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Abstract

Co-infection with malaria often complicate and increase the severity of disease

pathogenesis. The co-infection of malaria and Lassa fever has not been fully

understood. Many researcher have worked on mathematical models describing

the features involved in the transmission of mono-infection of malaria and Lassa

fever. However, models on co-infection that incorporate seasonal variation of vec-

tors needed for a full understanding and management of the co-infection in human

with plasmodium falciparum and Lassa virus are sparse. Therefore, this study was

designed to develop a mathematical model that incorporates seasonal variation of

vectors and investigate the e�ect of endemic malaria mortality rate of Lassa fever

patients.

A co-infection mathematical model governed by a system of ordinary di�eren-

tial equations that incorporates seasonal variation of vectors, ξm, diagnostic factor

for treatment, ηv, treatment rate, σ, biting rate, b, contact rate, w1, proportion of

e�ective treatment, γv and force of infection, φ0 was formulated using law of mass

action. The state variables Nes, Nis and Nrs denoted the number of human pop-

ulation that were exposed, infected and recovered from Lassa fever, respectively,

but susceptible to malaria. Moreover, Nse, Nsi and Nsr represented those exposed,

infected and recovered from malaria, respectively, but susceptible to Lassa fever.

The rodent population (obtained from the literature) were classi�ed as Sd, Ed and

Id represented those susceptible, exposed and infected, respectively. Furthermore,

the mosquito population were classi�ed as Sm, Em and Im denoted those suscepti-

ble, exposed and infected, respectively. Using next generation matrix method, the

basic reproduction number, R0(a, t) of the co-infection model was computed, where

a is the age and t is the time. Applying perturbation method, stable subharmonic

bifurcation solutions were determined. With the aid of suitable Lyapunov function,

the stability of the equilibra were explored. Using Pontryagin maximum principle,
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necessary condition for the optimal control were derived. Numerical analyses of the

model were carried out to investigate the parameters most responsible for disease

transmission using data obtained from World Health Organization database.

The established mathematical model gives a system of fourteen ordinary dif-

ferential equations with the �rst four as:

N ′rs(t) = αγvNes + ηvσNis − µNrs + bw1φ0Nes,

S ′m(t) = ξm − λmSm(t)Nis − µmSm,

E ′m(t) = λmSm(t)Nis − µmEm,

I ′m(t) = −µmIm,

where, µ and µm are human and mosquito death rate respectively;λm is the trans-

mission rate. The R0(a, t) was computed as R0(a, t) =
√
RhmRmm, where Rmm and

Rhm are the vector and human threshold parameters, respectively. An in�nite num-

ber (n) of stable subharmonic solutions was obtained as Nss(t, ai) = Nssn(t + α),

where α is the treatment rate of infected human with malaria. The disease-free

and endemic equilibria were found to be globally and asymptotically stable since

R0(a, t) = 0.496 and R0(a, t) = 2.684, respectively. Conditions for existence and

uniqueness of optimality system, u1u2u3 were established, were u1u2u3 are the con-

trol functions. Vectors biting rate b and contact rate w1 among eleven positive

sensitivity index parameter values: µ = 0.000038, b = 1.58, w1 = 1.38,µm = 0.054,

γv = 0.00027, σ = 0.012, α = 0.50, ηv0.0053, λm = 0.26, ξm = 0.50 and φ0 = 0.24

contributed majorly to the transmission of the diseases.

The formulated model captured seasonal variation of vectors and also showed

that co-infection of malaria and Lassa fever increased mortality rate in infected

patients.

Keyword: Seasonal variation, Co-infection mathematical model, Stable subhar-

monic solution

Word count: 491

vi



Contents

Title Page i

Certi�cation i

Dedication ii

Acknowledgement iv

Abstract vi

Contents vii

List of Tables xi

List of Figures xii

CHAPTER ONE 1

1 INTRODUCTION 1

1.1 History of malaria and Lassa fever . . . . . . . . . . . . . . . . . . . 2

1.1.1 Malaria history . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Malaria parasites and cycle . . . . . . . . . . . . . . . . . . 4

1.1.3 Lassa fever history . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Lassa virus . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Co-infection of Lassa fever and malaria . . . . . . . . . . . . 5

1.1.6 Knowledge gap . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.7 Motivation for the study . . . . . . . . . . . . . . . . . . . . 7

1.1.8 Aims and objectives of the study . . . . . . . . . . . . . . . 8

CHAPTER TWO 9

vii



2 LITERATURE REVIEW 9

CHAPTER THREE 16

3 MATERIALS AND METHODS 16

3.1 STUDY ONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Malaria-Lassa fever co-infection model seasonal functionality

description based on feasible region . . . . . . . . . . . . . . 16

3.1.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 STUDY TWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 STUDY THREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Basic reproduction number derivation . . . . . . . . . . . . . 25

3.4 STUDY FOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Local stability . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Global stability . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 STUDY FIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Sensitivity analysis of malaria-Lassa fever co-infection model 28

3.6 STUDY SIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Co-existence possibility of malaria-Lassa fever model . . . . 29

3.7 STUDY SEVEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7.1 Existence of subharmonic bifurcation theorem . . . . . . . . 30

3.7.2 Harmonic and periodic motions . . . . . . . . . . . . . . . . 31

3.7.3 Subharmonic . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.4 The Fredholm alternative theorems . . . . . . . . . . . . . . 31

3.8 STUDY EIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8.1 Optimal control problem . . . . . . . . . . . . . . . . . . . . 33

3.8.2 Application of Pontryagin's maximum principle . . . . . . . 33

3.9 STUDY NINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9.1 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER FOUR 35

4 RESULTS 36

4.1 STUDY ONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



4.1.1 Existence of solutions on feasible region . . . . . . . . . . . . 36

4.2 STUDY TWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 STUDY THREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Basic reproduction number, R0L(t, a) and R0M(t, a) . . . . . 41

4.4 STUDY FOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Existence of endemic equilibrium- local stability . . . . . . . 44

4.4.2 Global stability analysis . . . . . . . . . . . . . . . . . . . . 46

4.5 STUDY FIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 STUDY SIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Possibility of co-existence in Malaria-Lassa fever co-infection

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 STUDY SEVEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.1 Analysis of existence of subharmonic bifurcation . . . . . . . 67

4.8 STUDY EIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8.1 Optimal control of malaria-Lassa fever co-infection model . . 78

4.8.2 Analysis of optimal control . . . . . . . . . . . . . . . . . . . 81

4.8.3 Existence of an optimal control . . . . . . . . . . . . . . . . 82

4.8.4 The optimal system . . . . . . . . . . . . . . . . . . . . . . . 83

4.8.5 Uniqueness of optimality system . . . . . . . . . . . . . . . . 91

4.9 STUDY NINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . 92

CHAPTER FIVE 102

5 DISCUSSION 102

5.1 The malaria-lassa fever co-infection . . . . . . . . . . . . . . . . . . 102

5.2 Equilibrium point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Basic reproduction number, R0M(a, t) and R0L(a, t) . . . . . . . . . 103

5.4 Local and global stability analysis of equilibra . . . . . . . . . . . . 104

5.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Subharmonic bifurcation . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Optimal Control problem and numerical simulations . . . . . . . . . 107

ix



CHAPTER SIX 108

6 CONCLUSIONS AND RECOMMENDATIONS 109

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Contributions to knowledge . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Reference 112

Appendices 118

x



List of Tables

3.1 The description of parameters of the malaria-Lassa fever co-infection

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Sensitivity indices ofR0M(a, t) and R0L(a, t) to model parameter. . . 61

4.2 The parameters and values of the malaria-Lassa fever co-infection

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xi



List of Figures

3.1 Compartmental model for the Malaria-Lassa fever co-infection trans-

mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 E�ect of optimal control u1, u2, u3 on infected human in malaria-

Lassa fever co-infection model . . . . . . . . . . . . . . . . . . . . . 94

4.2 E�ect of optimal control u1, u2, u3 on mosquitoes and rodents in

malaria-Lass fever co-infection model . . . . . . . . . . . . . . . . . 95

4.3 E�ect of optimal u1, u2, u3 on infected mosquitoes and rodents in

malaria-Lassa fever co-infection model . . . . . . . . . . . . . . . . 96

4.4 Seasonal variation of malaria-Lassa fever co-infection transmission

in human population . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 E�ect of seasonal variation of vector (mosquito and rodent) . . . . . 98

4.6 A graph showing the behaviour of equation (4.1.18) . . . . . . . . . 99

4.7 A graph of period 1 orbit as a function of b. When b < b2 the period

1 orbit is stable while for b > b2 the orbits are unstable. . . . . . . . 100

4.8 A graph showing the bifurcating period 2 (P2) solution from the

period 1 (P1) solution. . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Mosquito: The malaria-transmitting agent(vector) . . . . . . . . . . 120

xii



CHAPTER ONE

INTRODUCTION

Human beings are at constant risk of infectious diseases. No human can be

exempted from the menace of epidemic disease (Ademola and Odeniran 2016) .

The continuous reports from emerging and re-emerging infectious diseases remain

a global concern. Transmission mechanisms of epidemic disease can only be prop-

erly understood by developing potent prophylactic tools for existing and emerging

organisms (CDC 2019). Micro-organisms are usually the main causes of infectious

diseases, depending on their virulence and pathogenic state. The major causal

organisms causing infectious diseases are those of parasites, viruses and bacteria.

The infectious attribute of pathogens connotes "transmission of organism from an

infected individual to a non-infected individual". At this juncture, our discussion is

limited to malaria, Lassa fever and malaria-Lassa fever co-infection diseases which

are the main focus of this study.

Malaria, a common parasitic disease in some parts of sub-Saharan Africa, Asia

and Latin America, is caused by the genus Plasmodium. There are several known

species, however, humans are often a�ected through the bite of the female Anophe-

les mosquito vector. Global estimates of malaria show 80 percent cases from Africa,

and malaria is responsible for more than a million annual death in a�ected devel-

oping countries(WHO, 2012; CDC, 2019). Among children under �ve years of age,

malaria seems to be the leading cause of mortality, with similar incidence among

pregnant women (WHO, 2012). In pregnant women, severe malaria cases have

been reported to cause maternal death, still birth, severe anaemia, congenital mal-

formations and low birth weights (WHO, 2012; Olaniyi et al 2018). The problem

of chemotherapeutic drug resistance against the Plasmodium organism and insecti-

cidal resistance on the mosquito vector has been widely reported and also linked to

the growing incidence rate of malaria disease in endemic communities (CDC, 2019).

Therefore, the transmission dynamics can only be better understood by developing
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cogent parameters in the disease transmission coupled with strategically analysing

the control measures to stem its spread.

Lassa fever is a viral disease caused by an Arenavirus popularly called Lassa

virus. It is zoonotic and acute in nature, responsible for severe haemorrhagic fever

with symptomatic conditions such as sore throat, chest and abdominal pain, fever,

nausea, muscle cramps, vomiting and ocular discharges (CDC, 2015). Although,

there is no clinical manifestation of the virus in Mastomys natalensis, the virus

has been observed to be excreted at higher doses in the urine (Keenlyside et al,

1983). Infection are often observed across the year, however, peak periods have

been observed between January and May during the dry season in tropical regions

(Tomori et al, 1998). Rodents with the virus remain carriers and serve as reservoir

host. The virus are excreted in respiratory secretions, urine, wound sites from

trauma and saliva (Keenlyside et al, 1983). Human-human Lassa fever transmission

could occur through formites (equipment etc) (Fisher-Hoch et al, 1995).

1.1 History of malaria and Lassa fever

Here, we give a brief account of the origin, causes and transmission of malaria and

Lassa fever diseases. However, a full account of the discovery of malaria and Lassa

fever diseases can be seen in Nadezhda and David (2012) and Cox (2010) .

1.1.1 Malaria history

In 1880, a French physician, Charles Louis A. Laveran, while working in Algeria,

made a landmark discovery of the main cause of the malaria disease that has been

a�ecting human lives for a long period. He discovered the presence of a parasitic

protozoan Plasmodium in the blood of humans infected with malaria and was as

a result awarded the Nobel prize in 1907. In other discovery, an experiment was

conducted in 1897 by a British Physician, Ronald Ross, who showed for the �rst

time that mosquito is responsible for transmission of the Plasmodium parasite that

causes malaria in human population.

Not less than half of the world's population, distributed across 104 countries

are at risk of malaria disease (Olaniyi et al 2018; WHO, 2019). Meanwhile, an initial

report of 300 - 500 million persons have been observed to be infected annually, of

which 1.5 - 2.7 million annual deaths have been estimated (Magombedze et al,

2011; WHO, 2019). Malaria is widely spread in tropical and subtropical regions,
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including Africa, Asia, Latin America, the middle East and some parts of Europe.

However the most cases and deaths occur in sub-Saharan countries of Africa which

account for 80 percent of the world's malaria cases and 90 percent of the global

malaria deaths (WHO, 2012; CDC, 2019).

Death of an African child occurs in every 30 seconds, while global report of

deaths from malaria exceeds 2000 among the youth. (Tumwiine et al, 2007; Okosun

and Makinde, 2011; CDC 2019). For example, in Nigeria, malaria accounts for 60

percent of outpatient visits and 30 percent of hospitalization with children under

�ve years of age most severely a�ected (USE, 2011).
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1.1.2 Malaria parasites and cycle

Malaria is a disease characterized by fever, pain, paroxysms of chills, headache

and vomitting. The disease is caused by protozoan parasite, known as Plasmodium.

The commonest species that infect humans are; Plasmodium vivax, P. ovale, P.

falciparum, P. malariae and P. knowlesi. The socioeconomic burden of malaria

disease and its clinical signs include multi-organ failures such as lung, brain, liver

and kidney (Tumwiine et al., 2007).

The life cycle of the plasmodium parasite can be divided into two phases: sex-

ual and asexual phases, with the sexual phase taking place in the female anopheles

mosquito and asexual phase in the human host (Ibezim). The infection subtly

begins when an infectious mosquito pierces the human skin with its proboscis and

injects parasite in the form of sporozoites into the human's bloodstream for blood

circulation. In the process, the sporozoites enter the liver where each sporozoites

undergoes asexual multiplication stage to produce cells called merozoites. This �rst

asexual multiplication stage in human host is known as exoerythrocytic schizogony

(Cox, 2010).

Following the rupture of the hepatocytes, merozites escape into circulatory

system for asexual reproduction in the red cells, a stage called erythrocytic schizo-

gony develops (Cox, 2010). At this stage, more merozoites are produced until the

red blood cells burst and new merozoites are released to further infect other red

blood cells while some merozoites developed into gametocytes (Cox, 2010). These

geametocytes in the human's bloodstream can be taken up by a naive mosquito

in the blood meal gametocytes and mature into male and female gametes in the

mosquito's gut. Consequently, microgamete and macrogamete representing male

and female gametes respectively, fuse salivary gland of the mosquito vector where

they can be injected when the mosquito bites another human host to continue the

cycle.

1.1.3 Lassa fever history

In Nigeria, Lassa fever was �rst identi�ed in Lassa Town in 1969. The early

description of the disease was identi�ed as a new viral species without a name from

a man in West Africa (Fisher-Hoch et al., 1995). A renouned scientist known as

Dr John Frame of Columbia University was interested in nature of the fever among
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Africans and needed blood samples to con�rm the aetiological agent in the United

States of America. It's discovery in Nigeria, occurred shortly after the death of two

missionary nurses were reported with symptoms of dramatic fever. Incidentally, a

third nurse (Penny Pinneo) got infected with similar symptoms and was quickly

transferred to the USA for treatment. On this patient, Dr. Frame collected samples

to be analysed. Also, during early stages of researching, the death of a laboratory

technician at the Yale Arbovirus Research Unit was reported, while an infected

researcher survived the disease episode (WHO, 2012).

Annual deaths in West Africa from Lassa fever stands at 5,000 (CDC, 2015). In

spite of laudable achievements made in recent years in the biology and epidemiology

of Lassa virus, there are still several aspects that need to be unraveled to improve

the understanding of the disease.

1.1.4 Lassa virus

The disease, Lassa fever is caused by Lassa virus. The symptoms observed

are not pathognomonic, hence several common signs include general weakness,

headache, sore throat, fever, abdominal pain, cough and other �u-like character-

istics. Clinical manifestations include haemorrhagic conditions especially vascular

permeability (Nadezhda and David, 2012)

The 1960 Nobel winner of Medicine and Physiology, Peter Medawar, gave

an intriguing de�nition of a virus as being a piece of nucleic acid enveloped in

bad news. Basically, viruses contain genetic material composed of nucleic acid

(DNA/RNA) in di�erent forms (segmented/nonsegmetnted) and a protein coat.

The information produced from the nucliec acid determines the multiplication of

viruses. Their multiplication and survival only takes place in the host cell (plants,

animals, fungi, protozoa and bacteria). One of the most distinguishing features of

viruses is the lack of cellular wall, hence they are obligatory, with dependency on

the host cells.

1.1.5 Co-infection of Lassa fever and malaria

When the Lassa virus infects the central nervous system, it is extremely di�cult

to treat This makes a Plasmodium and Lassa virus coinfection so severe that ther-

apy may be ine�ective. Co-infection of parasite-viral or bacteria-virus interaction

need to be considered, especially when bacteria septicaemia often results from vi-
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ral haemorrhagic fever complications. Moreover, positive test results for malaria

disease should not exclude the possibility of viral haemorrhagic fever. This is an

important consideration especially in a non-responsive antimalaria treatment, since

parasitaemia in some cases may be pre-existing and often common in holoendemic

areas. The co-infection of Lassa fever and malaria in endemic countries could limit

the detection of Lassa fever, especially in areas were both disease are endemic

(Okokhere et al, 2010).

Clinical diagnosis with improved techniques have been reported using RT-

PCR. The method was able to detect the presence of Lassa virus and malaria

parasite in 27 patients with a subsequent malaria blood smear method. Although,

46 patients were observed to be positive of Lassa fever but negative to malaria.

Patients show transient fever duration and low average temperature on admis-

sion(Okokhere et al, 2010).
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1.1.6 Knowledge gap

Infectious disease is directly related to seasonal changes, which have now

been observed in both tropical and temperate regions. However, seasonal variation

of vectors that changes the transmission of malaria-Lassa fever co-infection and di-

agnostic factor for treatment have not been extensively studied using mathematical

model. Humans in natural populations could be infected with multiple di�erent

parasites simultaneously (at a time). These parasites could interact with each

other or act independently in the host, and this could result to di�erent outcomes

on individual health and survival. Therefore, this study was designed to develop a

co-infection (malaria and Lassa fever) mathematical model to investigate the e�ect

of endemic malaria mortality rate of Lassa fever patients and, to the best of our

knowledge this has not been reported in the literature. The basic reproduction

number R0 for a non-seasonal infection is typically de�ned as the number of sec-

ondary infections that result from the introduction of a single infectious individual

into an entirely susceptible population. This has been computed and used by many

researchers in the area of mathematical biology to examine stability. However, the

basic reproduction number, R0(a, t), for seasonal infection has not been examined

on malaria-Lassa fever co-infection epidemic using mathematical model.

1.1.7 Motivation for the study

The motivation for this work is to study the qualitative and quantitative prop-

erties of solutions of subharmonic bifurcation in malaria-Lassa fever co-infection

epidemic model with optimal control application by exploring periodic behaviour

of the system in the sense of Ira and Smith 1983. Standard epidemiology theory

such as basic reproduction number no longer enough to determine stability, and

the implications for interventions that themselves may be periodic have not been

formally examined. Therefore, this study established that for malaria-Lassa fever

co-infection model that incorporate diagnostic factor for treatment and season vari-

ation of vectors (mosquito and rodent) there exists in�nite number of subharmonic

bifurcation.
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1.1.8 Aims and objectives of the study

This study was designed to formulate and analyse mathematical model of malaria-

Lassa fever co-infection dynamic that incorporates seasonal variation of vectors

(mosquito and rodent) and diagnostic factor for treatment. These situation are

critical to enhance predictive power for decision support. Furthermore, this study

was also designed to investigate the e�ect of endemic malaria mortality rate of

Lassa fever patients. To

In order to achieve the aforementioned aims, the following speci�c objectives are

pertinent:

(1) Establish the feasible region where the formulated model is mathematically well

posed in terms of seasonal incidence function.

(2) Obtain the equilibrium points of the model with respect to seasonal incidence

function.

(3) Determine the basic reproduction number of the model in terms of seasonal

incidence function.

(4) Investigate the nature of the system near the equilibrium point by local and

global stability analysis with respect to seasonal incidence function.

(5) Determine the contributory e�ects of the model parameters in the transmission

of malaria-Lassa fever co-infection through sensitivity analysis.

(6) Analyse the possibility of co-existence of the malaria-Lassa co-infection in terms

of seasonal incidence function.

(7) Obtain the existence of subharmonic solutions of the model.

(8) Frame the disease management question of the model with respect to seasonal

incidence function into an optimal control problem.

(9) Examine the signi�cance of control strategies through numerical simulation.
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CHAPTER TWO

LITERATURE REVIEW

Mathematical modelling of malaria began in 1911 with Ronald Ross who dis-

covered the role of mosquito as an intermediate vector in the transmission of the

pathogenic malaria parasite. He introduced the �rst deterministic model of the

form
dIh
dt

= bβhm(1− Ih)Im − rIh
dIm
dt

= bβm(1− Im)Ih − µIm
with variable Ih representing the fraction of infectious humans and Im representing

the fraction of infectious mosquitoes; b is the mosquito biting rate; βh represents

the proportion of bites that produce infection in human; m denotes the fraction

of number of mosquitoes to that of humans; r represents human recovery rate;

βm represents the proportion of bites that produce infection in mosquito; and µ

denotes per capita rate of mosquito mortality. This model revealed that eradication

of malaria could be made possible by decreasing vector (mosquitoes) biting rate and

increasing the mosquito death rate resulting to reduction of threshold parameter

given

R0 =
mb2βhβm

rµ
The Ross model was modi�ed by Macdonald (1957), his model incorporates

the latency period of parasite in mosquitoes in which the exposed class was in-

troduced. His �ndings showed that the basic reproduction number of the disease

decreases with an increase in the latency period. A mathematical model was for-

mulated by Ira and Smith (1983), the model stimulates permanent immunity and

stability analysed. The �ndings of their study showed that environmental factor

could perturb the dynamical state from one subharmonic to another.

Further extension was described by Chow and Shaw (1986), they came up

with four dimensional piecewise linear second order ordinary di�erential equations.

The behaviour of the periodic solutions of their model was examined. Their anal-
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ysis concluded with the result that subharmonic motions with period n appear

through saddle-node bifurcation for n = 1, 2, 3, . . . . Macdonald's model was fur-

ther extended by Anderson and May (1991) as they introduced new exposed class

into the human population. This improvement has further decreased the long-term

prevalence of both infected humans and mosquitoes.

Yu and Piccardi (1994) examined the bifurcation of the periodic solutions

of models with sinusoidal varying contact rate. The research work which was an

extension of Ira and smith demonstrated by numerical simulations that when there

is a variation in latent period, the parameter portrait of the model undergoes

signi�cant structural changes.

