
  

PREDICTING REGIME CHANGES IN NIGERIAN STOCK MARKET 

RETURN SERIES 

 

 

By 

 

AMOS OLUFEMI ADESIYAN 

Matric No.: 68379 

B.Sc. Statistics (Ilorin), M.Sc. Statistics (Ibadan), ACS. 

 

 

A Thesis in the Department of Statistics 

Submitted to the Faculty of Science 

In partial Fulfilment of the Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

of the 

UNIVERSITY OF IBADAN. 

 

 

January, 2021 

 



ii 

 

 

PREDICTING REGIME CHANGES IN NIGERIAN STOCK MARKET 

RETURN SERIES 

 

 

 

 

 

 

 

 

 

Amos Olufemi ADESIYAN 

 

 

 

 

 

 

 



iii 

 

 

Abstract 

Regime change is the tendency of the Stock Market Returns (SMRs) for global market to change 

their behaviour abruptly due to changes in financial regulations and policies. This behaviour has 

no exemption to emerging markets like Nigeria. In literature, Markov Chain Models (MCMs) 

have been used to capture the stylised behaviour in 2-state regime; namely low and high return 

states, which limit the forecasting ability of the stock returns. The aim of this work was to extend 

the 2-state MCMs to 3- and 4-states for an improved forecast performance. 

The MCM was employed to specify the state transition probability, P , limiting distribution, , 

the expected returns,  and the occupancy times, ( )M n . The behaviour of the SMRs was 

classified into five scenarios comprising 2-state regime defined as low and high return regimes 

(scenario 1), 3-state regime based on Mean  1SD (Standard Deviation) classification (scenario 

2), 3-state regime based on Quartiles (Q) classification (scenario 3), 4-state regime based on 

Mean 1SD classification (scenario 4) and 4-state regime based on Quartiles (Q) classification 

(scenario 5). Following the classification, scenario 2 and 3 were defined as low, medium and 

high returns while scenario 4 and 5 similarly were defined as strong-low, low, high and strong-

high returns. Index and Price data from All Share Index Return (ASIR), Dangote Cement Return 

(DANGCEMR) and Guaranty Trust Bank Return (GTBR) covering the period, 3 January 2006 to 

29 June 2018, were used. 

The limiting distribution, lim n

n
P 


 , the expected return time, 

1


  and the occupancy time 

0

( )   (for   n 0)
n

r

r

M n P


   were obtained. The limiting distribution in days obtained for ASIR, 

DANGCEMR and GTBR, for each scenario were 4, 4, 4 for scenario 1; 15, 7, 8 for scenario 2; 8, 

6, 7 for scenario 3; 15, 6, 9 for scenario 4 and 15, 6, 9 for scenario 5, respectively. The identified 

expected return time for the transition in days were also obtained for ASIR, DANGCEMR and 

GTBR, for each scenario as: 2, 2; 3, 1; 2, 2 for scenario 1; 716, 1, 716; 10, 1, 10; 11, 1, 9 for 

scenario 2; 4, 2, 4; 4, 2, 4; 4,2,4 for scenario 3; 778, 2, 2, 778; 10, 2, 5, 10; 11, 2. 3, 9 for scenario 

4 and 4, 4, 4, 4; 4, 2, 2, 4; 4, 5, 3, 4 for scenario 5. The limiting distribution of the MCM 
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obtained for scenario 1 was lower to that of scenarios 2 to 5 as the returns will transit into steady-

state at days above 6 as against 4 for scenario 1. Occupancy times obtained for scenarios 3 to 5 

gave a lower time period, an indication of short occupancy time. The transition probabilities 

obtained for scenarios 2 to 5 identified the persistence in state returns.  

The 2-state regime was successfully extended to 3- and 4- state regimes respectively. The 

increase in the limiting and expected return times in days for scenario 3 and scenario 4 is good 

for an investor as it allows more room for investment before return to equilibrium. 

Keywords:   All share index, Regime classification, Steady state probability, Stock returns,  

  Transition probability 

Word counts: 495  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study  

An equity market, which is generally referred to as stock market, is a public market that is 

characterized by the aggregation of traders (buyers and sellers) of tradable stocks of listed or 

quoted companies. Generally, the stock market plays an important role in the growth of the 

economy through equity issuances. More specifically, as a leading emerging market, Nigeria 

stock market plays a significant role as an important driver of growth in Nigeria, as well as in 

Africa. Equity issuances serve as major sources of finances for companies and government 

projects in Nigeria. It is therefore generally believed that a rising stock market would most likely 

influence an upward move of the country’s economy. Basically, the stock market is often 

considered the primary indicator of the country’s economic strength and growth. A positive 

change/movement of the stock index and share price is usually related to a similar positive 

change in business investment, and vice visa; which directly, or indirectly, affects the 

consumption of goods and services in the country. In a nutshell, stock market indices and prices 

are the instruments that measure the performance of the entire economy and the market. 

Consequently, investors around the world have always been interested in tracking the movement 

of various stock market indices and prices, in order to have an idea of how the global market 

behaves. However, the choice and decision of the most appropriate stocks to purchase usually 

determines the state of return on investment, made by individuals and/or corporate investors. 

In addition, the decision to rightly select a positive return portfolio in the stock market largely 

depends on how adequately informed the investor or trader is, with respect to stock return 

analysis. A lot of studies have come up with statistical models and analyses, amongst which are; 

moving averages, regression analysis, time series analysis, Markov chain model, hidden Markov 

process, weighted Markov chain, etc., (Madhav, 2017). The investor’s interest in the stock 

market is a global issue, and similarly, a lot of research had been conducted on the global level. 
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These studies include Jordan (1998) on London Stock Exchange; Sagaran (2011) on Kuala 

Lumpur Stock Exchange; Bialkowski (2004) on Stock Indices for Western and Central European 

Stock Exchanges; Bilgin (2005) on Istanbul Stock Exchange (ISE) 100 Indices; Chu et al. (2004) 

on monthly New York Exchange (NYSE) Index return; and Rey et al. (2014) on seven indices 

from global market, namely; CAC 45, DAX, FTSE 100, NIKKEI 225, NASDAQ, S & P 500 and 

Dow Jones. At the local exchange market, amongst others, Nigeria stock market return related 

research have been conducted by some notable researchers: Eseoghene, 2011; Idolor, 2009; 

Obodos, 2005; Yaya et al., 2013; Shittu et al., 2009; Tumala and Yaya, 2015; Oludoyi, 2003; 

Olakojo and Ajide, 2010; Osamwonyi and Asein, 2012; and Olubusoye and Olusoji, 2017.  

All transactions usually pass through a stock exchange, which is oftentimes domiciled within 

each country and are so-named. These include; Nigerian Stock Exchange (NSE), Ghana Stock 

Exchange (GSE), Johannesburg Stock Exchange (JSE), and among others around world; where 

stockbrokers, traders and speculators can buy and sell shares (small and big companies), bonds 

(companies, federal, states and local governments), and also some other forms of securities. The 

size of any stock exchange market could be measured by the number of participants, in terms of 

number of quoted companies and/or market capitalization. The Nigerian Stock Exchange has a 

market capitalization of about N14.288 trillion, as at July 2019, with about one hundred and sixty 

(169) quoted companies. The market participants may include any of the following; individual 

retail (local and foreign) investors, local and foreign institutional investors like banks, insurance 

companies, mutual funds managers, trustees and pension fund managers, among others. The 

operations and transactions of the stock exchange market in Nigeria are regulated by the 

Nigerian Stock Exchange, as a self-regulatory organization (SRO); with the Securities & 

Exchange Commission (SEC), as an apex body that regulate the entire capital market activities in 

Nigeria, and also administer the Investment and Securities Act of 2007.  

A brief note on the history of the Nigerian Stock Exchange, the All Share Index, which is one of 

the metrics that was literally attached to the growth of the stock exchange and similar exchanges 

in the world, is herein necessary. Also, a summary on Dangote Cement Plc and Guaranty Trust 

Bank Plc, as part of this research, would not be out of place. NSE was established in 1960 and 

was originally known as the Lagos Stock Exchange. However, in 1977, its name was changed to 

the Nigeria Stock Exchange. All the listed stocks formed the Nigeria Stock Exchange All Share 
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Index. Moreover, in terms of capitalization, the Nigerian Stock Exchange ranked the third largest 

stock exchange in Africa. 

The Nigerian Stock Exchange is servicing the largest economy in Africa and simultaneously 

championing the development of Africa’s financial markets competitiveness with the global 

market. With over 249 listed securities, the exchange offers one of the most advanced multi-

product trading platforms in Africa. The All-Share-Index, of the Nigerian Stock Exchange, was 

formulated in January 1984 (January 3, 1984 = 100). Only the ordinary shares, often refer to as 

equities, are included in the computation of the index. The index is value-weighted and is 

computed daily. In the history of the Nigerian Stock Exchange, the highest value of the index 

(66,371.20) occurred on March 3, 2008. Apart from All-Share-Index (ASI), the Exchange had 

introduced the NSE-30 Index, a sample-based capitalization-weighted index, and also, five other 

sectorial indices were introduced to complement existing indices, namely; NSE Banking Index, 

NSE-Consumer Goods Index, NSE Insurance Index and NSE-Oil/Gas Index. 

 

Dangote Cement Plc (Dangcem) is a multinational cement manufacturing company that is into 

manufacture, preparation, import, packaging and distribution of cements, and its related 

products. Dangcem is Nigeria’s largest cement producer with three plants in Nigeria. The 

company’s plant located in Obajana, Kogi state, is the largest in Sub-Saharan Africa, with 

10.25mtpa across the three lines. Guaranty Trust Bank Plc, also tagged GTB or GTBank, is a 

quoted company in the financial sector of the Nigeria Stock Exchange. The bank was established 

as a limited liability company, with the license to provide the Nigerian public with business and 

other retail banking services in 1990, and started operations fully in February 1991. In September 

1996, the bank approached the public, through the stock market, with her first initial public 

offers and became a publicly quoted company. In 2004, the bank undertook its second public 

share offering and raised over N11 billion from Nigerian Investors, through the capital market, to 

expand her operations. GTBank remains one of the most capitalized companies in the financial 

sector of the Nigeria Stock Exchange. 
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1.2 Motivation for the study 

There have been a lot of studies on share price movements in Nigeria Stock Markets (NSMs), in 

the area of volatility of prices and returns, such as Yaya (2013), Davou et al. (2013), Afolabi and 

Dada, (2014), among others. To the best of my knowledge, many studies focused on the 

volatility of the returns, while a few studies on the probability and conditional probability of 

share movements focused more on the first-tier market of the Exchange. Some of the recent 

studies have examined the daily closing share prices of the quoted companies, using transition 

probabilities of the Markov Chains. One of such studies was carried out by Eseoghene (2011), 

which concluded that share prices in the Nigeria Stock Market were stable, while some other 

studies suggested instability of the stock prices (Christian and Timothy, 2014). All these studies 

have focused on stock prices, however, a departure from existing literature informed the focus of 

this present study. The market returns are examined using conditional probability theory from 

Markov Chain Models (MCMs). 

Further motivation for this study is therefore not far from the eagerness to investigate, 

adequately, if there exist any evidence of state transitions in the capital market return series, and 

critically assess the main characteristics of each of the states. Financial markets are generally 

perceived to have a cyclical pattern and are best captured with regime-switching models. The 

nature of economic and financial variables causes the fundamental changes in behaviour, as a 

result of one or a combinations of the following; wars, financial panics, changes in government 

policies, changes and unstable fiscal policy and changes in market structure/market sentiments. 

Financial markets in most developing countries have experienced significant changes in 

government policies and capital market reforms. These changes may have led to changes in their 

return-generating processes. This study will therefore provide an alternative approach in 

determining the pattern of fluctuations in the stock market index. 

 

1.3 Justification for the study 

For investors and relevant stakeholders to be adequately guided in their choice of future 

investments and making strong investment decisions, more relevant studies relating to the 

analyses of stock markets characteristics are needed. Recently, attention has been drawn to the 
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determination of the extent of volatility inherent in a financial series. This thesis focuses on the 

persistence of the three and four possible states of the market return in probability terms. The 

decision to use the MCMs process to study and predict market index returns and price behaviour 

was based on the random walk behaviour that characterizes stock prices, as noted by Bachellier 

(1914) and Fama (1965). 

 

1.4  Statement of the problem 

It is very necessary, to be on record that the Nigerian Stock Markets (NSMs) have contributed 

immensely to the country’s Gross Domestic Product (GDP) and also, that share price movements 

have attracted both foreign and local investors, who are the major players, into the market. These 

feats have also contributed significantly to the credit rating of the country, through both local and 

international credit rating agencies. In the light of these, this thesis investigates the movement of 

returns in the NSMs using MCMs, and predicts, in probability terms, the 3-state and 4-state 

returns, as against the traditional 2-state returns, for relevant stakeholders, amongst which are 

investors (both local and foreign), traders, fund managers, academia and researchers. 

Based on the problem identified, this research builds upon the work of Okonta et al. (2017), on 

the Makovian Analysis of the NSMs Weekly Index. The research focused on applying MCMs to 

the weekly returns, with the state returns classified into two states - Negative (Lower) and 

Positive (Upper).  A careful review of existing studies, on the subject, revealed the following 

gaps:  

1. Limitation of the classification of the states of market returns to two (upper and lower 

returns only), which is considered too restrictive. 

2. The use of weekly data that resulted in the failure to capture immediate market 

noise/information, which are likely to affect market returns, either negatively or 

positively. 

3. Failure to identify and highlight the inherent persistence and other plausible states of 

market returns. 
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1.5 Aim and Objectives of the study. 

Following from the above listed identified gaps, the main aim of this work is to introduce two 

thresholds, for the classification of states in the MCMs framework, for daily stock market return 

series using 2-state, 3-state and 4-state discrete parameter Markov chain models. This extends 

the work of Okonta et al (2017). Basically, the objectives of the study are to: 

1. Estimate the transition probability of daily stock market returns for the index and two 

most capitalized companies that are quoted on the NSE, using Markov model framework. 

2. Obtain the stationary/limiting distribution of daily stock market returns movement for the 

index and the two quoted companies. 

3. Obtain the expected transition recurrent time for daily stock market returns, based on the 

constructed Markov Chain model. 

4. Obtain the occupancy times, the expected time spent at the various states of Discrete 

Time Markov Chain. 

 

1.6 Research Questions 

In line with the aim and objectives of this study, there are some pertinent questions that this 

research attempts to answer and they are as follows; 

1. What are the different states likely to identify for returns’ regime changes outside the 

traditional 2-state regime? 

2. What will be the forecast, in probability terms, of the returns of the stock market, whose 

future value is influenced only by its current state, and not any prior activity that may 

lead the return to its current position? 

3. What will be the probability distribution of states that remained unchanged, after various 

stages of transition, as time progressed, and similarly, what will be the stable probabilities 

for each of the state of market returns? 

4. At what time will market returns for each of the regimes reach a stable point? 
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5. What is the expected amount of time that each of the regimes spends in a given state, 

during a given interval of time, whenever it re-occurs?  

 

1.7 Organisation of the Thesis 

This thesis contains five chapters, which are organized as follows: Chapter one provides a 

general introduction along with some background information. It further highlights the problems, 

the justification for the study, the identified knowledge gaps, as well as the aim and objectives 

with the addition of research questions. Chapter two presents a review of the literature on works 

relating to Markov chain models and its application to financial series. Chapter three discusses 

the adopted methodology. Chapter four presents the results, with interpretations and discussions, 

while chapter five gives the summary and conclusion, and also recommends areas for further 

research on the transition of market returns. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter starts with the happenings in the global stock markets, with review of relevant 

literature on the various studies on the returns amongst the global (developed and emerging) 

markets. It continues with similar studies on the frontier markets, of which the Nigeria market 

belongs and this is followed by the theoretical and methodological reviews of stock market 

returns. The chapter ends with review of literature on the regime changing models. 

2.2 Review of related global market studies 

Global stock markets are the providers of financial services and products to international 

corporate organisations, governments and institutions across the globe. To achieve business 

consistency and long-term performance, global stock markets focused on building partnerships 

with local corporate, government and institutional clients. There are sixteen (16) stock exchanges 

in the world that each has market capitalization above $1 trillion. These exchanges are often 

referred to as the “$1 trillion club”.  

In accessing the ranking and status of stock exchanges, the movement of stock market indices 

plays a major role. It is worth noting that stock market indices are performance indicators for 

stock markets, and even act as barometers that inform us of the performance of the entire market, 

and consequently, the economy. Major players of the markets around the world keep track of the 

movements of different stock market indices, just to have detailed information on how the global 

markets behave. Market players not only track the movement of market indices, they have also 

shown deep interest in understanding how to adequately predict the market trend through the 

market indices. Table 2.1 shows the compilation of various global market indices. 

 



 

9 

 

Table 2.1: List of Global Stock Market Indices 

 Global Market Indices Domiciliary Stock Markets 

1 CAC 40 French stock market index, a capitalization-weighted 

indicator of the 40 most important values among the 100 

largest market caps on the Paris Stock Exchange (now 

Euronext Paris) 

2 CSI 300 Index A capitalization-weighted index of stocks intended  to 

replicate the performance of 300 stocks traded in the 

Shanghai and Shenzhen stock exchanges 

3 DAX 30 A list of the 30 big German companies traded on the 

Frankfurt Stock Exchange 

4 Dow Jones Industrial 

Average 

 

(DJIA or Dow 30) Big index of the US stock market. The 

average number of companies in the United States is 30 

largest and most widely held 

5 FT 30 An index based  on 30 British companies’ share prices 

6 FTSE 100 index A share index of the 100 UK companies with the highest 

capital, listed on the London Stock Exchange 

7 Hang Seng Index (HSI) A free float-adjusted stock market-weighted index in 

Hong Kong 

8 Korea Composite Stock Price 

Index (KOSPI) 

The list of all common stocks exchanged in the Korea 

Stock Exchange Market Division 

9 Madrid Stock Exchange 

General Index (IGBM) 

The main index for the Bolsa de Madrid (Madrid Stock 

Exchange) 

10 NASDAQ-100 A stock market index of 100 of the largest foreign and 

domestic companies listed on the NASDAQ stock 

exchange. 
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11 Nikkei 225 Tokyo Stock Exchange’s stock market index. 

12 S&P 100 US stock market ranking of 100 leading stocks in the 

United State 

13 S&P 500 Major US stock market index, a value-weighted price 

index of 500 large cap common stocks, traded actively in 

the US. 

14 S&P CNX Nifty The leading index on India’s National Stock Exchange of 

for large companies 

15 Taiwan Stock Exchange 

Capitalization Weighted 

Stock Index (TAIEX) 

A stock market benchmark of Taiwan Stock Exchange 

listed companies 

Compiled by the Author 
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In exploring that Markov chain has no post-effect and also, to establish the appropriateness of the 

Markov Chain model to analyze and predict the index of stock market and closing price of 

stocks, in a more effective method - the market mechanism, Zhang and Zhang (2009) 

implemented MCMs to forecast the stock market trend in China. With this application of MCM 

in the stock market, the study achieved a relatively good result, and subsequently, recommended 

that the model could be used in other fields like Futures Market, Bond Market and Commodity 

Market. The authors also suggested that the results obtained from their Markov chain model for 

prediction could be combined with the other factors that significantly influence stock market 

variations, and that the method could be used as a basis for decision making. 

On further applications of MCM, Mettle et al. (2014) used it with finite states to analyze the 

share price changes for five randomly selected equities on the Ghana Stock Exchange. This 

particular study concluded that the application of Markov chain model, as a stochastic analysis 

method in equity price studies, improved portfolio decisions. Consequently, the authors 

suggested the application of the Markov chain model as a tool for improving the stock trading 

decisions. The application of this method in stock analysis improved both investor’s knowledge 

and chances of higher returns. Otieno et al. (2015) applied Markov chain model to forecast stock 

market trend of Safaricom shares, in Nairobi Securities Exchange, in Kenya. The Markov chain 

model was employed based on probability transition matrix and initial state vector to predict the 

Safaricom share price, using the data spanning a period from April 1, 2008 to April 30, 2012. In 

the study, Markov chain prediction was applied for the specific purpose of forecasting the 

probability of certain states of share prices, in future rather than absolute state. Using Markov 

chain model, the authors were able to predict the probability of each states of the shares of 

Safaricom. 

In the forecast of Nepal Stock Exchange (NEPSE) Index, Madhav (2017) applied the Markov 

chain model and forecasted the future states, based on the randomness feature of NEPSE Index. 

The study aimed to explore the long run behaviour of NEPSE Index and the expected number of 

visits to a particular state, using the NEPSE Index of 2,741 trading days, starting from August 

15, 2007 to June 18, 2017. The NEPSE Index showed three different states - increase, remain 

same and decrease. 
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An empirical study on stock index trend prediction, using Markov chain analysis, was also 

carried out by Vasanthi S, Subha V and Nambi (2011). In their study, the authors used first order 

Markov Chain model to predict the daily trend of various global stock indices, and compared it 

with that of extant traditional forecasting methods. Their results revealed that the Markov model 

outperformed the extant traditional models used in their study. 

Moving away from the financial markets, Zhu et al (2012) used vegetable price fluctuation in 

China to establish the prediction Markov chain model. The notion for using Markov Chain to 

forecast market returns behaviour is necessary since stakeholders (investors) in the market are 

very interested in the direction of the market (trend), even before the takeoff of any investment 

decision. 

From the list of global market indices mentioned in Table 2.1, Rey et al. (2014) considered seven 

indices, which covered a period of 21 years, namely; CAC 45, Dow Jones, DAX, Nasdaq, Nikkei 

225, FTSE 100 and S&P 500, for the detection of stock returns abnormal states. They found out 

the possibility of three possible states as follows; a state of high-returns, low- returns, and high 

volatility with intermediate state of low volatility. Furthermore on the Markov Chain 

methodology, Bilgin (2005) applied the methods in testing the possibilities of Istanbul Stock 

Exchange’s daily returns (ISE 100) indices following a process that is martingale (random walk). 

However, the result revealed that at any point in time, stock prices were a reflection of the 

available historical information. 

Also for the application of normal distribution’s Market switching mixture, Bialkowski (2004) 

studied the monthly returns of major stock indices, using Central Europe’s emerging financial 

markets for modeling returns from Western and Central European Stock Exchanges on stock 

indices. In performing a robust test of the Stock Markets’ January effect, Chu et al. (2004) used 

MSM, with monthly returns of the New York Stock Exchange NYSE equally weighted (EWR) 

index data, between January 1962 and December 1992. 

2.3 Review of local market returns studies 

Nigerian Stock market has continued to remain relevant as platform for securities exchange, both 

locally and internationally. The NSE All Share Index (NSE ASI) reached a 10-year peak of 

45,092.82 in January 2019, as reported by The CEO of the Exchange (Oscar. N Onyema). This 
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was as a result of the exchange being the 3rd best performer in the global market, according to 

CNN reports in 2017, and her positive performance, as it was reflected in the NSE ASI of 2017. 

In the past, a significant number of studies were carried out on the Nigeria stock market. The 

findings of these studies are to be discussed. 

Starting the review on the local stock market, Choji et al. (2013) used MCM to predict the 

possible states, by illustrating the performance of the top two banks; the likes of Guaranty Trust 

Bank and First Bank of Nigeria. Data, spanning six years, was used to obtain the transition 

probability matrix, power of the transmission matrix and probability vector. They obtained the 

long run prediction of the share prices of these banks; whether the banks’ share prices 

appreciated or depreciated or remained unchanged. They also estimated the probability of 

transition between the states, by taking the performance of the two banks together. In another 

study analyzing the price trends on the Nigeria Stock Market, Agwuegbo et al. (2010) used 

MCM in obtaining market transition probabilities between various states. A study similar to this 

was carried out by Doubleday et al. (2011).  

In another strand of study relating to the phase of market returns, Yaya (2013), in his study titled, 

“Nigeria Stock Index, A search for Optimal GARCH model using High frequency data”, 

attempted to fit the best Generalized Autoregressive Conditional Heteroscedastic (GARCH) 

model for All Share Index of the Nigeria Stock Exchange (NSE) returns. The research was based 

on modeling the volatility of returns and identifying the best model. Further work was carried out 

on estimates of the Bull and Bear parameters using a smooth threshold parameter nonlinear 

market model. On this, Yaya et al. (2013) did a comparative study between Nigeria and foreign 

stock markets. Their study was based on the study of phases of financial markets, using estimates 

of betas and nonlinearity in a smooth threshold parameter model. The model applied was an 

adaptation of the STAR model, which is mostly used in financial econometric modeling. 

2.4 Review of Markov chain model theories 

In literature, Markov chain models have been described as a statistical model that represent 

transition amongst successful outcomes of discrete time random variables. To buttress this point, 

the following literatures have understudied the Markov Chain models (Dynkia, 1965; Kemeny 

and Snell, 1976; Kijima, 1997; and Berchtold, 1999). The process is entirely visible because each 
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observed outcome is exactly identified with one state of the process (Berchtold, 1999). The 

Markov Chain Analysis (MCA), upon which this thesis is hinged, is a prediction method that is 

based on a probability forecasting approach of Zhang and Zhang (2009). It has no after effect 

and it may be used effectively to analyze and predict the stock market index returns, as well as 

the closing stock price returns.  

A very good number of researchers and scholars have tried to forecast stock market returns using 

different models as shown on Table 2.2. The models that are usually used are either linear or 

non-linear. This thesis therefore considers a non-linear model framework from another 

perspective, looking at the probability behaviours of market returns. The stock price behaviours 

have previously been widely explored in financial contexts, basically from the theory of random 

variables to the volatility in stock prices overtime. Historically, it was confirmed by Fama (1965) 

that stock prices satisfy the random walk hypothesis, and stated further that a series of price 

changes had no memory, which indicated that past price dynamics could not be used in 

forecasting future prices. From the theory of Efficient Market Hypothesis, changes in security 

prices can only be explained by the arrival of new information, which may be quite difficult to 

predict (Lendasse et al. 2008). Schwert (1989) used a model, where returns have either a high or 

a low variance, and in which a two state Markov process determined switches between these 

return distributions.  

Turner et al. (1989) considered a univariate specification, with constant transition probabilities. 

They applied a markov switching model, where the mean or the variance, or both may differ 

between two regimes, using S and P monthly index data, for a period 1946-1989. It was shown 

that the Markov-Switching model provided a better statistical fit, to the data, than the ARCH 

models without switching parameters; by proposing a model with sudden discrete changes in the 

process, which govern volatility. This was established by Hamilton and Susmel (1993). Also, 

Filardo and Gordon (1998) specified a time varying transition probability model, where 

information contained in the leading indicator was used to forecast transition probabilities, and in 

turn, to calculate expected business cycle durations. 

Drifill and Sola (1998) investigated whether there was an intrinsic bubble in stock prices, so that 

stock prices deviated from the values predicted by the present value model or deviated from the 
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fundamental relationship between income and value. Rafiul and BaikunthuNath (2005), in their 

study used Hidden Markov Models (HMM) approach to forecast stock prices for interrelated 

markets. HMM was used for pattern recognition and classification problems because of its 

proven suitability for modeling dynamic system. HMM was a strong statistical tool as stated by 

the authors. Also, HMM was shown to handle new data, robustly, and was computationally 

efficient to develop and evaluate similar patterns. Yi-Fan et al. (2010) incorporated Markov 

chain concepts into fuzzy stochastic prediction of stock indexes, to achieve better precision and 

confidence. They comparatively examined the ANN and Markov models, and discovered that 

Markov model performed better, generated highly precise results and required only one input of 

data. 
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Table 2.2: Summary of Related Markov Chains application 

Author & Year Title 
Contribution to 
Knowledge 

Limitations 
Intended 
Contribution 

Eseoghere (2011) The long-run 
prospect of 
stocks in Nigeria 
Capital Market; 
A Markovian 
Analysis 

Used the Markov 
chain to analyze 
the long run 
prospect of stock 
prices in the 
stock market in 
the stock market 

Used only 3 
states and 
classification of 
state of price 
without use of 
threshold 

Applying 
threshold-(1) use 
of mean and SD. 
(2) Use of 
Quartile range 

Davou et al. 
(2013) 

Markov Chain 
Model 
Application on 
Share Price 
Movement 

Markov Chain 
Model 
application to 
model stock 
market share 
price movement. 

