m)
)

(4.99)

. Proof:

Multiplying (4.98) by |u′(t)| we obtain

−ε|u′(t)| ≤ u′(t)u′′(t) + f(t, u(t))u′(t) ≤ ε|u′(t)| (4.100)

Integrating each term from t0 to t, then,

−ε
∫ t

t0

|u′(s)|ds ≤ 1

2
u′(t)2 +

∫ t

t0

f(s, u(s))u′(s)ds ≤ ε

∫ t

t0

|u′(s)|ds, (4.101)

for any t ≥ t0. Integrating by part, setting
∫ ∞
t0

|u′(s)|ds ≤ L for L > 0

and fu(t, u(t)) ≤ 0.

f(t, u(t))u(t) ≤ εL+
1

2
u′(t)2

+

∫ t

t0

g(s, u(s), u′(s))f(s, u(s))u(s)ds for t ≥ t0,
(4.102)

where
f ′(t, u(t))u(t)

f(t, u(t))
= g(t, u(t), u′(t)) (4.103)

By Theorem 1.1,there exits ξ ∈ [t0, t] such that

|u(t)| ≤ εL+
1

2
λ2 + |g(ξ, u(ξ), u′(ξ))|

∫ t

t0

|f(s, u(s))| (4.104)

for |u′(t)| ≤ λ, for λ > 0, and |f(t, u(t))||u(t)| ≥ |u(t)|,

if F = ε(L+ 1
2
λ2) > 0, we have

|u(t)|
F
≤ 1 + |g((ξ), u(ξ), u′(ξ))|

∫ t

t0

φ(s)$

(
|u(s)|
F

)
ds t ≥ t0 (4.105)
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Setting v(t) = R.H.S ,(4.105) and since $ is nondecreasing,then

0 < $

(
|u(t)|
F

)
≤ $(v(t))

v′(t) = |g((ξ), u(ξ), u′(ξ))|φ(t)$

(
|u(t)|
F

)
≤ |g(ξ), u(ξ), u′(ξ))|φ(t)$(v(t))

then,
v′(t)

$(v(t))
≤ |g(ξ, u(ξ), u′(ξ))|φ(t) (4.106)

Using equation(2.13), we obtain
dΩ(v(t))

dt
≤ |g(ξ, u(ξ), u′(ξ))|φ(t) (4.107)

Integrating from t0 to t gives

v(t) ≤ Ω−1
(

Ω(1) + |g(ξ, u(ξ), u′(ξ))|
∫ t

t0

φ(s)ds

)
. (4.108)

Setting limt→∞
∫ t
t0
φ(s)ds ≤ m <∞, this leads to

|u(t)|
F
≤ Ω−1 (Ω(1) + |g(ξ, u(ξ), u′(ξ))|m) . (4.109)

Substituting F

|u(t)| ≤ ε(L+
1

2
λ2
(
Ω−1 (Ω(1) + |g(ξ, u(ξ), u′(ξ))|m)

)
forall t ≥ t0. (4.110)

Hence,

|u(t)− u0(t)| ≤ Kε

Where

K = (L+
1

2
λ2
(
Ω−1 (Ω(1) + |g(ξ, u(ξ), u′(ξ))|m)

)
.

We consider Hyers-Ulam stability of equation

u′′(t) + f(t, u(t), u′(t)) = 0 (4.111)

with the initial conditions u(t0) = u′(t0) = 0.

Definition 4.6:

Nonlinear differential equation (4.111) together with its initial conditions is Hyers-

Ulam stable if there exits any solution u(t) ∈ C2(R+) satisfying

|u′′(t) + f(t, u(t), u′(t))| ≤ ε (4.112)

such that

|u(t)− u0(t)| ≤ Kε

for ε > 0, K > 0 and u0(t) ∈ C2(R+) is any solution satisfying equation(4.111)

Theorem 4.9:

Suppose
|f(t, u(t), u(t))| ≤ h(t)$(|u(t)|)|u′(t)|

u(t) ≤ f(t, u(t), u′(t))u(t),
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where f(t, u(t), u′(t)) > 1 and
f ′(t, u(t), u′(t))u(t)

f(t, u(t), u′(t))
= g(t, u(t), u′(t), u′′(t)),

h a nonnegative, nondecreasing, continuous function on R+ and g a positive con-

tinuous function on I×R+
3 and $ ∈ Ψ, is continuous, nondecreasing in u. Equa-

tion(4.111) is Hyers-Ulam stable with Hyers-Ulam constant

K = (L+
1

2
λ2)
(
Ω−1 (Ω(1) +|g(ξ, u(ξ), u′(ξ), u′′(ξ))|s)) for all t ≥ t0. (4.113)

Proof:

Multiplying(4.112) by |u′(t)|

−ε|u′(t)| ≤ u′(t)u′′(t) + f(t, u(t), u′(t))u′(t) ≤ ε|u′(t)| ∀t ≥ t0 (4.114)

Integrating each term from t0 to t, then,

−ε
∫ t

t0

|u(s)|ds ≤ 1

2
u′(t)2+∫ t

t0

f(s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

|u′(s)|ds ∀t ≥ t0

(4.115)

Integrating by part, let

fu(t, u(t), u′(t)) + fu′(t, u(t), u′(t)) ≤ 0

and
∫ ∞
t0

|u′(s)|ds ≤ L

f(s, u(s), u′(s))u(t) ≤ εL+
1

2
u′(t)2+∫ t

t0

f ′(s, u(s), u′(s))u(s)

f(s, u(s), u′(s))
f(s, u(s), u′(s))ds

(4.116)

By hypothesis of the Theorem 4.9

u(t) ≤ εL+
1

2
u′(t)2 +

∫ t

t0

g(s, u(s), u′(s), u′′(s))f(s, u(s), u′(s))ds (4.117)

By generalised Mean value Theorem 1.1, there exists ξ ∈ [t0, t] such that

u(t) ≤ εL+
1

2
u′(t)2 + g(ξ, u(ξ), u′(ξ), u′′(ξ))

∫ t

t0

f(s, u(s), u′(s)ds (4.118)

Taking the absolute value and letting

|u′(t)| ≤ λ, for λ > 0 together with the hypothesis in the theorem
|u(t)|
T
≤ 1 + |g(ξ, u(ξ), u′(ξ), u′′(ξ))|

∫ t

t0

h(s)$(
|u(s)|
T

)|u′(s)|ds (4.119)

for T = ε
(
L+ 1

2
λ2
)
.

Setting z(t) =
|u(t)|
T

, then equation(4.119) becomes

z(t) ≤ 1 + |g(ξ, u(ξ), u′(ξ), u′′(ξ))|
∫ t

t0

h(s)$(z(s))z(s)ds. (4.120)
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Setting v(t)= R.H.S of equation (4.120) since$ is nondecreasing and h(t) is positive

continuous function, we have

0 < $(z(t)) ≤ $(v(t))

v′(t) = |g(ξ, u(ξ), u′(ξ), u′′(ξ))|h(t)$(z(t))z(t)

≤ |g(ξ, u(ξ), u′(ξ), u′′(ξ))|h(t)$(v(t))v(t)
v′(t)

$(v(t))v(t)
≤ |g(ξ, u(ξ), u′(ξ), u′′(ξ))|h(t) (4.121)

By applying equation(2.13) we get
dΩ(v(t))

dt
≤ |g((ξ), u(ξ), u′(ξ), u′′(ξ))|h(t) (4.122)

Integrating from t0 to t, and since v(t0) = 1 we get

z(t) ≤ v(t) ≤ Ω−1
(

Ω(1) + |g((ξ), u(ξ), u′(ξ)u′′(ξ))|
∫ t

t0

h(s)ds

)
(4.123)

Finally from (4.123) and substituting the value of T

|u(t)| ≤ ε(L+
1

2
λ2)
(
Ω−1 (Ω(1) + |g(ξ, u(ξ), u′(ξ), u′′(ξ))|s)

)
∀ t ≥ t0, (4.124)

provided limt0→∞

∫ t

t0

h(s)ds ≤ s <∞

then

K = (L+
1

2
λ2)
(
Ω−1 (Ω(1) +|g(ξ, u(ξ), u′(ξ), u′′(ξ))|s)) for all t ≥ t0.

Hence,

|u(t)| ≤ Kε

Therefore,

|u(t)− u0(t)| ≤ Kε.

The next theorem deals with the consideration of the Hyers-Ulam stability of equa-

tion

u′′(t) + a(t)u′(t) +
1

b(t)
u(t) + g(t)f(u(t)) = 0 (4.125)

where a, b, g,∈ C(I,R+). and f ∈ C(R+,R+) with f ∈ ψ

Theorem 4.10:

Suppose that u(t) ∈ C2(I,R+) satisfies the differential inequality:

|u′′(t) + a(t)u′(t) +
1

b(t)
u(t) + g(t)f(u(t))| ≤ ε (4.126)

Then, if

(i)
∫ t

t0

1

b(s)
ds ≤ p for p > 0, and all t ∈ R+

(ii)
∫ t

t0

(
a(s)

b(s)
− 1

)
|u′(s)|ds ≤ m. for m ≥ 0

(iii) |u′(t)| ≤ λ for λ ≥ 0.

(iv) limt→∞

∫ t

t0

1

b2(s)
ds = l <∞ for l > 0
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limt→∞

∫ t

t0

g(s)

b(s)
ds = j <∞ for j > 0

are satisfied, equation (4.126) is Hyers-Ulam stable with the Hyers-Ulam constant

K defined as

K = (|E(t0)|+ λ+ p+m) Ω−1 (Ω(1) + j$(exp l)) exp l (4.127)

Proof:

Inequality (4.126), implies that

u′′(t) + a(t)u′(t) +
1

b(t)
u(t) + g(t)f(u(t)) ≤ ε (4.128)

Define

E(t) =
u′(t)

b(t)
+ u(t), u(t) 6= 0, b(0) 6= 0 (4.129)

It is clear that

E(t) = E(t0) +

∫ t

t0

d

ds

(
u′(s)

b(s)
+ u(s)

)
ds, (4.130)

for

E(t0) =
u′(t0)

b(t0)
+ u(t0) (4.131)

E(t) = E(t0) +

∫ t

t0

(
u′(s) +

u′′(s)

b(s)
− db(s)

ds

u′(s)

b2(s)

)
ds (4.132)

Since b(t) is an increasing function,
db(t)

dt
≥ 0, then

E(t) ≤ E(t0) +

∫ t

t0

(
u′(s) +

u′′(s)

b(s)

)
ds (4.133)

Substituting for u′′(t) in (4.133), using(4.125), we have

E(t) ≤ E(t0)−
∫ t

t0

((
a(s)

b(s)
− 1

)
u′(s) +

1

b2(s)
u(s) +

g(s)

b(s)
f(u(s))

− ε

b(s)

)
ds

(4.134)

Replacing E(t) in (4.134) with (4.129) and taking the absolute value

|u(t)| ≤ |E(t0)|+
|u′(t)|
b(t)

+

∫ t

t0

((
a(s)

b(s)
− 1

)
|u′(s)|+ 1

b2(s)
|u(s)|

+
g(s)

b(s)
f(|u(s|)) +

ε

b(s)

)
ds

(4.135)

Using conditions (i-iii) with
1

b(t)
≤ 1, we get

|u(t)| ≤ |E(t0)|+ λ+ εp+m+

∫ t

t0

1

b2(s)
|u(s)|ds+

∫ t

t0

g(s)

b(s)
f(|u(s)|)ds (4.136)

Setting
1

b2(t)
= α(t),

g(t)

b(t)
= γ(t) (4.137)

and using equation (4.137) in (4.136), we have

|u(t)| ≤ |E(t0)|+ λ+ εp+m+

∫ t

t0

α(s)|u(s)|ds +

∫ t

t0

γ(s)f(|u(s)|)ds (4.138)

with

f(|u(t)|) = $(|u(t)|) and ε ≥ 1
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(4.138) becomes

|u(t)| ≤ C +

∫ t

t0

α(s)|u(s)|ds+

∫ t

t0

γ(s)$(|u(s)|)ds (4.139)

where

C = ε (|E(t0)|+ λ+ p+m) (4.140)

thus, we have
|u(t)|
C
≤ 1 +

∫ t

t0

α(s)
|u(s)|
C

ds+

∫ t

t0

γ(s)ω(
|u(s)|
C

)ds, (4.141)

by applying Theorem 2.12 yields

|u(t)| ≤ CΩ−1
(

Ω(1) +

∫ t

t0

γ(s)ω

(
exp

∫ s

t0

α(δ)dδ

)
ds

)
(

exp

∫ t

t0

α(s)ds

) (4.142)

By the condition (iv), we obtain

|u(t)| ≤ C exp lΩ−1 (Ω(1) + jω(exp l)) (4.143)

Substituting for C in (4.142) we obtain
|u(t)− u0(t)| ≤ |u(t)| ≤ ε (|E(t0)|+ λ+ p+m) exp l

Ω−1 (Ω(1) + j$(exp l))
(4.144)

Therefore, equation (4.125) is Hyers-Ulam stable with the Hyers-Ulam constant

K = (|E(t0)|+ λ+ p+m) Ω−1 (Ω(1) + jω(exp l)) exp l

This concludes the proof.

Next, we consider the Hyers-Ulam stability of a second order differential equation

which is nonlinear in both u(t) and u′(t)

u′′(t) + φ(t)g(u(t))h(u′(t)) = 0, (4.145)

together with initial conditions u(t0) = u′(t0) = 0, where h, φ ∈ C(I,R+), g ∈

C(R+,R+) and h(u′) > 0.

Theorem 4.11:

Let u(t) ∈ C2(I,R+) satisfies the differential inequality

|u′′(t) + φ(t)g(u(t))h(u′(t))| ≤ ε (4.146)

for all t ∈ I and for some ε > 0, then there exists a solution u0(t) ∈ C2(I,R+) of

equation(4.145)such that

|u(t)− u0(t)| ≤ Kε,

for

K =
1

δλ
PΩ−1

(
Ω(1) +

1

δλ
l

)
(4.147)

with A ∈ ψ, provided the following conditions are satisfied:

i A(u(t)) =

∫ u(t)

u(t0)

g(s)ds <∞
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ii P (u(t)) =

∫ u(t)

u(t0)

s

h(s)
ds <∞

iii limt→∞

∫ t

t0

|φ′(s)|ds = l <∞

iv α(t) ≥ δ, where δ > 0

v
∫ t

t0

|u′(s)|
|h(u′(s))|

ds ≤ Q

Proof:

From inequality (4.146), it follows that
u′′(t)u′(t)

h(u′(t))
+ φ(t)g(u(t))u′(t) ≤ u′(t)ε

h(u′(t))
, (4.148)

by conditions (i) and (ii), we get
d

dt
P (u′(t)) + φ(t)

d

dt
G(u(t)) ≤ u′(t)ε

h(u′(t))
forall t ≥ t0 (4.149)

Integrating by part from t0 to t

P (u′(t))− φ(t)G(u(t)) +

∫ t

t0

φ′(s)G(u(s))ds ≤ ε

∫ t

t0

u′(s)

h(u′(s))
ds (4.150)

Taking the absolute value of both sides, setting

|P (u′(t))− φ(t)A(u(t))| ≥ α(t)|u(t)||u′(t)| (4.151)

for α(t) ∈ C(I,R+)

By inequality (4.151), we have

α(t)|u(t)||u′(t)| ≤ ε

∫ t

t0

|u′(s)|
h(|u′(s)|)

ds+

∫ t

t0

|φ′(s)|A(|u(s)|)ds (4.152)

By conditions (iv),(v) and setting |u′(t)| ≤ λ, for λ ≥ 0,
|(u(t))|
L

≤ 1 +
1

δλ

∫ t

t0

|φ′(s)|ω(
|u(s)|
L

)ds, (4.153)

for A ∈ Ψ,A(|u(t)) = $(|u(t))| and

L =
ε

δλ
Q (4.154)

By Lemma 2.4 and condition(iii) we obtain

|u(t)| ≤ LΩ−1
(

Ω(1) +
1

δλ
l

)
(4.155)

Substituting for L using equation (4.154), then inequality (4.155) becomes

|u(t)| ≤ ε

δλ
QΩ−1

(
Ω(1) +

1

δλ
l

)
(4.156)

Since

|u(t)− u(t0)| ≤ |u(t)|

we have

|u(t)− u0(t)| ≤
ε

δλ
QΩ−1

(
Ω(1) +

1

δλ
l

)
(4.157)

Hence, equation (4.145) is Hyers-Ulam stable with Hyers-Ulam constant K given

as

K =
1

δλ
QΩ−1

(
Ω(1) +

1

δλ
l

)
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The Hyers-Ulam stability of the Lienard equation is investigated as thus

u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t)) = 0 (4.158)

with initial value u(t0) = u′(t0) = 0.

Theorem 4.12:

Let all the conditions of Theorem (4.6) remain valid with P (t, u(t), u′(t)) = 0.

Equation (4.158) possess Hyers-Ulam stability and Hyers-Ulam constant

K = (
1

δ
L+

1

2
λ2)Ω−1

(
Ω(1) +

λ2

δ
m

)
Proof:

Since P (t, u(t), u′(t)) = 0. and if there exists a solution u(t) ∈ C2(R+) which

satisfies

|u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))| ≤ ε (4.159)

, then, from inequality (4.159) it follows that

−ε ≤ u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t)) ≤ ε (4.160)

Multiplying inequality (4.160) by u′(t), by applying the condition(i) of Theorem

4.10, integrating from t0 and t∫ t

t0

c(s)f(u(s))(u′(s))2ds+

∫ t

t0

a(s)
d

ds
A(u(s))ds ≤ ε

∫ t

t0

u′(s)ds (4.161)

Integrating by part, using a′(t) ≥ 0 and a(t) ≥ δ > 0, taking the absolute value

and let
∫ t

t0

|u′(s)|ds ≤ L, for L > 0, |A(u(t))| ≥ |u(t)| we have

|u(t)|
P
≤ 1 +

(|u′(t)|)2

δ

∫ t

t0

c(s)f(
|u(s)|
P

)ds (4.162)

where

P =
ε

δ
L

Let |u′(t)| ≤ λ,
|u(t)|
P

= z(t), and using Lemma 2.4, for $(z(t)) = f(z(t)),

z(t) ≤ Ω−1
(

Ω(1) +
λ2

δ

∫ t

t0

c(s)ds

)
(4.163)

Setting limt→∞

∫ t

t0

c(s)ds ≤ m <∞, for m > 0, substituting for z(t), and P

|u(t)| ≤ ε

δ
LΩ−1

(
Ω(1) +

λ2

δ
m

)
(4.164)

where

K =
1

δ
LΩ−1

(
Ω(1) +

λ2

δ
m

)
(4.165)

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε.
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4.2 Hyers-Ulam-Rassias Stability of Perturbed and Nonperturbed
Nonlinear Second Order Differential Equation

4.2.1 Introduction

The goal of this segment is on Generalised Hyers-Ulam stability (also referred

to as Hyers-Ulam-Rassias stability). This is an extension of Hyers-Ulam stabil-

ity considered in the previous section. Here we shall obtain Hyers-Ulam-Rassias

constant denoted by Cϕ.

4.2.2 Hyers-Ulam-Rassias Stability of Differential Equation u′′(t) +
f(t, u(t)) = P (t, u(t))

The equation

u′′(t) +B(t)Q(u(t)) = P (t, u(t)) (4.166)

with initial conditions u(t0) = u′(t0) = 0. is considered in various ways.

Definition 4.7:

Equation (4.166) posses Hyers-Ulam-Rassias stability, if there exists u(t) ∈ C2(R+)

be any solution satisfies inequality

|u′′(t) +B(t)Q(u(t))− P (t, u(t))| ≤ ϕ(t) (4.167)

where ϕ(t) a nondecreasing and positive function defined as

ϕ : I → R+, and there exists solution u0(t) ∈ C2(R+) of equation (4.166) such

that

|u(t)− u0(t)| ≤ Cϕϕ(t)

holds where Cϕ is the Hyers-Ulam-Rassias constant.

Theorem 4.13:

In equation (4.166), B(t) a nonnegative, nondecreasing continuous function on R+,

Q(u(t)) a positive continuous function also defined for every real positive function

u(t) and given φ(t) ∈ (I,R+) so that |P (t, u(t))| ≤ φ(t)$(|u(t)|), $(u(t)) ∈ Ψ.

Then, equation (4.166) is Hyers-Ulam-Rassias stable with Hyers-Ulam-Rassias con-

stant is given as

Cϕ = (
λ

2
+

1

δ
)Ω−1

(
Ω(1) +

λ

δ
y

)
(4.168)

Proof:

From equation (4.167), we get

−ϕ(t) ≤ u′′(t) +B(t)Q(u(t))− P (t, u(t)) ≤ ϕ(t) (4.169)

Multiplying inequality (4.169) by u′(t),

−ϕ(t) ≤ u′′(t)u′(t) +B(t)Q(u(t))u′(t)− P (t, u(t))u′(t) ≤ u(t)ϕ(t). (4.170)
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Integrating from t0 to t and using the initial value, we have
1

2
(u′(t))2+

∫ t

t0

B(s)Q(u(s))u′(s)ds−
∫ t

t0

P (s, u(s))u′(s)ds ≤
∫ t

t0

ϕ(s)u′(s)ds (4.171)

Letting

A(u(t)) =

∫ u(t)

u(t0)

Q(s)ds, (4.172)

then,∫ t

t0

B(s)
d

ds
A(u(s))ds+

(u′(t))2

2
−
∫ t

t0

P (s, u(s))u′(s)ds ≤
∫ t

t0

ϕ(s)u′(s)ds. (4.173)

Using integration by part with initial value and recall that B(t)

a nondecreasing function in t, then
d

dt
B(t) ≥ 0, we obtain

B(t)|A(u(t))| ≤ |u
′(t)|2

2
+ |u′(t)|

∫ t

t0

ϕ(s)ds+ |u′(t)|
∫ t

t0

|P (s, u(s))|ds (4.174)

Let B(t) ≥ δ, δ > 0, |A(u(t))| ≥ |u(t)| and |u′(t)| ≤ λ, λ > 0, and by the

hypothesis of the Theorem 4.13, we arrive at

|u(t)| ≤ (
λ

2
+

1

δ
)

∫ t

t0

λϕ(s)ds+
λ

δ

∫ t

t0

φ(s)$(|u(s)|)ds (4.175)

Using Theorem 2.9 together with

limt→∞

∫ t

t0

φ(s)ds = y <∞,
∫ t

t0

λϕ(s)ds ≤ ϕ(t),

where λ ≤ 1

t− t0
≤ 1 for t ≥ t0 > 0,

it is obvious that

|u(t)|) ≤ (
λ

2
+

1

δ
)ϕ(t)Ω−1

(
Ω(1) +

λ

δ
y

)
. (4.176)

This leads to Hyers-Ulam-Rassis constant which is given as:

Cϕ = (
λ

2
+

1

δ
)

(
Ω(1) +

λ

δ
y

)
If |P (t, u(t))| ≤ K ′$(|u(t)|), where K ′ a positive constant, we have the following

theorem

Theorem 4.14:

Let conditions of Theorem 4.13 remain valid expect that

|P (t, u(t))| ≤ K ′$(|u(t)|), K ′ is a positive constant. Then, the equation (4.166) is

Hyers-Ulam-Rassias stable and Hyers-Ulam-Rassias constant is given as

Cϕ = (
λ

2
+

1

δ
)Ω−1

(
Ω(1) +

K ′

δ
L

)
(4.177)

Proof:

Using the inequality (4.170), integrating by part, since B(t) is a nondecreasing

function in t,
d

dt
B(t) ≥ 0, then equation (4.170) yields

B(t)|A(u(t))| ≤ |u
′(t)|2

2
+

∫ t

t0

|u′(s)|ϕ(s)ds+

∫ t

t0

|u′(s)||P (s, u(s))|ds (4.178)

84



Let B(t) ≥ δ, δ > 0, A(u(t)) ≥ |u(t)|, |u′(t)| ≤ λ, λ > 0, by the hypothesis of the

Theorem 4.14, leads to

|u(t)| ≤ (
λ

2
+

1

δ
)

∫ t

t0

λϕ(s)ds+
K ′

δ

∫ t

t0

|u′(s)|$(|u(s)|)ds (4.179)

By Theorem (2.2), letting
∫ t

t0

|u′(s)|ds ≤ L,

∫ t

t0

λϕ(s)ds ≤ ϕ(t),

where λ ≤ 1

t− t0
≤ 1 for t ≥ t0 > 0,

we have

|u(t)|) ≤ (
λ

2
+

1

δ
)Ω−1

(
Ω(1) +

K ′

δ
L

)
(4.180)

Cϕ = (
λ

2
+

1

δ
)Ω−1

(
Ω(1) +

K ′

δ
L

)
Hyers-Ulam-Rassis stability of nonlinear Euler type equation is considered as our

next result. The equation is given as

t2u′′(t) + f(u(t)) = P (t, u(t)), t ≥ 1 (4.181)

where t ∈ I, f ∈ C(R+,R+), P ∈ C(I×R,R), R+ = [0,∞)

Definition 4.8:

Equation (4.181)is Hyers-Ulam-Rassias stable, if ∃ a Cϕ > 0, � ϕ : I → R+, a

solution u(t) ∈ C2(I,R+), of the inequality

|t2u′′(t) + f(u(t))− P (t, u(t))| ≤ ϕ(t) (4.182)

for which the solution u0(t) ∈ C2(I,R+) of equation (4.181) satisfies

|u(t)− u0(t)| ≤ Cϕϕ(t)

where Cϕ is H-U-R constant.

Theorem 4.15:

Let the undermentioned conditions be given as:

(i) if φ(t) ∈ (I,R+) then |P (t, u(t))| ≤ φ(t)$(|u(t)|) and
∫ ∞
t0

|u′(s)|ds ≤ L

(ii)limt→∞

∫ t

t0

φ(s)ds = y <∞

(iii) let λ > 0 and λ ≤ 1

t− t0
≤ 1 for t ≥ t0 ≥ 1,

so that λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t) ∀t ∈ I,

equation (4.181) is Hyers-Ulam-Rassias stable and Hyers-Ulam-Rassias constant is

given as:

Cϕ = (|u′′(η)|L+ 1)Ω−1 (Ω(1) + λy)

Proof:

From equation (4.182),

−ϕ(t) ≤ t2u′′(t) + f(u(t))− P (t, u(t)) ≤ ϕ(t), t ≥ 1 (4.183)
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Multiply through by u′(t) and take
1

t2
≤ 1 for t ≥ 1 integrating from t0 to t,

applying Lemma 1.1 that is there exists η ∈ [t0, t] such that

u′′(η)

∫ t

t0

u′(s)ds+

∫ t

t0

f(u(s))u′(s)ds−
∫ t

t0

P (s, u(s))ds ≤
∫ t

t0

u′(s)ϕ(s)ds

Let equation

F(u(t)) =

∫ u(t)

u(t0)

f(s)ds, (4.184)

be applied on the above equation, taking the absolute value and using |u′(t)| ≤

λ, for λ > 0

with condition(i)

|u(t)|) ≤ (|u′′(η)|L+ 1)λ

∫ t

t0

ϕ(s)ds+ λ

∫ t

t0

φ(s)$(|u(s)|)ds (4.185)

setting |F(u(t))| ≥ |u(t)|

By Theorem 2.9 and condition (ii)

|u(t)| ≤ (|u′′(η)|L+ 1)λ

∫ t

t0

ϕ(s)dsΩ−1(Ω(1) + λy) (4.186)

Using condition (iii),

|u(t)− u0(t)| ≤ |u(t)| ≤ (|u′′(η)|L+ 1)Ω−1 (Ω(1) + λy)ϕ(t) (4.187)

Cϕ = (|u′′(η)|L+ 1)Ω−1 (Ω(1) + λy)

Lastly, if |P (t, u(t))| ≤ K ′$(|u(t)|)|

Theorem 4.16:

The equation (4.181) is H-U-R stable if |P (t, u(t))| ≤ K ′$(|u(t)|)|, where K ′ a

positive constant with other conditions of Theorem 4.15 remain valid. Then, Hyers-

Ulam-Rassias constant of equation (4.181) is given as

Cϕ = (|u′′(η)|L+ 1)Ω−1 (Ω(1) +K ′L)

Proof:

Using the inequality (4.185) and taking
1

t2
≤ 1 for t ≥ 1

|u(t)|) ≤ (|u′′(η)|L+ 1)|u′(t)|
∫ t

t0

ϕ(s)ds+K ′
∫ t

t0

|u′(s)|$(|u(s)|)ds (4.188)

setting |F(u(t))| ≥ |u(t)|, using the conditions of Theorem 4.15 and Theorem 2.9,

we have

|u(t)| ≤ (|u′′(η)|L+ 1))λ

∫ t

t0

ϕ(s)dsΩ−1(Ω(1) +K ′L). (4.189)

This leads to

|u(t)− u0(t)| ≤ |u(t)| ≤ (|u′′(η)|L+ 1)Ω−1 (Ω(1) +K ′L)ϕ(t), (4.190)

The Hyers-Ulam-Rassis constant is given as

Cϕ = (|u′′(η)|L+ 1)Ω−1 (Ω(1) +K ′L)

This concludes the proof.
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4.2.3 Hyers-Ulam-Rassias Stability of Nonhomogeneous Second Or-
der NonlinearOrdinary Differential Equation

This unit is concerned with examining Hyers-Ulam-Rassias stability of the gen-

eral equation

u′′(t) + f(t, u(t), u′(t)) = P (t, u(t), u′(t)) (4.191)

in different forms. The first form is given as

[r(t)φ(u(t))u′(t)]
′
+ f(t, u(t), u′(t))u′(t) + α(t)h(u(t)) = P (t, u(t), u′(t)), (4.192)

with the initial conditions u(t0) = u′(t0) = 0, where α, r, : I→ R+,

φ : R+ → R+ f, P : R+ ×R2 → R are continuous functions in their respective

argument.