The basic models discussed above are the building-ground for literature on

malaria models. Since then, di�erent factors have been incorporated in order to

make the models epidemiologically more realistic. One such factor is the inclusion of

recovered class into the human population on the idea that continuous exposure to

reinfection could lead to acquired immunity in human. A deterministic model that

incorporated human and mosquito populations with standard incidence function

was developed by Nwga and shu (2000). Their model made an exploration of

the structure in which an infectious human recovers with temporary immunity to

become a recovered human before entering the susceptible compartment again. The

result of their analysis revealed that there is persistence in the disease whenever

the threshold parameter R0 exceeds one and that the disease-free equilibrium is

globally asymptotically stable when R0 is below one.

Factors such as: environmental e�ects, mosquitoes resistance to insecticides,

resistance of some parasite strains to anti-malaria drugs and the use of optimal

control methods have been integrated into the models so as to gain more insight on

the behaviour of the disease. Yang and Ferreira (2000) used bilinear incidence func-

tion to study malaria transmission model by incorporating socio-economic struc-

ture. Through the model analysis, they showed how the basic reproduction number

changes with global warming and local social and economic conditions.

In addition, Iddi et al (2002) used deterministic model with standard incidence

function to study the impact of infectious immigrants on vector-borne disease with

direct transmission. The research work was analyzed qualitatively, the computation

of the basic reproduction number using the next generation matrix method and
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the conditions for the stability of the equilibra were determined. It was revealed

through numerical simulation that hike in the number of immigrants tends to result

to an increment in the number of infected population which leads to the persistence

of the disease in the population.

Koella and Anita (2003) developed a model in order to understand the epi-

demiology of anti-malaria resistance and to assess approaches to decrease resistance

spread. Their analyses showed that resistance to treatment does not spread if the

fraction of infected individuals treated is less than a threshold value and if the drug

treatment exceeds this value, then resistance to drug eventually becomes �xed in

the population.

Chitnis et al (2006) presented a malaria model that incorporated human im-

migration and disease-induced death rates. This model was based on Nwga and

Shu model. The basic reproduction number was obtained to investigate the stabil-

ity of disease-free equilibrium point using the next generation operator approach.

It was further depicted through numerical examples that backward bifurcation is

possible for some positive values of disease-induced death rate.

In another development, Tumwiine et al (2007) developed a �ve dimensional

model with standard incidence function for the dynamics of malaria in the human

hosts and vectors. In this model, the reservoir of the susceptible human was re�lled

by immunity loss to the disease and newborns. The stability of the system was

analysed for the existence of disease-free and endemic equilibra. However, it was

shown that the basic reproduction number is independent of the rate of loss of

immunity.

Scha�er and Bronnikova (2007), from another perspective, discussed the bi-

furcation structure of epidemic model subject to seasonality. The combination of

phenomenological equation (Regression analysis in Statistical model) which admits

to mathematical analysis and detailed simulation was suggested in their result as

a proof and recipe for progress.

In addition, Chitnis et al (2008) carried out a sensitivity analysis of malaria

model with human immigration factor and disease-induced death rate in order to

determine the relative importance of model parameters to the disease transmission

and prevalence. A computation of sensitivity indices of the basic reproduction

number to parameters at the baseline values was done. It was found out that the
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basic reproduction number is most sensitive to the mosquito biting rate.

Labadin et al (2009) formulated and analysed a deterministic model with stan-

dard incidence function. In this model, a consideration of the recovered population

with and without immunity and the impact of the di�erent values of the average

duration to build e�ective immunity on infectious humans were investigated numer-

ically. The �ndings of their research showed that if the ability to build an e�ective

immunity is fast for those who recovered from the disease, then the number of cases

could be reduced.

One of the contributory factors to the spread of malaria is proven to be the

movement of human from one environment to another. In the light of this, Arino

et al (2011) came up with a metapopulation model for malaria where interaction

between humans in rural and urban area was investigated. They brought to the

light that the basic reproduction number governed the stability of the disease-free

steady state. Also, the unrestricted movement of infected humans could lead to

the persistence of the disease in the population. Again, the class of infectious indi-

viduals with drug resistance symptoms was incorporated in the standard incidence

function deterministic model that was formulated and analysed by Okosun and

Makinde (2011). The model was shown to exhibit backward bifurcation and by

the basic reproduction number, the existence and stability of equilibria were estab-

lished. Pontryagin maximum principle was used to obtain conditions for optimal

control of the disease and their numerical results showed that e�ective control of

the proportion of individuals with drug resistance has a positive impact in reducing

the spread of the disease.

Magombedze et al (2011) developed an intra-host mathematical model of

malaria that described the interaction of immune system with the blood stage

malaria merozoites. Optimal control strategy was used to analysis their model.

This led to a suggestion in their result that a malarial therapy that seeks to mini-

mize merozoites population was bene�cial to patients as this will lead to the reduc-

tion of infected red blood cells. Also, a seven-dimensional compartmental model

of malaria that incorporated three control functions such as: the prevention of

host-vector contacts, treatment of hosts and reduction of mosquito population was

studied by Lashari et al (2012). In the analyses by the model, necessary condi-

tions for optimal control of malaria were obtained. The numerical simulation of

12



the model revealed that the combination of the control e�orts has a very desirable

e�ect on the population in reducing the number of infected individuals.

The in�uence of seasonal forcing system when the dynamical system which is

unforced have either stable, monotonic or oscillatory cycle was examined by Rachel

et al (2012). Their results revealed that the degree of oscillation in the unforced

system has a larger e�ect on the range of behaviour when the system is seasonally

forced.

Moreover, Gouhei and Kazuyuki (2013) investigated the in�uence of seasonal

structure on disease transmission dynamics. In their result, it was suggested that

accurately estimated seasonal �uctuation is necessary to have good knowledge on

disease transmission.

Furthermore, Olaniyi and Obabiyi (2013) formulated a mathematical model

that incorporated antibodies to curtail transmission of parasite that causes malaria

in both human and mosquito; and stability analyzed through threshold parameter.

The results of their analyses showed that the disease will not persist in the popula-

tion whenever R0 is below unity. However, the system become unstable whenever

R0 is above unity.

In a related work, a non- autonomous model that incorporated multiple con-

trol measures was developed by Olaniyi et al (2018) to investigate the dynamics of

malaria transmission in both human and mosquito populations. With the aid of

suitable Lyapunov functions, the stability of both disease-free and endemic equi-

libra was established. A suggestion was made in the result of their analysis that

combination of multiple control at a time by human traveler will help to eliminate

the spread of malaria in the population.

Okuonghae and Okuonghae (2006) pioneered research work on Lassa fever

using Mathematical modelling. In their study, they derived the conditions for

existence of disease-free and endemic equilibra and stability analyzed. The �ndings

of their model revealed that to temporarily control the rodents with the virus, the

policy of isolation of individuals infected with the virus is the best strategy against

the spread and transmission of the disease.

The knowledge of parasite-host interactions is limited since most studies have

focused on mono-parasite infections, and few have worked on co-infections while

assessing the severity of infectious diseases. Ademola and Odeniran (2016) in-
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vestigated the e�ect of co-infection of T. brucei with Plasmodium berghei on par-

asitaemia, haematological parameters, blood glucose level and survivability in a

mice model. The results of their analyses showed that co-infection of mice with P.

berghei and T.brucei resulted in rapid P. berghei and T. brucei development and

increased parasitaemia. A suggestion was made in the result of their analysis that

co-infection of mice with P. berghei and T. brucei could increase pathologic impact

to the host by increasing parasitaemia.

In another development, Okosun and Makinde (2014) proposed a mathemat-

ical model for malaria-cholera co-infection in order to investigate their synergistic

relationship in the presence of treatments. The results of their analyses revealed

that malaria infection may be associated with an increased risk of cholera. However,

cholera infection is not associated with an increased risk for malaria. A sugges-

tion was made in the result of their analysis that to e�ectively control malaria, the

malaria intervention strategies by policy makers must at the same time also include

cholera control.

The ubiquity of malaria as a co-morbidity in human with Lassa fever and the

e�ect on outcome was investigated by Okokhere et al (2010). In their study, it was

revealed that there is high ubiquity of co-infection with malaria in human with

Lassa fever, hence spotlighting a high index of suspicion for diagnosis and testing

for Lassa fever in malaria endemic area.

Ogabi et al (2012) presented a mathematical model based on the outbreak of

Lassa fever in the northern part of Edo State with high prevalence of Lassa fever on

contact persons. In their model, the threshold parameter was computed to assess

the stability of the model and numerical simulations of their model were discussed.

Their analyses established the results that proper awareness need to be done, for

people to have a sound knowledge about the disease. Furthermore, government at

all level need to embark on a subsidised housing scheme project to reduce contact

rate.

A mathematical model for Lassa fever transmission dynamics in two interact-

ing population was formulated by Bawa et al (2013). The stability of the disease free

equilibrium was established as well as computing the threshold parameter. Their

work suggested the result that every e�ort must be put in place by all concerned

to prevent the virus infection by reducing the threshold parameter
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In another development, James et al (2015) formulated a mathematical model

for Lassa fever transmission dynamics and stability analyzed. The study established

local stability of the disease free equilibrium and computed the threshold parameter

which can be used to control the transmission dynamics of the disease.

Onuorah et al (2016) formulated six dimensional system of nonlinear ordinary

di�erential equation for Lassa fever. In their analyses, the e�ects of the control

parameters on the various compartments of the model were revealed and they

concluded that if the basic reproduction number is low the disease will still continue

to spread. Suggestion for further studies was made on the endemic equilibrium and

bifurcation analysis.

A mathematical model presented in this work di�ers but gains insight from

that studied by Chow and Shaw (1986), Akinwande (2013) and Onuorah et al

(2016) in conjunction with the previous studies surveyed so far as it incorporates

seasonal variation of vectors and diagnostic factor for treatment of malaria-Lassa

fever co-infection. Also, there is a need to further investigate the e�ect of endemic

malaria mortality rate of Lassa fever patients.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 STUDY ONE

Basic tools in mathematical modelling

3.1.1 Malaria-Lassa fever co-infection model seasonal functionality
description based on feasible region

Deterministic mathematical models are those in which the values assumed by

the variables, or the changes in the variables, can be predicted with certainty.

They have no features that are intrinsically uncertain, unlike stochastic models,

and thus no parameters in the models are characterized by probability distribu-

tions. Furthermore, deterministic models require fewer simulations for a given set

of parameters, and they always produce the same results for a given set of start-

ing values. Deterministic models use algebraic or di�erential equations to model

real-world scenarios, whereas stochastic models use probability distributions.

Deterministic models are commonly used in mathematical epidemiology to ex-

plain the spread of infectious diseases in a population. Because the individuals in

the population are divided into subgroups or compartments based on their status

in relation to the infection under study, these models are often referred to as com-

partmental models (Ross, 1911). In general, compartmental models of infectious

disease transmission dynamics are governed by an nth-dimensional system of �rst

order nonlinear continuous ordinary di�erential equations of the form:

dx1
dt

= f1(x1(t), x2(t), ..., xn(t))

dx2
dt

= f2(x1(t), x2(t), ..., xn(t)
...

dxn
dt

= fn(x1(t), x2(t), ..., xn(t)


(3.1.1)

which can be expressed in matrix form as
dX

dt
= f(X(t)) (3.1.2)
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where

X =


x1

x2

...

xn

 and f =


f1

f2

...

fn

 .

The main point of interest in mathematical modelling is long-term behaviour of

solutions to the equations involved.

3.1.2 Model description

At this stage, mathematical symbols are introduced to represent the important

features of the problem. This usually involves writing the assumptions as mathe-

matical equations by concentrating on the variables and parameters of the problem.

To study the transmission dynamics of malaria-Lassa fever co-infection in

three interacting populations of humans (the host), mosquitoes (the vector) and

rodents (the vector) that incorporate seasonal variation of vectors and diagnostic

factor for treatment of malaria-Lassa fever co-infection, we formulated a model

which subdivides the total human and rodent populations size at time t and discrete

age ai and ej denoted by Nh(t, ai) = Nss(t, ai) +Nes(t, ai) +Nis(t, ai) +Nrs(t, ai) +

Nse(t, ai) +Nsi(t, ai) +Nsr(t, ai) +Nrr(t, ai) and Nd(t, ej) = Sd(t, ej) + Ed(t, ej) +

Id(t, ej) with i = 0, 1, 2, ..., L and j = 0, 1, 2, ..., T . aL and eT are the maximum age

of humans and rodents in the population. Similarly, the total mosquito population

size at time t is denoted by Nm(t) = Sm(t) + Em(t) + Im(t).

The state variables Nes, Nis and Nrs denote the number of human population

that were exposed, infected and recovered from Lassa fever, respectively, but sus-

ceptible to malaria. Moreover, Nse, Nsi and Nsr represents those exposed, infected

and recovered from malaria, respectively, but susceptible to Lassa fever. However,

Nss represents those susceptible to both diseases. The rodent population were clas-

si�ed as Sd, Ed and Id representing those susceptible, exposed and infected, respec-

tively. Furthermore, the mosquito population were classi�ed as Sm, Em and Im de-

noting those susceptible, exposed and infected, respectively. Let λM(t) = c0(ai)(1+

b cos(2πt + T ))Im be the malaria infection rate, where c0(ai) = cm(ai)
Nh(t,ai)

, b
Nh(t,ai)

is

the contact rate between human and mosquito and b is the rate at which human is

being bitten by mosquito. Similarly, λa(t) = ρ0(ai)(1+w2(ej) cos(2πt+T ))Id(t, ej)

and λb(t) = σ0(ai)(1 + w1(ai) cos(2πt + T ))Nis(t, ai) are the force of infection for
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Lassa fever, where σ0 = d1(ai)
Nh(t,ai)

and ρ0 = d2(ai)
Nh(t,ai)

. In the mosquito and rodent pop-

ulations λm(t) = φ0(1+ b cos(2πt+T )) and λd(t) = β0(ej)(1+w2(ej) cos(2πt+T )),

where φ0 = σm
Nm

and β0(ej) =
βd(ej)

Nd(t,ej)

The subscripts d,m represent Lassa fever (rodent) and malaria (mosquito) re-

spectively. Since ribavirin (anti-viral drug) is e�ective when it is administered

early. It is assumed that both exposed and infectious human are treated at

rate γv(ai)α(ai)Nes(t, ai) and ηv(ai)σ(ai)Nis(t, ai) respectively. Nrr(t, ai) represents

those who are infected with both diseases.
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Figure 3.1: Compartmental model for the Malaria-Lassa fever co-infection trans-
mission
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In summary, the formulation of the compartmental model is based on the fol-

lowing assumptions:

1. That all humans are born susceptible to both Lassa fever and malaria. That is,

humans are liable to contract the diseases.

2. That the susceptible humans, when infected, becomes exposed humans who are

not yet infected.

3. That the exposed humans progress to become infectious only.

4. That the infectious humans may either die naturally or as a result of the disease,

and if not, they become recovered humans due to treatment.

5. That humans can contract both Lassa fever and malaria simultaneously

6. That all rodents and mosquitoes are born susceptible.

7. That each class of rodents population may either die naturally or by hunting

and use of pesticide

8. That the susceptible rodents, when infected, becomes exposed rodents which

are not yet infectious.

9. That the exposed rodents and mosquitoes progress to become infectious only.

10. That the susceptible rodents become infected when they eat or drink water

together with infected rodents.

11. That the infectious rodents and mosquitoes remain infectious for life. That is,

there is no loss of infectiousness for both rodents and mosquitoes populations.

In what follows, we obtain a fourteen-dimensional system of ordinary di�er-

ential equations which describes the disease transmission as:
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dNss(t, ai)

dt
= ζ(ai)−

L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)−
L∑
i=0

λMNss(t, ai)Im

− µ(ai)Nss(t, ai) + γm(ai)Nsr(t, ai) (3.1.3)

dNes(t, ai)

dt
=

L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)−
L∑
i=0

ϑm(ai)λMNes(t, ai)Im

− (µ(ai) + γv(ai)α(ai) + τ(ai))Nes(t, ai) (3.1.4)

dNis(t, ai)

dt
=

L∑
i=0

τ(ai)Nes(t, ai)−
L∑
i=0

ϑm(ai)λMNis(t, ai)Im

− (µ(ai) + ηv(ai)σ(ai))Nis(t, ai) (3.1.5)

dNrs(t, ai)

dt
=

L∑
i=0

γv(ai)α(ai)Nes(t, ai) + ηv(ai)σ(ai)Nis(t, ai) − µ(ai)Nrs(t, ai)

(3.1.6)

dNse(t, ai)

dt
=

L∑
i=0

λMNss(t, ai)Im −
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)Nse(t, ai)

− (µ(ai) + τm(ai)Nse(t, ai) (3.1.7)

dNsi(t, ai)

dt
=

L∑
i=0

τm(ai)Nse(t, ai)−
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)Nsi(t, ai)

− (µ(ai) + εm(ai)βm(ai))Nsi(t, ai) (3.1.8)

dNsr(t, ai)

dt
=

L∑
i=0

εm(ai)βm(ai)Nsi(t, ai) − (γm(ai) + µ(ai))Nsr(t, ai) (3.1.9)

dNrr(t, ai)

dt
=

L∑
i=0

ϑm(ai)λM(Nes(t, ai) +Nis(t, ai))Im − µ(ai)Nrr(t, ai)

+
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)(Nse(t, ai) +Nsi(t, ai)) (3.1.10)

dSd(t, ej)

dt
= Λd(ej)(1+ξd cos(2πt+T ))−

T∑
j=0

λdSd(t, ej)Id(t, ej)−(µd(ej)+δd(ej))Sd(t, ej)

(3.1.11)

dEd(t, ej)

dt
=

T∑
j=0

λdSd(t, ej)Id(t, ej)− (αd(ej) + µd(ej) + δd(ej))Ed(t, ej) (3.1.12)
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dId(t, ej)

dt
=

T∑
j=0

αd(ej)Ed(t, ej)− (µd(ej) + δd(ej))Id(t, ej)

(3.1.13)

dSm
dt

= ςm(1 + κm cos(2πt+ T ))− λmSmNsi(t, ai)− µmSm

(3.1.14)

dEm
dt

= λmSmNsi(t, ai)− (µm + αm)Em

(3.1.15)

dIm
dt

= αmEm − µmIm

(3.1.16)

together with the initial conditions

Nss(0, ai) = N0ss(ai), Nes(0, ai) = N0es(ai), Nis(0, ai) = N0is(ai),

Nrs(0, ai) = N0rs(ai), Nse(0, ai) = N0se(ai), Nsi(0, ai) = N0si(ai),

Nsr(0, ai) = N0sr(ai)Sd(0, ej) = S0d, Ed(0, ej) = E0d, Id(0, ej) = I0d,

Sm(0) = S0m, Em(0) = E0m, Im(0) = I0m


(3.1.17)

The table below (table 3.1) provide de�nition to parameters used in the model

formulation. These parameters are factors contributing to the spread and trans-

mission of malaria-Lassa fever co-infection.
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Table 3.1: The description of parameters of the malaria-Lassa fever co-infection
model.

De�nition Symbols

Recruitment term of the susceptible humans ζ(ai)
Recruitment term of susceptible mosquito ςm
Recruitment term of susceptible rodent Λd(ej)

Biting rate of the mosquito b
Interacting rate of rodent w2(ej)
Interacting rate of human w1(ai)

Transmission rate of malaria in human cm(ai)
Transmission rate of malaria in mosquito σm

Transmission rate of Lassa fever in human by infectious human d1(ai)
Transmission rate of Lassa fever in human by infectious rodent d2(ai)
Transmission rate of Lassa fever in rodent by infectious rodent βd(ej)

Per capita death rate of humans µ(ai)
Per capita death rate of mosquitoes µm

Per capital death rate of rodent µd(ej)
death rate of rodent due to hunting δd(ej)

Seasonal variation of mosquito κm
Seasonal variation of rodent ξd

Progression rate of Lassa fever in the exposed human host τ(ai)
Progression rate of malaria in the exposed human host τm(ai)

Progression rate of Lassa fever in exposed rodent αd(ej)
Progression rate of malaria in exposed mosquito αm

Proportion of e�ective treatment of infectious human for malaria εm(ai)
Treatment rate of infectious human for malaria βm(ai)

Proportion of e�ective treatment of exposed human for Lassa fever γv(ai)
Diagnostic for treatment of exposed human for Lassa fever α(ai)

Proportion of e�ective treatment of infectious human for Lassa fever σ(ai)
Treatment rate of infectious human for Lassa fever ηv(ai)

Rate of loss of immunity to malaria γm(ai)
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3.2 STUDY TWO

Determination of equilibrium points in Malaria-Lassa fever coinfection
model

3.2.1 Equilibrium points

Disease-free and endemic points of equilibrium are the two major types of points of

equilibrium in mathematical epidemiology. The former denotes a non-trivial stable-

state solution in which all infected compartments in the system are zero, while the

latter denotes a positive stable-state solution in which the disease is prevalent.

De�nition 3.1: (Lungu, et al, 2007): An equilibrium point of the system of

di�erential equations (3.1.1) is a steady state x̄ satisfying f(x̄) = 0 for all time t.

This de�nition means that points at which the system (3.1.2) is equal to zero are

referred to as points of equilibrium or steady-state solutions.
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3.3 STUDY THREE

The next generation matrix

3.3.1 Basic reproduction number derivation

The basic reproduction number, usually denoted by R0, is a crucial concept

in epidemiological model analysis. This number represents the average number

of secondary infections produced by an infective individual during the course of

their illness, assuming that the entire population is susceptible (Diekmann et al

1990). In other words, R0 re�ects average number of secondary cases caused by a

typical infected case over an infectious period in a totally susceptible population.

To obtain R0 for epidemiological model involving more than one infected class, a

technique due to Diekmann et al (1990) is suitable. This technique known as the

next generation matrix, was explicitly studied by Van den Driessche and Watmough

(2002) and is summarized below:

Following the idea of Diekmann et.al (1990), FV −1 is called the next genera-

tion matrix.

F =

[
∂Fi
∂xi

(x̄)

]
and V =

[
∂Vi
∂xi

(x̄)

]
. Therefore, the threshold parameter, R0, is given by

R0 = ρ(FV−1) (3.3.1)

where ρ is the spectral radius of the product, FV−1 known as the next generation

matrix; F represent the rate of appearance of new infections in infected compart-

ment and V denote the rate of transfer of individuals in infected compartment.
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3.4 STUDY FOUR

Local and Global stability of the theorem

3.4.1 Local stability

De�nition 3.2: Stability properties characterize how a system behaves if its state

is initiated close to, but not precisely at a given equilibrium point.

An equilibrium point is stable whenever the system state is initiated near that

point, the state remains near it, perhaps even tending towards the equilibrium point

as time increases.

3.4.2 Global stability

Lyapunov function

De�nition 3.3: (Derrick and Grossman, 1976): A function V de�ned on a region

Ω of the state space and containing x̄ is a Lyapunov function if it satis�es the

following:

(i) V is continuously di�erentiable,

(ii) V is positive de�nite, and

(iii) the derivative of V along the solution of the system (3.1.2) is de�ned by

V̇ =
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
+ ...+

∂V

∂xn

dxn
dt

=
∂V

∂xi
fi.

