
i  

FITTING AUTOREGRESSIVE INTEGRATED MOVING 

AVERAGE WITH EXOGENOUS VARIABLES MODEL 

ASSUMING LOGNORMAL ERROR TERM 
 

 

 

 

 

 

___________________________________ 

ANDREW OJUTOMORI BELLO 

(MATRIC. NO. 113832) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
AUGUST 2021 

  



ii  

FITTING AUTOREGRESSIVE INTEGRATED MOVING 

AVERAGE WITH EXOGENOUS VARIABLES MODEL 

ASSUMING LOGNORMAL ERROR TERM 
 

 

 

By 

 

 

ANDREW OJUTOMORI BELLO 

Matric. No. 113832 

B. Sc. Statistics (Ilorin), M. Sc. Statistics (Ibadan)  

 

A dissertation in the Department of Statistics, 

Submitted to the Faculty of Science. 

In partial fulfillment of the requirements for the Degree of  
 

 

 

MASTER OF PHILOSOPHY  

of the 

 UNIVERSITY OF IBADAN. 

 

 

 

 

 

  AUGUST 2021 

 

 



ii  

CERTIFICATION  

I certify that this work was carried out by Andrew Ojutomori Bello in the Department 

of Statistics, University of Ibadan, Nigeria under my supervision. 

 

 

 

 

……..………………………………………………………………. 

Supervisor 

Professor O. I. Shittu, 

P. Dipl, (Stat.), B. Sc., M. Sc,. M. Phil., Ph. D. (Statistics) (Ibadan) 

Professor of Statistics 

 Department of Statistics, 

University of Ibadan. Nigeria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii  

DEDICATION 

I dedicated the research work to Almighty God and Authorities of Statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  



iv  

ACKNOWLEDGEMENTS 

I gave honour, adoration and thanks to the maker of Heavens and the Earth; I bowed 

before your thrown without Him the study could not have been achieved, God’s 

Grace, Mercy and Favour saw me through the programme. My appreciation goes to 

my supervisor Professor Shittu for his guidance, positive criticism, giving me audience 

even when not convenient to him and supporting me towards the success of this work. 

I appreciate the contribution during my presentation of Prof. Shodipo, Prof. Amaha, 

Prof. Olubusoye, Dr. Odumgbosu (PG Cord), Dr. (Mrs.) Alaba, Dr. (Mrs.) Chukwu, 

Dr. Oyemaki, Dr. Obiseso, Head of Department, Lecturers and supporting staff of the 

Department of Statistics, University of Ibadan, for their contribution to my stay as 

student of the department and to the success of this work. I appreciate all authors 

whose materials I have consulted. I stood on your shoulders to see further in Time 

Series Analysis. 

 

Thanks to Dr. Alaba for corrective suggestions and encouragement. I appreciate Dr. 

Wale, Mr. Olawale and Mr. Ojeniran for their contribution towards some 

mathematical derivations and data analysis. I won’t forget the families of Dr. 

Adekunle, my friend and in-law Rasheed Olalekon Solomon, Dr. Igie Alex and Mr. 

Biola for your hospitality, encouragement and support during this programme. 

 

I appreciate the effort of my beloved wife Mrs. Bunmi Sesi Bello, and God given 

children; Seyido Omokagbo Bello (Son), (Twins) Mercy Akosomime Bello, Melody 

Esomime Bello and Priscilla Irete Bello for their encouragement, prayers, support, 

forgoing some comforts and bearing my absence from home for the success of this 

programme. Thank you so much. I love you all!!! 

I say thank you Dr. Patrick, Mr. Bukoye and Mr. Shaib for their contribution towards 

the development of the R-package code and guide on Eview package software used in 

data analyses required in this study. 

 

I appreciate Dr. Osowole who had in time made provision of accommodation. I thank 

Abdul Fatai and Mohammed my ex-students of Auchi Polytechnic, who now 

supported me with accommodation, encouragement during my round-up of this 

programme. I thank you the family of Daddy Omodebo for your one time hospitality. 



v  

I will not fail to appreciate the Ibadan Drivers of Angle 90 Motor Park, Auchi whose 

services I patronized often during my trips to and from Ibadan. Most especially, my 

gratitude goes to God for granting the enabling safe journey mercies during the period. 

 

I appreciate the Management of Auchi Polytechnic, Dean (SICT), Head of Department 

and Staff of Statistics Department, Auchi Polytechnic for been supportive and holding 

brief for me during my trips to University of Ibadan for this programme. I am grateful 

to my administrative office staff; Secretaries, Admin Officer, Clerk of Department of 

Statistics, Auchi Polytechnic who were so supportive during my absence for this 

programme. 

 

To all of you who did one thing or the other to make this dream a reality I pray you 

will never be stranded in your life in Jesus Name. Amen. 

Bello, Andrew Ojutomori  

August 2021 

 

 

 

 

 

 

 

 

 

 

  



vi  

ABSTRACT 

The conventional Autoregressive Integrated Moving Average with Exogenous Variables 

(arimax) model with Normal Error term and Multiple Linear Regression (MLR) require 

stringent assumptions of normality of error term and stationarity of the series. These models 

have found widespread application in multidimensional relationships among economic 

variables; when these assumptions are often violated in practice leading to spurious regression 

model with poor forecast performance. Thus, this study was designed to develop an arimax 

model with Lognormal Error term capable of analysing time series data even when the 

assumptions were violated with reasonable forecast performance. 

The conventional arimax (1, 0, 1) with normal error term defined as: 

   

                                             ;  where the lag operator 
1B −= ty ; the parameter 1   was the 

coefficient of the Autoregressive model (AR), θ1 was the coefficient of Moving Average 

(MA), β0  was the intercept and β1 was the slope of the Regression part of the model. The 

proposed model was estimated by modifying the arimax (p, d, q) with lognormal error term 

where p is order of AR part, d is order of difference and q is order of MA part of the mixed 

model. The parameters were estimated using the maximum likelihood method. The choice of 

lognormal error term was based on the asymmetric property which overcomes non normality, 

the long tail and positive limit values properties overcome non stationarity. The dataset used 

were monthly External Reserves (Million USD), Official Exchange Rate (Naira to USD), 

Crude Oil Export (Million Barrel per Day) and Crude Oil Price (USD per Barrel). One 

hundred and twenty (120) observations were used for the modeling process. The proposed 

arimax (1, 0, 1) with lognormal error term ameliorate the non-normal and non-stationary 

assumptions. The proposed model performance was compared with conventional arimax (1, 1, 

1) with normal error term and MLR model. Box-Jenkins Time Series procedure was used to 

model arimax (1, 1, 1) with normal error and Least Squares Estimator (LSE) technique for 

modeling MLR. The performance of proposed model was tested using Akaike Information 

Criteria (AIC), Mean Square Forecast Error (MSFE) and Loglikelihood (Loglik) values.  

The non normal error function was obtained as: 

 

 

 

while the loglikelihood function was: 

 

 

 

where σ2 is variance. All the series were found to be non-stationary and non-normally 

distributed. The Loglik values of MLR, conventional arimax (1, 1, 1) with normal error and 

proposed arimax (1, 0, 1) with lognormal error term were -317.41, -240.23 and 1344.47; AIC 

values were 5.36, 490.45 and -0.41 while MSFE values were 12.41, 12.48 and 1.77. The 

proposed model has the highest Loglik value, smallest AIC and smallest MSFE values when 

compared with conventional arimax (1, 1, 1) with normal error and MLR model. Hence, the 

proposed model was considered better.   

The autoregressive integrated moving average with exogenous variables assuming lognormal 

error term improved the capability of modeling time series data with better forecast 

performance even when the assumptions of normality of error term and stationarity of series 

were violated.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Time Series (TS): A type of stochastic process that can be indexed by time as well as 

other dimensions such as space, volume, and frequency. The collection of statistical 

observations made over a period of time. Because TS allowed for the observation of a 

time variable at any moment, the temporal gaps between subsequent members of the 

series do not have to be the same Shangodoyin, (2002). 

 

The property of stationarity allowed group parameters to be estimated using the 

corresponding temporal averages of a single realization. Time series observations are 

intended to occur at regular intervals in both practice and theory. For example, firm 

earnings over a period of years, stock prices over a period of days, export totals over a 

period of months, air temperature over a period of hours, and so on. 

 

Various mathematical models had been developed to capture the effect of time 

variation and to generate accurate predictions of future values based on the premise 

that previous behavior (pattern) would continue into the future. The core idea behind 

univariate forecasting; series' future values were mathematical function of its past 

values. Classic Time Series Models frequently assumed series stationarity. However, 

most macroeconomic and financial time series data are nonstationary (i.e., the mean, 

variance, and covariance change with time) and trend upward. Furthermore, some 

exogenous variables (external factors) were contributing aspects that times series 

models must capture in order to accomplish evidence-based informative decision- 

making. Classical Regression Analysis: a versatile data-analytic system that could be 

used whenever a quantitative variable (the dependent variable) was to be studied as a 

function of, or in relation to, any factor(s) of interest (expressed as independent 

variables). However, because of autocorrelation and time dependence, it could not 

been directly applied to time series data. 
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External reserves, exchange rate, crude oil export, and crude oil price economic 

variables empowered public sector foreign assets generation under the control 

monetary authorities in financial transactions of payment imbalances. Nigeria's foreign 

reserves were derived from the production and sales of crude oil CBN, (2007). 

 

The World Bank, (2014) noted that national economy that depended on oil, would run 

at risk because of crude oil price instability. Nigeria's capital account had been 

subjected to crude oil price changes due to her reliance on oil for external revenues. 

This, combined with the country's large import bills, contributed to oscillations in the 

level of foreign reserves over time, and, as a result, the manner the reserves are 

maintained. Crude oil price fall had negative impact on the nation external reserves 

and naira exchange rate. 

 

1.2 Motivation for the study 

In the mean or variance of a stochastic process, autocorrelation and nonstationarity in 

time series are common. The traditional time series paradigm demands series 

stationarity; to account for non-stationarity, a data transformation method is used to 

solve time series problems using the classical model. As a result, an alternate model 

based on asymmetric distribution is required to handle the series' independent 

differencing. 

Nonstationarity in the mean frequently necessitates lagging; use of unit root tests was 

based on the Augmented Dickey Fuller Test (ADF), Dickey Fuller (DF), Kwiatkowski 

Schwarch (KPSS), and Phillip Perron (PP) at order 1 or 2 or higher. In addition, non-

stationarity in variance is frequently assessed before lagging to correct the process for 

stationarity unit root test procedures (correlogram); Partial Autocorrelation Function 

(PACF) or Autocorrelation Function (ACF). This extra work has aided in the problem 

of overcoming arimax modeling in the context of nonstationary economic time series. 

 

In bridging knowledge gap in the application of arimax model with normal error term, 

this study is motivated to develop arimax model with lognormal error term to address 

the nonstationarity in economic time series. The choice of lognormal distribution error 

term is its characteristics; skewedness, long tailed and it positive values are important 
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in determining investment decision like stock price options (Black-Scholes model). 

 

It has been proven that the traditional method to statistical modeling and forecasting 

economic data of economic time series, which is based on globalization and automated 

market transactions, necessitates a robust approach to meet and accommodate the 

current scenarios. As a result, these issues are driving this academic research. 

 

1.3 Justification for the study 

Since most economic data were non-stationary by natural pattern and presence of 

autocorrelation, multiple linear regression modeling would be erroneous and deceptive 

in forecasting. The conventional arima modeling would also been inadequate in 

handling such data. Combining the benefits of both statistical modeling approach with 

their drawbacks becomes a viable option. As a result, the research was justified in 

developing an arimax with exogenous variables model that used the asymmetric 

property of the lognormal error term to correct the limitations of traditional non-

stationary econometric time series differencing for better parameter measures and 

formulation of more accurate forecasting models. 
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1.4 Statement of the problem 

Univariate statistical models could not fully represent statistical determination of 

economic impetus because of the presence of exogenous factors. Furthermore, error 

that was normally distributed at one point in time t may no longer be normally 

distributed at another  point in time t (t ± 1) due to time-dependent nature of economic 

time series data that exhibited non-stationarity and non normality (changes in central 

locations, deviations from mean and covariance overtime). 

 

The Gross Domestic Product (GDP), among other macroeconomic determinants, 

determines a country's economic growth; the index GDP is influenced by foreign 

reserves, currency rate, price index, and crude oil export. As a result, it's critical to 

build a better and more appropriate modeling technique that can overcome the 

limitations of traditional time series analysis models. Nonstationary series regression 

modeling using traditional techniques produces erroneous regression equations and 

misleading forecast outcomes. Arma – autoregressive moving average, arima – 

autoregressive integrated moving average, and sarma – seasonal autoregressive 

moving average were mixed TS - time series models not capable to accommodate 

exogenous variables in the model on their own. 

 

The introduction of X exogenous variable(s) into the model armax; addressed some 

problems of additional variables(s). The implementation of conventional arimax model 

necessitates the use of strict assumptions of normality and serial stationarity in mean 

and variance. Independent series transformation (differencing) (in some situations it 

took more than order one differencing to achieve stationarity of the time series data). 

The usage of additional series transformations to achieve stationarity resulted to loss 

of original information and cost implication. 

 

Volatility data (stock prices, interest rates, inflation rate, and other financial driven 

data) typically exhibited non stationarity. To bridge the gap, an alternative model was 

required to address the challenge of independent transformation of non stationary 

economic time series data. 
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1.5 Aim and objectives of the study 

Aim: To create an arimax model assuming a lognormal error term that could solve 

asymmetry and nonstationarity concerns in economic time series modeling and 

improve forecasting. 

Objectives: 

1. Proposed an arimax assuming lognormal error term model, 

2. Estimate the suggested model's parameters, and 

3. Compare the generated model's performance to that of conventional arimax with 

normal error term and multiple linear regression model. 

 

1.6 Research questions 

1. In other way can non-normality problem in economic time series data be solved? 

2. How can the non-stationarity problem in economic time series data be solved? 

3. Can the lognormal asymmetry property help with the error term's non-normality? 

4. Can the non-stationarity of a series be mitigated by lognormal long tail and positive 

properties? 

 

1.7 Organization of the dissertation 

This dissertation is divided into five chapters, each of which is ordered as follows: The 

first chapter includes a broad overview as well as some background information. It 

emphasized the problems of interest, the study's justification, the goals and objectives, 

as well as research questions. The second chapter discussed some concepts and 

provides a review of literature. The methodological approach of the study was 

presented in the third chapter. The fourth chapter contained the results and discussions. 

The summary and conclusion were presented in chapter five. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Literature review 

Chapter two discussed related literature with respect to concepts of time series 

modeling, arimax modeling and applications. The bases of analyzing time series data 

were highlighted; focused on the Box-Jenkins procedures. 

 

2.2 Conceptual clarification 

Many real-world situations do not fit the assumptions of linearity or stationarity, the 

era of nonlinear modeling had come to supplement linear modeling in econometric 

time series Shittu and Yaya, (2011). The authors also pointed out that some economic 

time series may defy the conventional theories of stationarity and linearity. Those 

series were not taken into account at the raw level I(0), first order I(1), or higher order 

integrated levels Box and Jenkins, (1976). 

 

2.3 Theoretical framework 

Data ordered in sequence/time were in series; the term "ordered" refers to over time t. 

Statistical analyses used to found direction of change in data series over-time frame. 

When extrapolate; the pattern came up with future forecast. Extrapolation was a term 

used to describe how statistical forecasting algorithms project previous 

patterns/relationships into the future. Time series data in most cases would be non-

stationary. The theory of time series models were based on stationary series overtime. 