Definition 4.9:

Given (4.191), we define Hyers-Ulam-Rassias stability as thus, if there exists a

positive constant Cϕ with the following property: for every solution u(t) ∈ C2(R+),

inequality∣∣[r(t)φ(u(t))u′(t)]
′
+ f(t, u(t), u′(t))u′(t) + α(t)h(u(t))− P (t, u(t), u′(t))

∣∣
≤ ϕ(t)

(4.193)

holds for positive function u and ϕ : I → R+, if there exists u0(t) ∈ C2(R+)

solution of equation (4.191), then

|u(t)− u0(t)| ≤ Cϕϕ(t)

where Cϕ is neither independent on ϕ(t) nor u(t)

If

f(t, u(t), u′(t)) = P (t, u(t), u′(t))

Theorem 4.17:

Let r(t) be a positive polynomial function on C(R+), if

i |f(t, u(t), u′(t))| = |P (t, u(t), u′(t))| ≤ κ(t)$(|u(t)|) |u′(t)|

where κ a nonnegative, continuous function on R+

and $ ∈ Ψ and u > 0.

ii let t ≥ t0 ≥ 1, so that
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t),∀t ∈ I,

with Hyers-Ulam-Rassias positive constant

Cϕ =
TE

δ
. (4.194)

where

T = Ω−1
(

Ω(1) +
(λ+ λ2)

δ
m$ (E)

)
(4.195)

87



and

E = F−1
(
F (1) +

l

δ

)
(4.196)

Proof:

From inequality (4.193), we get
−ϕ(t) ≤ [r(t)φ(u(t))u′(t)]

′
+ f(t, u(t), u′(t))u′(t) + α(t)h(u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t).
(4.197)

Integrating (4.197) twice from t0 to t using Lemma 1.1, we get∫ t

t0

r(s)φ(u(s))u′(s)ds+ t

∫ t

t0

f(s, u(s), u′(s))u′(s)ds+ t

∫ t

t0

α(s)h(u(s))

−t
∫ t

t0

P (s, u(s), u′(s))ds ≤ t

∫ t

t0

ϕ(s)ds

(4.198)

Using equation (4.82), we have∫ t

t0

r(s)
d

ds
Φ(s)ds+ t

∫ t

t0

f(s, u(s), u′(s))u′(s)ds+ t

∫ t

t0

α(s)h(u(s))

−t
∫ t

t0

P (s, u(s), u′(s))ds ≤ t

∫ t

t0

ϕ(s)ds

Integrating by part, since r(t) a nonnegative, nondecreasing, then,
d

dt
r(t) ≥ 0 and

there exists a positive constant δ such that r(t) ≥ δ we obtain

δΦ(u(t)) + t

∫ t

t0

f(s, u(s), u′(s))u′(s)ds+ t

∫ t

t0

α(s)h(u(s))

−t
∫ t

t0

P (s, u(s), u′(s))ds ≤ t

∫ t

t0

ϕ(s)ds

Taking the absolute value and let
1

t2
≤ 1

t
≤ 1 for t ≥ 1 we get

δ|Φ(u(t))| ≤ 1

t

∫ t

t0

ϕ(s)ds+

∫ t

t0

|f(s, u(s), u′(s))| |u′(s)| ds

+

∫ t

t0

α(s) |h(u(s))|+
∫ t

t0

|P (s, u(s), u′(s))| ds
(4.199)

Using the condition (i) of the Theorem 4.17, we get

δ |Φ(u(t))| ≤ 1

t

∫ t

t0

ϕ(s)ds+

∫ t

t0

κ(t)$(|u(t)|) |u′(t)| |u′(s)| ds

+

∫ t

t0

α(s) |h(u(s))|+
∫ t

t0

κ(t)$(|u(t)|) |u′(t)| ds.
(4.200)

Factorised the inequality (4.200), we get

|Φ(u(t))| ≤ 1

tδ

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

α(s)h(|u(s)|) +
1

δ
(|u′(s)|

+
1

δ
|u′(t)|2)

∫ t

t0

κ(s)$(|u(s)|)ds.
(4.201)

Setting |Φ(u(t)| ≥ |u(t)| and |u′(t)| ≤ λ for λ > 0,

it follows that

|u(t)| ≤ 1

tδ

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

α(s)h(|u(s)|) +
(λ+ λ2)

δ

∫ t

t0

κ(s)ω(|u(s)|)ds (4.202)
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Applying Corollary 3.1, we get

|u(t)| ≤ T (t)E(t)
1

tδ

∫ t

t0

ϕ(s)ds, (4.203)

where

T (t) = Ω−1
(

Ω(1) +
(λ+ λ2)

δ

∫ t

t0

κ(s)$ (E(s)) ds

)
, (4.204)

E(t) = F−1
(
F (1) +

1

δ

∫ t

t0

α(s)ds

)
(4.205)

and B =
λ+ λ2

δ
, A =

1

δ

By conditions (ii) of Theorem 4.17, setting limt→∞

∫ t

t0

κ(s)ds = m <∞

and limt→∞

∫ t

t0

α(s)ds = l <∞, where l, m > 0, we obtain

|u(t)| ≤ TE

δ
ϕ(t), (4.206)

where

T = Ω−1
(

Ω(1) +
(λ+ λ2)

δ
m$ (E)

)
,

and

E = F−1
(
F (1) +

m

δ

)
.

Therefore,

|u(t)− u0(t)| ≤ |u(t)| (4.207)

Hence,

|u(t)− u0(t)| ≤
TE

δ
ϕ(t) (4.208)

This concludes the proof.

Theorem 4.18:

Let P (t, u(t), u′(t)) and f(t, u(t), u′(t)) be continuous functions on (I ×R2). Fur-

thermore, if f(t, u(t), u′(t)) 6= P (t, u(t), u′(t)) in equation (4.191), if r(t) posses the

same features as in the Theorem (4.17). Then equation (4.191) is stable in the

sense of Hyers-Ulam-Rassias stability, if

are satisfied with Hyers-Ulam-Rassias constant.

(i)’ |f(t, u(t), u′(t))| ≤ κ(t)$(|u(t)|) |u′(t)| ,

(ii)’|P (t, u(t), u′(t))| ≤ g(t)γ(|u(t)|) |u′(t)|n where n ∈ N,

are satisfied with Hyers-Ulam-Rassias constant.

Cϕ =
1

δ
Υ−1

[
Υ(K) + k

λn

δ
γ [TE]

]
TE (4.209)

Proof:

From inequality (4.197) and by applying conditions (i)′ and (ii)′ on inequality
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(4.197) we get

|Φ(u(t))| ≤ 1

tδ

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

α(s)h(|u(s)|)

+
1

δ

∫ t

t0

κ(s)$(|u(s)|) |u′(s)|2 ds+
1

δ

∫ t

t0

g(s)γ(|u(s)|) |u′(s)|n ds
(4.210)

Setting |u(t)| ≤ |Φ(u(t))|, and |u′(t)| ≤ λ, then we have

|u(t)| ≤ 1

tδ

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

α(s)h(|u(s)|) +
1

δ
λ2
∫ t

t0

κ(s)$(|u(s)|)ds

+
1

δ
λn
∫ t

t0

g(s)γ(|u(s)|)ds
(4.211)

Applying Theorem 3.17, we get

|u(t)| ≤ 1

tδ

∫ t

t0

ϕ(s)dsΥ−1
[
Υ(K) +

1

δ
λn
∫ t

t0

g(s)γ [T (s)E(s)] ds

]
T (t)E(t), (4.212)

where

T (t) = Ω−1
(

Ω(1) +
1

δ
λ2
∫ t

t0

κ(s)$ (E(s)) ds

)
, (4.213)

here B in Theorem 3.17 is given as B =
λ2

δ
.

Using the limits of integral in Theorem 4.17 and

letting limt0→∞

∫ t

t0

g(s)ds ≤ k, we obtain

|u(t)| ≤ ϕ(t)
1

δ
Υ−1

[
Υ(K) + k

λn

δ
γ [TE]

]
TE, (4.214)

we define

T = Ω−1
(

Ω(1) +m
λ2

δ
ω (E)

)
, (4.215)

and

E = F−1
(
F (1) +

l

δ

)
. (4.216)

Hence,

|u(t)− u0(t0)| ≤ |u(t)| ≤ Cϕϕ(t) (4.217)

Therefore,

|u(t)− u0(t)| ≤ ϕ(t)
1

δ
Υ−1

[
Υ(K) + k

λn

δ
γ [TE]

]
TE (4.218)

where

Cϕ =
1

δ
Υ−1

[
Υ(K) + k

λn

δ
γ [TE]

]
TE

Let us consider equation (4.192) in the form

[r(t)φ(u(t))u′(t)]
′
+ α(t)h(u(t)) = P (t, u(t), u′(t)) ∀t > 0. (4.219)

Theorem 4.19:

Equation (4.219) is Hyers-Ulam-Rassias stable if all conditions in Theorem (4.17)

remain valid with Hyers-Ulam-Rassias constant given as

Cϕ =
1

δ
HE (4.220)
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where

H = Υ−1
(

Υ(1) +m
λn

δ
γ (E)

)
(4.221)

and

E = F−1
(
F (1) +

l

δ

)
(4.222)

Proof:

Since f(t, u(t), u′(t)) = 0, let |P (t, u(t), u′(t))| ≤ g(t)γ(|u(t)|) |u′(t)|n where n ∈ N,

from equation (4.192) we get

|u(t)| ≤ 1

tδ

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

α(s)h(|u(s)|)ds+
1

δ
λn
∫ t

t0

g(s)γ(|u(s)|)ds (4.223)

Applying Corollary 3.1, we obtain

|u(t)| ≤ 1

δ

∫ t

t0

ϕ(s)dsH(t)E(t) (4.224)

where

H(t) = Υ−1
(

Υ(1) +
λn

δ

∫ t

t0

g(s)γ (E(s)) ds

)
(4.225)

and

E(t) = F−1
(
F (1) +

1

δ

∫ t

t0

α(s)ds

)
(4.226)

Using the limit of integral in the proof of Theorems 4.17 and 4.18 we obtain

|u(t)| ≤ ϕ(t)
1

δ
HE (4.227)

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ ϕ(t)
1

δ
HE

Hence,

|u(t)− u0(t)| ≤ ϕ(t)
1

δ
HE (4.228)

Finally, we consider the case f(t, u(t), u′(t)) = P (t, u(t), u′(t)) = 0 in equation

(4.192), then,

[r(t)φ(u(t))u′(t)]
′
+ α(t)h(u(t)) = 0, (4.229)

Theorem 4.20:

If u(t) ∈ C2(R) is a solution which satisfies the inequality

| [r(t)φ(u(t))u′(t)]
′
+ α(t)h(u(t))| ≤ ϕ(t), (4.230)

then equation (4.230) is stable in the sense of Hyers-Ulam-Rassias stability, if there

exists a u0(t) ∈ C2(R+) such that

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

note u0(t) is a solution of equation (4.230) and Cϕ is Hyers-Ulam-Rassias constant

given as

Cϕ = Ω−1
(

Ω(1) +
l

δ

)
(4.231)

91



Proof:

From inequality (4.231), we get

−ϕ(t) ≤ [r(t)φ(u(t))u′(t)]
′
+ α(t)h(u(t)) ≤ ϕ(t) (4.232)

Integrating inequality (4.232) twice from t0 to t using Lemma 1.1, taking
1

t2
≤ 1

t
≤

1 for t ≥ t0 ≥ 1 and taking the absolute value, we get

|Φ((u(t))| ≤ 1

tδ

∫ t

t0

|ϕ(s)|ds+
1

δ

∫ t

t0

α(s)|h(u(s))|ds,∀t ≥ 1 (4.233)

Let |Φ(u(t))| ≥ |u(t)|, then

|u(t)| ≤ 1

tδ

∫ t

t0

|ϕ(s)|ds+
1

δ

∫ t

t0

α(s)h(|u(s)|)ds (4.234)

By applying Theorem 2.9 we get

|u(t)| ≤ 1

δ
Ω−1

(
Ω(1) +

1

δ

∫ t

t0

α(s)ds

)
1

t

∫ t

t0

ϕ(s)ds (4.235)

|u(t)| ≤ 1

δ
Ω−1

(
Ω(1) +

l

δ

)
ϕ(t) (4.236)

Provided limt→∞

∫ t

t0

α(s)ds = l <∞, and 1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t) Therefore,

|u(t)− u(t0)| ≤ |u(t)| ≤ 1

δ
Ω−1

(
Ω(1) +

l

δ

)
ϕ(t)

Hence,

Cϕ =
1

δ
Ω−1

(
Ω(1) +

l

δ

)
Now, the extension of Euler type equation is given as

t2u′′(t) + f(u(t))tu′(t) + g(u(t)) = P (t, u(t), u′(t)) (4.237)

together with initial conditions u(t0) = u′(t0) = 0 where f, g,R → R and P :

I×R2 → R

Definition 4.10:

Given Cϕ > 0, let ϕ : I→ R, then solution u(t) ∈ C2(I,R), satisfies inequality

|t2u′′(t) + f(u(t))tu′(t) + g(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t), (4.238)

furthermore if there exists any solution u0(t) ∈ C2(I,R) of equation (4.179) with

the initial conditions u(t0) = u′(t0) = 0 such that

|u(t)− u0(t)| ≤ Cϕϕ(t).

where Cϕ a Hyers-Ulam-Rassias constant

Theorem 4.21:

The equation (4.238) together with its initial conditions is H-U-R stable provided:

(i) if there exists φ(t) ∈ C(I,R+) such that |P (t, u(t), u′(t))| ≤ φ(t)$(|u(t)|)(|u′(t)|)2

(ii) limt→∞

∫ t

t0

|u′(s)|ds = L <∞

and limt→∞

∫ t

t0

φ(s)ds = r <∞
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(iii) let λ > 0 then λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t) ∀t ∈ I

where λ ≤ 1

t− t0
≤ γ for γ > 0 and

t ≥ t0 ≥ 1 and Hyers-Ulam-Rassias constant is given as

Cϕ = (
1

2
λ+ 1)Ω−1

(
Ω(1) + rλ3$

(
F−1 (F (1) + λL)

))
F−1 (F (1) + λL) (4.239)

Proof:

From inequality (4.238), we get

−ϕ(t) ≤ t2u′′(t) + f(u(t))tu′(t) + g(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t) (4.240)

Multiplying through by u′(t) and
1

t2
for t ≥ 1

u′′(t)u′(t) +
1

t
f(u(t))(u′(t))2 +

1

t2
g(u(t))u′(t)− 1

t2
P (t, u(t), u′(t))u′(t)

≤ 1

t2
ϕ(t)u′(t)

(4.241)

Integrating from t0 to t and using equation (4.90)
1

2
(u′(s))2 +

1

t

∫ t

t0

f(u(s))(u′(s))2ds+
1

t2

∫ t

t0

G(u(s)

ds
ds

− 1

t2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ 1

t2

∫ t

t0

ϕ(s)u′(s)ds

(4.242)

Integrating and using initial conditions u(t) = u′(t) = 0, we obtain
1

2
(u′(s))2 +

u′(t)

t

∫ t

t0

u′(s)f(u(s))ds+
1

t2
G(u(t))−

1

t2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ 1

t2

∫ t

t0

ϕ(s)u′(s)ds

(4.243)

Let
1

t2
≤ 1

t
≤ 1, where t ≥ t0 ≥ 1 we obtain

G(u(t)) ≤
∫ t

t0

ϕ(s)u′(s)ds− 1

2
(u′(s))2 − u′(t)

∫ t

t0

u′(s)f(u(s))ds

+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

(4.244)

Let |G(u(t))| ≥ |u(t)| and applying the condition (i)

|u(t)| ≤
∫ t

t0

ϕ(s)|u′(s)|ds+
1

2
(|u′(s)|)2 + |u′(t)|

∫ t

t0

|u′(s)|f(|u(s)|)ds

+(|u′(t)|)3
∫ t

t0

φ(s)$(|u(t)|)ds
(4.245)

From inequality (4.245) we have

|u(t)| ≤ (
1

2
(|u′(s)|) + 1)|u′(t)|

∫ t

t0

ϕ(s)ds+ |u′(t)|
∫ t

t0

|u′(s)|f(|u(s)|)ds

+(|u′(t)|)3
∫ t

t0

φ(s)$(|u(t)|)ds
(4.246)

Application of the Corollary 3.1, using conditions (ii), (iii) and let |u(t)| ≤ λ.

|u(t)− u(t0)| ≤ |u(t)| ≤ (
1

2
λ+ 1)

Ω−1
(
Ω(1) + rλ3$

(
F−1 (F (1) + λL)

))
F−1 (F (1) + λL)ϕ(t)

(4.247)
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Furthermore, we investigate

t2u′′(t) + g(u(t)) = P (t, u(t), u′(t)) (4.248)

with initial conditions u(t0) = u′(t0) = 0.

Theorem 4.22:

Let conditions of Theorem 4.21 remain valid, the equation (4.248) with the ini-

tial conditions u(t0) = u′(t0) = 0 is Hyers-Ulam-Rassias stable with Hyers-Ulam-

Rassias constant given as.

Cϕ = (
1

2
λ+ 1)Ω−1 (Ω(1) + λM) (4.249)

Proof:

From inequality (4.238), if f(u(t)tu′(t) = 0, this leads to

−ϕ(t) ≤ t2u′′(t) + g(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t) (4.250)

Multiply through by u′(t) and
1

t2
for t ≥ 1 yields

u′′(t)u′(t) +
1

t2
g(u(t))u′(t)− 1

t2
P (t, u(t), u′(t))u′(t) ≤ ϕ(t)u′(t)

t2
(4.251)

Integrating from t0 to t∫ t

t0

u′′(s)u′(s)ds+
1

t2

∫ t

t0

g(u(s))u′(s)ds− 1

t2

∫ t

t0

P (s, u(s), u′(s))u′st)ds

≤ 1

t2

∫ t

t0

ϕ(s)u′(s)ds

(4.252)

Simplifying inequality (4.252) we get
1

2
(u′(s))2 +

1

t2

∫ t

t0

g(u(s))u′(s)ds− 1

t2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

≤ 1

t2

∫ t

t0

ϕ(s)u′(s)ds

(4.253)

1

t2

∫ t

t0

g(u(s))u′(s)ds ≤ 1

t2

∫ t

t0

ϕ(s)u′(s)ds− 1

2
(u′(s))2

+
1

t2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

(4.254)

By equation (4.90) and letting
1

t2
≤ 1

t
≤ 1, we get∫ t

t0

d

ds
G(u(s))ds ≤

∫ t

t0

ϕ(s)u′(s)ds− 1

2
(u′(s))2

+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

(4.255)

Integrating and using initial conditions of the equation (4.237), we have

G(u(s)) ≤
∫ t

t0

ϕ(s)u′(s)ds− 1

2
(u′(s))2 +

∫ t

t0

P (s, u(s), u′(t))u′(s)ds (4.256)

Taking the absolute value, setting |u′(t)| ≤ λ for λ > 0 and by condition (i),

inequality (4.256) becomes

|u(s)| ≤ λ

∫ t

t0

|u′(s)|ϕ(s)ds+
1

2
λ2 + λ3

∫ t

t0

φ(s)$(|u(s)|)ds, (4.257)
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for |G(u(t))| ≥ |u(t)|

|u(t)|) ≤ R(t) + λ

∫ t

t0

φ(s)ω(|u(s)|)ds (4.258)

where

R(t) = (
1

2
λ+ 1)λ

∫ t

t0

ϕ(s)ds (4.259)

R(t) a nondecreasing monotonic, nonnegative function, by Theorem 2.9 with con-

dition(ii), we obtain

|u(t)| ≤ (
1

2
λ+ 1)Ω−1 (Ω(1) +M)λ

∫ t

t0

ϕ(s)ds

Using condition (iii), we have

|u(t)| ≤ (
1

2
λ+ 1)Ω−1 (Ω(1) + λM)ϕ(t)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ (
1

2
λ+ 1)Ω−1 (Ω(1) + λM)ϕ(t) (4.260)

with

Cϕ = (
1

2
λ+ 1)Ω−1 (Ω(1) + λM)

The next result is on Lienard type second order nonlinear perturbed DE

u′′ + f(t, u(t), u′(t))u′(t) + a(t)ω(u(t)) = P (t, u(t), u′(t)), (4.261)

with initial condition u(t0) = u′(t0) = 0, for a,∈ C(I,R+), ω, $ ∈ C(R+,R+), f, P ∈

C(I×R×R,R).

Definition 4.11:

The differential equation (4.261) is well defined and has Hyers-Ulam-Rassias sta-

bility if there exist Cϕ > 0 constant such that for any solution u0(t) ∈ C2(R+) of

equation (4.261), the solution u(t) ∈ C2(I,R+) of

|u′′ + f(t, u(t), u′(t))u′(t) + a(t)ω(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t), (4.262)

satisfies

|u(t)− u0(t)| ≤ Cϕϕ(t) ∀t ∈ I.

where ϕ : I→ R+.

Theorem 4.23:

Let f(t, u(t).u′(t)) 6= P (t, u(t), u′(t)), equation (4.261) is stable in the sense of H-

U-R. If the following conditions are satisfied

(i)|f(t, u(t), u′(t))| ≤ φ(t)g(|u(t)|)h(|u′(t)|),

(ii)|P (t, u(t), u′(t))| ≤ α(t)$(|u(t)|)|u′(t)|n,

where φ(t), α(t) ∈ R+, g, h,$ are nonnegative, monotonic, nondecreasing, contin-

uous. Suppose g,$ belong to class of Ψ and ϕ : I→ R+, with Hyers-Ulam-Rassias
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constant
Cϕ =

1

δ
(1 +

λ

2
)Ω−1

(
Ω(1) +

m

δ
λn+1ω

(
F−1

(
F (1) +

r

δ
h(λ)λ2

)))
F−1

(
F (1) +

r

δ
h(λ)λ2

) (4.263)

Proof:

From inequality (4.262) we obtain

−ϕ(t) ≤ u′′ + f(t, u(t), u′(t))u′(t) + a(t)ω(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t). (4.264)

Multiplying equation (4.264) by u′(t) and using equation

N(u(t)) =

∫ u(t)

u(t0)

ω(s)ds, (4.265)

we get
1

2
(u′(t))2 +

∫ t

t0

f(s, u(s), u′(s))(u′(s))2ds+

∫ t

t0

a(s)
d

ds
N(u(s))ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds.

(4.266)

if a(t) a nonnegative, nondecreasing, then a′(t) ≥ 0 and there exists δ > 0 such

that a(t) ≥ δ, by integration by part we have

δN(u(t) ≤
∫ t

t0

u′(s)ϕ(s)ds− 1

2
(u′(t))2 −

∫ t

t0

f(s, u(s), u′(s))(u′(s))2ds

+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds.

(4.267)

Taking the absolute value and using the hypothesis of the Theorem 4.23 we obtain

|u(t)| ≤ λ

δ

∫ t

t0

ϕ(s)ds+
1

2δ
λ2 + h(λ)λ2

∫ t

t0

φ(s)g(|u(s)|)ds

+λn+1

∫ t

t0

α(s)$(|u(s)|ds
(4.268)

where |u′(t)| ≤ λ, λ > 0, and N(u(t))| ≥ |u(t)|,

Let β(u(t)) = g(u(t), by application of Corollary 3.1, hence

|u(t)| ≤ 1

δ
(1 +

λ

2
)λ

∫ t

t0

ϕ(s)dsΩ−1 (Ω(1)

+
1

δ
λn+1

∫ t

t0

α(s)$

(
F−1

(
F (1) +

1

δ
h(λ)λ2

∫ s

t0

φ(τ)dτ

))
ds

)
F−1

(
F (1) +

1

δ
h(λ)λ2

∫ t

t0

φ(s)ds

) (4.269)

Setting limt→∞

∫ t

t0

α(s)ds = m <∞, limt→∞

∫ t

t0

φ(s)ds = r <∞,

by conditions (iii) of Theorem 4.21 let λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t), we obtain

u(t) ≤ ϕ(t)
1

δ
(1 +

λ

2
)Ω−1

(
Ω(1) +m

1

δ
λn+1ω

(
F−1

(
F (1) +

1

δ
rh(λ)λ2

)))
F−1

(
F (1) +

1

δ
rh(λ)λ2

)
,

(4.270)
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Therefore,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t).

Cϕ =
1

δ
(1 +

λ

2
)Ω−1

(
Ω(1) +

m

δ
λn+1ω

(
F−1

(
F (1) +

r

δ
h(λ)λ2

)))
F−1

(
F (1) +

r

δ
h(λ)λ2

)
Further evaluation of equation (4.261) yields the subsequent result.

Theorem 4.24:

If P (t, u(t), u′(t)) = f(t, u(t), u′(t)) in equation (4.261). Then, the equation (4.261)

has Hyers-Ulam-Rassias stability with Hyers-Ulam-Rassias constant

Cϕ =
1

δ
(1 +

λ

2
)Ω−1

(
Ω(1) +

r

δ
λ(λ+ 1)h(λ)

)
(4.271)

Proof:

From inequality (4.262), multiplying through by u′(t), we obtain
−u′(t)ϕ(t) ≤ u′′(t)u′(t) + f(t, u(t), u′(t))(u′(t)− 1)u′(t)

+a(t)ω(u(t))u′(t) ≤ u′(t)ϕ(t).
(4.272)

Integrating from t0 to t with a(t) a nonnegative,nondecreasing function, then

a′(t) ≥ 0 and there exists δ > 0 such that a(t) ≥ δ we obtain

|N(u(t))| ≤ 1

δ

∫ t

t0

|u′(s)|ϕ(s)ds+
1

2δ
(u′(t))2

+
1

δ

∫ t

t0

φ(s)g(|u(s)|)h(|u′(t)|)(|u′(s)|+ 1)|u′(s)|ds.
(4.273)

where |f(t, u(t), u′(t))| is defined in the Theorem 4.23

Let |u′(t)| ≤ λ, where λ > 0 and suppose |u(t)| ≤ |N(u(t))|, we obtain

|(u(t)| ≤ λ

δ
(1 +

λ2

2
)

∫ t

t0

ϕ(s)ds+
1

δ
η(λ+ 1)h(λ)

∫ t

t0

φ(s)g(|u(s)|)ds. (4.274)

By application of Theorem 2.9 and the conditions defined in Theorem 4.21

|u(t)| ≤ ϕ(t)
1

δ
(1 +

λ2

2
)Ω−1

(
Ω(1) +

r

δ
η(η + 1)h(λ)

)
t ∈ I, (4.275)

for
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t)

where

Cϕ =
1

δ
(1 +

λ

2
)Ω−1

(
Ω(1) +

r

δ
λ(λ+ 1)h(λ)

)
.

The stability of Lienard type equation is considered in two forms. This can be

achieved by considering Hyers-Ulam-Rassis stability of the variants. Firstly, we

consider the first variant as

u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t)) = P (t, u(t), u′(t)), (4.276)
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with initial conditions u(t0) = u′(t0) = 0 is considered.

Definition 4.12:

The inequality

|u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t) (4.277)

holds for a solution u(t) ∈ C2(I,R+), ∀t ∈ I

for a positive function ϕ(t) where ϕ : I → [0,∞), if there exists any solution

u0(t) ∈ C2(I,R+) of (4.276), such that

|u(t)− u0(t)| ≤ Cϕϕ(t) ∀t ∈ I

Where Cϕ is called Hyers-Ulam-Rassias constant. Therefore, equation (4.276) is

Hyers-Ulam-Rassias stable.

Theorem 4.25:

Suppose a, c ∈ R+ and f, g be functions which is monotonic, nonnegative, nonde-

creasing in u. Let a(t) be nonnegative, nondecreasing function, then, a′(t) ≥ 0,

there exists δ > 0 such that a(t) ≥ δ with the following conditions remain valid:

lim
t→∞

∫ t

t0

c(s)ds = b <∞ b > 0, (4.278)

and

lim
t→∞

∫ t

t0

α(s)ds = l <∞, l > 0, (4.279)

then, equation (4.276) is Hyers-Ulam-Rassias stable with H-U-R constant

Cϕ = (
1

δ
+
λ

2
)N∗M∗ (4.280)

where

N∗ = Ω−1
(

Ω(1) +
λ(n+1)

δ
l$ (M∗)

)
and

M∗ = F−1
(
F (1) +

λ2

δ
b

)
Proof:

From inequality (4.277), it is clear that

−ϕ(t) ≤ u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t),

multiplying by u′(t) to have
−u′(t)ϕ(t) ≤ u′′u′(t) + c(t)f(u(t))(u′(t))2

+a(t)g(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t).