It should be noted that the construction of these types of functions is an art

rather than a rule, since there are no clear formulae for providing them. However,

whenever such a function is found, satisfying speci�c properties, many stability

results can be obtained (Ayoola, 2012). The following theorem of epidemiological

model are to be considered.

Theorem 3.1: (Derrick and Grossman, 1976): Given the system ẋ = Ax where

A is the matrix of the linearised nonlinear system (3.1.2.). Then,

(i) the equilibrium point, x̄, is stable if all the eigenvalues of A have only imaginary

parts.

(ii) the equilibrium point, x̄, is asymptotically stable if all the eigenvalues of A

have negative real parts.

(iii) the equilibrium point is unstable in all other cases.

Lyapunov stability theorem

Theorem 3.2: (Lungu et al, 2007): If there exist a Lyapunov function V̇ (x̄) and

such that V̇ ≤ 0, then the equilibrium point x̄ is stable. If, furthermore, the
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function V̇ is strictly negative for every point then the stability is asymptotic.

Lasalle's invariance principle

Theorem 3.3: (Lasalle, 1976): Given a Lyapunov function V (x) such that V̇ ≤ 0

on a positive invariant set Ω and if the largest invariant set within {x ∈ Ω : V̇ (x) =

0} is {x̄}. Then x̄ is globally asymptotically stable in Ω.
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3.5 STUDY FIVE

Sensitivity analysis

3.5.1 Sensitivity analysis of malaria-Lassa fever co-infection model

In order to determine the parameters or factors most essential in the transmission

dynamics and spread of the diseases (malaria-Lassa fever co-infection), we described

a sensitivity analysis of the formulated model (3.1.3)-(3.1.16) in the sense of Chitnis

et al (2008) and Iddi et al (2012).

De�nition 3.4: The normalized forward sensitivity analysis index, of a variable,

v to a parameter p denoted by Υv
p, is denoted as a ratio of the relative change in

the variable to the relative change in the parameter

Υv
p =

∂v

∂p
× p

v
.
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3.6 STUDY SIX

Co-existence

3.6.1 Co-existence possibility of malaria-Lassa fever model

We shall use the idea of Nannyonga et al, (2012) to investigate the e�ect of endemic

malaria mortality rate of Lassa fever patients

Theorem 3.4: (Nannyonga et al, 2012) Trypanosomiasis at endemic state will

invade into malaria endemic state if

ωm >
yR2

0t(R2
0t − 1)− xR2

0m(1 + yz(R2
0t − 1))

gR2
0m(R2

0t − 1)(1 + yz(R2
0t − 1))

(3.6.1)

and vice versa if the role of m and t are interchanged in (3.6.1) by symmetry.

Therefore, since infection with malaria increases the susceptibility of a host to

other pathogen, then, even when the basic reproduction number for malaria is less

than unity, trypanosomiasis will invade and co-exist with malaria.
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3.7 STUDY SEVEN

Subharmonic bifurcation

3.7.1 Existence of subharmonic bifurcation theorem

Consider the following di�erential equations:

x̄′ = −vȳ + εf1(x̄, ȳ, z̄, t, ε, δ)

ȳ′ = vx̄(1 + ȳ) + v∆3x̄z̄
∆2+∆3

+ v2δ cos 2πt
(

1 + ȳ + ∆3z̄
∆2+∆3

)
+ εf2(x̄, ȳ, z̄, t, ε, δ)

εz̄′ = −(∆2 + ∆3)z̄ + εf3(x̄, ȳ, z̄, t, ε, δ)


(3.7.1)

where

fi(x, y, z, t+ 1, ε, δ) = fi(x, y, z, t, ε, δ)

fi(0, 0, 0, t, 0, 0) = 0 i = 1, 2, 3.

Now, setting ε = δ = 0 in (3.7.1) (Since ε and δ are treated as small parameters)

we obtain the reduced equations:

x̄′ = −vȳ

ȳ′ = vx̄(1 + ȳ)

z̄ = 0


. (3.7.2)

Theorem 3.5: ( Ira and Smith, 1983): Let x̄n(t), ȳn(t) = x̄n(t + α), ȳn(t + α)

represent solution of a periodic equation (3.7.2), where n > 2π
v
. Suppose that

γ2 ≡ v2

∫ n

0

ȳ(t) cos 2πtdt 6= 0 (3.7.3)

γ1 =
−2r

v
(Area interior to Γn) and for αhε[0, n), |ε| � 1, |δ| � 1, let

B(αh, ε, δ) = −γ1ε+ γ2δ cos 2παh + 0(|ε|+ |δ|)2. (3.7.4)

If (x̄n, ȳn) span the n- periodic equations (3.7.2) about (x̄0, ȳ0), and B(αh, ε, δ) = 0,

subsequently, equation (3.7.1) has an n-periodic solution (x̄, ȳ, z̄) as given below

x̄(t) = x̄n(t+ αh + 0(|ε|+ (1 + |δ|))

ȳ(t) = ȳn(t+ αh + 0(|ε|+ |δ|)

z̄(t) = − ε∆2ȳ′(t+αh)
v2(∆2+∆3)

+ 0(|ε|+ |δ|)2


. (3.7.5)
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3.7.2 Harmonic and periodic motions

De�nition 3.5:(Chow and Shaw 1986): A motion, if described in time by a sine

or cosine function, is said to be harmonic.

De�nition 3.6: (Chow and Shaw 1986): A motion is said to be periodic if after

a period T or various integer it has the same pattern. For the description of the

feature, we can write u(t) = u(t+ kT ), for k = ±1,±2,±3, ...

3.7.3 Subharmonic

De�nition 3.7: (Chow and Shaw 1986): subharmonic refers to the appearance of

the power spectrum corresponding to a signal arising from a period- doubling (or

subharmonic) bifurcation.

3.7.4 The Fredholm alternative theorems

A �rst understanding of the problem of solving an integral equation

y = Ky + f

can be made by introducing the Fredholm Alternative Theorems in the context of

integral equations.

I. Exactly one of the following holds.

(a) First Alternative if f is in L2{0, 1}, then

y(X) =

∫ 1

0

K(X, t)y(t)dt+ f(X)

has one and only one solution.

(b) Second Alternative y(X) =
∫ 1

0
K(X, t)y(t)dt has a nontrivial solution.

II. (a) if the �rst alternative holds for the equation

y(X) =

∫ 1

0

K(X, t)y(t)dt+ f(X)
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Then it also holds for the equation

z(X) =

∫ 1

0

K(X, t)z(t)dt+ g(X)

(b) In either alternative, the equation

y(X) =

∫ 1

0

K(X, t)y(t)dt

and it adjoint equation

z(X) =

∫ 1

0

K(X, t)z(t)dt

possess similar linearly independent solutions number.

III. Suppose the second alternative holds. Then

y(X) =

∫ 1

0

K(X, t)y(t)dt+ f(X)

has a solution if and only if ∫ 1

0

f(t)z(t)dt = 0

for each solution z of the adjoint equation

z(X) =

∫ 1

0

K(X, t)z(t)dt

De�nition 3.7.1. An adjoint equation is a linear di�erential equation generally

obtained from its primary equation through integration by part.
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3.8 STUDY EIGHT

Control theory

3.8.1 Optimal control problem

Optimal control is the method of determining a dynamic system's control and state

trajectories over time to minimize a performance index (Bryson, 1996).

Problem statement: Consider a nonlinear system

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (3.8.1)

The trajectory (x∗, u∗) that satis�es the dynamics and minimizes cost is obtain as

max
u

∫ T

0

P (x, u)dt+K(x(T ), u(T ))

The typical cost function: quadratic cost

J =
1

2

∫ T

0

(xTQx+ uTRu)dt+ xT (T )P1x(T ).

System:

ẋ = f(x, u)x = Rn

x(0) = given u ∈ Ω.

Cost:

J =

∫ T

0,ψ(x(T ))=0

P (x, u) +K(x(T ))

Hamiltonian:

H = P + λTf = P +
∑

λifi

Theorem 3.6: If (x∗, u∗) is optimal, then there exists λ∗(t) and v∗ such that

ẋi = ∂H
∂λi

− λi ∂H∂xi x(0) given ψ(x(T )) = 0

λ(T ) = ∂K
∂x

(x(T )) + ∂ψT

∂x
v

 (3.8.2)

and

H(x∗(t), u∗(t), λ∗(t) ≤ H(x∗(t), u, λ∗(t)) ∀ u ∈ Ω

3.8.2 Application of Pontryagin's maximum principle

First, formulate problem in standard form

ẋ = f(x, u) x ∈ Rn

x(0) given u ∈ Ω ⊂ Rp

J =

∫ T

0,ψ(x(T ))=0

P (x, u)dt+ v(x(T ))
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second, compute Hamiltonian

H = L+ λTf = L+
∑

λifi

Third, compute necessary condition

ẋi = ∂H
∂λi

− λi ∂H∂xi x(0) given ψ(x(T )) = 0

λ(T ) = ∂K
∂x

(x(T )) + ∂ψT

∂x
v

 (3.8.3)

fourth, �nd the optimal input

u = argmin H(x∗(t), uλ∗(t))

�nally, Solve for the optimal trajectory: Substitute optimal input into necessary

conditions and solved boundary value problem. In general, this is hard to do in

closed form. However, we can convert this to a computational problem.
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3.9 STUDY NINE

Simulation

3.9.1 Numerical simulation

Simulation, according to Shannon (1975), is "the method of designing a model of

a real system and conducting experiments with this model for the motive either

of understanding the behaviour of the system or of evaluating various techniques

(within the limits imposed by a criterion or set of criteria) for the operation of the

system. This was achieved using Maple and MATLAB software packages.

This study investigates and compared numerical results from simulations with

the following scenarios (i) u2 6= 0, u3 6= 0, u1 = 0 (ii)u1 6= 0, u3 6= 0, u2 = 0 (iii)

u1 6= 0, u2 6= 0, u3 = 0 (iv)u1 6= 0, u2 6= 0, u2 6= 0. For numerical simulations we have

used the following weight factors m1 = 50,m2 = 150,m3 = 30, with initial state

variables Nss(0) = 500, Nes(0) = 20, Nis(0) = 0, Nrs(0) = 10, Nse(0) = 20, Nsi(0) =

0, Nsr(0) = 10, Nrr = 0, Sm(0) = 2000, Em(0) = 100, Im(0) = 30, Sd(0) = 2000, Ed(0) =

100, Id(0) = 30. The controls (u1, u2, u3) are used to optimize the objective function

J , with weight factors m1 = 50,m2 = 150,m3 = 30.
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CHAPTER FOUR

RESULTS

4.1 STUDY ONE

Analysis of the malaria-Lassa fever co-infection model

4.1.1 Existence of solutions on feasible region

Here, we provide the following results which guarantee that the malaria-Lassa

fever co-infection model governed by system (3.1.3)-(3.1.16) is mathematical well-

posed in a feasible region Ω de�ned by

Ω = Ωh × Ωd × Ωm ⊂ R8
+ ×R3

+ ×R3
+

where

Ωh = {Nss(t, ai), Nes(t, ai), Nis(t, ai), Nrs(t, ai), Nse(t, ai),

Nsi(t, ai), Nsr(t, ai), Nrr(t, ai) ∈ R8 : Nh(t, ai) ≤
L∑
i=0

ζ(ai)

µ(ai)
},

Ωd = {Sd(t, ej), Ed(t, ej), Id(t, ej),∈ R3
+ : Nd(t, ej) ≤

T∑
j=0

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
}

and

Ωm = {Sm(t), Em(t), Im(t),∈ R3
+ : Nm(t) ≤ ςm(1 + κm cos(2πt+ T ))

µm
}

Theorem 4.1: The feasible region Ω de�ned by

Ω = {Nss(t, ai), Nes(t, ai), Nis(t, ai), Nrs(t, ai), Nse(t, ai), Nsi(t, ai), Nsr(t, ai), Nrr(t, ai)

, Sd(t, ej), Ed(t, ej), Id(t, ej), Sm(t)Em(t), Im(t) ∈ R14 : Nh(0, ai) ≤ Nh(t, ai) ≤
L∑
i=0

ζ(ai)

µ(ai)
, Nd(0, ej) ≤ Nd(t, ej) ≤

T∑
j=0

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
, Nm(0) ≤ Nm(t) ≤
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ςm(1 + κm cos(2πt+ T ))

µm
} with initial conditionsNss(0, ai) ≥ 0, Nes(0, ai) ≥ 0, Nis(0, ai) ≥

0, Nrs(0, ai) ≥ 0, Nse(0, ai) ≥ 0, Nsi(0, ai) ≥ 0, Nsr(0, ai) ≥ 0, Nrr(0, ai) ≥ 0, Sd(0, ej) ≥

0, Ed(0, ej) ≥ 0, Id(0, ej) ≥ 0, Sm(0) ≥ 0, Em(0) ≥ 0, Im(0) ≥ 0 is positive invariant

for system (3.1.3) - (3.1.16).

Proof: If the total human population size is given by Nh(t, ai) = Nss(t, ai) +

Nes(t, ai) +Nis(t, ai) + Nrs(t, ai) + Nse(t, ai) + Nsi(t, ai) + Nsr(t, ai) + Nrr(t, ai),

the total rodent population size is Nd(t, ej) = Sd(t, ej) + Ed(t, ej) + Id(t, ej) and

the total size of mosquito population is Nm(t) = Sm(t) + Em + Im. Then from

(3.1.3)-(3.1.16)

dNh(t, ai)

dt
≤ ζ(ai)−

L∑
i=0

µ(ai)Nh(t, ai) (4.1.1)

dNd

dt
≤ Λd(ej)(1 + ξd cos(2πt+ T ))−

L∑
i=0

(µd(ej) + δd(ej))Nd(t, ej) (4.1.2)

dNm

dt
≤ ςm(1 + κm cos(2πt+ T ))− µmNm (4.1.3)

solving the di�erential inequalities (4.1.1), (4.1.2) and (4.1.3) one after the other

gives

Nh(t, ai)e
µh(ai)t ≤ Nh(0, ai) +

L∑
i=0

Λ(ai)

µh(ai)
eµh(ai)t −

L∑
i=0

Λ(ai)

µh(ai)

so that

Nh(t, ai) ≤ Nh(0, ai)e
−µh(ai)t +

L∑
i=0

Λ(ai)

µh(ai)
−

L∑
i=0

Λ(ai)

µh(ai)
e−µh(ai)t

this implies

Nh(t, ai) ≤
L∑
i=0

Λ(ai)

µh(ai)
(1− e−µh(ai)t) +Nh(0, ai)e

−µh(ai)t (4.1.4)
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similarly for (4.1.2) we have

Nd(t, ej)e
(µd(ej)+δd(ej))t ≤

T∑
j=0

Nd(0, ej)+
Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
e(µd(ej)+δd(ej))t

− Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)

so that

Nd(t, ej) ≤
T∑
j=0

Nd(0, ej)e
−(µd(ej)+δd(ej))t +

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)

− Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
e−(µd(ej)+δd(ej))t

this implies

Nd(t, ej) ≤
T∑
j=0

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
(1−e−(µd(ej)+δd(ej))t)+Nd(0, ej)e

−(µd(ej)+δd(ej))t

(4.1.5)

Also

Nm(t)eµmt ≤ Nm(0) +
ςm(1 + κm cos(2πt+ T ))

µm
eµmt − ςm(1 + κm cos(2πt+ T ))

µm

so that

Nm(t) ≤ Nm(0)e−µmt +
Λm

µm
− ςm(1 + κm cos(2πt+ T ))

µm
e−µmt

this implies

Nm(t) ≤ ςm(1 + κm cos(2πt+ T ))

µm
(1− e−µmt) +Nm(0)e−µmt (4.1.6)

Taking the limits of (4.1.4), (4.1.5) and (4.1.6) as t → ∞ gives Nh(t, ai) ≤
L∑
i=0

ζ(ai)

µh(ai)
, Nd(t, ej) ≤

T∑
j=0

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)

and Nm(t) ≤ ςm(1+κm cos(2πt+T ))
µm

. Thus the following feasible region Ω
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= {Nss(t, ai), Nes(t, ai), Nis(t, ai), Nrs(t, ai), Nse(t, ai), Nsi(t, ai), Nsr(t, ai),

Nrr(t, ai), Sd(t, ej), Ed(t, ej), Id(t, ej), Sm, Em, Im ∈ R14 : Nh(t, ai) ≤
L∑
i=0

ζ(ai)

µ(ai)
,

Nd(t, ej) ≤
T∑
j=0

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
, Nm(t) ≤ ςm(1 + κm cos(2πt+ T ))

µm
}
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4.2 STUDY TWO

Disease-free and endemic equilibrium point

4.2.1 Equilibrium points

Disease-free equilibrium points are steady-state solutions where there is no

malaria-Lassa fever co-infection. Thus, the disease-free equilibrium point, ε0 for

the malaria-Lassa fever model (3.1.3)-(3.1.16) implies that N∗ss(ai) 6= 0, N∗es(ai) =

N∗is(ai) = N∗se(ai) = N∗si(ai) = N∗rr(ai) = 0, S∗d(ej) 6= 0, E∗d(ej) = I∗d(ej) = 0, S∗m 6=

0, E∗m = I∗m = 0 and putting these into (3.1.3), (3.1.6), (3.1.9), (3.1.11) and (3.1.14)

yields N∗rs(ai) = 0, N∗sr = 0, N∗ss(ai) = ζ(ai)
µ(ai)

,, S∗d = Λd(1+ξd cos(2πt+T ))
µd+δd

and S∗m =

ςm(1+κm cos(2πt+T ))
µm

respectively. Consequently, we obtain ε0 as

ε0 =

(
ζ(ai)

µ(ai)
, 0, 0, 0, 0, 0, 0, 0,

Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
, 0, 0,

ςm(1 + κm cos(2πt+ T ))

µm
, 0, 0

)
(4.2.1)

The points at which the di�erential equations of the system (3.1.3)-(3.1.16)

equal to zero are referred to as equilibrium points or steady state solutions. It is im-

portant to note that there is no trivial equilibrium points as long as the recruitment

terms ζ(ai), Λd(ej)(1 + ξd cos(2πt+ T )) and Λm(1 + ξm cos(2πt+ T )) are not zero.

This implies that the equilibrium points (Nss(t, ai), Nes(t, ai), Nis(t, ai), Nrs(t, ai),

Nse(t, ai), Nsi(t, ai), Nsr(t, ai), Nrr(t, ai), Sd(t, ej), Ed(t, ej), Id(t, ej), Sm, Em, Im)

6= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Subsequently, we shall analyse model (3.1.3)-(3.1.16) by showing the existence

of the endemic equilibrium and stability properties of both the disease free and

endemic equilibria through the basic reproduction number of the model.
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4.3 STUDY THREE

Threshold parameter, R0L(t, a) and R0M(t, a)

4.3.1 Basic reproduction number, R0L(t, a) and R0M(t, a)

The basic reproduction numbers for Lassa fever and malaria denoted by

R0L(t, a) and R0M(t, a) can be obtained through the next-generation matrix ap-

proach described by VanDen Driessche and Watmough (2002). Considering only

the diseased compartments, the rate of appearance of new infections and the trans-

fer rate are given, respectively, by

F(x) =



L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)

0
T∑
j=0

λdSd(t, ej)Id(t, ej)

0


and

V(x) =



L∑
i=0

(µ(ai) + γ1(ai)α(ai) + τ(ai))Nes(t, ai)

L∑
i=0

(µ(ai) + η1(ai)σ(ai))Nis(t, ai)− τ(ai)Nes(t, ai)

T∑
j=0

(αd(ej) + µd(ej) + δd(ej))Ed(t, ej)

T∑
j=0

(µd(ej) + δd(ej))Id(t, ej)− αd(ej)Ed(t, ej)


Finding the derivative of F and V at the disease-free equilibrium point π0 gives F

and V respectively, where
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F =



0
L∑
i=0

T∑
j=0

σ0(ej)(1 + w1(ej) cos(2πt+ T ))ζ(ai)

µ(ai)
0 0

0 0 0 0

0 0 0 Q

0 0 0 0


and

V =



L∑
i=0

(µ(ai) + γ1(ai)α(ai) + τ(ai)) 0 0 0

−
L∑
i=0

τ(ai)
L∑
i=0

(µ(ai) + η1(ai)σ(ai)) 0 0

0 0 g 0

0 0 −
T∑
j=0

αd(ej) W



where g =
T∑
j=0

(αd(ej) + µd(ej) + δd(ej)) and W =
T∑
j=0

(αd(ej) + µd(ej))

Q =
T∑
j=0

ρ0(ej)(1 + w2(ej) cos(2πt+ T ))Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)
so that

FV−1 =



A11

L∑
i=0

σ0(ai)(1 + w1(ai) cos(2πt+ T ))ζ(ai)

µ(ai)(µ(ai) + η1(ai)σ(ai))
0 0

0 0 0 0

0 0 A33 A34

0 0 0 0


where

A11 =
L∑
i=0

σ0(ai)(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)

µ(ai)(µ(ai) + γ1(ai)α(ai) + τ(ai))(µ(ai) + η1(ai)σ(ai))
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A33 =
T∑
j=0

αd(ej)β0(ej)(1 + w2(ej) cos(2πt+ T ))Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)

A34 =
T∑
j=0

β0(ej)(1 + w2(ej) cos(2πt+ T ))Λd(ej)(1 + ξd cos(2πt+ T ))

µd(ej) + δd(ej)

R0L is the spectral radius of FV−1 given as

R0L(a, t) =
L∑
i=0

σ0(ai)(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)

Rrf

(4.3.1)

where Rrf = µ(ai)(ηv(ai)σ(ai) + µ(ai))(γv(ai)α(ai) + τ(ai) + µ(ai))

using similar argument, the basic reproduction number for malaria is given by

R0M(a, t) =

√√√√ L∑
i=0

τm(ai)σ0(ai)(1 + b cos(2πt+ T ))ζ(ai)ςm(1 + κm cos(2πt+ T ))αmφ0

µ(ai)(τm(ai) + µ(ai))(εm(ai)βm(ai) + µ(ai))µm(αm + µm)µm

(4.3.2)

R0M(a, t) =
√
RhmRmm (4.3.3)

whereRmm = ςm(1+κm cos(2πtT ))αmφ0
µm(αm+µm)µm

andRhm = τm(ai)σ0(ai)(1+b cos(2πtT ))ζ(ai)
µ(ai)(τm(ai)+µ(ai))(εm(ai)βm(ai)+µ(ai))

Thus, (4.3.1) and (4.1.3) are basic reproduction numbers for Lassa fever and

malaria.
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4.4 STUDY FOUR

4.4.1 Existence of endemic equilibrium- local stability

Using the basic reproduction number obtained from the model (3.1.3)-(3.1.16),

we analyse the stability of the equilibrium point in the following result.

Theorem 4.2: Malaria-Lassa fever co-infection model (3.1.3) - (3.1.16) has no

endemic equilibrium when Res1(a), Res2(a), R0M(a), Rem1(a), Rem2(a) < 1 and a

unique endemic equilibrium exist when Res1(a), Res2(a), R0M(a), Rem1(a),

Rem2(a) > 1.