 

The mean and variance of Yt time series data do not vary in a systematic manner and 

all periodic changes have been removed, the data attained stationary series. The 

statistical quality of a stationary process does not change with time, therefore such 

series were regarded to have been in statistical equilibrium. Shittu, (2011). 

Osabuohien, (2013) corroborated that stationary series must attain constant mean 

and variance. He further expressed mathematically that when Yt satisfied the 
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difference (
d ) equation, it followed an arima (p, d, q) order: 
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Where B denoted Backward Shift Operator. 

Yt denoted an arima (p, d, q) process if  
d Yt was arima (p, d, q) 
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Stationarity and invertibility, conditions were constants such that the equation's zeros 

were all outside the unit circle. The correlogram plot showed a spike at the seasonal 

lag, indicated that the data for a seasonal series had a seasonal character. Box and 

Jenkins, (1976), Madsen, (2008) and Meese and Geweke, (1982) all made 

contributions to the theories and practical application of arima model. Theoretical 

properties of TSA models gave a foundation for recognizing and estimating them as 

asserted by Osabuohien, (2013). 

 

2.3.1 Autoregressive process 

Autoregressive processes were regressions on themselves; an autoregression of order p 

process: denoted as AR(p). The geneal expression by Yule (1926): 

tptptttt eYYYYY +++++= −−−− ...332211

             

  (2.6)
 

2.3.2 Moving average process 

Mohammed, (2014) applied moving average (ma) model on temperature and rainfall 

series. The model MA was defined as: 

qtqttttt eeeeeY −−−− −−−−−=  ...332211     (2.7)
 

The equation 2.7 was mathematical expression ma(q) order q; where, Yt stand for 

series observations at time t and et denoted the error term. There exist an independent 

of Yt−1, Yt−2, Yt−3, ..., Yt−q. 
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2.3.3 Autoregressive integrated moving average (arima) model 

The strategy developed by Box and Jenkins (1970) was regarded as a watershed 

moment in the modern approach to time series analysis. The Box and Jenkins JB 

technique aimed at generating an arima model from an observed time series. The 

technique focused on Stationary processes, passing through appropriate preliminary 

data modifications. The model was a generalized version of the non-stationary arma 

model, which was denoted by arma (p, q): 

 qtqttttptptttt eeeeeYYYYY −−−−−−−− −−−−−+++++=  ...... 332211332211

          (2.8)  

Where, Yt represented the original series, for every time t, (assumed) independent of 

Yt−1, Yt−2, Yt−3, …, Yt−p . 

A time series {Yt} was said to follow an integrated autoregressive moving average 

(arima) model if the dth difference Wt = ∇dYt was a stationary arma process. If {Wt} 

followed an arma (p, q) model, then the set {Yt} was an arima (p, d, q) process. 

Fortunately, for practical purposes, we can usually take d = 1 or at most 2. 

Consider then an arima (p, 1, q) process; 
1−−= ttt YYW  the equation become:

qtqttttptptttt eeeeeWWWWW −−−−−−−− −−−−−+++++=  ...... 332211332211   

(2.9)  
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2.3.4 Autoregressive integrated moving average with exogenous variables 

(arimax) model 

Including exogenous variable(s) improves the arima model's ability to capture 

explanatory variables that may be impacting the time series' behavior. To account for 

external influences, the arimax model included regression model features. 

The generalized arimax (p, d, q) defined as: 

 variablerandom exogenous associated ofnumber k  is X

parameters  ofnumber n part with  Regression  theis 

error term associated is 

 parameters  ofnumber  qMA with   theis 

parameters  ofnumber  p with AR  theis 

 series actual is y where

(2.10)                                                                
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The arimax model assumed that the error term was normal as cited by Mohammed, 

(2014). 

 

2.4 Mathematical framework 

2.4.1 Concept 

The following ideas were discussed in the section: normal probability distribution, 

lognormal probability distribution, maximum likelihood, partial derivatives, and least 

square estimation. 

 

2.4.2 Normal probability distribution 

A family of continuous probability distribution models known as the normal 

distribution.  

Given that ),(~ 2NX then, the Probability Density function (PDF) of the 

population was defined as: 






2

)( 2

exp
2

1
)(

−
−

=

x

xf
      (2.11)

 

where; π and exp. were constants, -∞ < x < ∞, μ the mean of the distribution and 
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standard deviation σ > 0.  

 

 

   

Fig. 2.1. Standard normal distribution curve (Zucchi Kristina 2018) 
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Fig. 2.1 The standard normal curve had symmetric, bell-shaped, the curved area size 

is one, zero coefficient of skweness and three coefficient of kurtosis properties. 

 

2.4.3 Lognormal probability distribution 

A continuous r. v. Y follow log-normal distribution when the distribution of loge(y) 

was normal. The pdf of loge(y) with parameter    and 
2 denoted ),;( 2yf was 

defined by the function:  

 

0  ,0  ,0   

)(

2

1
exp

2

1
),;(

2

2

2



−




−=










yfor

yIn

y
yf t

t
    (2.12) 

The variance  
2  was the scale parameter and mean   was the location parameter 

where yt was random variable associated with time factor. The distribution was 

asymmetry and skewed to the right. The asymmetry of the lognormal distribution and 

the positive values result in a right-skewed curve. 
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Fig. 2.2. Lognormal curve (Zucchi Kristina 2018) 
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As shown in Fig. 2.2 the values were positive and the lognormal distribution had 

asymmetric property, resulted in a right-skewed curve. 

 

2.4.4 Mathematical principles of maximum likelihood estimator  

Having found specified (adequate) distribution; the study adopted mle to estimate 

associated parameters of the arimax models under consideration. 

Maximizing the score function in ),/( yL  the logarithm of the likelihood, would be 

easier. Maximum likelihood estimation (MLE) required the maximization of 

likelihood function )(L with respect to the unknown parameter . )(L  was defined 

as an n-term product, which was difficult to maximize. Maximizing )(L  was 

equivalent to maximizing log )(L  because log was a monotonic increasing function. 

 

Supposed that the random variables y1, y2, …, yn form a random sample from a 

distribution f(y/ ); if Y was continuous random variable, f(y/ ) was Probability 

Density Function (PDF), if Y was discrete random variable f(y/ ) was Probability 

Mass Function (PMF). To represent that the distribution also depends on a parameter

 , where   could be a real valued unknown parameter or a vector of parameters. For 

every observed random sample y1, y2, …, yn, were defined as:  

 y.probabilitjoint   the was)/,...,,(

pmf,  was)/( if function;density joint   the was)/...,( pdf,  was)/( 

                                      (2.13)                                                                         ),f(x                               

  )/().../()/()/,...,,(

21

21

n

1i

i

2121









n

n

nn

yyyf

YfyyyfYfif

yfyfyfyyyf


=

=

=

           

Now )/,...,,( 21 nyyyf was the likelihood function. The likelihood function depends 

on the unknown parameter   denoted as L( ).We commonly get the mle by 

maximizing the natural logarithm of the likelihood, because any positively valued 

function reaches its maximum at the same point as its logarithm function. 

Properties of mle: If )(ˆ y was a maximum likelihood estimate for , then ))(ˆ( yg  was 

a maximum likelihood estimate for )(g . If   was a parameter for the variance and ̂  

was the maximum likelihood estimator, the ̂ was the maximum likelihood estimator 

for the standard deviation. 
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2.5 Regression model 

When the method of analysis was used to forecast or estimate the value of one variable 

corresponding to a given value of another variable, regression analysis was helpful in 

determining the most likely form of the relationship between variables. 

 

2.5.1 Multiple linear regression 

2.5.2 The model equation 

Olubusoye, (2002) lecture note stated: the model of multiple linear regression explain 

the dependent variable yi the ith observation by a linear function of k explanatory 

variables; xi1, xi2, ..., xik+ Ui. 

A sample of n observations denoted as: 

nknknnnnn

kk

kk

UXXXY

UXXXY

UXXXY

++++=

++++=

++++=







...

:::::::::::::::::::::

...

...

21

222222212

111121111

    (2.14) 

The matrix format defined as:  
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    (2.15) 

Ynx1 =     Xnxk  β1xk     + Unx1   

 

where; Y was an n x l column vector containing the n sample, of Y values,  

X was (n x k) matrix containing first, a column of ones and then all the sample values 

of the k-1 variables  

β was (k x 1) column vector of parameters  

U was n x l column vector containing the disturbance values.  
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2.5.3 Linear model assumptions 

There were some assumptions made about the linear model as:  

1. X matrix was nonstochastic; i.e. not random in nature.  

2. E(U) = 0          (2.16)  

3. E(UU1) = σ2In (the twin assumption)  

 

nxn
nnn

n

n

n

n UUUUU
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The expectation was defined as:  

  
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 (2.18) 

The twin folds of that assumption were:  

i. ( )2

iUE  = σ2     ˅i        (2.19)  

Each U distribution had the same variance. The property was referred to as 

homoscedasticity (homogenous) variances.  

ii. E(UiUj) = 0 ˅ i ≠ j        (2.20)  

The disturbances were pairwise uncorrelated. When the condition failed the 

disturbances were said to be autocorrelated correlated.  

4.  The U vector had a multivariate normal distribution. U~ N(0, σ 2In) Olubusoye, 

(2002). 
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2.5.3 Model estimation 

Maximum likelihood estimation (mle) and least square estimation (lse) were employed 

in estimated models’ parameters. Though distinct in principles, but produced the same 

estimator under certain commonly used assumptions, as described in the previous 

section. 

 

2.5.4  Application of mle method on regression modeling 

Least square estimator would not consider chance property of model and the terms 

represented by error (e) had a known distribution; mle was used to make some 

assumptions about the distribution and then maximized the probability of the sampled 

observations represented by the data. The assumption that the e were normally 

distributed with zero mean and variance-covariance matrix V. i.e. e ~ N(0, V), the 

likelihood defined as: 

( ) ( ) ( )








−


−−= −−−
xbyVxbyVL

N 12/1
2

1

2

1
exp2    (2.21) 

Maximizing this with respect to b was equivalent to solving  

   
( )

0
log

=




b

Le  

The solution was the maximum likelihood estimator of b and turns out to be  

   ( ) yVxxVxb 111 −−− =     (2.22) 

The same as the generalized least squares estimator.  

When V = σ2I, b  simplifies to b̂ , took b̂  as the maximum likelihood estimator, 

because of the assumption: e ~ N(0, σ2I). Under normality assumption maximum 

likelihood estimation leads to the same estimator, b  as generalized least squares; and 

this reduced to the ordinary least square estimator b̂  when V = σ2I Chingnun, (2006). 
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2.5.5  Application of ordinary least square estimator (olse)  

Olubusoye (2002): the olse method of parameter estimation:  

Model: Y=Xβ + U        (2.23) 

Let b = any arbitrary k - element vector.  

 

The vector of residuals was defined as: 

e = y - xb        (2.24)  

The least square principle was to choose b to minimize the residual sum of squares 

 (RSS) e’e (e2 matrix):  

RSS = e’e  

= (y - xb)’(y - xb)  

= y’y - b’x’y - y’xb + b’x’xb  

= y’y - 2b’x’y+ b’x’xb  

( )
022 =+−=




xbxyx

b

RSS
 

  = (x’x)b x’y  

b = (x’x)-1x’y         (2.25)  

 

2.5.6 Mean and Variance estimation of b  

Mean: 

b = (x’x)-1x’y  

when substitute  y =  Xβ + U gave:  

b = (x’x)-1x’(xβ + U)  

   = (x’x)-1x’xβ + (x’x)-1x’U = β + (x’x)’x’U  

E(b) = β + (x’x)-1x’E(U) = β (since E(U) = 0 by assumption) (2.26)  

 

Variance and covariance matrix estimator:  

Var(b) = E{(b - E(b))(b - E(b))’}  

b – E(b) = b - β = (x’x)-1x’U  

Var(b) = E{((x’x)1x’U)(x’x)x’U)’}  

= E{(x’x)-1’x’UU’x(x’x)-1}  

= (x’x)-1’E(UU’)x(x’x)-1  

= σ2 (x’x)-1x’x(x’x)-1 

= σ 2(x’x)-1        (2.27)  
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The elements on the main diagonal gave the sampled variance of the corresponding 

element of b and the off diagonal term gave the sampled covariance.  

 

2.5.7 Gauss Markov theorem 

The most essential consequence of the least square theorem, according to the gauss 

markov theorem, was that no other linear unbiased estimator can have less sample 

variances than the ols estimator. The best linear unbiased estimators (BLUE) were 

those that had the least variation within the class of linear unbiased estimators Ruey 

(2002). 

 

2.5.8 Properties of ols linear model 

b = (x’x)-1x’y 

the matrix (x’x)-1x’ were fixed numbers, b is a linear function of y. by definition, b was 

a linear estimation. 

i. Unbiased: 

Y = xβ + U 

b = (x‟x)-l x‟(xβ + U) 

   = β + (x‟x)-1x‟U 

E(b) = β       (2.28) 

ii. Minimum variance  

Let ̂  be any other linear estimator of β  

Let ̂ = [(x’x)-1’x’ + c]y  

̂  = [(x’x)-1’ + c][xβ + U]  

̂  = β + cxβ + (x’x)-1’x’U + cU  

if ̂  is unbiased, then  

E( ̂ ) = β iff cx = 0  

Thus; Var(b) = σ2 (x’x)-1 

   ( )   ( ) 






 
−−= )ˆ(ˆ)ˆ(ˆˆ  EEEVar  

   ( ) ( )( ) 






 
−−=  ˆ)ˆˆ EVar  
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  ( ) cUUxxx +=−
−

''ˆ 1
      (2.29) 

( ) ( ) ( )  






 
++=

−−
cUUxxxcUUxxxEVar ''''ˆ 11

  since cx = 0 

( ) ( ) ( ) ( ) UUccUxcxUxxUcxUxxUUxxxxxxEVar +++=
−−−− 1111

'')'(''̂  

( ) ( ) UUccUUxxEVar +=
−1

'̂  

( ) ( ) UUccUUxxEVar +=
−1

'̂  

( ) ( ) 221
'ˆ  ccxxVar +=

−
 

( ) ( ) ccxxVar +=
−12 'ˆ         (2.30) 

The variances of a given element of ̂ must necessarily be equal to or greater than 

corresponding element of b, which shows that b, was BLUE. If c = 0 then var( ̂ ) = b.  

 

2.5.9 Variance of disturbance term  (σu
2) 

The estimate of σu
2 is based on the residual sum of squares e’e.  

e = y – xb  

  = y – x(x’x)-1x’y  

  = [1 – x(x’x)-1x’]y  

  = My         (2.29)  

where M = In –x(x’x)-1x’  

Mx = 0  

e = M(xβ + U)  

   = Mxβ + MU  

   = MU  The matrix M was symmetric idempotent  

e’e = U’M’MU = U’MU  

The expectation was defined as: 

E(e’e) = E(U’MU)  

= E{tr(U’MU)}  

= E{tr(MUU’)}  

= tr(M)E(UU’) = tr(M) σ2  

  tr(M) = tr[In - x(x’x)-1x’]  

= tr(In) - tr[(x’x)-1x’x] = tr(In) - tr(Ik)  

= n - k        (2.30)  

When      E(e’e) = σ 2(n - k)  
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kn
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kn

yxyy
S

−

−
=

'''2 
      (2.31)  

The e was defined as:  

yye ˆ−=         (2.32) 

where y = β0 + β1x1 + β2x2 + .... + βkXk  

S2 gave an unbiased estimator of the disturbance variance.  