Using equation (4.90) and integrating from t0 to t and using the hypothesis of

Theorem 4.25 we obtain

δ |G(u(t))| ≤
∫ t

t0

|u′(s)|ϕ(s)ds+
|u′(t)|2

2
+

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds

+

∫ t

t0

|P (s, u(s), u′(s))| |u′(s)| ds.
(4.281)
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Suppose |G(u(t)| ≥ |u(t)| , |P (t, u(t), u′(t))| ≤ α(t)ω(|u(t)|) |u′(t)|n for n ∈ N(set

of Natural numbers) and Setting |u′(t)| ≤ λ for λ > 0, we have

|u(t)| ≤ (
1

δ
+
λ

2
)λ

∫ t

t0

ϕ(s)ds+ λ2
1

δ

∫ t

t0

c(s)f(|u(s)|)ds

+
1

δ
λ(n+1)

∫ t

t0

α(s)$(|u(s)|)ds
(4.282)

Let f(u(t)) = β(u(t)), by Corollary 3.1, we have

|u(t)| ≤ (
1

δ
+
λ

2
)λ

∫ t

t0

ϕ(s)dsN(t)M(t)

where

N(t) = Ω−1
(

Ω(1) +
λ(n+1)

δ

∫ t

t0

α(s)ω (M(s)) ds

)
and

M(t) = F−1
(
F (1) +

λ2

δ

∫ t

t0

c(s)ds

)
Using the limit of integrals in the Theorem 4.25 and conditions (iii)

of Theorem 4.21, we obtain

λ

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

yields

|u(t)| ≤ ϕ(t)N∗M∗

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t)

where

Cϕ = N∗M∗

At this point, we consider Hyers-Ulam-Rassias stability of Lienard type equation

in the form

u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t)) = P (t, u(t)), (4.283)

with initial conditions u(t0) = u′(t0) = 0

Theorem 4.26:

Let the functions a, f, c, g, P be as defined in Theorem 4.25. Suppose the limits

of integrals in Theorem 4.25 remain valid. Then, equation(4.277) is H-U-R stable

with the H-U-R constant

Cϕ = (
1

δ
+
λ

2
)J∗ (4.284)

and

J∗ = Ω−1
(

Ω(1) +

(
1

δ
LA |u(ξ)|+ λ2

δ

)
b

)
(4.285)
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Proof:

Considering inequality (4.277), we get

−ϕ(t) ≤ u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))u′(t)− P (t, u(t)) ≤ ϕ(t) (4.286)

Multiplying inequality (4.286) by u′(t), using equation(4.90), integrating from t0

to t and by the hypothesis of the Theorem 4.25, we get

δ |G(u(t))| ≤
∫ t

t0

|u′(s)|ϕ(s)ds+
|u′(t)|2

2
+

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds

+

∫ t

t0

|P (s, u(s))| |u′(s)| ds
(4.287)

Suppose |G(u(t)| ≥ |u(t)| , |P (t, u(t))| ≤ A |u(t)| ,

A > 0,

∫ ∞
t0

|u′(s)| ds ≤ L for L > 0, |u′(t)| ≤ λ, λ > 0,

using Theorem 1.1, ∃ ξ ∈ [t0, t] �

|u(t)| ≤ 1

δ

∫ t

t0

|u′(s)|ϕ(s)ds+
|u′2(t)|

2

+

(
1

δ
LA |u(ξ)|+ λ2

δ

)∫ t

t0

c(s)f (|u(s)|) ds,
(4.288)

By applying Theorem 2.9, we get

|u(t)| ≤ (
1

δ
+
λ

2
)Ω−1

(
Ω(1) +

(
1

δ
LA |u(ξ)|+ λ2

δ

)
b

)
ϕ(t),

By conditions (iii) of Theorem 4.21, we have

λ

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t).

Therefore,

Cϕ = (
1

δ
+
λ

2
)Ω−1

(
Ω(1) +

(
1

δ
LA |u(ξ)|+ λ2

δ

)
b

)

4.2.4 Hyers-Ulam-Rassias Stability Nonlinear Damped Ordinary Dif-
ferential Equations

Damped nonlinear differential equation are examined in this unit. The area

of our concern is second order differential equation. Different Hyers-Ulam-Rassias

constants are going to be obtained by considering following equations :

(r(t)ψ(u(t))u′(t))′ + p(t)u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)). (4.289)

(r(t)u′(t))′ + p(t)u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)). (4.290)

with initial conditions u(t0) = u′(t0) = 0 where t ∈ I = [1, b)(b ≤ ∞), r, p, q ∈

C(I,R), f, ψ ∈ (R,R), P ∈ C(I × R2,R), R = (−∞,∞) and R+ = [0,∞) The

definitions of Hyers-Ulam-Rassias stability are given as thus:
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Definition 4.13:

Hyers-Ulam-Rassias stability of (4.289) is defined if given a solution u(t) ∈ C2(R)

which satisfies inequality

|(r(t)ψ(u(t))u′(t))′ + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t) (4.291)

where ϕ : I→ R+ and u0(t) ∈ C2(R+) solution of equation(4.289) that makes

|u(t)− u0(t)| ≤ Cϕϕ(t)

holds where Cϕ is the Hyers-Ulam-Rassias constant.

Definition 4.14:

Equation (4.189) has Hyers-Ulam-Rassias stability, given a solution u(t) ∈ C2(I,R)

of inequality

|(r(t)u′(t))′ + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t) (4.292)

there exists u0(t) ∈ C2(I,R) any solution of equation (4.289) for which

|u(t)− u0(t)| ≤ Cϕϕ(t)

where Cϕ is called H-U-R constant.

Firstly, we examine Hyers-Ulam-Rassias stability of equation (4.289) and obtain

the Hyers-Ulam-Rassias constant.

Theorem 4.27:.

Suppose the following conditions are satisfied.

(i) Let
∫ ∞
t0

|u′(s)|ds ≤ L, for L > 0.

(ii) if φ(t) ∈ C(I,R+) then |P (t, u(t), u′(t))| ≤ φ(t)$(|u(t)|)(|u′(t)|)n

where n ∈ N

(iii) limt→∞

∫ t

t0

q(s)ds = K1 <∞ and

limt→∞

∫ t

t0

φ(s)ds = K2 <∞, where k1, k2 > 0

(iv) let |u′(t)| ≤ λ, where λ > 0 and
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t) for t ∈ I

Therefore, equation (4.289) is Hyers-Ulam-Rassias stable

and Hyers-Ulam-Rassias constant is given as

Cϕ =
(Lp(ξ) + 1)

δ
Ω−1

(
Ω(1) +

k1
δ
$

(
F−1

(
F (1) +

λnk2
δ

)))
F−1

(
F (1) +

λnk2
δ

) (4.293)

Proof:

we begin the proof using equation (4.291), we obtain
−ϕ(t) ≤ (r(t)ψ(u(t))u′(t))′

+p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t).
(4.294)
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The left hand side of inequality (4.294) is written as

(r(t)ψ(u(t))u′(t))′ + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t) (4.295)

Integrating (4.295), we get

r(t)ψ(u(t))u′(t) +

∫ t

t0

p(s)u′(s)ds+

∫ t

t0

q(s)f(u(s))ds

−
∫ t

t0

P (s, u(s), u′(s))ds ≤
∫ t

t0

ϕ(s)ds

(4.296)

By integrating (4.296) and applying Lemma 1.1, we arrives at∫ t

t0

r(s)ψ(u(s))u′(s)ds+ t

∫ t

t0

p(s)u′(s)ds+ t

∫ t

t0

q(s)f(u(s))ds

−t
∫ t

t0

P (s, u(s), u′(s))ds ≤ t

∫ t

t0

ϕ(s)ds

(4.297)

Let

Λ(u(t)) =

∫ u(t)

u(t0)

ψ(s)ds (4.298)

Using equation (4.298) in inequality (4.297) yields∫ t

t0

r(s)
d

ds
Λ(u(s))ds+ t

∫ t

t0

p(s)u′(s)ds+ t

∫ t

t0

q(s)f(u(s))ds

−t
∫ t

t0

P (s, u(s), u′(s))ds ≤ t

∫ t

t0

ϕ(s)ds

(4.299)

Integrating by part the equation (4.299), since r(t) a nondecreasing, then r′(t) ≥ 0

and there exists δ > 0 such that r(t) ≥ δ, we have

δλ(u(t)) + t

∫ t

t0

p(s)u′(s)ds+ t

∫ t

t0

q(s)f(u(s))ds

−t
∫ t

t0

P (s, u(s), u′(s))ds ≤ t

∫ t

t0

ϕ(s)ds

(4.300)

Multiplying equation (4.300) by
1

t2
and by applying Theorem 1.1 that is there exist

1 ≤ ξ ≤ t such that
Λ(u(t))

t2
+

1

tδ
p(ξ)

∫ t

t0

u′(s)ds+
1

tδ

∫ t

t0

q(s)f(u(s))ds

− 1

tδ

∫ t

t0

P (s, u(s), u′(s))ds ≤ 1

tδ

∫ t

t0

ϕ(s)ds

(4.301)

Taking the absolute value of both sides and using conditions (i), (ii) and (iv).

suppose
1

t2
≤ 1

t
≤ 1 for t ≥ 1 we have

Λ(|u(t)|) ≤ 1

tδ

∫ t

t0

ϕ(s)ds+
Lp(ξ)

δ
+

1

δ

∫ t

t0

q(s)f(|u(s)|)ds

+
1

δ
λn
∫ t

t0

φ(s)$(|u(s)|)ds
(4.302)
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Setting Λ(|u(t)|) ≥ |u(t)| it is clear that

|u(t)| ≤ 1

δ
(Lp(ξ) + 1)

1

t

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

q(s)f(|u(s)|)ds

+
1

δ
λn
∫ t

t0

φ(s)$(|u(s)|)ds
(4.303)

By applying Corollary 3.1, we get

|u(t)| ≤ 1

δ
(Lp(ξ) + 1)

1

t

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
1

δ

∫ t

t0

φ(s)$
(
F−1 (F (1)

+
1

δ
λn
∫ t

t0

q(α)dα

))
ds

)
F−1

(
F (1) +

1

δ
λn
∫ t

t0

q(s)ds

)
t ∈ I

(4.304)

Using the conditions (iii) and (iv), equation (4.304) becomes

|u(t)| ≤ 1

δ
(Lp(ξ) + 1)Ω−1

(
Ω(1) +

k1
δ
$
(
F−1 (F (1)

+
λnk2
δ

)))
F−1

(
F (1) +

λnk2
δ

)
ϕ(t) t ∈ I

(4.305)

Therefore, Hyers-Ulam-Rassias constant is

Cϕ =
1

δ
(Lp(ξ) + 1)Ω−1

(
Ω(1) +

k1
δ
$
(
F−1 (F (1)

+
λnk2
δ

)))
F−1

(
F (1) +

λnk2
δ

)
t ∈ I

Now, we consider the stability of equation (4.288).

Theorem 4.28:

Let all the conditions of Theorem 4.27 remain valid. Equation (4.290) is Hyers-

Ulam-Rassias stable and Hyers-Ulam-Rassias constant is given as

Cϕ =
1

δ
L(λr(ξ) + λp(η) + 1)Ω−1

(
Ω(1) +

1

δ
λn+1k2

)
Proof:

From equation (4.291), we get

−ϕ(t) ≤ (r(t)u′(t))′ + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t) (4.306)

Multiplying by inequality (4.306) by u′(t) we obtain
(r(t)u′(t))′u′(t) + p(t)(u′(t))2 + q(t)f(u(t))u′(t)

−P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t)
(4.307)

Integrating twice and applying Lemma 1.1, we get

u′(t)

∫ t

t0

r(s)u′(s)ds+ t

∫ t

t0

p(s)(u′(s))2ds+ t

∫ t

t0

q(s)f(u(s))u′(s)ds

−t
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ t

∫ t

t0

u′(s)ϕ(s)ds

(4.308)

Using equation (4.184) in inequality (4.308) and multiplying through by
1

t2
u′(t)

t2

∫ t

t0

r(s)u′(s)ds+
1

t
u′(t)

∫ t

t0

p(s)u′(s)ds+
1

t

∫ t

t0

q(s)
d

ds
F (u(s))ds

−1

t

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ 1

t

∫ t

t0

u′(s)ϕ(s)ds

(4.309)
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Integrating by part, since q(t) a nondecreasing, then q′(t) ≥ 0 and there exists

δ > 0 such that q(t) ≥ δ, we get
u′(t)

t2

∫ t

t0

r(s)u′(s)ds+
1

t
u′(t)

∫ t

t0

p(s)u′(s)ds+
1

t
δF (u(s)

−1

t

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ 1

t

∫ t

t0

u′(s)ϕ(s)ds

(4.310)

Let
1

t2
≤ 1

t
≤ 1, applying Theorem 1.1 that is there exist ξ, η ∈ [1, t] such that

δF (u(s)) ≤ 1

t

∫ t

t0

u′(s)ϕ(s)ds− u′(t)r(ξ)
∫ t

t0

u′(s)ds

−u′(t)p(η)

∫ t

t0

u′(s)ds+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

(4.311)

Taking the absolute value of both sides, hypothesis (i) and (ii) of Theorem 4.27,

we obtain

δF (|u(s)|) ≤ 1

t

∫ t

t0

|u′(s)|ϕ(s)ds+ |u′(t)|r(ξ)L

+|u′(t)|p(η)L+

∫ t

t0

φ(t)$(|u(s)|)(|u′(s)|)n+1ds

(4.312)

Setting |u′(t)| ≤ λ, and F (|u(t)|) ≥ |u(t)| it follows that

|u(t)| ≤ 1

δ
L(λr(ξ) + λp(η) + 1)

1

t

∫ t

t0

ϕ(s)ds+
1

δ
λn+1

∫ t

t0

φ(s)$(|u(s)|)ds (4.313)

Applying Theorem 2.9 we get

|u(t)| ≤ 1

δ
L(λr(ξ) +λp(η) + 1)

1

t

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
1

δ
λn+1

∫ t

0

φ(s)ds

)
(4.314)

By conditions (iii) and (iv) give

|u(t)| ≤ 1

δ
L(λr(ξ) + λp(η) + 1)Ω−1

(
Ω(1) +

1

δ
λn+1k2

)
ϕ(t). (4.315)

Therefore, Hyers-Ulam-Rassias constant is given as

Cϕ =
L(λr(ξ) + λp(η) + 1)

δ
Ω−1

(
Ω(1) +

λn+1k2
δ

)
Lastly, we consider equation (4.290) when P (t, u(t), u′(t)) = 0

Theorem 4.29:

Let

(r(t)ψ(u(t))u′(t))′ + p(t)u′(t) + q(t)f(u(t)) = 0 (4.316)

together with initial conditions has H-U-R stability provided the conditions of

Theorem 4.27 remain valid. The Hyers-Ulam-Rassias constant is given as

Cϕ =
1

δ
(Lp(ξ) + 1)Ω−1

(
Ω(1) +

k1
δ

)
(4.317)

Proof:

From inequality (4.291), note that P (t, u(t), u′(t)) = 0 it then means

−ϕ(t) ≤ (r(t)ψ(u(t))u′(t))′ + p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t). (4.318)

Simplifying inequality (4.318) further, we get

(r(t)ψ(u(t))u′(t))′ + p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t) (4.319)
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By integrating twice, applying Lemma 1.1 we get∫ t

t0

r(s)ψ(u(s))u′(s)ds+ t

∫ t

t0

p(s)u′(s)ds+ t

∫ t

t0

q(s)f(u(s))ds

≤ t

∫ t

t0

ϕ(s)ds

(4.320)

Using inequality (4.320) and multiplying through by
1

t
for t ≥ t0 ≥ 1

1

t2

∫ t

t0

r(s)
d

ds
Λ(u(s))ds+

1

t

∫ t

t0

p(s)u′(s)ds+
1

t

∫ t

t0

q(s)f(u(s))ds

≤ 1

t

∫ t

t0

ϕ(s)ds

(4.321)

Integrating by part, since r(t) a nondecreasing, then r′(t) ≥ 0, there exists δ > 0

such that r(t) ≥ δ and by applying Theorem 1.1 there exist 1 ≤ ξ ≤ t such that
1

t2
δΛ(u(t)) ≤ 1

t

∫ t

t0

ϕ(s)ds− p(ξ)
∫ t

t0

u′(s)ds− 1

t

∫ t

t0

q(s)f(u(s))ds (4.322)

Suppose
1

t2
≤ 1

t
≤ 1, taking the absolute value of both sides and using conditions(i),

setting |u′(t)| ≤ λ, |Λ(u(t))| ≥ |u(t)| we arrive

|u(t)| ≤ (Lp(ξ) + 1)

tδ

∫ t

t0

ϕ(s)ds+
1

δ

∫ t

t0

q(s)f(|u(s)|)ds (4.323)

Using the Theorem 2.9 yields

|u(t)| ≤ 1

δ
(Lp(ξ) + 1)

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
1

δ

∫ t

0

q(s)ds

)
(4.324)

Using the conditions (iii) and (iv) we conclude

|u(t)| ≤ 1

δ
(Lp(ξ) + 1)ϕ(t)Ω−1

(
Ω(1) +

1

δ
k1

)
ϕ(t) (4.325)

Therefore, Hyers-Ulam-Rassias constant is

Cϕ =
1

δ
(Lp(ξ) + 1)Ω−1

(
Ω(1) +

K1

δ

)
At this point we consider the stability of damped nonlinear

differential equation in the form,

u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t)) = P (t, u(t), u′(t)) (4.326)

with initial conditions u(t0) = u′(t0) = 0

where n ∈ N, f, q ∈ C(R), Q ∈ (R,R) and P ∈ (I×R2,R)

Definition 4.15:

Equation (4.326) is stable in the sense of H-U-R, if ∃ u(t) ∈ C2(I,R) satisfying

|u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t))− P (t, u(t), u′(t))| ≤ ϕ(t), (4.327)

let u0(t) ∈ C2(I,R) be solution of (4.326) such that

|u(t)− u0(t)| ≤ Cϕϕ(t)

and Cϕ is called Hyers-Ulam-Rassias constant, while ϕ(t)

a nondecreasing, positive function defined as ϕ : I→ R+
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Theorem 4.30:

The equation (4.326) together with its the initial conditions is

H-U-R stable provided the undermentioned conditions

are established.

(i) Let
∫ ∞
t0

|u′(s)|ds ≤ L, for L > 0. and |Q(t, u(t))| ≤ r(t)α(|u(t)|)

(ii) If φ(t) ∈ C(I,R+)

then |P (t, u(t), u′(t))| ≤ φ(t)$(|u(t)|)(|u′(t)|)n where n ∈ N

(iii)limt→∞

∫ t

t0

r(s)ds = K1 <∞ and

limt→∞

∫ t

t0

q(s)ds = K2 <∞, where k1, k2 > 0

(iv) let λ > 0, |u′(t)| ≤ λ, take λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t) for t ∈ I

therefore, Hyers-Ulam-Rassias constant

Cϕ =
1

δ
(λ+ nf(ξ)L2 + 1)Ω−1

(
Ω(1) +

1

δ
λn+1k1$

(
F−1 (F (1)

+
1

δ
λk2

))
ds

)
F−1

(
F (1) +

1

δ
λk2

)
t ∈ I

(4.328)

Proof:

From inequality (4.276), simplified and multiplying by u′(t), we obtain
u′′(t)u′(t) + nf(t)(u′(t))2 + q(t)u(t)u′(t)

+Q(t, u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ ϕ(t)
(4.329)

Integrating (4.329), we get∫ t

t0

u′′(s)u′(s)ds+ n

∫ t

t0

f(s)(u′(s))2ds+

∫ t

t0

q(s)u(s)u′(s)ds

+

∫ t

t0

Q(s, u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.330)

Using equation (4.90), we have∫ t

t0

u′′(s)u′(s)ds+ n

∫ t

t0

f(s)(u′(s))2ds+

∫ t

t0

q(s)
d

ds
G(u(s))ds

+

∫ t

t0

Q(s, u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.331)

Integrating by part the equation (4.331), since the function q(t) > 0, nondecreasing,

then q′(t) ≥ 0, there exists δ > 0 such that q(t) ≥ δ and by applying Theorem 1.1,

there exists t0 ≤ ξ ≤ t such that

(u′(t))2 + nf(ξ)

∫ t

1

(u′(s))2ds+ δG(u(t)) +

∫ t

t0

Q(s, u(s))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.332)
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Taking the absolute value of both sides, using conditions (i) and (ii) and setting

|G(u(t))| ≥ |u(t)| we arrive at

|u(t)| ≤ 1

δ

∫ t

t0

|u′(s)|ϕ(s)ds+
|(u′(t))|2

δ
+

1

δ
nf(ξ)L2

+
1

δ
|u′(t)|

∫ t

t0

r(s)α(u(s))ds+
1

δ
(|u′(t)|)n+1

∫ t

t0

φ(t)$(|u(t)|)ds
(4.333)

Setting |u′(t)| ≤ λ,

|u(t)| ≤ 1

δ
(λ+ nf(ξ)L2 + 1)λ

∫ t

t0

ϕ(s)ds

+
1

δ
λ

∫ t

t0

r(s)α(u(s))ds+
1

δ
λn+1

∫ t

t0

φ(t)$(|u(t)|)ds
(4.334)

By applying Corollary 3.1 we obtain
|u(t)| ≤ (λ+ nf(ξ)L2 + 1)

λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
1

δ
λn+1

∫ t

t0

φ(s)$
(
F−1 (F (1)

+
1

δ
λ

∫ t

t0

r(α)dα

))
ds

)
F−1

(
F (1) +

1

δ
λ

∫ t

t0

r(s)ds

) (4.335)

Using the conditions (iii) and (iv) in inequality (4.335) to give

|u(t)| ≤ 1

δ
(λ+ nf(ξ)L2 + 1)Ω−1

(
Ω(1) +

1

δ
λn+1k1$

(
F−1 (F (1)

+
1

δ
λk2

))
ds

)
F−1

(
F (1) +

1

δ
λk2

)
ϕ(t) t ∈ I

(4.336)

we conclude that Hyers-Ulam-Rassias constant is given as

Cϕ =
1

δ
(λ+ nf(ξ)L2 + 1)Ω−1

(
Ω(1) +

1

δ
λn+1k1$

(
F−1 (F (1)

+
1

δ
λK2

))
ds

)
F−1

(
F (1) +

1

δ
λk2

)

4.2.5 Hyers-Ulam-Rassias Stability of Homogeneous of Nonlinear Sec-
ond Order Ordinary differential Equations

In this section, concentration shall be on investigation of H-U-R stability when

P (t, u(t)) = 0 and P (t, u(t), u′(t)) = 0. First, we consider equation

u′′(t) + f(t, u(t)) = 0 (4.337)

with initial conditions u(t0) = u′(t0) = 0.

Definition 4.16:

Equation (4.337) is Hyers-Ulam-Rassias stable if given Cϕ > 0 and solution u(t) ∈

C2(I,R+) which satisfies

|u′′(t) + f(t, u(t))| ≤ ϕ(t), (4.338)

then, there exists solution u0(t) ∈ C2(R+) of equation (4.337) such that

|u(t)− u0(t)| ≤ Cϕϕ(t), for all t ∈ I,
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where ϕ ∈ (I,R+) and Cϕ is called Hyers-Ulam-Rassias constant.

Theorem 4.31:

Let

|f(t, u(t))| ≤ h1(t)

(
|u(t)|+ h2(t)

(∫ t

t0

g(s)ω(u(s))ds

))
(4.339)

where h1, h2, g ∈ C(R+). Furthermore, suppose the following conditions hold:

(i) for s > 0 the function $(s) is nondecreasing and $(αu) ≤ ψ(α)$(u), for α ≥ 1,

u ≥ 1,

(ii)
∫ ∞
t0

h1(s)ds = n < +∞,
∫ t

1

h1(s)h2(s)g(s)(s− 1)ds ≤ p, p > 0

The equation (4.337) is H-U-R stable with H-U-R constant

Cϕ = Ω−1 (Ω(1) + exp(n)p) (4.340)

Proof:

From inequality (4.338)

−ϕ(t) ≤ u′′(t) + f(t, u(t)) ≤ ϕ(t) (4.341)

Integrating twice and using Lemma 1.1, multiplying by
1

t
for t > 0, since t ≥ 1

taking the absolute value and substituting for |f(t, u(t)| and applying Theorem 3.2,

we have

|u(t)| ≤ 1

t

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +

∫ t

t0

h1(s)h2(s)g(s)

(
exp

∫ s

t0

h1(τ)dτ

+

∫ s

t0

exp

(∫ s

τ

h1(δ)d(δ)

)
dτ

)
ds

) (4.342)

Given the following

lim
t→∞

∫ t

t0

f(s)ds = n <∞ for n > 0,∫ t

t0

h1(s)h2(s)g(s)(s− 1)ds ≤ p

and
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

It shows that

|u(t)− u0(t)| ≤ |u(t)| ≤ ϕ(t)Ω−1 (Ω(1) + exp(n)p) (4.343)

Hence,

|u(t)− u0(t)| ≤ Cϕϕ(t)

Therefore,

Cϕ = Ω−1 (Ω(1) + exp(n)p)

This concludes the proof.

The next result is given as

u′′(t) + f(t, u(t), u′(t)) = 0, (4.344)
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with initial conditions u(t0) = u′(t0) = 0.

Definition 4.17:

The equation (4.344) is said to be H-U-R stable with respect to ϕ, if there exists

Cϕ > 0 such that for each solution u ∈ C2(I,R+) satisfies

|u′′(t) + f(t, u(t), u′(t))| ≤ ϕ(t) (4.345)

also for any solution u0(t) ∈ C2(I) satisfies (4.344) so that

|u(t)− u0(t)| ≤ Cϕϕ(t) for all t ∈ I

and ϕ ∈ (I,R+)

Let
|f(t, u(t), u′(t))| ≤ h1(t)(|u(t)|)

+h1(t)h2(t)

∫ t

t0

g(s)$(|u(s)|)ds+ b(t)H(|u(t)|)
(4.346)

where h1(t), h2(t), g(t), $(u), H(u) are nondecreasing positive functions. The fol-

lowing theorem is given to establish our result.

Theorem 4.32:

Suppose conditions (i) and (ii) of the Theorem 4.31 remained valid with the ad-

ditional one which states as limt→∞

∫ t

t0

b(s)ds ≤ m < ∞, for m > 0 then, the

equation(4.344) is H-U-R stable with H-U-R Positive constant

Cϕ = R∗F−1 (F (1) +mFH (R∗)) (4.347)

Proof:

From inequality (4.345), it is clear that

−ϕ(t) ≤ u′′(t) + f(t, u(t), u′(t)) ≤ ϕ(t) (4.348)

Integrating twice, using Lemma 1.1 and multiplying by
1

t
for t > 0

by absolute property and with aid of Theorem 3.), we obtain

|u(t)| ≤ 1

t

∫ t

t0

ϕ(s)dsR(t)F−1
(
F (1) +

∫ t

t0

b(s)H (R(s)) ds

)
(4.349)

where

R(t) = Ω−1
(

Ω(1) +

∫ t

t0

(
h1(s)h2(s)g(s) exp

(∫ s

t0

h1(τ)dτ

)
+

∫ s

t0

exp

(∫ α

τ

h1(δ)dδ

)
dα

)
ds

)
By applying the limit of integrals stated in Theorem 4.31 leads to

|u(t)| ≤ R∗F−1 (F (1) + nH (R∗))ϕ(t) (4.350)

where

R∗ = Ω−1 (Ω(1) + exp(n)p)
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and
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ RF−1 (F (1) +mH (R))ϕ(t)

where

Cϕ = R∗F−1 (F (1) +mH (R∗))

To examine Hyers-Ulam-Rassias stability of

[r(t)φ(u(t))u′(t)]
′
+ g(t, u(t), u′(t))u′(t) + α(t)h(u(t)) = 0 (4.351)

with the initial conditions u(t0) = u′(t0) = 0 where r, α ∈ (I,R+), φ, : R+ →

R+, g : R+×R2 → R, some conditions may be stated in the subsequent theorem

Theorem 4.33:

If u(t) ∈ C2(R+) is any solution which satisfies the inequality

| [r(t)φ(u(t))u′(t)]
′
+ g(t, u(t), u′(t))u′(t) + α(t)h(u(t))| ≤ ϕ, (4.352)

then, equation (4.351) is stable in the sense of Hyers-Ulam-Rassias, if it is happened

that solution u0(t) ∈ C2(R+) of equation (4.351) satisfies

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t).

Hyers-Ulam-Rassias constant is given as:

Cϕ =
1

δ
T ∗E∗

Proof:

The proof here is similar to the proof of Theorem 4.27, detail will not be show.

Using inequality (4.352), we arrive at

−ϕ(t) ≤ [r(t)φ(u(t))u′(t)]
′
+ α(t)h(u(t)) + g(t, u(t), u′(t))u′(t) ≤ ϕ(t) (4.353)

Integrating (4.353) twice from t0 to t using Lemma 1.1, let
1

t2
≤ 1

t
≤ 1

for t ≥ t0 ≥ 1

and taking the absolute value

|R(u(t))| ≤ 1

tδ

∫ t

t0

|ϕ(s)|ds+
1

δ

∫ t

t0

α(s)|h(u(s))|ds

+
1

δ

∫ t

t0

|g(s, u(s), u′(s))||u′(s)|ds.
(4.354)

Let

|g(t, u(t), u′(t))| ≤ κ(t)ω(|u(t)|) |u′(t)|2

and |R(u(t))| ≥ |u(t)|, (4.354) equals

|u(t)| ≤ 1

tδ

∫ t

t0

|ϕ(s)|ds+
1

δ

∫ t

t0

α(s)h(|u(s)|)ds

+
1

δ
(|u′(t)|2

∫ t

t0

κ(s)ω(|u(s)|)ds.
(4.355)
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Applying Corollary 3.1

to have

|u(t)| ≤ 1

δ
T (t)E(t)

1

t

∫ t

t0

|ϕ(s)|ds (4.356)

T (t) = Ω−1
(

Ω(1) + λ2
∫ t

t0

κ(s) (E(s)) ds

)
(4.357)

and

E(t) = F−1
(
F (1) +

1

δ

∫ t

t0

α(s)ds

)
(4.358)

Let limt→∞

∫ t

t0

α(s)ds ≤ l <∞, lim
t→∞

∫ t

t0

κ(s)ds ≤ m <∞, where m, l > 0.

|u(t)| ≤ ϕ(t)
1

δ
T ∗E∗ (4.359)

T ∗ = (Ω−1
(

Ω(1) +
m

δ
λ2ω (E)

)
(4.360)

and

E∗ = F−1
(
F (1) +

l

δ

)
(4.361)

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ ϕ(t)
1

δ
T ∗E∗ (4.362)

Hence,

|u(t)− u0(t)| ≤ ϕ(t)
1

δ
T ∗E∗. (4.363)

This concludes the proof.

Euler Type equation is given as

t2u′′(t) + g(u(t)) = 0 (4.364)

with initial conditions u(t0) = u′(t0) = 0 is going to be considered in the next

theorem.