Failed to look at 
the long-run 
distribution of 
the Markov 
Chain Model 

Looking at the 
long-run 
limitation of the 
2-states, 3-states 
and 4-states 

Mettle et al. 
(2014) 

A methodology 
for Stochastic 
analysis of share 
prices as Markov 
Chains with 
Finite States. 

Used Markov 
with finite states 
for stochastic 
analysis of share 
prices. 
Established 
limiting 
distributions of 
the returns. 

Like Eseoghene 
(2011), they did 
not employ the 
use of threshold 
in classifying the 
states  

To apply 
threshold in state 
classification. 

Jarsinthan et al. 

(2015) 

A Markov Chain 
Model for 
Vegetable price 
Movement in 
Jaffina. 

Use of 2 and 3 
States as the 
threshold was 
applied through 
absolute median 
of the market 
daily changes 

Failed to look at 
distribution in 
the long run and 
the states 
occupancy time. 

Increase state to 
4, use of mean 
and SD, use of 
Quartile 

Maruf and 
Patrick (2016) 

A three-State 
Markov 
Approach to 
Predicting 
Movement of 
Asset returns of a 
Nigeria Bank. 

They employed a 
three state 
Markov 
approach to 
predict asset 
returns 

No recourse to 
long run 
distribution and 
occupancy times 
of the returns 

Occupancy times 
of the returns 

Okonta et al. 

(2017) 

A Markovian 
Analysis of the 

Used of a two-
state Markov 

Failed to extend 
the state further 

Extends to 3 and 
4 states. Use of 
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Nigerian Stock 
Market Weekly 
Index 

Chain to 3 and 4 states. 
Failed to use 
threshold for 
classification 

threshold.  

Compiled by the Author 
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2.5 Theoretical Review of Stock Market Returns 

It is the primary objective of any investor to consider the possibility of earning good returns in 

any investment. Return, which is an amount realizable from investing in stocks, comes in the 

form of dividend, stock splits and the appreciation of capital. Both systematic and unsystematic 

risks are influenced by these returns; the former (systematic risk) comprising micro-economic 

variables, while the latter (unsystematic risk) includes factors that are specific to the individual 

company. 

Moreso, returns on stock are very sensitive to a lot of factors; such as the country’s political 

unrest, crises in the economy, natural calamities like fire and floods, wars and communities fight, 

movements in global prices for oil, inflationary effects, and government policy changes in both 

fiscal and monetary policies, and finally, regulatory agency policies. 

From the theoretical background study, the following are identified as the major issues that have 

negative or positive impact on the stock market returns regime changes; 

- Stock return Volatility  

- Inflation 

- Risk and Liquidity 

- Interest rate 

- Global Oil Price Movements/Shocks 

Stock Return Volatility. This has been a focal point of discuss for a lot of scholars in areas of 

Economics and Finance, with lots of researches cutting across areas of volatility. The effects of 

speculative trading on stock return volatility was investigated by Hsin and Luo (2003), and found 

such speculative trade to have a significant positive impact on stock return volatility. It therefore 

means that the impact of speculative and non-speculative stocks could in a way determine the 

path of stock market regime changes. 

Inflation. It has been a known significant factor that affects all economies around the world and 

in fact, was an interesting area to a lot of research analysts and scholars, globally. A significant 

number of researchers took special interest in analysing the relationship or rather the inflation 

impacts on stock markets or the realized returns from the markets, vis a vis the changes in the 
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regimes of stock markets. From various scholarly reviews; Alagidede and Panogiotidis (2012) 

studied the correlation between returns on stock and inflation for the G7 countries, and 

discovered a strong relationship for United Kingdom and Italy. Similarly, estimation of long-

term trend of stock-related inflation was carried out by Boucher (2006). Also established was the 

relationship between inflation and returns on stock, which was perceived to be influenced by 

monetary policy, and demand and supply uncertainties (see Du.D, 2006). Further studies on 

inflation, as related to stock returns, was the framework for committee on monetary policy 

(MPC) implication for the monetary policy returns on stock relationship in the United Kingdom, 

as was studied by Chortareas and Noikokyris (2014). 

Interest Rate. Theory has established that correlation exists between changes in interest rate and 

stock market. Intuitively, an increase in interest rate results in a drop in the activities of the stock 

market of a country, according to Ali (2014). The reason being that if potential investors are 

opportuned to get higher returns on investments, such as treasury bills, this will lead to reduction 

of activities in the stock market, which would, consequently and most likely, affect stock returns. 

However, various studies, testing of the influence of interest rates on frontier and emerging 

economies’ stocks markets, mixed results have been displayed. This is because the relationship 

between interest rates and returns on stock can differ over time, based on the business activities 

of the countries, as opined by Chen and Hu (2015). 

Stock performance is usually calculated by list of stocks, while Treasury bill rate is measured by 

the interest rate. As earlier stated, most studies conducted in both emerging and developing 

economies showed a co-integrating relationship among stock markets and other factors. One of 

such studies has been Khan et al, (2012) relating to Kenya. The researcher used regression 

analysis to study a ten-year period of monthly data, and showed a poor correlation between stock 

performance and interest rates. A similar study, which showed no meaningful relationship 

between interest rate and share price, was carried out by Chirchir (2013). Using a shorter time 

period, Obura and Anyango (2015) found comparative results. From January 1998 to January 

2014, for two emerging economies (Egypt and Tunisia) Barakat et al. (2015) performed a similar 

report. Their results showed evidence of co-integration and the causal relationship between the 

interest rate and the exchange rate, market index and money supply. 
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Risk and Liquidity also have some level of impact on the direction of the stock market returns, 

which also dictates the various phases of regime changes. In terms of liquidity volatility, market 

returns and liquidity relationship were analysed by Chang et al. (2010), using Tokyo Stock 

Exchange (TSE) data. Results showed negative liquidity and returns on stock relationship. 

Another scholar, Chen and Hill (2013), established a robust and effective relationship between 

the liquidity and returns on stock. In the process of examining the returns on stock and risk 

correlation, Xing and Howe (2003) came up with different market factors, which could be 

considered. Henriques and Sadorsky(2001) studied multifactor-related risks and reports of  

significant effects on the return of stocks. The liquidity behaviour in emerging markets was also 

documented by Jun et al. (2003). However after a critical evaluation, a significant positive 

relationship between returns on stock and liquidity was found by the authors. Nevertheless, in 

emerging markets, little work has been done in the field of stock returns liquidity and risk.  

Global Oil Price Movements. The last one and half decades have been characterized by a 

greater oil price fluctuations. However, a lot of research analysts showed interest in analysing the 

relationship between returns on stock and price movements of oil; although, more work is still 

required to be done on this. Evidence of significant relationship between oil price movements 

and economic policy influencing stock returns was revealed by Kang & Ratti (2013). For 

European stock markets, Cunado and de Gracia (2014) ascertained that oil price variations had 

significant and negative impact on stock market returns in most of the states. Gupta and Modise 

(2013) used the VAR model to evaluate the relationship between oil shocks and stock returns. 

However, coming back home to frontier markets like Nigeria, Fowowe (2013) reported 

insignificant association between oil prices and stock returns of the Nigerian Stock Exchange. 

Works done by Mohanty et al. (2010) and also Chatrath et al. (2014) could be considered as part 

of other notable researches in this area. 

Other research areas relating to returns of the stock market over the years as show in Table 2.3 

are (i) sentiments and effects of over-reaction on stock return; (ii) return on equity and leverage; 

(iii) mutual funds and returns on stock; (iv) monetary policy and returns impact; (v) the effect of 

terrorism on stock returns; (vi) political systems and returns on stock (vii) business cycles and 

returns on stock; (viii) up-to-date activity and returns on stock; and (ix) bargain hunting, capital 

appreciations, liquidity and returns on stock. 
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Table 2.3: Previous related theoretical reviews on Stock Market Returns 

Author(s) & Date Title 
Theory 
effects 

Findings 

Alagidede, P., and 
Panagiotidis, T. 
(2012). 

Stock Returns and 
Inflation: Evidence 
from quantiled 
regressions 

Inflation The study found positive 
relationship for countries such as  
UK and Italy 

Ali, H. (2014).  Impact of interest rate 
on stock Market; 
Evidence from 
Pakistani market 

Interest 
rate 

The study found interest rate to 
have negative impact on the stock 
market 

Boucher, C. (2006) Stock prices: inflation 
puzzle and the 
predictability of stock 
market returns 

Inflation  Estimation for a perspective of 
long-term inflation patters with 
stock returns. 

Chang, Y. Y., Faff, 
R., and Hwang, C. 
Y. (2010).  

Liquidity and stock 
returns in Japan: new 
evidence 

Liquidity The study revealed negative 
relationship between liquidity and 
stock returns 

Chen, H., & Hu, 
D. (2015).  
 

The Interaction 
between Interest Rates 
and Stock Returns: A 
Comparison 
between China and US. 

Interest 
rate 

Depending on the business 
activities of the countries, the 
relationship between interest rates 
and returns on stock may vary over 
time 

Chen, J., & Hill, P. 
(2013).  

The impact of diverse 
measures of default 
risk in UK stock 
returns 

Risk and 
Liquidity 

The study established a consistent 
and stable relationship between 
liquidity and returns on stock. 

Chirchir, D. 
(2013).  

The relationship 
between share prices 
and interest rates: 
evidence from Kenya. 

Interest 
rate 

No significant causal link was 
found between interest rate and 
share price was established. 

Chortareas, G., 
and Noikokyris, E. 
(2014).  

Monetary policy and 
stock returns under the 
MPC and inflation 
targeting 

Monetary 
policy and 
Inflation 

Effects of the monetary policy 
committee (MPC) system for 
financial returns relationship in the  
United Kingdom 

Cunado, J.; De 
Gracia, F.P.  
(2014).  

Oil price shocks and 
stock market returns: 
Evidence for some 
European countries 

Oil Price The study showed that oil price 
variations have significant and 
negative impact on stock market 
returns 
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Du, D. (2006). Monetary policy, stock 
returns and Inflation 

Inflation The combination of inflation and 
return on stocks as influenced by 
monetary policy and the risks of 
supply and demand 

Fowowe, B. 
(2013).  

Jump dynamics in the 
relationship between 
oil prices and the stock 
market: Evidence from 
Nigeria 

Oil price There was an insignificant 
association among oil prices and 
stock returns on the Nigerian Stock 
Exchange 

Hsin, C. W., Guo, 
W. C., Tseng, S. 
S., and  Luo, W. C. 
(2003) 

The impact of 
speculative trading on 
stock return volatility: 
the evidence from 
Taiwan 

Speculative 
Trading 
and 
Volatility 

The study established that 
speculative trade had a significant 
positive impact on stock return 
volatility. 

Kang, W., and 
Ratti, R. A. 
(2013).  

Oil shocks, policy 
uncertainty and stock 
market return 

Global Oil 
prices 

The interrelationship between price 
of oil movements and the economic 
blueprint that affects the return on 
stocks was noted. 

Khan, Z., Khan, 
S., Rukh, L., 
Imdadullah, K., 
and Rehman, W. 
(2012).  
 

Impact of Interest Rate, 
Exchange Rate 
and Inflation on Stock 
Returns of KSE 100 
Index 

Interest 
rate, 
Exchange 
rate and 
Inflation 

The poor interaction between the 
stock returns and the interest rates 
was highlighted. 

Compiled by the Author 
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2.6 Methodological Review of Stock Market Returns 

Better understanding of the stock market returns revealed that it follows a random walk; however 

future returns are hard to predict or forecast. There are several reasons to try to predict the prices 

of the stock market. Financial gain is the most fundamental of these. Any system in competitive 

market that can reliably select winners and losers, will make the system’s owner very wealthy. 

Most people, including analysts, investment practitioners and ordinary investors, are therefore 

constantly searching for a better system, which is going to produce high returns for them. The 

stock market forecast is certainly a fascinating assignment. There are a quite number of methods 

available in the literatures that have been used to perform this task, which include the following; 

Efficient Market Hypothesis (EMH), Capital Asset Pricing Model (CAPM), Arbitrage Pricing 

Theory, Time Series Analysis and Markov Chain Process.  

 
2.6.1 The Hypothesis of an Efficient Market:  

The Efficient Market Hypothesis (EMH) notes that all known share information are fully 

captured by the price of the stock at any time. Due to the optimal use of all known information 

by market participants, price variations are random as new information occurs randomly. Share 

prices therefore follow a “random walk” process, such that an individual investor cannot beat the 

market. Given this very strong statement, which in fact tends to be false, there were inconclusive 

evidence(s) to deny the EMH. Extant studies have either accepted or rejected the EMH, 

depending on the peculiarity of the market events. A lot of this research has used neural 

networks to support their arguments. However, since the neural network is just as good as it has 

been trained to be, it may be difficult to argue that the hypothesis based solely on performance of 

the neural network is accepted or rejected. In reality, the stock market crashes, such as October 

1987 crash in the market which invalidates the EMH because it is not on the basis of random 

information, but arises as a result of alarming investor worries. The EMH is however, essential 

because it runs counter to all other methods of analysis. If the market cannot be beaten, then 

analyzing the technical, fundamental or time series should not lead to better result than a random 

calculation. This indicates that the EMH may not be true in reality, that many market 

stakeholders were willing to constantly outperform the market. In an ideal world, the EMH could 
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be valid with equal distribution of information, but today’s markets have a good number of 

privileges. 

 

2.6.2 Chaos Theory  

The Chaos theory is a relatively new approach to modelling nonlinear dynamic systems, such as 

the stock market. With the assumption part of the process is random and that part of the process 

is deterministic, Chaos theory analyses a process. Chaos is a nonlinear, seemingly random 

system. To check whether the system is chaotic (has chaos in its time series), numerous 

theoretical tests have been established. The chaos theory is an attempt to demonstrate that there 

is an apparent randomness. This argues that the stock market is volatile and unpredictable; the 

concept of chaos opposes the EMH. Basically, it’s a chaotic system which is a mixture of both 

deterministic and random process. Using regression fitting, the deterministic process can be 

characterized, while the random process can be characterized by distribution function’s statistical 

specifications. Thus, the nature of a chaotic system will not be fully captured using only 

deterministic or statistical techniques. The capability of neural networks for capturing 

deterministic and random features make it ideal for chaotic systems modeling. 

 

2.6.3 Capital Asset Pricing Model  

Capital Asset Pricing Model (CAPM), which is based on Markowitz Portfolio Theory, describes 

a portfolio’s risk-return relationship. CAPM became very popular and widely used in many 

empirical studies because of the simplicity of the theory structure. The simplicity of the 

application structure was, however, criticized by economists. Amongst the criticisms are Breeden 

(1979), who argued that the CAPM theory was based on relaxed assumptions, and he developed 

expended CAPM to forecast stock returns. Similarly, Lewellen (2000) also claimed that CAPM 

does not describe, fully, the behaviour of stock returns. 

 
2.6.4 Arbitrage Pricing Theory (APT) 
 
This method of forecasting returns was introduced by Ross (1976). The main basic assumption 

of APT is based on the absence of arbitrage in the market. However, these returns can be 

calculated if there is no arbitrage opportunity. Capital markets are known to be perfectly 
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competitive and basically, the fact remains that investors always prefers more wealth to less 

wealth. APT is less restrictive than CAPM in its assumptions. It is on this note that there is only 

one factor in CAPM but in APT there are n factors, which affect the expected rate of return. 

 
2.6.5 Forecasting with Time Series Analysis  
 
The traditional prediction of the time series analyses uses historical data and attempts to 

approximate future values of a time series, as a linear combination of historical data. There are 

two basic forms of time series prediction in time series econometrics: univariate (simple 

regression) and multivariate (multivariate regression) (see Maddala, 1992). The most common 

tools used in econometrics, for predicting time series, are these types of regression models. The 

way they are applied in practice is that the series under prediction is formed first of all by a 

number of factors that influence (or influence is believed to be more specific) it. These factors 

are the model’s explanatory variables itx . A mapping is then performed in between their values 

itx  and the time series value ty  (y is the parameter to be explained), to construct pairs ,it tx y . 

Both pairs are used in the formulation of the variable to be clarified, to describe the value of each 

explanatory variable. In other terms, a linear combination of ix , which approximates y 

optimally, is defined. Univariate modeling is based on a single explanatory variable, and 

multivariate models are based on more than one variable. Models of regression were used for 

forecasting time series on the stock market. Pesaran and Timmermann’s (1994) study is a good 

example of using multivariate regression.  

 

2.6.6 Markov Chain Process  

Markov process, also referred to as random or stochastic process, is applicable in taking decision 

in situations, where the transition probability of a future state depends on the current state, 

irrespective of the process in which the occurring state was attained. The idea of the Markov 

chain was first introduced by Andrei Andreyevich Markov (1856-1922), a Russian 

Mathematician in 1906. His study involved studies of the behaviour at the beginning of a system, 

with the intention to predict the behaviour in the near future of the same system. In a subsequent 

paper published in 1913, Markov applied the chains methodology to the distribution of vowels 
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and consonants in A.S Pushkin’s poem Eugeny Onegin. General notion about the Markov 

process was advanced by A.N. Kolmogrov, W.Feller and a whole lot of other researchers. Over 

time, more areas of applications of Markov chains have been revealed (Basharin et al., 2004). 

This discovery cut across various subjects of study, namely; Agricultural Science, Botany, 

Criminology, Demography, Educations, Engineering, Economics and Finance, Industry, 

Medicine, Meteorology, Political Science, Psychology, Sociology, Sports and Games, Veterinary 

Science and Zoology. In recent times, economists have recognized its importance, as an 

economic analysis tool that is generally accepted and often applied in econometrics. 

The theory of Markov chain was developed during the early 20th century by a Russian 

Mathematician named Andrei Andreyevich Markov. He was a Mathematics student under some 

famous Russian mathematicians, such as Aleksanah Korkin and Pafnuty Chebyshev. Markov 

advanced his knowledge, most especially, in the fields of algebra and probability theory, with his 

early works based mainly on number theory and analysis. His interest in the law of large 

numbers and its extensions led him to the development of the theory of Markov chains, a name 

coined after Markov himself. Markov chain process is therefore used in modeling technical 

problems and is very effective in modeling financial time series.  

Prediction of stock market appears to be a difficult task. In the past, researchers have tried to 

develop series of methodologies that shareholders and brokers could make maximum possible 

gains. At the earliest, market players would use various methodologies, such as Time Series 

Analysis, Fundamental Analysis, and Technical Analysis. After this efficient market hypothesis, 

Chaos theory and some other stochastic process models have been used.  

2.7 Regime Changing Models 

Following the review of various methodologies, which address stock market returns, the 

inclusion of different theoretical polices, is bound to create regimes/phases in stock market 

returns. Regime-switching models are time-series models with parameters that may be used for 

various values, in each of the defined numbers of “phases”. The stochastic method, believed to 

have triggered regime changes, is included as part of the model that opens configuration of 

model-based forecast which include the possibility of future regime changes. The regime is 

directly observable in operation at any point in time for every special situation. More precisely, 
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the regime is not observed, and the analyst has to make an inference as to which regime the 

system has been in, at times past. The main use of these models for literatures in applied 

econometrics was to explain shifts in the complex performance of the macro-economic and 

economic time series. 

Regime-shifting models can usefully be divided into two categories: the “threshold” and the 

“Markov-switching”. The key distinction between the two methods is how the origin of the 

system phase is being modeled. Markov-switching models, have been applied to econometrics by 

Goldfeld and Quandt (1973), Cosslett and Lee (1985), and Hamilton (1989), and conclude that 

the system changes develop in line with the Markov chain. Regime-models of transition have 

become an extremely popular modeling tool for used work. Of particular note are regime-shifting 

models of economic output indicators, just like actual Gross Domestic Product (GDP), which has 

been used as a template to define the business cycle phases. Few of such models are Hamilton 

(1989), Beaudry and Koop (1993), Chauvet (1998), Pesaran and Potter (1997), Potter (1995), 

Tiao and Tsay (1994), Kim and Nelson (1999b, 1999c), Van Dijk and Franses (1999), Öcal and 

Osborne (2000), and Kim, Morley and Piger (2005). Amongst the list of other relevant studies 

which involves modeling on policy changes in interest rate cycles and inflation are as follows; 

Ang and Bekaert, (2002), Evans and Wachtel, (1993); Garcia and Perron,( 1996);  also for 

phases of high and low volatility in returns on stock; Turner, Startz and Nelson, (1989; Hamilton 

and Susmel, (1994); Hamilton and Lin, 1996; Dueker, (1997), changes on government blue 

prints on “rules” of the Federal Reserve; Kim (2004), Sims and Zha (2006), and time difference 

in the response of economic output to monetary policy actions by Garcia and Schaller (2002); 

Kaufmann,( 2002); Lo and Piger, (2005),Ravn and Sola,( 2004). 

In conclusion, extant studies indicate that the operational status of the stock market is subject to 

the influence of various factors from the market, such as multiple market forces from both sides, 

the fundamental state of the stock itself, macroeconomic policy, trade and economic degrees and 

psychological factors of investors. Therefore, no single method can accurately predict changes in 

the stock market every day. Markov Chain analysis, which this study aims at exploring, is a 

prediction method based on probability forecasting approach with no after effect and may be 

effectively used to analyze and predict the stock market index and closing stock price under the 

above market mechanisms (Zhang and Zhang 2009). 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this chapter, the focus is on the adopted methodology of the study, which comprises of Data 

source and scope of study, Markov chain process (MCP), the classification and concept of MCP, 

Assumption of Markov chain models, computation of All Share Index and its returns, 

companies’ price returns. The chapter elaborate on the Markov chain methods used to answer the 

research questions and also discussed the test of independence as follows; model specification, 

construction of the MCMs, transition probabilities and estimation of transition probabilities, n-

step state transition probabilities, state of Markov chains, steady state, limiting distribution, mean 

return times and occupancy times . 

3.2 Data Source and scope of the study 

This study covered the daily All Share Index (ASI) of the Nigerian Stock Exchange, the daily 

share prices of Dangote Cement Plc, which is one of the largest capitalized industrial company 

listed on the Exchange and Guaranty Trust Bank amongst the leading high capitalized banking 

company. It captures the returns movement, as All Share Index Returns (ASIR); Dangote 

Cement Returns (DANGCEMR); and Guaranty Bank Plc Returns (GTBR).  

In the study, the sample period of the all share index ranged from January 2006 to June 2018, 

while Dangote Cement daily price ranged from May 2010 to June 2018, and Guaranty Trust 

Bank daily price ranged from January 2006 to June 2018. These resulted in a total data points of 

about 3,066 trading days for the index and GTBR, and 1,867 trading days for DANGCEMR. The 

daily stock market index data was collected from the website of two capital market operators, 

namely; Cashcraft Asset Management Limited and Skyview Capital Limited; as well as the 

bulletins of the Nigerian Stock Exchange. 

 

 



 

29 

 

 

3.3 Markov Chain Process 

In this study, the Markov chains model is applied to analyze and predict the various 

regimes/phases in financial market returns. These phases can be expressed by first-order 

discrete-time Markov chain model and Markov chain models of higher-order (second-order). 

Markov chain is a sequence of random variables that evolves over a period of time. It is a system 

that undergoes transition between states in the system, and this is characterized by the property 

that the future is independent of the past, given the present. This means that the next state in the 

Markov chain depends only the current state and not on the sequence of events that preceded it. 

This type of “memoryless property” of the past is referred to as the Makovian property. 

The classification of Markovian systems can be grouped into four types, according to the time 

and state parameters, namely; discrete time and state, continuous state and discrete time, discrete 

state and continuous time, continuous time and state. The Markov process of discrete time and 

state, is often referred to as discrete time Markov chain (DTMC) and has wide applicability that 

cuts across various subjects, amongst which are Biology, Physics, Chemistry, Economics and 

Finance, Sports and Music. A DTMC is divided into two main categories; one that is time 

homogeneous (the case where those Markov chains exhibit the constant transition probabilities 

states) and the second, which is time-inhomogeneous (the case where the transition probabilities 

between the states are not constant but time dependent). Further classification of a DTMC could 

be according to the characteristics of the respective state-space. Like states can be reached from 

any other states, while many other states cannot leave once they have entered. In view of this, 

there exist different classes of DTMC, which are categorised as follows; Irreducible DTMC, 

Aperiodic DTMC and Absorbing DTMC. These classifications will be used in simplifying the 

analysis of the behaviours of the Markov chain system in long-term.  

 

3.4 Classification and Concept of the Markov Processes 

The Markov process can be categorised into four types, which is attached to the character of the 

values denoted by ‘t’ and {ASIR}. Meaning that this classification of the Markov process is a 
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function of the time parameter and its state space. Based on the state space, a Markov process 

can either be a discrete or continuous state Markov process. Similarly, with respect to time, a 

Markov process can either be a discrete-time Markov process or a continuous-time Markov 

process (Ibe, 2013).  

Therefore, naming them proceeds as details in Table 3.1; 

1. A discrete random sequence that meets the Markov chain property is termed, “Discrete 

Parameter Markov Chain”, where both ' 't  and { }tASIR  are discrete. 

2. A continuous random sequence that meets the Markov chain property is termed, 

“Discrete Parameter Markov Process”, where ' 't   is discrete and  { }tASIR  is continuous. 

3. A discrete random process that meets the Markov chain property is termed, “Continuous 

Parameter Markov Chain”, where ' 't   is continuous and  { }tASIR  is discrete. 

4. A continuous random process that meets the Markov chain property is referred to as 

“Continuous Parameter Markov” process, where both ' 't   and { }tASIR  are continuous, as 

contain in Table 3.1. 
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Table 3.1: Categories of Markov chain state. 

 Time State Space Combinations 

1 Discrete Discrete {Discrete, Discrete} 

2 Discrete Continuous  {Discrete, Continuous} 

3 Continuous Discrete {Continuous, Discrete} 

4 Continuous Continuous {Continuous, Continuous } 

Source: Summarized by the Author. 
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According to Hallberg (1969), the developments in the study of many economic variables 

overtime can be attributed to stochastic processes. Markov chain can therefore be used to predict 

future developments of certain variables. Furthermore, for the analysis of structural changes in 

one sector, the estimation of Markov chains is an often used approach (Disney et al., 1988).  In a 

Markov process, the movement of an investment returns from one specific period to another is 

represented by transition probabilities. This study is however based on the discrete time discrete-

state process. 

3.5 Assumptions of Markov Chain Models (MCMs) 

In applying the Markov chain models, the following assumptions were taken into cognizance, for 

the smooth running of the model: 

1. A fixed set of states 

2. Fixed transition probabilities and the probability of getting from any state to another, 

through series of transition. 

3. A Markov process converges to a unique distribution over states. This means that what 

happens in the long run will not depend on where the process started from or what 

happened along the way. 

4. What happens in the long run will completely be determined by the transition 

probabilities, which is the likelihood of moving between the various states. 

3.6 Definitions of some terms 

Probability Vector: This refers to a matrix having only one row, and consists of non-negative 

entries, such that the sum of the entries in the row equals to one (1) 

Regular Transition Matrix: This is a matrix referred to as regular if some matrix power 

consists of all positive entries. 