 

2.5.10  Error term and the residuals 

Olubusoye, (2002) emphasized that it would be a good statistical practice to examine 

the residuals from a fitted model for evidence of departure from the models 

assumptions. However, the construction of significance tests to test the discrepancies 

observed was not always a straight forward matter. The true errors of the model were 

denoted by {e} and the observed residuals by {zi}. As usual, the parameters of the 

model were consistently estimated, it would seemed tempting to assumed that a test 

statistic based on the zi‟s would have the same asymptotic distribution on the null 

hypothesis as the corresponding quantity computed from the ei‟s. 

 

In a sample of n bivariate observations (yi xi) fitted regression model by least squares 

estimation the plotted scatter diagram of residuals z against a third variable x2, to test 

for association between z and x2. Using an obvious notation assumptions, as 

 = 2

22 / xzxa naive test procedure would be to compute the regression coefficient 

of z on x2, namely   sxat /2

1
2

2=  together with the residual mean square S2, and to 

treat the statistic as asymptotically N(0, 1) standard normal. The ‘justification’ for that 

procedure was that the least squares estimator b of β is consistent. Hence, for each 1, zi 

converges in probability to ei, while the quantity analogous to t in which each zi is 

replaced by ei was known to be asymptotically N(0, 1).  

 

 

It would simply not be possible to put up and fit an adequate "fill model" for each test 
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in many cases, particularly where the statistician intended to plot and analyze the 

residual in a number of ways from a data-analysis standpoint. In order to analyze the 

performance of the obvious naïve test and create adjustments where the naive test was 

invalid, it was necessary to give some general thought to tests based on observed 

residuals. 

 

2.5.11Randomness of error term 

The error term U was assumed to be a random variable iff U assumed various values 

by chance. Each element of U should be individually unimportant and should assume 

positive, negative and zero values. 

 

2.5.12 Zero mean of error term 

The error U may take values which had a zero mean. The population of all conceivable 

values of U for each period contained positive, negative or zero values all of which 

added up to zero. The essence of the zero mean assumption was considered 

axiomatically true that positive and negative values of the error term U have a sum 

equal to zero. 

 

2.5.13 Homoscedasticity of error term 

The error term U had a constant variance. That assumption was also called the twin 

assumption. 

 

2.5.14 Normality of error term 

The error term followed a multivariate normal distribution with zero mean and 

constant variance. That assumption enabled inferences to be made about the model 

parameters. 
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2.5.15  Properties of the residuals ( û  ) 

For a linear model:  

Y = XB + U         (2.33)  

The residual being the difference between the observed value of Y and the predicted 

value βX can be written as:  

bXYU ˆˆ −=         (2.34)  

where b̂  = (X’X)-1X’Y is the ordinary least square estimator of β; û  represented the 

vector of residuals. In a variety of ways, its elements can be plotted and otherwise 

investigated to see if they suggested that assumptions inherent in the assumed model 

were not being upheld.  

Several elementary but important properties of residuals were noted as:  

û  =Y - X(X’X)-1’X’Y  

= [I - X(X’X)-1’X’]Y  

= PY          (2.35) 

where P defined as: P = I - X(X’X)-1X’ (P satisfy idempotent property) Also,  

PY = P(Xb + U)  

= (I - X(X’X)-1X’)(Xb+U)  

=Xb + U - Xb + X(X’X)-1X’U  

=U - X(X’X)-1X’U  

= [I - X’X)-1X’]U  = PU     (2.36)  

The expected value of the residuals was zero.  

That implied;  

E( û )  = E (PY)  

= E (PU)  

= PE (U) 

= 0         (2.37)  

The variance of the residuals Pσ2I  

Var(u)  = Var(PU)  

= E( û û ’)  

= E (U’P’PU)  

= E(U’PU) since P is idempotent  

= PE(U’U)         (2.38)  

= Pσ2I.  
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The covariance of the residuals and the observed value y is Pσ2  

Cov( û , ŷ ) =  E( û ’ ŷ  )  

Cov( û , ŷ ) =  E(P’U’X’β) 

= P’XE(U’β) = 0 since PX = 0 (symmetric and idempotent)  

There were cases of ‘outliers’ among the residuals û . An outlier was considered to be 

an observation which was far in absolute value from the range of other values. It 

would be three or four times the standard error in absolute value.  

 

2.5.16 Generalized least square under non-spherical disturbance 

There were situations when the assumption about the error term defined as: E(UU’) = 

σ2I fails. This implies that; the disturbance variance was not constant at each 

observation point (heteroscedasticity condition). The disturbance covariance at all 

possible pairs of observation point were not zero (auto correlation condition). 

The general non-spherical disturbance matrix was specified as: 

E(UU’) = σ2Ω = V       (2.39) 

where Ω and V matrices are assumed to be positive definite. 

 

2.5.16  Generalized Least Square Estimator  

We now define the model as;  

   Y = Xβ + U  

When E(UU’) = σ2Ω  

When pre-multiply the assumed model by some (n x n) nonsingular transformation 

matrix T to obtain  

TY = (TX) β + TU       (2.40)  

Each element in the vector TY was linear combination of the elements in Y.  

E(TUU’T’) = σ2TΩT’      (2.41)  

Since E(TU) =  0. If it were possible to specify T such that  

TΩT’ = 1  

then we could apply OLS to the transformed variables TY and TX. Since Ω is a 

symmetric positive definite matrix, a nonsingular matrix P can be found such that  

Ω = PP  

since P is non-singular,  
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P-1ΩP-1’ = I and  

(P-1)’P-1 = Ω-1  = T’T        (2.42)  

Pre-multiply the model  

Y = Xβ + U by P-1  

P-1Y = P-1’Xβ + P-1U  

y* = x*β + u*         (2.43)  

where;   

y* = P-lY  

x* = P-lX  

u* = P-lU  

E(u*u*’) = E[(P-1U)(P-1U)’] 

=E[P-1UU’P-1]  

= P-1E(UU’)-1  

= σ2P-1 Ω P-1’ 

= σ2I           (2.44)  

Equation (2.30) satisfy all the assumptions required for the OLS model.  

Applying OLS to Eq. (2.27) gives  

b* = (X’T’TX)-l X’T’TY  

= (X’Ω-1X)-1X’Ω-1Y        (2.45)  

with the variance-covariance matrix given by  

var(b*) = σ 2(X’Ω-1X)-1       (2.46)  

The estimator b* is defined to be the generalized least squares GLS estimator, b* is a 

best linear unbiased estimator of the model:  

Y  = Xβ + U with  

E(UU’) = ϭ2Ω  

An unbiased estimator of variance may be derived from the application of OLS:  

  
( ) ( )

kn

TXbTYTXbTY
S

−

−−
=

*'*2  

   
( ) ( )

kn

XbYTTXbY
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−

−−
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( ) ( )

kn

XbYTXbY
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−

−−
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−
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    (2.47) 
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on assumption of normality for the disturbance term  

H0: Rβ = r  was based on Fisher ratio F defined as: 

( ) ( )  ( )
2

111 /*'''*

S

qRbrRXXRRbr
F

−−
=

−−−

   (2.48)  

had the F(q, n - k) distribution under the null hypothesis, where b* was the GLS 

estimator and S2 the variance estimator. The above formulae were only operational if 

the elements of Ω were known. In most practical cases, they were not known.  

 

2.5.17  General Least Squares Estimator  

We denoted the variance-covariance matrix of the residuals by V  

i.e. Var(Û ) = V  

the method of estimation involves minimizing  

S = (Y - Xβ)V-1(Y - Xβ) with respect to β  

Thus:  

  yVxxVx
s 11 '2'2 −− −=







     (2.49)  

  Q
s
=






 

S is minimized by setting Q to zero, i.e.  

  0=






s
 

yVxxVx 11 '' −− =          (2.50)  

 ( ) yVxxVx 111 '' −−−=  

The generalized least square estimator becomes the ordinary least square estimator if 

the variance-covariance matrix V = σ2I  

 

2.5.18 Autoregressive Moving Average (arma) Process 

Dependence was common feature in time series observations; given a series yt, we can 

model that the level of its current observations depends on the level of its lagged 

observations. That can be represented by an Autoregressive  (ar) model. AR of order 

one ar(1) can be define as: 

ttt yy  += −11        (2.51)
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Where ),0(~ 2

tt WN   which is a strict assumption 

Also, Autoregressive of order p;  ar(p) can be define as: 

tptpttt yy  ++++=
−−− ...

2211
     (2.52)

 

It can also be model that the observations of a random variable at time t were not only 

affected by the shock at time t, but also the shocks that had taken place before time t. if 

negative shock was observed in an economy (natural disaster), then it would be 

expected that the effect affected the economy not only for the time it took place, but 

also for the near future. That concept was represented by Moving Average (MA) 

model. The ma(1) can be define as: 

11 −+= ttty 
       (2.53)

 

And ma(q) defined as: 

qtqtttty −−− ++++=  ...2211          (2.54)
 

If that two models were combined to obtain Autoregressive Moving Average of order 

p, q (arma (p, q)) model define as: 

qtqtttptpttt yy −−−−−− ++++++++=  ...... 22112211
 (2.55)

 

arma model provided one of the basic tools in time series modeling.  

 

2.5.19 Lag operators 

To re-write arma model in a short form, Lag (Backward Shift) operators denoted as L 

or B was applied. The concept was; when moved the index back one time unit and 

applying it k times, we move the index back k units as define: 

ktt

k

tt

tt

yyB

yyB

yBy

−

−

−

=

=

=

.

.

.

2

2

1

        (2.56)

 

The lag operator is distributed over the addition operator as: 

( ) 11 −− +=+ tttt yxyxL
        (2.57)

 

When applied the lag operator on arma model defined as: 
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Let 1  also  1 00 ==   and define lag polynomials as: 

( )
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 (2.59)

 

 

With lag polynomials arma process would be rewritten in a more compacted form as: 

( )

( )

( ) ( ) tt

tt

tt

LyLARMA

LyMA

yLAR







=

=

=

:

:

:

      (2.60)

 

 

2.5.20 Non-Stationary Time Series 

Shittu and Yaya (2016) expressed that when the mean   and variance 
2  of a series 

Xt changes systematically with time t then the series Xt was referred to as been 

nonstationary series.  

Mathematically expressed: 

2

t

2

t

but      )(

but           )(









t

t

XVar

XE

 

The dynamic time series techniques would no longer be appropriate in modeling the 

series. Hence, nonstationary series can be differenced a number of time d to become 

stationary of order d or I(d). 

An autoregressive time series ar(1) of the form: 

ttt yy  += −1
 

Was considered stationary if  1 and ),0( 2 Nt  . The series yt tends to return to 

its mean value and fluctuate around it within a more or less constant range and the 

variance of yt was finite. However, if 1=  then yt was nonstationary the roots of the 

characteristic equation lied on the unit circle. It was possible to rearrange and 

accumulate yt for different periods yt-n to obtained: 
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
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(2.61)

 

As n  
→n  the equation has a constant means 


  and variance 









− 2

2

1 


. The 

question of whether a variable or series is stationary depends on whether or not it had 

a unit root. Equation ttt yy  += −1  rewritten as:  

ttyL  =− )1(
       (2.62)

 

Where L denoted the lag operator (Lyt = yt-1) and L2yt = yt-2….. Lkyt = yt-k 

The characteristic root was 
0)1( =− L

 it could be observed that the roots of the 

equation were all greater than unity in absolute terms. In the equation there was only 

one root 
)

1

1
(

−
=L

 series. Stationarity requires that 
1

, if 
0

 the yt would be 

nonstationary and explosive. 

Consider an autoregressive process of order p; ar(p) model given as: 

tPtPtttt YYYYY  +++++= −−−− ...332211     (2.63)
 

Which can also be written using backshift method as: 

tL  =)(  
 

Where 
P

PLLLL  −−−−= ...1)( 2

2

1

1   was a polynomial in lag L. if the roots of the 

characteristic equation 
0)( =L

 were all greater than unity in absolute term, was said 

to be stationary, otherwise yt was nonstationary.  

 Using non stationary series produces unreliable and spurious results and leads to poor 

understanding of the process it represent. Also the forecast performance may be very 

poor. 

 

2.5.21 Spurious regression 

According to Shittu and Yaya, (2016) spurious or nonsense regression occurs when 

one or more of the ordinary least square assumptions were violated. That also occurs 

in non-stationary series where dynamic models arima (p, q) were no longer 

appropriate. 

A regression of two non-stationary and uncorrelated series yt and xt as: 
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       where;
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(2.54)
 

 

It should be expected that 
01 =

and the coefficient of determination R should tend 

towards zero. However, because of the non-stationary nature of the data, implying that 

t was also non-stationary, any tendency for both series to be growing due to 

correlation which was picked up by the regression model even though each series was 

growing for very different reason and at rates that were uncorrelated. It yt was 

differenced once we had: 

ttt Xy  ++= 10         (2.55) 

It converged to zero in probability. Thus, correlation between non-stationary series do 

not imply the kind of causal relationship that might be inferred from stationary series. 

That gave important reason which regression models – deterministic or dynamic need 

to be diagnosed for normality and stationarity to ensure validity. For dynamic 

regression, each of the involving series had to be subjected to stationarity test before 

processing for causal relationship between them. 

 

2.5.22 Assumptions of error term and properties of residuals 

The expected value of the error term was the same as that of the residual which was 

zero. The variance was assumed to be constant throughout in the case of the error 

term, but the variance of the residual was not constant. Instead a variance-covariance 

matrix existed for the residuals. 

Var(U) = σ 2I (constant) but Var(u) = P σ 2I     (2.56) 

where P = (I - X(X‟X)-1X’) 

Also the error term was assumed to follow a normal distribution with mean zero and 

constant variance σ2. The residuals on the other hand may not necessarily follow a 

normal distribution it may follow distributions like exponential, Poisson etc or even 

normal distribution with non-zero mean and having a variance-covariance matrix i.e. 

non-central normal distribution. 
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2.5.23 Estimation of parameters of the model such that violations were removed 

In most cases as discussed earlier the variances of the residuals may not be constant 

throughout. Thus the residuals had a variance-covariance matrix denoted by Pσ2 

instead of σ2I as assumed for the error term. If the ordinary least squares estimator was 

applied in that case of estimating the parameters of the model the variances of the 

estimates would no longer be minimum although they will still remain unbiased. The 

generalized least square estimator was therefore applied. 
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Fig. 2.3 Flowchart of Box-Jenkins framework (Shaib and Umar, 2019)                                                                

1. Identification of the model 

(choosing tentative p, d, q) 

2. Parameter estimation of the chosen model 

3. Diagnostic checking: were the estimated 

residuals white noise? 

4. Forecasting 

Yes 

No 
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2.6 Review of related studies 

According to Shangodoyin, (2002), various economic and financial time series data 

encountered in practice: plots of nominal Gross Domestic Product (GDP) for each 

given country had a tendency to trend upward over time, and that upward trend should 

be considered into any series forecast. The introduction of a deterministic temporal 

trend was used to explain trends that grow upward over time. 

 

With stochastic processes, the theoretical breakthroughs in time series analysis began 

early (probability process). Yule and Walker's work in the 1920s and 1930s was 

credited with been the first to apply autoregressive models to data. During that period, 

the moving average was introduced to eliminate periodic fluctuations in time series, 

such as seasonal swings. Herman Wold proposed the arma (Autoregressive Moving 

Average) model for stationary series, but he was unable to build a likelihood function 

that would allow maximum likelihood (ML) parameter estimation. That was 

completed in 1970, when Box and Jenkins published their classic book "Time Series 

Analysis," which detailed the entire modeling technique for individual series, 

including specification, estimate, diagnostics, and forecasting. 