Theorem 4.34:

Suppose u(t) ∈ C2(R+) is a solution that satisfies the inequality

|t2u′′(t) + g(u(t))| ≤ ϕ(t), (4.365)

then, equation (4.364) is H-U-R stable if

|u(t)− u0(t)| ≤ ϕ(t),

u0(t) ∈ C2(R+) is any solution of equation (4.364) with H-U-R constant

Cϕ =
1

|u′′(ξ)|
ϕ(t)Ω−1

(
Ω(1) +

1

|u′′(ξ)|
L

)
(4.366)

Proof:

From inequality (4.365), we obtain

−ϕ(t) ≤ t2u′′(t) + g(u(t)) ≤ ϕ(t). (4.367)

Multiplying inequality (4.367) by u′(t) gives

−u′(t)ϕ(t) ≤ t2u′′(t)u′(t) + g(u(t))u′(t) ≤ u′(t)ϕ(t). (4.368)
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Integrating, using Lemma 1.1, there exists ξ ∈ [t0, t] such that

t2u′′(ξ)u(t) ≤
∫ t

t0

ϕ(s)u′(s)ds−
∫ t

t0

g(u(s))u′(s)ds (4.369)

Taking the absolute value of both sides, dividing by t2|u′′ξ|t2 we obtain

|u(t)| ≤ 1

t2|u′′(ξ)|

∫ t

t0

ϕ(s)u′(s)ds+
1

|u′′(ξ)|

∫ t

t0

|u′(s)|g(|u(s)|)ds (4.370)

By Theorem 2.9, we get

|u(t)| ≤ 1

t2|u′′(ξ)|

∫ t

t0

|u′(s)|ϕ(s)dsΩ−1
(

Ω(1) +
1

|u′′(ξ)|

∫ t

t0

|u′(s)|ds
)

(4.371)

Setting
1

t2

∫ t

t0

|u′(s)|ϕ(s)ds ≤ λϕ(t) and limt→∞

∫ t

t0

|u′(s)|ds ≤ L where L > 0

then inequality (4.371) becomes

|u(t)| ≤ λ

|u′′(ξ)|
ϕ(t)Ω−1

(
Ω(1) +

1

|u′′(ξ)|
L

)
(4.372)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

Where

Cϕ =
λ

|u′′(ξ)|
Ω−1

(
Ω(1) +

1

|u′′(ξ)|
L

)
.

In addition , we consider the stability of equation

t2u′′(t) + tf(u(t))u′(t) + g(u(t)) = 0 (4.373)

with initial conditions u(t0) = u′(t0) = 0.

Theorem 4.35:

Equation (4.373) is Hyers-Ulam-Rassias stable if solution u(t) ∈ C2(I,R+) satisfies

the inequality

|t2u′′(t) + tf(u(t))u′(t) + g(u(t))| ≤ ϕ(t) (4.374)

such that

|u(t)− u0(t)| ≤ Cϕϕ(t)

holds, u0(t) ∈ C2(I,R+) is any solution of equation(4.373), provided the under-

mentioned are satisfied.

(i) Let φ(t) ∈ C(I,R+), |P (t, u(t), u′(t))| ≤ φ(t)$(|u(t)|)(|u′(t)|)2

(ii)
∫ ∞
t0

|u′(s)ds ≤ L <∞ and limt→∞

∫ t

t0

φ(s)ds = r <∞

(iii) Let λ > 0 and take λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t) for t ∈ I

Hyers-Ulam-Rassias constant is given as

Cϕ = (λ+ 1)Ω−1 (Ω(1) + λL) (4.375)

Proof:

Simplifying further inequality (4.374) we arrive at

−ϕ(t) ≤ t2u′′(t) + f(u(t))tu′(t) + g(u(t)) ≤ ϕ(t) (4.376)
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Multiply through by u′(t) and take
1

t2
≤ 1

t
≤ 1 for t ≥ 1 and

integrating from t0 to t by using equation (4.90) we obtain
1

2
(u′(s))2 + u′(t)

∫ t

t0

u′(s)f(u(s))ds+

∫ t

t0

G(u(s))

ds
ds ≤

∫ t

t0

ϕ(s)u′(s)ds (4.377)

Integrating, setting |G(u(t))| ≥ |u(t)|, it is clear that

|u(t)| ≤
∫ t

t0

ϕ(s)|u′(s)|ds+
1

2
(|u′(s)|)2 + |u′(t)|

∫ t

t0

|u′(s)|f(|u(s)|)ds (4.378)

Applying Theorem (2.2), conditions (ii) and (iii), setting |u′(t)| ≤ λ for λ > 0,

|u(t)| ≤ (λ+ 1)Ω−1 (Ω(1) + λL)ϕ(t) (4.379)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ (λ+ 1)Ω−1 (Ω(1) + λL)ϕ(t) (4.380)

and

Cϕ = (λ+ 1)Ω−1 (Ω(1) + λL)

Our next consideration is Hyers-Ulam-Rassias stability of Lienard type equation

u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))u′(t) = 0 (4.381)

with initial conditions u(t0) = u′(t0) = 0.

Theorem 4.36:

Equation (4.381) is said to be H-U-R stable if the solution u(t) ∈ C2(I,R+) satisfies

the inequality

−ϕ(t) ≤ u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t)) ≤ ϕ(t) (4.382)

such that

|u(t)− u0(t)| ≤ Cϕϕ(t),

u0(t) ∈ C2(I,R+) is a solution of equation (4.381) and Cϕ is Hyers-Ulam-Rassias

positive constant given as

Cϕ =
1

δ
Ω−1

(
Ω(1) + b

λ2

δ

)
, (4.383)

Proof:

Using Inequality (4.383) and integrating from t0 to t we obtain and applying equa-

tion (4.90), we get∫ t

t0

c(s)f(u(s))(u′(s))2ds+

∫ t

t0

a(s)
d

ds
G(u(s))ds ≤

∫ t

t0

u′(s)ϕ(s)ds (4.384)

Integration by part, a(t) is an increasing function and a′(t) ≥ 0, and there exists

δ > 0 taking the absolute value, let |a(t)| ≥ δ, and |u′(t)| ≤ λ,

|u(t)| ≤ 1

δ

∫ t

t0

|u′(s)|ϕ(s)ds+
λ2

δ

∫ t

t0

c(s)f (|u(s)|) ds. (4.385)

Applying Theorem 2.9, we obtain

|u(t)| ≤ 1

δ

∫ t

t0

|u′(s)|ϕ(s)dsΩ−1
(

Ω(1) +
λ2

δ

∫ t

t0

c(s)ds

)
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Let limt→∞

∫ t

t0

c(s)ds ≤ b <∞, where b > 0, where∫ t

t0

|u′(s)|ϕ(s)ds ≤ ϕ(t), by conditions (iii) of Theorem 4.21

Hence,

|u(t)| ≤ ϕ(t)
1

δ
Ω−1

(
Ω(1) + b

λ2

δ

)
Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

Cϕ =
1

δ
Ω−1

(
Ω(1) + b

η2

δ

)

4.3 Hyers-Ulam Stability of Perturbed and Nonperturbed Nonlinear
Third Order Differential Equation

4.3.0 Introduction

In this study, we consider Hyers-Ulam stability of third order nonlinear differ-

ential equation. The results here extend all the existence ones such as Qarawani

(2012) and Algfiary and Jung (2014).

4.3.1 Hyers-Ulam Stability of a Perturbed Nonlinear Third Order Or-
dinary Differential Equation

The first equation to be considered under this section is:
u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + ρ(t)γ(u(t))

= P (t, u(t), u′(t)).
(4.386)

with initial value u(t0) = u′(t0) = u′′(t) = 0, where u, β, α, ρ ∈ C(I,R+), g, γ, f ∈

C(R+) and P ∈ C(I×R2
+,R+),

Definition 4.18:

Hyers-Ulam stability of equation (4.386) is defined by giving K > 0, ε > 0 and

u(t) ∈ C3(I,R+) be any solution whereby
|u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + ρ(t)γ(u(t))

−P (t, u(t), u′(t))| ≤ ε
(4.387)

holds, whenever the solution u0(t) ∈ C3(I,R+) of the equation (4.386) satisfies

|u(t)− u0(t)| ≤ Kε,

K called H-U constant.

Theorem 4.37:

Suppose β(t) is an nondecreasing function, so β′(t) ≥ 0, |u′′(t)| ≤ δ, |u′′′(ξ)| ≤ µ

where µ, δ > 0, and there exists δ > 0 such that β ≥ δ,

∫ ∞
t0

|u′(s)|ds ≤ L, L > 0,

|P (t, u(t), u′(t))| ≤ γ(t)φ(|u(t)|)h(|u′(t)|) where ϕ ∈ C(I,R+), h ∈ C1(R+) and

114



φ ∈ C(R+). Further more, let φ(u(t)) belongs to class Ψ, then, equation (4.386) is

H-U stable with H-U constant

K =
(L+ ψL)

δ
F−1

[
F (1) + dh(λ)

λ

δ
φ [D∗X∗]

]
D∗X∗ (4.388)

for

D∗ = Ω−1
(

Ω(1) + n
λ

δ
γ (X∗)

)
X∗ (4.389)

and

X∗ = F−1
(
F (1) +m

λ2

δ

)
(4.390)

Proof:

Simplifying inequality (4.387) to have
−ε ≤ u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + ρ(t)γ(u(t))

−P (t, u(t), u′(t)) ≤ ε.

Multiplying by u′(t) to obtain
−u′(t)ε ≤ u′(t)u′′′(t) + u′(t)β(t)f(u(t))u′′(t) + u′(t)α(t)g(u(t))u′(t)

+u′(t)ρ(t)γ(u(t))− u′(t)P (t, u(t), u′(t)) ≤ u′(t)ε.

Integrating from t0 to t, using Lemma (1.1) with equation (4.184) and by Theorem

1.1, we get

u′′′(ξ)

∫ t

t0

u′(s)ds+

∫ t

t0

β(s)u′′(s)
d

ds
F (u(s))ds+

∫ t

t0

α(s)g(u(s))(u′(s))2ds

+

∫ t

t0

ρ(s)γ(u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(t))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds,

(4.391)

for ξ ∈ [t0, t].

Integrating by part, given β(t) a nondecreasing function, then β′(t) ≥ 0,

u′′(t)[β(t)F(u(t))] ≤ ε

∫ t

t0

u′(s)ds− u′′′(ξ)
∫ t

t0

u′(s)ds

−
∫ t

t0

u′(s)2α(s)g(u(s))ds−
∫ t

t0

u′(s)ρ(s)γ(u(s))ds

+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds.

(4.392)

Taking the absolute value, using the hypothesis in the Theorem 4.37 and

|u′(t)| ≤ λ, where λ > 0, F(|u(t)|) ≥ |u(t)|, we get
|u(t)|
N
≤ 1 +

λ2

δ

∫ t

t0

α(s)g

(
|u(s)|
N

)
ds+

λ

δ

∫ t

t0

ρ(s)r

(
|u(s)|
N

)
ds+

h(λ)
λ

δ

∫ t

t0

γ(s)φ

(
|u(s)|
N

)
ds

(4.393)

for
ε(L+ Lψ)

δ
= N. (4.394)
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Using equation (4.394), we get

A(t) ≤ 1 +
λ2

δ

∫ t

t0

α(s)g (A(s)) ds+
λ

δ

∫ t

t0

ρ(s)r (A(s)) ds+

h(λ)
λ

δ

∫ t

t0

γ(s)φ (A(s)) ds,

(4.395)

where A(t) =
|u(t)|
N

and by applying Theorem 3.16, we get

A(t) ≤ Υ−1
[
Υ(1) + h(λ)

λ

δ

∫ t

t0

γ(s)φ [D(s)X(s)] ds

]
D(t)X(t)′ (4.396)

here, we define

D(t) = Ω−1
(

Ω(1) +
λ

δ

∫ t

t0

ρ(s)γ (X(s))

)
ds, (4.397)

and

X(t) = F−1
(
F (1) +

λ2

δ

∫ t

t0

α(s)ds

)
. (4.398)

Setting limt→∞

∫ t

t0

γ(s)ds ≤ d, limt→∞

∫ t

t0

α(s)ds ≤ m,

limt→∞

∫ t

t0

ρ(s)ds ≤ n, where d,m, n > 0. It is clear that

A(t) ≤ Υ−1
[
Υ(1) + dh(λ)

λ

δ
φ [DX]

]
DX (4.399)

we define

D∗ = Ω−1
(

Ω(1) + n
λ

δ
γ (X)

)
(4.400)

and

X∗ = F−1
(
F (1) +m

λ2

δ

)
(4.401)

Replacing A(t) in inequality (4.399), we obtain
|u(t)|
N
≤ Υ−1

[
Υ(1) + dh(λ)

λ

δ
φ [D∗X∗]

]
D∗X∗ (4.402)

It follows that

|u(t)| ≤ NΥ−1
[
Υ(1) + dh(λ)

λ

δ
φ [D∗X∗]

]
D∗X∗ (4.403)

Substituting the value of N, to obtain

|u(t)| ≤ ε
(L+ Lψ)

δ
G−1

[
G(1) + dh(λ)

λ

δ
φ [D∗X∗]

]
D∗X∗ (4.404)

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ εK

K is given as

K =
(L+ Lψ)

δ
Υ−1

[
Υ(1) + dh(λ)

λ

δ
φ [D∗X∗]

]
D∗X∗

We consider Hyers-Ulam stability of equation (4.386) by taking α(t)g(ut))u′(t) = 0,

the Lienard equation (4.386) reduces to

u′′′(t) + β(t)f(u(t))u′′(t) + ρ(t)γ(u(t)) = P (t, u(t), u′(t)). (4.405)
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with initial conditions u(t0) = u′(t0) = u′′(t0) = 0.

Theorem 4.38:

Equation (4.405) is Hyers-Ulam stable and H-U constant is given as

K =
(L+ Lψ)

δ
Ω−1

(
Ω(1) +

h(λ)λ

δ
φ

(
F−1

(
F (1) +

λ

δ
n

))
m

)
F−1

(
F (1) +

λ

δ
n

) (4.406)

with all the conditions prescribed in Theorem 4.37 remain valid.

Proof:

The proof begins from (4.387), multiplying by u′(t), integrating from t0 to t, using

Lemma 1.1 and equation (4.184), by Theorem 1.1, there exist ξ ∈ [t0, t] such that

u′′′(ξ)

∫ t

t0

u′(s)ds+

∫ t

t0

β(s)u′′(s)
d

ds
F (u(s))ds+

∫ t

t0

ρ(s)γ(u(s))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(t))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.407)

Integrating by part and using hypothesis of Theorem 4.37 we obtain

u′′(t)[β(t)F(u(t))] ≤ ε

∫ t

t0

u′(s)ds− u′′′(ξ)
∫ t

t0

u′(s)ds

−
∫ t

t0

u′(s)ρ(s)γ(u(s))ds+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds.

(4.408)

Taking the absolute value, using the hypothesis in the Theorem 4.37 and

|u′(t)| ≤ λ for λ > 0, F(|u(t)|) ≥ |u(t)|
|u(t)|
N
≤ 1 +

λ

δ

∫ t

t0

ρ(s)r

(
|u(s)|
N

)
ds+ h(λ)

λ

δ

∫ t

t0

γ(s)φ

(
|u(s)|
N

)
ds (4.409)

let
ε(L+ Lψ)

δ
= N,

Equation(4.409) happens to be
|u(t)|
N
≤ 1 +

λ

δ

∫ t

t0

ρ(s)r

(
|u(t)|
N

)
ds+ h(λ)

λ

δ

∫ t

t0

γ(s)φ

(
|u(t)|
N

)
ds (4.410)

by applying Theorem 3.7, we get
|u(t)|
N
≤ Ω−1

(
Ω(1) +

h(λ)λ

δ

∫ t

t0

γ(s)φ

(
F−1

(
F (1) +

λ

δ

∫ s

t0

ρ(α)dα

))
ds

)
F−1

(
F (1) +

λ

δ

∫ t

t0

ρ(s)ds

)
(4.411)

Setting limt→∞

∫ t

t0

γ(s)ds ≤ m, limt→∞

∫ t

t0

ρ(s)ds ≤ n,

where m,n > 0, we get
|u(t)|
N
≤ Ω−1

(
Ω(1) +

h(λ)λ

δ
φ

(
F−1

(
F (1) +

λ

δ
n

))
m

)
F−1

(
F (1) +

λ

δ
n

) (4.412)
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It further yields

|u(t)| ≤ NΩ−1
(

Ω(1) +
h(λ)λ

δ
φ

(
F−1

(
F (1) +

λ

δ
n

))
m

)
F−1

(
F (1) +

λ

δ
n

) (4.413)

Substituting the value of N, we have

|u(t)| ≤ ε
(L+ Lψ)

δ
Ω−1

(
Ω(1) +

h(λ)λ

δ
φ

(
F−1

(
F (1) +

λ

δ
n

))
m

)
F−1

(
F (1) +

λ

δ
n

)
.

(4.414)

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ εK

as
K =

(L+ Lψ)

δ
Ω−1

(
Ω(1) +

h(λ)λ

δ
φ

(
F−1

(
F (1) +

λ

δ
n

))
m

)
F−1

(
F (1) +

λ

δ
n

)
Furthermore, we investigate equation
(α(t)p(u(t))u′(t))′′ + (γ(t)f(u(t))u′(t))′ + β(t)g(u(t))u′(t)

+ρ(u(t)) = P (t, u(t), u′(t))
(4.415)

with initial value u(t0) = u′(t0) = u′′(t0) = 0, where β, γ, α,∈ C(I,R+), g, p, f, ρ ∈

C(R+). P ∈ (I×R+
2,R+).

Definition 4.19:

Equation (4.415) is stable, if there exists K > 0, ε > 0 and any solution u(t) ∈

C3(I,R+) satisfying
(α(t)p(u(t))u′(t))′′ + (γ(t)f(u(t))u′(t))′ + β(t)g(u(t))u′(t) + ρ(u(t))

−P (t, u(t), u′(t))| ≤ ε
(4.416)

and if there exists any solution u0(t) ∈ C3(I,R+) of (4.415) such that

|u(t)− u0(t)| ≤ Kε,

therefore, equation (4.415) is Hyers-Ulam stable and

K is called Hyers-Ulam constant.

The result is given as thus.

Theorem 4.39;

Let the functions α, γ, ρ and β be continuous on R+ and P be continuous on R+,

in addition, α is nondecreasing in t such that

α(t) ≥ φ, α′(t) ≥ 0 on R+ and functions f, g belong to class Ψ. Suppose

(i) limt→∞

∫ t

t0

β(s)ds ≤ m <∞, m > 0.
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(ii) limt→∞

∫ t

t0

γ(s)ds ≤ n <∞, n > 0.

(iii)limt→∞

∫ t

t0

h(s)ds ≤ q <∞, q > 0.

then equation(4.415) is H-U stable with

K =
(L+ |r(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗,
(4.417)

where

H∗ = F−1 (F (1) + C2n) ,

C2 =
2|u′(η)|λ
2φ|u′(ε)|

, C3 =
λ2

2φ|u′(ε)|

and C4 =
λn+1

2φ|u′(ε)|
are positive constants.

Proof:

From inequality (4.416), multiplying through by u′(t), integrating from t0 to t,

using Theorem 1.1 there exists t0 ≤ ε ≤ t, t0 ≤ η ≤ t, such that

u′(ε)

∫ t

t0

(α(s)p(u(s))u′(s))′′ds+ u′(η)

∫ t

t0

(γ(s)f(u(s))u′(s))′ds

+

∫ t

t0

β(s)g(u(s))(u′(s))2ds+

∫ t

t0

ρ(u(s))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.418)

By further simplification of equation (4.418) we obtain
u′(ε)(α(s)p(u(s))u′(s))′ + u′(η)(γ(s)f(u(s))u′(s))

+

∫ t

t0

β(s)g(u(s))(u′(s))2ds+

∫ t

t0

ρ(u(s))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds.

(4.419)

Integrating from t0 to t, twice, using Lemma 1.1 and applying the Theorem 1.1,

there exists t0 ≤ ϕ ≤ t such that

u′(ε)

∫ t

t0

α(s)p(u(s))u′(s)ds+ tu′(η)

∫ t

t0

γ(s)f(u(s))u′(s)ds

+
t2

2

∫ t

t0

β(s)g(u(s))(u′(s))2ds+ ρ(u(ϕ))
t2

2

∫ t

t0

u′(s)ds

−t
2

2

∫ t

1

P (s, u(s), u′(s))u′(s)ds ≤ t2

2
ε

∫ t

t0

u′(s)ds

(4.420)

Multiplying both sides of inequality (4.420) by
2

t2
for t ≥ 1 and

put

P(u(t)) =

∫ u(t)

u(t0)

p(u(s))ds, (4.421)
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then, inequality (4.420) becomes
2

t2
u′(ε)

∫ t

t0

α(s)
d

ds
P(u(s))ds+

2

t
u′(η)u′(t)

∫ t

t0

γ(s)f(u(s))ds

+(u′(t))2
∫ t

t0

β(s)g(u(s))ds+ ρ(u(ϕ))L−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ εL

(4.422)

Integrating (4.422) by part, take
1

t2
≤ 1 for t ≥ 1, using the hypothesis in the

Theorem 4.39 and taking absolute value

2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L) + 2|u′(η)||u′(t)|
∫ t

t0

γ(s)f(|u(s)|)ds

+|(u′(t))|2
∫ t

t0

β(s)g(|u(s)|)ds+

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds
(4.423)

Setting |P (t, u(t), u′(t)) ≤ h(t)r(|u(t)|)|u′(t)|n where h(t), r ∈ C(R+) and n ∈ N,

equation (4.423) becomes

2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L) + 2|u′(η)||u′(t)|
∫ t

t0

γ(s)f(|u(s)|)ds

+|(u′(t))|2
∫ t

t0

β(s)g(|u(s)|)ds+ |u′(t)|n+1

∫ t

t0

h(s)r(|u(s)|)ds
(4.424)

Dividing both sides by 2φ|u′(ε)|, it leads to

|P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
+

2|u′(η)||u′(t)|
2φ|u′(ε)|

∫ t

t0

γ(s)f(|u(s)|)ds

+
|(u′(t))|2

2φ|u′(ε)|

∫ t

t0

β(s)g(|u(s)|)ds+
|u′(t)|n+1

2φ|u′(ε)|

∫ t

t0

h(s)r(|u(s)|)ds
(4.425)

Let |u′(t)| ≤ λ, C1 =
ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
C2 =

2|u′(η)|λ
2φ|u′(ε)|

C3 =
λ2

2φ|u′(ε)|
, C4 =

λn+1

2φ|u′(ε)|
, using these in equation (4.425) to obtain

|P(u(s))| ≤ C1 + C2

∫ t

t0

γ(s)f(|u(s)|)ds+ C3

∫ t

t0

β(s)g(|u(s)|)ds

+C4

∫ t

t0

h(s)r(|u(s)|)ds
(4.426)

Setting P(u(s))| ≥ |u(t)|, then, applying Theorem 3.16, we have
|u(t)|
C1

≤ Υ−1
[
Υ(1) + C4

∫ t

t0

h(s)r

[
Ω−1

(
Ω(1) + C3

∫ s

t0

β(α)g (H(α)dα)

)
Ω−1

(
Ω(1) + C2

∫ s

t0

γ(α)dα

)]
ds

]
Ω−1

(
Ω(1) + C3

∫ t

t0

β(s)g (H(s)) ds

)
H(t)

(4.427)

where

H(t)) = F−1
(
F (1) + C2

∫ t

t0

γ(δ)dδ

)
By simplifying further using (i-iii) of the Theorem 4.39, we obtain
|u(t)|
C1

≤ Υ−1
[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.428)

120



Here

H∗ = F−1 (F (1) + C2n) ,

and H∗ a positive constant. we write
|u(t)| ≤ C1Υ

−1 [Υ(1) + C4qr
[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.429)

Substituting C1, C2, C3 and C4

|u(t)| ≤ ε
(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.430)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε.

By analysis

K =
(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗

If β(t)g(u(t))u′(t) = 0 in equation (4.415) we consider its H-U stability in theorem

below.

Theorem 4.40:

Let all undermentioned conditions of Theorem (4.39) remained valid. Suppose

β(t)g(u(t))u′(t) = 0 in equation (4.415), then, the equation obtained is given as

(α(t)p(u(t))u′(t))′′ + (γ(t)f(u(t))u′(t))′ + ρ(u(t)) = P (t, u(t), u′(t)) (4.431)

with initial value u(t0) = u′(t0) = u′′(t0) = 0, is stable via H-U stability and H-U

constant
K =

(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

(
Υ(1) + C3r

[
F−1 (F (1) + C2n) q

))
F−1 (F (1) + C2n)

(4.432)

C2 =
λ2

2φ|u′(ε)|
and C3 =

λn + 1

2φ|u′(ε)|
are positive constants.

Proof:

From the inequality (4.416), if β(t)g(u(t))u′(t) = 0, multiplying through by u′(t),
(α(t)p(u(t))u′(t))′′u′(t) + (γ(t)f(u(t))u′(t))′u′(t) + ρ(u(t))u′(t)

−P (t, u(t), u′(t))| ≤ εu′(t).
(4.433)

Integrating from t0 to t, by Theorem 1.1, there exits t0 ≤ ε ≤ t, t0 ≤ η ≤ t. such

that

u′(ε)

∫ t

t0

(α(s)p(u(s))u′(s))′′ds+ u′(η)

∫ t

t0

(γ(s)f(u(s))u′(s))′ds

+

∫ t

t0

ρ(u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds,

(4.434)
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Integrating from t0 to t twice and applying Lemma 1.1, multiplying through by
2

t2

for t ≥ 0 and applying the Theorem 1.1, there exists ϕ such that t0 ≤ ϕ ≤ t, then
2

t2
u′(ε)

∫ t

t0

α(s)p(u(s))u′(s)ds+
2

t
u′(η)

∫ t

t0

γ(s)f(u(s))u′(s)ds

+ρ(u(ϕ))

∫ t

t0

u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.435)

Using equation (4.421) and further evaluation of (4.435), we obtain
2

t2
u′(ε)

∫ t

t0

α(s)
d

ds
P(u(s))ds+

2

t
u′(η)u′(t)

∫ t

t0

γ(s)f(u(s))ds

+ρ(u(ϕ))L−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ εL.