Proof: Let E∗∗e = (N∗∗ss (ai), N
∗∗
es (ai), N

∗∗
is (ai), N

∗∗
rs (ai), N

∗∗
se (ai), N

∗∗
si (ai), N

∗∗
sr (ai),

S∗∗m , E
∗∗
m , I

∗∗
m , S

∗∗
d (ej), E

∗∗
d (ej), I

∗∗
d (ej)) be a non trivial equilibrium of the model

(3.1.3)-(3.1.16). The steady state of the malaria-Lassa fever co-infection model

(3.1.3)-(3.1.16) are

N∗∗ss (a) =
L∑
i=0

ζ(ai)(R
2
em2(a)− 1)

µ(ai)R2
0M(a)(R2

em1(a)− 1)
,

N∗∗se (a) =
L∑
i=0

ζ(ai)(γm(ai) + µ(ai))(µ(ai) + εm(ai)βm(ai))(R
2
0M(a)− 1)

τm(ai)εm(ai)βm(ai)R2
0M(a)(Rem1(a)− 1)γm(ai)

,

N∗∗si (a) =
L∑
i=0

ζ(ai)(γm(ai) + µ(ai))(R
2
0M(a)− 1)

γm(ai)R2
0M(a)(Rem1(a)− 1)

,

N∗∗sr (a) =
L∑
i=0

ζ(ai)(R
2
0M(a)− 1)

R2
0M(a)(R2

em1(a)− 1)γm(ai)
,

S∗∗m =
L∑
i=0

ς(ai)(1 + κ cos(2πt+ T ))βm(ai)R
2
0M(a)(R2

em1(a)− 1)γm(ai)

λm(γm(ai) + µ(ai))ζ(ai)(R2
0M(a)− 1) +R2

0M(a)(R2
em1(a)− 1)γm(ai)M0

,

E∗∗m =
L∑
i=0

ςmεm(ai)βm(ai)λm(γm(ai) + µ(ai))ζ(ai)(R
2
0M(a)− 1)

R2
0M(a)(R2

em1(a)− 1)γm(ai)(µm + αm)εm(ai)βm(ai)M1

,

I∗∗m =
L∑
i=0

αmεm(ai)βm(ai)ςmλm(γm(ai) + µ(ai))ζ(ai)(R
2
0M(a)− 1)

R2
0M(a)(R2

em1(a)− 1)µm(µm + αm)εm(ai)βm(ai)M1

,

where

M0 = εm(ai)βm(ai)(µm + ξmςm) and M2 = λm(γm(ai) + µ(ai))ζ(ai)(R
2
0M(a)− 1) +

R2
0M(a)(R2

em1(a)− 1)γm(ai)εm(ai)βm(ai)µm,
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R2
em1(a) =

L∑
i=0

(µ(ai)µm(µm + αm) + αmλM ςm(1 + κm cos(2πt+ T ))θm
γm(ai)αmλM ςm(1 + κm cos(2πt+ T ))τm(ai)εm(ai)βm(ai)

,

R2
em2(a) =

L∑
i=0

(µ(ai)µm(µm + αm)R2
0M(a) + αmλM ςm(1 + κm cos(2πt+ T )))θm

γm(ai)αmλM ςm(1 + κm cos(2πt+ T ))τm(ai)εm(ai)βm(ai)
,

θm = (µ(ai) + τm(ai))(γm(ai) + µ(ai))(µ(ai) + εm(ai)βm(ai)). Therefore,

I∗M = N∗se+N
∗
si =

L∑
i=0

(γm(ai) + µ(ai))(µ(ai) + εm(ai)βm(ai))ζ(ai)(R
2
0M(a)− 1) + θk

τm(ai)εm(ai)βm(ai)R2
0M(a)γm(ai)(R2

em1(a)− 1)
,

where

θk = ζ(ai)(γm(ai) + µ(ai))(R
2
0M(a)− 1)τm(ai)εm(ai)βm(ai)

Similarly for Lassa fever class, we have the following stationary states:

N∗∗ss (a) =
T∑
j=0

L∑
i=0

ζ(ai)µ(ai)Res1(a)(µ(ai) + γ1(ai)α(ai) + τ(ai))(µ(ai) + η1(ai)σ(ai))

λa[γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)]
,

N∗∗es (a) =
T∑
j=0

L∑
i=0

(µ(ai) + η1(ai)σ(ai))ζ(ai)µ(ai)Res1(a)

γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)
,

N∗∗is (a) =
L∑
i=0

T∑
j=0

τ(ai)µ(ai)ζ(ai)Res1(a)

γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)
,

N∗∗rs (a) =
L∑
i=0

T∑
j=0

ζ(ai)Res1(ai),

S∗∗d (e) =
T∑
j=0

Λd(ej)(1 + ξd cos(2πt+ T ))

λdRes2(a) + µd(ej) + δd(ej)
,

E∗∗d (e) =
T∑
j=0

λdRes2(a)Λd(ej)(1 + ξd cos(2πt+ T ))

(λdRes2(a) + µd(ej) + δd(ej))(αd(ej) + µd(ej) + δd(ej))
,

I∗∗d (e) =
αd(ej)Λd(ej)(1 + ξd cos(2πt+ T ))β2(ej)(αd(ej) + µd(ej) + δd(ej) + AdRes2(a)

(µd(ej) + δd(ej))(αd(ej) + µd(ej) + δd(ej))β2(ej)w2(ej)
where

Res1(a) =
L∑
i=0

T∑
j=0

λa[γ(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)]

(µ(ai) + η1(ai)σ(ai))[(µ(ai) + γ1(ai)α(ai) + τ(ai)) + µ(ai)λaθs]

Res2 =
L∑
i=0

T∑
j=0

αd(ej)Λd(ej)(1 + ξd cos(2πt+ T ))β2(ej)(αd(ej) + µd(ej) + δd(ej)

(µd(ej) + δd(ej))(αd(ej) + µd(ej) + δd(ej))β2(ej)w2(ej)

θs = µ(ai) + γ1(ai)α(ai), Ad = Λd(ej)(1 + ξd cos(2πt+ T ))(µd(ej) + δd(ej))
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Similarly,

I∗∗L = N∗∗es (ai) +N∗∗is (ai) =
L∑
i=0

T∑
j=0

(µ(ai) + η1(ai)σ(ai))µ(ai)Res1(a) + τ(ai)µ(ai)Res1(a)

γ(ai)α(ai)(µ(ai) + η1(ai)σ(ai) + τ(ai)η1(ai)σ(ai))
.

Endemic state exist whenever Res1(a), Res2(a), R0M(a), Rem1(a), Rem2(a) > 1

4.4.2 Global stability analysis

Here, we explore the global asymptotic stability of the disease-free and endemic

equilibria for the special case with no loss of immunity acquired by the recovered

individuals and no reduction in each mosquito and rodent group. Accordingly, we

have the following results.

Theorem 4.3: The disease-free equilibrium point ε0 of the model (3.1.3)- (3.1.16)

with control measures is globally asymptotically stable in Ω if R0L(a) ≤ 1 and

R0M(a) ≤ 1.
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Proof: Consider the following lyapunov function

P = µ(ai)(η1(ai)σ(ai)u2+µ(ai))Nes(t, ai)+
σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)Nis(t, ai)

τ(ai)

+ µ(ai)Nh(t, ai)(εm(ai)βm(ai)u2 + µ(ai))µm(αm + µm)Nse(t, ai)

+
τm(ai)c0(ai)(1 + b cos(2πt+ T ))ζ(ai)αmςm(1 + κm cos(2πt+ T ))φ0Nsi(t, ai)

τm

+
σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)Id(t, ej)

µd(ej)µ(ai)(η1(ai)σ(ai)u2 + µ(ai))(γ1(ai)α(ai)u2 + τ(ai) + µ(ai))

+
τm(ai)c0(ai)(1 + b cos(2πt+ T ))ζ(ai)αmςm(1 + κm cos(2πt+ T ))φ0Im(t)

µ(ai)Nh(t, ai)(τm(ai) + µ(ai))(εm(ai)βm(ai)u2 + µ(ai))µm(αm + µm)

+
σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)Ed(t, ej)

(αd(ej) + µd(ej) + δd(ej))(η1(ai)σ(ai)u2 + µ(ai))(γ1(ai)α(ai)u2 + τ(ai) + µ(ai))

+
τm(ai)c0(ai)(1 + b cos(2πt+ T ))ζ(ai)αmςm(1 + κm cos(2πt+ T ))φ0Em(t)

µ(ai)Nh(t, ai)(τm(ai) + µ(ai))(εm(ai)βm(ai)u2 + µ(ai))µm(αm + µm)

(4.4.1)
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In what follows, the time derivative of P given by (4.4.1) along the solutions of the

model (3.1.3)-(3.1.16) with control measures yields

Ṗ = µ(ai)(η1(ai)σ(ai)u2 + µ(ai))

(
L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)(1− u1)

)

− µ(ai)(η1(ai)σ(ai)u2 + µ(ai))

(
T∑
j=0

ϑm(ai)λMNes(t, ai)Im(1− u1)

)
− µ(ai)(η1(ai)σ(ai)u2 + µ(ai))(µ(ai) + γ1(ai)α(ai)u2 + τ(ai))Nes(t, ai)

+
σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)

τ(ai)

(
L∑
i=0

τ(ai)−
L∑
i=0

ϑm(ai)λMNis(t, ai)Im(1− u1)

)

− σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)

τ(ai)
(µ(ai) + η1(ai)σ(ai)u2Nis(t, ai))

+ µ(ai)Nh(t, ai)(εm(ai)βm(ai)u2 + µ(ai))(αm + µm) (λMNis(t, ai)Im(1− u1))

−µ(ai)Nh(t, ai)(εm(ai)βm(ai)u2+µ(ai))(αm+µm)

(
L∑
i=0

T∑
j=0

ϑd(ej)(λa + λb)Nse(t, ai)(1− u1)

)
µ(ai)Nh(t, ai)(εm(ai)βm(ai)u2 + µ(ai))(αm + µm)(µ(ai) + τm(ai)Nse(t, ai))

+
τm(ai)c0(ai)c0(ai)(1 + b cos(2πt+ T ))ζ(ai)ςmαmφ0

τm(ai)

×

(
L∑
i=0

τm(ai)Nse(t, ai)−
L∑
i=0

T∑
j=0

ϑd(ej)(λa + λb)Nsi(t, ai)(1− u1)

)

− τm(ai)c0(ai)(1 + b cos(2πt+ T ))ζ(ai)ςmαmφ0

τm(ai)
(µ(ai) + εm(ai)βm(ai)u2)Nsi(t, ai)

+
σ0(ai)(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)

µd(ej)µ(ai)(η1(ai)σ(ai)u2 + µ(ai))(µ(ai) + γ1(ai)α(ai)u2 + τ(ai))

×

(
T∑
j=0

αd(ej)Ed(t, ej)− (µ(ej) + δd(ej))Id(t, ej)

)

+
c0(ai)c0(ai)(1 + b cos(2πt+ T ))τm(ai)ζ(ai)ςm(1 + κm cos(2πt+ T ))αmφ0

µ(ai)Nh(t, ai)(τm(ai) + µ(ai))(εm(ai)βm(ai)u2 + µ(ai))µ2
m(αm + µm)

(αmEm+µmIm)
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+
σ0(ai)(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)

(αd(ej) + µd(ej) + δd(ej))(η1(ai)σ(ai)u2 + µ(ai))(γ1(ai)α(ai)u2 + τ(ai)µ(ai))

×

(
T∑
j=0

(λd(t)Sd(t, ej)Id(t, ej)− (αd(ej) + µd(ej) + δd(ej))Ed(t, ej)

)

+
τm(ai)c0(ai)(1 + b cos(2πt+ T ))ζ(ai)ςm(1 + κm cos(2πt+ T ))αmφ0λhm
µ(ai)Nh(t, ai)(τm(ai) + µ(ai))(εm(ai)βm(ai)u2 + µ(ai))µm(αm + µm)

where

λhm = λmSmNsi(t, ai)(1− u1)− (µm + αm)Em

Ignoring certain term and simplifying further we have

Ṗ < −µ(ai)(η1(ai)σ(ai)u2 + µ(ai))(µ(ai) + γ1(ai)α(ai)u2 + τ(ai))Nes(t, ai)

+ σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)Nes(t, ai)

− σ0(1 + w1(ai) cos(2πt+ T ))ζ(ai)τ(ai)(η1(ai)σ(ai)u2)Nis(t, ai)

τ(ai)

− µ(ai)Nh(t, ai)(εm(ai)βm(ai)u2 + µ(ai))µm(αm + µm)(µ(ai) + τm(ai))Nse(t, ai)

+ τm(ai)c0(ai)(1 + b cos(2πt+ T ))εm(ai)βm(ai)u2ζ(ai)αmφ0Nse(t, ai)

−τm(ai)c0(ai)(1 + b cos(2πt+ T ))ςm(1 + κm(2πt+ T ))ζ(ai)αmφ0(µ(ai) + εm(ai)βm(ai)u2)Nsi(t, ai)

τm(ai)

− τm(ai)c0(ai)(1 + b cos(2πt+ T ))ςm(1 + κm(2πt+ T ))ζ(ai)αmφ0Im(t)

µ(ai)Nh(t, ai)(µ(ai) + τm(ai))(εm(ai)βm(ai)u2 + µ(ai))µm(αm + µm)
(4.4.2)

(4.1.46) becomes

Ṗ < σ0w1(ai)ζ(ai)τ(ai)(R0L(a)− 1)Nes(t, ai)

− µ(ai)(γ1(ai)α(ai)u2 + τ(ai) + µ(ai))(η1(ai)σ(ai)u2 + µ(ai))
2R0L(a)Nis(t, ai)

τ(ai)

+µ(ai)Nh(t, ai)(τm(ai)+µ(ai))(εm(ai)βm(ai)u2+µ(ai))µm(αm+µm)(R2
0M(a)−1)Nse(t, ai)

−(εm(ai)βm(ai)u2 + µ(ai))
2µ(ai)Nh(t, ai)(τm(ai) + µ(ai))µm(αm + µm)R2

0M(a)

τm(ai)
−R2

0M(a)Im(t)

(4.4.3)

Ṗ < 0 if R0L(a) ≤ 1 and R0M(a) ≤ 1.

It is important to note that all the trajectories starting in the feasible region where
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the solution have biological meaning approach the positively invariant subset of the

set where Ṗ = 0. This maximum invariant set in

{(Nss(t, ai), Nes(t, ai), Nis(t, ai), Nrs(t, ai), Nse(t, ai), Nsi(t, ai), Nsr(t, ai),

Nrr(t, ai), Sd, Ed, Id, Sm, Em, Im) ∈ Ω : Ṗ = 0} is the singleton ε0. In this set

Nh(t, ai) → Λ(ai)
µ(ai)

, Nd(t, ej) → Λd(ej)(1+ξd cos(2πt+T ))

µd(ej)+δ(ej)
and Nm(t) → ςm(1+ξd cos(2πt+T ))

µm

as t → +∞. This shows that all solutions approach the disease-free stationary

state. Thus, when R0M(a),R0L(a) ≤ 1 both diseases will be eliminated from the

system. If R0M(a),R0L(a) > 1, then Ṗ may be > 0 for Nes = Nis = Nse =

Nsi = Id = Im close to the disease-free state except for Nes = Nis = Nse = Nsi =

Id = Im = 0. Thus the disease-free state is globally asymptotically stable when

R2
0M(a),R0L(a) ≤ 1

The global stability analysis of the endemic equilibrium is next explored. To

achieve this, we use the nonlinear Lyapunov function of Goh-Volterra type which

has been found to be very successful. See, for instance, Niger and Gumel (2008)

for the application of this Lyapunov function.

Theorem 4.4: The unique endemic equilibrium, Ee, of the model (3.1.3)-(3.1.16)

is globally asymptotically stable if R0M(a) > 1, R0L(a) > 1 and 0 ≤ u1 ≤ 1.

Proof: Let R0L(a),R0M(a) > 1 and 0 ≤ u1 ≤ 1 so that a unique endemic equilib-

rium exists and consider the following nonlinear Lyapunov function de�ned by
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N = Nss(t, ai)−N∗∗ss (ai)−N∗∗ss (ai) ln

(
Nss(t, ai)

N∗∗ss (ai)

)
+Nes(t, ai)−N∗∗es (ai)

−N∗∗es (ai) ln

(
Nes(t, ai)

N∗∗es (ai)

)
+Nse(t, ai)−N∗∗se (ai)−N∗∗se (ai) ln

(
Nse(t, ai)

N∗∗se (ai)

)
+
µ(ai) + γ1(ai)α(ai)u2 + τ(ai)

τ(ai)

[
Nis(t, ai)−N∗∗is (ai)−N∗∗is (ai) ln

(
Nis(t, ai)

N∗∗is (ai)

)]
+
µ(ai) + τm(ai)

τm(ai)

[
Nsi(t, ai)−N∗∗si (ai)−N∗∗si (ai) ln

(
Nis(t, ai)

N∗∗si (ai)

)]
+Sd(t, ej)−S∗∗d (ej)−S∗∗d (ej) ln

(
Sd(t, ej)

S∗∗d (ej)

)
+Ed(t, ej)−E∗∗d (ej)−E∗∗d (ej) ln

(
Ed(t, ej)

E∗∗d (ej)

)
+
µd(ej) + αd(ej) + δd(ej)

α(ej)

[
Id(t, ej)− I∗∗d (ej)− I∗∗d (ej) ln

(
Id(t, ej)

I∗∗d (ej)

)]
+Sm−S∗∗m−S∗∗m ln

(
Sm
S∗∗m

)
+Em−E∗∗m−E∗∗m ln

(
Em
E∗∗m

)
+
αm + µm
αm

[
Im − I∗∗m − I∗∗m ln

(
Im
I∗∗m

)]
(4.4.4)

with Lyapunov time- derivative obtained as

Ṅ = Ṅss(t, ai)−
(
N∗∗ss (ai)

Nss(t, ai)

)
Ṅss(t, ai) + Ṅes(t, ai)−

(
N∗∗es (ai)

Nes(t, ai)

)
Ṅes(t, ai)

+ Ṅse(t, ai)−
(
N∗∗se (ai)

Nse(t, ai)

)
Ṅse(t, ai)

+
µ(ai) + γ1(ai)α(ai)u2 + τ(ai)

τ(ai)

[
Ṅis(t, ai)−

(
N∗∗is (ai)

Nis(t, ai)

)
Ṅis(t, ai)

]
+
µ(ai) + τm(ai)

τm(ai)

[
Ṅsi(t, ai)−

(
N∗∗si (ai)

Nsi(t, ai)

)
Ṅsi(t, ai)

]
+ Ṡd(t, ej)−

(
S∗∗d (ej)

Sd(t, ej)

)
Ṡd(t, ej) + Ėd(t, ej)−

(
E∗∗d (ej)

Ed(t, ej)

)
Ėd(t, ej)

+
µd(ej) + αd(ej) + δd(ej)

α(ej)

[
İd(t, ej)−

(
I∗∗d (ej)

Id(t, ej)

)
İd(t, ej)

]
+ Ṡm −

(
S∗∗m
Sm

)
Ṡm + Ėm −

(
E∗∗m
Em

)
Ėm +

αm + µm
αm

[
İm −

(
I∗∗m
Im

)
İm

]
(4.4.5)

Using appropriate equations of the model (3.1.3)-(3.1.16)with control measures in
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(4.4.5 ), further gives

Ṅ =
L∑
i=0

ζ(ai)

(
1 +

N∗∗ss (ai)

Nss(t, ai)

)
−

L∑
i=0

µ(ai)Nss(t, ai)

(
1 +

N∗∗ss (ai)

Nss(t, ai)

)

+
L∑
i=0

T∑
j=0

(λa + λb)N
∗∗
ss (ai)(1− u1(t)) +

L∑
i=0

λMN
∗∗
ss (ai)Im(1− u1(t))

−
L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)N
∗∗
es (ai)(1− u1(t))

Nes(t, ai)
+(µ(ai)+γ1(ai)α(ai)u2(t)+τ(ai))N

∗∗
es (ai))

−
L∑
i=0

λMNss(t, ai)N
∗∗
se (ai)Im(1− u1(t))

Nse(t, ai)
+ (µ(ai) + τm(ai))N

∗∗
se (ai)

−
L∑
i=0

(µ(ai) + γ1(ai)α(ai)u2(t) + τ(ai))ϑm(ai)λMNis(t, ai)Im(1− u1(t))

τ(ai)
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− (µ(ai) + γ1(ai)α(ai)u2(t) + τ(ai))(µ(ai) + η1(ai)σ(ai)u2(t))Nis(t, ai)

τ(ai)

−
L∑
i=0

(µ(ai) + γ1(ai)α(ai)u2(t) + τ(ai))N
∗∗
is (ai)Nes(t, ai)

Nis(t, ai)

+
L∑
i=0

ϑm(ai)λMN
∗∗
is (ai)Im(t)(1− u1(t))(µ(ai) + γ1(ai)α(ai)u2(t) + τ(ai))

τ(ai)

+
(µ(ai) + γ1(ai)α(ai)u2(t) + τ(ai))N

∗∗
is (ai)(µ(ai) + η1(ai)σ(ai)u2(t))

τ(ai)

−
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)Nsi(t, ai)(µ(ai) + τm(ai))(1− u1(t))

τm(ai)

− (µ(ai) + εm(ai)βm(ai)u2(t))(µ(ai) + τm(ai))Nsi(t, ai)

τm(ai)

−
L∑
i=0

(µ(ai) + τm(ai))N
∗∗
si (ai)Nse(t, ai)

Nsi(t, ai)

−
L∑
i=0

T∑
j=0

ϑ(ai)(λa + λb)N
∗∗
si (ai)(1− u1(t))(µ(ai) + τm(ai))

τm(ai)

+
(µ(ai) + εm(ai)βm(ai)u2(t))N∗∗si (ai)(µ(ai) + τm(ai))

τm(ai)

+
T∑
j=0

Λd(ej)(1+ξd cos(2πt+T ))

(
1 +

S∗∗d (ai)

Sd(t, ej)

)
−

T∑
j=0

(µd(ej)+δ(ej))Sd(t, ej)

(
1 +

S∗∗d (ai)

Sd(t, ej)

)

+
T∑
j=0

λd(t)S
∗∗
d (ej)Id(t, ej)(1− u3(t))−

T∑
j=0

λd(t)Sd(t, ej)Id(t, ej)E
∗∗
d (ej)(1− u3(t))

Ed(t, ej)

+(αd(ej)+µd(ej)+δd(ej))E
∗∗
d (ej))−

(αd(ej) + µd(ej) + δd(ej))(µd(ej) + δd(ej))Id(t, ej)

αd(ej)

−(αd(ej) + µd(ej) + δd(ej))I
∗∗
d (ej)Ed(t, ej)

Id(t, ej)
+

(αd(ej) + µd(ej) + δd(ej))I
∗∗
d (ej)(µd(ej) + δd(ej))