Stochastic Processes: This is a mathematical model, in a probabilistic operation, that evolves 

overtime. A Stochastic process is a random variables ( ){ : }tZ t T
 
 family, where t generally 

indicates time. That is, a random number tZ , which is observed at each moment time t in set T. 
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State Space (S): This is a stochastic process, which defines the set of all possible values that a 

random variable assumes (the set of actual values that (t)Z  can take). The state space S is discrete 

if it is finite or countable. The state space S is the set of states that can be in the stochastic 

process. 

Definition 3.1 

( ){ : }tZ t T  is a discrete-time process if the set T is finite or countable. And in practice, this 

generally means {0,1, 2,3,...}T  . However, a discrete-time process { (0), (1), (2), (3),...}Z Z Z Z  is 

a random number associated with every time 0, 1, 2, 3, … 

Definition 3.2 

( ){ : }tZ t T  is a continuous-time process if T not finite or countable, and is usually denoted as 

follows;  0,T    or  0,T K  for some K. However, a continuous-time process ( ){ : }tZ t T  

has a random number (t)Z , which is associated with every point in time.  

3.7 Computation of All Share Index 

Stock market index, basically referred to as stock index, is a measurement of the value of a 

group/section of the stock market. It is usually computed from the prices of a selected stock of 

interest, and can also be computed for the entire market. The Nigeria Stock Exchange tagged her 

stock market index as All Share Index (ASI). 

In the process of detecting or measuring the extent and direction of the general price movement 

on the trading floor of the Nigerian Stock Exchange, the Exchange started to compute and 

publish Stock Exchange Index in January 1984. Summarily, index is an aggregate of the market 

capitalization of all the companies’ equities listed and traded on the exchange. 

The computation of the index is as follows: 

NSE All Share is given by; 
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where 

aP  and aQ  represent the market price and quantity/number, respectively, of listed ordinary share 

at the current date; while bP   and bQ  are the market price and quantity/number, respectively, of 

listed ordinary share at the base date and 1, 2, ,i n   is the number of the listed companies that 

constitute the Index. 

 

3.8 All Share Index Returns 

Definition 3.3 

Let  { , }tASIR t T  be a Markov chain with index T and state space S. In this study in particular, 

if {1,2,3}S  , then { , }tASIR t T  is said to be a three- state Markov chain. 

The computation of the return on the All Share Index Returns (ASIR) is as follows: 

 

3.8.1 Index Returns 

Let tASI  be the index of the market at time t  and let 1tASI   be the index of the market at time 

1t   on the trading floor of the Nigerian Stock Exchange. Also, the simple net return is denoted 

as tASIR  and given as follows: 
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
      3.4 
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And this can be further brokedown to; 

 
1

1t
t

t

ASI
ASIR

ASI 

        3.5 

And for the computation of the stock returns, the same procedure as in equation 3.4 is applied 

and taking tP  as the closing price of a company’s share for day t  on the trading floor of the 

Nigerian Stock Exchange. The computation of Guaranty Bank Plc and Dangote Cement Price 

returns will also follow the same procedure. 

3.9 Descriptive Statistics 

The descriptive statistics for the series in this study: the All share index, Dangote Cement returns 

and Guaranty Trust Bank returns, which includes the mean, standard deviation, quartiles, 

skewness and kurtosis, will be discussed in subsequent sections. 

3.9.1 Mean 

An arithmetic mean is defined by an algebraic formula that captures all observations. It is 

regarded as being representative of the given set of data and also widely used in advanced 

statistical analysis (further analysis and algebraic calculations often carried out using the mean). 

It can be computed even when the detail of the distribution is not known, but some of the 

observations are known. The mean is least affected by fluctuation of sampling and it is based on 

the value of every item in the observations. 
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3.9.2 Standard Deviation 

It is based on all the observations of the data and shows the extent of how much the observations 

are clustered around a computed mean value. It also gives a more accurate knowledge of how 

data is distributed. Moreover, it is not really affected by extreme values and is considered as the 

best measure of variations. 

3.9.3 Quartile 

This is a statistical term, which divides or partitions a set of observations into four well defined 

and equal parts, based on the values of the data and their positions in the entire set of 

observations. The quartile measures the spread of values above and below the stated partition 

when dividing the distribution into four groups. As median divides the data set into two, so that 

50% of the observations lie below the median and 50% of the observations lies above it, so also, 

the quartile breaks down the observations into quarters so that 25% of the observations are less 

than the lower quartile, 50% are less than the mean and 75% are less than the upper quartile. The 

quartiles, as applicable to this research, are three (3) - lower quartile, median and upper quartile, 

thus forming four parts of the data set. The lower quartile or first quartile is denoted by 1Q  and is 

the middle number that falls between the smallest value of the data set and the median,  2Q  is the 

second quartile (also referred to as the median). The upper or third quartile is denoted by 3Q  and 

is the central point, which lies between the median and the highest observation. 

3.9.4 Skewness and Kurtosis 

By definition, skewness refers to asymmetry (a lack of symmetry) in contrast to the symmetrical 

bell curve normal distribution of a set of data. Having a curve that is shifted to the left or to the 

right, such that no part looks like the mirror of the other, then the data set is said to be skewed. 

However, skewness can be quantified as a representation of the extent to which a distribution 

differs from normal distribution. A normal distribution has a skewness value of zero. A data set 

can be positively-skewed (or right-skewed) or negatively skewed (or left-skewed). The kurtosis, 

on the other hand, measures the heaviness of the tail (whether the data is heavy tailed or light-

tailed), relative to the normal distribution. The kurtosis of a standard normal distribution is 3. 
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Following these definitions, equations 3.6 to 3.9 are the computation of the descriptive statistics 

for ASIR. 
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For the other two variables: DANGCEMR and GTBR, a similar calculation is followed. And in 

case of further definitions on this study, ASIR will be used as a generalized variable for GTBR 

and DANGCEMR in defining MCMs variables. 

3.10 Deterministic and Stochastic Models 

The word “Stochastic” comes from the Greek word, “Stokhazesthai”, which means to aim at or 

guess at (Dobrow 2016). A stochastic process, which often refers to a random process, is one in 

which the outcomes are uncertain, a contrast with the deterministic system, where there is no 

randomness. In a deterministic system, output is always produced from a given input, where 

functions and differential equations are used to describe the deterministic process. Similarly, 

random variables and probability distributions are the input for stochastic system. 

3.10.1 Stochastic Processes 

A stochastic process is a family (or collection) of random variables that are indexed by a 

parameter, such as time (T). The major elements that distinguish between stochastic processes 

include the nature of its state space, its index set T, and the dependence relations among the 

random variables ASIR(t) . Following Ross (1989) the possible values, which ASIR(t)  can take, 

are called the states of ASIR(t) . Changes in the values of a stochastic process ASIR(t) are called 
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transition between the states of{ASIR(t)} . If ASIR(t) i , then the process is said to be in state i  

at time t . Stochastic processes are characterized by three principal properties, namely; the state 

space, the parameter set and the dependence relations between the various random 

variables ASIR(t) . 

The state space is a collection of all possible values that the random variables can take. Put 

differently, it is the sample space of the random variables. If we let [0, ]iASIR    represent 

random variables for all i , the state space of the stochastic process is [0, ] . On the application 

of stochastic processes, in 1852 Brussels applied stochastic processes to model rainfall patterns, 

in 1845 Brussels also applied branching process invented to predict the chance that a family 

name goes extinct. In 1905, Einstein described the mathematical properties of the Brownian 

motion; while he used Poisson processes to describe radioactive decay in 1910 and in 1914. Birth 

and death process (a type of CTMC) was used to model epidemics.   

3.11 Test of Independence 

Stochastic variable sequences have Markovian properties, which is a necessary condition for the 

analysis of Markov chain model and for calculating the transition probabilities using 2 . The 

methods process is as follows. Let ijn  represent the frequency of the process of a step from 

which the starting state i  moves to the state j  in a sequence 1 2, ,...ASIRnASIR ASIR .  The current 

state and the next state are said to be independent, if the probability distribution of one state is 

not affected by the presence of the other state. Suppose that ijn  is the observed frequency of the 

events that occur from state i  to state j , and ije  is the corresponding expected frequency; the 

null hypothesis of the independence assumption is to be rejected, if the chi-square probability 

value is less than the specified significance level  . The computation defines as in equation 3.10 

and follows with the stated hypothesis. 
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The equation 3.10 is a 2  distribution with the 2( 1)k   degrees of freedom. 
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For a two-, three- and four- state Markov Chain, 2, 3 4k and , respectively. If 2

2 2

,(k 1)
 


 , 

the sequence is said to confirm the Markov property, else, the sequence would not be treated as a 

Markovian chain (Yue-zhi et al., 2003). Consequently, the hypothesis test for establishing 

Markovian property is given as follows: 

0H : Successive transitions are independent (Current and next states are independent). 

1H : Successive transitions are not independent (Current and next state are dependent). 

3.12 Model Specification 

Following the assumptions of the MCMs, three main features are desired and they include the 

following: 

1. To identify possible states 

2. To identify possible transitions 

3. To identify transition Probabilities. 

3.13 Construction of Markov Chain Models for Probability Forecasting 

The following assumptions were made to enable the application of MCMs in predicting the 

probability of stock market returns; 

1. The probability; with which market index returns move from one state i  to another state 

j , by the same time interval; has nothing to do with the moment of state i . 

2. The activities of the stock market, from which we derived the index, are impacted by 

random factors; such as, the state of local and global economic conditions, political 

environments, monetary and fiscal policy decision is stable and the various manipulated 

impacts of investors are negligible. 

3. The movement of the market index returns, in a giving day, only depends on the state 

before the immediate closing day, and has little to do with the past; so the returns on the 

past are negligible. 
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3.14 Construction of a Markov Chain Model 

If we have a collection of sequence data ( ){ }tASIR , then we can find the transition frequency ijn  

in the sequence by counting the number of transitions from state i  to state j  in one step. We 

proceed ahead to construct the one step transition matrix as follows; 

 

11 1

1

, ,

, , , ,

, , , ,

, ,

m

ij

m mm

n n

n

n n

 
 
 
 
 
             3.11

 

and from ijn , we proceed to get the estimate of ijp , the transition probability as follows; 
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3.15 Possible States 

The behaviour of SMRs is characterized into five different scenarios; first scenario is a 2-state, 

which was defined as low and high returns regime; second scenario is a 3-state regime, which 

was defined as low, medium and high returns regimes, based on Mean  1SD (standard 

deviation) classification; the third scenario is a 3-state regime, which was defined as low, 

medium and high returns regimes based on Quartiles(Q) classification; the fourth scenario is a 4-

state regime, defined as strong-low, low, high and strong-high returns based on Mean  1SD 

classification; and the fifth scenario being a 4-state regime, defined as strong-low, low, high and 
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strong-high returns based on Quartiles classification. These are applied to the three variables - 

All Share Index Returns (ASIR), Dangote Cement Plc Returns (DANGCEMR) and Guaranty 

Trust Bank Returns (GTBR). 

3.16 Applying the threshold 

In this research, the applications of the respective threshold are based on the mean, standard 

deviation and quartiles, to classify the respective states for the Scenarios 2 to 5.  

3.17 Possible Scenarios 

Scenario 1 

This is a two-state Markov chains model, in which the two possible states - low and high returns, 

are identified. 

1

2

,       if       ASIR 0

,       if      0
t

j
t

S
S

S ASIR


                 3.14

 

1

2

,       if       DANGCEMR 0

,       if      DANGCEMR 0
t

j
t

S
S

S


                                      3.15

 

1

2

,       if       GTBR 0

,       if      GTBR 0
t

j
t

S
S

S


                    3.16

 

From equations 3.14 to 3.16, if 0tASIR  , 0tDANGCEMR  and 0tGTBR  , jS  is classified as 

low returns state, while 0tASIR  , 0tDANGCEMR  and 0tGTBR   indicates jS  as high 

returns state. 

Scenario 2 

In this case, a three-state Markov chains model is considered, with the three states classified as 

{Low Returns, Medium Returns, High Returns}S  , such that the index classification is 1 for 

low returns, 2 for moderate returns and 3 for high returns. The states are thus defined as 

={ 1, 2, 3}S . Therefore, the daily returns are transformed to states, according to equations 3.17, 

3.18 and 3.19. 
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 

  

 

1

2

3

,       if       ASIR

,       if           

,       if       ASIR

tt

t ttt

tt

ASIRASIRt

ASIR ASIRASIRj ASIR t

ASIRASIRt

S

S S ASIR

S

 

   

 

  
    


 

        3.17 

 

   

 

1

2

3

,       if       DANGCEMR

,      if                

,       if       DANGCEMR

tt

t tt t

tt

DANGCEMRDANGCEMRt

DANGCEMR DANGCEMRDANGCEMR DANGCEMRj t

DANGCEMRDANGCEMRt

S

S S DANGCEMR

S

 

   

 

  
    


    3.18

 

 

   

 

1

2

3

,       if       GTBR

,       if      

,       if       GTBR

tt

t tt t

tt

GTBRGTBRt

GTBR GTBRGTBR GTBRj t

GTBRGTBRt

S

S S GTBR

S

 

   

 

  
    


               3.19

 

From equations 3.17 to 3.19, if  
tt

ASIRASIRtASIR    ,  
tt

DANGCEMRDANGCEMRtDANGCEMR   
 

and  
tt

GTBRGTBRtGTBR    , the state is classified as low return state. The state is classified as 

medium returns state if    
t tt t

DANGCEMR DANGCEMRDANGCEMR DANGCEMRtDANGCEMR       , 

   
t tt t

ASIR ASIRASIR ASIRtASIR      
 
and    

t tt t
GTBR GTBRGTBR GTBRtGTBR       . The state is 

classified as high returns state if  
tt

ASIRASIRtASIR    ,  
tt

DANGCEMRDANGCEMRtDANGCEMR   
 

and  
tt

GTBRGTBRtGTBR    . 

Scenario 3 

This scenario is also characterized as a three-state Markov chains model, such that the three 

states are classified as follows: {Low Returns, Medium Returns, High Returns}S   and having  

indexes 1, 2 and 3 corresponding to low, moderate and high returns, respectively, such that the 

states are now defined as ={ 1, 2, 3}S . The daily returns are transformed to states, using 

equations 3.20, 3.21 and 3.22; 

 



 



1 1

2 1 3

3 3

,       if       ASIR

,       if     

,       if       ASIR

t

j t

t

S Q

S S Q ASIR Q

S Q

 
  


         3.20
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

 



1 1

12 3

3 3

,       if       DANGCEMR

,       if      Q

,       if       DANGCEMR

t

j t

t

S Q

S S DANGCEMR Q

S Q

 
  




                     3.21 



 



1 1

12 3

3 3

,       if       GTBR

,       if      Q

,       if       GTBR

t

j t

t

S Q

S S GTBR Q

S Q

 
  


                                   3.22

 

From equations 3.20 to 3.22, if 
1tASIR Q , 

1tDANGCEMR Q and 
1tGTBR Q , the state is 

classified as low returns state; when  
1 3tQ ASIR Q  ,  

1 3tQ DANGCEMR Q   and 

 
1 3tQ GTBR Q  , it is classified as medium returns state; and finally, when 

3tASIR Q , 


3tDANGCEMR Q  and 

3tGTBR Q , it is classified as high returns state. 

Scenario 4 

This scenario is a four-state Markov chains model, with the classification of the four states as 

{   e , ,  ,   }S Strong low r turn low return High return Strong high return  and the index classified as 

A, B, C and D corresponding to “strong-low returns”, “low returns”, “high returns” and “strong-

high returns”, respectively, such that the states are now defined as ={ A, B, C,D}S . 

Consequently, the daily returns can be transformed to states, using equations 3.23, 3.24 and 3.25 

given below; 

 

  

  

 

,      if  ASIR

,       if 

,       if 

,       if ASIR

tt

tt t

tt t

tt

ASIRASIRA t

ASIRASIR ASIRB t

j

ASIRASIR ASIRC t

ASIRASIRD t

S

S ASIR
S

S ASIR

S

 

  

  

 

  

    

  


         3.23

 

 

  

  

 

,      if  DANGCEMR

,       if 

,       if 

,       if DANGCEMR

tt

tt t

tt t

tt

DANGCEMRDANGCEMRA t

DANGCEMRDANGCEMR DANGCEMRB t

j

DANGCEMRDANGCEMR DANGCEMRRC t

DANGCEMRDANGCEMRD t

S

S DANGCEMR
S

S DANGCEMR

S

 

  

  

 

  

  
 

  

 






        3.24

 



 

44 

 

 

  

  

 

,      if  GTBR

,       if 

,       if 

,       if GTBR

tt

tt t

tt t

tt

GTBRGTBRA t

GTBRGTBR GTBRB t

j

GTBRGTBR GTBRC t

GTBRGTBRD t

S

S GTBR
S

S GTBR

S

 

  

  

 

  

    

  


                        3.25

 

From equations 3.23 to 3.25, if  
tt

DANGCEMRDANGCEMRtDANGCEMR    ,  
tt

ASIRASIRtASIR     

and  
tt

GTBRGTBRtGTBR    , it is classified as strong-low returns state; if on the other hand, 

  
tt t

ASIRASIR ASIRtASIR     ,   
tt t

DANGCEMRDANGCEMR DANGCEMRtDANGCEMR   
 

and 

  
tt t

GTBRGTBR GTBRtGTBR     , it is classified as low returns state; while for 

  
tt t

ASIRASIR ASIRtASIR     ,   
tt t

DANGCEMRDANGCEMR DANGCEMRtDANGCEMR    
 

and 

  
tt t

GTBRGTBR GTBRtGTBR     , it is classified as high returns state; and for 

 
tt

ASIRASIRtASIR    ,  
tt

DANGCEMRDANGCEMRtDANGCEMR   
 
and  

tt
GTBRGTBRtGTBR    , it 

is classified as high returns state. 

Scenario 5 

For the fifth scenario, there are four states in the Markov chains model, with the states classified 

as {   ,  ,  ,   }S Strong low return low return High return Strong High return  and the indexes A, B, 

C and D, corresponding to “Strong-low returns”, “Low returns”, “High returns” and “Strong-

high returns”, respectively. The states are now defined as  ={ A, B, C,D}S  and the daily returns 

are subsequently transformed into states using equations 3.26, 3.27 and 3.28, as given below. 

 



 

 



1

1 2

2 3

3

,      if  ASIR

,       if 

,       if 

,       if ASIR

A t

B t
j

C t

D t

S Q

S Q ASIR Q
S

S Q ASIR Q

S Q

 

   

 


           3.26
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

 

 



1

1 2

2 3

3

,      if  DANGCEMR

,       if 

,       if 

,       if DANCEMR

A t

B t
j

C t

D t

S Q

S Q DANGCEMR Q
S

S Q DANGCEMR Q

S Q

 

   

 


                                  3.27

 

 



 

 



1

1 2

2 3

3

,      if  GTBR

,       if 

,       if 

,       if GTBR

A t

B t
j

C t

D t

S Q

S Q GTBR Q
S

S Q GTBR Q

S Q

 

   

 


                            3.28

 

From equations 3.26 to 3.28, if 
1tASIR Q , 

1tDANGCEMR Q  and 
1tGTBR Q , it is classified 

as strong-low returns state; if  
1 2tQ ASIR Q  ,  

1 2tQ DANGCEMR Q   and  
1 2tQ GTBR Q  , 

it is classified as low returns state; if  
2 3tQ ASIR Q  ,  

2 3tQ DANGCEMR Q   and 

 
2 3tQ GTBR Q  , it is classified as high returns state; while when 

3tASIR Q , 


3tDANGCEMR Q  and 

3tGTBR Q , it is classified as strong-high returns state. 

3.18 Possible Transitions 

For Scenario 1 – the case of two states, there are four (4) possible transitions, which are; 

Low return   Low return 

Low return    High return 

High return   Low return 

High return   High return 

For Scenarios 2 and 3, both having 3-states model, there are nine (9) possible transitions. These 

include the following 

Low return     Low return 

Lower return     Medium return 

Low return      High return 
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Medium return    Low return 

Medium return    Medium return 

Medium return    High return 

High return     Low return 

High return     Medium return 

High return     High return 

For Scenarios 4 and 5, both characterized as four-state models, there are sixteen (16)  possible 

transitions. They include; 

Strong low return   Strong low return 

Strong low return   Low return 

Strong low return    High return 

Strong low return    Strong high return 

Low return    Strong low return 

Low return    Low return 

Low return    High return 

Low return    Strong high return 

High return    Strong low return 

High return    Low return 

High return    High return 

High return    Strong high return 

Strong high return   Strong low return 

Strong high return   Low return 

Strong high return   High return 

Strong high return   Strong high return 

3.19  The Transition Probabilities 

The use of transition probabilities provides the necessary information for the transition behaviour 

of the Markov chain model. The elements of transition probability matrix show the probability of 
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transitions from a particular state to another state. This means that the transition probability 

refers to the probability of occurrence of a typical state from one of the existing states. The 

transition probabilities enhance the formation of an idea about the likelihood of occurrence of a 

future state of an event, and provide opportunity to make a guided decision accordingly 

(Madhav,2017). 

3.20 Estimating the Transition Probabilities 

To estimate the probability of transition, the maximum likelihood method was applied, and is 

defined in equation 3.29 as 

 1( / )ij t tP P ASIR j ASIR i  
               3.29

 

Let 1 2, , ,,asiri nasir asir asir  be a realization of the random variable 1
nASIR , with the probability 

of this realization defined by equation 3.30 

 

1 1
1 1 1 1 1 1

2

( ( ) ( / )
n

n n t t
t t

t

P ASIR asir P ASIR asir P ASIR asir ASIR asir 



    
   3.30

 

Also, the equation 3.30 regarding to the probabilities ijP
 
of transition can be written such that the 

likelihood for a transition probability matrix is given by; 

11 1 ( )( )
2

( ) ( )
t t

n

asir asir
t

L p P ASIR asir P




  
 

 3.31 

1 1
1 1

( ) ( ) ij

k k
n

ij
i j

L p P ASIR asir P
 

      3.32
 

 

where ijn
 
is the number of times i  transits to j  in  1

nasir , such that equation 3.32 is the 

likelihood in terms of  ijn . Maximizing the likelihood function with respect to ijP  and taking the 

logarithm then results in equation 3.33 
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1 1
,

( ) logL(p) logP(ASIR ) logij ij
i j

ij

ij ij

l p asir n P

nl

P P

   


 





              3.33 

Equating the derivative with respect to ijP  and equating zero yields  

 
0ij

ij

n

P
  

If the assumption 1ij
j

P   is taken into cognizance and one of the transition probabilities is 

used to solve for the others; the probability of approaching 1 for each i  will be defined by 

1
2

1
n

i ij
j

P P


  , then, taking the derivatives of the likelihood will result in 
ijP




 

1

1

ij i

ij ij i

n nl

P P P


 


 

By setting this equal to zero for the MLE P̂ , 

1

1

1 1

ˆ ˆ

ˆ

ˆ

ij i

ij i

ij ij

i i

n n

P P

n P

n P



         3.34

 

This holds 1j  , and ˆ nij ijP   with  

ˆ ij
ij

ij
j

n
P

n



       3.35

 

This gives the MLE of the transition probability ( ijP )  

Scenario1 

The computations of the probability transitions are as follows; 
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 11 12

21 22
ij

n n
n

n n

 
  
            3.36

 

Then, also have the following probabilities 

  

11
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11 12

12
12

11 12

21
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21 22

22
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21 22

n
p

n n

n
p

n n

n
p

n n

n
p

n n











  

      

3.37

 

With its probability transition matrix given as  

 

11 12

21 22
ij

p p
p

p p

 
  
                             3.38

 

Scenario2 

The transition frequency matrix is given as; 

 

11 12 13

21 22 23

31 32 33

ij

n n n

n n n n

n n n

 
   
 
 

                                       3.39 

The computations of the probability transitions are as follows; 
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33
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31 32 33

n
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n n n

n
p

n n n

n
p

n n n

n
p

n n n


 


 


 


 


                                      3.40
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With its probability transition matrix given as  

 

11 12 13

21 22 23

31 32 33

ij

p p p

p p p p

p p p

 
   
 
                                         3.41 

Scenario3 

The transition frequency matrix is given; 

 

11 12 13

21 22 23

31 32 33

ij

n n n

n n n n

n n n

 
   
 
                                         3.42 

The computations of the probability transitions are as follows; 
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
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
              3.43 
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With its probability transition matrix given as  

11 12 13

21 22 23

31 32 33

ij

p p p

p p p p

p p p

 
   
 
                          3.44

 

Scenario4 

The transition frequency matrix is given as; 

 

AA AB AC AD

BA BB BC BD
ij

CA CB CC CD

DA DB DC DD

n n n n

n n n n
n

n n n n

n n n n

 
 
 
 
 
                             3.45 

The computations of the probability transitions are 
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AA AB AC AD
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AA AB AC AD
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AD
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BA BB BC BD
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DA DB DC DD
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p
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n
p
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n
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p
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n
p

n n n n

n
p

n n n n


  


  


  


  


  


  



                           3.46

 

With its probability transition matrix given as  

 

AA AB AC AD

BA BB BC BD
ij

CA CB CC CD

DA DB DC DD

P P P P

P P P P
P

P P P P

P P P P

 
 
 
 
 
                     3.47 
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Scenario5 

The transition frequency matrix is given as follows 

 

AA AB AC AD

BA BB BC BD
ij

CA CB CC CD

DA DB DC DD

n n n n

n n n n
n

n n n n

n n n n

 
 
 
 
 
               3.48

 

The computations of the probability transitions are 
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AA AB AC AD
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AA AB AC AD
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AA AB AC AD

AD
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BA BB BC BD

DD
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DA DB DC DD
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p
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p
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
  


  


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
  


  


  



             3.49

 

With its probability transition matrix given as  

 

AA AB AC AD

BA BB BC BD
ij

CA CB CC CD

DA DB DC DD

P P P P

P P P P
P

P P P P

P P P P

 
 
 
 
 
               3.50 

 

3.21 Transition Probability and Matrix of Probability Transition  

The likelihood to move from one state to the next state, or stay in similar particular state for a 

single time frame is referred to as the probability of transition. 
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 1 1 1{ ( ) | ( ) }
n nASIR ASIR n n n nP P ASIR t asir ASIR t asir

    
      3.51 

Equation 3.51 is called the first order Markov chain probability of transition. This stands for the 

conditional likelihood of the system being in state 1nasir   at time 1nt  , given that it had been in state 

nasir  at time nt . 

The probabilities of the transitions can be organized in an m m  matrix. This matrix is called the 

probability matrix of one-step transition, as shown in equation 3.46 below; 

11 12 1

12 22 2

1 2

. .

. .

. . . . .

. . . . .

. .

m

m

ij

m m mm

P P P

P P P

P

P P P

 
 
 
 
 
 
                                            3.52

 

where m  represents the total of states. The matrix P  is a square matrix that is non-negative for 

each element, with the elements in each row summing up to unity, that is, 
1

1, 1
m

ij
j

P i to m


   and 

0 1ijP  .   

The initial estimate of ijP  could be calculated as 

 
, , 1, 2, ,ij

ij
i

n
P i j m

n
    

where ijn  is the sample size of the data that refers to the frequency of items or units transitioned 

from state i  to state j . in  is the sample of frequency data in state i . A matrix P , with non-

negative components, such that the component in either row or column sum up to unity  referred 

to as a stochastic or transition matrix. Here, the total of number of rows is equal to the total of 

number of columns, and this gives a complete Markov process description. 
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3.22      n-Step State Probabilities of Transition. 