Many forecasting and seasonal adjustment strategies can be traced back to the Box- 

Jenkins (1970) models, which were possibly the most widely utilized. 

 

In order to analyze time series data, the Autoregressive Integrated Moving-Average 

(arima) model was used. The model has a lot of flexibility when it comes to assessing 

different time series and making reliable projections. Box and Jenkins (1976) 

introduced the Arima model technique. The method studied univariate stochastic time 

series (error term of the time series); nevertheless, the analyzed time series must be 

stationary for this to be possible. That is, the series' Mean, Variance, and Covariance 

remained consistent across time. Most economic and financial time series, on the other 

hand, indicate trends across time. 

 

Stationarity was critical because if the series were non-stationary, all of the traditional 

regression analysis conclusions would be invalidated. Non-stationary series 

regressions are referred to as "spurious" since they may have no meaning. A stationary 

series' long-term forecasts would converge to the series' unconditional mean Shittu and 
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Yaya (2016). 

 

Only stationary time series might be used with such techniques. Economic time series, 

on the other hand, frequently showed a rising trend, indicating non-stationarity and the 

presence of a unit root. Unit root tests were established mostly in the 1980s. 

 

Dynamic Linear Models: The popularity of Gaussian Distribution can be attributed to 

a number of factors. To begin with, many physical processes were roughly Gaussian; 

this was linked to the central limit theorem. Second, it was both analytically elegant 

and user-friendly. Third, it was simple to modify; if a Gaussian variable was 

propagated through a linear function with a Gaussian output variable Lee and Roberts, 

(2008). 

 

Dynamic Linear Models: The Gaussian Distribution is quite popular for a variety of 

reasons. To begin with, many physical processes were Gaussian in nature; this was 

linked to the central limit theorem. Second, it was easy to use and analytically elegant. 

Finally, if a Gaussian variable was propagated through a linear function with a 

Gaussian output variable, it could be easily adjusted Lee and Roberts, (2008). 

 

Shittu and Yaya (2016) emphasized that a behavioral process over a period of time had 

relied on time series models; time series models have a wide range of applications, 

including sales forecasting, weather forecasts, inventory investigations, and so on. 

Time series models have been found to be one of the most successful approaches of 

forecasting decisions that contain future uncertainty. Most of the time, the future 

course of action and decisions for such processes are determined by the expected 

outcome. The necessity for those expected results had prompted businesses to develop 

forecasting tools in order to be better prepared for an uncertain future. Those models 

can also be integrated with other data mining approaches to aid in understanding data 

behavior and the prediction of future trends and patterns in data activity. 

 

There are two approaches to modeling non-Gaussian time series: keep the general 

autoregressive moving average (arima) framework and accept non-Gaussian white 

noise, or forgo the linearity assumption. In the first case, the challenge was 
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determining the suitable white noise distribution so that the time series model 

exhibited a non-Gaussian feature. In the latter scenario, one must choose from an 

infinite number of nonlinear forms that typically express the time series as a nonlinear 

function of its lagged values to find an appropriate explicit model.  

 

The exchange rate is the value of one country's currency in terms of another country's 

currency. It is also known as the worth or value of a country's money in terms of the 

currency of another country. Changes in exchange rate policies to correct both internal 

and external sectors cause exchange rates to vary from time to time. Because exchange 

rates fluctuate, the rate can either appreciate or depreciate.  

 

Jimoh, (2017) observed that if the amount of home country currency required to 

purchase a foreign currency decreases, the exchange rate appreciates; if the amount of 

home country currency required to purchase a foreign currency increases, the 

exchange rate depreciates. It has been simple to quantify or determine the extent of 

external sector activity in Nigeria's economy since the country's exchange rate was 

established in 1986. In a similar vein, determining the extent to which the Nigerian 

economy affects foreign trade had been easier. The author also cited that if the amount 

of home country currency required to purchase a foreign currency decreases, the 

exchange rate appreciates; conversely, if the amount of home country currency 

required to purchase a foreign currency increases, the exchange rate depreciates. It has 

been simple to quantify or determine the extent of external sector participation in 

Nigeria's economy since 1986, when the country's exchange rate was first established. 

The inventory was divided into four categories: high turnover products, medium 

turnover items, and low turnover items, according to the article. Because of its limited 

number of parameters and high % best fit, the article concluded that armax is the best 

linear model. Furthermore, using a mathematical inventory model, we will be able to 

monitor the system and implement suitable control techniques. However, the article 

did not take into account the multiple outlet system or the seasonality impact, which 

are both common in time series data.  

 

Bruce, (2013) modeled deformity at Southern Maine using arma and arimax time 

series models. Two statistical approaches to forecasting long-term disability benefit 

claims were considered in that study. Although both models were capable of 
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producing accurate four-quarter projections, the later model was able to reflect the 

impact of external factors such as the health of the economy and management 

controllable policies. Both models, on the other hand, outperform the widely used 

seasonally adjusted four-quarter moving average (SAMA) model. However, data from 

monthly and yearly time series were not taken into account.  

 

Wei, (2002) investigated the armax model's least square identification. He found that 

the standard least square method's success was often attributed to its simple concept 

and ease of implementation. The main disadvantage was that least square parameter 

estimates were only unbiased in the rare case where the underlying system model's 

equation error was white noise. The study introduced an auxiliary linear regression 

model that was equivalent to the armax model, which was an innovation. In an 

innovative usage of extra delayed outputs, an estimated noise covariance vector was 

then obtained from that auxiliary model, which identifies the source of the noise 

induced bias in the least square estimate. To accomplish unbiased identification of the 

model, the paper developed Bias Error Least Square (BELSX) with extra delayed 

output. The influence of the bias on the results, on the other hand, stemmed from 

Monte-Carlo simulations of real-world data, which were not checked.  

 

Yaya, (2016) looked at the persistence of volatility and asymmetry in naira exchange 

rates before and after the crisis. The study used two time series modeling approaches: 

fractional and generalized autoregressive conditional heteroscedasticity (GARCH). 

The paper used six daily official naira exchange rates, including those with central and 

West African Francs (naira-CFA) and US Dollars (naira-USD). The analysis found 

that during the post-crisis period, the US Dollar exchange rate rose astronomically in 

all series, before stabilizing after a few months. The use of the US dollar as a common 

foreign currency in Nigeria was credited with the stability.  

 

Ranjeeta Bisoi, (2014) referenced work on  hybrid decision tree: revealed that 

forecasting and categorization were two significant characteristics of time series 

analyses. Because of its flexibility in modeling numerous stationary processes, 

statistical-based approaches such as linear autoregressive (AR) models have been used 

extensively in time-series forecasting. As also observed by Fan and Yao, (2003) and 

Weron and Misiorek, (2008).  
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The model takes a linear relationship between the delayed variables as well as 

provides rough estimate of real-world problems, failing to effectively anticipate the 

evolution of nonlinear and non-stationary processes in most cases. When changes 

occurred with time seasons the elements would rapidly fluctuate the data. arma model 

performance suffers significantly. At times, methods based on the evolution of the 

increments were employed in minimizing initial lack of stationarity.  

 

However, because differencing enhances high-frequency noise in time series, 

determining the order of an arima model requires a significant amount of effort. Most 

traditional arima models were limited to solving first-order non-stationary problems in 

economic data. Engle, (1982) initiated arch model to solve 2nd order non stationary 

conditional variance.  

 

Bollerslev, (1986) originated the generalized autoregressive conditional heterodasticity 

(GARCH) model which depicts the error (variance) as an expression of autoregressive 

process, allowing for a more compact description of the time series. Tong (1990) also 

presented threshold nonlinear arma models (TAR), which have been successfully 

employed for modeling time domains economic series as observed by Yadav, (1994).  

 

Lineesh, (2010) applied wavelet to partition sequence into orthogonal pattern series; 

then used the model to forecast each decomposed series using arma and tar models. 
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Krishnamurthy and Yin, (2002) worked on nonlinear time series forecasting using 

hidden Markov and AR models regime, the study switched AR parameters in time in 

accordance to the outcome finite-state Markov chain. However, the property of 

linearity in autoregressive structure limits the method for nonlinear and stable time 

series forecasting.  

 

According to Park and Sandberg, (1991) observed that neural network approaches had 

several distinct advantages among which was being nonlinear also useful in 

complicated modeling.  

 

Zhang, (2012) published a review on NN models on time series forecasting. Forecast 

had also been done using FNNs with recurrent feedback connections as noted by De 

Groot and Wuertz, (1991).  

 

Menezes and Barreto, (2008) designed an RNS nonlinear AR model with external 

recursion capable of capturing trends of various kinds Chen, (1991, 1992).  

Barreto, (2007)  studied time series forecasting: employed self-organizing map neural 

network models were reviewed as global models of FNN and used the properties of 

the distribution in achieving non-linear forecast of series.  

 

As noted by Smola and Scholkop, (2004) SVM-based methods could be used as a 

class of generalized regression models in which the parameters were derived using 

convex quadratic support vector regression technique.  

 

Cao, (2003) used LR model to reduce structural risk at upper bound of generalization 

error; resulted to superior prediction performance. Fu-Yuan Huang, (2008) observed 

that ANN was an effective forecast tool in a wide range of applications. Some scholars 

used fuzzy logic theory because it is an effective tool for dealing with uncertainties. 

That was applied in Taiwan stock exchange forecast as noted by Cheng, (2007).  

 

Yu Lixin, (2005) forecasted financial time series with FNN model with genetic and 
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gradient descent learning algorithms utilized alternately by substitution method 

updated the parameters until the error was minimal.  Slim Chokri, (2006) used Mackey 

glass time series data to fit HNF based on Kalman filter in predicting monetary series.  

Fu-yuan Huang, (2008) used robust PSO steps to analyze stock market data.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Methodology of the study 

We discussed the research study design/framework, approach, and methodologies. Exploratory 

methodological framework was used to project the past behavior of non-stationary economic 

time series data into the future. 

 

3.2 Data source and data collection 

The real-life data used were collected from publication of Central Bank of Nigeria 

(2017) and Nigerian National Petroleum Corporation (2017). The data on economic 

time series variables: Monthly External Reserves (Million USD) denoted as   Yt 

Monthly Official Exchange Rate (Naira to 1 USD) denoted as Xt1, Monthly Crude Oil 

Export (Million Barrel per Day mbd) denoted as Xt2 Monthly Crude Oil Price 

(USD/Barrel) denoted as Xt3. The variables Xt1, Xt2 and Xt3 were the three exogenous 

variables considered. 

 

Data collection sheet was designed in accordance to the data structure and the 

variables of interest. Those consist of the Year, Month, Period, External Reserve, 

Exchange Rate, Crude Oil Export and Crude Oil Price. In-line with the structure the 

required data were recorded from the source accordingly. The data structure was 

automated in computer spreadsheet package compactable to statistical packages; MS 

Excel, Eview, SPSS and R program were used in aiding data storage, data analyses. 

 

3.3 Sample size criteria 

Inclusion criteria: Monthly data recorded from January, 2008 to December, 2017. 

This covered 10 years period of 120 sample size was used as in-sample data to model 

the process while 12 observations (Jan, - De, 2018) data were used as out-sample data 

to generate forecast. 



40  

3.4 Methods of data analysis 

The statistical data analyses tools adopted were: Time plot (Graphical Method), 

Summary Statistic, Correlogram, Autocorrelation Function (ACF), Partial 

Autocorrelation Function (PACF), Augmented Dickey Fuller (ADF), Q-statistic, 

Jarqua-Berran Statistic, Unit Root Test, Residual Test, Forecast plot, Akaike 

Information Criteria (AIC), Log-likelihood, Mean Square Error Shittu and Yaya 

(2016). Data analyses processes were aided by computer statistical software packages; 

R-Program, Eview, Microsoft Excel and SPSS. 

 

3.5 Derivation of arimax with lognormal error term  

3.5.1  Conventional arimax with normal error term 

Time series mixed model with exogenous variable defined as: 
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3.5.2  Derivation of arimax (1, 0, 1) with lognormal error term 
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Take the natural log of equation ( 3.7 ) 
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 The equation of lognormal function defined as: 
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tIn   = −)( tyIn   representing the residual  

Substitution of Error term of ARIMAX (1, 1, 1) Model into lognormal function; 
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When we take the log of likelihood function )( tL  we had: 
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Also by expansion 
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To estimate the associated parameters we took partial derivative of equation (3.16) 

with respect to 2 and ,,  respectively and equated to zero. 

 

3.5.3 Estimation of 1  parameter 
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3.5.4 Estimation of 1  parameter 

Partial derivative of equation (3.16) respect towith  1  and equate to zero: 
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3.5.5 Estimation of 
0 Parameter 

Partial derivative of equation (3.16) with respect to 
0 and equate to zero: 
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3.5.6  Estimation of 1 parameter 

Partial derivative of equation (3.16) with respect to 1 and equate to zero: 
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3.5.7 Estimation of 
2 parameter 

Partial derivative of equation (3.16) with respect to 
2 and equate to zero: 

 

( ) 

( ) 

( ) 
   (3.32)                               

ˆ1)ˆˆˆˆ(
ˆ

:obtained 
n

2
by  through Multiplied

(3.31)            1)(
)(2

1

2

 01)(
)(2

1

2

2

2

)(

2

1110211112

4

2

111021111222

2

111021111222

1

n

InxyyyyIn

InxyyyyIn
n

InxyyyyIn
n

InL

tttt

tttt

tttt

t







+−−−+−−
=

+−−−+−−=

=+−−−+−−+







−=





−−−

−−−

−−−


















 

The derivation had unique solutions for the estimation of arimax (1, 0, 1) with 

lognormal error model parameters as we applied the derived equations (3.21), (3.26), 

(3.28), (3.30) and (3.32). 

Derived equation of arimax (1, 0, 1) with lognormal error fitted as: 
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3.6 Model identification techniques  

The statistical techniques applied to examine model identification were 

Autocorrelation Function (acf) and Partial Autocorrelation Function (pacf). 

 

3.6.1 Graphical analysis 

The time plot of series exhibited pattern (likely nature) of time series. The time plot 

suggested the mean changed overtime; that may imply the series was not stationary. 

That gave initial clue for more formal tests of stationarity.  

 

3.6.2 Sample autocorrelation function (sacf) 

Autocorrelation measured the correlation between successive observations in the series 

under study. Times series Xt; the covariance between Xt and Xt-k defined as: 
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The autocorrelation function between Xt and Xt-k denoted by 
k̂ (rho k) defined as: 
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n denoted the sample size while X denoted the sample mean Shittu and Yaya (2016). 
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3.6.3 Partial autocorrelation function (pacf) 

The Autocorrelation function between Xt and Xt-k allowed for the effect of the 

intervened values of Xt-1, Xt-2. …, Xt-k. The Partial Autocorrelation Function (PACF) 

expressed in matrix as: 
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The partial autocorrelation 
kk  defined as:  
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Where *

k  is the matrix 
k   with the last column replaced by vector ( )121 ,...,, k . 

Durbin had presented an iterative way of computing the partial autocorrelation from 

the relations: 
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In stationary series condition; determination of order of the model used traditional 

Box-Jenkins approach which applied the combination of acf and pacf functions for 

possible decline of the curves (cut off) on either of the two curves. A series generated 

by an ar (p) decays if the (acf)
k decays exponentially to zero and 

kk  (pacf) cuts off 

at lag p. The observed cut-off point of 
kk determined the appropriate order of the ar 

model Shittu and Yaya (2016).  