αd(ej)

ςm(1 + ξm cos(2πt+ T ))

(
1 +

S∗∗m
Sm

)
− µmSm

(
1 +

S∗∗m
Sm

)
− (αm + µm)I∗∗mEm

Im

+
µm(αm + µm)Im

αm
+

(αm + µm)I∗∗m
αm

+ λmS
∗∗
mNsi(t, ai)(1− u1(t))

− λmSmNsi(t, ai)(1− u1(t))E∗∗m
Em

+ (µm + αm)E∗∗m

(4.4.6)
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At the endemic equilibrium, it is seen from (3.1.3)-(3.1.16) that

µ(ai) + γ(ai)α(ai) + τ(ai) =
(λ∗∗a + λ∗∗b )N∗∗ss (ai)− ϑ(ai)λMN

∗∗
es (ai)I

∗∗
m

N∗∗es (ai)

µ(ai) + η1(ai)σ(ai) =
τ(ai)N

∗∗
es (ai)− ϑm(ai)λMN

∗∗
is (ai)I

∗∗
m

N∗∗is (ai)

µ(ai) + τm(ai) =
λ∗MN

∗∗
ss (ai)I

∗∗
m − ϑd(ai)(λ∗∗a + λ∗∗b )N∗∗se (ai)

N∗∗se (ai)

µ(ai) + εm(ai)βm(ai) = −ϑd(ai)(λ
∗∗
a + λ∗∗b )N∗∗si (ai) + τm(ai)N

∗∗
se (ai)

N∗∗si (ai)

αd(ej) + µd(ej) + δd(ej) =
λ∗∗d S

∗∗
d (ej)I

∗∗
d (ej)

E∗∗d (ej)

µd(ej) + δd(ej) =
αd(ej)E

∗∗
d (ej)

I∗∗d (ej)

µm + αm =
λ∗∗mS

∗∗
mN

∗∗
si (ai)

E∗∗m

Λd(ai)(1 + ξd cos(2πt+ T )) = λ∗∗d S
∗∗
d (ej)I

∗∗
d (ej) + (µd(ej) + δd(ej))S

∗∗
d (ej)

ζ(ai) = (λ∗∗a + λ∗∗b )N∗∗ss (ai) + λ∗∗MN
∗∗
ss (ai)I

∗∗
m + µ(ai)N

∗∗
ss (ai)

ςm(1 + κm cos(2πt+ T )) = λ∗∗mS
∗∗
mN

∗∗
si (ai) + µmS

∗∗
m

µm =
αmE

∗∗
m

I∗∗m
(4.4.7)

Using (4.4.7) in (4.4.6)and then add and subtract the following systematically
L∑
i=0

T∑
j=0

(λ∗∗a + λ∗∗b )N∗∗ss (ai)(1− u1), λ∗∗MN
∗∗
ss (ai)I

∗∗
m (1− u1)

L∑
i=0

T∑
j=0

(λ∗∗a + λ∗∗b )N∗∗ss (ai)(1− u1)Ih(t, ai)f
2(N∗∗h )

I∗∗h (ai)f(Nh)
,

λ∗∗MN
∗∗
ss Ih(t,ai)f

2(N∗∗h )(1−u1)

I∗∗h (ai)f(Nh)
, λ∗∗d S

∗∗
d (ej)I

∗∗
d (ej)(1− u3),

λ∗∗d S
∗∗
d (ej)Id(t,ai)(1−u3)f2(N∗∗d

I∗∗d (ej)f(Nd)
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λ∗∗mS
∗∗
mN

∗∗
si (ai)(1− u1), λ∗∗m S

∗∗
m Nsi(t,ai)(1−u1)f2(N∗∗m )

N∗∗si (ai)f(Nm)

one gets

Ṅ =
L∑
i=0

µ(ai)N
∗∗
ss (ai)

(
2− N∗∗ss (ai)

Nss(t, ai)
− Nss(t, ai)

N∗∗ss (ai)

)

+
L∑
i=0

T∑
j=0

(λa + λb)N
∗∗
ss (ai)(1− u1)f(N∗∗h )

×
[
4− N∗∗ss (ai)

Nss(t, ai)
− N∗∗es (ai)Nss(t, ai)

N∗∗ss (ai)Nes(t, ai)
− N∗∗is (ai)Nes(t, ai)

Nis(t, ai)
− Ih(t, ai)f(N∗∗h )

I∗∗h (ai)f(Nh)

]
−

L∑
i=0

T∑
j=0

N∗∗ss (ai)(1− u1)f(N∗∗h )

×
[
2− Ih(t, ai)f(N∗∗h

I∗∗h (ai)f(Nh)
− f(Nh)

f(N∗∗h )

]
−

L∑
i=0

c0(1+b cos(2πt+T ))(ai)N
∗∗
ss (ai)I

∗∗
m (1−u1)f(N∗∗h )

×
[
2− Ih(t, ai)f(N∗∗h

I∗∗h (ai)f(Nh)
− f(Nh)

f(N∗∗h )

]
−

L∑
i=0

c0(1+b cos(2πt+T ))N∗∗ss (ai)I
∗∗
m (1−u1)f(N∗∗h )

×
[
4− N∗∗ss (ai)

Nss(t, ai)
− N∗∗se (ai)ImNss(t, ai)

N∗∗ss (ai)Nse(t, ai)I∗∗m
− N∗∗si (ai)Nse(t, ai)Im

Nsi(t, ai)I∗∗m
− Ih(t, ai)f(N∗∗h )

I∗∗h (ai)f(Nh)

]
−

L∑
i=0

ϑm(a1)c0(ai)(1+b cos(2πt+T ))N∗∗es (ai)I
∗∗
m (1−u1)f(N∗∗h )

[
1− N∗∗is (ai)Nes(t, ai)

Nis(t, ai)

]

−
L∑
i=0

T∑
j=0

ϑd(ai)(λ
∗∗
a + λ∗∗b )N∗∗se (ai)(1− u1)f(N∗∗h )

[
1− N∗∗si (ai)Nse(t, ai)

Nsi(t, ai)

]

+
T∑
j=0

(µd(ej) + δd(ej))S
∗∗
d (ej)

(
2− S∗∗d (ej)

Sd(t, ai)
− Sd(t, ai)

S∗∗d (ej)

)

+
T∑
j=0

λdS
∗∗
d (ej)I

∗∗
d (ej)(1− u3)f(N∗∗d )

×
[
4− S∗∗d (ej)

Sd(t, ej)
− I∗∗d (ej)Ed(t, ej)

E∗∗d (ej)Id(t, ej)
− Sd(t, ej)Id(t, ej)E

∗∗
d (ej)

S∗∗d (ej)I∗∗d (ej)Ed(t, ej)
− Id(t, ej)f(N∗∗d )

I∗∗d (ej)f(Nd)

]
−

T∑
j=0

λd(t)S
∗∗
d (ej)I

∗∗
d (ej)(1− u3)f(N∗∗d )

[
2− Id(t, ej)f(N∗∗d )

f(Nd)(I∗∗d (ej))2
− f(Nd)Id(t, ej)

I∗∗d (ej)f(N∗∗d )

]
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+ µmS
∗∗
m

(
2− S∗∗m

Sm
− Sm
S∗∗m

)
+ λmS

∗∗
mN

∗∗
si (ai)(1− u1)f(N∗∗m )

×
[
4− S∗∗m

Sm
− I∗∗mEm
E∗∗m Im

− SmNsi(t, ai)E
∗∗
m

S∗∗mN
∗∗
si (ai)Em

− Imf(N∗∗m )

I∗∗m f(Nm)

]
− λmS∗∗mN∗∗si (ai)(1− u1)f(N∗∗m )

[
2− Nsi(t, ai)f(N∗∗m )

N∗∗si (ai)f(Nm)
− Nsi(t, ai)f(N∗∗m

(N∗∗si (ai))2f(Nm)

]

Further simpli�cation gives

Ṅ = −A1 − A2 −
L∑
i=0

T∑
j=0

(λa + λb)N
∗∗
ss (ai)(1− u1)f(N∗∗h )

×
[
2− Ih(t, ai)f(N∗∗h )

I∗∗h (ai)f(Nh)
− f(Nh)

f(N∗∗h

]
−

L∑
i=0

λmN
∗∗
ss (ai)I

∗∗
m (1− u1)f(N∗∗h )

×
[
2− Ih(t, ai)f(N∗∗h )

I∗∗h (ai)f(Nh)
− f(Nh)

f(N∗∗h

]
− A3 −

L∑
i=0

ϑm(ai)λmN
∗∗
es (ai)I

∗∗
m (1− u1)f(N∗∗h )

×
[
1− N∗∗is (ai)Nes(t, ai)

Nis(t, ai)N∗∗es (ai)

]
−

L∑
i=0

T∑
j=0

ϑ(ai)(λa + λb)

×N∗∗se (ai)(1− u1)f(N∗∗h )

[
1− N∗∗si (ai)Nse(t, ai)

Nsi(t, ai)N∗∗se (ai)

]
− A4 − A5

−
T∑
j=0

λdS
∗∗
d (ej)I

∗∗
d (ej)(1−u1)f(N∗∗d )

[
2− Id(t, ej)f(N∗∗d )

f(Nd)(I∗∗d (ej))2
− f(Nd)Id(t, ej)

I∗∗d (ej)f(N∗∗d )

]
−A6−A7

− λmS∗∗mN∗∗si (ai)(1− u1)f(N∗∗m )

[
2− Nsi(t, ai)f(Nm)

N∗∗si (ai)f(Nm)
− Nsi(t, ai)f(N∗∗m

(N∗∗si (ai))2f(Nm)

]
(4.4.8)

where

A1 =
L∑
i=0

µ(ai)N
∗∗
ss (ai)

(
2− N∗∗ss (ai)

Nss(t, ai)
− Nss(t, ai)

N∗∗ss (ai)

)

A2 =
L∑
i=0

T∑
j=0

(λa + λb)N
∗∗
ss (ai)(1− u1)f(N∗∗h )

×
[
4− N∗∗ss (ai)

Nss(t, ai)
− N∗∗es (ai)Nss(t, ai)

N∗∗ss (ai)Nes(t, ai)
− N∗∗is (ai)Nes(t, ai)

Nis(t, ai)
− Ih(t, ai)f(N∗∗h )

I∗∗h (ai)f(Nh)

]
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A3 =
L∑
i=0

λm(t)N∗∗ss (ai)I
∗∗
m (1− u1)f(N∗∗h )

×
[
4− N∗∗ss (ai)

Nss(t, ai)
− N∗∗se (ai)ImNss(t, ai)

N∗∗ss (ai)Nse(t, ai)I∗∗m
− N∗∗si (ai)Nse(t, ai)Im

Nsi(t, ai)I∗∗m
− Ih(t, ai)f(N∗∗h )

I∗∗h (ai)f(Nh)

]

A4 =
T∑
j=0

(µd(ej) + δd(ej))S
∗∗
d (ej)

(
2− S∗∗d (ej)

Sd(t, ai)
− Sd(t, ai)

S∗∗d (ej)

)

A5 =
T∑
j=0

λdS
∗∗
d (ej)I

∗∗
d (ej)(1− u3)f(N∗∗d )

×
[
4− S∗∗d (ej)

Sd(t, ej)
− I∗∗d (ej)Ed(t, ej)

E∗∗d (ej)Id(t, ej)
− Sd(t, ej)Id(t, ej)E

∗∗
d (ej)

S∗∗d (ej)I∗∗d (ej)Ed(t, ej)
− Id(t, ej)f(N∗∗d )

I∗∗d (ej)f(Nd)

]

A6 = µmS
∗∗
m

(
2− S∗∗m

Sm
− Sm
S∗∗m

)

A7 = λmS
∗∗
mN

∗∗
si (ai)(1− u1)f(N∗∗m )

×
[
4− S∗∗m

Sm
− I∗∗mEm
E∗∗m Im

− SmNsi(t, ai)E
∗∗
m

S∗∗mN
∗∗
si (ai)Em

− Imf(N∗∗m )

I∗∗m f(Nm)

]

We need to show that A1 ≥ 0, A2 ≥ 0, A3 ≥ 0, A4 ≥ 0, A5 ≥ 0, A6 ≥ 0 and

A7 ≥ 0. To do this, using the fact that the arithmetic mean is greater than or

equal to the geometric mean (AM - GM inequality), we have

(N∗∗ss (ai))
2 + (Nss(t, ai))

2 − 2N∗∗ss (ai)Nss(t, ai) ≥ 0

so that,(
N∗∗ss (ai)
Nss(t,ai)

+ Nss(t,ai)
N∗∗ss (ai)

− 2
)
≥ 0. Hence, L1 ≥ 0.

Further, let x = N∗∗ss (ai)
Nss(t,ai)

, y = N∗∗es (ai)f(Nh)
Nes(t,ai)f(N∗∗h )

, z =
N∗∗is (ai)f(N∗∗h )

Nis(t,ai)f(N∗∗h )
.

Then,[
N∗∗ss (ai)
Nss(t,ai)

+ N∗∗es (ai)Nss(t,ai)
N∗∗ss (ai)Nes(t,ai)

+
N∗∗is (ai)Nes(t,ai)

Nis(t,ai)
+

Ih(t,ai)f(N∗∗h )

I∗∗h (ai)f(Nh)
− 4
]
can be written as

f(x, y, z) = x+
y

x
+
z

y
+

1

z
− 4 (4.4.9)

It is su�ce to show that f(x, y, z) ≥ 0. Since fx = fy = fz = 0 gives rise to
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x = y = z and that fxx > 0, fyy > 0, fzz > 0, one see that the minimum of f(x, y, z)

is attainable at x = y = z. In what follows, (4.4.8) is reduced to (x − 1)2 ≥ 0 or

(y − 1)2 ≥ 0 or (z − 1)2 ≥ 0 with equality if and only if x = 1 or y = 1 or z = 1

respectively. Hence, A2 ≥ 0. The proof of A3 ≥ 0, A5 ≥ 0 and A7 ≥ 0 is similar

to A2 ≥ 0 while that of A4 ≥ 0 and A6 ≥ 0 is similar to A1 ≥ 0, it follows from

(4.1.52) that Ṅ ≤ 0 with Ṅ = 0 if and only if Nss(t, ai) = N∗∗ss (ai), Nes(t, ai) =

N∗∗es (ai), Nis(t, ai) = N∗∗is (ai), Nse(t, ai) = N∗∗se (ai), Nsi(t, ai) = N∗∗si (ai)Sd(t, ej) =

S∗∗d (ej), Ed(t, ej) = E∗∗d (ej), Id(t, ej) = I∗∗d (ej), Sm = S∗∗m , Em = E∗∗m , Im = I∗∗m ,

0 ≤ u1 ≤ 1, 0 ≤ u3 ≤ 1. Therefore by LaSalle's principle, the largest compact

invariant subset of the set where Ṅ = 0 is the endemic equilibrium point Ee. Thus,

every solution in R approaches Ee for R0L(a), R0M(a) > 1, 0 ≤ u1 ≤ 1, 0 ≤ u3 ≤ 1

and Ee is globally asymptotically stable. This complete the proof.

4.5 STUDY FIVE

Sensitivity

4.5.1 Sensitivity analysis

The sensitivity indices of the basic reproduction number R0M(a, t) and R0L(a, t) to

the parameters of the model (3.1.3)-(3.1.16) are computed as follows:

ΥR0M
b =

∂R0M

∂b
× b

R0M

=
b(1 + cos(2πt+ T ))ζ(ai)

2(1 + cos(2πt+ T )ζ(ai))

ΥR0M
ςm =

∂R0M

∂ςm
× ςm
R0M

=
1

2

ΥR0M
κm =

∂R0M

∂κm
× κm
R0M

=
κm(1 + cos(2πt+ T ))

2(1 + cos(2πt+ T ))
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ΥR0M
φ0

=
∂R0M

∂φ0

× φ0

R0M

= 1

ΥR0M
σ0

=
∂R0M

∂σ0

× σ0

R0M

=
1

2

ΥR0M

ζ(ai)
=

∂R0M

∂ζ(ai)
× ζ(ai)

R0M

=
1

2

ΥR0M
µm =

∂R0M

∂µm
× µm
R0M

= −(2αm + 3µm)

2(αm + µm)

ΥR0M

εm(ai)
=

∂R0M

∂εm(ai)
× εm(ai)

R0M

= − βm(ai)εm(ai)

2(εm(ai)βm(ai) + µ(ai))

ΥR0M

βm(ai)
=

∂R0M

∂βm(ai)
× βm(ai)

R0M

= − βm(ai)εm(ai)

2(εm(ai)βm(ai) + µ(ai))

ΥR0M
αm =

∂R0M

∂αm
× αm
R0M

= − µ3
m

2(αm + µ(ai))

ΥR0M
αm =

∂R0M

∂αm
× αm
R0M

=
µ3
m

2(αm + µ(ai))

ΥR0M

τm(ai)
=

∂R0M

∂τm(ai)
× τm(ai)

R0M

=
µ(ai)τm(ai)

2(τm(ai) + µ(ai))

ΥR0M

µ(ai)
=

∂R0M

∂µ(ai)
× µ(ai)

R0M

=
−µ(ai)(τm(ai) + µ(ai))− (τm(ai) + 2µ(ai))(εm(ai)βm(ai) + µ(ai))

µ(ai)(τm(ai) + µ(ai))(εm(ai)βm(ai) + µ(ai))
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ΥR0L
σo =

∂R0L

∂σ0

× σ0

R0L

= 1

ΥR0L

wi(ai))
=

∂R0L

∂w1(ai)
× w1(ai)

R0L

=
w1(ai)(1 + cos(2πt+ T )ζ(ai)τ(ej)

1 + cos(2πt+ T )ζ(ai)τ(ej)

ΥR0L

ζ(ai))
=

∂R0L

∂ζ(ai)
× ζ(ai)

R0L

= 1

ΥR0L

τ(ai))
=

∂R0L

∂τ(ai)
× τ(ai)

R0L

=
γv(ai) + µ(ai)

γv(ai)α(ai) + τ(ai) + µ(ai)

ΥR0L

µ(ai))
=

∂R0L

∂µ(ai)
× µ(ai)

R0L

=
−(ηv(ai)σ(ai) + µ(ai))− Γv

(ηv(ai)σ(ai) + µ(ai))(γv(ai)α(ai) + τ(ai) + µ(ai))

ΥR0L

ηv(ai))
=

∂R0L

∂ηv(ai)
× ηv(ai)

R0L

=
−σ(ai)ηv(ai)

(ηv(ai)σ(ai) + µ(ai))

ΥR0L

σ(ai))
=

∂R0L

∂σ(ai)
× σ(ai)

R0L

=
−σ(ai)ηv(ai)

(ηv(ai)σ(ai) + µ(ai))

ΥR0L

γv(ai))
=

∂R0L

∂γv(ai)
× γv(ai)

R0L

=
−γv(ai)α(ai)

(γv(ai)α(ai) + τ(ai) + µ(ai))

ΥR0L

α(ai))
=

∂R0L

∂α(ai)
× α(ai)

R0L

=
−γv(ai)α(ai)

(γv(ai)α(ai) + τ(ai) + µ(ai))

where Γv = (ηv(ai)σ(ai) + 2µ(ai))(γv(ai)α(ai) + τ(ai) + µ(ai)).

In a similar manner, we can obtain the sensitivity indices of the basic reproduction

number, R0M(a, t) and R0L(a, t) to the other parameters of the model. The detailed

sensitivity indices of R0M(a, t) and R0L(a, t), using the parameter values provided in

Table 4.2 are shown in Table 4.1 and the implications of the signs of the sensitivity

indices of the basic reproduction number,R0M(a, t) and R0L(a, t) with respect to

its associated parameters are discussed in chapter 5.

The Table below (Table 4.1) gives information on how changes in the model

parameters a�ect the basic reproduction numbers, R0L(a, t) and R0M(a, t). The

positive sensitivity index parameters in Table 4.1 contributed most signi�cantly to

the transmission of the diseases.
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Table 4.1: Sensitivity indices ofR0M(a, t) and R0L(a, t) to model parameter.

Parameter Sensitivity sign Index value

ζ(ai) + 1
2

b + 0.000038
κm + 0.26

φ0(ai) + 1
2

µm + 1.28
αm + 0.0012

τm(ai) + 0.000027
w1(ai) + 0.56
σ0(ai) + 1

2
τ(ai) + 0.0053
ςm + 1

2
µ(ai) - -2.17
εm - -0.5

βm(ai) - -0.5
ηv(ai) - -10.86
σ(ai) - -1086
α(ai) - -0.054
γv(ai) - -0.054
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4.6 STUDY SIX

Invasion and co-existence

4.6.1 Possibility of co-existence in Malaria-Lassa fever co-infection
model

Since malaria is already endemic in many part of the world, we assumed

that to have a co-infection of both diseases, infectious rodent or human with Lassa

fever have to interact with individuals that are already infected with malaria. This

would simply implies that the recruitment into the susceptible pool of Lassa fever

is already infected with malaria; that is ζ(ai) = I∗M . With this new de�nition,

after setting the malaria subpopulation to zero and solve the resulting Lassa fever

system the following stationary state is obtained

N̄∗∗ss (ai) =
L∑
i=0

T∑
j=0

g1(Res1(a)− 1)Va(Rom(a)− 1)

×
[

(µ(ai) + εm(ai)βm(ai)) + τm(ai)εm(ai)βm(ai)

τm(ai)εm(ai)βm(ai)R0M(a)γm(ai)(Rem1(a)− 1)

]
N̄∗∗es (ai) =

L∑
i=0

T∑
j=0

g2(Res1(a)− 1)

×
[

(γm(ai) + µ(ai))
2(µ(ai) + εm(ai)βm(ai))ζ(ai)(R0M(a)− 1)Vb

τm(ai)εm(ai)βm(ai)R0M(a)γm(ai)(Rem1(a)− 1)

]
N̄∗∗is (ai) =

L∑
i=0

T∑
j=0

g3(Res1(a)− 1)

×
[

(γm(ai) + µ(ai))(µ(ai) + εm(ai)βm(ai))ζ(ai)(R0M(a)− 1)Vb
τm(ai)εm(ai)βm(ai)R0M(a)γm(ai)(Rem1(a)− 1)

]
N̄∗∗rs (ai) =

L∑
i=0

T∑
j=0

(Res1(a)− 1)Va(Rom(a)− 1)

×
[

(µ(ai) + εm(ai)βm(ai)) + τm(ai)εm(ai)βm(ai)

τm(ai)εm(ai)βm(ai)R0M(a)γm(ai)(Rem1(a)− 1)

]

where

Va = ζ(ai)(γm + µ(ai)), Vb = τm(ai)εm(ai)βm(ai),
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g1 =
L∑
i=0

T∑
j=0

(µ(ai) + γ1α1(ai) + τ(ai))(µ(ai) + η1(ai)σ(ai))µ(ai)(Res1(a)− 1)

λaθ1[γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)]

g2 =
L∑
i=0

T∑
j=0

(µ(ai) + η1(ai)σ(ai))µ(ai)(Res(a)− 1)

γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)

g3 =
L∑
i=0

T∑
j=0

τ(ai)µ(ai)

γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)

From these equations, we let I∗TM = N̄∗∗es (ai) + N̄∗∗is (ai)

I∗TM =
L∑
i=0

T∑
j=0

(g2+g3)Va(R0M(a)−1)

[
(µ(ai) + εm(ai)βm(ai)) + τm(ai)εm(ai)βm(ai)

τm(ai)εm(ai)βm(ai)R0M(a)γm(ai)(Rem1(a)− 1)

]

I∗TM =
L∑
i=0

T∑
j=0

T̄ (Res1(a)− 1)(R2
om(a)− 1)

R∈0M(a)(Rem1(a)− 1)
> 0

T̄ (Res(a)− 1)(R2
0M(a)− 1)

R∈0M(a)(Rem1(a)− 1)
> 0

where,

T̄ =
L∑
i=0

T∑
j=0

(g2 + g3)Va

[
(µ(ai) + εm(ai)βm(ai)) + τm(ai)εm(ai)βm(ai)

τm(ai)εm(ai)βm(ai)γm(ai)

]

and this implies that the endemic equilibrium is feasible if both R2
0M(a), Res1(a) >

1. From this expression it can be noted that for the co-infection of Lassa fever

and malaria to prevail, both R2
0M(a), Res1(a) > 1. From de�nition, the force

of infection is de�ned as the transmission probability times the prevalence of the

disease in the population. Thus, for humans to successfully transmit to the Lassa

virus,

λd =
βd(ej)w2(ej)I

∗
TM

Nd(t, ej)

λd =
L∑
i=0

T∑
j=0

T̄ βd(ej)w2(ej)Res(a)(R2
0M(a)− 1)

Nd(t, ej)R2
0M(a)(R2

em1 − 1)

Transmission is reduced as βd(ej)→ 0. The increase in βd(ej) will in turn increase

the basic reproduction number. However, Transmission is reduced if rodent and

human interaction is reduced i.e as w2(ej) → 0. Hence, we can conclude that if
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both malaria and Lassa fever exist in the population, Protection against rodent

and human interaction, mosquito biting rate will reduce the reproduction number.