Let ( )ijP n
 
denote the conditional probability that at a particular time, the system will be in state 

j  after n  transitions, given that it is currently in state i . According to Ross (1989), this is 

defined as follows; 

( / )ij m n nP P ASIR j ASIR i    

1 ,           i=j
(0)

0,            i jijP


  
 

(1)ij ijP P  

( )ijP n
 
is a system that is in state i  at time t n . The likelihood that the system moves to state j  

at time t m n   (sometimes, these time periods are recognized as the total number of steps).  

The probabilities ( )n
ijP  of n-step transition may be indicated as follows; 

(n) (n) (n)
11 12 1
(n) (n) (n)

21 22 2

(n) (n) (n)
1 2

. .

. .

. . . . .

. . . . .

. .

m

m
n

m m mm

P P P

P P P

P

P P P

 
 
 
 
 
 
               3.53

 

From equation 3.53, 21
nP  is the likelihood that a system that is present at state 2 moves to state 1, 

after steps “n”.  

Theorem3.2 

n-Step transition probability matrix  ( )n nP P  where nP  is the thn  power of the matrix, P  

Proof: 

Since 0 1P   and 1P P , the theorem is true for 0, 1n  . The case of  2n   will be as follows; 
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 
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ik n n
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k
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 
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  
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ik kj
k

due to time homogeneity

P P
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









        3.54
 

The last sum followed the matrix multiplication operation, which is valid for 1 ,i j N  . For a 

two-step transition (2)ijP , which is defined as follows; 

2(2) ( / )ij m nP P ASIR j ASIR i    

Assume that m=0, then we have 

2 0

2 1 0

2 1 0 1 0

2 1 1 0

(2) ( / )

( , ASIR / )

( / , ) ( / )

( / ) ( / )

ij

k

k

k

kj ik
k

ik kj
k

P P ASIR j ASIR i

P ASIR j k ASIR i

P ASIR j ASIR k ASIR i P ASIR k ASIR i

P ASIR j ASIR k P ASIR k ASIR i

P P

P P

  

   

     

    








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



                    3.55
 

 

3.23 Chapman-Kolmogorov Equations  

The Chapma-Kolmogrov equations provide a method for computing the n-step transition 

probabilities. The one-step transition probability ijp , defined in equation 3.54, on the basis that 
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from the probabilities of n step , such n  may be obtained from the probabilities of 1 step . 

Therefore, the n step  transition probabilities n
ijp  can be defined as the probability that a 

process in state i  will be in state j , after n  additional transitions. According to Ross (2014), it 

was defined as follows; 

   0, , 0n
ij n k kP P ASIR j ASIR i n i j    

        
3.56

 

However, note that 1
ij ijP P , while the n step  transition probabilities are obtained as follows; 

 
0

, 0, ,n m n m
ij ik kj

k

P P P n m i j






                                  3.57 

One should however understand that n m
ik kjP P  represents for the probability that starting from 

state i , the process will move to state j  in n m  transitions, on a path that takes it into state k  at 

the thn  transition. Summing it together with the intermediate states k  will yield the probability 

that the process will be in state j  after n m  transitions. Mathematically, it follows that; 
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   

0

0
0

0 0
0

0

,

,

n m
ij n m

n m n
k

n m n n
k

m n
kj ik

k

P P ASIR j ASIR i

P ASIR j ASIR k ASIR i
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
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






  

   

     









                3.58                                                                                     

Also let ( )nP  represent the matrix of n step  transition probabilities, n
ijP ; then equation 3.58 

establishes that 
( ) ( ) ( )*n m n mP P P  , which means that; 

 
(2) (1 1) 2*P P P P P    

 
(3) (2 1) 2 1 3*P P P P P    

In the same process, by induction, the following relationship exists; 
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        1 1 1n n n nP P P P P     
                3.59 

One can obtained the n step  transition matrix by multiplying the matrix P  by itself n  times 

(assuming that the transition probability is homogeneous). 

 

3.24 Stochastic Matrix 

A Stochastic matrix is a square matrix P , which satisfies the condition 0,  ,ijP i j  . For each 

row i , 1ij
j

P  . This is also referred to as the Regular Transition Matrix.  

3.25 State of Markov Chains 

For a better knowledge of state of Markov chains, MC consists of several transient and recurrent 

classes. But in the course of this study, the accessibility of the states from each other is 

addressed; the possibility of moving from state i  to state j . Here, it can be said that the state j  

is accessible from state, this leads to the following definitions 

Definition 3.4 

A state j  is accessible from state i , written as i j  , if 0n
ijP   for some n . Every state is 

assumed to be accessible from itself since (0) 1iiP  . 

Definition 3.5 

Two states i  and j  are said to communicate, when written as i j , and if they are accessible 

from each other. In other words, i j  also means j i . 

Definition 3.6 

A Markov chain is said to be irreducible if all states communicate with each other. 
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3.26 Transient and Recurrent State  

If a chain that is in state i , one might need to ask that if the chain will ever return to state i . An 

affirmation answer implies that state i  is a recurrent state, otherwise, it is a transient state. 

Further definition with the notion of hitting time ( )ijH , is given as 

 0min{ 0 : ASIR i, ASIR }ij kH k j      

The hitting time represents the first time the chain enters state j , given that it started from state 

i . If j i , then iiH  is the first time that the chain returns to state i , given that it is currently in 

state i . The random variable iiH  is therefore referred to as the recurrence time of state i . 

As for discrete time, iiH  takes the value 1, 2, . Furthermore, k
iP  is defined as the probability 

that the recurrence time of the state i  is k ; such that  

[ ]k
i iiP P H k    

 iP  is the probability that the event [ever return to i | current state is i ], given by 

 1

k
i i

k

P P




   

Given also that the event [ever return to i |current state is i ] is similar to the event, [ ]iiH   , 

[ ]
iiiP P H     

Definition 3.7 

A state i  is referred to as recurrent if 1iP  , while it is transient if 1iP  . 

In summary, recurrence means that a state is possibly visited again. A recurrent state is where an 

item keeps coming back to, and a transient state is one where an item never returns to. Every 

state is therefore, either recurrent or transient. 
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3.27 Absorbing States 

A state i  is called an absorbing state if it is impossible to leave this particular state. It further 

means that the state i  is absorbing, if and only if, 1iip   and 0ijp 
 
for i j . In a Markov 

chain, if every state can reach an absorbing state, then the Markov chain is an absorbing Markov 

chain. However, for a state that is not absorbing, the Markov chain is called transient. Having a 

discrete time absorbing Markov chain with a finite discrete-state-space and continuous-time 

absorbing Markov chains. 

3.28 Steady State Probabilities 

This is the probability that one approaches, after a large number of transition, is referred to as 

steady state probabilities. As n  gets larger, the state probabilities at the (n 1)th  period get closer 

to those at the (n)th  period. 

 

1 2

11 12
1 2 1 2

21 22

( ) [ ( ), ( )]

[ ( ), ( )] ( ( ), ( ))

n n n

p p
n n n n

p p

  

   



 
  

 
                                       3.60 

These probabilities are called steady state probabilities and are the long-term probability of being 

in a particular state, no matter the state one began. 

3.29 Limiting Distribution 

In a number of studies, a Markov chain exhibits a long-term limiting behaviour (Dobrow 2016). 

The chain is expected to settle down to an equilibrium distribution, which does not depend on the 

position of its initial state. 
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3.29.1  Expression of Limiting Distribution 

Let 0ASIR , 1ASIR , 2ASIR ,… be a transition matrix Markov chain P . A Markov chain limiting 

distribution is a probability distribution,  , with the property that for all i  and j , and 

mathematically expressed as 

 
lim ij j
n

P 


  

However, the above expression of the limiting distribution is the same as each of the following 

mathematical statements; 

(1) For any initial distribution, for all j  

lim ( )n j
n

P ASIR j 


 
                          3.61

 

(2) For any initial distribution  ,  have 

lim n

n
P 


                                                      3.62 

(3) lim n

n
P 




              3.63
 

where   is a stochastic matrix, equivalent to all rows. 

 

3.30 Stationary Distribution 

Let 0ASIR , 1ASIR , 2ASIR ,… be a transition matrix P  Markov chain. A stationary distribution is 

a distribution of probability   that satisfies; 

 P                                                                 3.64 

that is j i ij
i

P   for all j . 

On the assumption that a stationary distribution   is the initial distribution, equation 3.61 

implies that the distribution of 0ASIR  is similar to the distribution of 1ASIR . 
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1 1

2 2

( )

( )

...

n n n

n n

P P P P

P P P

P
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 
 

 

 

 

 
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                                                 3.65 

If 0 1 2, , ,ASIR ASIR ASIR   is a stationary Markov chain, then for any 0n  , the sequence 

1 2, , ,n n nASIR ASIR ASIR   is also a stationary Markov chain; all of which have the same 

transition matrix as the initial chain. Stationary distribution can also be referred to as invariant, 

steady-state or equilibrium distribution. 

 

3.30.1 Limiting Distributions are Stationary Distribution 

Lemma  

Assume that   is the limiting distribution of a Markov chain, with transition matrix P , then   

is a stationary distribution.  

Proof: 

Assume   is the limiting distribution, the aim is to establish that P  , for an initial 

distribution   

 

1

1

lim

lim ( )

lim( )

n

n

n

n

n

n

P

P P

P P

P

 

























                                       3.66
 

Having four (4) possible scenarios of the status of the limiting distributions as follows; 

1. lim nP  exist, has identical rows and each row sum to one 

2. lim nP  exist, does not have identical rows and each row sum to one. 

3. lim nP  exist, but rows not sum to one 

4. lim nP  does not exist 
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3.31 Mean Return Times of Markov Chains 

The analysis and computation of mean return times of Markov chains is a direct by-product of 

the steady-state probabilities. The actual determination of the expected number of transitions 

before the system returns to a state j  for the first time. This is known as the mean first return 

time or the mean recurrence time; computed in a n state  Markov chains as; 

 

1
,      1,2, ,j

j

j n


                              3.67 

All things being equal, in the long-run mean recurrence time, the various states of the transitions 

will be computed as follows; 

For  2j   

 1 2

1 1 1
[ , ]j

j


  

 
                           3.68

 

For  3j   

 1 2 3

1 1 1 1
[ , , ]j

j


   

 
                           3.69

 

For 4j   

 1 2 3 4

1 1 1 1 1
[ , , , ]j

j


    

 
                            3.70

 

3.32 Occupancy Times 

Let { , 0}nASIR n   be a time-homogeneous DTMC on the state-space  1,2, ,S N  , with 

transition probability matrix P  and initial distribution 1 2[ , ,... ]N    . Here, the focus is on 

occupancy times; the expected amount of time the DTMC spends in a given state, during a given 

interval of time, Kulkarni (2011). In other words, the expected time spent by the DTMC in 
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various states. Let  ( )n
jV  the number of visits to state j  by the DTMC over 0,1,2,3, ,n . 

Noteworthy here, is the inclusion of the visit at zero, that is 0 1jV   if 0ASIR j , and zero, 

otherwise. 

 

3.31.1 Definition of Occupancy Times 

( ) ( )
0( / ASIR ) , , 0n n

ij jM E V i i j s n                               3.71 

The quantity ( )ijM n  is called the occupancy time up to n  of state j , starting from state i .   

(n) [ (n)]ijM M
                                                                3.72

 

11 12 1

21 22 2

1 2

(n) (n) . . (n)

(n) (n) . . (n)

( ) . . . . .

. . . . .

(n) (n) . . (n)

N

N

N N NN

m m m

m m m

M n

m m m

 
 
 
 
 
 
        3.73

 

 However, let equation 3.72  be the occupancy times matrix; then, the theorem 3.2 gives the 

methodology of computing the occupancy times. Kulkarni (2011) 

 

Theorem3.2 (Occupancy Times) 

Let { , 0}nASIR n   be a time-homogeneous DTMC on the state-space  1,2, ,S N   with 

transition probability matrix P . The occupancy times matrix is given as; 
0

( ) ,   n 0
n

r

r

M n P


 
 

where 0 1P  , the identity matrix. 
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Proof 

Fix a j s , let 1rW 
 
 if rASIR j  and zero, otherwise. Then, 

0 1

0

( ) ...

( )

j n

n

j r
r

V n W W W

V n W


   


 

Then, proceeds to get as follows; 
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                           3.74 

For 2-state regime, 

 

12 12

0 21 22

( )
n

n

r

p p
M n

p p

 
  

 


                           3.75 

For 3-state regime, 

11 12 13
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M n p p p

p p p
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 


                           3.76 
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For 4-state regime, 

11 12 13 14

21 22 23 24

0 31 32 33 34

41 42 43 44

( )

n

n

r

p p p p

p p p p
M n

p p p p

p p p p


 
 
 
 
 
 



                           3.77 

Equations 3.75, 3.76 and 3.77 give the value for occupancy times, that is, the expected amount of 

time the DTMC spends in a given state, during a given interval of time for 2-state, 3-state and 4-

state regimes, respectively. For this research, 5n   (5 trading days) and 10n   (10 trading days) 

will be used to represent one and two weeks of trading, respectively. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter captures summary of statistics along with discussion of the results, which includes 

the classification of the states of the Markov models for the daily All-Share Index returns, and 

the returns of two other highly capitalized quoted stocks using 2-state, 3-state and 4-state models, 

with the transition probabilities for each of the states. In the study, the long-run distributions 

(stationary distributions) are found for the respective states, across the sample for the All Share 

Index, Dangote Cement and Guaranty Trust Bank Plc. Similarly, the recurrent time of the 

various states of returns are also obtained. The occupancy times were obtained along with the 

computations of the expected time spent by the discrete time Markov chain in various states. 

This research study was based on the Markov chains application to the daily stock-market returns 

in Nigeria and two of the most capitalized stocks, as at June 30, 2018. Based on the research, the 

analysis showed the means of the daily returns of ASIR to be 0.0002, 0.0003 for DANGCEMR 

and 0.0004 for GTBR. With a total weekly data point of 122 weeks, the study reported 0.00588 

weekly returns for ASIR (0.0010 for daily returns). This might be due to small sample size used. 

On the average, GTBR has higher returns than the market (ASIR) and DANGCEMR (Table 4.1). 

With the skewness value of -2.2733 for ASIR and -1.4002 for GTBR, both stocks appeared to be 

skewed to the left, with excess kurtosis of 1475.26 and 55.5504, respectively; indicating heavy 

tails, while the Nigerian stock market was Leptokurtic and Non-Gaussian (Okonta et al 2017). 

On the other hand, DANGCEMR with skewness value of 0.3189 is skewed to the right, with 

light heavy tail, given an excess kurtosis of 5.4401. The positive skewness of DANGCEMR 

indicates that the upper tail of the distribution is thicker than the lower, meaning that the returns 

here, rise more often than it declines. This case was different for ASIR and GTBR, with negative 

skewness; where the lower tail is thicker than upper tail, implying that the returns decline more 

often in this case. This aligns with the submission of Ngozi (2014). 
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Table 4.1: Summary of Statistics 

 ASIR DANGCEMR GTBR 

Mean       0.0002  0.0003   0.0004 

Standard Deviation (SD)       0.1166  0.0200   0.0306 

Q1 (Quartile 1)      -0.0047 -0.0022  -0.0107 

Q2 (Quartile 2)       0.0000  0.0000   0.0000 

Q3 (Quartile 3)       0.0048  0.0028   0.0121 

Mean-SD      -0.1164 -0.0197  -0.0302 

Mean+SD       0.1167  0.0203   0.0310 

Skewness      -2.2733  0.3189  -1.4002 

Kurtosis 1475.2600  5.4401 55.5504 

n (Trading Days) 3,066 1,867 3,066 

Source: Produced by the Author 
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In describing the daily index of Nigerian Stock Exchange All Share Index (ASI) for the period of 

this research, the graph of the daily index ASI are plotted against the trading days, as shown in 

Figure 4.1. From the graph, it is evident that the market recorded the highest value of index 

(66,371.20) on March 3, 2008. From a lower value of 24,085.71 in June 3, 2006, the market also 

recorded its lowest value of 22,800.70 in February 18, 2009. It is evident that the market trends 

in cycles; from low to high, low to low, high to low and high to high. 

Also, from the daily index returns of Nigerian Stock Exchange All Share Index Return (ASIR) 

for the same period of this research, the graph of the daily index return ASIR is plotted against 

the trading days, as shown in Figure 4.2. From the graph, there was an evidence of transition 

from one state to another state. Between the years 2009 and 2012, persistent transition was 

observed. 

The graph of the daily price of DANGCEM is plotted against the trading days, as shown in 

Figure 4.3. The cement company, which became a quoted company in October 2010, portrayed 

evidence that the market trends in cycles, from low to high, low to low, high to low and high to 

high. It reported the first high price of N210 on June 5, 2013, from the listing price of N135. 

However, it came below the price in September 2011. It moves to another, N240 on June 27, 

2014, and reported another peak of N273 on January 17, 2018. From the study, DANGCEM had 

experienced many transitions, in both prices and returns, as captured in Figure 4.4. 

The graph of the daily prices and returns of GTB are plotted against the trading days, as shown 

in Figures 4.5 and 4.6, respectively. It shows on the graphs that the market trends in cycles; from 

low to high, low to low, high to low and high to high. From the study, GTB had experience a 

sequence of transitions in both prices and returns, meaning that in the past, the investors of GTB 

had witness multiple periods of up and down. 
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Figure 4.1: NSE All Share Index 2006-2018            (y axis stand for index and x axis for 
years) 
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Figure 4.2: NSE All Share Index Returns 2006-2018 ;(y axis stand for returns and x axis for 
years) 
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Figure 4.3: Dangcem Daily Closing Price 2010-2018.   (y axis stands for prices and x axis for 
years) 
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Figure 4.4: Dangcem Returns 2010-2018 .          (y axis stands for returns and x axis for years) 
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Figure 4.5: GTB Plc Closing Price 2006-2018    (y axis stand for prices and x axis for years) 
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Figure 4.6: GTB Plc Returns 2006-2018.             (y axis stand for returns and x axis for years) 
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4.2 Classification of states of returns. 

Following the results obtained from Table 4.1, the classes of respective states of returns are 

constructed, in fulfillment of one of the assumptions of MCMs. For each of the scenario, the 

states of returns are as follows: 

Scenario 1 

1

2

,       if       ASIR 0.0000

,       if      0.0000
t

j
t

S
S

S ASIR


                      4.1

 

1

2

,       if       DANGCEMR 0.0000

,       if      DANGCEMR 0.0000
t

j
t

S
S

S


                                      4.2

 

1

2

,       if       GTBR 0.0000

,       if      GTBR 0.0000
t

j
t

S
S

S


                                             4.3

 

Here, taking the closing day as discrete to time units in equations 4.1 to 4.3, whenever the 

computed returns, 0tASIR  , 0tDANGCEMR  , and 0tGTBR  , it will be classified as low 

returns, respectively. Likewise when 0tASIR  , 0tDANGCEMR  , and 0tGTBR  , it will be 

classified as high returns. 

Scenario 2 

 
1

2

3

,       if       ASIR 0.1164

,       if      -0.1164 0.1167

,       if       ASIR 0.1167

t

j t

t

S

S S ASIR

S

 
  
                  4.4

 

 

1

2

3

,       if       DANGCEMR 0.0197

,       if      -0.0197 0.0203

,       if       DANGCEMR 0.0203

t

j t

t

S

S S DANGCEMR

S

 
  
           4.5
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1

2

3

,       if       GTBR 0.0302

,       if      -0.0302 0.0310

,       if       GTBR 0.0310

t

j t

t

S

S S GTBR

S

 
  
                                            4.6

 

For equations 4.4 to 4.6, representing scenario 2, where the threshold applied was Mean  1SD 

(standard deviation), the classifications are as follows; 0.1164tASIR   , 

0.0197tDANGCEMR   , and 0.0302tGTBR   , were classified as low returns;  

0.1164 0.1167tASIR   , 0.0197 0.0203tDANGCEMR   , and 0.0302 0.0310tGTBR   , 

the returns are classified as medium returns, respectively; while 0.1167tASIR  , 

0.0203tDANGCEMR  , and 0.0310tGTBR   are classified as high returns, for ASIR, 

DANGCEMR and GTBR, respectively. 

Scenario 3 

1

2

3

,       if       ASIR 0.0047

,       if      -0.0047 0.0048

,       if       ASIR 0.0048

t

j t

t

S

S S ASIR

S

 
  
                                                      4.7

 

1

2

3

,       if       DANGCEMR 0.0022

,       if      -0.0022 0.0028

,       if       DANGCEMR 0.0028

t

j t

t

S

S S DANGCEMR

S

 
  
                                                        4.8 

1

2

3

,       if       GTBR 0.0107

,       if      -0.0107 0.0121

,       if        0.0121

t

j t

t

S

S S GTBR

S GTBR

 
  
                                                        4.9 

Taking equations 4.7 to 4.9, which represent states in scenario 3, with the applied threshold that 

is based on Quartiles (Q); the classifications are as follows: 0.0047tASIR   , 

0.0022tDANGCEMR   , and 0.0107tGTBR    were classified  as low returns, 

0.0047 0.0048tASIR   , 0.0022 0.0028tDANGCEMR   , and 0.0107 0.0121tGTBR    

are classified as medium returns, while 0.0048tASIR  , 0.0028tDANGCEMR  , and 

0.0121tGTBR   are classified as high returns, respectively, for ASIR, DANGCEMR and GTBR. 
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Scenario 4 

,      if  ASIR 0.1164

,       if -0.1164 0.0002

,       if 0.0002 0.1167

,       if ASIR 0.1167

A t

B t
j

C t

D t

S

S ASIR
S

S ASIR

S

 
     
                                   4.10

 

,      if  DANGCEMR 0.0197

,       if -0.0197 0.0003

,       if 0.0003 0.0203

,       if  DANGCEMR 0.0203

A t

B t
j

C t

D t

S

S DANGCEMR
S

S DANGCEMR

S

 
     
                               4.11

 

,      if  GTBR 0.0302

,       if -0.0302 0.0004

,       if 0.0004 0.0310

,       if GTBR 0.0310

A t

B t
j

C t

D t

S

S GTBR
S

S GTBR

S

 
     
                                           4.12

 

 

Equations 4.10 to 4.12 represent the states classifications of the fourth scenario, where the 

threshold applied was Mean  1SD (Standard Deviation), and are as follows: 0.1164tASIR   , 

0.0197tDANGCEMR   , and 0.0302tGTBR    are classified  as strong-low returns; 

0.1164 0.0002tASIR   , 0.0197 0.0003tDANGCEMR   , and 0.0302 0.0004tGTBR    

are classified as low returns; 0.0002 0.1167tASIR  , 0.0003 0.0203tDANGCEMR  , and 

0.0004 0.0310tGTBR   are classified as high returns; while 0.1167tASIR  , 

0.0203tDANGCEMR   and 0.0310tGTBR   are classified as strong-high returns. 
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Scenario 5 

,      if  ASIR 0.0047

,       if -0.0047 0.0000

,       if 0.0000 0.0048

,       if ASIR 0.0048

A t

B t
j

C t

D t

S

S ASIR
S

S ASIR

S

 
     
                                         4.13

 

,      if  DANGCEMR 0.0022

,       if -0.0022 0.0000

,       if 0.0000 0.0028

,       if DANCEMR 0.0028

A t

B t
j

C t

D t

S

S DANGCEMR
S

S DANGCEMR

S

 
     
                                           4.14

 

 

,      if  GTBR 0.0107

,       if -0.0107 0.0000

,       if 0.0000 0.0121

,       if GTBR 0.0121

A t

B t
j

C t

D t

S

S GTBR
S

S GTBR

S

 
     
                                           4.15

 

Equations 4.13 to 4.15 are the stances in scenario 5, where the threshold applied was based on 

Quartiles (Q), and these classifications are as follows: 0.0047tASIR   , 

0.0022tDANGCEMR    and 0.0107tGTBR    are classified  as strong-low returns; 

0.0047 0.0000tASIR   , 0.0022 0.0000tDANGCEMR    and 0.0107 0.0000tGTBR    

are classified as low returns; 0.0000 0.0048tASIR  , 0.0000 0.0028tDANGCEMR   and 

0.0000 0.0121tGTBR   are classified as high returns; while 0.0048tASIR  , 

0.0028tDANGCEMR   and 0.0121tGTBR   are classified as strong-high returns. 

From scenario 2 to 5, the first research question; “What are the various states likely to identify 

for returns regime changes outside the traditional 2-state regime?”, was adequately treated. 

4.3 Frequency of states of returns 

After classifying the respective states of returns, the result obtained was used to get the 

frequencies for each of the scenarios and for ASIR, DANGCEMR and GTBR, respectively. 

Tables 4.2 to 4.16 were extracted from Appendix 3. 
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Table 4.2:  ASIR frequency of returns for two states (Scenario 1) 

Category Return State Number of Days Percentage 

Low 0.0000  1,458 47.55 

High 0.0000  1,608 52.45 

Total  3,066  

Source: Produced by the Author. 
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Table 4.3:  DANGCEMR frequency of returns for two states (Scenario 1) 

Category Return State Number of Days Percentage 

Low return 0.0000  561 30.05 

High return 0.0000  1,306 69.95 

Total  1,867  

Source: Produced by the Author 
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Table 4.4: GTBR frequency of returns for two states (Scenario 1) 

Category Return State Number of Days Percentage 

Low return 0.0000  1,423 46.41 

High return 0.0000  1,643 53.59 

Total  3,066  

Source: Produced by the Author 
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Tables 4.2, 4.3 and 4.4 give the frequency of returns for scenario 1, with two categories (named 

as low and high returns), for all the returns variables; ASIR, DANGCEMR and GTBR. The 

frequencies for high returns were higher than those of low returns. Since high returns indicate 

bullish period in the market and low return indicate bearish period, the results above support the 

standpoint of Yaya and Gil-Alana (2014) that the bull market (high returns) persist longer than 

the bear market. 

Tables 4.5, 4.6 and 4.7 give the frequency of returns for scenario 2, with categories tagged as 

low, medium and high returns, across the board. The three tables reflect the evidence of 

moderate returns in the Nigeria stock market. If traders, investors and other market participants 

take a position or enter the market in an appropriate entry period, in terms of pricing; the 

probabilities of having a moderate return will be high for the three variables (ASIR, 

DANGCEMR and GTBR). Zhang and Zhang (2009) and Madhav 2017 used similar approach to 

obtain the probability of each state. The results are not comparable, since they are not of the 

same time frame. 
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Table 4.5: ASIR frequency of returns for three states (Scenario 2) 

Category Return State Number of Days Percentage 

Low return 0.1164   4 0.13 

Medium return [ 0.1164      0.1167)  3,058 99.74 

High return 0.1167  4 0.13 

Total    

Source: Produced by the Author 
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Table 4.6: DANGCEMR frequency of returns for three states (Scenario 2) 

Category Return State Number of Days Percentage 

Low return 0.0197      188 10.07 

Medium return [ 0.0197      0.0203)  1,500 80.34 

High return 0.0203     179   9.59 

Total  1,867  

Source: Produced by the Author 
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Table 4.7: GTBR frequency of returns for three states (Scenario 2) 

Category Return State Number of Days Percentage 

Low return 0.0302      288   9.40 

Medium return [ 0.0302      0.0310)  2,436 79.45 

High return 0.0310     342 11.15 

Total  3,066  

Source: Produced by the Author. 
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Tables 4.8, 4.9 and 4.10 give the frequency of returns for scenario 3, with categories tagged as 

low, medium and high returns, across the board. Here also, the three tables show the evidence of 

moderate returns in the Nigeria stock market. The traders, investors and other market participants 

have opportunities of making moderate returns of about 50% chances, provided they enter the 

market at an appropriate time, when the market is down and exit, when market is up. These 

chances of moderate returns were the same for the three variables (ASIR, DANGCEMR and 

GTBR). 