(4.436)

Integrating (4.436) by part,
1

t2
≤ 1, using the hypothesis in the Theorem 4.39 and

taking absolute value
2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L)

+2|u′(η)||u′(t)|
∫ t

t0

γ(s)f(|u(s)|)ds+

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds.
(4.437)

Setting |P (t, u(t), u′(t)) ≤ h(t)r(|u(t)|)|u′(t)|n where h(t), r ∈ C(R+) and n ∈ N,

then, equation (4.481) becomes

2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L) + 2|u′(η)||u′(t)|
∫ t

t0

γ(s)f(|u(s)|)ds

+|u′(t)|n+1

∫ t

t0

h(s)r(|u(s)|)ds
(4.438)

Divide both sides by 2φ|u′(ε)|, we obtain

|P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
+

2|u′(η)||u′(t)|
2φ|u′(ε)|

∫ t

t0

γ(s)f(|u(s)|)ds

+
|u′(t)|n+1

2φ|u′(ε)|

∫ t

t0

h(s)r(|u(s)|)ds
(4.439)

Let |u′(t)| ≤ λ, C1 =
ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
C2 =

2|u′(η)|λ
2φ|u′(ε)|

C3 =
λn+1

2φ|u′(ε)|
, using

these in equation (4.439) to get

|P(u(s))| ≤ C1 + C2

∫ t

t0

γ(s)f(|u(s)|)ds+ C3

∫ t

t0

h(s)r(|u(s)|)ds (4.440)

Letting |P(u(s))| ≥ |u(t)|, by applying Theorem 3.7, the result is
|u(t)|
C1

≤ Υ−1
(

Υ(1) + C3

∫ t

t0

h(s)r
[
F−1 (F (1)

+C2

∫ s

t0

γ(δ)dδ

)
ds

))
F−1

(
F (1) + C2

∫ t

t0

γ(s)ds

) (4.441)

By applying the conditions (ii-iii) of the Theorem 4.39, we obtain

|u(t)| ≤ C1Υ
−1 (Υ(1) + C3r

[
F−1 (F (1) + C2n) q

))
F−1 (F (1) + C2n) (4.442)
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Substituting C1, we have

|u(t)| ≤ ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

(
Υ(1) + C3r

[
F−1 (F (1) + C2n) q

))
F−1 (F (1) + C2n)

(4.443)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε.

where
K =

(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

(
Υ(1) + C3r

[
F−1 (F (1) + C2n) q

))
F−1 (F (1) + C2n)

(4.444)

Theorem 4.41

Let (γ(t)f(u(t))u′(t))′ = 0, equation (4.419) reduced to

(α(t)p(u(t))u′(t))′′ + β(t)g(u(t))u′(t) + ρ(u(t)) = P (t, u(t), u′(t)), (4.445)

then equation (4.445) is H-U stable with

K =
(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

(
Υ(1) + C3r

[
Ω−1 (Ω(1) +C2m) q))

Ω−1 (Ω(1) +m)

(4.446)

where C2 =
λ2

2φ|u′(ε)|
, C3 =

λn+1

2φ|u′(ε)|
are positive constants

Proof:

From the inequality (4.415), put (γ(t)f(u(t))u′(t))′ = 0, multiplying through by

u′(t), integrating from t0 to t trice and using Lemma 1.1 we get∫ t

t0

α(s)p(u(s))u′(s)u′(s)ds+
t2

2

∫ t

t0

β(s)g(u(s))(u′(s))2ds

+
t2

2

∫ t

t0

ρ(u(s))u′(s)ds− t2

2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ t2

2
ε

∫ t

t0

u′(s)ds

(4.447)

Applying Theorem 1.1 that is there exist ε, φ ∈ [t0, t] such that

u′(ε)

∫ t

t0

α(s)p(u(s))u′(s)ds+
t2

2

∫ t

t0

β(s)g(u(s))(u′(s))2ds

+
t2

2
ρ(u(φ))

∫ t

t0

u′(s)ds− t2

2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ t2

2
ε

∫ t

t0

u′(s)ds

(4.448)

Multiplying through by
2

t2
for t ≥ 1, we get

2

t2
u′(ε)

∫ t

t0

α(s)p(u(s))u′(s)ds+

∫ t

t0

β(s)g(u(s))(u′(s))2ds

+ρ(u(φ))

∫ t

t0

u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.449)

Use equation (4.421) on inequality (4.449), we have
2

t2
u′(ε)

∫ t

t0

α(s)
d

ds
P(u(s))ds+ (u′(t))2

∫ t

t0

β(s)g(u(s))ds

+ρ(u(ϕ))L−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ εL

(4.450)
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Integrating (4.450) by part, by using the hypothesis in the Theorem 4.39 and taking

the absolute value, we have

2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L) + |(u′(t))|2
∫ t

t0

β(s)g(|u(s)|)ds

+

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds
(4.451)

Setting |P (t, u(t), u′(t)) ≤ h(t)r(|u(t)|)|u′(t)|n where h(t), r ∈ C(R+) and n ∈ N,

then, equation(4.451) becomes

2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L) + |(u′(t))|2
∫ t

t0

β(s)g(|u(s)|)ds

+|u′(t)|n+1

∫ t

t0

h(s)r(|u(s)|)ds
(4.452)

Divide both sides by 2φ|u′(ε)|, we obtain

|P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
+
|(u′(t))|2

2φ|u′(ε)|

∫ t

t0

β(s)g(|u(s)|)ds

+
|u′(t)|n+1

2φ|u′(ε)|

∫ t

t0

h(s)r(|u(s)|)ds
(4.453)

Let |u′(t)| ≤ λ, C1 =
ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
C2 =

λ2

2φ|u′(ε)|
, C3 =

λn+1

2φ|u′(ε)|
,

using these in equation (4.453), we obtain

|P(u(s))| ≤ C1 + C2

∫ t

1

β(s)g(|u(s)|)ds+ C3

∫ t

t0

h(s)r(|u(s)|)ds (4.454)

Letting |P(u(s))| ≥ |u(t)| Applying Theorem 3.7, we arrive at
|u(t)|
C1

≤ Υ−1
(

Υ(1) + C3

∫ t

t0

h(s)r
[
Ω−1 (Ω(1)

+C2

∫ s

t0

β(δ)dδ

)
ds

))
Ω−1

(
Ω(1) + C2

∫ t

t0

β(s)ds

) (4.455)

Taking advantage of conditions (i) and iii), to have

|u(t)| ≤ C1Υ
−1 (Υ(1) + C3r

[
Ω−1 (Ω(1) +C2m) q)) Ω−1 (Ω(1) +m) (4.456)

Substituting C1, we obtain

|u(t)| ≤ ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

(
Υ(1) + C3r

[
Ω−1 (Ω(1) +C2m) q))

Ω−1 (Ω(1) +m)

(4.457)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε,

where

K =
(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
Υ−1

(
Υ(1) + C3r

[
Ω−1 (Ω(1) +C2m) q)) Ω−1 (Ω(1) +m)

Equation (4.411) is considered when the function α(t) is absent.

Theorem 4.42:

Let the function α(t) be absent and ρ(u(t)) = 0 in equation (4.411), then, we have

(p(u(t))u′(t))′′ + (γ(t)f(u(t))u′(t))′ + β(t)g(u(t))u′(t) = P (t, u(t), u′(t)) (4.458)
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is Hyers-Ulam stable with

K =
L

2|u′(ε)|
Υ−1

[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.459)

Proof:

From inequality (4.416), let the function α(t) be absent and ρ(u(t)) = 0, multiply-

ing through by u′(t), integrating from t0 to t, we get∫ t

t0

(p(u(s))u′(s))′′u′(s)ds+

∫ t

t0

(γ(s)f(u(s))u′(s))′u′(s)ds

+

∫ t

t0

β(s)g(u(s))(u′(s))2ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.460)

Using Theorem 1.1 that is, there exist t0 ≤ ε ≤ t, t0 ≤ η ≤ t, such that

u′(ε)

∫ t

t0

(p(u(s))u′(s))′′ds+ u′(η)

∫ t

t0

(γ(s)f(u(s))u′(s))′ds

+

∫ t

t0

β(s)g(u(s))(u′(s))2ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.461)

By further simplification of equation (4.461) we obtain

u′(ε)(p(u(s))u′(s))′ + u′(η)(γ(s)f(u(s))u′(s)) +

∫ t

t0

β(s)g(u(s))(u′(s))2ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.462)

Integrating from t0 to t, twice , using Lemma 1.1.

u′(ε)

∫ t

t0

p(u(s))u′(s)ds+ tu′(η)

∫ t

t0

γ(s)f(u(s))u′(s)ds

+
t2

2

∫ t

t0

β(s)g(u(s))(u′(s))2ds− t2

2

∫ t

1

P (s, u(s), u′(s))u′(s)ds

≤ t2

2
ε

∫ t

t0

u′(s)ds

(4.463)

Multiplying through by
2

t2
for t ≥ 1 and by using equation (4.421) in inequality

(4.463) we have we obtain
2

t2
u′(ε)

∫ t

t0

d

ds
P(u(s))ds+

2

t
u′(η)u′(t)

∫ t

t0

γ(s)f(u(s))ds

+(u′(t))2
∫ t

t0

β(s)g(u(s))ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ εL

(4.464)

Using the hypothesis in the Theorem 4.39 and taking absolute value

2|u′(ε)||P(u(s))| ≤ Lε+ 2|u′(η)||u′(t)|
∫ t

t0

γ(s)f(|u(s)|)ds

+|(u′(t))|2
∫ t

t0

β(s)g(|u(s)|)ds+

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds
(4.465)
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Setting |P (t, u(t), u′(t)) ≤ h(t)r(|u(t)|)|u′(t)|n where h(t), r ∈ C(R+) and n ∈ N,

inequality (4.465) becomes

2|u′(ε)||P(u(s))| ≤ Lε+ 2|u′(η)||u′(t)|
∫ t

t0

γ(s)f(|u(s)|)ds

+|(u′(t))|2
∫ t

t0

β(s)g(|u(s)|)ds+ |u′(t)|n+1

∫ t

t0

h(s)r(|u(s)|)ds
(4.466)

Dividing both sides by 2|u′(ε)|, and letting |u′(t)| ≤ λ we obtain

|P(u(s))| ≤ Lε

2|u′(ε)|
+
|u′(η)||u′(t)|
|u′(ε)|

∫ t

t0

γ(s)f(|u(s)|)ds

+
|(u′(t))|2

2|u′(ε)|

∫ t

t0

β(s)g(|u(s)|)ds+
|u′(t)|n+1

2|u′(ε)|

∫ t

t0

h(s)r(|u(s)|)ds
(4.467)

Let |u′(t)| ≤ λ, C1 =
Lε

2|u′(ε)|
C2 =

|u′(η)|λ
|u′(ε)|

C3 =
λ2

2|u′(ε)|
, C4 =

λn+1

2|u′(ε)|
,

using these in equation (4.468) to obtain

|P(u(s))| ≤ C1 + C2

∫ t

t0

γ(s)f(|u(s)|)ds+ C3

∫ t

t0

β(s)g(|u(s)|)ds

+C4

∫ t

t0

h(s)r(|u(s)|)ds
(4.468)

Setting |P(u(s))| ≥ |u(t)|, then, applying Theorem 3.16, we have
|u(t)|
C1

≤ Υ−1
[
Υ(1) + C4

∫ t

t0

h(s)r

[
Ω−1

(
Ω(1) + C3

∫ s

t0

β(α)g (H(α)dα)

)
Ω−1

(
Ω(1) + C2

∫ s

t0

γ(α)dα

)]
ds

]
Ω−1

(
Ω(1) + C3

∫ t

t0

β(s)g (H(s)) ds

)
H(t)

(4.469)

where

H(t)) = F−1
(
F (1) + C2

∫ t

t0

γ(δ)dδ

)
By simplifying further using (i-iii) of the Theorem 4.39, we obtain
|u(t)|
C1

≤ Υ−1
[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.470)

Here

H∗ = F−1 (F (1) + C2n) ,

and H∗ a positive constant. we write
|u(t)| ≤ C1Υ

−1 [Υ(1) + C4qr
[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.471)

Substituting for C1

|u(t)| ≤ ε
L

2|u′(ε)|
Υ−1

[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗
(4.472)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε.
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By analysis

K =
L

2|u′(ε)|
Υ−1

[
Υ(1) + C4qr

[
Ω−1 (Ω(1) + C3mg (H∗))

Ω−1 (Ω(1) + C2n)
]]

Ω−1 (Ω(1) + C3mg (H∗))H∗

4.3.2 Hyers-Ulam Stability of Nonlinear Third Order
Differential Equation with Forcing Term

Here we examine third order nonlinear DE with forcing term. The first equation

to be investigated is given as:

u′′′(t) + f(t, u(t), u′(t))u′(t) + g(u(t)) = P (t, u(t), u′(t)), (4.473)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0 where f, P, g ∈ C(R+),

Definition 4.20:

Given equation (4.473), Hyers-Ulam stability property is undermentioned, if the

constant K > 0. For every ε > 0, and u(t) ∈ C3(I,R+), is any solution of

|u′′′(t) + f(t, u(t), u′(t))u′(t) + g(u(t))− P (t, u(t), u′(t))| ≤ ε, (4.474)

if there exit u0(t) ∈ C3(R+,R+) which is any solution satisfying (4.473) such that

that

|u(t)− u0(t)| ≤ Kε.

Note that K is Hyers-Ulam constant.

Theorem 4.43:

The equation (4.478) is H-U stable with H-U constant

K = LM∗N∗, (4.475)

where

M∗ = Ω−1
[
Ω(1) + λn+1m$

(
F−1

(
F (1) + h(λ)λ2n

))]
(4.476)

and

N∗ = (F−1
(
F (1) + λ2h(λ)

)
(4.477)

Proof:

We begin from inequality (4.474), multiplied by u′(t), to get
u′(t)ε ≤ u′′′(t)u′(t) + f(t, u(t), u′(t))(u′(t))2 + g(u(t))u′(t)

−P (t, u(t), u′(t))u′(t) ≤ u′(t)ε.
(4.478)
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If u′′(t) a nondecreasing in t then, u′′′(t) ≥ 0, integrating thrice and making use of

Lemma 1.1, multiplying through by
2

t2
, for t > 0, using equation (4.96) to obtain

G(u(t)) ≤
∫ t

t0

f(s, u(s), u′(s))(u′(s))2ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds

≤
∫ t

t0

u′(s)εds.

(4.479)

Taking the absolute value of both sides,

setting |f(t, u(t), u′(t))| ≤ φ(t)f(|u(t)|)h(|u′(t)|),

P (t, u(t), u′(t)| ≤ α(t)$(|u(t)|)(|u′(t)|)n; for n ∈ N,

where h(t) ∈ (R+, |G(u(t))| ≥ |u(t)|,
∫ t

t0

|u′(s)|ds ≤ L, |u′(t)| ≤ λ, where λ ≥ 0,

we get
|u(t)|
εL

≤ 1 + h(λ)λ2
∫ t

t0

φ(s)f(
|u(s)|
εL

)ds+ λn+1

∫ t

t0

α(s)ω(
|u(s)|
εL

ds.

By applying Theorem 3.16 we get

|u(t)| ≤ εLM(t)N(t). (4.480)

Here we define

M(t) = Ω−1
[
Ω(1) + λn+1

∫ t

t0

α(s)$ (N(s)) ds

]
(4.481)

and

N(t) = F−1
(
F (1) + h(λ)λ2

∫ t

t0

φ(s)ds.

)
(4.482)

Let limt0→∞

∫ t

t0

φ(s)ds = n <∞, lim
t0→∞

∫ t

t0

α(s)ds = m <∞,

where n,m > 0, using the (4.481) and (4.482) we have

|u(t)| ≤ εLM∗N∗, (4.483)

where M∗ and N∗ are defined (4.476) and (4.477) respectively. We conclude that

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε,

Hence,

K = LM∗N∗ (4.484)

The next equation to be examined is given as:

u′′′(t) +Q(t, u(t))u′(t) + g(u(t)) = P (t, u(t), u′(t)), (4.485)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0 is closely investigated.

Definition 4.21:

If u(t) ∈ C3(I,R+), is any solution of inequality

u′′′(t) +Q(t, u(t))u′(t) + g(u(t))− P (t, u(t), u′(t))| ≤ ε, (4.486)

then, if ∃ any solution u0(t) ∈ C3(R+,R+) of equation (4.486) such that

|u(t)− u0(t)| ≤ Kε.
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for K a positive H-U constant.

Theorem 4.44:

Equation (4.485) is Hyers-Ulam stable with Hyers-Ulam constant is given as

K = LE∗H∗,

Here,

E∗ = Ω−1
[
Ω(1) +mλ2(n+1)$ (H∗)

]
(4.487)

and

H∗ = F−1
(
F (1) + nλ2

)
(4.488)

Proof:

From inequality (4.486), it is clear that

−ε ≤ u′′′(t) +Q(t, u(t))u′(t) + g(u(t))− P (t, u(t), u′(t))| ≤ ε, (4.489)

Then, multiplying through by u′(t) to have

−ε ≤ u′(t)u′′′(t) +Q(t, u(t))u′(t)u′(t) + g(u(t))u′(t)−u′(t)P (t, u(t), u′(t))| ≤ u′(t)ε,

(4.490)

By applying equation (4.90),let function u′′(t) be a nondecreasing in t, then u′′′(t) ≥

0, we get∫ t

t0

Q(s, u(s))(u′(s))2ds+G(u(t))−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds

≤
∫ t

t0

u′(s)εds.

(4.491)

Integrating from t0 to t thrice and applying Lemma 1.1 and taking the absolute

value, we obtain

|G(u(t)| ≤ ε

∫ t

t0

|u′(s)|ds+

∫ t

t0

|Q(s, u(s))||(u′(s))2|ds

+

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds.
(4.492)

Suppose |G(u(t))| ≥ |u(t)|, |P (t, u(t), u′(t))| ≤ α(t)$(|u(t)|)|u′(t)|(2n+1) and

; |Q(t, u(t))| ≤ φ(t)f(|u(t)|)

|u(t)| ≤ ε

∫ t

t0

|u′(s)|ds+

∫ t

t0

φ(s)f(|u(s)|)|(u′(s))|2ds

+

∫ t

t0

α(t)$(|u(s)|)|u′(s)|2(n+1)ds,

(4.493)

Setting
∫ t

t0

|u(s)|ds ≤ L, |u(t)| ≤ λ where L, λ > 0 gives

|u(t)| ≤ εL+ λ2
∫ t

t0

φ(s)f(|u(s)|)ds+ λ2(n+1)

∫ t

t0

α(t)ω(|u(s)|)ds, (4.494)
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|u(t)|
εL

≤ 1 + λ2
∫ t

t0

φ(s)f(
|u(s)|
εL

)ds+ λ2(n+1)

∫ t

t0

α(t)ω(
|u(s)|
εL

)ds. (4.495)

By making use of Theorem 3.16 gives

|u(t)| ≤ εLE(t)H(t). (4.496)

where

E(t) = Ω−1
[
Ω(1) + λ2(n+1)

∫ t

t0

α(s)ω (H(s)) ds

]
(4.497)

and

H(t) = (F−1
(
F (1) + λ2

∫ t

t0

φ(δ)dδ

)
. (4.498)

This gives

|u(t)| ≤ εLE∗H∗. (4.499)

Note that E∗ and H∗ are defined in (4.487) and (4.488) respectively. Hence,

K = LE∗H∗

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kε

The next equation to be considered is given as:

u′′′(t) + β(t)f(u(t))u′(t) + g(u(t)) = P (t, u(t)) (4.500)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0

Definition 4.22:

Differential equation (4.440) is Hyers-Ulam stable if

u(t) ∈ C3(I,R+), is any solution of

|u′′′(t) + β(t)r(u(t))u′(t) + g(u(t))− P (t, u(t))| ≤ ε, (4.501)

then there exists u0(t) ∈ C3(R+,R+) which is any solution satisfying (4.501) such

that

|u(t)− u0(t)| ≤ Kε.

for K > 0, is called Hyers-Ulam constant.

Theorem 4.45:

Suppose β(t) ∈ C(R+), f, g ∈ Ψ. The nonlinear differential equation (4.501) has

Hyers-Ulam stability property with Hyers-Ulam constant

K = LW ∗Z∗.

where we define

W ∗ = Ω−1 (Ω(1) +Bλω (Z∗)) (4.502)

and

Z∗ = F−1
(
F (1) + λ2A

)
(4.503)
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Proof:

Evaluating inequality (4.501) we get
−εu′(t) ≤ u′′′(t)u′(t) + β(t)f(u(t))(u′(t))2 + g(u(t))u′(t)

−P (t, u(t))u′(t) ≤ εu′(t).
(4.504)

Integrating from t0 to t thrice using Lemma 1.1, if u′′(t) be an increasing continuous

function on R+ then u′′′(t) ≥ 0∫ t

t0

β(s)f(u(s))(u′(s))2ds+

∫ t

t0

g(u(s))u′(s)ds

−
∫ t

t0

P (s, u(s))u′(s)ds ≤
∫ t

t0

εu′(s)ds

(4.505)

Using the equation(4.90), letting |P (t, u(t))| ≤ φ(t)$(|u(t)|, we get

|G(u(t))| ≤ ε

∫ t

t0

|u′(s)|ds+ (|u′(t)|)2
∫ t

t0

β(s)f(|u(s)|)ds

+|u′(t)|
∫ t

t0

φ(s)$(u(s))ds.

(4.506)

Setting |G(u(t))| ≥ |u(t)|, |u′(t)| ≤ λ, where λ > 0 we have

|u(t)| ≤ Lε+ λ2
∫ t

t0

β(s)f(|u(s)|)ds+ λ

∫ t

t0

φ(s)$(u(s))ds. (4.507)

Let Lε = Y we obtain
|u(t)|
Y
≤ 1 + λ2

∫ t

t0

β(s)f

(
|u(s)|
Y

)
ds+ λ

∫ t

t0

φ(s)$

(
u(s)

Y

)
ds. (4.508)

Applying Theorem 3.16 we arrive

|u(t)| ≤ YMN(t)

W (t) = Ω−1
(

Ω(1) + λ

∫ t

t0

φ(s)ω(Z(s))ds

)
(4.509)

and

Z(t) = (F−1
(
F (1) + λ2

∫ t

t0

β(δ)dδ

)
(4.510)

Suppose limt→∞

∫ t

t0

φ(s)ds = B <∞, limt→∞

∫ t

t0

β(s)ds = A <∞ where A, B > 0

when these are used in (4.508), (4.509)and (4.510), to have

|u(t)| ≤ YW ∗Z∗

Replacing Y to get

|u(t)− u(t0)| ≤ |u(t)| ≤ εLW ∗Z∗

Hence,

|u(t)− u(t0)| ≤ Kε

where

K = LW ∗Z∗ (4.511)
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4.3.3 Hyers-Ulam Stability of Nonperturbed Nonlinear Third Order
Differential Equation

In this segment, we consider H-U stability of nonlinear differential equation

whose

P (t, u(t)) = 0 and P (t, u(t), u′(t)) = 0.

Firstly, we examine equation

u′′′(t) + β(t)f(u(t))u′(t) + g(u(t)) = 0, (4.512)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0

Our result is presented in the following theorem:

Theorem 4.46:

Equation (4.512) has Hyers-Ulam stability property with Hyers-Ulam constant

K = LZ∗, (4.513)

where∫ ∞
t0

|u′(s)|ds ≤ L, L > 0

and

Z∗ = F−1
(
F (1) + λ2a

)
Proof:

If there exist a solution u(t) ∈ C3(R+) satisfied inequality

|u′′′(t) + β(t)f(u(t))u′(t) + g(u(t))| ≤ ε, (4.514)

�

−ε ≤ u′′′(t) + β(t)f(u(t))u′(t) + g(u(t)) ≤ ε, (4.515)

Multiplying inequality (4.515) by u′(t), we obtain

−εu′(t) ≤ u′′′(t)u′(t) + β(t)f(u(t))(u′(t))2 + g(u(t))u′(t) ≤ εu′(t). (4.516)

Integrating from t0 to t thrice, using Lemma 1.1, let u′′(t) be nondecreasing con-

tinuous function, then u′′′(t) ≥ 0 and applying equation (4.36) yields

G(u(t)) ≤ ε

∫ t

t0

u′(s)ds−
∫ t

t0

β(s)f(u(s))(u′(s))2ds. (4.517)

Let |G(u(t))| ≥ |u(t)|,|u′(t)| ≤ λ, λ > 0 and by hypothesis of the Theorem 4.46 we

obtain
|u(t)|
Y
≤ 1 + λ2

∫ t

t0

β(s)f

(
|u(s)|
Y

)
ds (4.518)

for Lε = Y

Applying Lemma 2.1 to inequality (4.518), we get
|u(t)|
Y
≤ F−1

(
F (1) + λ2

∫ t

t0

β(s)ds

)
(4.519)
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By further evaluation of (4.519)

|u(t)| ≤ Y Z(t), (4.520)

where Z(t) is defined as

Z(t) = F−1
(
F (1) + λ2

∫ t

t0

β(s)ds

)
(4.521)

Let limt→∞

∫ t

t0

β(s)ds = a <∞ where a > 0, use all in (4.521), we obtain

|u(t)| ≤ Y Z, (4.522)

for

Z∗ = F−1
(
F (1) + λ2a

)
Replacing Y, in (4.522) we obtain

|u(t)− u(t0)| ≤ |u(t)| ≤ εLZ∗ (4.523)

Hence, we arrive at

|u(t)− u(t0)| ≤ Kε

where

K = LZ∗ (4.524)

The next interested equation to be considered is

u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + ρ(t)γ(u(t)) = 0. (4.525)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0. Definition 4.23:.

Equation (4.525) is stable in the sense of Hyers-Ulam, if there exists K > 0, ε > 0

and u(t) ∈ C3(I,R+) satisfying

|u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + ρ(t)γ(u(t))| ≤ ε (4.526)

whenever the solution u0(t) ∈ C3(I,R+) of the equation (4.525) satisfies

|u(t)− u0(t)| ≤ Kε

where K is called H-U constant.

Theorem 4.47:

The nonlinear differential equation (4.525) has Hyers-Ulam stability property with

Hyers-Ulam constant is given as

K =
(L+ ψL)

µδ
Ω−1

(
Ω(1) +

λ

µδ
mγ

(
F−1

(
F (1) +

λ2

µδ
n

)))
F−1

(
F (1) +

λ2

µδ
n

)
,

(4.527)
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Proof:

Simplifying (4.516), integrating from t0 to t thrice, using Lemma 1.1, we get

t2
∫ t

t0

u′′′(s)u′(s)ds+ t2
∫ t

t0

β(s)u′′(s)f(u(s))u′(s)ds

+t2
∫ t

t0

α(s)g(u(s))(u′(s))2ds+ t2
∫ t

t0

ρ(s)γ(u(s))u′(s)ds ≤ εt2
∫ t

t0

u′(s)ds.

(4.528)

Multiplying through by
2

t2
, applying the equation (4.183) and by Theorem 1.1 there

exist ξ, ρ ∈ [t0, t] such that

u′′′(ξ)

∫ t

t0

u′(s)ds+ u′′(ρ)

∫ t

t0

β(s)
d

ds
F(u(s))ds

+

∫ t

t0

α(s)g(u(s))(u′(s))2ds

∫ t

t0

ρ(s)γ(u(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.529)

Integrating inequality (4.529) by part, since β(t) is a nondecreasing function, then

β′(t) ≤ 0, we get

u′′′(ξ)

∫ t

t0

u′(s)ds+ u′′(ρ)β(t)F(u(t))

+(u′(t))2
∫ t

t0

α(s)g(u(s))ds+ u′(t)

∫ t

t0

ρ(s)γ(u(s))ds ≤ ε

∫ t

t0

u′(s)ds

(4.530)

Taking the absolute value of both sides, let |u′(t)| ≤ λ, |u′′′(ξ)| ≤ ψ, β(t) ≥ δ

u′′(ρ) ≤ µ where ψ, λ, δ, µ > 0, and |F(u(t))| ≥ |u(t)|
|u(t)|
N
≤ 1 +

λ2

µδ

∫ t

t0

α(s)g

(
|u(s)|
N

)
ds+

λ

µδ

∫ t

t0

ρ(s)γ

(
|u(s)|
N

)
ds,

where N = ε
(L+ ψL)

µδ
By applying Theorem 3.16, we get

|u(t)| ≤ NΩ−1
(

Ω(1) +
λ

µδ

∫ t

t0

ρ(s)γ

(
F−1

(
F (1) +

λ2

µδ

∫ t

t0

α(β)dβ

))
ds

)
F−1

(
F (1) +

λ2

µδ

∫ t

t0

α(s)

) (4.531)

The inequality (4.531) becomes

|u(t)| ≤ NΩ−1
(

Ω(1) +
λ

µδ
mγ

(
F−1

(
F (1) +

λ2

µδ
n

)))
F−1

(
F (1) +

λ2

µδ
n

)
,

(4.532)

Provided limt→∞
∫ t
t0
α(s)ds = n ≤ ∞, limt→∞

∫ t
t0
ρ(s)ds = m ≤ ∞, where n,m > 0.

Hence, replacing N, we obtain

|u(t)| ≤ ε
(L+ ψL)

µδ
Ω−1

(
Ω(1) +

λ

µδ
mγ

(
F−1

(
F (1) +

λ2

µδ
n

)))
F−1

(
F (1) +

λ2

µδ
n

)
,

(4.533)

Therefore,

|u(t)− u(t0)| ≤ |u(t) ≤ εK,
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where
K =

(L+ ψL)

µδ
Ω−1

(
Ω(1) +

λ

µδ
mγ

(
F−1

(
F (1) +

λ2

µδ
n

)))
F−1

(
F (1) +

λ2

µδ
n

)
,

We consider equation

(α(t)p(u(t))u′(t))′′ + (γ(t)f(u(t))u′(t))′ + β(t)g(u(t))u′(t) + ρ(u(t)) = 0 (4.534)

with initial conditions u(t0) = u′(t0) = u′′(t0), where β, γ, α ∈ C(I,R+), g, p, f, ρ ∈

C(R+), for I = (1,∞) R+ = [0,∞] R = (−∞,∞), to be our next result.

Definition 4.24:

Equation (4.534) is stable if K ≥ 0, ε > 0 and solution u(t) ∈ C3(I,R+) satisfying

|(α(t)p(u(t))u′(t))′′ + (γ(t)f(u(t))u′(t))′ + β(t)g(u(t))u′(t) + ρ(u(t))| ≤ ε (4.535)

whenever the u0(t) ∈ C3(I,R+) which is solution of (4.534) so that

|u(t)− u0(t)| ≤ Kε

where K is called Hyers-Ulam constant. Then, equation (4.534) is Hyers-Ulam

stable.

Theorem 4.48:

Let α(t), γ(t), β(t) ∈ C(R+ and α(t) ≥ φ, α′(t) ≤ 0 with f, g ∈ Ψ. Suppose that

(i) limt→∞

∫ t

t0

β(s)ds = m <∞, m > 0.