 

Moving average (ma) process of order q was determined by the (acf) 
k cut off at a 

particular lag and the 
kk pacf decays exponentially to zero. The point at which 

k

cuts-off (q) determined the lag of the ma model fit. If neither acf nor the pacf cuts-off, 

it suggested an arma (p, q) model. The order (p, q) would sometimes difficult to 

determine by mere inspection of acf and pacf. 
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Correlogram: the plot of autocorrelation function on non negative lags k, k = 1, 2, 3, 

…, N/4 gave visual inspection. Correlogram helped in determined whether a series 

was random, stationary or alternated series and whether it contained a trend or 

seasonal fluctuations.  

 

3.6.4 Unit root test 

Test for stationarity of time series variables were considered to avoid spurious model 

results. The stationarity consideration of series; when the mean and variance remained 

constant overtime (do not change overtime or drift). Unit root test was applied as a 

diagnostic procedure for testing the variables under consideration with respect to 

stationarity behavior of the variables based on their associated data pattern. Unit root 

helped in measuring the unchanging behavior of data mean and variance overtime and 

at level (order) of stationarity Shaib (2019). 

The test statistic applied: Dickey Fuller (df) mathematically expressed as: 
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Equation (3.41) was used to test for the statistical significance of series coefficients 

with respect to stationarity condition. 
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Table 3.1  Model specification criteria 

 

MODEL ACF PATTERN PACF PATTERN 

ar(p) Exponential decay or damped 

sine wave pattern or both. 

Significant spikes through first 

lag. 

ma(q) Significant spikes through first 

lag. 

Decline Exponentially. 

arma(p, q) Exponential decay. Exponential decay. 
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3.7 Model validation/selection criteria 

Approaches used as criteria for selecting the best model in terms of the order of a 

model were: Best Fit Criterion, Final Prediction Error Criteria, Akaike’s Information 

Criterion, Portmanteau Lack-of-fit test. 

 

3.7.1 Best fit criterion 

The best model structure minimized the prediction error. Best fit criterion was used for 

model validation by the highest fit. The best fit was measured by the Coefficient of 

Determination denoted as R2, expressed as: 
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R2 lied between 0 and 1; the closer R2 to 1, the better the fit. 

 

3.7.2 Final prediction error criterion (FPE) 

The FPE evaluated the model quality, where the model was tested on a new set of 

data. The most accurate model had the smallest FPE. 

The FPE equation defined as: 
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Variance V, time length N and number of parameters n.  

3.7.3 Akaike’s information criterion (AIC) 

AIC was used for goodness-of-fit test defined as: 
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The model with the lowest AIC most preferred. 

 

3.7.4 Portmanteau lack-of-fit test 

The test statistic defined as: 
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The Q statistic computed from the lowest K autocorrelations, at k = 1, 2, ….., K 
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follows a Chi-square distribution with (K – p – q) degrees of freedom, where p and q 

were the AR and MA orders of the model and N was the length of the time series 

Shaib (2019).  

 

3.7.5 Model consideration criteria 

The best fitted model considered; met the following criteria: 

1. Most significant coefficients 

2. Lowest volatility (Variance) 

3. Highest Adjusted R2 

4. Lowest AIC 

5. Highest log likelihood 

6. Smallest absolute means square error 

 

3.8 Residuals diagnostic check 

3.8.1 Graphical method test was used to explore the residuals of the fitted models. 

Beside graphical test other quantitative tests were used to supplement the purely 

qualitative approach were Jarque-Bera test and Ljung-Box test.  

 

3.8.2 Jarque-Bera Test 

According to Mohammed (2014) normality assumption can be checked by using 

Jarque-Bera test which determined goodness-of-fit measured departure from 

normality, based on the sample kurtosis (k) and skewedness(s). The test statistic 

Jarque-Bera (JB) defined as: 
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The notations in the equation: n was observations, k parameters. JB assumed χ2
,2 df. 

 

3.8.3 Ljung-Box Test 

Ljung-Box test was used to check autocorrelation among the residuals. The criterion; 

if a model fit well, the residuals should not be correlated and the correlation should be 

small. The null hypothesis was stated as: 
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H0 : ρ1(e) = ρ2(e) =……= ρk(e) = 0 


=

−+=
k

i

k ekNNNQ
1

2 )()()1(        (3.46) 

Where, N denoted the number of observations used to estimate the model. The statistic 

Q followed the chi-square distribution with (k-q) degree of freedom, where q was the 

number of parameters estimated in the model. The criterion: if Q value was large 

(significantly large from zero), it was considered that the residuals autocorrelation set 

were significantly different from zero and random shocks of estimated model were 

probably auto-correlated. 

 

3.9 Model forecast  

The model forecast criteria used on the fitted model were: 

1. The essence of fitted arimax model was to forecast future values of the series 

2. Used past values of the series itself 

3. The series spoke for themselves 

4. Forecast was based on the final selected model 

5. Plotted the forecast graph 

6. Verified how successful the forecast had been in predicted future values of the 

series 

7. Conclusion was drawn  

 

3.10 Scope of the Study 

The scope of the study was; on mixed time series model applicable in modeling and 

forecasting time series. Autoregressive Integrated Moving Average with Exogenous 

variables (arimax) as well as consideration of Multiple Linear Regression model (mlr). 

The study made use of real-life data obtained from secondary source to verify the 

applicability of the models and established adequacy (robustness) of the fitted models 

meeting the expectation of time series analyses. 

The time series economic variables under consideration were: Nigeria External 

Reserves, Exchange Rates, Crude Oil Export and Crude Oil Prices. Real-life monthly 

data of ten (10) years period were gathered from Central Bank of Nigeria (CBN) 

Statistical Bulletin (2017) and Nigerian National Petroleum Corporation (NNPC). 
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3.11 Definition of terms 

 

Yt –  Monthly External Reserves (Million US$  (Dep. Var.))  

Xt1 – Monthly Official Exchange Rate (Naira to 1 US$) 

Xt2 – Monthly Crude Oil Export (Million Barrel per Day mbd) 

Xt3 –  Monthly Crude Oil Price (US$/Barrel) 

TSD – Time Series Data 

ARMA – Autoregressive Moving Average 

ARIMA – Autoregressive Integrated Moving Average 

ARIMAX – Autoregressive Integrated Moving Average with Exogenous Variable 

MLR – Multiple Linear Regression model under normality assumptions 

SARIMA – Seasonal Autoregressive Integrated Moving Average 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Results and discussion 

Chapter four presents the results of data analyses and corresponding discussions. Data 

exploratory analyses results were presented in section 4.2, section 4.3 contained 

descriptive analyses results, model identification results/plots shown in section 4.4, the 

diagnostic test results in section 4.5. Section 4.6 presented the fitted model equations, 

section 4.7 contained model selection results, models’ in-sample forecast plots were 

presented in section 4.8. The residual plots were shown in section 4.9 while section 

4.10 presented out-sample forecast plots.     

 

4.2 Exploratory analysis of data  

The graphical exploratory analyses results of the time series data under consideration 

were shown in the figures (fig. 4.1 to fig. 4.8) followed by corresponding discussions. 

The time plots showed the behavoural pattern (trend) of the economic time series data 

during the period under consideration. The corresponding histogram plot described the 

series distribution shape; to ascertain the normality status of the time series data of 

interest. The normal curve property of having bell-shaped distribution inferred the 

status decision of the series at raw level. 
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Fig. 4.1. Time plot of external reserve (Jan. 2008 - Dec. 2017 (US million dollar)) 
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Fig. 4.1 showed the trend pattern of Monthly External Reserves (US $ Million) time 

series data set between the periods of Jan. 2008 to Dec. 2017. The series tends to 

fluctuate; there was an observed rapid decline between Jan, 2010 through Aug, 2012 

Sept, 2012 experienced sharp increase and a drop in Jan, 2013. The trend pattern 

exhibited stochastic process and non-stationarity of the series. The behavior of the 

series might be traced to the fall of crude oil price at the global market and increase in 

foreign exchange rate during that period. 
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Fig. 4.2. External reserve histogram plot and statistic 
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The histogram (Fig. 4.2) plot showed deviation from normal curve, the curve exhibited 

long tail and gradual decline to the right (right skewed distribution). That indicated the 

decline of external reserve over time period. The skewness value was 0.91 and kurtosis 

value was about 3.10 those values showed that the series was not normally distributed. 

The Jarque-Bera (JB) value was 16.44 with P-value of 0.2x10-4 which revealed that 

the series was non-stationary. 
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Fig. 4.3. Time plot of exchange rate (Jan. 2008 - Dec. 2017 (Naira to US $1)) 
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The time plot of Exchange Rate in Naira per 1 US$ as shown in Fig. 4.3 indicated 

steady exchange rate of N120/US$ between Jan, 2008 to Dec, 2008; then, an increase 

of about N150/US$ in Jan, 2009 and gradual increase through Dec, 2014. In Jan, 2015 

an increase of N200/US$ was observed, in the month of Jun, 2016 a sharp increase of 

above N300/US$ was observed.  That could be inflation and high cost of imported 

goods and services resulted to reduction of external reserve under study. The series 

exhibited a stochastic process, and non-stationarity. That resulted to high cost of 

importation of goods and services which affected external reserves negatively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



62  

 

0

10

20

30

40

50

-60 -40 -20 0 20 40 60 80 100 120

Series: Residuals
Sample 1 120
Observations 120

Mean       2.84e-15
Median  -22.65794
Maximum  129.7627
Minimum -62.24339
Std. Dev.   56.66975
Skewness   1.466364
Kurtosis   3.830791

Jarque-Bera  46.45554
Probability  0.000000

 

Fig. 4.4. Exchange rate histogram plot and statistic  
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The histogram (right skewed distribution) chart (Fig. 4.4) showed some periods of no 

significant changes in exchange rate and a sharp deviation from normal curve. The 

skewness value was 1.47 and kurtosis value was 3.38, the Jarque-Bera value was 

46.46. The exchange rate time series data deviated from normal distribution, and non-

stationary time series.  
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Fig. 4.5. Time plot of crude oil price in US dollar/barrel (2008 – 2017) 
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Fig. 4.5 showed the time plot of monthly crude oil price (US$/Barrel) exhibited 

fluctuation over the period under study. The series indicated highest crude oil price in 

June, 2008. The price of crude oil dropped to $44.95/barrel in January 2009, there was 

indication of fluctuation in crude oil price $110 – $130 per barrel between Jan 2011 to 

Dec 2014. In January 2015 experienced another sharp dropped of crude oil price of 

$40 per barrel. The minimum crude oil price was $31.70 per barrel in February 2016. 

The state of crude oil price affected external reserve directly being the main sources of 

Nigerian foreign income. 
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Fig. 4.6. Crude oil price histogram plot and statistic  
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The histogram (Fig. 4.6) exhibited approximately normal distribution; plot showed 

approximately normal curve. The skewness value was 0.14 and kurtosis value was 

about 3.93. The Jarque-Bera (JB) value was 4.75 with P-value of 0.9x10-1 which 

revealed that the series was non-stationary. Crude oil price experienced sharp drop and 

increased price during the period under study. That was typical shorter period of 

business cycle.  
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Fig. 4.7. Time plot of crude oil export in million barrels per day (2008 – 2017) 
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Fig. 4.7 showed the time plot of monthly crude oil export: the series trend fluctuated 

over the period under study. The crude oil export market operated within the boundary 

(limit) of 1.05mbd and 2.43mbd (million barrel per day). The highest crude oil export 

of 2.43mbd was observed in Nov. 2010 while the lowest crude oil export of 1.05mbd 

was noticed in Jun. 2016, the range value was 1.35mbd. 
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Fig. 4.8. Crude oil export histogram plot and statistic 
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The histogram monthly crude oil export (Fig. 4.8) plot exhibited a bimodal 

distribution. There was relatively regular exportation operation of crude oil market but 

affected by crude oil price market forces. The plot showed deviation from normal 

curve. The skewness value was 0.08 and kurtosis value was about 2.33. The Jarque-

Bera (JB) value was 2.33 with P-value of 0.31 which revealed that the series was non-

stationary at raw level. That confirmed the nature of time series data. The crude oil 

export had not been stable over time; which might lead to negative impact on the 

economic activities of the nation  Nigeria among other factors. 
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4.3: Descriptive analyses results 

 

Section 4.3 presented descriptive analyses results; table 4.1 showed the summary 

statistic of the four economic time series variables understudy. 

 

Notations: 

Yt – External reserve (in million $);  

X1 – Exchange rate (in naira to $1);  

X2 – Crude oil export (in million barrel per day) and 

X3 – Crude oil price ($ per barrel).  
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Table 4.1. Summary statistic of time series variables under study 

 Yt X1 X2 X3 

Mean  10.21917 179.9677 1.709833 83.52367 

Median  9.400000 157.3098 1.730000 80.34500 

Maximum  20.80000 309.7304 2.430000 138.7400 

Minimum  4.400000 117.7243 1.050000 30.66000 

Std. Dev. 3.931756 56.66975 0.224885 29.17091 

Skewness  0.906312 1.466364 -0.295559 -0.061853 

Kurtosis  3.050547 3.830791 3.744180 1.565548 

Jarque-Bera 16.44080 46.45554 4.516120 10.36478 

Probability 0-000269 0.000000 0.104553 0.005615 
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Table 4.1 showed some indices/test results of the economic variables under study; the 

series – external reserve, exchange rate and crude oil price follows normal distribution 

as indicated by JB-Jarque-Bera statistic (p < 5% critical value) while crude oil export 

series distribution deviated from normal as p > 5% critical value. 

 

There is indication of slight skewness; the series external reserve and exchange rate 

were positively skewed while crude oil export and crude oil price were negatively 

skewed. The average external reserves within the period of Jan. 2008 – Dec. 2017 was 

about $10.23 million while that of exchange rate was about N180 per $1. The crude oil 

export was in average of 2 million barrel per day (mbd) and the average crude oil price 

was about $84 per barrel. 