Tables 4.11, 4.12 and 4.13 give the frequency of returns for scenario 4, with categories tagged as 

strong-low, low, high and strong-high returns, across the board. In this scenario, the chances for 

abnormal returns (positive or negative) are minimal.  From the three tables, there is evidence of 

more low returns than high returns, in probability terms, for Nigeria stock market.  

Tables 4.14, 4.15 and 4.16 give the frequency of returns for scenario 5, with categories tagged as 

strong-low, low, high and strong-high returns, across the board. In this scenario, apart from 

DANGCEMR that shows high returns, the other two variables (ASIR and GTBR) give 

marginally high returns of about 27.56% and 28.70%, respectively. 
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Table 4.8: ASIR frequency of returns for three states (Scenario 3) 

Category Return State Number of Days Percentage 

Low return 0.0047      767 25.02 

Medium return [ 0.0047      0.0048)  1,536 50.10 

High return 0.0048     763 24.88 

Total  3,066  

Source: Produced by the Author 
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Table 4.9: DANGCEMR frequency of returns for three states (Scenario 3) 

Category Return State Number of Days Percentage 

Low return 0.0022      471 25.23 

Medium return [ 0.0022      0.0028)     929 49.76 

High return 0.0028     467 25.01 

Total  1,867  

Source: Produced by the Author. 
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Table 4.10: GTBR frequency of returns for three states (Scenario 3) 

Category Return State Number of Days Percentage 

Low return 0.0107      769 25.08 

Medium return [ 0.0107      0.0121)  1,534 50.03 

High return 0.0121     763 24.89 

Total  3,066  

Source: Produced by the Author. 
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Scenario 4 

Table 4.11: ASIR frequency of returns for four states (Scenario 4) 

Category Return State Number of Days Percentage 

Strong-low return 0.1164         4   0.13 

Low return [ 0.1164      0.0002)  1,720 56.10 

High return [0.0002      0.1167)  1,338 43.64 

Strong-high return 0.1167        4   0.13 

Total  3,066  

Source: Produced by the Author 
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Table 4.12: DANGCEMR frequency of returns for four states (Scenario 4) 

Category Return State Number of Days Percentage 

Strong-low return 0.0197      188 10.07 

Low return [ 0.0197      0.0003)  1,145 61.33 

High return [0.0003      0.0203)     355 19.01 

Strong-high return 0.0203     179   9.59 

Total  1,867  

Source: Produced by the Author 
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Table 4.13: GTBR frequency of returns for four states (Scenario 4) 

Category Return State Number of Days Percentage 

Strong-low return 0.0302      288   9.40 

Low return [ 0.0302      0.0004)  1,366 44.55 

High return [0.0004     0.0310)  1,070 34.90 

Strong-high return 0.0310     342 11.15 

Total  3,066  

Source: Produced by the Author. 
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Table 4.14: ASIR frequency of returns for four states (Scenario 5) 

Category Return State Number of Days Percentage 

Strong-low return 0.0047      767 25.02 

Low  return [ 0.0047      0.0000)     691 22.54 

High return [0.0000      0.0048)     845 27.56 

Strong-high return 0.0048     763 24.88 

Total  3,066  

Source: Produced by the Author. 
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Table 4.15: DANGCEMR frequency of returns for four states (Scenario 5) 

Category Return State Number of Days Percentage 

Strong-low return 0.0022      470 25.17 

Low return [ 0.0022      0.0000)       92   4.93 

High return [0.0000      0.0028)     838 44.88 

Strong-high return 0.0028     467 25.01 

Total  1,867  

Source: Produced by the Author. 
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Table 4.16: GTBR frequency of returns for four states (Scenario 5) 

Category Return State Number of Days Percentage 

Strong-low return 0.0107      769 25.08 

Low return [ 0.0107      0.0000)     654 21.33 

High return [0.0000      0.0121)     880 28.70 

Strong-high return 0.0121     763 24.89 

Total  3,066  

Source: Produced by the Author. 
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4.4 Transition Probabilities 

The transition probabilities, as on Tables 4.17 to 4.21 are extracted from the transition 

probability matrix of the daily returns of the Nigerian stock market returns (ASIR), Dangote 

Cement (DANGCEMR) and Guaranty Trust Bank (GTBR), in Appendix 3. 

 

Scenario 1 

According to the result in Table 4.17, the transition probability matrix indicates the ratio value 

for changes in the index/stock returns movements in two successive trading days. From the first 

scenario, which is a two-state transition matrix, it means that if the return on ASI is in the lower 

state on a particular day, the next day’s return will be lower or higher with probabilities 0.5734 

and 0.4266, respectively. Also, if it is high in a particular day, the probabilities that it will be low 

or high the next day are 0.3871 and 0.6129, respectively. For DANGCEM that is in low state of 

return on a particular day, the probabilities of the next day’s low or high states are 0.3173 and 

0.6827, respectively; while if it is in a high state on a particular day, the probabilities for the next 

day’s states of low return or high return are 0.2965 and 0.7065, respectively. Similarly for GTB 

returns that is in low return on a particular day, the probabilities that it will be low or high the 

next day are 0.5074 and 0.4976, respectively; while if it is high on a particular day, the 

probability that it will be in low or high states of returns are 0.4269 and 0.5731, respectively.  

Scenario 2 

For the second scenario, as presented in Table 4.18, if the ASI daily’s return is low on a 

particular day, the next day’s return will be medium or high with probabilities 0.75 and 0.25, 

respectively. If it is in medium return, the next day’s state of market of low, medium and high 

return will be 0.0007, 0.9987 and 0.0007, respectively. Also, if the daily’s return state is in high 

return, probabilities of the following day’s state of return to be low, medium and high return will 

be 0.5, 0.25 and 0.5, respectively.  

 



 

97 

 

 

 

 

 

Table 4.17: Transition Probabilities for Two State 

Transition   ASIR DANGCEMR GTBR 

Low Return to Low Return  11p  0.5734 0.3173 0.5074 

Low Return to High Return  12p  0.4266 0.6827 0.4926 

High Return to Low Return  21p  0.3871 0.2965 0.4269 

High Return to High Return  22p  0.6129 0.7065 0.5731 

Source: Extracted from Scenario 1 (ASIR, DANGCEMR and GTBR) in Appendix 3. 
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Table 4.18: Transition Probabilities for Three State 

Transition  ASIR DANGCEMR GTBR 

Low Return to Low Return 11p  0.0000 0.1330 0.2604 

Low Return to Medium Return 12p  0.7500 0.7181 0.5660 

Low Return to High Return 13p  0.2500 0.1489 0.1736 

Medium Return to Low Return 21p  0.0007 0.0847 0.0690 

Medium Return to Medium Return 22p  0.9987 0.8332 0.8575 

Medium Return to High Return 23p  0.0007 0.0821 0.0735 

High Return to Low Return 31p  0.5000 0.2011 0.1316 

High Return to Medium Return 32p  0.2500 0.6425 0.5380 

High Return to High Return 33p  0.2500 0.1564 0.3304 

Source: Extracted from Scenario 2 (ASIR, DANGCEMR and GTBR) in Appendix 3 
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If DANGCEM daily’s return is in low return, the next day’s return will be low, medium or high 

with probabilities of 0.1330, 0.7181 and 0.1489, respectively. Similarly, if it is in medium return 

state, the next day’s state of market for low, medium and high return will be 0.0847, 0.8332 and 

0.0821, respectively. Also, if the same DANGCEM daily’s return state is in high return state, the 

probabilities of the following day’s state of return to be low, medium and high return will be 

0.2011, 0.6425 and 0.1564, respectively. Likewise, for GTB daily’s return that is currently in 

low return, the next day’s return will be in low, medium or high with probabilities 0.2604, 

0.5660 and 0.1736, respectively. Similarly, for it to be currently positioned at the medium return 

state, the next day’s state of market for low, medium and high return will be 0.0690, 0.8575 and 

0.0735, respectively. Likewise, if GTBR daily’s return state is in high return, the probabilities of 

the following day’s state of return to be in low, medium and high returns, will be 0.1316, 0.5380 

and 0.3304, respectively. If the entire market return (ASIR) is in medium return state, it returns 

to the same medium return state faster than in the cases of GTBR and DANGCEMR. 

Scenario 3 

With a clear disparity from scenario 2, the third scenario result is presented in Table 4.19. The 

ASI daily’s return is in low return, will move to low, medium or high returns state by the next 

day with probabilities 0.4146, 0.4094 and 0.1760, respectively. If it is in medium return, the next 

day’s state of market of low, medium and high return will be 0.2090, 0.5820 and 0.2090, 

respectively. Also, if the daily’s return state is in high return, the following day’s states of return 

to lower, medium and high return will be 0.1680, 0.4304 and 0.4016, respectively. When 

DANGCEM daily’s return is in low return, the next day’s return will be in low, medium or high 

with probabilities 0.2660, 0.4255 and 0.3085, respectively. Similarly, if it is in medium return, 

the following day’s states of market for low, medium and high return will be 0.2196, 0.5813 and 

0.1991, respectively. Also, if the same DANGCEM daily’s return state is in high return, the 

following day’s state of return to low, medium and high return will be 0.3019, 0.4026 and 

0.2955, respectively.  
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Table 4.19: Transition Probabilities for Three State 

Transition  ASIR DANGCEMR GTBR 

Low Return to Low Return 11p  0.4146 0.2660 0.3394 

Low Return to Medium Return 12p  0.4094 0.4255 0.4083 

Low Return to High Return 13p  0.1760 0.3085 0.2523 

Medium Return to Low Return 21p  0.2090 0.2196 0.2081 

Medium Return to Medium Return 22p  0.5820 0.5813 0.6145 

Medium Return to High Return 23p  0.2090 0.1991 0.1774 

High Return to Low Return 31p  0.1680 0.3019 0.2477 

High Return to Medium Return 32p  0.4304 0.4026 0.3644 

High Return to High Return 33p  0.4016 0.2955 0.3879 

Source: Extracted from Scenario 3 (ASIR, DANGCEMR and GTBR) in Appendix 3 
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For GTB daily’s return that is currently in low return, the next day’s return will be in low, 

medium or high with probabilities 0.3394, 0.4083 and 0.2523, respectively. Similarly, for it to be 

currently position of medium return, the next day’s state of market for low, medium and high 

returns will be 0.2081, 0.6145 and 0.1774, respectively. Likewise, if GTBR daily’s return state is 

in high return, the following day’s state of return to low, medium and high returns will be 

0.2477, 0.3644 and 0.3879, respectively. If the entire market return (ASIR) is in medium return, 

it returns to the same medium return state faster than in the cases of GTBR and DANGCEMR. 

Scenario 4 

Here, the fourth scenario result is presented in Table 4.20. The ASI daily’s return is in strong-

low return is shown to move, by the next day to low, high and strong-high return state, with 

probabilities 0.5, 0.25 and 0.25, respectively. If it is in low return, the following day’s state of 

market of strong-low, low, high and strong-high returns will be 0.0006, 0.6453, 0.3535 and 

0.0006, respectively. Also, if the daily’s return state is in high return, the following day’s state of 

return to strong-low, low, high and strong-high returns will be 0.0007, 0.454, 0.5445 and 0.0007, 

respectively.  Furthermore, if the daily’s return state is in strong-high return, the following day’s 

state of return to strong-low, low, high and strong-high return will be 0.5, 0.25, 0.0 and 0.5, 

respectively. 

If DANGCEM daily’s return is in strong-low return, the next day’s return will be strong-low, 

low, high and strong-high with probabilities 0.1330, 0.5160, 0.2021 and 0.1489, respectively. If 

it is in low return, the next day’s state of market of strong-low, low, high and strong-high return 

will be 0.0945, 0.6518, 0.1750 and 0.0787, respectively. Also, if the daily’s return state is in high 

return, the following day’s state of return to strong-low, low, high and strong-high return will be 

0.0534, 0.6067, 0.2472 and 0.0927, respectively.  Moreover, if the daily’s return state is in 

strong-high return, the following day’s state of return to strong-low, low, high and strong-high 

return will be 0.2011, 0.4693,0.1732 and 0.1564, respectively. 
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Table 4.20: Transition Probabilities for Four States 

Transition  ASIR DANGCEMR GTBR 

S/Low Return to S/Low Return 11p  0.0000 0.1330 0.2604 

S/Low Return to Low Return 12p  0.5000 0.5160 0.2951 

S/Low Return to High Return 13p  0.2500 0.2021 0.2708 

S/Low Return to S/High Return 14p  0.2500 0.1489 0.1736 

Low Return to S/Low Return 21p  0.0006 0.0945 0.0886 

Low Return to Low Return 22p  0.6453 0.6518 0.5007 

Low Return to High Return 23p  0.3535 0.1750 0.3602 

Low Return to S/High Return 24p  0.0006 0.0787 0.0505 

High Return to S/Low Return 31p  0.0007 0.0534 0.0440 

High Return to Low Return 32p  0.4540 0.6067 0.4705 

High Return to High Return 33p  0.5445 0.2472 0.3826 

High Return to S/High Return 34p  0.0007 0.0927 0.1029 

S/High Return to S/Low Return 41p  0.5000 0.2011 0.1316 

S/High Return to Lower Return 42p  0.2500 0.4693 0.2749 

S/High Return to High Return 43p  0.0000 0.1732 0.2632 

S/High Return to S/High Return 44p  0.2500 0.1564 0.3304 

Source: Extracted from Scenario 4 (ASIR, DANGCEMR and GTBR) in Appendix 3 
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For GTB daily’s return that is currently in strong- low return, the next day’s return will be 

strong-low, low, high and strong-high with probabilities 0.2604, 0.2951, 0.2708 and 0.1736, 

respectively. If it is in low return, the probabilities of the next day’s state of market being in the 

strong-low, low, high and strong-high return states will be 0.0886, 0.5007, 0.3602 and 0.0505, 

respectively. When the daily’s return state is in high return, the following day’s state of return to 

strong-low, low, high and strong-high return will be with probabilities 0.0440, 0.4705, 0.3826, 

and 0.1029, respectively. Furthermore, if the daily’s return state is in strong-high return, the 

probabilities that the following day’s state of return will be in strong-low, low, high and strong-

high return are 0.1316, 0.2749, 0.2632 and 0.3304, respectively. 

Scenario 5 

The fifth scenario result is presented in Table 4.21. ASI daily’s return is in strong-low return is 

likely to move, by the next day, to strong-low, low, high and strong-high return state with 

probabilities 0.4146, 0.1864, 0.2229 and 0.1760, respectively. If it is in low return, the next day’s 

state of market is likely to be in strong-low, low, high and strong- high return states with 

probabilities 0.2243, 0.3184, 0.2996 and 0.1577, respectively. Also, if the daily’s return state is 

in high return, the following day’s state of return is likely to be in strong-low, low, high and 

strong-high return states with probabilities 0.1964, 0.2402, 0.3124 and 0.2509, respectively.  

Furthermore, if the daily’s return state is in strong-high return, the following day’s state of return 

will be in strong-low, low, high and strong-high return states with probabilities 0.1680, 0.1640, 

0.2664 and 0.4016, respectively. 

If DANGCEM daily’s return is in strong-low return, the next day’s return will be in strong-low, 

low, high and strong-high return states with probabilities 0.2660, 0.0511, 0.3745 and 0.3085, 

respectively. If it is in low return, the following day’s state of market is likely to be in strong-

low, low, high and strong-high return state with probabilities 0.2527, 0.0659, 0.5165 and 0.1648, 

respectively. If the daily’s return state is in high return, the following day’s state of return is 

likely to move to strong-low, low, high and strong-high return with probabilities 0.2160, 0.0549, 

0.5263 and 0.2029, respectively. If the daily’s return state is however in strong-high return, the 

following day’s state of return may be strong-low, low, high and strong-high return with 

probabilities 0.3019, 0.0321, 0.3704 and 0.2955, respectively. 
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For GTB daily’s return that is currently in strong-low return, the next day’s return will be strong-

low, low, high and strong-high with probabilities 0.3394, 0.1678, 0.2406 and 0.2523, 

respectively. If it is in low return, the following day’s state of market will be strong-low, low, 

high and strong- high return with probabilities 0.2385, 0.2691, 0.3440 and 0.1483, respectively. 

When the daily’s return state is in high return, the following day’s state of return are likely to be 

strong-low, low, high and strong-high return with probabilities 0.1854, 0.2594, 0.3561 and 

0.1991, respectively. Furthermore, if the daily’s return state is in strong-high return, the 

following day’s state of return will be strong-low, low, high and strong-high return with 

probabilities 0.2477, 0.1586, 0.2058 and 0.3879, respectively. 

The calculations for transition probabilities as shown on Tables 4.17 to 4.21 for scenarios 1 to 5, 

have addressed research question two, “What will be the forecast, in the probability terms, of the 

returns of the stock market whose future value is influenced only by its current state and not any 

prior activity that may lead the return to its current position?”  
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Table 4.21: Transition Probabilities for Four States 

Transition  ASIR DANGCEMR GTBR 

S/Low Return to S/Low Return 11p  0.4146 0.2660 0.3394 

S/Low Return to Low Return 12p  0.1864 0.0511 0.1678 

S/Low Return to High Return 13p  0.2229 0.3745 0.2406 

S/Low Return to S/High Return 14p  0.1760 0.3085 0.2523 

Low Return to S/Low Return 21p  0.2243 0.2527 0.2385 

Low Return to Low Return 22p  0.3184 0.0659 0.2691 

Low Return to High Return 23p  0.2996 0.5165 0.3440 

Low Return to S/High Return 24p  0.1577 0.1648 0.1483 

High Return to S/Low Return 31p  0.1964 0.2160 0.1854 

High Return to Low Return 32p  0.2402 0.0549 0.2594 

High Return to High Return 33p  0.3124 0.5263 0.3561 

High Return to S/High Return 34p  0.2509 0.2029 0.1991 

S/High Return to S/Low Return 41p  0.1680 0.3019 0.2477 

S/High Return to Low Return 42p  0.1640 0.0321 0.1586 

S/High Return to High Return 43p  0.2664 0.3704 0.2058 

S/High Return to S/High Return 44p  0.4016 0.2955 0.3879 

Source: Extracted from Scenario 5 (ASIR, DANGCEMR and GTBR) in Appendix 3 
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4.5 Test of Independence 

The stochastic variables sequences do have a Markovian property, which is necessary for the 

analysis of Markov chain model and in calculating the transition probabilities using 2 . The test 

hypotheses that establish the Markovian property are given as; 

0H : Successive transitions are independent (current state and next state are independent) 

1H : Successive transitions are not independent (current state and next state are dependent). 

Table 4.22 shows the calculations of the test for Independence; 

All the p-values are less than the stated level,  0.05  , with the exception a 2-state for 

Dangcem. Imperatively, the null that the successive transitions are not independent cannot be 

rejected at 5% level, which implies that the current and the next states are dependent. This 

Markov property tests conducted indicates that the returns follow a Markov chain of first-order, 

and by implication, a day’s return relies only on its immediate previous day’s return. This has 

fulfilled the Markovian property. 
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Table 4.22: Chi-Square Computation 

  2  Degrees of 
freedom 

p-value 

Scenario 1 ASIR 105.67 1 162.2e  

DANGCEMR 0.9471 1 0.3304 

GTBR 19.52 1 069.9e  

Scenario 2 ASIR 1145.9 4 162.2e  

DANGCEMR 48.136 4 108.84e  

GTBR 353.97 4 162.2e  

Scenario 3 ASIR 252.07 4 162.2e  

DANGCEMR 55.173 4 112.98e  

GTBR 207.21 4 162.2e  

Scenario 4 ASIR 1258.2 9 162.2e  

DANGCEMR 63.699 9 102.582e  

GTBR 386.04 9 162.2e  

Scenario 5 ASIR 284.73 9 162.2e  

DANGCEMR 127.89 9 162.2e  

GTBR 216.01 9 162.2e  

Source: Produced by the Author 
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4.6 Long-Run Behavior of the Market Returns 

Scenario 1 

From Table 4.23, the limiting probability (steady-state) vector for the first scenario show that 

 (ASIR) = (0.4757, 0.5243); which implies that 47.57% of the time, the return of the index will 

transit to a low state, while 52.43% of the time, it will transit to a high state. For 

 (DANGCEMR) = (0.3007, 0.6993); in approximately 30.07% of the time, the returns on 

DANGCEMR will move to a low state, while in 69.93% of the time, it transits to a high state. 

For  (GTBR) = (0.4643, 0.5357); in about 46.43% of the time, the returns on GTB will change 

to a low state, while 53.57% of the time, it will transit to a high state. In all cases, a steady-state 

point of four (4) trading days is achieved, which implies that the market will stabilize, with 

corresponding stated probabilities, on the fourth day of continuous trading. 

Scenario 2 

The long-run probability of the market returns for second scenario result is presented in Table 

4.24. It can be observed that  (ASIR) = (0.0014, 0.9972, 0.0014); which indicates that in 

approximately 0.14% of the time, the index will change to a low state, in 99.72% of the time to 

medium state, while 0.14% of the time, it transits to a high state. With  (DANGCEMR) = 

(0.1007, 0.8033, 0.0960), DANGCEM transits to a low state in approximately 10.07% of the 

time, while in 80.33% of the time, it changes to medium, and in 9.60% of the time, it will change 

to high state of return. Similarly,  (GTBR) = (0.0940, 0.7944, 0.1116)  means that in 9.40% of 

the time, the returns on GTB will move to low return; in 79.44% of the time, it will move to 

medium return; while in about 11.16% of the time, it transits to high return.  
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Table 4.23: Long-run Probability of the Market Returns (Scenario 1) 

 
Point of Limiting 

n 
1 2( , )t    

ASIR 4 (0.4757,0.5243) 

DANGCEMR 4 (0.3007, 0.6993) 

GTBR 4 (0.4643, 0.5357) 

1 2,low return high return    

 

 



 

110 

 

 

  

Table 4.24:  Long-run Probability of the Market Returns (Scenario 2) 

 
Point of Limiting 

n 
1 2 3( , , )t     

ASIR 15 (0.0014,0.9972,0.0014) 

DANGCEMR 4 (0.1007,0.8033,0.0960) 

GTBR 8 (0.0940,0.7944,0.1116) 

1 2 3, ,low return medium return high return      
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Scenario 3 

For the third scenario, the long-run probability of the market returns is presented in Table 4.25. 

From the observed result,  (ASIR) = (0.2503, 0.5011,0.2486), which implies that in 25.03% of 

the time ASIR state of return will change to low state; in about 50.11% of the time, it will change 

to medium state; while in about 24.86% of the time, it will change to high state. With 

 (DANGCEMR) = (0.2519, 0.4972, 0.2508), in about 25.19% of the time, returns for 

DANGCEMR will change to low state; in about 49.72% of the time, it moves to medium state; 

and in about 25.08% of the time, it will shift to high state of return. For  (GTBR) = (0.2509,  

0.5006, 0.2485), in about 25.09% of the time, the return state moves to low; in about 50.06% of 

the time, it moves to medium; while in about 24.85% of the time, the returns moves to high state.  

Scenario 4 

In the fourth scenario, the limiting distribution is presented in Table 4.26 and shows that 

 (ASIR) = (0.0013, 0.5609, 0.4360, 0.0013), which implies that in approximately 0.1% of the 

time, ASIR state of return will change to strong-low state; in approximately 56.09% of the time, 

it will change to low state; in approximately 43.60% of the time, it will be in high state; while in 

approximately 0.1% of the time it will change to strong-high. On the DAGCEM returns, the 

limiting distribution is given by  (DANGCEMR) = (0.1007, 0.6120, 0.1914, 0.0959), which 

implies that in 10.07% of the time, the state of the return will change to strong-low; in about 

61.20% of the time, the state of returns will change to low; in approximately 19.14% of the time, 

the state of the return will change to high; while in approximately 9.59% of the time, the return 

will change to strong-high. Similarly, for the GTBR, the obtained limiting distribution is 

 (GTBR) = (0.0940, 0.4457, 0.3488, 0.1116), which indicates that in about 9.40% of the time, 

GTBR state of return will change to strong-low; in about 44.57% of the time, the state of return 

will change to low state; in about 34.88% of the time, the state of return will change to high 

return; while in approximately 11.16% of the time, the state of return will change to strong-high.  
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Table 4.25: Long-run Probability of the Market Returns (Scenario 3) 

 
Point of Limiting 

n 
1 2 3( , , )t     

ASIR 8 (0.2503, 0.5011, 0.2486) 

DANGCEMR 6 (0.2519, 0.4972, 0.2508) 

GTBR 7 (0.2509, 0.5006,0.2485) 

1 2 3, ,low return medium return high return      
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Table 4.26: Long-run Probability of the Market Returns (Scenario 4) 

 
Point of Limiting 

n 
1 2 3 4( , , , )t      

ASIR 15 (0.0013, 0.5609, 0.4360, 0.0013) 

DANGCEMR 6 (0.1007, 0.6120, 0.1914, 0.0959) 

GTBR 9 (0.0940, 0.4457, 0.3488, 0.1116) 

1 2 3 4, , ,strong low return low return high return strong high return        
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Scenario 5 

From Table 4.27, the limiting distribution of the fifth scenario is presented. For ASIR, the 

obtained limiting distribution is  (ASIR) = (0.2501, 0.2253, 0.2755, 0.2485), which indicates 

that in approximately 25.01% of the time, ASIR state of return will change to strong-low state; in 

approximately 22.53% of the time, it will change to low state; in approximately 27.55% of the 

time, it will be in high state; while in 24.85% of the time, it will change to strong-high. The 

limiting distribution obtained for DANGCEM is  (DANGCEMR) = (0.2520, 0.0488, 0.4486, 

0.2509), which indicates that in about 25.20% of the time, the state of the return will change to 

strong-low; in about 4.88% of the time, the state of returns will change to lower; in 

approximately 44.86% of the time, the state of the return will change to high; while in about 

25.09% of the time, the return will change to strong-high. Likewise in the case of GTBR, the 

limiting distribution is obtained as  (GTBR) = (0.2508, 0.2134, 0.2872, 0.2485) and indicates 

that in about 25.08% of the time, GTBR state of return will change to strong-low; in about 

21.34% of the time, the state of return will change to low state; in approximately 28.72% of the 

time, the state of return will change to high return; while in about 24.85% of the time, the state of 

return will change to strong-high.  

Tables 4.23 to 4.27, which indicate the limiting distribution and point of limiting point of 

limiting distributions, have solved both research questions 3 and 4 together, as the question 

stated thus; “What will be the various probability distributions which remain unchanged after 

various stages of transition as time progress and similarly what will be the stable probabilities for 

each of the state of market returns?” and “At what time will the market returns for each of the 

regimes reach a stable point?” 
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Table 4.27: Long-run Probability of the Market Returns (Scenario 5) 

 Point of Limiting 

n 
1 2 3 4( , , , )t      

ASIR 8 (0.2501, 0.2253, 0.2755, 0.2485) 

DANGCEMR 7 (0.2520, 0.0488, 0.4486, 0.2509) 

GTBR 9 (0.2508, 0.2134, 0.2872, 0.2485) 

1 2 3 4, , ,strong low return low return high return strong high return        
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4.7 Computation of Mean Return Times of the Markov Chain 

 

Scenario 1 

From Table 4.28, the mean return times for low and high returns are as follows: For ASIR, the 

obtained mean returns is 2 days; for DANGCEMR, it lies between 2 and 3 days; while for 

GTBR, the mean return time is between 1 and 2 days. ASIR returns faster to previous position, 

followed by GTBR, while it takes a longer time for DANGCEMR to return to any of its previous 

position. 