(ii) limt→∞

∫ t

t0

γ(s)ds = n <∞, n > 0.

then equation (4.534) is stable in the sense of H-U stability and H-U constant is

given as

K =
L+ |ρ(u(ϕ))|L

2φ|u′(ε)|
Ω−1

(
Ω(1) + C3mg

(
F−1 (F (1) + C2n)

))
F−1 (F (1) + C2n) ,

define C2 =
2|u′(η)|λ
2φ|u′(ε)|

, C3 =
λ2

2φ|u′(ε)|
,

Proof:

Evaluating inequality (4.535) to have

−ε|(α(t)p(u(t))u′(t))′′+ (γ(t)f(u(t))u′(t))′+β(t)g(u(t))u′(t) + ρ(u(t))| ≤ ε (4.536)

Multiplying through by u′(t), to obtain
(α(t)p(u(t))u′(t))′′u′(t) + (γ(t)f(u(t))u′(t))′u′(t)

+β(t)g(u(t))(u′(t))2 + ρ(u(t))u′(t) ≤ εu′(t).
(4.537)
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Integrating Inequality (4.537) from t0 to t and by Theorem 1.1, there exists ε, η, µ ∈

[t0, t] such that

u′(ε)

∫ t

t0

(α(s)p(u(s))u′(s))′′ds+ u′(η)

∫ t

t0

(γ(s)f(u(s))u′(s))′ds

+(u′(µ))2
∫ t

t0

β(s)g(u(s))ds+

∫ t

t0

ρ(u(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.538)

Integrating twice from t0 to t and applying Lemma 1.1 and multiplying through

by
2

t2
, for t ≥ 1 we get

2

t2
u′(ε)

∫ t

1

α(s)p(u(s))u′(s)ds+
2

t
u′(η)

∫ t

1

γ(s)f(u(s))u′(s)ds

+(u′(µ))2
∫ t

1

β(s)g(u(s))ds+

∫ t

t0

ρ(u(s))u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.539)

Using Theorem 1.1, ∃ t0 ≤ ϕ ≤ t such that
2

t2
u′(ε)

∫ t

t0

α(s)p(u(s))u′(s)ds+
2

t
u′(η)

∫ t

t0

γ(s)f(u(s))u′(s)ds

+(u′(µ))2
∫ t

t0

β(s)g(u(s))ds+ ρ(u(ϕ))

∫ t

t0

u′(s)ds ≤ ε

∫ t

t0

u′(s)ds

(4.540)

Using equation (4.421) in inequality (4.540), integrating by part and recall α(t) ≥

φ, α′(t) ≥ 0 and taking the absolute value, we obtain

2φ|u′(ε)||P(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L) + 2|u′(η)||u′(t)|
∫ t

1

γ(s)f(|u(s)|)ds

+|(u′(t))|2
∫ t

1

β(s)g(|u(s)|)ds
(4.541)

Dividing inequality (4.541) by 2φ|u′(ε)| > 0,,

P(u(s))(u(s))| ≤ ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
+

2|u′(η)||u′(t)|
2φ|u′(ε)|

∫ t

t0

γ(s)f(|u(s)|)ds

+
|(u′(t))|2

2φ|u′(ε)|

∫ t

t0

β(s)g(|u(s)|)ds
(4.542)

Let |u′(t)| ≤ λ, C1 =
ε(L+ |ρ(u(ϕ))|L)

2φ|u′(ε)|
C2 =

2|u′(η)|λ
2φ|u′(ε)|

C3 =
λ2

2φ|u′(ε)|
, and

setting P(u(s))(u(t)| ≥ |u(t)| and dividing through by C1, since f, g belong to the

class Ψ,
|u(s)|
C1

≤ 1 + C2

∫ t

t0

γ(s)f(
|u(s)|
C1

)ds+ C3

∫ t

t0

β(s)g(
|u(t)|
C1

)ds (4.543)

By applying Theorem 3.16, one obtains
|u(t)|
C1

≤ Ω−1
(

Ω(1) + C3

∫ t

t0

β(s)g

(
F−1

(
F (1) + C2

∫ s

t0

γ(δ)dδ

))
ds

)
F−1

(
F (1) + C2

∫ t

t0

γ(s)ds

) (4.544)

Using conditions (i) and (ii), we have
|u(t)|
C1

≤ Ω−1
(
Ω(1) + C3mg

(
F−1 (F (1) + C2n)

))
F−1 (F (1) + C2n) (4.545)

136



we conclude that
|u(t)− u0(t)| ≤ |u(t)| ≤ C1Ω

−1 (Ω(1) + C3mg
(
F−1 (F (1) + C2n)

))
F−1 (F (1) + C2n)

(4.546)

Replacing C1, we have H-U constant given as

K =
L+ |ρ(u(ϕ))|L

2φ|u′(ε)|
Ω−1

(
Ω(1) + C3mg

(
F−1 (F (1)

+C2n)))F−1 (F (1) + C2n)

4.4 Hyers-Ulam-Rassias Stability of Third Order Nonlinear Differ-
ential Equation with Forcing Term

4.4.1 Introduction

In this unit, Hyers-Ulam-Rassias stability of nonlinear third order ordinary DE

with and without forcing term of different type of nonlinear equations are examined

using the previous tools. Furthermore, we obtain the Hyers-Ulam-Rassias constant

for each of equations considered.

4.4.2 Hyers-Ulam-Rassias Stability of Third Order Ordinary Differ-
ential Equation with Forcing Term

In this unit, the first equation to be considered is given as:
u′′′(t) + f(t, u(t), u′(t))u′′(t) + α(t, u(t))u′(t)

+β(t)a(u(t)) = P (t, u(t), u′(t)),
(4.547)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0, where

P ∈ C(I×R+
2,R+), α ∈ C(I×R+,R+), β ∈ C(I,R+).

Definition 4.24:

Let u(t) ∈ C3(I,R+) be any solution of
|u′′′(t) + f(t, u(t)u′(t))u′′(t) + α(t, u(t))u′(t) + β(t)a(u(t))

−P (t, u(t), u′(t))| ≤ ϕ(t),
(4.548)

then, equation (4.547) is Hyers-Ulam-Rassias stable, if in addition function ϕ is a

nondecreasing, nonnegative and continuous on R+, and there exists any solution

u0(t) ∈ C3(R+) of equation (4.547) such that

|u(t)− u0(t)| ≤ Cϕϕ(t)

Cϕ a Hyers-Ulam-Rassias constant.

Theorem 4.49:

Suppose

|P (t, u(t), u′(t))| ≤ κ(t)ρ(|u(t)|)%(|u′(t)|),

|α(t, u(t))| ≤ φ(t)$(|u(t)|),
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where κ(t), φ(t) are all nonnegative functions on C(R+) and the functions $, ρ, %

are nonnegative, monotonic, nondecreasing. Let ρ,$ belong to class of ψ and

ϕ : I→ [0,∞), be an increasing positive function, equation (4.547) is stable in the

sense of Hyers-Ulam-Rassias stability with Hyers-Ulam-Rassias constant

Cϕ =
1

δ
Ω−1

(
Ω(1) + n1

1

δ
%(λ)λ

(
F−1

(
F (1) +

n2

δ
|u′(η)|2

)))
F−1

(
F (1) +

n2

δ
|u′(η)|2

) (4.549)

Proof:

Simplifying inequality (4.548) to obtain
−ε ≤ u′′′(t) + f(t, u(t)u′(t))u′′(t) + α(t, u(t))u′(t) + β(t)a(u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t),

Multiplying by u′(t) to have
u′(t)ϕ(t) ≤ u′(t)u′′′(t) + f(t, u(t)u′(t))u′′(t)u′(t) + α(t, u(t))u′(t)u′(t)

+β(t)a(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t).
(4.550)

Integrating thrice, using Lemma 1.1 and Theorem 1.1, there exist

ξ,∈ [t0, t] such that

u′(ξ)u′′(t) +

∫ t

t0

f(s, u(s), u′(s))u′′(s)u′(s)ds+ (u′(η))2
∫ t

t0

α(s, u(s))ds

+

∫ t

t0

β(s)a(u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds.

(4.551)

Put

A(u(t)) =

∫ u(t)

u0

a(s)ds. (4.552)

Applying equation (4.552) in inequality (4.551) to have

u′(ξ)u′′(t) +

∫ t

t0

f(s, u(s), u′(s))u′′(s)u′(s)ds+ (u′(η))2
∫ t

t0

α(s, u(s))ds

+

∫ t

t0

β(s)
d

ds
A(u(s))ds−

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds.

(4.553)

By integration by part we get

u′(ξ)u′′(t) +

∫ t

t0

f(s, u(s), u′(s))u′′(s)u′(s)ds+ (u′(η))2
∫ t

t0

α(s, u(s))ds

+β(t)A(u(t))−
∫ t

t0

β′(s)A(u(s))ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤∫ t

t0

u′(s)ϕ(s)ds.

(4.554)

Suppose u′(t), β(t) are nondecreasing functions on R+, then u′′(t), β(t) ≥ 0, there

exist δ, λ > 0 such that |u′(t)| ≥ λ, β(t) ≥ δ, taking the absolute value, it is clear
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that

δ|A(u(t))| ≤ λ

∫ t

t0

ϕ(s)ds+ |u′(η)|2
∫ t

t0

|α(s, u(s)|ds

+

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds
(4.555)

Setting |A(u(t))| ≥ |u(t)| to have

|u(t)| ≤ 1

δ
λ

∫ t

t0

ϕ(s)ds+
1

δ
|u′(η)|2

∫ t

t0

φ(s)$(|u(t)|)ds

+
1

δ
%(λ)λ

∫ t

t0

κ(s)ρ(|u(s)|)ds
(4.556)

By Corollary 3.1, the result equals

|u(t)| ≤ 1

δ
λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
1

δ
%(λ)λ

∫ t

t0

κ(s)ρ
(
F−1(

F (1) +
1

δ
|u′(η)|2

∫ s

t0

φ(γ)dγ

))
ds

)
F−1

(
F (1) +

1

δ
|u′(η)|2

∫ t

t0

φ(s)ds

) (4.557)

Let the limt→∞

∫ t

t0

κ(s)ds = n1 <∞, where n1 > 0

limt→∞

∫ t

t0

κ(s)ds = n2 <∞, where n2 > 0, enables one to get

|u(t)| ≤ ϕ(t)
1

δ
Ω−1

(
Ω(1) + n1

1

δ
%(λ)λ

(
F−1

(
F (1) +

n2

δ
|u′(η)|2

)))
F−1

(
F (1) +

n2

δ
|u′(η)|2

) (4.558)

where

λ

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

and constant
Cϕ =

1

δ
Ω−1

(
Ω(1) + n1

1

δ
%(λ)λ

(
F−1

(
F (1) +

n2

δ
|u′(η)|2

)))
F−1

(
F (1) +

n2

δ
|u′(η)|2

)
Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t).

Now, we consider next equation given as

u′′′(t)+f(t, u(t), u′(t))u′′(t)+B$(u(t))u′(t)+β(t)a(u(t)) = P (t, u(t), u′(t)) (4.559)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0, where B is a positive constant.

Theorem 4.50:

Suppose

|P (t, u(t), u′(t))| ≤ κ(t)ρ(|u(t)|)%(|u′(t)|),

where κ(t) ∈ C(R+). If constant B ≥ 0 and other functions remain valid in Theo-

rem (4.49). Then equation
u′′′(t) + f(t, u(t), u′(t))u′′(t) +B$(u(t))u′(t) + β(t)a(u(t))

= P (t, u(t), u′(t))
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has Hyers-Ulam-Rassias stability and Hyers-Ulam-Rassias constant is given as

Cϕ =
1

δ

(
|1 +B

$(|u(δ)|)
δ

L

)
Ω−1

(
Ω(1) +

1

δ

%(λ)λ

δ
n1

)
. (4.560)

Proof:

From (4.548), multiplying through by u′(t) and integrating thrice, using Lemma

1.1 and Theorem 1.1 there exists ξ, δ ∈ [t0, t], we get

u(ξ)u′′(s) +

∫ t

t0

f(s, u(s), u′(s))u′′(s)u′(s)ds+ u′(t)$(u(δ))

∫ t

t0

u′(s)ds

+

∫ t

t0

β(s)a(u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ u′(t)

∫ t

t0

ϕ(s)ds,

(4.561)

Use the equation (4.172) and other conditions use to prove Theorem 4.49 we have

|A(u(t))| ≤ 1

δ
|u′(t)|

∫ t

t0

ϕ(s)ds+
1

δ
B|u′(t)|$(|u(δ)|)

∫ t

t0

|u′(s)|ds

+
1

δ

∫ t

t0

|P (s, u(s), u′(s))||u′(s)|ds
(4.562)

Setting |A(u(t))| ≥ |u(t)|, |u′(t)| ≤ λ,

∫ t

t0

|u′(s)|ds ≤ L, for L, λ > 0 and

|u(t)| ≤ 1

δ

(
1 +

1

δ
B$(|u(δ)|)L

)
λ

∫ t

t0

ϕ(s)ds

+
1

δ
%(λ)λ

∫ t

t0

κ(s)ρ(|u(s)|)ds
(4.563)

Using Theorem 2.9 on inequality (4.563) to get

|u(t)| ≤ 1

δ

(
1 +B

$(|u(δ)|)
δ

L

)
Ω−1

(
Ω(1) +

1

δ

%(λ)λ

δ
n1

)
ϕ(t) (4.564)

Provided limt→∞

∫ t

t0

κ(s)ds = n1 <∞, where n1 > 0 and

λ

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

and the Hyers-Ulam-Rasssias constant

Cϕ =
1

δ

(
1 +B

$(|u(δ)|)
δ

L

)
Ω−1

(
Ω(1) +

1

δ

%(λ)λ

δ
n1

)
Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕt

This ends the proof.

In equation (4.547) if P (t, u(t), u′(t)) = 0, then, the following theorem is stated as

Theorem 4.51:

Given

u′′′(t) + f(t, u(t), u′(t))u′′(t) + α(t, u(t))u′(t) + β(t)a(u(t)) = 0, (4.565)

equation (4.565) has Hyers-Ulam-Rassias stability and Hyers-Ulam-Rassias con-

stant is given as

Cϕ =
1

δ
Ω−1

(
Ω(1) +

1

δ
λ2r1

)
. (4.566)
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Take

|α(t, u(t))| ≤ φ(t)$(|u(t)|),

where φ(t) ∈ C(R+) together with function $ a nonnegative, monotonic, nonde-

creasing.

Proof:

From definition of Hyers-Ulam-Rassias stability given above, it is clear that
−u′(t)ϕ(t) ≤ u′′′(t)u′(t) + f(t, u(t), u′(t))u′′(t)u′(t) + α(t, u(t)(u′(t))2

+β(t)a(u(t))u′(t) ≤ u′(t)ϕ(t)
(4.567)

Integrating (4.567) thrice, by Lemma 1.1 and by Theorem 1.1,

if there exists ξ, η ∈ [t0, t] such that

u(ξ)u′′(t) +

∫ t

t0

f(s, u(s), u′(s))u′′(s)u′(s)ds+

∫ t

t0

α(s, u(s)(u′(s))2ds

+

∫ t

t0

β(s)a(u(s))u′(s)ds ≤ u′(η)

∫ t

t0

ϕ(s)ds.

(4.568)

Using the conditions and the steps in the proof of Theorem 4.49, we get

|A(u(t))| ≤ 1

δ
|u′(t)|

∫ t

t0

ϕ(s)ds+
1

δ
|u′(t)|2

∫ t

t0

φ(s)$(|u(s)|)ds (4.569)

Let (Au(t))| ≥ |u(t)|, |u′(t)| ≤ λ we have

|u(t)| ≤ 1

δ
λ

∫ t

t0

ϕ(s)ds+
λ2

δ

∫ t

t0

φ(s)$(|u(s)|)ds (4.570)

By Theorem 2.9, we obtain

|u(t)| ≤ 1

δ
λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
λ2

δ

∫ t

t0

φ(s)ds

)
(4.571)

Let the limt→∞

∫ t

t0

φ(s)ds = r1 <∞, then

|u(t)| ≤ 1

δ
ϕ(t)Ω−1

(
Ω(1) +

λ2

δ
r1

)
(4.572)

where

λ

∫ t

t0

ϕ(s)ds ≤ ϕ(t),

and the H-U-R constant is given as

Cϕ =
1

δ
Ω−1

(
Ω(1) +

λ2

δ
r1

)
(4.573)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

4.4.3 Hyers-Ulam-Rassias Stability of Nonhomogeneous and
Homogenuous Nonlinear Third Order Ordinary Differential
Equation

Different equations of nonhomogeneous and homogeneous nonlinear third order

ordinary differential equations are going to be studied in this section. One of the
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equations is written as

u′′′(t) + f(t, u(t), u′(t))u′(t) + γ(t)D(u(t)) = P (t, u(t), u′(t)) (4.574)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0.

Definition 4.25:

Nonlinear equation (4.574) is Hyers-Ulam-Rassias stable, if there exits a positive

constant Cϕ called Hyers-Ulam-Rassias constant. For every continuous function ϕ

which is nonnegative, nondecreasing and u(t) ∈ C3(I,R+) is any solution of

|u′′′(t) + f(t, u(t), u′(t))u′(t) + γ(t)D(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t), (4.575)

and u0(t) ∈ C3(R+) is any solution of equation (4.574) that makes

|u(t)− u0(t)| ≤ Cϕϕ(t).

Theorem 4.52:

Let

|f(t, u(t), u′(t))| ≤ φ(t)g(|u(t)|)h(|u′(t)|),

|P (t, u(t), u′(t))| ≤ α(t)ω(|u(t)||u′(t)|n,

where φ(t), α(t) are nonnegative functions on C(R+) and the functions g, h, ω are

nonnegative, monotonic, nondecreasing. Furthermore, let function ϕ(t) be defined

as in Theorem 4.50, equation (4.574) is Hyers-Ulam-Rassias stable and Hyers-Ulam-

Rassias constant is given as
Cϕ = Ω−1

(
Ω(1) + d1λ

n+1ω
(
F−1

(
F (1) + d2h(λ)λ2

)))
F−1

(
F (1) + d2h(λ)λ2

) (4.576)

Proof:

From equation (4.575) we deduce that
−ϕ(t) ≤ u′′′(t) + f(t, u(t), u′(t))u′(t) + γ(t)D(u(t))− P (t, u(t), u′(t))

≤ ϕ(t),
(4.577)

Multiplying equation (4.577) by u′(t) we get
−u′(t)ϕ(t) ≤ u′(t)u′′′(t) + f(t, u(t), u′(t))(u′(t))2 + u′(t)γ(t)D(u(t))

−u′(t)P (t, u(t), u′(t)) ≤ u′(t)ϕ(t).

Integrating thrice using Lemma 1.1

(u′(t))2
∫ t

t0

f(s, u(s), u′(s))ds+ u′(t)

∫ t

t0

γ(s)D(u(s))u′(s)ds

−u′(t)
∫ t

t0

P (s, u(s), u′(s))ds ≤ u′(t)

∫ t

t0

ϕ(s)ds,

(4.578)

Note: if u′(t) a nondecreasing function on C(R+), it is certain for u′′(t) ≥ 0, with

advantage of this, we have

D(u(t)) =

∫ u(t)

u(t0)

D(s)ds, (4.579)
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together with γ(t) being a nondecreasing function, then γ′(t) ≥ 0 and taking the

absolute value we get

|u′(t)||γ(t)||B(u(t))| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds

+|(u′(t))|2
∫ t

t0

|f(s, u(s), u′(s))|ds+ |u′(t)|
∫ t

t0

|P (s, u(s), u′(s))|ds,
(4.580)

Setting |u′(t)| ≤ λ where λ > 0, γ(t) ≥ η, η > 0 and using the hypothesis in the

theorem and let |u′(t)||γ(t)||B(u(t))| ≥ |u(t)|, to give

|u(t)| ≤ λ

∫ t

t0

ϕ(s)ds+ h(λ)λ2
∫ t

t0

φ(s)g(|u(s)|)ds

+λn+1

∫ t

t0

α(s)ω(|u(s)|ds,
(4.581)

Using Corollary 3.1, limt→∞

∫ t

t0

φ(s)ds = d1 <∞, d1 > 0

limt→∞

∫ t

t0

κ(s)ds = d2 <∞, d2 > 0, then

|u(t)| ≤ ϕ(t)λ2Ω−1
(
Ω(1) + d1λ

n+1ω
(
F−1

(
F (1) + d2h(λ)λ2

)))F−1
(
F (1) + d2h(λ)λ2

) (4.582)

Provided λ
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

Cϕ = Ω−1
(
Ω(1) + d1λ

n+1ω
(
F−1

(
F (1) + d2h(λ)λ2

)))
F−1

(
F (1) + d2h(λ)λ2

)
The consequence of Theorem 4.52 is given as:

Theorem 4.53:

Let all the conditions of Theorem 4.52 remain valid. If

|f(t, u(t), u′(t))| = |P (t, u(t), u′(t))| ≤ α(t)ω(|u(t)||u′(t)|n.

Then, equation(4.574) has Hyers-Ulam-Rassiaa stability with Hyers-Ulam-Rassias

constant

Cϕ =
1

η
Ω−1

(
Ω(1) + d3

(λ2 + λ)λn

η

)
(4.583)

Proof

Follow the steps of proof of Theorem 4.51 to inequality (4.579), to get

|u′(t)||γ(t)||B(u(t))| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds

+(|(u′(t))|2 + |u′(t)|)
∫ t

t0

|f(s, u(s), u′(s))|ds
(4.584)
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Using hypothesis giving in the Theorem 4.53 to obtain

|u′(t)||γ(t)||B(u(t))| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds

+(|(u′(t))|2 + |u′(t)|)
∫ t

t0

α(s)ω(|u(s)||u′(s)|nds.
(4.585)

By simplifying inequality (4.585) further to get

|u′(t)||γ(t)||B(u(t))| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds

+(|(u′(t))|2 + |u′(t)|)|u′(t)|n
∫ t

t0

α(s)ω(|u(s)|ds
(4.586)

Setting |u′(t)| ≤ λ where λ > 0, |γ(t)| ≥ η, η > 0, using the hypothesis of the

Theorem 4.53 and taking |u′(t)||B(u(t))| ≥ |u(t)|, equals to

|u(t)| ≤ 1

η
λ

∫ t

t0

ϕ(s)ds+
(λ2 + λ)λn

η

∫ t

t0

α(s)ω(|u(s)|ds (4.587)

Applying the Theorem 2.9, let the limt→∞

∫ t

t0

α(s)ds = d3 < ∞, where d3 > 0,

then

|u(t)| ≤ 1

η
Ω−1

(
Ω(1) + d3

(λ2 + λ)λn−1

η

)
0 < t ≤ b, (4.588)

Provided λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t).

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

where

Cϕ =
1

η
Ω−1

(
Ω(1) + d3

(λ2 + λ)λn

η

)
If P (t, u(t), u′(t)) = 0. then, equation (4.574) reduce to

u′′′(t) + f(t, u(t), u′(t))u′(t) + γ(t)D(u(t)) = 0 (4.589)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0.

Theorem 4.54:

Suppose

|f(t, u(t), u′(t))| ≤ φ(t)g(|u(t)|)h(|u′(t)|),

where φ(t) a nonnegative function on C(R+) and the functions g, h are nonnegative,

monotonic, nondecreasing. ϕ(t) in the same way as in Theorem 4.53, equation

(4.589) is Hyers-Ulam-Rassias stable and Hyers-Ulam-Rassias constant is given as

Cϕ =
1

η
Ω−1

(
Ω(1) +

d1λ
2h(λ)

η

)
(4.590)

Proof:

By simple evaluation of (4.575) with P (t, u(t), u′(t)) = 0 to have

−ϕ ≤ u′′′(t) + f(t, u(t), u′(t))u′(t) + γ(t)D(u(t)) ≤ ϕ(t).

144



Multiplying by u′(t), if u′′(t) a nondecreasing then u′′′(t) ≥ 0, using equation

(4.579), we obtain

(u′(t))2
∫ t

t0

f(s, u(s), u′(s))ds+ u′(t)

∫ t

t0

γ(s)
d

ds
B(u(s))ds

≤ u′(t)

∫ t

t0

u′(s)ϕ(s)ds

, (4.591)

Integrating by part, since γ(t) is a nondecreasing function,

then γ′(t) ≥ 0, γ′(t) ≥ 0, taking the absolute value and applying the

hypothesis of Theorem 4.54, we obtain

|u(t)| ≤ 1

η
λ

∫ t

t0

ϕ(s)ds+
λ2h(λ)

η

∫ t

t0

φ(s)g(|u(s)|)ds, (4.592)

for |B(u(t))| ≥ |u(t)|. Applying the Theorem 2.9

|u(t)| ≤ ϕ(t)
1

η
Ω−1

(
Ω(1) +

d1λ
2h(λ)

η

)
(4.593)

provided λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t)

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

one defines

Cϕ =
1

η
Ω−1

(
Ω(1) +

d1λ
2h(λ)

η

)
. (4.594)

4.4.4 A Perturbed Nonlinear Third Order Ordinary Differential Equa-
tion

In continuation of our discussion on Hyers-Uulam-Rassias stability. Equation
(r(t)φ(u(t))u′(t))

′′
+ f(t, u(t), u′(t))u′′(t) + g(t, u(t), u′(t))u′(t)

+β(t)δ(u(t)) = P (t, u(t), u′(t))
(4.595)

with initial value

u(t0) = u′(t0) = u′′(t0) = 0

has been giving deep attention in examining its stability via Hyers-Ulam-Rassias.

Definition 4.26:

The nonlinear differential equation (4.595) has Hyers-Ulam-Rassias stability prop-

erties, if there exits Cϕ > 0 called H-U-R constant. For every continuous function

ϕ which is nonnegative, nondecreasing and u(t) ∈ C3(I,R+) is any solution that

is satisfied equation
| (r(t)φ(u(t))u′(t))

′′
+ f(t, u(t), u′(t))u′′(t) + g(t, u(t), u′(t))u′(t)

+β(t)δ(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t)
(4.596)
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there exists a solution u0(t) ∈ C3(R+) of equation (4.595) such that

|u(t)− u0(t)| ≤ Cϕϕ(t).

Theorem 4.55:

Suppose the following conditions

(i) |f(t, u(t), u′(t))| ≤ φ(t)γ(|u(t)|)h(|u′(t)|)

(ii) |P (t, u(t), u′(t))| ≤ α(t)ω(|u(t)||u′(t)|n

(iii)|g(t, u(t), u′(t))| ≤ κ(t)ψ(|u(t)|)|u′(t)|

(iv)
∫ ∞
t0

|u′(s)|ds ≤ L, where L > 0

are satisfied, φ(t), α(t), κ(t) ∈ C(R+) and the functions γ, h, ω, ψ are nonnegative,

monotonic, nondecreasing. Also, define ϕ : I → [0,∞], then, equation (4.595) is

Hyers-Ulam-Rassias stability with
Cϕ = (κ(ρ)ψ(|u(ρ)|)λL+ 1)Γ−1

[
Γ(1) +m1ω

(
Ω−1 (Ω(1)+

m3(T
∗)))T ∗] Ω−1 (Ω(1) +m3δ(T

∗))T ∗
(4.597)

Proof:

From equation (4.596), it is clear that
−ϕ(t) ≤ (r(t)φ(u(t))u′(t))

′′
+ f(t, u(t), u′(t))u′′(t) + g(t, u(t), u′(t))u′(t)

+β(t)δ(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t)
(4.598)

Multiplying inequality (4.598) by u′(t) to have

−u′(t)ϕ(t) ≤ (r(t)φ(u(t))u′(t))
′′
u′(t) + f(t, u(t), u′(t))u′′(t)u′(t)

+g(t, u(t), u′(t))(u′(t))2 + β(t)δ(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t)

(4.599)

Integrating the equation(4.599) trice and using Lemma 1.1

u′(t)

∫ t

t0

(r(s)φ(u(s))u′(s)) ds+ u′(t)
t2

2

∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

+u′(t)
t2

2

∫ t

t0

g(s, u(s), u′(s))u′(s)ds+ u′(t)
t2

2

∫ t

t0

β(s)δ(u(s))ds

−u′(t)t
2

2

∫ t

t0

P (s, u(s), u′(s))ds ≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.600)

Use equation defines as

J(u(t)) =

∫ u(t)

u(t0)

φ(u(s))ds, (4.601)

in inequality (4.599) to have

u′(t)

∫ t

t0

(
r(s)

d

ds
J(u(s))

)
dsu′(t)

t2

2

∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

+u′(t)
t2

2

∫ t

t0

g(s, u(s), u′(s))u′(s)ds+ u′(t)
t2

2

∫ t

t0

β(s)δ(u(s))ds

−u′(t)t
2

2

∫ t

t0

P (s, u(s), u′(s))ds ≤ t2

2

∫ t

t0

ϕ(s)ds

(4.602)
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Integrating by part, since r(t) is a nondecreasing, nonnnegative function on R+,

then r′(t) ≥ 0 and there exists δ > 0 such that
r(t)

t2
≥ δ

δu′(t)J(u(t)) ≤ u′(t)

∫ t

t0

ϕ(s)ds− |u′(t)|
∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

−u′(t)
∫ t

t0

g(s, u(s), u′(s))u′(s)ds− u′(t)
∫ t

t0

β(s)δ(u(s))ds

+u′(t)

∫ t

t0

P (s, u(s), u′(s))ds

(4.603)

Taking the absolute value of both sides of inequality (4.603) to have

δ|u′(t)||J(u(t))| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds− |u′(t)|
∫ t

t0

|f(s, u(s), u′(s))||u′′(s)|ds

−|u′(t)|
∫ t

t0

|g(s, u(s), u′(s))||u′(s|)ds− |u′(t)|
∫ t

t0

β(s)δ(|u(s|))ds

+|u′(t)|
∫ t

t0

|P (s, u(s), u′(s))|ds.

(4.604)

Setting δ|u′(t)||J(u(t))| ≥ |u(t)| and using Theorem 1.1,

there exist ξ, ρ ∈ [t0, t] such that

|u(t)| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds

+|u′(t)|u′′(ξ)|
∫ t

t0

|f(s, u(s), u′(s))|ds+ |u′(t)||g(ρ, u(ρ), u′(ρ))|
∫ t

t0

u′(s)ds

+|u′(t)|
∫ t

t0

β(s)δ(|u(s)|)ds+ |u′(t)|
∫ t

t0

|P (s, u(s), u′(s))|ds.