 

The maximum external reserve observed during the period was about $21 million in 

March 2008 while the minimum was about $4.4 million observed in Dec. 2011 and 

Mar 2012. The maximum exchange rate was in Jan 2017 of about N310 per $1 while 

the minimum exchange rate was about N118 per $1. The maximum crude oil export 

was about 2.4 mbd while minimum observed crude oil export was about 1.1 mbd. The 

crude oil maximum price was about $139 million per barrel while the minimum price 

was about $30.67 million per barrel. 
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4.4  Arimax with normal error model identification  

Section 4.4 presented the results and discussion of time series model order 

identification. The plotted correlogram, autocorrelation function (acf), partial 

autocorrelation function (pacf) and Q-statistic (Q) at raw level I(0) and at first 

difference I(1) with respect to the economic time series variables of interest. The plots 

were shown from fig. 4.9 to fig. 4.16 with their respective discussions.  
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Fig. 4.9: Acf, pacf plots and Q-statistic of external reserve at raw revel I(0) 
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Fig. 4.9 showed the correlogram of external reserve series at raw level I(0): 

Autocorrelation Function (acf), Partial Autocorrelation Function (pacf). The plot 

exhibited exponential decay from lag 1. The acf at lag 1 has value 0.860 to -0.262 at 

lag 30 while pacf at lag 1 has value 0.860 to -0.096 at lag 30. This indicated non 

stationary series. Hence, the series required transformation to achieve stationarity by 

differencing (data stationary). 
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Fig. 4.10. Acf, pacf plots and Q-statistic of external reserve at first difference I(1) 
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Fig 4.10 showed that external reserve series achieved stationarity at first difference 

I(1). The correlogram at first difference I(1) level, the plot indicated significant spike 

at lag 1 of acf and lag 1 of pacf which suggested arima(1, 1, 1) model order. 
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Fig. 4.11. Acf, pacf plots and Q-statistic of exchange rate at raw level I(0) 
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Fig. 4.11 showed the correlogram  (acf and pacf) of exchange rate (1US$ per Naira), 

the plot exhibited exponential decay from lag 1 with acf value of 0.966 to 0.037 at lag 

30 while the pacf from lag 1 value 0.966 to -0.007, that indicated non-stationary time 

series. The series required differencing to achieve stationary condition. 
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Fig. 4.12. Acf, pacf plots and Q-statistic of exchange rate at first difference I(1) 
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Fig. 4.12 showed the exchange rate first difference plot: correlogram of exchange rate 

series achieved stationarity at first difference I(1) level. There was indication of 

statistical significance spike at lag 1 of acf and pacf as well as lag 2 of pacf suggesting 

two model order of arima(1, 1, 1) and arima(2, 1, 1). 
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Fig. 4.13. Acf, pacf plots and Q-statistic of crude oil export at raw level I(0)  
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The Autocorrelation Function (acf) of crude oil export (in mbd) shown in Fig 4.13 

exhibited exponential decay slowly in lag 1 a value 0.831 to lag 30 value -0.029 

revealed non-stationarity series; the pacf had  significant spikes at lag 1 and lag 2. The 

acf and pacf exhibited exponential decay (rapid decline) which suggested an arima (p, 

q) model. Differencing was suggested to achieve stationarity of the series. 
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Fig. 4.14. Acf, pacf plots and Q-statistic of crude oil export at first difference I(1) 
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Fig. 4.14 showed the first difference I(1) correlogram of crude oil export. The series 

achieved stationarity at I(1) level, the acf and pacf (cut-off) were outside standard 

error bound (or outside 95% confidence interval) had significant spikes at lag 1 which 

suggested model of order 1 arima(1, 1, 1). 
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Fig. 4.15. Acf, pacf plots and Q-statistic of crude oil price at raw level I(0) 
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Fig. 4.15 showed crude oil price series of acf and pacf at level I(0) which exhibited  

non-stationarity as indicated by the correlogram which decay exponentially from lag 1 

with a value of 0.969 to -0.163 at lag 30 while the pacf value 0.969 at lag 1 to 0.055 at 

lag 30; hence, the need for differencing. 
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Fig. 4.16. Acf, pacf plots and Q-statistic of crude oil price at first difference I(1) 
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Fig. 4.16 showed the first difference of the crude oil price series: correlogram, the acf 

and pacf indicated significant spike at lag 1. The acf and pacf at lag 1 has value of 

0.418, the model of arima (1,1,1) was suggested for crude oil price series.  
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4.5 Series Stationarity test  

Test of stationary of the economic time series variables of interest were considered to 

avoid spurious model results. The time series data were considered stationary when 

the mean and variance remain constant overtime. Unit root diagnostic procedure was 

applied; Dickey Fuller test results of the variables were presented in table 4.2.  
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Table 4.2. Dickey fuller (df) unit root test 

Critical 

Levels 

External 

Reserve (Yt) 

Exchange 

Rate (X1) 

Crude Oil 

Export (X2) 

Crude Oil 

Price (X3) 

1% 2.5836 2.5836 2.5836 2.5836 

5% 1.9428 1.9428 1.9428 1.9428 

10% 1.6172 1.6172 1.6192 1.6172 

Absolute  

DF Statistic 

    

Level I(0) 0.6149 

(0.5399**) 

1.7430 

(0.0841**) 

0.2978 

(0.7664**) 

1.2492 

 (0.2143**) 

First Diff I(1) 5.6363 

(0.0000*) 

4.0083 

(0.0000*) 

6.1591 

(0.0000*) 

5.1259  

(0.0000*) 

P-values in parenthesis (   ) 

* Statistically significant at 5% critical level  

** Not statistically significant at 5% critical level 
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The table 4.2 showed the unit root test results of dickey fuller (df) to collaborate 

stationarity check of the series of acf and pacf plots. The four economic time series 

indicated presence of unit root at raw level. The absolute values of dickey fuller t-

statistic value of the series were less than 5% (0.05) critical level. The stationarity of 

the series were achieved at first difference I(1). The results of df values of I(1) the p-

value presented in parenthesis were statistically significant at 5%. 

 

The dickey fuller statistic values of the economic time series variables: external 

reserve, exchange rate, crude oil export and crude oil price at raw level were; 0.6149, 

1.7430, 0.2978 and 1.2492 respectively were less than 1.9428 critical value at 5%. 

That revealed non stationarity of the series at raw level I(0). At first difference of the 

series, dickey fuller values were; 5.6363, 4.0083, 6.1591 and 5.1259 respectively 

greater than 1.9428 critical value at 5%. That implied the series had achieved 

stationarity at first difference I(1). 
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Table 4.3. Parameters’ coefficients estimated 

 

Model  Parameters  Coefficients  

Multiple linear regression Constant  35.5787 

X1 -0.0401 

X2 -9.0747 

X3 -0.0315 

Arimax(1, 1, 1) assuming normal 

error of three exogenous variables 

ar(1) -0.3127 

ma(1) -0.9941 

X1 0.0238 

X2 0.2725 

X3 -0.0296 

Arimax(1, 0, 1) assuming lognormal 

error of three exogenous variables 

ar(1) 0.4252 

ma(1) 2.4068 

X1 0.0362 

X2 6.0537 

X3 0.0189 
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Table 4.3 showed the estimated parameter values which were the coefficient values of 

the variables;  X1 – exchange rate (naira to 1 US$),  X2 – crude oil export (mbd), X3 – 

crude oil price (US$/barrel) under consideration. Fitted multiple linear regression 

parameters coefficients: 35.5787 (intercept), -0.0401, -9.0747 and -0.0315 

respectively; that of arimax(1, 1, 1) assuming normal error: -0.3127 (ar(1)), -0.9941 

(ma(1)), 0.0238, 0.2725 and -0.0296 respectively. That of arimax(1, 0, 1) assuming 

lognormal error: 0.4252 (ar(1)), 2.4068 (ma(1)), 0.0362, 0.0537 and 0.0189 

respectively.  
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4.6  Fitted Equations 

 

The fitted equations models: 

The Dependent Variable: External Reserve (US$ in Million) - Yt 

Three Exogenous Variables: X1 – Exchange Rate (Naira to 1 US$),  X2 – Crude Oil 

Export (mbd)  and X3 – Crude Oil Price (US$/Barrel) 

 

4.6.1: Fitted Multiple Regression Equation 

 tŶ  = 35.5787 - 0.0401X1 – 9.0747X2 – 0.03127X3     (4.1) 

 

4.6.2: Fitted arimax (1,1,1) with Normal Error Equation 

tŶ  = -0.3127yt-1 – 0.9941ԑt-1 + 0.0238X1 + 0.2725X2 – 0.0296X3  (4.2) 

 

4.6.3 Fitted arimax (1,0,1) with Lognormal Error Equation 

tŶ  = 0.4252yt-1 + 2.4068ԑt-1 + 0.0362X1 + 6.0537X2 + 0.0189X3  (4.3) 
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4.7 Model selection 

The three fitted models 4.1, 4.2 and 4.3 were compared to ascertain best (most suitable 

for forecast) based on selection criteria: smallest aic, largest loglikelihood (logic) and 

smallest mean square forecast error (msfe). Table 4.4 present the results.  
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Table 4.4. Comparison fitted models (diagnostic check analyses results)  

Model  Log Likelihood 

(Loglik) 

  

AIC         MSFE 

Multiple Linear Regression -317.41 5.36         12.409 

Arimax (1, 1, 1) with Normal Error at first 

difference 

-240.23 490.45      12.484 

Arimax (1, 0, 1) with Lognormal Error at 

raw series (non-stationary series) 

1344.47** -0.41*   1.766*** 

 

* Lowest akiake information criteria (aic)    ** Highest loglikelihood (Loglik) 

*** Smallest mean square forecast error (msfe) 
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Based on results table 4.4 and 4.5, the study considered arimax(1, 0, 1) assuming 

lognormal error was considered more appropriate and best fitted model based on the 

criteria of highest Loglikelihood (Loglik) value, the smallest Akaike Information 

Criteria (aic) value and the smallest Mean Square Forecast Error (msfe).  
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Table 4.5. Out-of-sample forecast summary (Jan – Dec, 2018) of the three fitted 

models 

 

* Smallest mean square forecast error (msfe) 

 

 

 

  

A B C D E F G H I J K L 

121 Jan 12.4 10.01 11.00 13.11 2.39 1.40 -0.71 5.73 1.97 0.50 

122 Feb 11.4 10.45 13.06 9.92 0.95 -1.66 1.48 0.90 2.76 2.19 

123 Mar 10.9 12.21 12.67 9.73 -1.33 -1.77 1.17 1.76 3.14 1.37 

124 Apr 10.8 10.49 12.45 11.01 0.31 -1.65 -0.21 0.10 2.73 0.04 

125 May 10.6 9.86 12.66 11.13 0.74 -2.06 -0.53 0.55 4.25 0.28 

126 June 9.6 9.22 13.64 10.24 0.38 -4.04 -0.64 0.14 16.31 0.41 

127 July 10.5 8.62 12.04 13.06 1.88 -1.54 -2.56 3.52 2.36 6.55 

128 Aug 10.9 8.73 12.16 12.44 2.17 -1.26 -1.54 4.70 1.60 2.36 

129 Sep 12 9.11 11.18 13.33 2.89 0.82 -1.33 8.37 0.67 1.77 

130 Oct 14.2 8.88 9.69 15.12 5.32 4.51 -0.92 28.27 20.33 0.86 

131 Nov 13.3 8.62 11.94 11.18 4.68 1.36 2.12 21.89 1.84 4.51 

132 Dec 17.1 8.56 7.52 17.71 8.54 9.58 -0.61 72.99 91.85 0.37 

                  148.91 149.819 21.19 

                        

              MSFE   12.41 12.48 1.77* 
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Notations in Table 4.5: 

A – Time t 

B – Year 2018 (months) 

C – Actual data (Yt) 

D – Multiple linear regression forecast 

E – Arimax with normal error forecast 

F – Arimax with lognormal forecast 

G – Multiple linear regression (Residual) 

H – Arimax with normal error (Residual) 

I – Arimax with lognormal (Residual) 

J – Multiple linear regression (Square residual) 

K – Arimax with normal error (Square residual) 

L – Arimax with lognormal error (Square residual) 

 

 

Table 4.5 contained the mean square forecast error (msfe) value of the proposed 

arimax with lognormal error was 1.766; the multiple linear regression msfe was 

12.409 and that of arimax with normal error msfe was 12.484. The proposed model 

had the smallest msfe compared to the other two models. Hence, the proposed model 

was considered better and improved good fitting of non-normal error and non-

stationary time series of economic data.  
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4.8 In-sample forecast analysis of three fitted models: Fig. 4.17 – Fig. 4.19 

 

Fig. 4.17 showed the in-sample forecast trend of fitted multiple linear regression 

model exhibited fluctuation over the period of time. The trend indicated non-stationary 

series at raw level; which was common to economic time series data. 
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Fig. 4.17. In-sample forecast plot of multiple linear regression model 
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Fig. 4.18. In-sample forecast plot of arimax (1, 1, 1) model assuming normal error  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

-8

-6

-4

-2

0

2

4

6
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7



106  

 

 

Fig. 4.18 showed in-sample forecast: the trend fluctuated from negative during the 

early months of the out-of-sample year. There was indication of non-stationary of 

series at raw level. 
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Fig. 4.19. In-sample forecast plot of arimax(1, 0, 1) assuming lognormal error 
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Fig. 4.19 showed the in-sample forecast plot of the proposed arimax (1, 0, 1) model 

with lognormal error exhibited some level of stationary (consistency of mean and 

variance) series compared to in-sample forecast plot of arimax (1, 1, 1) with normal 

error and multiple linear regression. That showed the superiority of the proposed 

model of arimax with lognormal error. 
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4.9 Residual analyses of in-sample forecast 

The residual analyses of the forecast from the three fitted models under consideration 

were presented in Fig. 4.20 to Fig. 4.22. 

 

Fig. 2.20 residual plot of multiple linear regression indicated fluctuation and non 

stationrity of the series residual which deviated from white noise error. Fig. 4.21 

shown non stationarity in level and in slope of the residual plot of fitted arimax (1, 1, 

1) assumed normal error and  fig. 4.22 revealed constant mean at three stages of time 

as indicated on the plot. Tha implied stability in the residual of fitted arimax (1, 0,1) 

model assumed lognormal error. 
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Fig. 4.20. Residual plot of fitted multiple linear regression (mlr) 
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Fig. 4.21. Residual plot of arimax (1,1,1) assuming normal error  
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Fig. 4.22: Residual plot of arimax (1,0,1) assuming lognormal error 
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Fig. 4.23. Forecast plot of external reserve  
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Fig. 4.24. Acf, pacf and Q-sta plots of external reserve residuals 
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Fig. 4.25: Crude oil price forecast plot 
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Fig. 4.26. Residual plot of crude oil price 
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Fig. 4.27. Crude oil export plot 
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Fig. 4.28. Residual plot of crude oil export 
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Fig. 4.29. Exchange rate forecast plot 
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Fig. 4.30. Residual of exchange rate plot 
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Fig. 4.31. External reserve forecast plot 
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Fig. 4.32. Residual plot of external reserve 
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Table 4.6. Multiple linear regression fitted model results 
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As shown in Table 4.6 the fitted equation of multiple linear regression model obtained 

as: 

(0.01)       (1.90)       (0.01)    (4.23)     

03.007.904.058.35ˆ
321 tttt XXXY −−−=
 

Where; 

tŶ  -  External reserve,   
1tX -  Exchange rate,   

2tX  - Crude oil export,    
3tX  - Crude 

oil price and t – time (in months). 

 

The coefficient values of the variables estimated were so stated while the values in 

brackets were the associated standard error of the estimated coefficients. The t-statistic 

indicated significance of the coefficients at 0.05 critical levels while the model’s 

coefficient of determination R-square value 0.24. That showed the fitted model could 

account for about 24% of the total variation which implied about 76% unaccounted 

(error). The model may not be adequate for forecast external reserve with respect to 

time factor. 

 

The Durbin-Watson statistic was about 0.45 less than value of 2.0 criteria. Hence there 

was cleared indication of autocorrelation among the series. That considered true since 

the data under study were time series data. 
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Fig. 4.33. Multiple linear regression model forecast plot 
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Fig. 4.34. Residual plot of fitted multiple linear regression model 
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Fig. 4.35. Normality test of fitted multiple linear regression residual 
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The plot of normality test of residual of the fitted multiple linear regression model 

showed that the residual were not normally distributed. The histogram plot (Fig. 4.35) 

of the residual series deviated from normal curve. The pattern did not conform with 

bell shape property of normal curve. 

 

The skew value (0.39) was positive and greater than zero property of normal curve. 

The kurtosis value (2.69) deviated from normality peak value of 3.0 of normal curve. 

The Jarque-Bera value (3.56) with p-value of 0.17 indicated the residual deviation 

from normality assumption. Hence, the residual series were not white noise. The 

multiple linear regression was not adequate in fitting series that were non-normally 

distributed and non-stationary. 
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Fig. 4.36. Arimax (1, 1, 1) with normal error in-sample forecast plot 
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4.10 Fitted Models Forecast Plots 

The three fitted models were subjected to In-sample forecast to enable comparison of 

their forecast capability. Figures 4.36 – Fig. 4.38 showed the plots.  