Therefore the infections will be eradicated completely in the population.

Whether or not Lassa fever, at endemic state will invade into malaria en-

demic state can only be judged by looking at the growth rate of the aggregate

contributions of Lassa fever into the population.

Let the aggregate contribution of Lassa fever infected be I0. Then

dI0

dt
=
dNes(t, ai)

dt
+
dNis(t, ai)

dt
+
dId
dt

dI0

dt
=

L∑
i=0

T∑
j=0

(λa + λb(t))Nss(t, ai)−
L∑
i=0

ϑm(ai)λM(t)Nes(t, ai)Im

− (µ(ai) + γv(ai)α(ai) + τ(ai))Nes(t, ai)

+
L∑
i=0

τ(ai)Nes(t, ai)−
L∑
i=0

ϑm(ai)λM(t)Nis(t, ai)Im − (µ(ai)

+ ηv(ai)σ(ai))Nis(t, ai) +
T∑
j=0

αd(ej)Ed(t, ej)− (µd(ej) + δd(ej))Id(t, ej)

At endemic state

dI0

dt
=

L∑
i=0

T∑
j=0

(λa+λb)N
∗∗
ss (ai)−

L∑
i=0

ϑm(ai)λMN
∗∗
es (ai)I

∗∗
m−(µ(ai)+γ1(ai)α(ai)+τ(ai))N

∗∗
es (ai)

+
L∑
i=0

τ(ai)N
∗∗
es (ai)−

L∑
i=0

ϑm(ai)λMN
∗∗
is (ai)I

∗∗
m − (µ(ai) + η1(ai)σ(ai))N

∗∗
is (ai)

+
L∑
i=0

αd(ej)E
∗∗
d (ej)− (µd(ej) + δd(ej))I

∗∗
d (ej)
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dI0

dt
=

L∑
i=0

T∑
j=0

(λa(+λb)ζ(ai)(R2
em2(a)− 1)

µ(ai)R2
0M(a)(R2

em2(a)− 1)
− (µ(ai) + γ1(ai)α(ai) + τ(ai))N

∗∗
es (ai)

−
L∑
i=0

ϑm(ai)λM(µ(ai) + η1(ai)σ(ai)ζ(ai)µ(ai)Res(a)I∗∗m
γ1α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)

+
L∑
i=0

τ(ai)N
∗∗
es

+
L∑
i=0

T∑
j=0

ϑm(ai)λM(t)τ(ai)µ(ai)ζ(ai)Res1(a)

γ1α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)
+

T∑
j=0

αd(ej)E
∗∗(ej)

− (µ(ai) + η1(ai)σ(ai))N
∗∗
is (ai)− (µd(ej) + δd(ej))I

∗∗
d (ej).

Substituting for λM , λa, λb, I
∗∗
m , simplifying and then ignoring some terms we gets

dI0

dt
>

L∑
i=0

T∑
j=0

xaζ(ai)(R2
em2(a)− 1)

µ(ai)R2
0M(a)(Rem1(a)− 1)

− ϑm(ai)(xa + xb)

this implies that

ϑm(ai) >
L∑
i=0

T∑
j=0

xaζ(ai)(R2
em2(a)− 1)

µ(ai)R2
0M(a)(Rem1(a)− 1)(xa + xb)

(4.6.1)

where

xa =
L∑
i=0

T∑
j=0

ρ0(ai)(1 + w2(ej) cos(2πt+ T ))Res2(a)[γ1α(ai)(µ(ai) + η1(ai)σ(ai))] + ya
γ1α(ai)(µ(ai) + η1(ai)σ(ai)) + τ(ai)η1(ai)σ(ai)

xb =
L∑
i=0

T∑
j=0

ϑm(ai)c0(ai)(1 + b cos(2πt+ T ))(µ(ai) + η1(ai)σ(ai)µ(ai)Res1(a)αmyb
γ1(ai)α(ai)(µ(ai) + η1(ai)σ(ai))R2

0M(a)(R2
0M(a)− 1)yc

xc =
L∑
i=0

T∑
j=0

ϑm(ai)c0(ai)(1 + b cos(2πt+ T ))τ(ai)µ(ai)ζ(ai)Res1(a)αmyb
γi(ai)α(ai)(µ(ai) + η1(ai)σ(ai)) + yd
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and

ya = σ0(ai)(1 + w1(ai) cos(2πt+ T ))τ(ai)µ(ai)ζ(ai)Res1(a)

yb = εm(ai)βm(ai)ςm(1 + κm cos(2πt+ T ))φ0(γm(ai) + µ(ai)ζ(ai))(R2
0M(a)− 1)

yc = µm(µm + αm)εm(ai)βm(ai)M2

yd = τ(ai)η1(ai)σ(ai)R2
0M(a)(R2

0M(a)− 1)µm(µm + αm)εm(ai)βm(ai)M2

Then malaria will invade the Lassa fever endemic state if (4.6.1) holds and vice

versa if the role of m and d are interchanged in (4.6.1) by symmetry. After inva-

sion, whether both pathogen co-exist will depend on the values of the respective

reproduction number Rem2(a), Rem1(a),R0M , Res1(a)
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4.7 STUDY SEVEN

Subharmonic bifurcation

4.7.1 Analysis of existence of subharmonic bifurcation

Here, we assume that recruitment rate and contact rate are periodic of pe-

riod one year and then take a year as our unit of time. The human recruit-

ment and mortality rates, ζ(ai), µ(ai) and vectors recruitment and mortality rates

ςm(1 + ξm cos(2πt + T )), Λd(1 + ξd cos(2πt + T )), µm and µd(ej) + δd(ej) will be

such that 1
ζ(ai)

, 1
µ(ai)

, 1
ςm(1+κm cos(2πt+T ))

, 1
Λd(1+ξd cos(2πt+T ))

, 1
µm

and 1
µd(ej)+δ(ej)

are 50

years. We exploit the fact that µ(ai), ζ(ai), µm, ςm(1 + κm cos(2πt+ T )), Λd(1 +

ξd cos(2πt + T )), 1
µ(ai)+ηv(ai)σ(ai)

and 1
µ(ai)+εm(ai)βm(ai)

are 0(10−2) by introducing a

small parameters ε as follows:

c0(ai)I
∗∗
m = I∗∗m (µm+c0(ai)(1+b cos(2πt+T )))ζ(ai)

µmµh(ai)(R2
0M (a,t)−1)

= ε,

µ(ai)(R2
0M(a, t)− 1) = c0(ai)I

∗∗
m

R2
0M (a,t)−1

= ε,

µ(ai)(R2
0L(e, t)− 1) =

ρ0(ai)I
∗∗
d

R2
0L(e,t)−1

= ε,

µ(ai) + ηv(ai)σ(ai) = ∆2

ε
,

µ(ai) + εm(ai)βm(ai) = ∆3

ε
,

0 < ε� 1.



(4.7.1)

Now, we make a change of variables (x, y, z) by setting

Nss(t, ai) = N∗∗ss (ai)(1+x), Nis(t, ai) = N∗∗is (ai)(1+y), Nsi(t, ai) = N∗∗si (ai)(1+z).

(4.7.2)
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Putting (4.7.1)and (4.7.2) into the model equations (3.1.3), (3.1.5) and (3.1.8)yields

the following system of equations which has the property that when w2(ej) =

w1(ai) = 0 and b = 0, the endemic equilibrium becomes (x, y, z) = 0

ẋ = −ε[((η + 2Φ) + (b+ w1(ai) + w2(ej)) cos(2πt+ T ))x

+ (1 + (b+ w1(ai) + w2(ej)) cos(2πt+ T ))z

+ (b+ w1(ai) + w2(ej)) cos(2πt+ T ) + (1 + (b+ w1(ai) + w2(ej)) cos(2πt+ T )xz]

ẏ = ∆2

ε
[(b+ w1(ai) + w2(ej)) cos(2πt+ T ) + z(1 + (b+ w1(ai) + w2(ej)) cos(2πt+ T ))

+ x(1 + (b+ w1(ai) + w2(ej)) cos(2πt+ T )) + b cos(2πt+ T ))− y]

ż = ∆3

ε
[y − z]


(4.7.3)

where

η ≡ R0M(a, t)

R0M(a, t)− 1
> 1

Φ ≡ R0L(a, t)

R0L(a, t)− 1
> 1.

Now, we obtain the eigenvalues of the linearized system about the endemic steady

state when b = w1(ai) = w2(ej) = 0.

Lemma 4.1: The eigenvalues corresponding to the linearized system


ẋ

ẏ

ż

 =


−ε(η + 2Φ) 0 −ε

D2

ε
−∆2

ε
∆2

ε

0 ∆3

ε
−∆3

ε




x

y

z


are given by λ+, λ−, λ3 below:λ±(ε) = εr ± iν + 0(ε2) , where

ν =
√

∆2∆3

∆2+∆3

r = ∆2∆3−(∆2+∆3)2(η+2Φ)
2(∆2+∆3)2

< 0

λ3(ε) = − (∆2+∆3)
ε

+ 0(ε)


(4.7.4)
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Proof :The eigenvalue of the matrix is given as

∣∣∣∣∣∣∣∣∣
−ε(η + 2Φ)− λ 0 −ε

∆2

ε
−∆2

ε
− λ ∆2

ε

0 D3

ε
−∆3

ε
− λ

∣∣∣∣∣∣∣∣∣ = 0

=⇒ (−ε(η + 2Φ)− λ)

[(
∆2

ε
+ λ

)(
∆3

ε
+ λ

)
− ∆2∆3

ε2

]
− ε
(

∆2∆3

ε2

)
= 0

=⇒ (−ε(η + 2Φ)− λ)

[
∆2∆3

ε2
+
λ∆2

ε
+
λ∆3

ε
+ λ2 − ∆2∆3

ε2

]
− ε
(

∆2∆3

ε2

)
= 0

=⇒ (−ε(η + 2Φ)− λ)

[
λ∆2

ε
+
λ∆3

ε
+ λ2

]
−
(

∆2∆3

ε

)
= 0

=⇒ (ε(η + 2Φ) + λ)

[
λ∆2

ε
+
λ∆3

ε
+ λ2

]
+

(
∆2∆3

ε

)
= 0

so that

λ3 + λ2

[
ε(η + 2Φ) +

∆2

ε
+

∆3

ε

]
+ λ[∆2(η + 2Φ) + d3(η + 2Φ)] +

(
∆2∆3

ε

)
= 0

Thus, the eigenvalues are given by

λ+, λ−, λ3 below:λ±(ε) = εr ± iν + 0(ε2) , where

ν =
√

∆2∆3

∆2+∆3

r = ∆2∆3−(∆2+∆3)2(η+2Φ)
2(∆2+∆3)2

< 0

λ3(ε) = − (∆2+D3)
ε

+ 0(ε)


Therefore, the endemic steady state is locally asymptotically stable but the attrac-

tion is weak. Furthermore, we make a change of variables in equation (4.7.3) when
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b = w1(ai) = w2(ej) = 0. Now, let

b̄ = b
ε

w̄1(ai) = w1(ai)
ε

w̄2(ej) =
w2(ej)

ε

x̄ = ν
[
x
ε
− ε∆3(z−y)

(∆2+∆3)2

]

ȳ = ∆3y+∆2z
∆2+∆3

z̄ = z − y



, (4.7.5)

Equation (4.7.3) indicates that z − y should be small, say ε. So, (4.7.5) gives

x = εx̄
ν

+ 0(ε3)

y = ȳ + 0(ε)

z = ȳ − 0(ε)


. (4.7.6)

Equation(4.7.6) therefore means that the proportion of infectious to exposed per-

sons is εm(ai)βm(ai)+ηv(ai)σ(ai)
τ(ai)+τm(ai)

to order ε.

Substituting (4.7.5) in (4.7.3) and remove the bar over b, w1(ai) and w2(ej)

we obtain

x̄′ = −νȳ + εf1(x̄, ȳ, z̄, t+ Tπ, ε, b, w1(ai), w2(ej))

ȳ′ = νx̄(1 + ȳ) + vε∆3x̄z̄
∆2+∆3

+ v2(b+ w1(ai) + w2(ej)) cos(2πt+ T )
(

1 + ȳ + ∆3z̄
∆2+∆3

)
+ εf2(x̄, ȳ, z̄, t+ T, π, ε, b, w1(ai), w2(ej))

εz̄′ = −(∆2 + ∆3)z̄ + εf3(x̄, ȳ, z̄, t+ T, ε, π, b, w1(ai), w2(ej))


(4.7.7)
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where

f1(x̄, ȳ, z̄, t+ T, π, b, w1(ai), w2(ej), ε) = −x̄
(
η + 2Φ− ∆2∆3

(∆2+∆3)2

)
− x̄

(
ȳ − ∆3z̄

∆2+∆3)

)(
1− ∆2∆3

(∆2+∆3)2

)
+ 0(|ε|+ |b|+ |w1(ai)|+ |w2(ej)|)

f2(x̄, ȳ, z̄, t+ T, π, b, w1(ai), w2(ej), ε) = v2∆3z̄
(∆2+∆3)2

(
1 + ȳ − ∆3z̄

∆2+∆3)

)
+ 0(|ε|+ |b|+ |w1(ai)|+ |w2(ej)|)

f3(x̄, ȳ, z̄, t+ T, π, b, w1(ai), w2(ej), ε) = −∆2v
−1x̄

(
1 + ȳ − ∆3z̄

∆2+∆3)

)
+ 0(|ε|+ |b|+ |w1(ai)|+ |w2(ej)|)



.

We will treat ε, b, w1(ai) and w2(ej) as small parameters in (4.7.7). Setting ε =

b = w1(ai) = w2(ej) = 0 in (4.7.7) we obtain the reduced equations given by

x̄′(t) = −νȳ(t)

ȳ′(t) = νx̄(t)(1 + ȳ(t))

z̄ = 0


. (4.7.8)

Now, we show that the system (4.7.8) is conservative with �rst integral as follow:

x̄′′(t) = νȳ′(t)

and

ȳ(t) =
x̄′

−ν
(t)

x̄′′(t) + ν2x̄(t)− νx̄(t)x̄′(t) = 0.

Integrate with respect to t we have

−νx̄2(t)

2
+ ν2 ln(1 + ȳ(t))− νȳ(t) = o
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d

dt

[
−νx̄2(t)

2
+ ν2 ln(1 + ȳ(t))− νȳ(t)

]
= 0

d

dt

[
νx̄2(t)− 2ν2 ln(1 + ȳ(t)) + 2νȳ(t)

]
= 0

V = νx2(t) + 2νy(t)− 2ν2 ln(1 + y(t)).

Setting ν = 1 we have

V = x2 + 2y − 2 ln |1 + y|.

A system is conservative if there a function V (x, y) such that dV
dt

= 0 along the

solution curves of x and y.

dV

dt
=
dV

dx
.
dx

dt
+
dV

dy
.
dy

dt

dV

dt
= 2x(−νy) +

[
2− 2

1 + y

]
(νx(1 + y))

dV

dt
= −2xνy + 2νx(1 + y)− 2νx = 0.

Now, we write u = ln(1 + y) and use (4.7.8) to write a second order di�erential

equation for u we obtain

y = eu − 1

u′ =
νx(1 + y)

1 + y

u′ = νx

u′′ + ν2(eu − 1) = 0.

For every integer n, 2π
ν

< n < ∞, there exist a periodic solution of (4.7.8),

(x̄n(t), ȳn(t)) of at least period n. Thus, we have the following results:

Theorem 4.5: Let (x̄n(t), ȳn(t)) = x̄n(t+τh(ai)), ȳn(t+τh(ai)) represent a periodic

solution of equation (4.7.8), where n > 2π
ν
. Let

βh1(ai) =
−2r

ν
(Area interior to Γn)
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and for τh(ai)ε[0, n), |ε| � 1, |ε, b, w1(ai), w2(ej)| � 1, let

B(τh(ai), ε, b, w1(ai), w2(ej)) = −βh1(ai)ε+βh1(ai)(b+w1(ai)+w2(ej)) cos 2πτh(ai)

+ 0(|ε|+ |(b, w1(ai), w2(ej)|)2. (4.7.9)

If (x̄′n, ȳ
′
n) spans the n- periodic equations (4.7.8) about (x̄n, ȳn), andB(τh(ai), ε, b, w1(ai), w2(ej))

= 0, then equation (4.7.7) has an n-periodic solution (x̄, ȳ, z̄) as

x̄(t) = x̄n(t+ τh(ai) + 0(|ε|+ (1 + |b|+ |w1(ai)|+ |w2(ej))|)

ȳ(t) = ȳn(t+ τh(ai) + 0(|ε|+ |b|+ |w1(ai)|+ |w2(ej)|)

z̄(t) = − ε∆2ȳ′(t+τh(ai))
v2(∆2+∆3)

+ 0(|ε|+ ||b|+ |w1(ai)|+ |w2(ej)|)2


. (4.7.10)

Proof: Let (4.7.7) be written as τ1 = t
ε
. Also, let

x̄′(t) = ε[−νȳ + εf1(x̄, ȳ, z̄, θ, ε, b, w1(ai), w2(ej)]

ȳ′(t) = ε[νx̄(1 + ȳ) + ν∆3x̄z̄
∆2∆3

+ ν2(b+ w1(ai) + w2(ej)) cos 2πθ(1 + ȳ + ∆3z̄
∆2+∆3

)

+ εf3]

z̄′(t) = −(∆2 + ∆3)z̄ + εf3

b′ = 0

w′1 = 0

w′2 = 0

θ′ = ε



.

(4.7.11)
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Note that ”′” = d
dτ1

and fi are given to lowest order by

f1(x̄, ȳ, z̄, θ, ε, b, w1(ai), w2(ej)) = −x̄(η+2Φ− ∆2∆3

(∆2 + ∆3)2
−x̄(ȳ+

∆3z̄

∆2 + ∆3

)(1− ∆2∆3

(∆2 + ∆3)2
)

+ 0(|ε|+ |b|+ |w1(ai)|+ |w2(ej)|)

f2(x̄, ȳ, z̄, θ, ε, b, w1(ai), w2(ej)) =
v2∆3z̄

(∆2 + ∆3)2
(1+ȳ+

∆3z̄

∆2 + ∆3

)+0(|ε|+|b|+|w1(ai)|+|w2(ej)|)

f3(x̄, ȳ, z̄, θ, ε, b, w1(ai), w2(ej)) = ∆2v
−1x̄(1+ȳ+

∆3z̄

∆2 + ∆3

)+0(|ε|+|b|+|w1(ai)|+|w2(ej)|)

(4.7.12)

We can see (4.7.11) as Xε on R6×S1 since the right hand side is periodic in θ. X0

given by ξ : z̄ = 0 have a manifold of equilibria.

Given the set Kc = {(x̄, ȳ, 0, b, w1(ai), w2(ej), θ) ∈ R6 × S1 : |x̄| ≤ c, |ȳ| ≤

c, |b| ≤ c, |w1(ai)| ≤ c, |w2(ej)| ≤ c} on ξ, The smooth function which is the center

manifold is given by

z̄ = εh(x̄, ȳ, θ, ε, b, w1(ai), w2(ej)), (x̄, ȳ, θ, ε, b, w1(ai), w2(ej)) ∈ Kcx(−ε0, ε0)

(4.7.13)

for small ε0 > 0.
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The �ow (4.7.11) constricted to the center manifold gives

x̄′(t) = ε[−νȳ + εf̄1]

ȳ′(t) = ε[νx̄(1 + ȳ) + v2(b+ w1(ai) + w2(ej)) cos 2πθ(1 + ȳ) + εf̄2]

b′(ai) = 0

w′1(ai) = 0

w′2(ej) = 0

θ′ = ε



.

(4.7.14)

where f̄1(x̄, ȳ, θ, ε, b, w1(ai), w2(ej)) = f1(x̄, ȳ, εh, θ, ε, b, w1(ai), w2(ej))

f̄2(x̄, ȳ, θ, ε, b, w1(ai), w2(ej)) =
ν∆3x̄h

∆1 + ∆3

+
v2∆3bw1(ai)w2(ej)

∆2 + ∆3

cos 2πθh

+ f2(x̄, ȳ, εh, θ, ε, b, w1(ai), w2(ej))

This shows that the local invariance of the center manifold is

h(x̄, ȳ, θ, b, w1(ai), w2(ej), θ, 0) =
1

∆2 + ∆3

f3(x̄, ȳ, 0, θ, 0, b, w1(ai), w2(ej)).

(4.7.15)

Thus we have

x̄′(t) = νȳ + εx̄(2r − ξ1ȳ)

ȳ′(t) = νx̄(1 + ȳ) + ν2(b+ w1(ai) + w2(ej)) cos(2πt+ T )(1 + ȳ)− εξ2x̄
2(1 + ȳ).

 .