(4.605)

Using the hypothesis of the Theorem 4.55, to obtain

|u(t)| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds+ |u′(t)|
∫ t

t0

φ(s)γ(|u(s)|)h(|u′(s)|)ds

+|u′(t)|κ(ρ)ψ(|u(ρ)|)|u′(ρ)|L+ |u′(t)|
∫ t

t0

β(s)δ(|u(s)|)ds

+|u′(t)|n+1

∫ t

t0

α(s)ω(|u(s)|)ds

(4.606)

It follows that

|u(t)| ≤ (κ(ρ)ψ(|u(ρ)|)|u′(ρ)|L+ 1)|u′(t)|
∫ t

t0

ϕ(s)ds

+|u′(t)|h(|u′(t)|)
∫ t

t0

φ(s)γ(|u(s)|)ds

+|u′(t)|
∫ t

t0

β(s)δ(|u(s)|)ds+ |u′(t)|n+1

∫ t

t0

α(s)ω(|u(s)|ds

(4.607)

Setting |u′(t)| ≤ λ where λ > 0, we obtain

|u(t)| ≤ (κ(ρ)ψ(|u(ρ)|)λL+ 1)λ

∫ t

t0

ϕ(s)ds+ λh(λ)

∫ t

t0

φ(s)γ(|u(s)|)ds

+λ

∫ t

t0

β(s)δ(|u(s)|)ds+ λn+1

∫ t

t0

α(s)ω(|u(s)|ds
(4.608)

147



By application of the Theorem 3.17

|u(t)| ≤ (κ(ρ)ψ(|u(ρ)|)λL+ 1)λ

∫ t

t0

ϕ(s)ds

Γ−1
[
Γ(1) + λn+1

∫ t

t0

α(s)ω
(
Ω−1 (Ω(1)+

λ

∫ s

t0

β(η)δ(T (η))dη

))
T (s)ds

]
Ω−1

(
Ω(1) + λ

∫ t

t0

β(s)δ(T (s))ds

)
T (t)

(4.609)

Where T (t) is defined as

T (t) = F−1
(
F (1) + λh(λ)

∫ t

t0

φ(s)ds

)
(4.610)

Let (i) limt→∞

∫ t

t0

α(s)ds ≤ m1 where m1 > 0,

(ii) limt→∞

∫ t

t0

φ(s)ds ≤ m2 where m2 > 0

(iii) limt→∞

∫ t

t0

β(s)ds ≤ m3 where m3 > 0

(iv)λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t)

The inequality (4.609) becomes
|u(t)| ≤ ϕ(t)(κ(ρ)ψ(|u(ρ)|)λL+ 1)Γ−1

[
Γ(1) +m1λ

n+1ω
(
Ω−1 (Ω(1)+

m3(T )))T ] Ω−1 (Ω(1) +m3δ(T ))T
(4.611)

Where T a positive constant defined as

T = F−1 (F (1) +m2λh(λ)) (4.612)

Therefore,
Cϕ = (κ(ρ)ψ(|u(ρ)|)λL+ 1)Γ−1

[
Γ(1) +m1λ

n+1ω
(
Ω−1 (Ω(1)+

m3(T )))T ] Ω−1 (Ω(1) +m3δ(T ))T

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t)

Theorem 4.56:

Let all the conditions of Theorem 4.55 remained valid. Suppose g(t, u(t), u′(t)) = 0,

so (4.598) reduce

(r(t)φ(u(t))u′(t))
′′

+ f(t, u(t), u′(t))u′′(t) + β(t)δ(u(t)) = P (t, u(t), u′(t)). (4.613)

In addition, Equation (4.613) posses Hyers-Ulam-Rassias stability with Hyers-

Ulam-Rassias constant

Cϕ = Γ−1
[
Γ(1) +m1ω

(
Ω−1 (Ω(1) +m3(T

∗))
)
T ∗
]

Ω−1 (Ω(1) +m3δ(T
∗))T ∗

(4.614)

where T a positive constant defined as

T = F−1 (F (1) +m2h(λ)) (4.615)
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Proof:

Evaluate inequality (4.596), integrating the result trice using Lemma 1.1,

u′(t)

∫ t

t0

(r(s)φ(u(s))u′(s)) ds+ u′(t)
t2

2

∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

+u′(t)
t2

2

∫ t

t0

β(s)δ(u(s))ds− u′(t)t
2

2

∫ t

t0

P (s, u(s), u′(s))ds

≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds.

(4.616)

Integrating by part, recall r(t) is a nondecreasing function, implies r′(t) ≥ 0
2

t3
r(t)u′(t)J(u(t)) ≤ u′(t)

∫ t

t0

ϕ(s)ds− u′(t)
∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

−u′(t)
∫ t

t0

β(s)δ(u(s))ds+ u′(t)

∫ t

t0

P (s, u(s), u′(s))ds

(4.617)

Since r(t) is nonnegative ,nondecreasing function on R+, there exists δ > 0 such

that r(t)
t2
, then setting δ|u′(t)|J(|u(t)|) ≥ |u(t)| and using Theorem 1.1,

there exist ξ ∈ [t′0t] such that

|u(t)| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds+ |u′(t)||u”(ξ)|
∫ t

t0

|f(s, u(s), u′(s))|ds

+|u′(t)|
∫ t

t0

β(s)δ(|u(s)|)ds+ |u′(t)|
∫ t

t0

|P (s, u(s), u′(s))|ds.
(4.618)

Using the hypothesis of Theorem 4.56, letting |u′(t)| ≤ λ where λ > 0, simplified

further to obtain

|u(t)| ≤ λ

∫ t

t0

ϕ(s)ds+ λh(λ)

∫ t

t0

φ(s)γ(|u(s)|)ds

+λ

∫ t

t0

β(s)δ(|u(s)|)ds+ λn+1

∫ t

t0

α(s)ω(|u(s)|ds
(4.619)

By Theorem 3.17 we have

|u(t)| ≤ λ

∫ t

t0

ϕ(s)dsΓ−1
[
Γ(1) + λn+1

∫ t

t0

α(s)ω
(
Ω−1 (Ω(1)+

λ

∫ s

t0

β(η)δ(T (η))dη

))
T (s)ds

]
Ω−1

(
Ω(1) + λ

∫ t

t0

β(s)δ(T (s))ds

)
T (t)

(4.620)

note that T (t) is defined as

T (t) = F−1
(
F (1) + λh(λ)

∫ t

t0

φ(s)ds.

)
(4.621)

Let

(i) limt→∞

∫ t

t0

α(s)ds ≤ m1, where m1 > 0,

(ii) limt→∞

∫ t

t0

φ(s)ds ≤ m2, where m2 > 0

(iii) limt→∞

∫ t

t0

β(s)ds ≤ m3, where m3 > 0

(iv) λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t).
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Then, the inequality (4.619) becomes
|u(t)| ≤ λϕ(t)Γ−1

[
Γ(1) +m1λ

n+1ω
(
Ω−1 (Ω(1)+

m3(T )))T ∗] Ω−1 (Ω(1) +m3δ(T
∗))T ∗

(4.622)

Taking T ∗ to be a positive constant defined as

T ∗ = F−1 (F (1) +m2λh(λ)) (4.623)

Therefore,

Cϕ = Γ−1
[
Γ(1) +m1λω

(
Ω−1 (Ω(1) +m3λ(T ∗))

)
T ∗
]

Ω−1 (Ω(1) +m3λδ(T
∗))T ∗

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t)

Theorem 4.57:

Let equation
(r(t)φ(u(t))u′(t))

′′
+ g(t, u(t), u′(t))u′(t) + β(t)a(u(t))

= P (t, u(t), u′(t)) ≤ ϕ(t)
(4.624)

be derived from (4.595) by letting f(t, u(t), u′(t)) = 0 is said to be Hyers-Ulam-

Rassias stable and Hyers-Ulam-Rassias constant denoted by
Cϕ = Γ−1

[
Γ(1) + λnm1ω

(
Ω−1 (Ω(1) +m3δ(H

∗))
)
H∗
]

Ω−1 (Ω(1) +m3δ(H
∗))H∗

(4.625)

S(t) defined as

H∗ = F−1
(
F (1) + λ2k

)
(4.626)

Proof:

Evaluating the inequality (4.596) to get
−ϕ(t) ≤ (r(t)φ(u(t))u′(t))

′′
+ g(t, u(t), u′(t))u′(t)

+β(t)δ(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t)
(4.627)

Multiplying inequality (4.627) by u′(t) to get
−u′(t)ϕ(t) ≤ u′(t) (r(t)φ(u(t))u′(t))

′′
+ g(t, u(t), u′(t))(u′(t))2

+β(t)δ(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t)
(4.628)

Integrating the inequality (4.628) trice and using Lemma 1.1

u′(t)

∫ t

t0

(
r(s)

d

ds
J(u(s))

)
ds+ u′(t)

t2

2

∫ t

t0

g(s, u(s), u′(s))u′(s)ds

+u′(t)
t2

2

∫ t

t0

β(s)δ(u(s))ds− u′(t)t
2

2

∫ t

t0

P (s, u(s), u′(s))ds

≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.629)
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Integrating by part, since r(t) a nonnegative, nondecreasing function onR+, implies

r′(t) ≥ 0,

u′(t)
2

t3
r(t)J(u(t)) ≤ u′(t)

1

t

∫ t

t0

ϕ(s)ds− u′(t)1

t

∫ t

t0

g(s, u(s), u′(s))u′(s)ds

−u′(t)1

t

∫ t

t0

β(s)δ(u(s))ds+ u′(t)
1

t

∫ t

t0

P (s, u(s), u′(s))ds

(4.630)

Taking absolute value, there exists δ > 0 such that
r(t)

t2
≥ δ, then,

setting δ|u′(t)|J(|u(t)|) ≥ |u(t)|, and by Theorem 1.1, there exists

ρ ∈ [t0, t] such that

|u(t)| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds+ |u′(t)||u′(ρ)|
∫ t

t0

|g(s, u(s), u′(s))u′(s)|ds

+|u′(t)|
∫ t

t0

β(s)δ(|u(s|))ds+ |u′(t)|
∫ t

t0

|P (s, u(s), u′(s))|ds
(4.631)

By hypothesis in Theorem 4.56 , if |u′(t)| ≤ λ where λ > 0 we get

|u(t)| ≤ λ

∫ t

t0

ϕ(s)ds+ λ3
∫ t

t0

κ(s)ψ(|u(s)|)ds

+λ

∫ t

t0

β(s)δ(|u(s)|)ds+ λn+1

∫ t

t0

α(s)ω(|u(s)|ds
(4.632)

Applying Theorem 3.17 to get

|u(t)| ≤ λ

∫ t

t0

ϕ(s)dsΓ−1
[
Γ(1) + λn+1

∫ t

t0

α(s)ω
(
Ω−1 (Ω(1)+

λ

∫ s

t0

β(η)δ(H(η))dη

))
H(s)ds

]
Ω−1

(
Ω(1) + λ

∫ t

t0

β(s)δ(H(s))ds

)
H(t)

(4.633)

where

H(t) = F−1
(
F (1) + λ3

∫ t

t0

κ(s)ds

)
(4.634)

Letting

(i) limt→∞

∫ t

t0

α(s)ds ≤ m1 where m1 > 0,

(ii) limt→∞

∫ t

t0

κds ≤ k where k > 0

(iii) limt→∞

∫ t

t0

β(s)ds ≤ m3 where m3 > 0

(iv) λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t).

Applying the limits of integrals to equation (4.634) becomes
|u(t)| ≤ ϕ(t)Γ−1

[
Γ(1) + λnm1ω

(
Ω−1 (Ω(1) +m3δ(H

∗))
)
H∗
]

Ω−1 (Ω(1) +m3δ(H
∗))H∗

(4.635)

H∗ is taking as positive constant

H∗ = F−1
(
F (1) + λ3k

)
(4.636)

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t),
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where
Cϕ = Γ−1

[
Γ(1) + λn+1m1ω

(
Ω−1 (Ω(1) +m3λδ(H

∗))
)
H∗
]

Ω−1 (Ω(1) +m3λδ(H
∗))H∗

Last equation to be derived from (4.595) is given in the form
(r(t)φ(u(t))u′(t))

′′
+ f(t, u(t), u′(t))u′′(t) + g(t, u(t), u′(t))u′(t)

+β(t)δ(u(t)) = 0
(4.637)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0, if P (t, u(t), u′(t)) = 0.

Theorem 4.58:

Equation(4.637) is Hyers-Ulam-Rassias stability and given a well defined Hyers-

Ulam-Rassias constant as
Cϕ = Ω−1

[
Ω(1) +m3λδ

(
Γ−1

(
Γ(1) + λ3kψ(S)

))
S∗
]

Γ−1
(
Γ(1) + λ3m3ψ(S∗)

)
S∗

(4.638)

Proof:

From inequality (4.596), it is clear that
−ϕ(t) ≤ (r(t)φ(u(t))u′(t))

′′
+ f(t, u(t), u′(t))u′′(t) + g(t, u(t), u′(t))u′(t)

+β(t)δ(u(t)) ≤ ϕ(t)
(4.639)

Multiplying inequality (4.639) by u′(t) to have
−u′(t)ϕ(t) ≤ (r(t)φ(u(t))u′(t))

′′
u′(t) + f(t, u(t), u′(t))u′′(t)u′(t)

+g(t, u(t), u′(t))(u′(t))2 + β(t)δ(u(t))u′(t) ≤ u′(t)ϕ(t)
(4.640)

Integrating the equation(4.640) trice and using Lemma 1.1

u′(t)

∫ t

t0

(r(s)φ(u(s))u′(s)) ds+ u′(t)
t2

2

∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

+u′(t)
t2

2

∫ t

t0

g(s, u(s), u′(s))u′(s)ds

+u′(t)
t2

2

∫ t

t0

β(s)δ(u(s))ds ≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.641)

Use the equation defined in (4.601) to have

u′(t)

∫ t

t0

(
r(s)

d

ds
J(u(s))

)
dsu′(t)

t2

2

∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

+u′(t)
t2

2

∫ t

t0

g(s, u(s), u′(s))u′(s)ds

+u′(t)
t2

2

∫ t

t0

β(s)δ(u(s))dsu′(t) ≤ t2

2

∫ t

t0

ϕ(s)ds

(4.642)

Integrating by part, since r(t) is a nondecreasing, nonnnegative function on R+,

then r′(t) ≥ 0 and there exists δ > 0 such that
r(t)

t2
≥ δ

δu′(t)J(u(t)) ≤ u′(t)

∫ t

t0

ϕ(s)ds− |u′(t)|
∫ t

t0

f(s, u(s), u′(s))u′′(s)ds

−u′(t)
∫ t

t0

g(s, u(s), u′(s))u′(s)ds− u′(t)
∫ t

t0

β(s)δ(u(s))ds

(4.643)
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Taking absolute value of inequality (4.643)

δ|u′(t)||J(u(t))| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds− |u′(t)|
∫ t

t0

|f(s, u(s), u′(s))||u′′(s)|ds

−|u′(t)|
∫ t

t0

|g(s, u(s), u′(s))||u′(s|)ds− |u′(t)|
∫ t

t0

β(s)δ(|u(s|))ds.
(4.644)

Setting δ|u′(t)||J(u(t))| ≥ |u(t)| and using Theorem 1.1,

there exist ξ, ρ ∈ [t0, t] such that

|u(t)| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds

+|u′(t)|u′′(ξ)|
∫ t

t0

|f(s, u(s), u′(s))|ds+ |u′(t)||g(ρ, u(ρ), u′(ρ))|
∫ t

t0

u′(s)ds

+|u′(t)|
∫ t

t0

β(s)δ(|u(s)|)ds

(4.645)

Using the hypothesis of the Theorem 4.55, to obtain

|u(t)| ≤ |u′(t)|
∫ t

t0

ϕ(s)ds+ |u′(t)|
∫ t

t0

φ(s)γ(|u(s)|)h(|u′(s)|)ds

+|u′(t)|κ(ρ)ψ(|u(ρ)|)|u′(ρ)|L+ |u′(t)|
∫ t

t0

β(s)δ(|u(s)|)ds.
(4.646)

Setting |u′(t)| ≤ λ where λ > 0, to have

|u(t)| ≤ λ

∫ t

t0

ϕ(s)ds+ λ2h(λ)

∫ t

t0

φ(s)γ(|u(s)|)ds

+λ3
∫ t

t0

(κ(s)ψ(|u(s)|)ds
(4.647)

By application of the Theorem 3.17 we have

|u(t)| ≤ λ

∫ t

t0

ϕ(s)dsΩ−1
[
Ω(1) + λ

∫ t

t0

β(s)δ
(
Γ−1 (Γ(1)

+λ3
∫ s

t0

κ(η)ψ(S(η))dη

))
S(s)ds

]
Ω−1

(
Ω(1) + λ3

∫ t

t0

κ(s)ψ(S(s))ds

)
S(t)

(4.648)

Let

S(t) = F−1
(
F (1) + λh(λ)

∫ t

t0

φ(s)ds

)
(4.649)

Assuming the following limits are ascertained

(i) limt→∞

∫ t

t0

κ(s)ds ≤ k where k > 0,

(ii) limt→∞

∫ t

t0

φ(s)ds ≤ m2 where m2 > 0

(iii) limt→∞

∫ t

t0

β(s)ds ≤ m3 where m3 > 0

(iv) λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t).
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Inequality (4.648) reduce
|u(t)| ≤ ϕ(t)Ω−1

[
Ω(1) +m3λδ

(
Γ−1

(
Γ(1) + λ3kψ(S∗)

))
S
]

Γ−1
(
Γ(1) + λ3m3ψ(S∗)

)
S∗

(4.650)

where S∗ a positive constant defined as

S∗ = F−1 (F (1) +m2λλh(λ)) (4.651)

Therefore,

Ω−1
[
Ω(1) +m3λδ

(
Γ−1

(
Γ(1) + λ3kψ(S∗)

))
S∗
]

Γ−1
(
Γ(1) + λ2m3λψ(S∗)

)
S∗

Hence,

|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕϕ(t)

4.4.5 Hyers-Ulam-Rassias Stability of Nonlinear Third Order
Damped Ordinary Differential Equation with Forcing Term

The stability of nonlinear third order damped equations with forcing term are

considered and their Hyers-Ulam-Rassias constants are obtained.

(a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)). (4.652)

(a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)). (4.653)

(a(t)u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(x(t)) = P (t, u(t), u′(t)). (4.654)

(a(t)u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)). (4.655)

with initial conditions u(t0) = u′(t0) = u′′(t0) = 0, where t ∈ I = [t0, b)(b ≤ ∞),

a, r, p, q ∈ C(I,R), f, ψ ∈ (R,R), P ∈ C(I × R2,R), R = (−∞,∞) and R+ =

[0,∞). The definitions of aforementioned equations are given below.

Definition 4.27:

Equation (4.652) is Hyers-Ulam-Rassias stable, if there exists u(t) ∈ C3(R) any

solution satisfies inequality

|(a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t))|

≤ ϕ(t)
(4.656)

where a positive function defined as ϕ : I → R+ and there exists solution u0(t) ∈

C3(R+) of equation (4.652) such that

|u(t)− u0(t)| ≤ Cϕϕ(t)

holds for Cϕ is taking as Hyers-Ulam-Rassias constant.

Definition 4.28:

Let solution u(t) ∈ C3(I,R) satisfying

|(a(t)u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t), (4.657)
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also taking u0(t) ∈ C3(I,R) to be any of solution of (4.654) which satisfies

|u(t)− u0(t)| ≤ Cϕϕ(t)

defined ϕ : I → R+ and Cϕ denotes H-U-R constant. Therefore equation (4.654)

is Hyer-Ulam-Rassias stability.

Firstly, we consider equation (4.652) as follows:

Theorem 4.59:

The equation (4.652) together with its initial conditions is Hyers-Ulam-Rassias

stable provided under-listed are obeyed.

(i) Let
∫ ∞
t0

|u′(s)|ds ≤ L,

∫ ∞
t0

u′′(s)ds ≤ N for L,N > 0.

(ii) If it happens that φ(t) ∈ C(I,R+)

so that |P (t, u(t), u′(t))| ≤ φ(t)$(|u(t)|)(|u′(t)|)n where n ∈ N

(iii)limt→∞

∫ t

t0

q(s)ds = k1 <∞ and limt→∞

∫ t

t0

φ(s)ds = k2 <∞, where k1, k2 > 0.

(iv) Assume λ > 0 implies |u′(t)| ≤ λ, and λ
∫ t

t0

ϕ(s)ds ≤ ϕ(t) for t ∈ I

Hence, Hyers-Ulam-Rassias constant

Cϕ = (Lp(ξ) + r(ρ)N + 1)Ω−1
(
Ω(1) + λk1$

(
F−1 (F (1)

+λn+1k2
)))

F−1
(
F (1) + λn+1k2

)
t ∈ I

(4.658)

Proof:

From equation(4.656), we get

−ϕ(t) ≤ (a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t)

+p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t)) ≤ ϕ(t)
(4.659)

Equation (4.659) reduce to

(a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t)
(4.660)

Integrating (4.660), equals

(a(t)ψ(u(t))u′(t))′ +

∫ t

t0

r(s)u′′(s) +

∫ t

t0

p(s)u′(s)ds+

∫ t

t0

q(s)f(u(s))ds

−
∫ t

t0

P (s, u(s), u′(s))ds ≤
∫ t

t0

ϕ(s)ds

(4.661)

By integrating (4.661)

a(t)ψ(u(t))u′(t) +

∫ t

t0

∫ t

t0

r(s)u′′(s)ds2 +

∫ t

t0

∫ t

t0

p(s)u′(s)ds2

+

∫ t

t0

∫ t

t0

q(s)f(u(s))ds2 −
∫ t

t0

∫ t

t0

P (s, u(s), u′(s))ds2 ≤
∫ t

t0

∫ t

t0

ϕ(s)ds2
(4.662)
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Integrating and applying Lemma 1.1, to get∫ t

t0

a(s)ψ(u(s))u′(s)ds+
t2

2

∫ t

t0

r(s)u′′(s)ds+
t2

2

∫ t

t0

p(s)u′(s)ds

+
t2

2

∫ t

t0

q(s)f(u(s))ds− t2

2

∫ t

t0

P (s, u(s), u′(s))ds ≤ t2

2

∫ t

t0

ϕ(s)ds

(4.663)

Multiplying by u′(t), using equation (4.172), integrating by part, if a(t) a nonde-

creasing, it gives a′(t) ≥ 0, to have

u′(t)a(t)Λ(u(t)) + u′(t)
t2

2

∫ t

t0

r(s)u′′(s)ds+ u′(t)
t2

2

∫ t

t0

p(s)u′(s)ds

+u′(t)
t2

2

∫ t

t0

q(s)f(u(s))ds− u′(t)t
2

2

∫ t

t0

P (s, u(s), u′(s))ds

≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.664)

Multiplying by
1

t2
, applying Theorem 1.1 there exist t0 ≤ ξ, ρ ≤ t such that

1

t2
u′(t)a(t)Λ(u(t)) + u′(t)r(ρ)

∫ t

t0

u′′(s)ds

+u′(t)p(ξ)
1

t

∫ t

t0

u′(s)ds+ u′(t)
1

t

∫ t

t0

q(s)f(u(s))ds

−u′(t)1

t

∫ t

t0

P (s, u(s), u′(s))ds ≤ u′(t)
1

t

∫ t

t0

ϕ(s)ds

(4.665)

Taking the absolute value of both sides, by conditions (i) and (ii) of Theorem 4.59,

we get
1

t2
|u′(t)|a(t)Λ(|u(t)|) ≤ |u′(t)|

∫ t

t0

ϕ(s)ds+ |u′(t)|r(ρ)N + Lp(ξ)

+|u′(t)|
∫ t

t0

q(s)f(|u(s)|)ds+ (|u′(t)|)n+1

∫ t

t0

φ(s)$(|u(s)|)ds
(4.666)

Since a(t) a nonnegative, nondecreasing function on R+ then there exists δ > 0

such that
1

t2
a(t) ≥ δ, hence, setting |u′(t)| ≤ λ, and δΛ(|u(t)|) ≥ |u(t)|, it is clear

that

|u(t)| ≤ (Lp(ξ) + r(ρ)N + 1)λ

∫ t

t0

ϕ(s)ds+ λ

∫ t

t0

q(s)f(|u(s)|)ds

+λn+1

∫ t

t0

φ(s)$(|u(s)|)ds
(4.667)

Applying the Corollary 3.1, we get

|u(t)| ≤ (Lp(ξ) + r(ρ)N + 1)

λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) + λ

∫ t

t0

φ(s)$
(
F−1 (F (1)

+λn+1

∫ t

t0

q(α)dα

))
ds

)
F−1

(
F (1) + λn+1

∫ t

t0

q(s)ds

) (4.668)
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Employing conditions (iii) and (iv) of Theorem 4.59 to obtain

|u(t)| ≤ (Lp(ξ) + r(ρ)N + 1)Ω−1
(
Ω(1) + λk1$

(
F−1

(
F (1) + λn=1k2

)))
F−1

(
F (1) + λn+1k2

)
ϕ(t) t ∈ I

(4.669)

Therefore, Hyer-Ulam-Rassias constant is

Cϕ = (Lp(ξ) + r(ρ)N + 1)Ω−1
(
Ω(1) + λk1$

(
F−1

(
F (1) + λn+1k2

)))
F−1

(
F (1) + λn+1k2

)
t ∈ I.

If r(t)u”(t) = 0, the equation (4.652) reduce to

(a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) = P (t, u(t), u′(t)), (4.670)

with initial conditions u(t0) = u′(t0) = u”(t) = 0,

Theorem 4.60:

The equation (4.670) together with its initial conditions is Hyers-Ulam-Rassias

stable provided the conditions enumerated in the Theorem 4.59 are satisfied. Then,

Hyers-Ulam-Rassia constant

Cϕ = (Lp(ξ) + 1)Ω−1
(
Ω(1) + λk1$

(
F−1

(
F (1) + λn+1k2

)))
F−1

(
F (1) + λn+1k2

)
t ∈ I.

(4.671)

Proof:

From equation(4.656), let r(t)u”(t) = 0, to get

−ϕ(t) ≤ (a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t))− P (t, u(t), u′(t))

≤ ϕ(t)
(4.672)

Consider the left hand side of Inequality (4.672) to have

(a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t)
(4.673)

Integrating (4.673) to get

(a(t)ψ(u(t))u′(t))′ +

∫ t

t0

p(s)u′(s)ds+

∫ t

t0

q(s)f(u(s))ds

−
∫ t

t0

P (s, u(s), u′(s))ds ≤
∫ t

t0

ϕ(s)ds

(4.674)

By integrating (4.674) we have

a(t)ψ(u(t))u′(t) +

∫ t

t0

∫ t

t0

p(s)u′(s)dsds+

∫ t

t0

∫ t

t0

q(s)f(u(s))dsds

−
∫ t

t0

∫ t

t0

P (s, u(s), u′(s))dsds ≤
∫ t

t0

∫ t

t0

ϕ(s)dsds

(4.675)
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Integrating and applying Lemma 1.1, to get∫ t

t0

a(s)ψ(u(s))u′(s)ds+
t2

2

∫ t

t0

p(s)u′(s)ds

+
t2

2

∫ t

t0

q(s)f(u(s))ds− t2

2

∫ t

t0

P (s, u(s), u′(s))ds

≤ t2

2

∫ t

t0

ϕ(s)ds

(4.676)

Multiplying by u′(t), using equation (4.298) integrating by part, if a(t) a nonde-

creasing, it gives a′(t) ≥ 0, to have

u′(t)a(t)Λ(u(t)) + u′(t)
t2

2

∫ t

t0

p(s)u′(s)ds+ u′(t)
t2

2

∫ t

t0

q(s)f(u(s))ds

−u′(t)t
2

2

∫ t

t0

P (s, u(s), u′(s))ds ≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.677)

Multiplying by
1

t2
, applying Theorem 1.1 there exist t0 ≤ ξ,≤ t such that

1

t2
u′(t)a(t)Λ(u(t)) + u′(t)p(ξ)

1

t

∫ t

t0

u′(s)ds+ u′(t)
1

t

∫ t

t0

q(s)f(u(s))ds

−u′(t)1

t

∫ t

t0

P (s, u(s), u′(s))ds ≤ u′(t)
1

t

∫ t

t0

ϕ(s)ds

(4.678)

Taking the absolute value of both sides, by conditions (i) and (ii) of Theorem 4.59,

we get
1

t2
|u′(t)|a(t)Λ(|u(t)|) ≤ |u′(t)|

∫ t

t0

ϕ(s)ds+ Lp(ξ)

+|u′(t)|
∫ t

t0

q(s)f(|u(s)|)ds+ (|u′(t)|)n+1

∫ t

t0

φ(s)$(|u(s)|)ds
(4.679)

Since a(t) a nonnegative, nondecreasing function on R+ then there exists δ > 0

such that
1

t2
a(t) ≥ δ, hence, setting |u′(t)| ≤ λ, and δΛ(|u(t)|) ≥ |u(t)|, it is clear

that

|u(t)| ≤ (Lp(ξ) + 1)λ

∫ t

t0

ϕ(s)ds+ λ

∫ t

t0

q(s)f(|u(s)|)ds

+λn+1

∫ t

t0

φ(s)$(|u(s)|)ds
(4.680)

Applying the Corollary 3.1, we get

|u(t)| ≤ (Lp(ξ) + 1)

λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) + λ

∫ t

t0

φ(s)$
(
F−1 (F (1)

+λn+1

∫ t

t0

q(α)dα

))
ds

)
F−1

(
F (1) + λn+1

∫ t

t0

q(s)ds

) (4.681)

Employing conditions (iii) and (iv) of Theorem 4.59 to obtain

|u(t)| ≤ (Lp(ξ) + 1)Ω−1
(
Ω(1) + λk1$

(
F−1

(
F (1) + λn=1k2

)))
F−1

(
F (1) + λn+1k2

)
ϕ(t) t ∈ I

(4.682)

158



Therefore, Hyer-Ulam-Rassias constant is

Cϕ = (Lp(ξ) + 1)Ω−1
(
Ω(1) + λk1$

(
F−1

(
F (1) + λn+1k2

)))
F−1

(
F (1) + λn+1k2

)
t ∈ I.

In our next consideration, equation (4.652) is considered in the form

(a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t)) = 0. (4.683)

with initial conditions u(t0) = u′(t0) = u”(t0) = 0.