 

The pattern of the series in Fig. 4.36 showed non-stationarity in level and in slope but 

exhibited homogeneity in some defined period of time. 

 

The proposed model arimax assuming lognormal error in-sample forecast plot as 

shown in Fig. 4.37 exhibited stationarity in level. 

 

The pattern of the series in Fig. 4.38 showed non-stationarity in level and in slope but 

exhibited homogeneity in some defined period of time. 
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Fig. 4.37. Arimax (1, 0, 1) with lognormal error in-sample forecast plot 
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Fig. 4.38. Multiple linear regression in-sample forecast plot 
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Fig. 4.39. Combined forecast plot of the three fitted models 
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Fig. 4.40. Arimax (1, 1, 1) assuming normal error residual plot 
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Fig. 4.41. Arimax (1, 0, 1) with lognormal error residual plot 
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Fig. 4.42. Multiple linear regression residual plot 
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Fig. 4.43. Multiple linear regression model acf, pacf chart 
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Fig. 4.44. Arimax (1, 1, 1) model assuming normal error acf, pacf of external 

reserve (1998 – 2007). 
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Fig. 4.45: Arimax (1, 0, 1) assuming lognormal error acf, pacf of external reserve 

(1998 – 2007). 
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Fig. 4.46. Multiple linear regression out of sample forecast plot 

 

 

 

 

 

 

 

  



141  

 

 

 

Fig. 4.47. Arimax (1, 1, 1) model assuming normal error out of sample plot 
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Fig. 4.48. Arimax (1, 0, 1) model assuming lognormal error out of sample plot 
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Fig. 4.49. Combined out of sample plot of arimax (1, 0, 1) model assuming 

lognormal error and multiple linear regression and arimax (1, 1, 1) with normal 

error term 
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CHAPTER FIVE 

SUMMARY AND CONCLUSION 

5.1 Summary of findings 

The developed arimax assuming lognormal error term was capable of providing better 

model and improved forecasting ability of non-normal error and non-stationary 

economic time series without going through the task of traditional differencing of the 

series to achieve stationarity of time series before used in traditional models. 

 

The performance of the proposed model was compared with that of arimax (1, 1, 1) 

assuming normal error term and multiple linear regression (mlr) model.  

 The error term of arimax (1, 0, 1) assuming normal error defined as: 

 

where the lag operator 
1B −= ty ; the parameter 1  represented the coefficient of the 

autoregressive model (ar), θ1 was the coefficient of moving average (ma), β0  was the 

intercept and β1 was the slope of the regression part of the model.  

 

The proposed non-normal error term was obtained as: 

 

 

 

while the loglikelihood function was derived as; 

 

 

 

The partial derivative of loglikelihood function equation with respect to each 

parameter and equate to zero, we obtained the parameter estimator.  

The four economic time series were found to be non-stationary and non-normally 

distributed. The Loglik values of mlr, conventional arimax(1, 1, 1) with normal error 

and proposed arimax(1, 0, 1) with lognormal error term were -317.41, -240.23 and 

1344.47; AIC values were 5.36, 490.45 and -0.41; while MSFE values were 12.41, 
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12.48 and 1.77. 

 The proposed model had the highest Loglik value, smallest AIC and smallest msfe 

values when compared with conventional arimax(1, 1, 1) with normal error and mlr 

model. Hence, the proposed model was considered best. 

 

5.2  Conclusion 

The proposed arimax with lognormal error term has ameliorated the task of 

differencing to achieve stationarity, stabilization of economic time series variables to 

attained normality before modeling. If considered, the proposed arimax (1, 0, 1) with 

lognormal error term was superior compared to traditional arimax (1, 1, 1) model with 

normal error and multiple linear regression in terms modeling process, validity and 

accurate forecast ability of economic time series data. 

 

The study recommended the proposed arimax with lognormal error to be conveniently 

applied in modeling economic time series data that violated normality and stationarity 

assumptions without undergoing independent stabilization of the series. That saves 

time and cost implication. The model proved to be superior to the time series models 

of arimax with normal error and multiple linear regression model. 

 

The study had contributed to knowledge: Conventional arimax with normal error 

indicated been not appropriate in modeling non-normal error and non-stationary 

economic time series data due to stringent assumptions of normal error and stationary 

series. The process of differencing at first, second or higher order to achieve stationary 

series lead to loss of vital information of time series data originality. 

 

The study had proposed lognormal error innovation of conventional arimax (p, d, q) 

model and it estimation properties. The proposed lognormal error was incorporated 

into arimax (1, 0, 1) model. Whereby bridging the gap of differencing economic time 

series data that violated normality of error term and stationarity of series. By that 

proposed model, information loss by differencing the original time series data were 

captured whereby improving forecast capability. 
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APPENDIX I 

# R Code and Data Analyses Results of ARIMAX with Lognormal Error Term by Bello A. O. M. Phil P

roject Work# 

> External=read.csv("Exteroil2.csv") 

> attach(External) 

> View(External) 

> Month 

  [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 

 [16]  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 

 [31]  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 

 [46]  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 

 [61]  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75 

 [76]  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90 

 [91]  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 

[106] 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

> Exch 

  [1] 117.9768 118.2100 117.9218 117.8737 117.8342 117.8086 

  [7] 117.7671 117.7420 117.7256 117.7243 117.7433 126.4756 

 [13] 145.7803 147.1444 147.7226 147.2272 147.8427 148.2018 

 [19] 148.5890 151.8580 152.3015 149.3550 150.8460 149.6928 

 [25] 149.7792 150.2224 149.8285 149.8927 150.3125 150.1915 

 [31] 150.0986 150.2667 151.0332 151.2500 150.2211 150.4799 

 [37] 151.5455 151.9391 152.5071 157.3314 157.2762 157.4388 

 [43] 157.4342 157.3796 157.3429 157.3156 157.3000 157.2742 

 [49] 158.3868 157.8681 157.5875 157.3314 157.2762 157.4388 

 [55] 157.4342 157.3796 157.3429 157.3156 157.3080 157.3240 

 [61] 157.3012 157.2994 157.3115 157.3051 157.3008 157.3065 

 [67] 157.3167 157.3136 157.3157 157.4166 157.2734 157.2742 

 [73] 157.2916 157.3075 157.3008 157.2918 157.2873 157.2873 

 [79] 157.2873 157.2873 157.3006 157.3141 159.9961 169.6800 

 [85] 169.6800 179.7400 197.0700 197.0000 197.0000 196.9200 

 [91] 196.9700 197.0000 197.0000 196.9900 196.9900 196.9900 

 [97] 197.0000 197.0000 197.0000 197.0000 197.0000 231.7614 

[103] 294.5722 309.7304 305.2250 305.2125 305.1818 305.2237 

[109] 305.2024 305.3125 306.4022 306.0528 305.5381 305.7150 

[115] 305.8619 305.6674 305.8868 305.6238 305.9045 306.3139 

> Coile 

  [1] 1.72 1.63 1.61 1.51 1.60 1.57 1.68 1.66 1.72 1.81 1.69 1.59 

 [13] 1.58 1.61 1.62 1.41 1.77 1.72 1.69 1.67 1.73 1.83 1.70 1.60 

 [25] 1.88 1.94 1.99 1.96 1.96 1.76 2.03 2.05 2.03 2.43 2.05 2.13 

 [37] 2.04 2.06 1.84 1.97 2.05 1.89 1.89 1.96 1.87 1.91 1.87 1.82 

 [49] 1.78 1.95 1.89 1.85 1.95 1.92 1.97 2.03 2.00 1.74 1.58 1.76 

 [61] 1.78 1.78 1.75 1.79 1.61 1.58 1.75 1.84 1.84 1.78 1.64 1.66 

 [73] 1.84 1.83 1.76 1.77 1.88 1.71 1.61 1.75 1.65 1.76 1.73 1.78 

 [85] 1.75 1.76 1.62 1.58 1.60 1.52 1.73 1.67 1.77 1.76 1.73 1.63 

 [97] 1.70 1.66 1.47 1.54 1.23 1.32 1.20 1.05 1.30 1.33 1.47 1.13 

[109] 1.39 1.37 1.15 1.34 1.42 1.50 1.56 1.54 1.48 1.50 1.51 1.51 

> Coilp 

  [1]  94.26  98.15 103.73 116.73 126.57 138.74 137.74 115.84 

  [9] 103.82  75.31  55.51  45.87  44.95  46.52  49.70  51.16 

 [17]  60.02  72.24  66.52  74.00  70.22  78.25  78.11  75.11 

 [25]  77.62  75.06  80.27  85.29  77.54  75.79  77.18  78.67 

 [33]  79.45  84.42  86.71  92.79  97.96 106.57 116.56 124.49 

 [41] 118.43 117.03 117.86 111.99 115.73 113.12 113.92 111.46 

 [49] 113.81 121.87 128.00 122.62 113.08  98.06 104.62 113.76 

 [57] 114.36 108.92 111.05 114.49 115.24 118.81 112.79 105.55 

 [65] 106.00 106.06 109.78 107.84 113.59 112.29 111.14 112.75 

 [73] 110.19 110.83 109.47 110.41 111.90 114.60 109.63 102.33 

 [81]  98.27  83.50  80.42  63.28  48.81  58.09  56.69  57.45 
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 [89]  65.08  62.06  57.01  47.09  48.08  48.86  44.82  37.80 

 [97]  30.66  31.70  37.76  41.59  47.01  48.46  45.25  46.15 

[105]  47.43  50.94  45.25  53.48  55.01  46.39  52.13  52.94 

[113]  50.57  47.42  49.01  51.64  56.79  58.46  63.56  65.11 

> Extr 

  [1] 15.7 19.0 20.8 16.0 15.2 13.7 14.1 17.4 17.8 15.0 16.0 19.3 

 [13] 19.6 20.4 18.3 19.4 16.9 14.7 13.2 12.8 16.7 15.0 14.6 14.6 

 [25]  9.0 10.5  8.7 11.3  9.9  9.3  9.6  8.6  6.7  8.9  7.6  8.4 

 [37]  6.3  8.4  6.1  6.4  6.6  6.4  4.7  4.5  5.0  6.9  4.4  7.3 

 [49]  8.5  6.6  4.5  5.9  6.7  7.6  9.1  9.4 15.8  9.6  9.4 10.3 

 [61] 11.2 11.4 11.7 10.0  7.7 11.0  9.5  9.9  9.2 10.0  8.5 10.4 

 [73]  9.4  7.0  7.5  6.2  6.5  7.3  7.6  8.8  7.4  7.5  5.5  7.8 

 [85]  6.3  7.5  5.1  6.6  6.7  6.6  6.7  6.1  8.2  9.6  6.7  7.6 

 [97]  9.2 10.6  9.6  6.7  8.4  6.7 10.1  8.9  8.8  8.7  9.9 11.2 

[109] 12.4 11.4 10.9 10.8 10.6  9.6 10.5 10.9 12.0 14.2 13.3 17.1 

> y=ts(External$X.1, frequency = 12,start = 2008) 

Error in ts(External$X.1, frequency = 12, start = 2008) :  

  'ts' object must have one or more observations 

> summary(y) 

 

Call: 

lm(formula = yt ~ Exch + Coile + Coilp) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-6.6420 -2.4743 -0.3322  2.1511  9.5493  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 35.578734   4.227570   8.416 1.17e-13 *** 

Exch        -0.040067   0.007906  -5.068 1.54e-06 *** 

Coile       -9.074738   1.891591  -4.797 4.82e-06 *** 

Coilp       -0.031519   0.013839  -2.278   0.0246 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 3.466 on 116 degrees of freedom 

Multiple R-squared:  0.2423, Adjusted R-squared:  0.2228  

F-statistic: 12.37 on 3 and 116 DF,  p-value: 4.462e-07 

 
> # plot series# 

> plot(y, main="TIME PLOT OF MONTHLY EXTERNAL RESERVE (2008-2017)") 

Hit <Return> to see next plot: adf.test(y) 

Hit <Return> to see next plot: 
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  > plot(y, main="TIME PLOT OF MONTHLY EXTERNAL RESERVE (2008-2017)") 

Hit <Return> to see next plot: adf.test(y) 

Hit <Return> to see next plot: adf.test(y) 

Hit <Return> to see next plot: pacf(y) 

Hit <Return> to see next plot: d=diff(y) 

> adf.test(d, main = "First difference of External Reserve") 

Error in adf.test(d, main = "First difference of External Reserve") :  

  unused argument (main = "First difference of External Reserve") 

> acf(d, main = "ACF Plot: First difference of External Reserve") 

 
 

 
 

 

  > pacf(d, main = "PACF Plot: First difference of External Reserve") 

> summary(d, main = "First difference of External Reserve") 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

-6.20000 -1.40000  0.20000  0.01176  1.20000  6.40000  

> Exch..xt. 

Error: object 'Exch..xt.' not found 

> x1=ts(External$X.2,frequency = 12,start = 2008) 

Error in ts(External$X.2, frequency = 12, start = 2008) :  

  'ts' object must have one or more observations 

> plot(x1, main="TIME PLOT OF MONTHLY Exchange Rate (2008-2017)") 
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adf.test(x1) 

 

 Augmented Dickey-Fuller Test 

 

data:  x1 

Dickey-Fuller = -1.1698, Lag order = 4, p-value = 0.9081 

alternative hypothesis: stationary 

 

> acf(x1, main = "ACF Plot: First difference of Exchange Rate") 
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> adf.test(x1) 

 

 Augmented Dickey-Fuller Test 

 

data:  x1 

Dickey-Fuller = -1.1698, Lag order = 4, p-value = 0.9081 

alternative hypothesis: stationary 

 

> acf(x1, main = "ACF Plot: First difference of Exchange Rate") 

> summary(x1) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  117.7   150.4   157.3   180.0   197.0   309.7  

> xdifference=diff(x1) 

> model2<-arimax(d,order=c(1,1,1),xreg=xdifference) 

> model2 

 

Call: 

arimax(x = d, order = c(1, 1, 1), xreg = xdifference) 

 

Coefficients: 

          ar1      ma1    xreg 

      -0.3081  -0.9936  0.0244 

s.e.   0.0908   0.0675  0.0201 

 

sigma^2 estimated as 3.359:  log likelihood = -241.29,  aic = 488.58 

> model2<-arima(d,order=c(1,1,1)) 

> L=(238.81) 

> log*(L) 

Error in log * (L) : non-numeric argument to binary operator 

> n=length(External.Reserve..Yt.) 

Error: object 'External.Reserve..Yt.' not found 

> k=log(n) 

> p=4 

> BIC=print(-2*log(L) + k*p) 

[1] 8.19863 

> ###########log normal model 

> stock2 <- read.csv("arimax3 data.csv") 

> attach(stock2) 

The following object is masked from External: 

 

    year 

 

> yt=Extr 

> x1=Exch 

> x2=Coile 

> x3=Coilp 

> x1<-c(Exchange.Rate..xt.) 

> x2<-c() 

> yt<-c(External.Reserve..Yt.) 