Scenario 2 

Table 4.29 shows that the mean return time was over predicted for scenario 2. For ASIR, it will 

take about 716 days to return to low return, just 1 day in returning to medium return, and about 

716 days to return to high return position. However, the case is different for DANGCEMR, as it 

takes about 10 days to return low return, 1 day to return to medium return and 10 days to return 

to high return. Also, for GTBR, it will take approximately 10 days to return to low return, 1 day 

to return to medium return and 9 days to return to high return. 

Scenario 3 

Table 4.30 shows that the mean return time gives a moderate timing of returns for scenario 3, we 

have as follows; for ASIR it will take 4 days to return low return, and 2 days in returning to 

medium return while also takes 4 days to return to high return position. More like that of ASIR, 

it shows that for  DANGCEMR it takes  4 days to return  low return, 2 days to return to medium 

return and 4 days to return to high return. Also for GTBR, it will take 4 days for returning to low 

return, 2 days to return to medium return and 4 days to return to high-return.    
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Table 4.28: Mean Return Times of the Market Returns (Scenario 1) 

Variables 1 2( , )t    

ASIR (2.10, 1.90) 

DANGCEMR (3.32, 1.42) 

GTBR (2.15, 1.86) 

1 2,low return high return    
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Table 4.29: Mean Return Times of the Market Returns (Scenario 2) 

Variables 1 2 3( , , )t     

ASIR (716.42, 1.00, 716.42) 

DANGCEMR (9.92,  1.24,  10.42) 

GTBR (10.64,  1.25,  8.96) 

1 2 3, ,low return medium return high return      
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Table 4.30: Mean Return Times of the Market Returns (Scenario 3) 

Variables 
1 2 3( , , )t     

ASIR (3.99, 1.99, 4.02) 

DANGCEMR (3.99, 2.01,3.98) 

GTBR (3.99, 1.99, 4.02) 

1 2 3, ,low return medium return high return      
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Scenario 4 

Table 4.31 presents the mean return time for scenario 4. For ASIR, it will take approximately 

778 days to return to strong-low return position, 2 days to return to low return position, 2 days to 

return to high return position and 778 days to return to strong high return position. However, the 

case is different for DANGCEMR, as it takes about 10 days to return strong low return position, 

2 days to return to low return position, 5 days to return to high return position and 10 days in 

returning to strong high return position. Similarly for GTBR, it will take 10 days for GTBR to 

return to strong-low return position, 2 days to return to low return position, 3 days to return to 

high return position and 9 days to return to strong high return position. 

Scenario 5 

Table 4.32 presents the mean returns for the fifth scenario. It is observed that for ASIR, it will 

take approximately 4 days to return strong-low return, 4 days to return to low return position, 3 

days to return to high return position and 4 days to return to strong-high return position. Also, for 

DANGCEMR, it takes 4 days to return strong-low return position, 2 days to return to low return 

position, 2 days to return to high return position and 4 days in returning to strong high return 

position. In the case of GTBR, it will take about 4 days for GTBR to return to strong low return 

position, approximately 5 days to return to low return position, about 3 days to return to high 

return position and approximately 4 days to return to strong high return position. 
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Table 4.31: Mean Return Times of the Market Returns (Scenario 4) 

Variables 1 2 3 4( , , , )t      

ASIR (778.68,1.78,2.29,778.64) 

DANGCEMR (9.92, 1.63, 5.22,10.42) 

GTBR (10.64, 2.24,2.86,8.96) 

1 2 3 4, , ,strong low return low return high return strong high return        
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Table 4.32: Mean Return Times of the Market Returns (Scenario 5) 

Variables 1 2 3 4( , , , )t      

ASIR (3.99, 4.43, 3.60, 4.02) 

DANGCEMR (3.96, 2.05, 2.22, 3.98) 

GTBR (3.99, 4.68, 3.48, 4.02) 

1 2 3 4, , ,strong low return low return high return strong high return        
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4.8 Computation of Occupancy Times 

 

Scenario 1 

From Tables 4.33 and 4.34, two cases are considered, which include when 5n   and 10n  , and 

they represent the trading days for the expected amount of time spent during transition period 

from low return to low return. The number of days for ASIR and GTBR greater than that of 

DANGCEMR. The case is, however, different for transition of high return to high return. 

DANGCEMR is found to remain in high- to- high (4 days) than the likes of ASIR and GTBR. 

For the 3 variables under study, the cross interstate returns remain in low returns between 1 and 2 

days for transition from low to high and high to low. This indicates that DANGCEM is more 

stable in giving high returns to the investors than GTB and the entire market index (ASIR). 

When 10n  , ASIR and GTBR reported above 5 days, staying in low return to low return. While 

for high-to-high, DANGCEMR could conveniently stay for 8 out of 10 days, in compensating 

the investors. It has high period of consistence for high returns. 

 

Scenario 2 

From Tables 4.35 and 4.36, when 5n  ; from low-to-low returns, all the three variables trend 

along the same line, maintaining less than 2 days within the low transition state. Similarly for 

medium to medium, all reported the same number of days, except ASIR that is very close to 6 

days (overestimated). Transition from low to medium returns is also high for ASIR, 

DANGCEMR and GTBR. Similarly, transition from medium to high return was also high, while 

the transition from high to high was low across the board. In the same way, for 10n   days, all 

the three variables remained on low to low transition states for less than 2 days; for the low to 

medium return transition states, occupancy period for ASIR was higher compared to those of 

DANGCEMR and GTBR. In this scenario, the occupancy period was also overestimated for the 

case of ASIR (estimates of above 10 days), while DANGCEMR and GTBR were close to 10 

days. The transitions from high to high returns remained between 1 to 2 days across the board, 

having occupancy period of above 8 days for ASIR to make a reversal transit from high to 

medium return, and above 7 days for DANGCEMR and GTBR each. 
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Table 4.33: Occupancy Times for Two States (Scenario 1) - 5n   

Transition   ASIR DANGCEMR GTBR 

Low Return to Low Return  11m  3.4986 2.5203 3.3682 

Low Return to High Return  12m  2.5013 3.4796 2.6317 

High Return to Low Return  21m  2.2697 1.4959 2.2807 

High Return to High Return  22m  3.7302 4.5040 3.7192 
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Table 4.34: Occupancy Times for Two States (Scenario 1) - 10n   

Transition   ASIR DANGCEMR GTBR 

Low Return to Low Return  11m  5.8773 4.0236 5.6896 

Low Return to High Return  12m  5.1226 6.9763 5.3103 

High Return to Low Return  21m  4.6483 2.9992 4.4602 

High Return to High Return  22m  6.3516 8.0008 6.3979 
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Table 4.35: Occupancy Times of the Market Returns-Three States (Scenario 2) - 5n   

Transition  ASIR DANGCEMR GTBR 

Low Return to Low Return 11m  1.1930 1.5449 1.6840 

Low Return to Medium Return 12m  4.4144 3.9151 3.6462 

Low Return to High Return 13m  0.3932 0.5399 0.6696 

Medium Return to Low Return 21m  0.0056 0.4848 0.4347 

Medium Return to Medium Return 22m  5.9902 5.0517 5.0632 

Medium Return to High Return 23m  0.0056 0.4634 0.5020 

High Return to Low Return 31m  0.7819 0.6181 0.5395 

High Return to Medium Return 32m  3.6268 3.8285 3.5994 

High Return to High Return 33m  1.5817 1.5533 1.8610 
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Table 4.36: Occupancy Times of the Market Returns-Three States (Scenario 2) - 10n   

Transition  ASIR DANGCEMR GTBR 

Low Return to Low Return 11m  1.2100 2.0486 2.1542 

Low Return to Medium Return 12m  9.3839 7.9316 7.6177 

Low Return to High Return 13m  0.4100 1.0197 1.2280 

Medium Return to Low Return 21m  0.0125 0.9885 0.9044 

Medium Return to Medium Return 22m  10.9803 9.0682 9.0358 

Medium Return to High Return 23m  0.0125 0.9432 1.0597 

High Return to Low Return 31m  0.8085 1.1218 1.0097 

High Return to Medium Return 32m  8.5861 7.8450 7.5706 

High Return to High Return 33m  1.6085 2.0331 2.4196 
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Scenario 3 

In scenario 3, (results presented in Tables 4.37 and 4.38), the occupancy time reported during the 

transition period from low to low returns is approximately within 2 days each for ASIR, 

DANGEMR and GTBR, when 5n  . Similarly, the occupancy time was in the same trend for 

the transition period from low to medium return, while transition period from low to high returns 

and medium to low returns maintained the bound of 1 day, across the board. In this scenario also, 

the market was always stable during the transition from medium to medium returns for a period 

of 3 days and above for ASIR, DANGCEMR and GTBR. The cross state of returns movement 

from medium to high returns and from high to low returns’ occupancy times was above 1 day for 

all the variables, while the transition returns for high to high returns revolves around 2 days for 

ASIR, DANGCEM and GTBR. 

A situation of having 10n  , the occupancy time reported during the transition period for low to 

low returns was above 3 days for ASIR, DANGEMR and GTBR. The trend in the occupancy 

time the same for the transition period from low to medium return, which is also above 4 days; 

while transition period from low to high returns and medium to low returns maintained the 

domain of 2 days for all the variables. When 5n  , the market is always stable during the 

transition from medium to medium returns for a period of about 6 days and above for ASIR, 

DANGCEMR and GTBR. The cross state of returns movement from medium to high returns and 

from high to low returns’ occupancy time is above 2 days for all the variables, while the 

transition returns for high to high returns was above 3 days for ASIR, DANGCEM and GTBR. 

Scenario 4 

In scenario 4 result on occupancy time reported in Tables 4.39 and 4.40, during the transition 

period for strong/low to strong/low returns was above 1 day for ASIR, DANGEMR and GTBR 

when 5n  . The occupancy time showed similar trends for the transition period from strong/low 

to low return of above 2 days, while transition period from strong/low to high returns was within 

1 day bound, and strong/low to strong/high returns maintained less than 1 day across the board. 

In this scenario, market was always stable during the transition from low to low returns, for a 

period of above 3 days, for ASIR, DANGCEMR and GTBR. The cross state of returns 

movement from high to low returns’ occupancy times was above 3 days for all the variables.  
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Table 4.37: Occupancy Times of the Market Returns-Three States (Scenario 3) - 5n   

Transition  ASIR DANGCEMR GTBR 

Low Return to Low Return 11m  2.4631 2.2801 2.3569 

Low Return to Medium Return 12m  2.3922 2.3993 2.3860 

Low Return to High Return 13m  1.1446 1.3204 1.2569 

Medium Return to Low Return 21m  1.2017 1.2204 1.2008 

Medium Return to Medium Return 22m  3.6021 3.5873 3.6517 

Medium Return to High Return 23m  1.1960 1.1922 1.1474 

High Return to Low Return 31m  1.1378 1.3169 1.2587 

High Return to Medium Return 32m  2.4250 2.3725 2.3218 

High Return to High Return 33m  2.4371 2.3105 2.4194 
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Table 4.38: Occupancy Times of the Market Returns-Three States (Scenario 3) - 10n   

Transition  ASIR DANGCEMR GTBR 

Low Return to Low Return 11m  3.7145 3.5398 3.6113 

Low Return to Medium Return 12m  4.8977 4.8854 4.8890 

Low Return to High Return 13m  2.3876 2.5747 2.4995 

Medium Return to Low Return 21m  2.4530 2.4800 2.4552 

Medium Return to Medium Return 22m  6.1076 6.0735 6.1549 

Medium Return to High Return 23m  2.4392 2.4464 2.3898 

High Return to Low Return 31m  2.3890 2.5766 2.5132 

High Return to Medium Return 32m  4.9305 4.8586 4.8247 

High Return to High Return 33m  3.6803 3.5647 3.6619 
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Table 4.39: Occupancy Times of the Market Returns-Four States (Scenario 4) - 5n   

Transition  ASIR DANGCEMR GTBR 

S/Low Return to S/Low Return 
11m  1.1927 1.5434 1.6824 

S/Low Return to Low Return 
12m  2.6464 2.9469 2.0118 

S/Low Return to High Return 
13m  1.7675 0.9694 1.6334 

S/Low Return to S/High Return 
14m  0.3929 0.5401 0.6716 

Low Return to S/Low Return 
21m  0.0050 0.4957 0.4579 

Low Return to Low Return 
22m  3.9098 4.1051 3.3042 

Low Return to High Return 
23m  2.0795 0.9390 1.7650 

Low Return to S/High Return 
24m  0.0050 0.4599 0.4727 

High Return to S/Low Return 
31m  0.0053 0.4512 0.4063 

High Return to Low Return 
32m  2.6731 3.0603 2.2692 

High Return to High Return 
33m  3.3152 2.0155 2.7862 

High Return to S/High Return 
34m  0.0053 0.4729 0.5381 

S/High Return to S/Low Return 
41m  0.7817 0.6169 0.5376 

S/High Return to Low Return 
42m  2.3264 2.8891 1.9790 

S/High Return to High Return 
43m  1.3101 0.9404 1.6202 

S/High Return to S/High Return 
44m  1.5815 1.5534 1.8636 
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Table 4.40: Occupancy Times of the Market Returns-Four States (Scenario 4) - 10n   

Transition  ASIR DANGCEMR GTBR 

S/Low Return to S/Low Return 11m  1.2091 2.0471 2.1526 

S/Low Return to Low Return 12m  5.4464 6.0068 4.2392 

S/Low Return to High Return 13m  3.9336 1.9263 3.3769 

S/Low Return to S/High Return 14m  0.4091 1.0197 1.2301 

Low Return to S/Low Return 21m  0.0114 0.9994 0.9278 

Low Return to Low Return 22m  6.7149 7.1651 5.5326 

Low Return to High Return 23m  4.2602 1.8959 3.5091 

Low Return to S/High Return 24m  0.0114 0.9395 1.0304 

High Return to S/Low Return 31m  0.0117 0.9548 0.8762 

High Return to Low Return 32m  5.4777 6.1202 4.4976 

High Return to High Return 33m  5.4957 2.9723 4.5302 

High Return to S/High Return 34m  0.0117 0.9524 1.0959 

S/High Return to S/Low Return 41m  0.8077 1.1206 1.0080 

S/High Return to Low Return 42m  5.1215 5.9490 4.2068 

S/High Return to High Return 43m  3.4616 1.8973 3.3641 

S/High Return to S/High Return 44m  1.6077 2.0329 2.4223 
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Also, the transition return for high to high returns was above 3 days for ASIR, while it was above 

2 days for both DANGCEM and GTBR. The transition returns for strong/high to strong/high 

returns was above 2 days for ASIR, DANGCEM and GTBR. 

For 10n  , the occupancy time reported during the transition period for strong/low to strong/low 

returns was within 2 days for ASIR, DANGEMR and GTBR. The occupancy time was between 

4 and 6 days for the transition period from strong/low to low returns, while the transition period 

from strong/low to high returns are the same for ASIR and GTBR, with above 3 days, while for 

DANGCEMR, it was below 2 days. Ditto for 5n  , as market is always stable during the 

transition from low to low returns, for a period of 5 days and above for ASIR, DANGCEMR and 

GTBR. The transition occupancy time for high to high returns was above 5 days for ASIR, and 

above 3 days for both DANGCEM and GTBR. The cross state of returns movement from high to 

low returns’ occupancy times was above 4 days for all the variables. The transition returns for 

strong/high to strong/high returns was greater than 1 day for ASIR, and above 2 days for both 

DANGCEM and GTBR. 

Scenario 5 

From Tables 4.40 and 4.41, the occupancy time reported during the transition period for strong/ 

low to strong/low returns was above 2 days for ASIR, DANGEMR and GTBR when 5n  . 

However, the occupancy time was not similar for the transition period from strong/low to low 

return, as it was above 1 day for ASIR and GTBR, and less than 1 day for DANGCEMR. The 

transition period from strong/low to high returns followed the same pattern, as ASIR and GTBR 

were above 1 day, while DANGCEMR was above 2 days. Strong/low to strong/high returns 

maintained above 1 day across the board. In this scenario, the market was less stable during the 

transition from low to low returns for a period of between 1 and 2 days for ASIR, DANGCEMR 

and GTBR. The cross state of returns movement from high to low returns’ occupancy times was 

above 1 day for ASIR and GTBR, while it was less than 1 day for DANGCEMR. The transition 

returns for high to high returns was above 3 days for DAMGCEMR, and above 2 days for ASIR 

and GTBR, which is contrary to what was obtained in Scenario 4. The transition returns for 

strong/high to strong/high returns was above 2 days for ASIR, DANGCEM and GTBR. 
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For 10n  , the occupancy time reported during the transition period for strong/low to strong/low 

returns was above 3 days for ASIR, DANGEMR and GTBR. However, the occupancy time was 

not the same for the transition period from strong/low to low return, as it was above 2 days for 

ASIR and GTBR, and less than 1 day for DANGCEMR. The transition period from strong/low 

to high returns followed the same pattern, as ASIR and GTBR was above 2 days, while 

DANGCEMR was above 4 days. Strong-low to strong-high returns maintained above 2 days 

across the board. In this scenario, market was less stable during the transition from low to low 

returns for a period of between 1 and 3 days for ASIR, DANGCEMR and GTBR. The cross state 

of returns movement from high to low returns’ occupancy times was above 2 days for ASIR and 

GTBR, and less than 1 day for DANGCEMR. The transition returns for high to high returns was 

greater than 5 days for DAMGCEMR, greater than 3 days for both ASIR and GTBR. This also 

contradicts the stance in Scenario 4. The transition returns for strong/high to strong/high returns 

was greater than 3 days for ASIR, DANGCEM and GTBR. 

Following the computed occupancy times, which was the expected time spent at the various 

states of DTMC, as obtained from Tables 4.33 to 4.42, research question 5 has been adequately 

addressed. 
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Table 4.41: Occupancy Times of the Market Returns-Four States (Scenario 5) - 5n   

Transition  ASIR DANGCEMR GTBR 

S/Low Return to S/Low Return 11m  2.4630 2.2806 2.3565 

S/Low Return to Low Return 12m  1.0804 0.2445 1.0102 

S/Low Return to High Return 13m  1.3116 2.1552 1.3761 

S/Low Return to S/High Return 14m  1.1438 1.3204 1.2576 

Low Return to S/Low Return 21m  1.2261 1.2524 1.2345 

Low Return to Low Return 22m  2.2390 1.2633 2.1382 

Low Return to High Return 23m  1.4084 2.3262 1.5134 

Low Return to S/High Return 24m  1.1259 1.1578 1.1133 

High Return to S/Low Return 31m  1.1826 1.2170 1.1755 

High Return to Low Return 32m  1.1464 0.2515 1.1279 

High Return to High Return 33m  2.4204 3.3359 2.5236 

High Return to S/High Return 34m  1.2494 1.1963 1.1727 

S/High Return to S/Low Return 41m  1.1361 1.3166 1.2588 

S/High Return to Low Return 42m  1.0507 0.2254 0.9934 

S/High Return to High Return 43m  1.3711 2.1469 1.3284 

S/High Return to S/High Return 44m  2.4415 2.3109 2.4192 
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Table 4.42: Occupancy Times of the Market Returns-Four States (Scenario 5) - 10n   

Transition  ASIR DANGCEMR GTBR 

S/Low Return to S/Low Return 11m  3.7137 3.5407 3.6109 

S/Low Return to Low Return 12m  2.2070 0.4884 2.0776 

S/Low Return to High Return 13m  2.6893 4.3983 2.8123 

S/Low Return to S/High Return 14m  2.3863 2.5752 2.5004 

Low Return to S/Low Return 21m  2.4769 2.5123 2.4886 

Low Return to Low Return 22m  3.3657 1.5072 3.2054 

Low Return to High Return 23m  2.7863 4.5689 2.9493 

Low Return to S/High Return 24m  2.3685 2.4124 2.3557 

High Return to S/Low Return 31m  2.4332 2.4771 2.4297 

High Return to Low Return 32m  2.2730 0.4954 2.1952 

High Return to High Return 33m  3.7983 5.5791 3.9596 

High Return to S/High Return 34m  2.4920 2.4511 2.4153 

S/High Return to S/Low Return 41m  2.3867 2.5764 2.5131 

S/High Return to Low Return 42m  2.1774 0.4692 2.0606 

S/High Return to High Return 43m  2.7491 4.3895 2.7643 

S/High Return to S/High Return 44m  3.6843 3.5654 3.6620 
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4.9    Discussion of Results 

In this study, Microsoft Excel package was used for the sorting and classification of various 

states, before proceeding with further analysis using R codes, specifically written for the 

estimation of the transition probabilities, limiting distributions, mean return times, the initial 

state probabilities and occupancy times. 

The transition probability matrix specifies the ratio value for changes in the index/stock return 

movements in two successive trading days. From the first scenario, which is two-state transition 

matrix, ASI return is in lower state is likely to transit to lower state with probability 0.5734 or to 

a higher state with probability 0.4266. It could also transit from a high return state low state with 

probability 0.3871 or a high return state with probability 0.6129. DANGCEM returns can transit 

from a low state to another low state with probability 0.3173 or to a high return state with 

probability 0.6827. From a high return state, it could transit to a low return state with probability 

0.2965 or to a high return state with probability 0.7065. With respect to GTB returns transiting 

from low return state to a low and high return state, it does so with probabilities 0.5074 and 

0.4976, respectively, and for a transition from high to low and high return state, it moves with 

probabilities 0.4269 and 0.5731, respectively.  

For the second scenario, the ASI daily’s return transits from a lower return state to medium and 

high return states with respective probabilities 0.75 and 0.25. It transition from medium return 

state to lower, medium and higher return state are with probabilities 0.0007, 0.9987 and 0.0007, 

respectively. From higher return state to lower, medium and higher return states, the transition 

probabilities are 0.5, 0.25 and 0.5, respectively.  

4.9.1 Limiting Distribution (Equilibrium)  

The model does not provide forecasting results in absolute form (Madhav, 2017). The initial state 

vector and the transition probability matrices are used in estimating the probability of ASIR, 

DANGCEMR and GTBR, being in different states in the upcoming days. 

From the steady-state, the limiting probability vector in the first scenario given as  (ASIR) = 

(0.4757, 0.5243) implies that 47.57% of the period of the index return will transit to a low state, 
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while 52.43% of the time to a high state. For  (DANGCEMR) = (0.3007, 0.6993) means that 

30.07% of the time the DANGCEMR’s return will move to a low state, while 69.93% of the time 

to a high state. And  (GTBR) = (0.4643, 0.5357) implies that 46.43% of the time, the GTB’s 

return will change to a low state, while 53.57% of the time to a high state.  

From the second scenario,  (ASIR) = (0.0014, 0.9972, 0.0014) indicates that 0.14% of the 

period of the index return will change to a low state, 99.72% of the time to medium state, while 

0.14% of the time to a high state. With  (DANGCEMR) = (0.1007, 0.8033, 0.0960) indicates 

that 10.07% of the time, the state of return will change to low state, 80.33% of the time it will 

change to medium, while 9.60% of the time it will change to high state of return. Similarly 

 (GTBR) = (0.0940, 0.7944, 0.1116)  means that 9.40% of the time the GTB’s return will move 

to low return, 79.44% of the time it will move to medium return, while at 11.16% of the time to 

high return.  

On the third scenario, (ASIR) = (0.2503, 0.5011,0.2486) shows that 25.03% of the time ASIR 

state of return will change to low state, 50.11% of the time it will change to medium state, while 

at 24.86% of the time it will change to high state. With  (DANGCEMR) = (0.2519, 0.4972, 

0.2508) means that 25.19% of the time returns for DANGCEM change to low state, 49.72% 

moves to medium state and 25.08% of the time shift to high state of return. For  (GTBR) = 

(0.2509, 0.5006, 0.2485), 25.09% of the time the return state move to low, 50.06% of the time it 

moves to medium, while 24.85% of the time the return moves to high state.  

The fourth scenario reveals that the limiting distribution is  (ASIR) = (0.0013, 0.5609, 0.4360, 

0.0013) and implies in 0.1% of the time ASIR state of return will change to strong- low state, 

56.09% of the time it will change to low state and 43.60% of the time it will be in high state, and 

0.1% of the time it will change to strong-high. The limiting distribution for  (DANGCEMR) = 

(0.1007, 0.6120, 0.1914, 0.0959) also indicates that 10.07% of the time the state of the return 

will change to strong-low, 61.20% of the time the state of returns will change to low, 19.14% of 

the time the state of the return will change to high, while 9.59% of the time the return will 

change to strong-high. Also, for the GTBR will obtained the limiting distribution  (GTBR) = 

(0.0940, 0.4457, 0.3488, 0.1116), which indicate that 9.40% of the time GTB state of return will 

change to strong-low, 44.57% of the time the state of return will change to low state, 34.88% of 
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the time the state of return will change to high return while 11.16% of the time the state of return 

will change to strong-high.  

For the fifth scenario, the obtained limiting distribution was  (ASIR) = (0.2501, 0.2253, 0.2755, 

0.2485), which predicted that 25.01% of the time ASIR state of return will change to strong-low 

state, 22.53% of the time it will change to low state and 27.55% of the time it will be in high 

state and 24.85% of the time it will change to strong-high. The limiting distribution 

 (DANGCEMR) = (0.2520, 0.0488, 0.4486, 0.2509) indicates that 25.20% of the time the state 

of the return will change to strong-low, 4.88% of the time the state of returns will change to 

lower, 44.86% of the time the state of the return will change to high, while 25.09% of the time 

the return will change to strong-high. Likewise we have the limiting distribution  (GTBR) = 

(0.2508, 0.2134, 0.2872, 0.2485) which indicate that 25.08% of the time GTBR state of return 

will change to strong-low, 21.34% of the time the state of return will change to low state, 

28.72% of the time the state of return will change to high return, while 24.85% of the time the 

state of return will change to strong-high.  

 

4.9.2 Mean Return Times 

From scenario 1, the mean return times for low return and high return were as follows: ASIR 

(2.10, 1.90); DANGCEMR (3.32, 1.42); GTBR (2.18, 1.86). The mean returns time was over 

predicted in scenario 2, we have as follows; ASIR (716.42, 1.0, 716.42); DANGCEMR (9.92, 

1.24, 10.42); GTBR (10.64, 1.25, 8.96), for low-return, medium and high-return, respectively. 

From scenario 3, also have as follows: ASIR (3.99, 1.99, 4.02); DANGCEMR (3.99, 2.01, 3.98); 

GTBR (3.98, 2.0, 4.02), for low-return, medium and high-return, respectively. 

Scenario 4 gives an over predicting the mean return times as follows: ASIR (778.68, 1.78, 2.29, 

778.64); DANGCEMR (9.92, 1.63, 5.22, 10.42); GTBR (10.64, 2.24, 2.86, 8.96), for strong-low, 

low, high and strong-high return, respectively. 

For scenario 5, the mean return times are as follows: ASIR (3.99, 4.43, 3.6, 4.02); DANGCEMR 

(3.96, 2.05, 2.22, 3.98); GTBR (3.99, 4.68, 3.48, 4.02); for strong-low, low, high and strong-high 

returns, respectively. 
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4.9.3 Occupancy Times 

Results on the expected amount of time spent in a given interval of time during the transition 

period for each the states reveal that in scenario 1, between 2 to 4 days out of 5 days were spent 

on a particular state transitions, and between 3 to 8 days out of 10 days across the three series. 

For Scenario 2, the expected amount of time spent during the transition period was between 0 to 

6 days out of 5 days and between 0 to 11 days out of 10 days, an over-estimated value of the 

occupancy times noted when the mean and standard deviation was used as a threshold for the 

classification of the states. 