(4.7.16)

which is our fast time t. In obtaining (4.7.16) we have made use of (4.7.15), ignore
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the higher order in (ε, bw1(aIw(ej) and then introduce the notation:

ξ2 =
∆2∆3

(∆2 + ∆3)2

r < 0 as in (4.7.4) ξ1 = 1 − ξ2. Equation (4.7.16) is a perturbation of the conser-

vation system (4.7.8)

Now, we use equation (4.7.16) to prove the existence of subharmonic solutions

of period n near Γn = {(x̄n(t), ȳn(t)) : 0 < t < n. Suppose equation (4.7.16)

have an asymptotically stable subharmonic of order n, (x̄(t), ȳ(t)), near Γn then

(x(t), y(t), z(t)) is asymptotically stable in (4.7.7) where

z(t) = εh(x(t), y(t), b, w1(ai), w2(ej), t, ε) (4.7.17)

Suppose that (u1(t), u2(t)) is an n-periodic solution (4.7.16) near Γn ∀ t. Then

∣∣∣∣∣∣ u1(t− τh(ai))

u2(t− τh(ai))

∣∣∣∣∣∣ =

∣∣∣∣∣∣ x̄n(t)

ȳn(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣ v1(t)

v2(t)

∣∣∣∣∣∣
for small τh(ai), 0 < αh(ai) < n. The phase τh(ai) is introduced to account for

the arbitrary degradation of the phase (x̄n(t), ȳn(t)). The perturbation v satis�es

v1(0) = 0 and the equation

v′ = A(t)v+ε

 x̄n(t)(2r − ξ1ȳn(t))

ξnx̄
2
n(t)(1 + ȳn(t))

+(b+w1(ai)+w2(ej))

 0

ν2 cos(2πt− τh(ai))(1 + ȳn(t))


(4.7.18)

where

A(t) = ν

 0 −1

1 + ȳn(t) x̄n(t)


. Thus, equation

W ′ = −A(t)tW (4.7.19)
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has one n-periodic solution up to a constant multiple.

∫ n

0

ε
 x̄n(t)(2r − ξ1ȳn(t))

ξnx̄
2
n(t)(1 + ȳn(t))

+ (b+ w1(ai) + w2(ej))

 0

ν2 cos(2πt− τh(ai))(1 + ȳn(t))



×

 x̄n(t)

ȳn
(1+yn)

 dt = 0 (4.7.20)

is the necessary and su�cient condition for the solvability of (4.7.18). In order to

see that (4.7.20) coincides with the �rst two terms in (4.7.9) note that yn is even

in t and ∫ n

0

x̄2
nȳndt =

1

v

∫ n

0

x̄2
nx̄
′
ndt = 0

so that

∫ n

0

((2r − ξ1ȳn)x̄2
n + ξ2x̄

2ȳn)dt = 2r

∫ n

0

x̄2
n(1 + ȳn)dt

=
−2r

ν

∫ n

0

x̄nȳndt

=
−2r

ν

∫
Γn

xdy

=
−2r

ν

∫
int

∫
Γn

dxdy

=
−2r

ν
(Area interior to Γn)

This complete the proof.
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4.8 STUDY EIGHT

Optimal control theory

4.8.1 Optimal control of malaria-Lassa fever co-infection model

We introduce into the model (3.1.3)-(3.1.16), time dependent preventive u1(t),

treatment u2(t) and use of insecticide or pesticide u3(t) e�ort as controls to curtail

the spread of malaria-Lassa fever co-infection. The function 0 ≤ u1(t) ≤ 1 represent

the control on the use of mosquitoes treated bed net for personal protection and

use of rodent-proof container, use of infection control measure such as complete

equipment sterilization, improving home hygiene and strict barrier nursing such

as masks, gloves, gowns and goggles to prevent human to human contact. The

function 0 ≤ u2(t) ≤ 1 is the control on treatment of malaria and Lassa fever. The

insecticide used for treating mosquito bed net is lethal to the mosquitoes and other

insects and also repels the mosquitoes, thus reducing the number that attempt

to feed on people in the sleeping areas with the nets. However, the mosquitoes

can still feed on humans outside the preventive areas, and so we have included the

spraying of insecticide. Furthermore, Use of pesticide in and around homes can help

reduce rodent population. Thus, each mosquitoes and rodents group are reduced

by insecticide or pesticide u3(t), where, 0 ≤ u3(t) ≤ 1, is the control function

representing spray of insecticide or pesticide aimed at reducing the mosquito and

rodent sub-population. Hence, transition dynamics is given by
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dNss(t, ai)

dt
= ζ(ai)−

L∑
i=0

T∑
j=0

(λa+λb)Nss(t, ai)(1−u1)−
L∑
i=0

λMNss(t, ai)Im(1−u1)

− µ(ai)Nss(t, ai) + γm(ai)Nsr(t, ai) (4.8.1)

dNes(t, ai)

dt
=

L∑
i=0

T∑
j=0

(λa+λb)Nss(t, ai)(1−u1)−
L∑
i=0

ϑm(ai)λMNes(t, ai)Im(1−u1)

− (µ(ai) + γ1(ai)α(ai)u2 + τ(ai))Nes(t, ai) (4.8.2)

dNis(t, ai)

dt
=

L∑
i=0

τ(ai)Nes(t, ai)−
L∑
i=0

ϑm(ai)λMNis(t, ai)Im(1− u1)

− (µ(ai) + η1(ai)σ(ai)u2)Nis(t, ai) (4.8.3)

dNrs(t, ai)

dt
=

L∑
i=0

(γ1(ai)α(ai)u2Nes(t, ai)+η1(ai)σ(ai)u2Nis(t, ai))−µ(ai)Nrs(t, ai)

(4.8.4)

dNse(t, ai)

dt
=

L∑
i=0

λMNss(t, ai)Im(1−u1)−
L∑
i=0

T∑
j=0

ϑd(ai)(λa+λb)Nse(t, ai)(1−u1)

− (µ(ai) + τm(ai))Nse(t, ai) (4.8.5)

dNsi(t, ai)

dt
=

L∑
i=0

τm(ai)Nse(t, ai)−
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)Nsi(t, ai)(1− u1)

− (µ(ai) + εm(ai)βm(ai)u2)Nsi(t, ai) (4.8.6)
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dNsr(t, ai)

dt
=

L∑
i=0

εm(ai)βm(ai)u2Nsi(t, ai) − (γm(ai) + µ(ai))Nsr(t, ai) (4.8.7)

dNrr(t, ai)

dt
=

L∑
i=0

ϑm(ai)λM(Nes(t, ai) +Nis(t, ai))(1− u1)Im − µ(ai)Nrr(t, ai)

+
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)(Nse(t, ai) +Nsi(t, ai))(1− u1) (4.8.8)

dSd(t, ej)

dt
= Λd(ej)(1 + ξd cos(2πt+ T ))−

T∑
j=0

λdSd(t, ej)Id(t, ej)

− (µd(ej) + δd(ej) + (1− u3))Sd(t, ej) (4.8.9)

dEd(t, ej)

dt
=

T∑
j=0

λdSd(t, ej)Id(t, ej)−(αd(ej)+µd(ej)+δd(ej)+(1−u3))Ed(t, ej)

(4.8.10)

dId(t, ej)

dt
=

T∑
j=0

αd(ej)Ed(t, ej)− (µd(ej) + δd(ej) + (1− u3))Id(t, ej)

(4.8.11)

dSm
dt

= ςmΛd(ej(1+κm cos(2πt+T ))−λmSmNsi(t, ai)(1−u1)−(µm+(1−u3))Sm

(4.8.12)

80



dEm
dt

= λmSmNsi(t, ai)(1− u1)− (µm + αm + (1− u3))Em

(4.8.13)

dIm
dt

= αmEm − (µm + (1− u3))Im

(4.8.14)

4.8.2 Analysis of optimal control

We de�ne our objective (cost) functional as

J(u1, u2, u3) =

∫ tf

0

(m1Nes(t, ai) +m2Nis(t, ai) +m2Nsi(t, ai)

+m3Nm(t) +m3Nd(t, ej) + r1u
2
1 + r2u

2
2 + r3u

2
3)dt (4.8.15)

m1,m2,m3 > 0 represents the balancing cost factors for prevention, treatment

and use of insecticide or pesticide e�orts respectively. It is assumed that the cost

of prevention, treatment and use of insecticide or pesticide are quadratic in the

objective functional (4.8.15). The cost of treatment could come from cost of drug

and other cost associated with other health conditions such as surveillance and

follow up drug management. similarly, the cost to reduce number of mosquito and

rodent populations are associated with cost of public education and insecticide or

pesticide.

We seek an optimal control u∗1, u
∗
2, u
∗
3 such that

J((u∗1, u
∗
2, u
∗
3) = min

{
J(u1, u2, u3) : (u1, u2, u3) ∈ U

}
(4.8.16)

subject to the optimal control model above where

U =
{

(u1, u2, u3) : ur(t) is piecewise continuous on [0, tf ], 0 ≤ ur ≤ 1, r = 1, 2, 3
}

(4.8.17)
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The basic framework of this optimal control problem is to prove the existence of

the optimal control and characterize the optimal control through the optimality

system and prove the uniqueness of the optimality system.

4.8.3 Existence of an optimal control

First we obtain boundedness of the state system given an optimal control

set U . We then establish the existence of an optimal control.

Theorem 4.6 Given (u1(t), u2(t), u3(t)) ∈ U , the state equations (4.8.1)-(3.8.14)

has a bounded solution.

Proof: It is a consequence of theorem 4.1.

With the boundedness of the state system established, we now prove the existence

of the optimal control using a result in (Fleming, et al 1975).

Theorem 4.7 Given an objective functional (4.8.15) subject to system (4.8.1)-

(4.8.14) with initial conditions and the admissible control set (4.8.17) then there

exists an optimal control pair (u∗1, u
∗
2, u
∗
3) ∈ U such that

J(u∗1, u
∗
2, u
∗
3) = min

u
J(u1(t), u2(t), u3(t))

if the following conditions are satis�ed

(i) The set of controls and corresponding state variables is nonempty;

(ii) The control set U is convex and closed;

(iii) The right hand side of the state system is bounded by a linear function in the

state and control;

(iv) The integrand of the functional is convex on U and is bounded below by

c1(|u1|2 + |u2|2 + |u3|2)
δ
2 − c2 − c3 where c1, c2, c3 > 0 and δ > 1.

Proof: The result in (Theorem 4.1) for the system (4.8.1)-(4.8.14) with bounded

coe�cient is used to give condition i. The control set is closed and convex by

de�nition. By Theorem 4.1, the right hand side of system (4.8.1)-(4.8.14) satis�es

condition iii. It is clear that m1Nes(t, ai) +m2Nis(t, ai) +m2Nsi(t, ai) +m3Nm(t) +

m3Nd(t, ej) + r1u
2
1 + r2u

2
2 + r3u

2
3 is convex on U . Further, since the variable states

are bounded, there exists c1, c2, c3 > 0 and δ > 1 satisfying

m1Nes(t, ai)+m2Nis(t, ai)+m2Nsi(t, ai)+m3Nm(t)+m3Nd(t, ej)+r1u
2
1+r2u

2
2+r3u

2
3

≥ c1(|u1|2 + |u2|2 + |u3|2)
δ
2 − c2 − c3
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Therefore an optimal exists.

4.8.4 The optimal system

With the establishment of the existence of an optimal control, we use Pon-

tryagin's maximum principle (Pontryagin 1986) to derive the necessary condi-

tions for this optimal control. With costate variables Γ = (λ1, λ2, λ3, λ4, λ5, λ6,

λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14, we de�ne our Lagrangian as follows.

A = m1Nes(t, ai) +m2Nis(t, ai) +m3Nse(t, ai) +m2Nsi(t, ai)

+m3Nm(t) +m3Nd(t, ej) + r1u
2
1 + r2u

2
2 + r3u

2
3

+λ1

[
ζ(ai)−

L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)(1− u1)−
L∑
i=0

λMNss(t, ai)Im(1− u1) + ga

]

+ λ2

[
L∑
i=0

T∑
j=0

(λa + λb)Nss(t, ai)(1− u1)−
L∑
i=0

ϑm(ai)λMNes(t, ai)Im(1− u1) + gb

]

+λ3

[
L∑
i=0

τ(ai)Nes(t, ai)−
L∑
i=0

ϑm(ai)λMNis(t, ai)Im(1− u1)− (µ(ai) + η1(ai)σ(ai)u2)Nis(t, ai)

]

+ λ4

[
L∑
i=0

(γ1(ai)α(ai)u2Nes(t, ai) + η1(ai)σ(ai)u2Nis(t, ai))− µ(ai)Nrs(t, ai)

]
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+λ5

[
L∑
i=0

λM(t)Nss(t, ai)Im(1− u1)−
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)Nse(t, ai)(1− u1) + gc

]

+ λ6

[
L∑
i=0

τm(ai)Nse(t, ai)−
L∑
i=0

T∑
j=0

ϑd(ai)(λa + λb)Nsi(t, ai)(1− u1) + gd

]

+ λ7

[
L∑
i=0

εm(ai)βm(ai)u2Nsi(t, ai)− (γm(ai) + µ(ai))Nsr(t, ai)

]

+ λ8

[
L∑
i=0

ϑm(ai)λM(Nes(t, ai) +Nis(t, ai))(1− u1)Im − µ(ai)Nrr(t, ai) + ge

]

+ λ9

[
Λd(ej)(1 + ξd cos(2πt+ T ))−

T∑
j=0

λd(t)Sd(t, ej)Id(t, ej)− gf

]

+ λ10

[
T∑
j=0

λdSd(t, ej)Id(t, ej)− (αd(ej) + µd(ej) + δd(ej) + (1− u3))Ed(t, ej)

]

+ λ11

[
T∑
j=0

αd(ej)Ed(t, ej)− (µd(ej) + δd(ej) + (1− u3))Id(t, ej)

]
+ λ12 [ςm(1 + κm cos(2πt+ T ))− λmSmNsi(t, ai)(1− u1)− (µm + (1− u3))Sm]

+ λ13 [λmSmNsi(t, ai)(1− u1)− (µm + αm + (1− u3))Em]

+ λ14 [αmEm − (µm + (1− u3))Im]

where

ga = −µ(ai)Nss(t, ai)+γm(ai)Nsr(t, ai), gb = −(µ(ai)+γ1(ai)α(ai)u2+τ(ai))Nes(t, ai),

gc = (µ(ai) + τm(ai))Nse(t, ai), gd = −(µ(ai) + εm(ai)βm(ai)u2)Nsi(t, ai), ge =
L∑
i=0

T∑
j=0

ϑd(ai)(λa(t) + λb(t))(Nse(t, ai) +Nsi(t, ai))(1− u1), gf = (µd(ej) + δd(ej) +

(1− u3))Sd(t, ej)

Theorem 4.8: Given an optimal control u∗1, u
∗
2, u

∗
3 and solution of the correspond-

ing optimal control model, there exist adjoint (or costate) variables Γ Satisfying

dλ1

dt
=

L∑
i=0

T∑
j=0

(λa(t)+λb(t))(1−u1)(λ1−λ2)+
L∑
i=0

λM(t)Im(1−u1)(λ1−λ2)+µ(ai)λ1

(4.8.18)
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dλ2

dt
= −m1+

L∑
i=0

ϑ(ai)λM(t)Im(1−u1)(λ2−λ8)−
L∑
i=0

τ(ai)λ3−γ1(ai)α(ai)u2λ4+(µ(ai)

+ γ1(ai)α(ai)u2 + τ(ai))λ2 (4.8.19)

dλ3

dt
= λbNss(t, ai)(1−u1)λ1+

L∑
i=0

ϑ(ai)λMIm(1−u1)(λ3−λ8)+(µ(ai)+η1(ai)σ(ai)u2)λ3

− η1(ai)σ(ai)u2λ4 −m2 (4.8.20)

dλ4

dt
= µ(ai)λ4

(4.8.21)

dλ5

dt
= −m2+

L∑
i=0

T∑
j=0

ϑd(ai)(λa+λb)(1−u1)(λ6−λ8)+(µ(ai)+τm(ai))λ5−
L∑
i=0

τm(ai)λ6

(4.8.22)

dλ6

dt
= −m2+

L∑
i=0

T∑
j=0

ϑd(ai)(λa+λb)(1−u1)(λ6+λ8)+
L∑
i=0

εm(ai)βm(ai)u2(λ6−λ7)

+ λm(t)sm(1− u3)(λ12 − λ13) (4.8.23)

dλ7

dt
= γm(ai)(λ1 − λ7) + µ(ai)λ7

(4.8.24)
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dλ8

dt
= µ(ai)λ8

(4.8.25)

dλ9

dt
=

T∑
j=0

λd(t)Id(t, ej)(λ9 − λ10) + (µd(ej) + δd(ej) + (1− u3))λ9 −m3 (4.8.26)

dλ10

dt
= αd(ej)(λ10 − λ11) + (δd(ej) + (1 − u3))λ10 − m3 (4.8.27)

dλ11

dt
=

L∑
i=0

T∑
j=0

ρ0(ai)w2(ej)Nss(t, ai)(1− u1)(λ1 − λ2)−m3

+
L∑
i=0

T∑
j=0

ϑd(ai)ρ0(ai)(1 + w2(ej) cos(2πt+ T ))Nse(t, ai)(1− u1)(λ5 − λ8)

+
L∑
i=0

T∑
j=0

ϑd(aiρ0(ai)(1 + w2(ej) cos(2πt+ T )))Nsi(t, ai)(1− u1)(λ6 − λ8)

+
T∑
j=0

λd(t)Sd(t, ej)(λ9 − λ10) + (µd(ej) + δd(ej) + (1− u3))λ11 (4.8.28)

dλ12

dt
= λm(t)Nsi(t, ai)(1 − u1)(λ12 − λ13) + (µm + (1 − u3))λ12 − m3 (4.8.29)

dλ13

dt
= αm(λ13 − λ14) + (µm + (1− u3))λ13 −m3

(4.8.30)
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dλ14

dt
= −m3+

L∑
i=0

λMNss(t, ai)(1−u1)(λ1−λ5)+
L∑
i=0

ϑm(ai)λMNes(t, ai)(1−u1)(λ2−λ8)

+
L∑
i=0

ϑm(ai)λMNis(t, ai)(1− u1)(λ3 − λ8) + (µm + (1− u3))λ14 (4.8.31)

with the terminal condition

λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0..., λ14(tf ) = 0. (4.8.32)

Furthermore, u∗1, u
∗
2, u

∗
3 are represented by

u∗1 = max

(
0,min

(
1,

1

2r1

L∑
i=0

T∑
j=0

[λMNss(t, ai)Im(λ5 − λ1) + Pa]

))

u∗2 = max

(
0,min

(
1,

1

2r2

L∑
i=0

[εm(ai)βm(ai)Nsi(t, ai)(λ6 − λ7) + Pb]

))

u∗3 = max

(
0,min

(
1,

1

2r3

L∑
i=0

[−Smλ12 − Emλ13− Imλ14 + Pc]

))
(4.8.33)

where,

Pa = ϑm(ai)ΛMNis(t, ai)Im(λ8−λ3)+ϑ(ai)λMNes(t, ai)Im(λ8−λ2)+λmSmNsi(t, ai)(λ13−

λ12) + (λa + λb)Nss(t, ai)(λ2 − λ1) + ϑd(ai)(λa + λb)Nsi(t, ai)(λ8 − λ6) + ϑ(ai)(λa +

λb)Nse(t, ai)(λ8 − λ5)

Pb = γ1(ai)α(ai)Nes(t, ai)(λ2 − λ4) + η1(ai)σ(ai)Nis(t, ai)(λ3 − λ4)

Pc = −Sd(ej)λ9 − Ed(ej)λ10 − Id(ej)λ11

Proof:

The di�erential equations governing the adjoint variables are obtained by di�eren-
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tiation of the Hamiltonian function, evaluated at the optimal control. Then the

adjoint system can be written as

dλ1

dt
=

L∑
i=0

T∑
j=0

(λa(t)+λb(t))(1−u1)(λ1−λ2)+
L∑
i=0

λM(t)Im(1−u1)(λ1−λ2)+µ(ai)λ1

dλ2

dt
= −m1+

L∑
i=0

ϑ(ai)λM(t)Im(1−u1)(λ2−λ8)−
L∑
i=0

τ(ai)λ3−γ1(ai)α(ai)u2λ4+(µ(ai)

+ γ1(ai)α(ai)u2 + τ(ai))λ2

dλ3

dt
= λbNss(t, ai)(1−u1)λ1+

L∑
i=0

ϑ(ai)λMIm(1−u1)(λ3−λ8)+(µ(ai)+η1(ai)σ(ai)u2)λ3

− η1(ai)σ(ai)u2λ4 −m2

dλ4

dt
= µ(ai)λ4

dλ5

dt
= −m2+

L∑
i=0

T∑
j=0

ϑd(ai)(λa+λb)(1−u1)(λ6−λ8)+(µ(ai)+τm(ai))λ5−
L∑
i=0

τm(ai)λ6

dλ6

dt
= −m2+

L∑
i=0

T∑
j=0

ϑd(ai)(λa+λb)(1−u1)(λ6+λ8)+
L∑
i=0

εm(ai)βm(ai)u2(λ6−λ7)

+ λm(t)sm(1− u3)(λ12 − λ13)
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dλ7

dt
= γm(ai)(λ1 − λ7) + µ(ai)λ7

dλ8

dt
= µ(ai)λ8

dλ9

dt
=

T∑
j=0

λd(t)Id(t, ej)(λ9 − λ10) + (µd(ej) + δd(ej) + (1 − u3))λ9 − m3

dλ10

dt
= αd(ej)(λ10 − λ11) + (δd(ej) + (1 − u3))λ10 − m3

dλ11

dt
=

L∑
i=0

T∑
j=0

ρ0(ai)w2(ej)Nss(t, ai)(1− u1)(λ1 − λ2)−m3

+
L∑
i=0

T∑
j=0

ϑd(ai)ρ0(ai)(1 + w2(ej) cos(2πt+ T ))Nse(t, ai)(1− u1)(λ5 − λ8)

+
L∑
i=0

T∑
j=0

ϑd(aiρ0(ai)(1 + w2(ej) cos(2πt+ T )))Nsi(t, ai)(1− u1)(λ6 − λ8)

+
T∑
j=0

λd(t)Sd(t, ej)(λ9 − λ10) + (µd(ej) + δd(ej) + (1− u3))λ11

dλ12

dt
= λm(t)Nsi(t, ai)(1 − u1)(λ12 − λ13) + (µm + (1 − u3))λ12 − m3
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dλ13

dt
= αm(λ13 − λ14) + (µm + (1− u3))λ13 −m3

dλ14

dt
= −m3+

L∑
i=0

λMNss(t, ai)(1−u1)(λ1−λ5)+
L∑
i=0

ϑm(ai)λMNes(t, ai)(1−u1)(λ2−λ8)

+
L∑
i=0

ϑm(ai)λMNis(t, ai)(1− u1)(λ3 − λ8) + (µm + (1− u3))λ14

with terminal or transversality conditions

λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0..., λ14(tf ) = 0.