> yt1<-c(yt.1) 

> yt2<-c(yt.2) 

> llik<-function(sigma,theta1,phi1,beta0,beta1){ 

+   n=120 

+   ll=(n/2)*log (2*pi*sigma^2)-sum(log(yt))- 

+     (1/(2*sigma^2))*sum((abs(log(abs(yt-yt1-phi1*yt1+phi1*yt2-beta0-beta1*x1) 

+                                  - log(1+theta1)))^2)) 

+   return(-ll)    

+ } 

> y1<-mle2(minuslogl=llik,start=list(sigma=2.5,theta1=1.5, 

+                                    phi1=0.5,beta0=1.4,beta1=5.2)) 
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> print(y1) 

 

Call: 

mle2(minuslogl = llik, start = list(sigma = 2.5, theta1 = 1.5,  

    phi1 = 0.5, beta0 = 1.4, beta1 = 5.2)) 

 

Coefficients: 

       sigma       theta1         phi1        beta0        beta1  

36162.590999     1.642915     0.498075     1.464711    16.063444  

 

Log-likelihood: 1099.07  

> #### AIC 

> L=1099.07 

> log(L) 

[1] 7.00222 

> k=2 

> p=4 

> AIC=print(-2*log(L) + k*p) 

[1] -6.004439 

> #####BIC 

> n=length(External.Reserve..Yt.) 

> k=log(n) 

> p=4 

> BIC=print(-2*log(L) + k*p) 

[1] 5.145528 

> fit <- arimax(d,order=c(1,1,1),xreg=xdifference) 

> #####   arimax with lognomal error term## 

> External=read.csv("Exteroil2.csv") 

> Extern=read.csv("arimax3 data.csv") 

> attach(External) 

 

> yt.1 

  [1] 13.0 15.7 19.0 20.8 16.0 15.2 13.7 14.1 17.4 17.8 15.0 16.0 

 [13] 19.3 19.6 20.4 18.3 19.4 16.9 14.7 13.2 12.8 16.7 15.0 14.6 

 [25] 14.6  9.0 10.5  8.7 11.3  9.9  9.3  9.6  8.6  6.7  8.9  7.6 

 [37]  8.4  6.3  8.4  6.1  6.4  6.6  6.4  4.7  4.5  5.0  6.9  4.4 

 [49]  7.3  8.5  6.6  4.5  5.9  6.7  7.6  9.1  9.4 15.8  9.6  9.4 

 [61] 10.3 11.2 11.4 11.7 10.0  7.7 11.0  9.5  9.9  9.2 10.0  8.5 

 [73] 10.4  9.4  7.0  7.5  6.2  6.5  7.3  7.6  8.8  7.4  7.5  5.5 

 [85]  7.8  6.3  7.5  5.1  6.6  6.7  6.6  6.7  6.1  8.2  9.6  6.7 

 [97]  7.6  9.2 10.6  9.6  6.7  8.4  6.7 10.1  8.9  8.8  8.7  9.9 

[109] 11.2 12.4 11.4 10.9 10.8 10.6  9.6 10.5 10.9 12.0 14.2 13.3 

> yt=Extr 

> length(yt) 

[1] 120 

> x1=Exch 

> x2=Coile 

> x3=Coilp 

> yt1<-c(yt.1) 

> yt2<-c(yt.2) 

> llik<-function(sigma,theta1,phi1,beta0,beta1,beta2,beta3){ 

+   n=120 

+   ll=(n/2)*log (2*pi*sigma^2)-sum(log(yt))- 

+     (1/(2*sigma^2))*sum((abs(log(abs(yt-yt1-phi1*yt1+phi1*yt2-beta0-beta1*x1-beta2

*x2-beta3*x3) 

+                                  - log(1+theta1)))^2)) 

+   return(-ll)    

+ } 

> y1<-mle2(minuslogl=llik,start=list(sigma=2.5,theta1=1.5, 

+                                    phi1=0.5,beta0=2.4,beta1=5.2,beta2=2.4,beta3=6.4)) 
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> print(y1) 

 

Call: 

mle2(minuslogl = llik, start = list(sigma = 2.5, theta1 = 1.5,  

    phi1 = 0.5, beta0 = 2.4, beta1 = 5.2, beta2 = 2.4, beta3 = 6.4)) 

 

Coefficients: 

       sigma       theta1         phi1        beta0        beta1  

2.794984e+05 2.406881e+00 4.251954e-01 4.507027e+00 3.618276e+02  

       beta2        beta3  

6.053757e+00 1.888530e+02  

 

Log-likelihood: 1344.47  

> ## Multiple Regression## 

> y=lm(yt~Exch+Coile+Coilp) 

> y 

 

Call: 

lm(formula = yt ~ Exch + Coile + Coilp) 

 

Coefficients: 

(Intercept)         Exch        Coile        Coilp   

   35.57873     -0.04007     -9.07474     -0.03152   

 

> summary(y) 

 

Call: 

lm(formula = yt ~ Exch + Coile + Coilp) 

 

 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-6.6420 -2.4743 -0.3322  2.1511  9.5493  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 35.578734   4.227570   8.416 1.17e-13 *** 

Exch        -0.040067   0.007906  -5.068 1.54e-06 *** 

Coile       -9.074738   1.891591  -4.797 4.82e-06 *** 

Coilp       -0.031519   0.013839  -2.278   0.0246 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 3.466 on 116 degrees of freedom 

Multiple R-squared:  0.2423, Adjusted R-squared:  0.2228  

F-statistic: 12.37 on 3 and 116 DF,  p-value: 4.462e-07 

 

> #### AIC 

> L=1344.47 

> log(L) 

[1] 7.203755 

> k=2 

> p=7 

> AIC=print(-2*log(L) + k*p) 

[1] -0.4075103 

> #####BIC 

> n=length(yt) 

> k=log(n) 

> p=7 
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> BIC=print(-2*log(L) + k*p) 

[1] 19.10493 

> fit<- arima(yt,xreg=External[,(x1,x2,x3)],order=c(1,1,1),) 

Error: unexpected ',' in "fit<- arima(yt,xreg=External[,(x1," 

> length(yt) 

[1] 120 

> View(yt) 
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APPENDIX II 

 

R code  
 

R Code and Data Analyses Results of ARIMAX with Lognormal Error Term by Bello A. O. 

M. Phil Project Work# 

External=read.csv("Exteroil2.csv") 

attach(External) 

View(External) 

Month 

Exch 

Coile 

Coilp 

Extr 

y=ts(External$X.1, frequency = 12,start = 2008) 

summary(y) 

# plot series# 

plot(y, main="TIME PLOT OF MONTHLY EXTERNAL RESERVE (2008-2017)") 

adf.test(y) 

acf(y) 

pacf(y) 

d=diff(y) 

adf.test(d, main = "First difference of External Reserve") 

acf(d, main = "ACF Plot: First difference of External Reserve") 

pacf(d, main = "PACF Plot: First difference of External Reserve") 

summary(d, main = "First difference of External Reserve") 

Exch..xt. 

x1=ts(External$X.2,frequency = 12,start = 2008) 

plot(x1, main="TIME PLOT OF MONTHLY Exchange Rate (2008-2017)") 

adf.test(x1) 

acf(x1, main = "ACF Plot: First difference of Exchange Rate") 

pacf(x1, main = "PACF Plot: First difference of Exchange Rate") 

summary(x1) 

xdifference=diff(x1) 

 

 

model2<-arimax(d,order=c(1,1,1),xreg=xdifference) 

model2 

model2<-arima(d,order=c(1,1,1)) 

 

L=(238.81) 

log*(L) 

n=length(External.Reserve..Yt.) 

k=log(n) 

p=4 

BIC=print(-2*log(L) + k*p) 
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##log normal model 

stock2 <- read.csv("arimax3 data.csv") 

attach(stock2) 

yt=Extr 

x1=Exch 

x2=Coile 

x3=Coilp 

x1<-c(Exchange.Rate..xt.) 

x2<-c() 

yt<-c(External.Reserve..Yt.) 

yt1<-c(yt.1) 

yt2<-c(yt.2) 

llik<-function(sigma,theta1,phi1,beta0,beta1){ 

  n=120 

  ll=(n/2)*log (2*pi*sigma^2)-sum(log(yt))- 

    (1/(2*sigma^2))*sum((abs(log(abs(yt-yt1-phi1*yt1+phi1*yt2-beta0-beta1*x1) 

                                 - log(1+theta1)))^2)) 

  return(-ll)    

} 

y1<-mle2(minuslogl=llik,start=list(sigma=2.5,theta1=1.5, 

                                   phi1=0.5,beta0=1.4,beta1=5.2)) 

print(y1) 

#### AIC 

L=1099.07  

log(L) 

k=2 

p=4 

AIC=print(-2*log(L) + k*p) 

#####BIC 

n=length(External.Reserve..Yt.) 

k=log(n) 

p=4 

BIC=print(-2*log(L) + k*p) 

 

fit <- arimax(d,order=c(1,1,1),xreg=xdifference) 

#####   arimax with lognomal error term of 3x variables## 

External=read.csv("Exteroil2.csv") 

Extern=read.csv("arimax3 data.csv") 

attach(External) 

attach(Extern) 

yt.1 

 

yt=Extr 

length(yt) 

x1=Exch 

x2=Coile 

x3=Coilp 

yt1<-c(yt.1) 

yt2<-c(yt.2) 

llik<-function(sigma,theta1,phi1,beta0,beta1,beta2,beta3){ 

  n=120 

  ll=(n/2)*log (2*pi*sigma^2)-sum(log(yt))- 

    (1/(2*sigma^2))*sum((abs(log(abs(yt-yt1-phi1*yt1+phi1*yt2-beta0-beta1*x1-beta2*x2-

beta3*x3) 

                                 - log(1+theta1)))^2)) 
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  return(-ll)    

} 

y1<-mle2(minuslogl=llik,start=list(sigma=2.5,theta1=1.5, 

                                   phi1=0.5,beta0=2.4,beta1=5.2,beta2=2.4,beta3=6.4)) 

print(y1) 

 

## Multiple Regression## 

y=lm(yt~Exch+Coile+Coilp) 

y 

summary(y) 

 

#### AIC 

L=1344.47  

log(L) 

k=2 

p=7 

AIC=print(-2*log(L) + k*p) 

#####BIC 

n=length(yt) 

k=log(n) 

p=7 

BIC=print(-2*log(L) + k*p) 

 

fit<- arima(yt,xreg=External[,(x1,x2,x3)],order=c(1,1,1),) 

 

   

length(yt) 

View(yt) 

 

 

 

# R Code of Data Analyses on# 

# Topic: Development of ARIMAX with Lognormal Error Term# 

# by Bello A. O. # 

# Mat. No. 113238# 

# Program: M. Phil (Time Series) Dissertation # 

# Initialize variables# 

External=read.csv("Exteroil2.csv") 

attach(External) 

View(External) 

Month 

Exch 

Coile 

Coilp 

Extr 

y=ts(External$X.1, frequency = 12, start = 2008) 

summary(y) 

# plot series# 

plot(y, main="TIME PLOT OF MONTHLY EXTERNAL RESERVE (2008-2017)") 

adf.test(y) 

acf(y) 

pacf(y) 

d=diff(y) 

adf.test(d, main = "First difference of External Reserve") 
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acf(d, main = "ACF Plot: First difference of External Reserve") 

pacf(d, main = "PACF Plot: First difference of External Reserve") 

summary(d, main = "First difference of External Reserve") 

Exch..xt. 

x1=ts(External$X.2,frequency = 12,start = 2008) 

plot(x1, main="TIME PLOT OF MONTHLY Exchange Rate (2008-2017)") 

adf.test(x1) 

acf(x1, main = "ACF Plot: First difference of Exchange Rate") 

pacf(x1, main = "PACF Plot: First difference of Exchange Rate") 

summary(x1) 

xdifference=diff(x1) 

 

 

model2<-arimax(d,order=c(1,1,1),xreg=xdifference) 

model2 

length(d) 

model2<-arima(d,order=c(1,1,1)) 

a=forecast(model2,30)a 

plot(a) 

L=(238.81) 

log*(L) 

n=length(External.Reserve..Yt.) 

k=log(n) 

p=4 

BIC=print(-2*log(L) + k*p) 

 

 

#Development of ARIMAX model with lognormal error# 

stock2 <- read.csv("arimax3 data.csv") 

attach(stock2) 

yt=Extr 

x1=Exch 

x2=Coile 

x3=Coilp 

x1<-c(Exchange.Rate..xt.) 

x2<-c() 

yt<-c(External.Reserve..Yt.) 

yt1<-c(yt.1) 

yt2<-c(yt.2) 

llik<-function(sigma,theta1,phi1,beta0,beta1){ 

  n=120 

  ll=(n/2)*log (2*pi*sigma^2)-sum(log(yt))- 

    (1/(2*sigma^2))*sum((abs(log(abs(yt-yt1-phi1*yt1+phi1*yt2-beta0-beta1*x1) 

                                 - log(1+theta1)))^2)) 

  return(-ll)    

} 

y1<-mle2(minuslogl=llik,start=list(sigma=2.5,theta1=1.5, 

                                   phi1=0.5,beta0=1.4,beta1=5.2)) 

print(y1) 

 

#AIC# 

L=1099.07  

log(L) 

k=2 

p=4 
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AIC=print(-2*log(L) + k*p) 

 

#BIC# 

n=length(External.Reserve..Yt.) 

k=log(n) 

p=4 

BIC=print(-2*log(L) + k*p) 

 

# arimax with normal error term of 3x variables# 

fit <- arimax(d,order=c(1,1,1),xreg=xdifference) 

 

# arimax with lognomal error term of 3x variables# 

External=read.csv("Exteroil2.csv") 

Extern=read.csv("arimax3 data.csv") 

attach(External) 

attach(Extern) 

yt.1 

 

yt=Extr 

length(yt) 

x1=Exch 

x2=Coile 

x3=Coilp 

yt1<-c(yt.1) 

yt2<-c(yt.2) 

 

# Likelihood Function of arimax with lognomal error term of 3x variables# 

llik<-function(sigma,theta1,phi1,beta0,beta1,beta2,beta3){ 

  n=120 

  ll=(n/2)*log (2*pi*sigma^2)-sum(log(yt))- 

    (1/(2*sigma^2))*sum((abs(log(abs(yt-yt1-phi1*yt1+phi1*yt2-beta0-beta1*x1-beta2*x2-

beta3*x3) 

                                 - log(1+theta1)))^2)) 

  return(-ll)    

} 

y1<-mle2(minuslogl=llik,start=list(sigma=2.5,theta1=1.5, 

                                   phi1=0.5,beta0=2.4,beta1=5.2,beta2=2.4,beta3=6.4)) 

print(y1) 

 

#Fitted  ARIMAX(1,1,1) MODEL WITH X1, X2, X3# 

yt=-0.3127*yt1-0.9941*yt2+0.0238*x1+0.2725*x2-0.0296*x3 

 

#Fitted of Developed ARIMAX(1,0,1) model with lognormal error term of  X1, X2 and X3# 

yt2=0.4252*yt1+2.4068*yt2+0.0362*x1+6.0537*x2+0.0189*x3 

 

#Forecast of ARIMAX(1,1,1) MODEL WITH X1, X2, X3# 

forecast<-forecast(yt, h = 30)## predict 30 months 

plot(forecast) 

 

#Forecast of Developed ARIMAX(1,0,1) model with lognormal error term of  X1, X2 and X3# 

forecast<-forecast(yt2, h = 30)## predict 30 months 

plot(forecast) 

 

# Multiple Linear Regression with 3 independent variables X1, X2 and X3# 

y=lm(yt~Exch+Coile+Coilp) 
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y 

summary(y) 

# forecast # 

forecast<-forecast(yt, h = 30)## predict 30 yrs 

plot(forecast) 

 

# AIC # 

L=1344.47  

log(L) 

k=2 

p=7 

AIC=print(-2*log(L) + k*p) 

 

d=cbind(x1,x2,x3) 

fit<- arima(yt,xreg=d,order=c(1,1,1),) 

fit 

## forecast  

forecast<-forecast(fit, h = 30)## predict 30 yrs 

plot(forecast) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