In scenario 3, the expected amount of time spent during the transition period was between 2 and 

3 days out 5 days, while it was between 4 and 6 days out of 10 days. Similarly, in scenario 5, the 

expected amount of time spent to between 2 and 3 out of 5 days and between 2 and 6 out of 10 

days.  

The existing literatures that applied the same procedure for the transition probabilities, limiting 

distributions and expected returns are as follows; Zhang and Zhang (2009), Madhav (2017), 

Idolor et.at. (2018), Doubleday and Esung (2011), and Vasanthi Subha and Nambi (2011). As 

they deferred from this research study in terms of time horizon, mostly focused on monthly and 

weekly data and none of them go further to look at the occupancy times of the states. Okonta 

et.al (2017) that was fairly similar to this study also used weekly data and considered only two 

states of returns. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Summary of Findings 

In this work, the impact of the stock market returns on the global economy as it rises and falls 

was investigated, with focus on the global market and the Nigeria stock market returns. Also, the 

study was motivated by the need to work on the probability and conditional probability of 

Nigerian market returns, as it moves from one transition to the other. Evidence of state transition 

in the Nigerian stock market returns was also established into strong-low, low, high and strong-

high. 

The decision to adapt MCMs to the Nigerian stock market returns was duly justified for the 

study. Similarly, the gap identified was well addressed with the extension of 2-state to 3-state 

and 4-state of market returns in Nigerian stock market. The daily frequency data was used, as 

against weekly data used by Okonta et al. (2017). Following this, persistence of returns was 

noticed on the state transition probability. Stationary probabilities, expected time of revisit to the 

states and expected time spent on each state transition were adequately fitted in the Nigeria stock 

market returns. 

The choice of MCMs for this study was further reinforced by Zhang and Zhang (2009) 

describing Markov Chain prediction methods as a probability forecasting method. The predicted 

results simply expressed the probability of a certain state of stock returns in the future, rather 

than in the absolute state. Markov prediction therefore plays an important role in modern day 

statistics because of its Markovian properties of “no after effect”. There is a weak demand on 

historical data. The difference between Markov Model and other statistical methods (such as 

time series and regression analysis) is that it does not need to find mutual laws among the factors 

from the predictor. It simply considers the characteristics of the evolution on the history situation 

of the event itself and calculates changes of the internal classified states. 
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Considering the various risks associated with investment in stocks, investors and financial 

portfolio managers need to follow the transition probabilities of various state of returns, 

identified in this research, as the effects of those risk are signals to the changes in the 

probabilities of the transition. Having looked at the All share Index, Dangcem and GTB, over the 

stated sample period, the study reveals that market returns comprise of one of two, three and four 

different states of transition, at the close of each trading day. The trend of the market is either 

upward or downward (bull or bear) for 2-state; up, down or zero (bull, bear and stagnant states) 

for 3-state; and strong up, up, down and strong down (bull, retracement, support and bear states). 

This could be likened to the economic cycle that has four stages (expansion, peak, contraction 

and trough). Noting very clearly during the expansion state; the economy would experience a 

rapid development, growth in business coupled with low interest rate and increase in production. 

During contraction, there is recession and correction of the economy. The period of contraction 

is characterized by slow growth, fall in employment, while prices of goods and services remain 

stagnant. The trough period is when economy is at a low point of growth, from where the 

recovery takes off. 

On the major deductions, the contributions of extreme returns are noted at both ends (lower side 

and upper side). Expected time spent on each states of more than 2 days in a week and 5 days in 

two weeks would allow the investors and traders enough time to take decision, either to enter the 

market or exit from the market. The estimated revisit time of the state gives the reason for short 

term trading opportunity in the market of selling high and buying low, or selling low and buying 

lower, within a short interval of revisits of each state.  

5.2 Contributions to Knowledge 

Extension of the return to 3-state and 4-state with the use of mean, standard deviation and 

quartiles as the thresholds for the classification of the states of returns across the three series. 

Using the MCMs of 3-state and 4-state in predicting the Nigerian Stock Market return series. 

Here, probabilities statements about the 2-state, 3-state and 4-state of the returns were made for 

the All Share Index, Dangote Cement Plc and Guaranty Trust Bank Plc. 

The increase in the limiting and expected return times in days for scenarios 4 and 5 is good for 

an investor, as it allows more room for investment before return to equilibrium. It further 
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supports the classification of valuation and recommendation of stocks into; strong-sell, sell, buy 

and strong-buy. 

The occupancy time in a state is the time spent in that state, over that system’s life time; this was 

a contribution as previous researches in stock market returns are unable to introduce it to 

determine the time spent in life time of a state of market returns’ life time. Models based on 

absorbing Markov Chains provide a powerful framework for the analysis of occupancy times as 

mentioned by Kulkani (2011)  

5.3 Limitation of the Study 

Non availability of hourly data during the period of this research was a major limitation, as the 

intra-day transition of the state of returns and the prediction of the regime changes within the 

trading days in Nigerian Stock Market could not be captured. 

5.4 Areas of Future Research  

Several studies on share price movements and returns of the Nigeria stock markets are available 

in extant literature, including specifically works of scholars like Davou et al. (2013), Afolabi and 

Dada (2014) and Okonta et al. (2017). However, most of the studies focus on the first tier arm of 

the market, while the second tier remain un-touched, and also, with more attention on the ASI. 

Further studies can be spread over the following sectorial indices: 

1. NSE Banking Sector Index 

2. NSE Industrial Goods Index 

3. NSE Consumer Goods Index 

4. NSE Oil and Gas Index 

5. NSE Insurance Index.  

More future research can be carried out in applied MCMs to the five sectorial indices, in order to 

establish which sectorial index returns transition move along with the NSE ASIR, and also to 

predict the change pattern of each of these sectorial index returns. 
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Also, the following new customized indices exist: NSE 30 index, NSE Premium Index, NSE 

Pension Index, NSE Asem Index, NSE-AFR Bank Value Index, NSE-AFR Div Yield Index, 

NSE MERI Growth Index, NSE MERI Value Index and NSE Lotus II. New areas of future 

research could also be extended to increase in the memory of MCMs, by looking at 2nd order 

Markov chain process. Okonta et al. (2017) used weekly index, while this research used daily 

index. Further studies can be extended to the hourly index, to examine the intra-day probability 

transition of the returns. 

5.5 Conclusions and Recommendations. 

In summary, the equilibriums of the MCM showed that it will take a longer period (15 days) for 

the regimes to change, for scenarios 2 to 5. Persistence in state returns were well pronounced 

across the three series in the transition probabilities for scenarios 2 to 5, with occupancy times 

predicted at lower time (1.19 days) in scenario 3 and 5. This creates more liquidity in the market; 

and aligns with the findings of Chen and Hill (2013) that assert the existence of a close 

association between liquidity and returns, and allow a more frequent bargain, which is likely to 

attract more traders, stakeholders and participant. It will make the market more active and robust. 

The extended classification based on quartiles generally outperformed the hitherto 2-state regime 

classification and those of standard deviation. Therefore, regime changes in Nigerian Stock 

Market return are better predicted using Markov chain models based on the quartile 

classification. 

Poorly performing stock market returns is an indication that investors are losing value; 

otherwise, the investors are gaining value. A high probability in the transition probabilities in 

favour of high- returns and strong-high returns states indicate that the stakeholders in the market 

are gaining value, while low transition probabilities reveal that the investors/traders participating 

in the market are losing value. 

Therefore, in view of the above, the application of the use of MCM in determining the direction 

of the stock market returns will empower investors, traders and other market participants, like 

institutional investors; making a reasonable decision in minimizing losses and maximizing 

profits. 
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APPENDIX 1 

#  2 States  NSE Returns 2006 to 2018 
library(expm) 
library(markovchain) 
library(diagram) 
library(pracma) 
stationdistTPM <- function(M){ 
 eigenprob <- eigen(t(M)) 
 temp <- which(round(eigenprob$values,1)==1) 
 stationdist <- eigenprob$vectors[,temp] 
 stationdist <- stationdist/sum(stationdist) 
 return(stationdist) 
 } 
stateNames <- c("Lower","Higher")  # NSE Returns 2006 to 2018 
P <- matrix(c(0.5734,0.4266,0.3871,0.6129), 
nrow=2, byrow=TRUE) 
row.names(P) <- stateNames; colnames(P) <- stateNames 
P 
 stationdistTPM(P) 
1/stationdistTPM(P) 
P0<- P%^% 0 
P2<- P%^% 2 
P3<- P%^% 3 
P4<- P%^% 4 
P5<- P%^% 5 
P6<- P%^% 6 
P7<- P%^% 7 
P8<- P%^% 8 
P9<- P%^% 9 
P10<- P%^% 10 
P12<- P%^% 12 
P15<- P%^%15 
# NSE Returns 2006 to 2018 
round(P0, 4) 
round(P2, 4) 
round(P3, 4) 
round(P4,4) 
round(P5, 4) 
round(P6, 4) 
round(P7, 4) 
round(P8,4) 
round(P9, 4) 
round(P10,4) 
round(P12,4) 
round(P15,4) 
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Poccup10=P0+P+P2+P3+P4+P5+P6+P7+P8+P9+P10 
Poccup5=P0+P+P2+P3+P4+P5 
Poccup10 
Poccup5 
plotmat(round(P,2),pos = c(1,1), 
lwd = 1, box.lwd = 2, 
cex.txt = 0.8, 
box.size = 0.1, 
box.type = "circle", 
box.prop = 0.5, 
box.col = "light yellow", 
arr.length=.1, 
arr.width=.1, 
self.cex = .4, 
self.shifty = -.01, 
self.shiftx = .13, 
main = "ASI Returns Markov Chain-(2006-2018)") 
P3 <- P %^% 3 
round(P3,4) 
InitialStates <- c(1/2, 1/2) 
round(InitialStates %*% P3,4) 
 
 
#  3 States  NSE Returns 2006 to 2018 
 
 
library(expm) 
library(markovchain) 
library(diagram) 
library(pracma) 
 
 
stationdistTPM <- function(M){ 
 eigenprob <- eigen(t(M)) 
 temp <- which(round(eigenprob$values,1)==1) 
 stationdist <- eigenprob$vectors[,temp] 
 stationdist <- stationdist/sum(stationdist) 
 return(stationdist) 
 } 
 
stateNames <- c("Lower","Moderate","Higher")  # NSE Returns 2006 to 2018 
P <- matrix(c(0.0,0.75,0.25,0.0007,0.9987,0.0007,0.5,0.25,0.25), 
nrow=3, byrow=TRUE) 
row.names(P) <- stateNames; colnames(P) <- stateNames 
 
round(P,4) 
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 stationdistTPM(P) 
 
1/stationdistTPM(P) 
 
P0<- P%^% 0 
P2<- P%^% 2 
P3<- P%^% 3 
P4<- P%^% 4 
P5<- P%^% 5 
P6<- P%^% 6 
P7<- P%^% 7 
P8<- P%^% 8 
P9<- P%^% 9 
P10<- P%^% 10 
P12<- P%^% 12 
P15<- P%^%15 
 
# NSE Returns 2006 to 2018 
 
round(P0, 4) 
round(P2, 4) 
round(P3, 4) 
round(P4,4) 
round(P5, 4) 
round(P6, 4) 
round(P7, 4) 
round(P8,4) 
round(P9, 4) 
round(P10,4) 
round(P12,4) 
round(P15,4) 
 
Poccup10=P0+P+P2+P3+P4+P5+P6+P7+P8+P9+P10 
 
Poccup5=P0+P+P2+P3+P4+P5 
 
Poccup10 
Poccup5 
 
plotmat(round(P,2),pos = c(1,2), 
lwd = 1, box.lwd = 2, 
cex.txt = 0.8, 
box.size = 0.1, 
box.type = "circle", 
box.prop = 0.5, 
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box.col = "light yellow", 
arr.length=.1, 
arr.width=.1, 
self.cex = .4, 
self.shifty = -.01, 
self.shiftx = .13, 
main = "ASI Returns Markov Chain-(2006-2018)") 
P3 <- P %^% 3 
round(P3,4) 
InitialStates <- c(1/3, 1/3, 1/3) 
round(InitialStates %*% P3,4) 
 
#  3 States  NSE Returns 2006 to 2018 
 
library(expm) 
library(markovchain) 
library(diagram) 
library(pracma) 
 
 
stationdistTPM <- function(M){ 
 eigenprob <- eigen(t(M)) 
 temp <- which(round(eigenprob$values,1)==1) 
 stationdist <- eigenprob$vectors[,temp] 
 stationdist <- stationdist/sum(stationdist) 
 return(stationdist) 
 } 
 
stateNames <- c("Lower","Moderate","Higher")  # NSE Returns 2006 to 2018 
P <- matrix(c(0.4146,0.4094,0.1760,0.2090,0.5820,0.2090,0.1680,0.4304,0.4016), 
nrow=3, byrow=TRUE) 
row.names(P) <- stateNames; colnames(P) <- stateNames 
 
P 
 
 stationdistTPM(P) 
 
1/stationdistTPM(P) 
 
P0<- P%^% 0 
P2<- P%^% 2 
P3<- P%^% 3 
P4<- P%^% 4 
P5<- P%^% 5 
P6<- P%^% 6 
P7<- P%^% 7 
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P8<- P%^% 8 
P9<- P%^% 9 
P10<- P%^% 10 
P12<- P%^% 12 
P15<- P%^%15 
 
# NSE Returns 2006 to 2018 
 
round(P0, 4) 
round(P2, 4) 
round(P3, 4) 
round(P4,4) 
round(P5, 4) 
round(P6, 4) 
round(P7, 4) 
round(P8,4) 
round(P9, 4) 
round(P10,4) 
round(P12,4) 
round(P15,4) 
 
Poccup10=P0+P+P2+P3+P4+P5+P6+P7+P8+P9+P10 
 
Poccup5=P0+P+P2+P3+P4+P5 
 
Poccup10 
Poccup5 
 
plotmat(round(P,2),pos = c(1,2), 
lwd = 1, box.lwd = 2, 
cex.txt = 0.8, 
box.size = 0.1, 
box.type = "circle", 
box.prop = 0.5, 
box.col = "light yellow", 
arr.length=.1, 
arr.width=.1, 
self.cex = .4, 
self.shifty = -.01, 
self.shiftx = .13, 
main = "ASI Returns Markov Chain-(2006-2018)") 
P3 <- P %^% 3 
round(P3,4) 
 
InitialStates <- c(1/3, 1/3, 1/3) 
round(InitialStates %*% P3,4) 
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#  4 States  NSE Returns 2006 to 2018 
 
library(expm) 
library(markovchain) 
library(diagram) 
library(pracma) 
 
 
stationdistTPM <- function(M){ 
 eigenprob <- eigen(t(M)) 
 temp <- which(round(eigenprob$values,1)==1) 
 stationdist <- eigenprob$vectors[,temp] 
 stationdist <- stationdist/sum(stationdist) 
 return(stationdist) 
 } 
 
stateNames <- c("StongLower","Lower","Higher","StrongHigher")  # NSE Returns 2006 to 2018 
P <- 
matrix(c(0.0,0.5,0.25,0.25,0.0006,0.6453,0.3535,0.0006,0.0007,0.4540,0.5445,0.0007,0.5,0.25,0.
0,0.25), 
nrow=4, byrow=TRUE) 
row.names(P) <- stateNames; colnames(P) <- stateNames 
 
P 
 
 stationdistTPM(P) 
 
1/stationdistTPM(P) 
 
P0<- P%^% 0 
P2<- P%^% 2 
P3<- P%^% 3 
P4<- P%^% 4 
P5<- P%^% 5 
P6<- P%^% 6 
P7<- P%^% 7 
P8<- P%^% 8 
P9<- P%^% 9 
P10<- P%^% 10 
P12<- P%^% 12 
P15<- P%^%15 
 
# NSE Returns 2006 to 2018 
 
round(P0, 4) 



 

159 

 

round(P2, 4) 
round(P3, 4) 
round(P4,4) 
round(P5, 4) 
round(P6, 4) 
round(P7, 4) 
round(P8,4) 
round(P9, 4) 
round(P10,4) 
round(P12,4) 
round(P15,4) 
 
Poccup10=P0+P+P2+P3+P4+P5+P6+P7+P8+P9+P10 
 
Poccup5=P0+P+P2+P3+P4+P5 
 
Poccup10 
Poccup5 
 
plotmat(round(P,2),pos = c(2,2), 
lwd = 1, box.lwd = 2, 
cex.txt = 0.8, 
box.size = 0.1, 
box.type = "circle", 
box.prop = 0.5, 
box.col = "light yellow", 
arr.length=.1, 
arr.width=.1, 
self.cex = .4, 
self.shifty = -.01, 
self.shiftx = .13, 
main = "ASI Returns Markov Chain-(2006-2018)") 
P3 <- P %^% 3 
round(P3,4) 
 
InitialStates <- c(1/4, 1/4, 1/4,1/4) 
round(InitialStates %*% P3,4) 
#  4 States  NSE Returns 2006 to 2018 
 
library(expm) 
library(markovchain) 
library(diagram) 
library(pracma) 
 
 
stationdistTPM <- function(M){ 
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 eigenprob <- eigen(t(M)) 
 temp <- which(round(eigenprob$values,1)==1) 
 stationdist <- eigenprob$vectors[,temp] 
 stationdist <- stationdist/sum(stationdist) 
 return(stationdist) 
 } 
 
stateNames <- c("StongLower","Lower","Higher","StrongHigher")  # NSE Returns 2006 to 2018 
P <- 
matrix(c(0.4146,0.1864,0.2229,0.1760,0.2243,0.3184,0.2996,0.1577,0.1964,0.2402,0.3124,0.250
9,0.1680,0.1640,0.2664,0.4016), 
nrow=4, byrow=TRUE) 
row.names(P) <- stateNames; colnames(P) <- stateNames 
 
P 
 
 stationdistTPM(P) 
 
1/stationdistTPM(P) 
 
P0<- P%^% 0 
P2<- P%^% 2 
P3<- P%^% 3 
P4<- P%^% 4 
P5<- P%^% 5 
P6<- P%^% 6 
P7<- P%^% 7 
P8<- P%^% 8 
P9<- P%^% 9 
P10<- P%^% 10 
P12<- P%^% 12 
P15<- P%^%15 
 
# NSE Returns 2006 to 2018 
 
round(P0, 4) 
round(P2, 4) 
round(P3, 4) 
round(P4,4) 
round(P5, 4) 
round(P6, 4) 
round(P7, 4) 
round(P8,4) 
round(P9, 4) 
round(P10,4) 
round(P12,4) 
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round(P15,4) 
 
Poccup10=P0+P+P2+P3+P4+P5+P6+P7+P8+P9+P10 
 
Poccup5=P0+P+P2+P3+P4+P5 
 
Poccup10 
Poccup5 
 
plotmat(round(P,2),pos = c(2,2), 
lwd = 1, box.lwd = 2, 
cex.txt = 0.8, 
box.size = 0.1, 
box.type = "circle", 
box.prop = 0.5, 
box.col = "light yellow", 
arr.length=.1, 
arr.width=.1, 
self.cex = .4, 
self.shifty = -.01, 
self.shiftx = .13, 
main = "ASI Returns Markov Chain-(2006-2018)") 
P3 <- P %^% 3 
round(P3,4) 
 
InitialStates <- c(1/4, 1/4, 1/4,1/4) 
round(InitialStates %*% P3,4) 
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APPENDIX  2 

 

Computation of Chi-square 
All Share Index Returns (ASIR) 
Scenario 1 
library (matrix) 
library (MASS) 
# table1 2006-2018 
table1=matrix(c(836,622,622,985),ncol=2,byrow=TRUE) 
colnames(table1)=c("NegativeReturn","PostiveReturn") 
rownames(table1)=c("NegativeReturn","PostiveReturn") 
# table1 2006-2018 
table1 
# table1 2006-2018 
 chisq.test(table1) 
Scenario 2 
library (matrix) 
library (MASS) 
# table2 2006-2018 
table2=matrix(c(0,3,1,2,3053,2,2,1,1),ncol=3,byrow=TRUE) 
colnames(table2)=c("LowerReturn","ModerateReturn","HigherReturn") 
rownames(table2)=c("LowerReturn","ModerateReturn","HigherReturn") 
# table2 2006-2018 
table2 
# table2 2006-2018 
 chisq.test(table2) 
Scenario 3 
library (matrix) 
library (MASS) 
# table3 2006-2018 
 
table3=matrix(c(318,314,135,321,894,321,128,328,306),ncol=3,byrow=TRUE) 
colnames(table3)=c("LowerReturn","ModerateReturn","HigherReturn") 
rownames(table3)=c("LowerReturn","ModerateReturn","HigherReturn") 
# table3 2006-2018 
table3 
# table3 2006-2018 
 
 chisq.test(table3) 
Scenario 4 
library (matrix) 
library (MASS) 
# table4 2006-2018 
table4=matrix(c(0,2,1,1,1,1110,608,1,1,607,728,1,2,1,0,1),ncol=4,byrow=TRUE) 
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colnames(table4)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
rownames(table4)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
# table4 2006-2018 
table4 
 
# table4 2006-2018 
 chisq.test(table4) 
Scenario 5 
library (matrix) 
library (MASS) 
# table5 2006-2018 
table5=matrix(c(318,143,171,135,155,220,207,109,166,203,264,212,128,125,203,306),ncol=4,b
yrow=TRUE) 
colnames(table5)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
rownames(table5)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
# table5 2006-2018 
table5 
# table5 2006-2018 
 chisq.test(table5) 
 
DANGCEMR 
Scenario 1 
library (matrix) 
library (MASS) 
# table11 2006-2018 
table11=matrix(c(178,383,383,922),ncol=2,byrow=TRUE) 
colnames(table11)=c("NegativeReturn","PostiveReturn") 
rownames(table11)=c("NegativeReturn","PostiveReturn") 
# table11 2006-2018 
table11 
# table11 2006-2018 
 
 chisq.test(table11) 
Scenario 2 
library (matrix) 
library (MASS) 
# table12 2006-2018 
 
table12=matrix(c(25,135,28,127,1249,123,36,115,28),ncol=3,byrow=TRUE) 
colnames(table12)=c("LowerReturn","ModerateReturn","HigherReturn") 
rownames(table12)=c("LowerReturn","ModerateReturn","HigherReturn") 
# table12 2006-2018 
table12 
# table12 2006-2018 
 chisq.test(table12) 
Scenario 3 
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library (matrix) 
library (MASS) 
# table13 2006-2018 
table13=matrix(c(125,200,145,204,540,185,141,188,138),ncol=3,byrow=TRUE) 
colnames(table13)=c("LowerReturn","ModerateReturn","HigherReturn") 
rownames(table13)=c("LowerReturn","ModerateReturn","HigherReturn") 
# table13 2006-2018 
table13 
# table13 2006-2018 
 chisq.test(table13) 
Scenario 4 
library (matrix) 
library (MASS) 
#table14 2006-2018 
table14=matrix(c(25,97,38,28,108,745,200,90,19,216,88,33,36,84,31,28),ncol=4,byrow=TRUE) 
colnames(table14)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
rownames(table14)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
# table14 2006-2018 
table14 
# table14 2006-2018 
 chisq.test(table14) 
Scenario 5 
library (matrix) 
library (MASS) 
# table15 2006-2018 
table15=matrix(c(125,24,176,145,23,6,147,15,181,46,441,170,141,15,173,138),ncol=4,byrow=T
RUE) 
colnames(table15)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
rownames(table15)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
# table15 2006-2018 
table15 
# table15 2006-2018 
 chisq.test(table15) 
GTBR 
Scenario 1 
library (matrix) 
library (MASS) 
# table6 2006-2018 
table6=matrix(c(722,701,701,941),ncol=2,byrow=TRUE) 
colnames(table6)=c("NegativeReturn","PostiveReturn") 
rownames(table6)=c("NegativeReturn","PostiveReturn") 
# table6 2006-2018 
table6 
# table6 2006-2018 
 chisq.test(table6) 
Scenario 2 



 

165 

 

library (matrix) 
library (MASS) 
 
# table7 2006-2018 
table7=matrix(c(75,163,50,168,2088,179,45,184,113),ncol=3,byrow=TRUE) 
colnames(table7)=c("LowerReturn","ModerateReturn","HigherReturn") 
rownames(table7)=c("LowerReturn","ModerateReturn","HigherReturn") 
# table7 2006-2018 
table7 
# table7 2006-2018 
 chisq.test(table7) 
Scenario 3 
library (matrix) 
library (MASS) 
# table8 2006-2018 
table8=matrix(c(261,314,194,319,942,272,189,278,296),ncol=3,byrow=TRUE) 
colnames(table8)=c("LowerReturn","ModerateReturn","HigherReturn") 
rownames(table8)=c("LowerReturn","ModerateReturn","HigherReturn") 
# table8 2006-2018 
table8 
# table8 2006-2018 
 chisq.test(table8) 
Scenario 4 
 library (matrix) 
library (MASS) 
# table9 2006-2018 
table9=matrix(c(75,85,78,50,121,684,492,69,47,503,409,110,45,94,90,113),ncol=4,byrow=TRU
E) 
colnames(table9)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
rownames(table9)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
# table9 2006-2018 
table9 
# table9 2006-2018 
 chisq.test(table9) 
Scenario 5 
library (matrix) 
library (MASS) 
# table10 2006-2018 
table10=matrix(c(261,129,185,194,156,176,225,97,163,228,313,175,189,121,157,296),ncol=4,b
yrow=TRUE) 
colnames(table10)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
rownames(table10)=c("SLowerReturn","LowerReturn","HigherReturn","SHigherReturn") 
# table10 2006-2018 
table10 
# table10 2006-2018 
 chisq.test(table10) 
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APPENDIX 3 

Scenario 1 

Markov Frequencies Matrixes for the Transition from States i to j  

 

( )

836 622

622 986ij ASIRn
 

  
                       

( )

0.5734 0.4266

0.3871 0.6129ij ASIRP
 

  
 

 

 

(DANGCEM )

178 383

383 922ij Rn
 

  
                 

(DANGCEM )

0.3173 0.6827

0.2935 0.7065ij RP
 

  
 

 

 

(GTB )

722 701

701 941ij Rn
 

  
                       

(GTB )

0.5074 0.4926

0.4269 0.5731ij RP
 

  
 

 

 

 

Scenario 2  

 

Markov Frequencies Matrixes for the Transition Occurrence from States i to j  

 

 

( )

0 3 1

2 3054 2

2 1 1
ij ASIRn

 
   
 
                         

( )

0.0000 0.75 0.25

0.0007 0.9987 0.0007

0.50 0.25 0.25
ij ASIRP

 
   
 
 

 

 

(DANGCEM )

25 135 28

127 1249 123

36 115 28
ij Rn

 
   
 
 

 (DANGCEM )

0.1330 0.7181 0.1489

0.0847 0.8332 0.0821

0.2011 0.6425 0.1564
ij RP

 
   
 
 
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(GTB )

75 163 50

168 2088 179

45 184 113
ij Rn

 
   
 
 

 (GTB )

0.2604 0.5660 0.1736

0.0690 0.8575 0.0735

0.1316 0.5380 0.3304
ij RP

 
   
 
 

 

 

 

Scenario 3  

 

Markov Frequencies Matrixes for the Transition Occurrence from States i to j  

 

( )

318 314 135

321 894 321

128 328 307
ij ASIRn

 
   
 
                 

( )

0.4146 0.4094 0.1760

0.2090 0.5820 0.2090

0.1680 0.4304 0.4016
ij ASIRP

 
   
 
 

 

 

 

(DANGCEM )

125 200 145

204 540 185

141 188 138
ij Rn

 
   
 
 

 (DANGCEM )