Theorem 4.61:

The equation (4.683) together with initial conditions posses Hyers-Ulam-Rassias

stability provided conditions in Theorem 4.59 remain valid. The Hyers-Ulam-

Rassias constant is given as:

Cϕ = (Lp(ξ) + r(ρ)N + 1)ϕ(t)Ω−1 (Ω(1) + k1λ) (4.684)

Proof:

From equation(4.656), we get

−ϕ(t) ≤ (a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t)

+p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t)
(4.685)

From inequality (4.685) we have

(a(t)ψ(u(t))u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t) (4.686)

Integrating (4.686) to have

(a(t)ψ(u(t))u′(t))′ +

∫ t

t0

r(s)u′′(s) +

∫ t

t0

p(s)u′(s)ds+

∫ t

t0

q(s)f(u(s))ds

≤
∫ t

t0

ϕ(s)ds

(4.687)

By integrating (4.687)

a(t)ψ(u(t))u′(t) +

∫ t

t0

∫ t

t0

r(s)u′′(s)dsds+

∫ t

t0

∫ t

t0

p(s)u′(s)dsds

+

∫ t

t0

∫ t

t0

q(s)f(u(s))dsds ≤
∫ t

t0

∫ t

t0

ϕ(s)ds2
(4.688)

Integrating and applying Lemma 1.1, to get∫ t

t0

a(s)ψ(u(s))u′(s)ds+
t2

2

∫ t

t0

r(s)u′′(s)ds+
t2

2

∫ t

t0

p(s)u′(s)ds

+
t2

2

∫ t

t0

q(s)f(u(s))ds ≤ t2

2

∫ t

t0

ϕ(s)ds

(4.689)

Multiplying by u′(t), using equation (4.298), integrating by part, if a(t) a nonde-

creasing, it gives a′(t) ≥ 0, to have

u′(t)a(t)Λ(u(t)) + u′(t)
t2

2

∫ t

t0

r(s)u′′(s)ds+ u′(t)
t2

2

∫ t

t0

p(s)u′(s)ds

+u′(t)
t2

2

∫ t

t0

q(s)f(u(s))ds ≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.690)
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Multiplying by
1

t2
, applying Theorem 1.1 there exist t0 ≤ ξ, ρ ≤ t such that

1

t2
u′(t)a(t)Λ(u(t)) + u′(t)r(ρ)

∫ t

t0

u′′(s)ds

+u′(t)p(ξ)
1

t

∫ t

t0

u′(s)ds+ u′(t)
1

t

∫ t

t0

q(s)f(u(s))ds

≤ u′(t)
1

t

∫ t

t0

ϕ(s)ds

(4.691)

Taking the absolute value of both sides, by condition (i) of Theorem 4.59, we get
1

t2
|u′(t)|a(t)Λ(|u(t)|) ≤ |u′(t)|

∫ t

t0

ϕ(s)ds+ |u′(t)|r(ρ)N + Lp(ξ)

+|u′(t)|
∫ t

t0

q(s)f(|u(s)|)ds+$(|u(s)|)ds
(4.692)

Since a(t) a nonnegative, nondecreasing function on R+ then there exists δ > 0

such that
1

t2
a(t) ≥ δ, hence, setting |u′(t)| ≤ λ, and δΛ(|u(t)|) ≥ |u(t)|, it is clear

that

|u(t)| ≤ (Lp(ξ) + r(ρ)N + 1)λ

∫ t

t0

ϕ(s)ds+ λ

∫ t

t0

q(s)f(|u(s)|)ds (4.693)

Applying Theorem 2.9, we get

|u(t)| ≤ (Lp(ξ) + r(ρ)N + 1)λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) + λ

∫ t

t0

q(s)ds

)
(4.694)

Employing conditions (iii) and (iv) of Theorem 4.59 to obtain

|u(t)| ≤ (Lp(ξ) + r(ρ)N + 1)Ω−1 (Ω(1) + λk1) (4.695)

Therefore, Hyers-Ulam-Rassias constant is

Cϕ = (Lp(ξ) + r(ρ)N + 1)Ω−1 (Ω(1) + λk1)

If r(t)u′′(t) = 0, and P (t, u(t), u′(t)) = 0 equation (4.652) reduce to

(a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) = 0. (4.696)

Theorem 4.62:

The equation (4.696) together with initial conditions has Hyers-Ulam-Rassias sta-

bility provided conditions of Theorem 4.59 remain valid. The Hyers-Ulam-Rassias

constant is given as.

Cϕ = (Lp(ξ) + 1)ϕ(t)Ω−1 (Ω(1) + k1λ) (4.697)

Proof:

The equation (4.683) together with initial conditions posses Hyers-Ulam-Rassias

stability provided conditions in Theorem 4.59 remain valid. The Hyers-Ulam-

Rassias constant is given as:

Cϕ = (Lp(ξ) + 1)ϕ(t)Ω−1 (Ω(1) + k1λ) (4.698)
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Proof:

From equation(4.656), we get

−ϕ(t) ≤ (a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t) (4.699)

From inequality (4.699) we have

(a(t)ψ(u(t))u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t) (4.700)

Integrating (4.700) to have

(a(t)ψ(u(t))u′(t))′ +

∫ t

t0

p(s)u′(s)ds+

∫ t

t0

q(s)f(u(s))ds

≤
∫ t

t0

ϕ(s)ds

(4.701)

By integrating (4.701)

a(t)ψ(u(t))u′(t) +

∫ t

t0

∫ t

t0

p(s)u′(s)dsds

+

∫ t

t0

∫ t

t0

q(s)f(u(s))dsds ≤
∫ t

t0

∫ t

t0

ϕ(s)ds2
(4.702)

Integrating and applying Lemma 1.1, to get∫ t

t0

a(s)ψ(u(s))u′(s)ds+
t2

2

∫ t

t0

p(s)u′(s)ds

+
t2

2

∫ t

t0

q(s)f(u(s))ds ≤ t2

2

∫ t

t0

ϕ(s)ds

(4.703)

Multiplying by u′(t), using equation (4.298), integrating by part, if a(t) a nonde-

creasing, it gives a′(t) ≥ 0, to have

u′(t)a(t)Λ(u(t)) + u′(t)
t2

2

∫ t

t0

p(s)u′(s)ds

+u′(t)
t2

2

∫ t

t0

q(s)f(u(s))ds ≤ u′(t)
t2

2

∫ t

t0

ϕ(s)ds

(4.704)

Multiplying by
1

t2
, applying Theorem 1.1 there exist t0 ≤ ξ ≤ t such that

1

t2
u′(t)a(t)Λ(u(t)) + u′(t)p(ξ)

1

t

∫ t

t0

u′(s)ds

+u′(t)
1

t

∫ t

t0

q(s)f(u(s))ds ≤ u′(t)
1

t

∫ t

t0

ϕ(s)ds

(4.705)

Taking the absolute value of both sides, by condition (i) of Theorem 4.59, we get
1

t2
|u′(t)|a(t)Λ(|u(t)|) ≤ |u′(t)|

∫ t

t0

ϕ(s)ds+ Lp(ξ)

+|u′(t)|
∫ t

t0

q(s)f(|u(s)|)ds+$(|u(s)|)ds
(4.706)

Since a(t) a nonnegative, nondecreasing function on R+ then there exists δ > 0

such that
1

t2
a(t) ≥ δ, hence, setting |u′(t)| ≤ λ, and δΛ(|u(t)|) ≥ |u(t)|, it is clear
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that

|u(t)| ≤ (Lp(ξ) + +1)λ

∫ t

t0

ϕ(s)ds+ λ

∫ t

t0

q(s)f(|u(s)|)ds (4.707)

Applying Theorem 2.9, we get

|u(t)| ≤ (Lp(ξ) + 1)λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) + λ

∫ t

t0

q(s)ds

)
(4.708)

Employing conditions (iii) and (iv) of Theorem 4.59 to obtain

|u(t)| ≤ (Lp(ξ) + 1)Ω−1 (Ω(1) + λk1) (4.709)

Therefore, Hyers-Ulam-Rassias constant is

Cϕ = (Lp(ξ) + 1)Ω−1 (Ω(1) + λk1)

We consider equation (4.654) in the next theorem.

Theorem 4.63:

Suppose all the conditions of Theorem 4.59 remain valid. Equation (4.654) is

Hyers-Ulam-Rassias stable and

Cϕ = L(λa(ξ) + λr(α)N + λp(η) + 1)Ω−1
(
Ω(1) + λn+1k2

)
Proof:

By evaluating (4.657) we have

−ϕ ≤ (a(t)u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t),
(4.710)

Multiplying by u′(t), to have

−u′(t)ϕ ≤ (a(t)u′(t))′′u′(t) + r(t)u′′(t)u′(t) + p(t)u′(t)u′(t)

+q(t)f(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t),
(4.711)

Integrating trice, using Lemma 1.1 together with equation (4.183)

u′(t)

∫ t

t0

a(s)u′(s)ds+ u′(t)
t2

2

∫ t

t0

r(s)u′′(s)ds

+
t2

2

∫ t

t0

p(s)(u′(s))2ds+
t2

2

∫ t

t0

q(s)
d

ds
F (u(s))ds

−t
2

2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ t2

2

∫ t

t0

u′(s)ϕ(s)ds

(4.712)

Integrating by part equation (4.713), q(t) a nondecreasing, then q′(t) ≥ 0, we have

u′(t)

∫ t

t0

a(s)u′(s)ds+ u′(t)
t2

2

∫ t

t0

r(s)u′′(s)ds

+
t2

2

∫ t

t0

p(s)(u′(s))2ds+
t2

2
F (u(t))

−t
2

2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ t2

2

∫ t

t0

u′(s)ϕ(s)ds

(4.713)
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Multiplying by
1

t2
, applying Theorem 1.1 there exist ξ, α, η ∈ [t0, t] �

1

t2
q(t)F (u(s)) ≤

∫ t

t0

u′(s)ϕ(s)ds

−u′(t)a(ξ)

∫ t

t0

u′(s)ds− u′(t)r(α)

∫ t

t0

u′′(s)ds

−u′(t)p(η)

∫ t

t0

u′(s)ds+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

(4.714)

Using conditions (i) and (ii) of Theorem 4.59, to obtain
1

t3
q(t)F (|u(s)|) ≤

∫ t

t0

|u′(s)|ϕ(s)ds+ |u′(t)|a(ξ)L

+|u′(t)|r(α)N + |u′(t)|p(η)L+

∫ t

t0

φ(t)$(|u(s)|)(|u′(s)|)n+1ds

(4.715)

Since r(t) is nondecreasing, nonnegative continuous function on R+ there exists

δ > 0 such that r(t)
t2
≥ δ the, δF (|u(t)|) ≥ |u(t)| Setting |u′(t)| ≤ λ, to have

|u(s)| ≤ L(a(ξ) + r(α)N

+p(η) + 1)λ

∫ t

t0

ϕ(s)ds+ λn+1

∫ t

t0

φ(s)$(|u(s)|)ds
(4.716)

With the application of Theorem 2.9 equals

|u(t)| ≤ L(a(ξ) + r(α)N + p(η) + 1)λ

∫ t

t0

ϕ(s)ds

Ω−1
(

Ω(1) + λn+1

∫ t

t0

φ(s)ds

) (4.717)

Using the conditions (iii) and (iv) of Theorem 4.59 to give

|u(t)| ≤ L(a(ξ) + λr(α)N + p(η) + 1)Ω−1
(
Ω(1) + λn+1k2

)
ϕ(t). (4.718)

Therefore, Hyers-Ulam-Rassias constant is

Cϕ = L(λa(ξ) + λr(α)N + λp(η) + 1)Ω−1
(
Ω(1) + λn+1k2

)
Equation (4.655) is considered in the next theorem.

Theorem 4.64:

Let all the conditions of Theorem 4.59 remain valid. Equation (4.655) is H-U-R

stable with constant

Cϕ = L(λa(ξ) + λp(η) + 1)Ω−1
(
Ω(1) + λn+1k2

)
Proof:

By evaluating (4.657), since r(t)u”(t) = 0 then, it follows that

−ϕ ≤ (a(t)u′(t))′′ + p(t)u′(t) + q(t)f(u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t).
(4.719)
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Multiplying by u′(t), to have

−u′(t)ϕ ≤ (a(t)u′(t))′′u′(t) + p(t)u′(t)u′(t)

+q(t)f(u(t))u′(t)− P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t).
(4.720)

Using equation (4.183) to arrive

u′(t)

∫ t

t0

a(s)u′(s)ds+ u′(t)
t2

2

∫ t

t0

r(s)u′′(s)ds

+
t2

2

∫ t

t0

p(s)(u′(s))2ds+
t2

2

∫ t

t0

q(s)
d

ds
F (u(s))ds

−t
2

2

∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤ t2

2

∫ t

t0

u′(s)ϕ(s)ds

(4.721)

Integrating by part, using the property that q′(t) ≥ 0, when q(t) a nondecreasing,

multiplying by
1

t2
, applying Theorem 1.1 there exist ξ, α, η ∈ [t0, t] such that

1

t2
q(t)F (u(s)) ≤

∫ t

t0

u′(s)ϕ(s)ds

−u′(t)a(ξ)

∫ t

t0

u′(s)ds

−u′(t)p(η)
1

t

∫ t

t0

u′(s)ds+

∫ t

t0

P (s, u(s), u′(s))u′(s)ds

(4.722)

By absolute value property and employing the conditions (i) and (ii)

of Theorem 4.59, there exists δ > 0 such that
r(t)

t2
≥ δ then

1

t3
q(t)F (|u(t)|) ≥ |u(t)| and setting |u′(t)| ≤ λ to obtain

|u(s)| ≤ L(a(ξ) + p(η) + 1)λ
1

t

∫ t

t0

ϕ(s)ds+ λn+1

∫ t

t0

φ(s)$(|u(s)|)ds (4.723)

By applying Theorem (2.2), one concludes

|u(t)| ≤ L(a(ξ) + p(η) + 1)λ

∫ t

t0

ϕ(s)ds

Ω−1
(

Ω(1) + λn+1

∫ t

t0

φ(s)ds

) (4.724)

Using the conditions (iii) and (iv) of Theorem 4.59 we obtain

|u(t)| ≤ L(a(ξ) + p(η) + 1)Ω−1
(
Ω(1) + λn+1k2

)
ϕ(t). (4.725)

By this, the constant is given as

Cϕ = L(a(ξ) + λp(η) + 1)Ω−1
(
Ω(1) + λn+1k2

)
If P (t, u(t), u′(t)) = 0 then, equation (4.654) is reduced to

(a(t)u′(t))′′ + r(t)u′′(t) + p(t)u′(t) + q(t)f(u(t)) = 0 (4.726)

Theorem 4.65:

Let all the conditions of Theorem 4.59 remain valid.

Equation (4.726) is Hyers-Ulam-Rassias stable
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with Hyers-Ulam-Rassias constant

Cϕ = (r(ξ)N + p(η)L2 + 1)ϕ(t)Ω−1 (Ω(1) + dλ)

Proof:

From equation(4.657) with P (t, u(t), u′(t)) = 0, we have

−ϕ ≤ (a(t)u′(t))′′ + p(t)u′(t) + q(t)f(u(t)) ≤ ϕ(t). (4.727)

Multiplying by u′(t), to have

−u′(t)ϕ ≤ (a(t)u′(t))′′u′(t) + p(t)u′(t)u′(t)

+q(t)f(u(t))u′(t) ≤ u′(t)ϕ(t).
(4.728)

Integrating trice, applying Lemma 1.1 we get

u′(t)

∫ t

t0

a(s)u′(s)ds+ u′(t)
t2

2

∫ t

t0

r(s)u′′(s)ds

+
t2

2

∫ t

t0

p(s)(u′(s))2ds+
t2

2

∫ t

t0

q(s)f(u(s))u′(s)ds ≤ t2

2

∫ t

t0

u′(s)ϕ(s)ds

(4.729)

Integrating by part, since a(t) is nondecreasing, then a′(t) ≥ 0, multiplying by
2

t2

for t > 0, by applying Theorem 1.1 there exist ξ, α, η ∈ [t0, t] such that
1

t2
u′(t)a(t)u(t) + u′(t)r(ξ)

∫ t

t0

u′′(s)ds

+p(η)

∫ t

t0

(u′(s))2ds+ u′(t)

∫ t

t0

q(s)f(u(s))ds ≤ 1

t

∫ t

t0

u′(s)ϕ(s)ds

(4.730)

By making use absolute value property and condition (i) of Theorem 4.59 to obtain
1

t2
a(t)|u′(t|)|u(t)| ≤

∫ t

t0

|u′(s)|ϕ(s)ds+ |u′(t)|r(α)N + |u′(t)|p(η)L2

+|u′(t)|
∫ t

t0

q(s)f(u(s))ds

(4.731)

Setting |u′(t)| ≤ λ, it follows that
1

t2
a(t)λ|u(t)| ≤ (r(ξ)N + p(η)L2 + 1)λ

∫ t

t0

ϕ(s)ds+ λ

∫ t

t0

q(s)f(u(s))ds (4.732)

Since a(t) is nonnegative and nondecreasing, there exists δ > 0 such that
r(t)

t2
≥ δ

then, setting δ|u′(t|)|u(t)| ≥ |u(t)| and using Theorem 2.9 to get

|u(t)| ≤ (r(ξ)N + p(η)L2 + 1)λ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) + λ

∫ t

t0

q(s)ds

)
(4.733)

Letting limt→∞

∫ t

t0

q(s)ds ≤ d, where d > 0 and
1

t

∫ t

t0

ϕ(s)ds ≤ ϕ(t)

|u(t)| ≤ (r(ξ)N + p(η)L2 + 1)λϕ(t)Ω−1 (Ω(1) + dλ) (4.734)

Therefore, H-U-R constant is

Cϕ = (r(ξ)N + p(η)L2 + 1)λϕ(t)Ω−1 (Ω(1) + dλ)
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The set of last equations to be considered are damped third order nonlinear differ-

ential equations:

u′′′(t) + r(t)u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t)) = P (t, u(t), u′(t)) (4.735)

u′′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t)) = P (t, u(t), u′(t)) (4.736)

initial conditions u(t0) = u′(t0) = 0 for n ∈ N, f, r, q ∈ C(R), Q ∈ (R,R) and

P ∈ (I×R2,R) are presented for consideration using previous methods.

Definition 4.29:

If there exists u(t) ∈ C3(I,R) satisfying

|u′′′(t) + r(t)u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t))

−P (t, u(t), u′(t))| ≤ ϕ(t)
(4.737)

and also there exists any solution u0(t) ∈ C3(I,R) of the equation (4.735) for which

|u(t)− u0(t)| ≤ Cϕϕ(t),

therefore equation (4.735) has Hyers-Ulam-Rassias stability and

Hyers-Ulam-Rassias constant is denoted as Cϕ.

Theorem 4.66:

The equation (4.735) together with its initial conditions is H-U-R stable provided

undermentioned are satisfied:

(i) If
∫ ∞
t0

|u′(s)|ds ≤ L,

∫ ∞
t0

|u′′(s)|ds ≤ N, for N,L > 0. In addition, |Q(t, u(t))| ≤

p(t)γ(|u(t)|)

(ii) ∃ a positive function φ(t) ∈ C(I,R+)

� |P (t, u(t), u′(t))| ≤ φ(t)$(|u(t)|)(|u′(t)|)n where n ∈ N

(iii)limt→∞

∫ t

t0

p(s)ds = k1 <∞ and limt→∞

∫ t

t0

q(s)ds = k2 <∞, where k1, k2 > 0

(iv) λ > 0 so that |u′(t)| ≤ λ, and 1λ
∫ t
t0
ϕ(s)ds ≤ ϕ(t) for t ∈ I

hence, Hyers-Ulam-R assias constant

Cϕ = (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1) + λk2)

)
ds
)

F−1 (F (1) + λk2) t ∈ I

(4.738)

Proof:

Evaluate (4.737)

−ϕ(t) ≤ u′′′(t) + r(t)u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t)
(4.739)
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Multiplying by u′(t), to have

−u′(t)ϕ(t) ≤ u′′′(t) + r(t)u′′(t)u′(t) + nf(t)(u′(t))2 + q(t)u(t) +Q(t, u(t))u′(t)

−P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t)

(4.740)

Integrating and using equation (4.20) we have∫ t

t0

u′′′(s)u′(s)ds+

∫ t

t0

r(t)u′′(s)u′(s)ds+ n

∫ t

t0

f(s)(u′(s))2ds

+

∫ t

t0

q(s)
d

ds
G(u(s))ds+

∫ t

t0

Q(s, u(s))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.741)

Integrating by part and using Theorem 1.1, there exist t0 ≤ η, ξ, α ≤ t such that

u′′′(η)

∫ t

t0

u′(s)ds+ r(α)u′(t)

∫ t

t0

u′′(s)ds

+nf(ξ)

∫ t

t0

(u′(s))2ds+ q(t)G(u(t)) +

∫ t

t0

Q(s, u(s))u′(s)ds

−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.742)

Taking absolute value and using conditions (i) and (ii) and

setting q(t)|G(u(t))| ≥ |u(t)| and setting |u′(t)| ≤ λ,

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)λ

∫ t

t0

ϕ(s)ds

+λ

∫ t

t0

p(s)γ(u(s))ds+ λn+1

∫ t

t0

φ(t)$(|u(t)|)ds
(4.743)

By making use of Corollary 3.1 the resulting inequality is

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)λ

∫ t

t0

ϕ(s)ds

Ω−1
(

Ω(1) + λn+1

∫ t

t0

φ(s)$
(
F−1 (F (1)

+λ

∫ t

t0

p(δ)dδ

))
ds

)
F−1

(
F (1) + λ

∫ t

t0

p(s)ds

)
t ∈ I

(4.744)

By conditions (iii) and (iv) we arrive at

|u(t)| ≤ (λ2 + nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1)

+λk2)) ds)F
−1 (F (1) + λk2)ϕ(t) t ∈ I

(4.745)

Therefore, Hyer-Ulam-Rassias constant is

Cϕ = (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1) + λk2)

)
ds
)

F−1 (F (1) + λk2) t ∈ I
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Theorem 4.67:

Equation (4.736) is Hyers-Ulam-Rassias stable provided the prescribed conditions

of Theorem 4.66 remained valid. Then, Hyers-Ulam-Rassias constant is given as

Cϕ = (λ+ nf(ξ)L2 + |u′′′(η)|L+ 1)λ

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1) + λk2)

)
ds
)
F−1 (F (1) + λk2)

(4.746)

Proof:

From equation(4.737), if r(t)u′′(t) = 0, we obtain

−ϕ(t) ≤ u′′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t))

−P (t, u(t), u′(t)) ≤ ϕ(t)
(4.747)

Multiplying by u′(t), to have

−u′(t)ϕ(t) ≤ u′′′(t) + nf(t)(u′(t))2 + q(t)u(t) +Q(t, u(t))u′(t)

−P (t, u(t), u′(t))u′(t) ≤ u′(t)ϕ(t).
(4.748)

Using equation (4.20), we obtain∫ t

t0

u′′′(s)u′(s)ds+ n

∫ t

t0

f(s)(u′(s))2ds+

∫ t

t0

q(s)
d

ds
G(u(s))ds

+

∫ t

t0

Q(s, u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.749)

Integrating by part the equation (4.749) and by applying Theorem 1.1, there exist

t0 ≤ η, ξ, α ≤ t such that

u′′′(η)

∫ t

t0

u′(s)ds+ nf(ξ)

∫ t

t0

(u′(s))2ds+ q(t)G(u(t))

+

∫ t

t0

Q(s, u(s))u′(s)ds−
∫ t

t0

P (s, u(s), u′(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.750)

Making use of absolute and using conditions (i) and (ii) and setting q(t)|G(u(t))| ≥

|u(t)| and |u′(t)| ≤ λ, we get

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ 1)λ

∫ t

t0

ϕ(s)ds

+λ

∫ t

t0

p(s)γ(u(s))ds+ λn+1

∫ t

t0

φ(t)$(|u(t)|)ds
(4.751)

By applying Corollary 3.1 we obtain

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ 1)λ

∫ t

t0

ϕ(s)ds

Ω−1
(

Ω(1) + λn+1

∫ t

t0

φ(s)$
(
F−1 (F (1)

+λ

∫ t

t0

p(δ)dδ

))
ds

)
F−1

(
F (1) + λ

∫ t

t0

p(s)ds

)
t ∈ I

(4.752)

Using the conditions (iii) and (iv) we obtain

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ 1)

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1) + λk2)

)
ds
)
F−1 (F (1) + λk2)ϕ(t)

(4.753)
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Therefore, Hyers-Ulam-Rassias constant is

Cϕ = (λ+ nf(ξ)L2 + |u′′′(η)|L+ 1)λ

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1) + λk2)

)
ds
)
F−1 (F (1) + λk2)

Lastly, we consider Hyers-Ulam-Rassias stability of equation

u′′′(t) + r(t)u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t)) = 0 (4.754)

with initial conditions u(t0) = u′(t0) = u”(t0) = 0.

Theorem 4.68:

Equation (4.754) together with initial conditions be Hyers-Ulam-Rassias stable.

If the conditions of Theorem 4.66 remained valid and given Hyers-Ulam-Rassias

constant as
Cϕ = (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)λ

Ω−1
(
Ω(1) + λn+1k1$

(
F−1 (F (1) + λk2)

)
ds
)
F−1 (F (1) + λk2)

(4.755)

Proof:

From equation (4.737), if P (t, u(t), u′(t)) = 0, we have

−ϕ(t) ≤ u′′′(t) + r(t)u′′(t) + nf(t)u′(t) + q(t)u(t) +Q(t, u(t)) ≤ ϕ(t) (4.756)

Multiplying by u′(t), to have

−u′(t)ϕ(t) ≤ u′′′(t) + r(t)u′′(t)u′(t) + nf(t)(u′(t))2 + q(t)u(t)

+Q(t, u(t))u′(t) ≤ u′(t)ϕ(t)
(4.757)

Multiplying by
1

t
for t > 0 and using equation (4.20) we get∫ t

t0

u′′′(s)u′(s)ds+

∫ t

t0

r(t)u′′(s)u′(s)ds+ n

∫ t

t0

f(s)(u′(s))2ds

+

∫ t

t0

q(s)
d

ds
G(u(s))ds+

∫ t

t0

Q(s, u(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.758)

Integrating (4.758) by part and applying Theorem 1.1, there exist

t0 ≤ η, ξ, α ≤ t such that

u′′′(η)

∫ t

t0

u′(s)ds+ r(α)u′(t)
1

t

∫ t

t0

u′′(s)ds+ nf(ξ)

∫ t

t0

(u′(s))2ds

+q(t)G(u(t)) +

∫ t

t0

Q(s, u(s))u′(s)ds ≤
∫ t

t0

u′(s)ϕ(s)ds

(4.759)

By taking the absolute value of both sides, by conditions(i) and (ii) and setting
1

t
q(t)|G(u(t))| ≥ |u(t)|, and |u′(t)| ≤ λ, we have

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)λ

∫ t

t0

ϕ(s)ds

+λ
1

t

∫ t

t0

p(s)γ(u(s))ds

(4.760)
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By applying Theorem 2.9 we obtain

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)λ

∫ t

t0

ϕ(s)ds

Ω−1
(

Ω(1) + λ

∫ t

t0

p(s)

)
t ∈ I

(4.761)

Using the conditions (iii) and (iv), we obtain

|u(t)| ≤ (λ+ nf(ξ)L2 + |u′′′(η)|L+ r(α)N + 1)λϕ(t)

Ω−1 (Ω(1) + k1λ) , t ∈ I.
(4.762)

Therefore, Hyers-Ulam-Rassias constant is

Cϕ = (λ2 + nf(ξ)L2 + |u′′′(η)|L+ r(α)λN + λ)Ω−1 (Ω(1) + k1λ) . (4.763)

Finally, all the results obtained in chapter four extended the results of the following

researchers Qarawani (2012), Algfiary and Jung (2014). Algfiary and Jung (2014)

used Gronwall lemma while we used Gronwall-Bellman-Bihari to address more

difficult situations than them.
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CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary

In this work, it has been shown that integral inequalities in chapter three

played an important role in investigating stability of nonlinear differential equa-

tions of second and third order in the sense of Hyers-Ulam and Hyers-lamU-Rassias

stability. First, second, third and nth order linear differential equations were rea-

sonably considered by some others researchers, while the situation is not the same

on the area of nonlinear differential equation because of methods employed by these

researchers were inadequate to examine the equations which were more advanced.

Considering the results of this work, it observed that they extend the ones exist-

ing in the literature. Development of Gronwall-Bellman-Bihari type inequality has

tremendously helped us to overcome most of the problems encountered by authors

during investigation of stability of second and third order nonlinear differential

equation.

5.2 Conclusion and Recommendations

Gronwall-Bellman-Bihari type inequalities are majorly used to achieve Hyers-

Ulam and Hyers-Ulam-Rassias stability of all perturbed and nonperturbed nonlin-

ear second and third order differential equation whose stability are not common in

the literature. Several second and third order nonlinear ordinary differential equa-

tions such as: damped equation, Euler type equation, Lienard equation and an

host of order, were considered in this researched work without encountering with

any problem and attained the desired results. It is therefore suggested that this

kind of method employed to consider stability need to be embraced by researchers

in order to establish the stability of many perturbed nonlinear ordinary equations
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that may appear in setting of model for biological situation of a nation. This can

also be used to ascertain the stability of mathematical models of most dynamic

processes in engineering, physical and biological sciences which often conveniently

expressed by nonlinear ordinary differential equation before it is used.

5.3 Further Research

Researches are still on going on the Hyers-Ulam and Hyers-Ulam-Rassias stabil-

ity via Gronwall-Bellman-Bihari type inequalities of second, third and higher order

of perturbed nonlinear differential equation, delay differential equation, fractional

differential and stochastic differential equation.

5.4 Contributions to Knowledge

Based on this research work the following are the additional knowledge to the

existing ones:

(1) This work has opened ways for developing the different extensions of Gronwall-

Bellman-Bihari type inequalities and establishing more of its applications in the

field of mathematics.

(2) It enhances the investigation of stability of perturbed nonlinear second and

third order differential equation by means of Hyers-Ulam and Hyers-Ulam-Rassias

stabilities.

(3) Variants of nonlinear second and third order ordinary differential equation which

stabilities are seemed to be difficult to consider are dealt with by methods estab-

lished in this research work.

(4) Techniques to obtain Hyers-Ulam and Hyers-Ulam-Rassias constants which are

not common are employed to confirm the veracity of the stability which is second

and third order differential equation.

(5) Appropriate Gronwall-Bellman-Bihari type inequality can be developed to achieve

the stability of the other nonlinear differential equation in the sense of Hyers-Ulam

and Hyers-Ulam-Rassias stability.
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