0.2660 0.4255 0.3085

0.2196 0.5813 0.1991

0.3019 0.4026 0.2955
ij RP

 
   
 
 

 

 

(GTB )

261 314 194

319 942 272

189 278 296
ij Rn

 
   
 
 

 (GTB )

0.3394 0.4083 0.2523

0.2081 0.6145 0.1774

0.2477 0.3644 0.3879
ij RP

 
   
 
 
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Scenario 4  

 

 

Markov Frequencies Matrixes for the Transition Occurrence from States i to j  

 

( )

0 2 1 1

1 1110 608 1

1 607 729 1

2 1 0 1

ij ASIRn

 
 
 
 
 
               

( )

0.0000 0.5000 0.25 0.25

0.0006 0.6453 0.3535 0.0006

0.0007 0.4540 0.5445 0.0007

0.5000 0.25 0.0000 0.25

ij ASIRP

 
 
 
 
 
 

 

 

 

 

(DANGCEM )

25 97 38 28

108 745 200 90

19 216 88 33

36 84 31 28

ij Rn

 
 
 
 
 
         

(DANGCEM )

0.1330 0.5160 0.2021 0.1489

0.0945 0.6518 0.1750 0.0787

0.0534 0.6067 0.2472 0.0927

0.2011 0.4693 0.1732 0.1564

ij RP

 
 
 
 
 
 

 

 

 

(GTB )

75 85 78 50

121 684 492 69

47 503 409 110

45 94 90 113

ij Rn

 
 
 
 
 
        

(GTB )

0.2604 0.2951 0.2708 0.1736

0.0886 0.5007 0.3602 0.0505

0.0440 0.4705 0.3826 0.1029

0.1316 0.2749 0.2632 0.3304

ij RP

 
 
 
 
 
 
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Scenario 5    

 

Markov Frequencies Matrixes for the Transition Occurrence from States i to j  

 

( )

318 143 171 135

155 220 207 109

166 203 264 212

128 125 203 307

ij ASIRn

 
 
 
 
 
         

( )

0.4146 0.1864 0.2229 0.1760

0.2243 0.3184 0.2996 0.1577

0.1964 0.2402 0.3124 0.2509

0.1680 0.1640 0.2664 0.4016

ij ASIRP

 
 
 
 
 
 

 

 

 

(DANGCEM )

125 24 176 145

23 6 47 15

181 46 441 170

141 15 173 138

ij Rn

 
 
 
 
 
     

(DANGCEM )

0.2660 0.0511 0.3745 0.3085

0.2527 0.0659 0.5165 0.1648

0.2160 0.0549 0.5263 0.2029

0.3019 0.0321 0.3704 0.2955

ij RP

 
 
 
 
 
 

 

 

(GTB )

261 129 185 194

156 176 225 97

163 228 313 175

189 121 157 296

ij Rn

 
 
 
 
 
     

(GTB )

0.3394 0.1678 0.2406 0.2523

0.2385 0.2691 0.3440 0.1483

0.1853 0.2594 0.3561 0.1991

0.2477 0.1586 0.2058 0.3879

ij RP

 
 
 
 
 
 
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APPENDIX 4 

Computation of Limiting Distribution  

ASIR 

Scenario One 

  2006-2018 

0.5734 0.4266

0.3871 0.6129
P

 
  
 

  

2 0.4939 0.5061

0.4592 0.5408
P

 
  
 

 

3 0.4791 0.5209

0.4727 0.5273
P

 
  
 

 

4 0.4764 0.5236

0.4752 0.5248
P

 
  
   

 

5 0.4758 0.5242

0.4756 0.5244
P

 
  
 

 

6 0.4758 0.5242

0.4757 0.5243
P

 
  
 

 

7 0.4757 0.5243

0.4757 0.5243
P

 
  
 

 

8 0.4757 0.5243

0.4757 0.5243
P

 
  
 

 

9 0.4757 0.5243

0.4757 0.5243
P

 
  
 

 

10 0.4757 0.5243

0.4757 0.5243
P

 
  
 
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12 0.4757 0.5243

0.4757 0.5243
P

 
  
 

 

15 0.4757 0.5243

0.4757 0.5243
P

 
  
 

 

 

Scenario 2 

2006-2018 

0.0000 0.75 0.25

0.0007 0.9987 0.0007

0.50 0.25 0.25

P

 
   
 
 

  

2

0.1255 0.8115 0.0630

0.0010 0.9981 0.0010

0.1252 0.6872 0.1877

P

 
   
 
 

 

3

0.0321 0.9204 0.0477

0.0012 0.9979 0.0012

0.0943 0.8271 0.0787

P

 
   
 
 

 

4

0.0245 0.9552 0.0206

0.0013 0.9978 0.0013

0.0399 0.9164 0.0438

P

 
   
 
 

 

5

0.0110 0.9774 0.0119

0.0014 0.9978 0.0014

0.0226 0.9561 0.0216

P

 
   
 
 

 

6

0.0067 0.9874 0.0064

0.0014 0.9978 0.0014

0.0115 0.9772 0.0117

P

 
   
 
 

 

7

0.0039 0.9927 0.0040

0.0014 0.9979 0.0014

0.0065 0.9875 0.0065

P

 
   
 
 
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8

0.0027 0.9953 0.0027

0.0014 0.9980 0.0014

0.0039 0.9927 0.0039

P

 
   
 
 

 

9

0.0020 0.9967 0.0020

0.0014 0.9981 0.0014

0.0027 0.9953 0.0039

P

 
   
 
 

 

10

0.0017 0.9974 0.0017

0.0014 0.9982 0.0014

0.0020 0.9967 0.0020

P

 
   
 
 

 

12

0.0015 0.9981 0.0014

0.0014 0.9984 0.0014

0.0016 0.9978 0.0014

P

 
   
 
   

  

15

0.0014 0.9985 0.0014

0.0014 0.9987 0.0014

0.0014 0.9984 0.0014

P

 
   
 
 

 

 

Scenario 3 

2006-2018 

0.4146 0.4094 0.1760

0.2090 0.5820 0.2090

0.1680 0.4304 0.4016

P

 
   
 
 

  

2

0.2870 0.4838 0.2292

0.2434 0.5142 0.2424

0.2271 0.4921 0.2808

P

 
   
 
 

 

3

0.2586 0.4977 0.2437

0.2491 0.5032 0.2476

0.2442 0.5002 0.2556

P

 
   
 
 
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4

0.2522 0.5004 0.2474

0.2501 0.5015 0.2485

0.2487 0.5011 0.2502

P

 
   
 
 

 

5

0.2507 0.5010 0.2483

0.2502 0.5012 0.2486

0.2499 0.5011 0.2490

P

 
   
 
 

 

6

0.2504 0.5011 0.2486

0.2503 0.5011 0.2486

0.2502 0.5011 0.2587

P

 
   
 
 

 

7

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

0.2502 0.5011 0.2486

P

 
   
 
 

 

8

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

P

 
   
 
 

 

9

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

P

 
   
 
 

 

10

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

P

 
   
 
 

 

 

12

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

P

 
   
 
   

  

15

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

0.2503 0.5011 0.2486

P

 
   
 
 
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Scenario 4 

2006-2018 

 

0.0000 0.5000 0.25 0.25

0.0006 0.6453 0.3535 0.0006

0.0007 0.4540 0.5445 0.0007

0.5000 0.25 0.0000 0.25

P

 
 
 
 
 
 

 

2

0.1255 0.4986 0.3129 0.0630

0.0009 0.5774 0.4207 0.0009

0.0010 0.5407 0.4571 0.0010

0.1252 0.4738 0.2134 0.1876

P

 
 
 
 
 
 

 

3

0.0320 0.5423 0.3780 0.0476

0.0011 0.5643 0.4334 0.0011

0.0011 0.5572 0.4403 0.0011

0.0943 0.5121 0.3150 0.0786

P

 
 
 
 
 
 

 

4

0.0244 0.5495 0.4055 0.0205

0.0012 0.5617 0.4357 0.0012

0.0012 0.5603 0.4370 0.0012

0.0398 0.5403 0.3761 0.0438

P

 
 
 
 
 
 

 

5

0.0109 0.5560 0.4212 0.0118

0.0012 0.5612 0.4361 0.0012

0.0012 0.5609 0.4363 0.0012

0.0225 0.5502 0.4057 0.0215

P

 
 
 
 
 
 

 

6

0.0065 0.5584 0.4286 0.0063

0.0013 0.5611 0.4362 0.0013

0.0013 0.5610 0.4362 0.0013

0.0114 0.5559 0.4210 0.0116

P

 
 
 
 
 
 

 

7

0.0038 0.5598 0.4324 0.0038

0.0013 0.5610 0.4362 0.0013

0.0013 0.5610 0.4361 0.0013

0.0114 0.5584 0.4286 0.0064

P

 
 
 
 
 
 
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8

0.0026 0.5604 0.4343 0.0025

0.0013 0.5610 0.4361 0.0013

0.0013 0.5609 0.4361 0.0013

0.0038 0.5597 0.4324 0.0038

P

 
 
 
 
 
 

 

9

0.0019 0.5607 0.4352 0.0019

0.0013 0.5610 0.4361 0.0013

0.0013 0.5609 0.4361 0.0013

0.0026 0.5604 0.4343 0.0026

P

 
 
 
 
 
 

 

 

10

0.0016 0.5608 0.4356 0.0016

0.0013 0.5610 0.4361 0.0013

0.0013 0.5609 0.4360 0.0013

0.0019 0.5607 0.4352 0.0019

P

 
 
 
 
 
 

 

12

0.0014 0.5609 0.4360 0.0014

0.0013 0.5609 0.4361 0.0013

0.0013 0.5608 0.4360 0.0013

0.0014 0.5609 0.4359 0.0014

P

 
 
 
 
 
 

 

15

0.0013 0.5609 0.4360 0.0013

0.0013 0.5608 0.4360 0.0013

0.0013 0.5608 0.4359 0.0013

0.0013 0.5609 0.4360 0.0013

P

 
 
 
 
 
 

 

 

Scenario 5 

2001-2018 

0.4146 0.1864 0.2229 0.1760

0.2243 0.3184 0.2996 0.1577

0.1964 0.2402 0.3124 0.2509

0.1680 0.1640 0.2664 0.4016

P

 
 
 
 
 
 
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2

0.2870 0.2190 0.2648 0.2290

0.2497 0.2410 0.2810 0.2282

0.2388 0.2293 0.2802 0.2516

0.2262 0.2134 0.2768 0.2836

P

 
 
 
 
 
   

3

0.2586 0.2244 0.2733 0.2435

0.2511 0.2282 0.2764 0.2441

0.2477 0.2261 0.2765 0.2495

0.2437 0.2231 0.2764 0.2568

P

 
 
 
 
 
   

4

0.2521 0.2252 0.2751 0.2472

0.2506 0.2259 0.2757 0.2476

0.2496 0.2255 0.2758 0.2488

0.2485 0.2249 0.2759 0.2505

P

 
 
 
 
 
 

 

5

0.2506 0.2253 0.2755 0.2482

0.2503 0.2255 0.2756 0.2483

0.2500 0.2254 0.2756 0.2486

0.2498 0.2253 0.2757 0.2490

P

 
 
 
 
 
 

 

6

0.2503 0.2253 0.2756 0.2485

0.2502 0.2254 0.2756 0.2485

0.2501 0.2254 0.2756 0.2486

0.2501 0.2254 0.2756 0.2587

P

 
 
 
 
 
 

 

7

0.2502 0.2253 0.2756 0.2485

0.2502 0.2254 0.2756 0.2485

0.2501 0.2253 0.2756 0.2485

0.2501 0.2254 0.2756 0.2486

P

 
 
 
 
 
 

 

8

0.2501 0.2253 0.2756 0.2485

0.2502 0.2253 0.2756 0.2485

0.2501 0.2253 0.2756 0.2485

0.2501 0.2254 0.2756 0.2485

P

 
 
 
 
 
 
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9

0.2501 0.2253 0.2755 0.2485

0.2501 0.2253 0.2756 0.2485

0.2501 0.2253 0.2756 0.2485

0.2501 0.2253 0.2756 0.2485

P

 
 
 
 
 
   

 

10

0.2501 0.2253 0.2755 0.2485

0.2501 0.2253 0.2756 0.2485

0.2501 0.2253 0.2755 0.2485

0.2501 0.2253 0.2756 0.2485

P

 
 
 
 
 
   

 

12

0.2501 0.2253 0.2755 0.2485

0.2501 0.2253 0.2755 0.2485

0.2501 0.2253 0.2755 0.2485

0.2501 0.2253 0.2755 0.2485

P

 
 
 
 
 
   

 

15

0.2500 0.2252 0.2755 0.2484

0.2501 0.2253 0.2755 0.2484

0.2500 0.2252 0.2755 0.2484

0.2501 0.2253 0.2755 0.2484

P

 
 
 
 
 
 

 

 

 

DANGCEMR      2010-2018 

Scenario 1 

   

0.3173 0.6827

0.2935 0.7065
P

 
  
 

  

2 0.3011 0.6989

0.3005 0.6995
P

 
  
   
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3 0.3007 0.6993

0.3007 0.6993
P

 
  
   

4 0.3007 0.6993

0.3007 0.6993
P

 
  
   

 

5 0.3007 0.6993

0.3007 0.6993
P

 
  
   

 

6 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

7 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

8 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

9 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

10 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

12 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

15 0.3007 0.6993

0.3007 0.6993
P

 
  
 

 

 

 

 

 

Scenario 2 

2010-2018 
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0.1330 0.7181 0.1489

0.0847 0.8332 0.0821

0.2011 0.6425 0.1564

P

 
   
 
 

  

2

0.1085 0.7895 0.1020

0.0983 0.8078 0.0939

0.1126 0.7802 0.1072

P

 
   
 
 

 

3

0.1018 0.8013 0.0969

0.1004 0.8040 0.0956

0.1026 0.7998 0.0976

P

 
   
 
 

 

4

0.1009 0.8030 0.0961

0.1007 0.8034 0.0959

0.1010 0.8028 0.0962

P

 
   
 
 

 

5

0.1008 0.8033 0.0960

0.1007 0.8033 0.0960

0.1008 0.8032 0.0960

P

 
   
 
 

 

6

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
   

7

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
 

 

8

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
 

 

9

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
   
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10

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
 

 

12

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
 

 

 

15

0.1007 0.8033 0.096

0.1007 0.8033 0.096

0.1007 0.8033 0.096

P

 
   
 
 

 

  

 

 

Scenario 3 

2010-2018 

0.2660 0.4255 0.3085

0.2196 0.5813 0.1991

0.3019 0.4026 0.2955

P

 
   
 
 

  

2

0.2573 0.4847 0.2579

0.2462 0.5115 0.2423

0.2579 0.4815 0.2606

P

 
   
 
 

 

3

0.2528 0.4951 0.2521

0.2510 0.4996 0.2494

0.2530 0.4945 0.2524

P

 
   
 
 

 

4

0.2521 0.4969 0.2511

0.2518 0.4976 0.2506

0.2521 0.4968 0.2511

P

 
   
 
 
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5

0.2520 0.4972 0.2509

0.2519 0.4973 0.2508

0.2520 0.4971 0.2509

P

 
   
 
 

 

6

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2509

P

 
   
 
 

 

7

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

P

 
   
 
 

 

8

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

P

 
   
 
 

 

9

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

P

 
   
 
 

 

10

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

P

 
   
 
 

 

12

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

P

 
   
 
 

 

15

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

0.2519 0.4972 0.2508

P

 
   
 
 

 

 
 

  

Scenario 4 

2010-2018 



 

182 

 

 

0.1330 0.5160 0.2021 0.1489

0.0945 0.6518 0.1750 0.0787

0.0534 0.6067 0.2472 0.0927

0.2011 0.4693 0.1732 0.1564

P

 
 
 
 
 
 

 

2

0.1072 0.5974 0.1929 0.1024

0.0993 0.6167 0.1901 0.0939

0.0963 0.6165 0.1941 0.0931

0.1118 0.5881 0.1927 0.1074

P

 
 
 
 
 
 

 

3

0.1016 0.6098 0.1916 0.0969

0.1005 0.6126 0.1912 0.0956

0.1002 0.6130 0.1915 0.0954

0.1023 0.6083 0.1917 0.0976

P

 
 
 
 
 
 

 

4

0.1009 0.6117 0.1914 0.0960

0.1007 0.6121 0.1914 0.0959

0.1007 0.6122 0.1914 0.0958

0.1010 0.6114 0.1914 0.0962

P

 
 
 
 
 
 

 

5

0.1008 0.6119 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1008 0.6119 0.1914 0.0959

P

 
 
 
 
 
   

6

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
   

7

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
   
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8

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
 

 

9

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
 

 

 

10

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
 

 

12

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
 

 

 

15

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

0.1007 0.6120 0.1914 0.0959

P

 
 
 
 
 
 

 

 

 

Scenario 5 

 

2010-2018 

0.2660 0.0511 0.3745 0.3085

0.2527 0.0659 0.5165 0.1648

0.2160 0.0549 0.5263 0.2029

0.3019 0.0321 0.3704 0.2955

P

 
 
 
 
 
 
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2

0.2577 0.0474 0.4374 0.2576

0.2452 0.0509 0.4615 0.2423

0.2463 0.0501 0.4614 0.2424

0.2576 0.0474 0.4340 0.2609

P

 
 
 
 
 
 

 

 

3

0.2528 0.0486 0.4466 0.2522

0.2509 0.0490 0.4508 0.2493

0.2510 0.0490 0.4507 0.2495

0.2530 0.0485 0.4460 0.2524

P

 
 
 
 
 
   

4

0.2521 0.0487 0.4482 0.2511

0.2518 0.0488 0.4489 0.2506

0.2518 0.0488 0.4489 0.2507

0.2521 0.0487 0.4480 0.2511

P

 
 
 
 
 
   

5

0.2520 0.0488 0.4485 0.2510

0.2519 0.0488 0.4486 0.2508

0.2520 0.0488 0.4486 0.2509

0.2520 0.0488 0.4484 0.2509

P

 
 
 
 
 
   

6

0.2520 0.0488 0.4486 0.2509

0.2519 0.0488 0.4485 0.2509

0.2520 0.0488 0.4486 0.2509

0.2520 0.0488 0.4485 0.2509

P

 
 
 
 
 
 

 

 

7

0.2520 0.0488 0.4486 0.2509

0.2520 0.0488 0.4485 0.2509

0.2520 0.0488 0.4486 0.2510

0.2520 0.0488 0.4485 0.2509

P

 
 
 
 
 
 

 

8

0.2520 0.0488 0.4486 0.2510

0.2520 0.0488 0.4485 0.2509

0.2520 0.0488 0.4486 0.2510

0.2520 0.0488 0.4485 0.2509

P

 
 
 
 
 
   



 

185 

 

9

0.2520 0.0488 0.4486 0.2510

0.2520 0.0488 0.4486 0.2509

0.2520 0.0488 0.4486 0.2510

0.2520 0.0488 0.4485 0.2509

P

 
 
 
 
 
 

 

 

10

0.2520 0.0488 0.4487 0.2510

0.2520 0.0488 0.4486 0.2509

0.2520 0.0488 0.4487 0.2510

0.2520 0.0488 0.4486 0.2509

P

 
 
 
 
 
 

 

12

0.2521 0.0488 0.4487 0.2510

0.2520 0.0488 0.4486 0.2510

0.2521 0.0488 0.4487 0.2510

0.2520 0.0488 0.4486 0.2509

P

 
 
 
 
 
   

 

15

0.2521 0.0488 0.4487 0.2510

0.2520 0.0488 0.4487 0.2510

0.2521 0.0488 0.4488 0.2510

0.2520 0.0488 0.4487 0.2510

P

 
 
 
 
 
 

 

 

GTBR 

Scenario One 

  2006-2018 

0.5074 0.4926

0.4269 0.5731
P

 
  
 

  

2 0.4677 0.5323

0.4613 0.5387
P

 
  
 

 

3 0.4646 0.5354

0.4640 0.5360
P

 
  
 
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4 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

 

5 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

6 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

7 0.4643 0.5357

0.4643 0.5357
P

 
  
   

 

8 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

9 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

10 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

12 0.4643 0.5357

0.4643 0.5357
P

 
  
 

 

 

 

15 0.4643 0.5357

0.4643 0.5357
P

 
  
 
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Scenario 2 

2006-2018 

0.2604 0.5660 0.1736

0.0690 0.8575 0.0735

0.1316 0.5380 0.3304

P

 
   
 
 

  

2

0.1297 0.7261 0.1442

0.0868 0.8139 0.0993

0.1149 0.7136 0.1716

P

 
   
 
 

 

3

0.1029 0.7736 0.1235

0.0918 0.8005 0.1077

0.1017 0.7692 0.1291

P

 
   
 
 

 

4

0.0964 0.7881 0.1155

0.0933 0.7963 0.1104

0.0966 0.7866 0.1168

P

 
   
 
 

 

5

0.0947 0.7925 0.1128

0.0938 0.7950 0.1112

0.0948 0.7920 0.1132

P

 
   
 
 

 

6

0.0942 0.7938 0.1120

0.0939 0.7946 0.1115

0.0942 0.7937 0.1121

P

 
   
 
 

 

7

0.0940 0.7943 0.1117

0.0940 0.7945 0.1115

0.0941 0.7942 0.1117

P

 
   
 
 

 

8

0.0940 0.7944 0.1116

0.0940 0.7945 0.1116

0.0940 0.7944 0.1116

P

 
   
 
 
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10

0.0940 0.7945 0.1116

0.0940 0.7945 0.1116

0.0940 0.7945 0.1116

P

 
   
 
   

12

0.0940 0.7945 0.1116

0.0940 0.7945 0.1116

0.0940 0.7945 0.1116

P

 
   
 
 

 

 

10

0.0940 0.7945 0.1116

0.0940 0.7945 0.1116

0.0940 0.7945 0.1116

P

 
   
 
 

 

Scenario 3 

2006-2018 

0.3394 0.4083 0.2523

0.2081 0.6145 0.1774

0.2471 0.3644 0.3879

P

 
   
 
 

  

2

0.2627 0.4814 0.2559

0.2424 0.5272 0.2303

0.2560 0.4664 0.2776

P

 
   
 
 

 

3

0.2527 0.4963 0.2509

0.2491 0.5069 0.2440

0.2527 0.4923 0.2550

P

 
   
 
 

 

4

0.2512 0.4996 0.2492

0.2505 0.5021 0.2474

0.2514 0.4986 0.2500

P

 
   
 
 

 

5

0.2510 0.5004 0.2487

0.2508 0.5010 0.2482

0.2510 0.5001 0.2489

P

 
   
 
 
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6

0.2509 0.5006 0.2485

0.2509 0.5007 0.2484

0.2509 0.5005 0.2486

P

 
   
 
 

 

7

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

P

 
   
 
 

 

8

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

P

 
   
 
   

9

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

P

 
   
 
   

10

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

P

 
   
 
   

12

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

P

 
   
 
   

15

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

0.2509 0.5006 0.2485

P

 
   
 
 

 

 

Scenario 4 

2006-2018 

 

0.2604 0.2951 0.2708 0.1736

0.0886 0.5007 0.3602 0.0505

0.0440 0.4705 0.3826 0.1029

0.1316 0.2749 0.2632 0.3304

P

 
 
 
 
 
 
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2

0.1287 0.3997 0.3261 0.1453

0.0899 0.4602 0.3554 0.0944

0.0835 0.4569 0.3549 0.1048

0.1137 0.3911 0.3223 0.1730

P

 
 
 
 
 
 

 

3

0.1024 0.4315 0.3419 0.1241

0.0923 0.4502 0.3510 0.1066

0.0916 0.4492 0.3505 0.1087

0.1012 0.4286 0.3405 0.1298

P

 
 
 
 
 
 

 

4

0.0963 0.4412 0.3466 0.1158

0.0934 0.4471 0.3495 0.1101

0.0934 0.4467 0.3493 0.1106

0.0964 0.4404 0.3462 0.1171

P

 
 
 
 
 
 

 

5

0.0946 0.4442 0.3481 0.1129

0.0938 0.4461 0.3490 0.1111

0.0938 0.4460 0.3490 0.1112

0.0948 0.4440 0.3480 0.1133

P

 
 
 
 
 
 

 

6

0.0942 0.4452 0.3485 0.1120

0.0939 0.4458 0.3489 0.1114

0.0939 0.4458 0.3488 0.1115

0.0942 0.4452 0.3486 0.1121

P

 
 
 
 
 
 

 

7

0.0940 0.4455 0.3487 0.1117

0.0940 0.4457 0.3488 0.1115

0.0940 0.4457 0.3488 0.1115

0.0941 0.4455 0.3488 0.1118

P

 
 
 
 
 
 

 

8

0.0940 0.4456 0.3487 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

P

 
 
 
 
 
 
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9

0.0940 0.4456 0.3487 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

P

 
 
 
 
 
 

 

10

0.0940 0.4456 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

P

 
 
 
 
 
 

 

12

0.0940 0.4456 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

P

 
 
 
 
 
 

 

15

0.0940 0.4456 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

0.0940 0.4457 0.3488 0.1116

P

 
 
 
 
 
   

 

 

 

 

Scenario 5 

2001-2018 

0.3394 0.1678 0.2406 0.2523

0.2385 0.2691 0.3440 0.1483

0.1854 0.2594 0.3561 0.1991

0.2477 0.1586 0.2058 0.3879

P

 
 
 
 
 
 

 

2

0.2623 0.2045 0.2770 0.2563

0.2456 0.2252 0.3030 0.2261

0.2401 0.2249 0.3016 0.2334

0.2561 0.1991 0.2673 0.2775

P

 
 
 
 
 
 
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3

0.2526 0.2116 0.2848 0.2511

0.2493 0.2163 0.2910 0.2434

0.2489 0.2161 0.2906 0.2445

0.2527 0.2099 0.2824 0.2550

P

 
 
 
 
 
 

 

4

0.2512 0.2130 0.2867 0.2492

0.2504 0.2141 0.2881 0.2473

0.2504 0.2141 0.2880 0.2475

0.2514 0.2126 0.2861 0.2500

P

 
 
 
 
 
 

 

5

0.2509 0.2134 0.2871 0.2487

0.2507 0.2136 0.2874 0.2482

0.2508 0.2136 0.2874 0.2483

0.2510 0.2132 0.2869 0.2489

P

 
 
 
 
 
 

 

6

0.2509 0.2134 0.2872 0.2486

0.2508 0.2135 0.2872 0.2484

0.2508 0.2135 0.2872 0.2485

0.2509 0.2134 0.2871 0.2486

P

 
 
 
 
 
 

 

7

0.2509 0.2135 0.2872 0.2486

0.2508 0.2134 0.2872 0.2485

0.2508 0.2135 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

P

 
 
 
 
 
 

 

8

0.2509 0.2135 0.2872 0.2486

0.2508 0.2134 0.2872 0.2485

0.2508 0.2134 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

P

 
 
 
 
 
 

 

9

0.2509 0.2135 0.2872 0.2486

0.2508 0.2134 0.2872 0.2485

0.2508 0.2134 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

P

 
 
 
 
 
 
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10

0.2509 0.2135 0.2872 0.2486

0.2508 0.2134 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

P

 
 
 
 
 
 

 

12

0.2509 0.2135 0.2872 0.2486

0.2508 0.2134 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

0.2509 0.2135 0.2872 0.2485

P

 
 
 
 
 
 

 

15

0.2509 0.2135 0.2872 0.2486

0.2508 0.2134 0.2872 0.2485

0.2509 0.2134 0.2872 0.2485

0.2509 0.2135 0.2872 0.2485

P

 
 
 
 
 
 

 

 

 

 

 

 