On the interior of the control set, where 0 < ui < 1, for i = 1, 2, 3, we obtain

u∗1 =
1

2r1

L∑
i=0

T∑
j=0

[λMNss(t, ai)Im(λ5 − λ1) + Pa]

u∗2 =
1

2r2

L∑
i=0

[εm(ai)βm(ai)Nsi(t, ai)(λ6 − λ7) + Pb]

u∗3 =
1

2r3

L∑
i=0

[−Smλ12 − Emλ13− Imλ14 + Pc]

(4.8.34)

and

u∗1 = max

(
0,min

(
1, 1

2r1

L∑
i=0

T∑
j=0

[λMNss(t, ai)Im(λ5 − λ1) + Pa]

))
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u∗2 = max

(
0,min

(
1, 1

2r2

L∑
i=0

[εm(ai)βm(ai)Nsi(t, ai)(λ6 − λ7) + Pb]

))

u∗3 = max

(
0,min

(
1, 1

2r3

L∑
i=0

[−Smλ12 − Emλ13− Imλ14 + Pc]

))

The optimality system consists of the optimal control model with the initial

conditions, Nss(0, ai), Nes(0, ai), Nis(0, ai), Nrs(0, ai), Nse(0, ai), Nsi(0, ai), Nsr(0, ai), Nrr(0, ai), Sd(0, ej), Ed(0, ej), Id(0, ej), Sm(0), Em(0), Im(0),

the costate system (4.8.18)-(4.8.31) with the terminal condition (4.8.32) and the

optimality condition (4.8.33). Any optimal control u∗1, u
∗
2, u
∗
3 must satisfy this op-

timality system.

4.8.5 Uniqueness of optimality system

Using the bound for the state equations, the adjoint system has bounded coe�-

cients and is linear in each adjoint variable. Hence the solution of the adjoint system

are bounded for the �nal time su�ciently small. Due to this a priori boundedness

of the state and adjoint functions and the Lipschitz structure of the optimality

system, we obtain uniqueness of the optimal control for small T . The uniqueness

of the optimal control pair follows from the uniqueness of the optimality system.

The restriction of time interval is very common in optimal control problems. See

(Kirschner et al, 1997., Joshi, 2002).
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4.9 STUDY NINE

Simulation

4.9.1 Numerical simulations

In order to understand the overall picture of the diseases behaviour, this

section provides numerical simulations of the formulated model using Maple and

Matlab software packages. The results of the simulations are discussed with the

aid of �gures as well as the implications of the theoretical results.

The numerical simulations of the system (3.1.3)-(3.1.17) is provided in appen-

dices (I) and (II). It is worth mentioning that some of the values of the parameters

as presented in Table 4.2 is the average estimated values that are compatible with

malaria and Lassa fever parameter values reported by the World Health Organiza-

tion and Centre for Disease Control and Prevention.
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Table 4.2: The parameters and values of the malaria-Lassa fever co-infection model.

Symbols Value Source

ζ(ai) 0.000215 Estimated
ςm 0.07 Niger and Gumel (2008)

Λd(ej) 0.0056 Tomori et al (1998)
b 0.12, 0.67, 3.0 Assumed to vary

φ0(ai) 0.09 Blayneh et al (2009)
ρ0(ej) 0.14, 0.6 Assumed to vary
σ0(ai) 0.15, 0.7 Assumed to vary
cm(ai) 0.1 Blayneh et al (2009)
σm 0.09 Blayneh et al (2009)

w1(ai) 0.56 Assumed
d1(ai) 0.00816 Tomori et al (1998)
d2(ai) 0.06 Tomori et al (1998)
βd(ej) 0.075 Assumed
µ(ai) 0.0000548 Estimated
µm 0.0667 Lashari et al (2012)

w2(ej) 0.8 Assumed
µd(ej) 0.06 Okuonghae et al (2006)
δd(ej) 0.3 Assumed
τ(ai) 0.085 Ogabi et al (2012)
κm 0-1 Assumed to vary
ξd(ej) 0-1 Assumed to vary
τm(ai) 0.0588 Blayneh eta al (2009)
αd(ej) 0.85 Assumed
αm 0.0556 Blayneh eta al (2009)

εm(ai) 0.05, 0.067, 0.1 Assumed to vary
βm(ai) 0.05, 0.067, 0.1 Assumed to vary
γv(ai) 0.09 Onuorah et al (2016)
α(ai) 0.05 Okuonghae et al (2006)
σ(ai) 0.09 Okuonghae et al (2006)
ηv(ai) 0.45 Onuorah et al (2016)
ϑi 0.15, 0.1 Assumed to vary

γm(ai) 0.0013699 Okosun and Makinde (2011)
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Figure 4.1: E�ect of optimal control u1, u2, u3 on infected human in malaria-Lassa
fever co-infection model
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Figure 4.2: E�ect of optimal control u1, u2, u3 on mosquitoes and rodents in
malaria-Lass fever co-infection model
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Figure 4.3: E�ect of optimal u1, u2, u3 on infected mosquitoes and rodents in
malaria-Lassa fever co-infection model
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Figure 4.4: Seasonal variation of malaria-Lassa fever co-infection transmission in
human population
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Figure 4.5: E�ect of seasonal variation of vector (mosquito and rodent)
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Figure 4.6: A graph showing the behaviour of equation (4.1.18)
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Figure 4.7: A graph of period 1 orbit as a function of b. When b < b2 the period 1
orbit is stable while for b > b2 the orbits are unstable.
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Figure 4.8: A graph showing the bifurcating period 2 (P2) solution from the period
1 (P1) solution.
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CHAPTER FIVE

DISCUSSION

5.1 The malaria-lassa fever co-infection

Malaria caused by Plasmodium parasite is a major vector-borne disease globally.

The parasite is transmitted by female Anopheles mosquito into vertebrate host.

However, Lassa fever virus is transmitted by rodents through their faeces, urine

and saliva. Lassa virus is mostly endemic in West African countries (Tomori et

al, 1998; WHO, 2012; Ogabi, et al., 2012). Both malaria and Lassa fever virus

are common in developing countries where there is poor sanitation and hygiene,

poor infrastructural development, wide area of rural community settlements and

presence of vegetation around settlement areas.

Modelling of single infection such as malaria (Tumwiine et al., 2007; Magombedze

et al., 2011) and Lassa fever virus (Okuonghae et al, 2006; Ogabi, et al., 2012)

have been previously reported. However, there is paucity of information on the co-

infection of both diseases, especially incorporating mathematical conditions such as

seasonal functionality. Precisely, malaria co-infection with other viral and bacteria

diseases have been reported, such as HIV-malaria co-infection mathematical model

and malaria-cholera co-infection mathematical model (Okosun and Makinde, 2014).

Meanwhile, laboratory experiments have justi�ed co-infection of diseases and how

it a�ects the host immune system. Ademola and Odeniran, 2016 showed the co-

infection of malaria and trypanosomiasis in mice model and how it a�ects the

survivability of mice. The �ndings of this study contribute to a better understand-

ing of the patterns and forces that drive the co-infection of malaria and Lassa fever

in endemic areas. This study provides information that malaria infection could

be associated with an increased risk of Lassa fever and Lassa fever infection may

be associated with an increased risk for malaria. However, malaria-Lassa fever co-

infection will not bring the human population (the diseases a�ect only a segment

of the world population) to extinction even when both diseases co-exist.
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5.2 Equilibrium point

The nature of the system near the equilibrium point for non-seasonal infections,

for example malaria, HIV, Lassa fever etc have been investigated through the basic

reproduction number (Okuonghae et al., 2006; Nannyonga et al., 2012; Okosun

and Makinde, 2014). However, the nature of the system near the equilibrium

point for seasonal malaria-Lassa fever have not been examined through the basic

reproduction number, R0(a, t). The equilibrium point of our model with respect

to seasonal incidence function give information that certain seasonal period (e.g.

wet season), the vector population increases e.g. female anopheles mosquito and

rodents with an implication on the basic reproduction number. There is persistence

of infection and the basic reproduction number was observed to grow exponentially

during these seasonal period. Hence, seasonal functionality and changes have direct

consequences on the model.

5.3 Basic reproduction number, R0M(a, t) and R0L(a, t)

The number of secondary infections caused by the introduction of a single in-

fectious individual into an entirely susceptible population is usually de�ned as the

basic reproductive number R0 for a non-seasonal infection(Diekmann 1990). The

basic reproduction number R0 have been used to examined stability for non sea-

sonal malaria and Lassa fever diseases (Nannyonga et al., 2012; Okuonghae et

al., 2006). However, the basic reproduction number, R0(a, t), for seasonal infec-

tion have not been used to examined stability on malaria-Lassa fever co-infection

epidemic using mathematical model. Because the number of secondary infections

depends on the time of year that the infectious individual is introduced, the inter-

pretation of the basic reproductive number, R0 (for non-seasonal infection) is not

possible for seasonal infections. The basic reproduction number R0(a, t) computed

in this study helps in determining whether or not an infectious disease (seasonal

infection such as malaria and Lassa fever) will spread through a population since

the number of secondary infections depend on the time of year that the infectious

individual is introduced. If R0(a, t) < 1, each infectious individual produces less

than one new infected individual so that the disease dies out of the population.

Whilst R0(a, t) > 1 means that each infectious individual produces more than one

new infected individual so that the disease persists in the population.
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5.4 Local and global stability analysis of equilibra

Since infection with multiple parasites, viruses or both are common among pop-

ulations in developing countries and there may be interactions between parasites,

viruses or both, as earlier suggested (Okokhere et al., 2010; Ademola and Odeni-

ran, 2016). This study give insight that Plasmodium infected human who were

also co-infected with Lassa virus (or vice versa) favoured quick development which

shortened pre-patent period of Plasmodium and increased parasitaemia than hu-

man with Plasmodium infection only especially when the vectors (mosquito and

rodent) are abundant. This aggravated responses could be the e�ect of pathogen

on host immune system (Okokhere et al., 2010). Major observations from this

study are highlighted as follows:

(i) It was observed that if Res1(a), Res2(a), R0M(a), Rem1(a), Rem2(a) > 1, individ-

uals in the population will continue to have malaria and Lassa fever. However,

whenever Res1(a), Res2(a), R0M(a), Rem1(a), Rem2(a) < 1 infectious individuals into

a completely susceptible population will not lead to an outbreak of the disease

Thus, the disease control depends on the initial number of the infected individuals

in the population. This result agreed with the results in Okosun and Makinde

2014.

(ii)It was also observed that the globally asymptotically s table disease-free equilib-

rium point ε0 suggests that co-infection of malaria and Lassa fever can be brought

under control irrespective of the initial sizes of the infectious individuals in the pop-

ulation whenever R0M(a),R0L(e) < 1. Furthermore, the globally asymptotically

stable endemic equilibrium ε0, implies that malaria and Lassa fever will establish

itself in the population whenever R0M(a),R0L(e) > 1 and 0 ≤ u1 ≤ 1. This result

agreed with the results in Olaniyi et al 2018.

5.5 Sensitivity analysis

Sensitivity analysis to identify the parameter most signi�cantly to the transmission

of the disease on mono-infection e.g malaria have been studied by many authors

(Chitnis et al, 2008; Okosun and Makinde, 2011; Olaniyi et al, 2018). In particular,

Olaniyi and Obabiyi (2013) developed a mathematical model that incorporate vigi-

lant compartment and antibody. Sensitivity analysis of their model were performed,

they conclude that the mosquito biting rate contributed most signi�cantly to the
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transmission of the disease. To our knowledge sensitivity analysis of malaria-Lassa

fever co-infection that incorporate seasonal variation of vectors (mosquito and ro-

dent) have not been studied. This study provide the following information about

our model.

The sign of the sensitivity indices of the basic reproduction numbers R0M(a, t)

and R0L(e, t) obtained, in Table 4.1 give information on how changes in the model

parameters a�ect the basic reproduction numbers. The parameters with positive

indices give information that an increase (or decrease) in the value of each of these

parameters will lead to the corresponding increase (or decrease) in R0M(a, t) and

R0L(e, t). For example ΥR0M
σ0

= 1 implies that increasing (or decreasing) the rodent

contact rate by 10% also increases (or decreases) the basic reproduction number,

R0M(a, t), by 10%.

On the other hand, the parameters with negative indices provide information

that an increase (or decrease) in the value of each of these parameters will lead to

the corresponding decrease (or increase) in R0M(a, t) and R0L(e, t). For example

if more than half of the year is rainy season say, κm = 0.7, then we have ΥR0M
κm =

−2.0. This further suggest that increasing (or decreasing) κm by 20% decreases (or

increases) R0M(a, t) by 20%. Hence, with sensitivity analysis, one can get insight on

the appropriate intervention strategies to prevent and control the transmission of

the diseases in the population, especially when there is su�cient rainfall that help

the development and survival of the vectors. This result agreed with the results in

Chitnis et al 2008 and Olaniyi et al 2018

5.6 Subharmonic bifurcation

Multi-pathogen/multi-host models have recently been formulated to track the dy-

namics of pathogen interaction over diagnostic factors in treatment landscapes.

This model is based on the fact that human diagnosis precedes treatment and is

critical to disease progression. The role of diagnostic factor before treatment of

two diseases (malaria and Cholera) was studied and found that the basic repro-

duction number decreased as diagnosis increased (Okosun and Makinde, 2014).

However, this study provide information that, for seasonal infection, reducing the

basic reproduction number below unity is not enough to eliminate co-infection of
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Plasmodium infected human co-infected with Lassa virus or Lassa virus infected

human co-infected with Plasmodium . Major observations from this study are listed

as follows:

It was observed that in addition to a subharmonic period 2 orbit, there exist sub-

harmonic solutions that bifurcate from large amplitude solutions appearing in the

reduced equation (4.7.8) when ε = w1 = w2 = b = 0. It was observed that lower or-

der subharmonic are more likely to be encountered i.e. the domain of existence for

lower order subharmonics may be larger than for higher order subharmonics. This

simply means that malaria-Lassa co-infection can be brought under control when

vectors abundant time are targeted. Finally, it is important to report the behaviour

of the periodic solutions of equation (4.7.7) as a function of seasonal variation of

vector, b via numerical simulations. The feature behaviour of �gure 4.6 is that the

outset is a center nearby periodic orbit with period varying between 2π
ν
near the

outset to +∞ close to the invariant line y = −1. Speci�cally, for all integer n,

2π
ν
< n < ∞, there exist a periodic solution of (4.7.8), x̄(t), ȳ(t), of least period

n. Figure 4.7 shows that the norm of the solution of equation (4.7.7) represented

by ||Z|| has a monotonic increasing function of b. It was further observed through

numerical simulation that at a value of b2 = 0.14 one of the values of the invariant

line is −1, signalling the presence of a period doubling (subharmonic bifurcation)

orbit bifurcating o� the period 1 branch. This simply implies that the endemic

equilibrium is asymptotically stable at a value of b2 = 0.14, and the disease will

not persist in the population. Moreover, we noticed that if one proceeds to follow

the period 1 solutions for b > b2, (ie when b > 0.14) the period 1 solutions become

unstable (For detailed information see Ira and smith 1983). Thus, the disease will

continue to spread or invade the system. Figure 5.8 depicts the stable branch of

period 2 solutions (P2) bifurcating from period 1 (P1) branch of b = b2. This

simply implies that when the value of b = b2 = 0.15, the endemic equilibrium is

asymptomatically stable and the disease will not invade the population. However,

if b2 > 0.15 the endemic equilibrium is unstable and the disease elimination may

not be possible.
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5.7 Optimal Control problem and numerical simulations

Optimal control problems have recently piqued the interest of scientists all over

the world, for example Olaniyi et al. (2018) looked at how the method of similar

solutions could be used to solve time optimal control problems with state con-

straints. Similarly, many approaches have also been used to investigate optimal

control problems in control systems. In particular, Okosun and Makinde (2011)

developed a continuous model for malaria vector control (single infection) with the

goal of determining how genetically modi�ed mosquitoes should be introduced in

the environment using optimal control problem strategies. To our knowledge no

work has been done to examine the impact of optimal control on malaria-Lassa

fever co-infection. Our results suggest that strict intervention e�ort (use multiple

control measure at a time) is required for quick suppression of the diseases. E�orts

should also be made in both government and private hospital by providing modern

equipment for diagnosis before treatment to know if the patient has more than one

infection. It is known that Lassa fever transmission is driven by the interaction

between human and rodent. Thus, the need for human to be protected should be

encouraged as a way of keeping the rodent at bay. Being protected requires to-

tal adherence of using rodent proof container, rodent control measures and main-

tenance of sanitary environments. Elimination of vector populations (mosquito

and rodent) has a great impact on disease transmission, and this could reduce the

threshold parameter below unity (Koella and Anita, 2003). However, this study re-

veal vector control only is not enough to eliminate co-infection of malaria and Lassa

fever. Therefore, suggesting multiple control such as prevention (use of mosquito

treated bed net), treatment and use of insecticide (vector control) at a time for

both diseases to be completely eliminated. Main observations from this work are

highlighted below:

(i) The impact of using multiple control measures at a time is that malaria-Lassa

fever co-infection will not invade the population if u1 = u2 = u3 6= 0. However, the

disease will continue to persist in the population whenever u1 = u2 = u3 = 0 or

when only one of u1, u2 and u3 is used as control measure (Okosun and Makinde

2011)

(ii) It was observed via numerical simulations that using multiple control strategies

at a time lead to a decrease in the number of infected humans with malaria-Lassa
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fever as against increase in the uncontrolled case as shown in �gure 4.1. Similarly,

in �gure 4.2 and 4.3, it is observed that the control strategies lead to decrease in

the number of mosquito and rodent as against increase in the uncontrolled cases.

It was further Observed that transmission of malaria-Lassa fever co-infection varies

seasonally depending on the lengthen or availability of rainfall that helps the de-

velopment and survival of mosquito and rodent (see �gures 4,4 and 4.5) (Okosun

and Makinde 2011).
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Compartmental mathematical model describing the transmission of malaria-

Lassa fever co-infection in three interacting populations was presented: Human,

mosquito and rodent. The formulated model governed by systems of ordinary

di�erential equations were qualitatively and quantitatively analysed to gain more

insights into the transmission and spread of the malaria-Lassa co-infection diseases.

The model that incorporates seasonal variation of vectors and diagnostic fac-

tor for treatment to investigate the e�ect of endemic malaria mortality rate of

Lassa fever patients was formulated by dividing the human population into eight

compartments Nss, Nes, Nis, Nrs, Nse, Nsi, Nsr, Nrr while the mosquito population

was divided into Sm, Em, Im and rodent population was divided into Sd, Ed, Id.

The feasible region where the model is mathematical well-posed was presented.

The disease-free and endemic equilibra were determined and their stability prop-

erties were investigated via a explicit formula for threshold parameter known as

basic reproduction number. This threshold parameter was derived using the next

generation matrix method. For a threshold parameter greater than unity, a locally

asymptotically stable endemic equilibrium of the model was established. Stable

subharmonic solutions of period n for many values of n are proved to coexist simul-

taneously using perturbation method. Moreover, to extend the stability analysis

of the model beyond small region near the equilibra, we explored the global dy-

namical behaviours of the system around the equilibra. It was proved with the aid

of Lyapunov function that the disease-free equilibrium is globally asymptotically

stable at threshold parameter less than unity and that the endemic equilibrium

is globally asymptotically stable at threshold parameter greater than unity. In

addition, Using Pontryagin Maximum Principle, necessary conditions for the opti-
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mal control was derived, and existence and uniqueness of optimality system were

established. Invasion and co-existence of the malaria-Lassa fever co-infection was

established. The parameters most responsible for the disease transmission in the

populations were determined with respect to R0M(a, t) and R0L(e, t) by sensitivity

analysis. The results of sensitivity analysis showed that vectors biting and contact

rate among eleven positive sensitivity index parameters, contributed most signif-

icantly to the transmission of the diseases. Among the seven negative sensitivity

index parameters, the human death rate was found to be most sensitive to R0M(a, t)

and R0L(e, t) .

Lastly, to complement the theoretical results of the analysis, numerical simula-

tion of the model were performed to investigate the signi�cant of control strategies

(prevention, treatment, use of insecticide and pesticide). Using optimal control

theory, It was �nd that the population of mosquito, rodent and infected human

with multiple control at a time decreases than using one control at a time. Fur-

thermore, numerical simulations of the model were established to investigate the

e�ects of some key parameters on the dynamical behaviour of the system. It was

showed by graphical illustration that increase in the value of κm and ξd(ej) increases

the magnitude of the infected humans with malaria-Lassa fever co-infection in the

population while decrease in the value of κm and ξd(ej) decreases the magnitude

of the infected humans with malaria-Lassa fever co-infection in the population.

6.2 Recommendations

Based on the qualitative and quantitative results of the analysis, the following

recommendations are enumerated with a view to achieving a malaria-free, Lassa

fever-free and malaria-Lassa fever co-infection-free.

(1) E�orts at reducing basic reproduction number of malaria-Lassa fever co-infection

(especially when there is su�cient rainfall that helps the development and sur-

vival of mosquito and rodent) should be intensi�ed since the model parameters,

ζ, b, µm, αm (Positive sensitivity signs in table 4.1) that would help in in�uencing

this reduction have been shown

(2) It is known that Lassa fever transmission is driven by the interaction between

human and rodent. Thus, the need for human to be protected should be encouraged

as a way of keeping the rodent at bay. Being protected requires total adherence of
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using rodent proof container, rodent control measures and maintenance of sanitary

environments.

(3 ) E�orts should also be made in both government and private hospital by pro-

viding modern equipment for diagnosis before treatment to know if the patient has

more than one infection.

6.3 Contributions to knowledge

This work focuses on existence of subharmonic bifurcation results and stabil-

ity analysis of malaria-Lassa fever co-infection epidemic model with optimal control

application. Many researchers have worked on mathematical models describing the

feature involved in the transmission of mono-infection of malaria and Lassa fever

(Chitnis et al 2006, Gumel et al 2008, Okosun and Makinde 2014, James et al 2015,

Onuorah et al 2016). However, models on co-infection of malaria and Lassa fever

that incorporate diagnostic factor for treatment and seasonal variation of vectors

(Mosquito and rodent) with optimal control application needed for full understand-

ing and management of the co-infection in human with Plasmodium falciparum and

Lassa virus have not been widely explored in the literature and this is a major mo-

tivation for this work. Moreover, to the best of our knowledge, it is the �rst time

to use subharmonic bifurcation to study the transmission dynamic of malaria-Lass

fever co-infection. This current study gives insights that strict intervention (using

multiple control measures at a time) e�ort is required for quick suppression of the

diseases. Moreover, the use of subharmonic bifurcation technique enable us to know

that random e�ect in the environment could perturb the state of the transmission

dynamics from the domain of attraction from one subharmonic (Period-doubling)

to another, thus producing aperiodic levels of incidence.

6.4 Further research

This study is not without limitations since a model cannot encompass every fea-

tures of the problem. Thus, it is suggested that mathematical models are needed

to describe the ecology of genetically modi�ed mosquitoes and rodents and of vari-

ations in the susceptibility of the vector and the potential impact on malaria and

Lassa fever.
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Appendices

Appendix I

Norm of the solution of equation (4.1.13) were used to plot subharmonic period 1

and period 2 orbits.

max(abs(RootOf(3
Z∗cos(2∗Pi∗ t))/epsilon)+epsilon3∗conjugate(epsilon∗(eta+

b∗cos(2∗Pi∗t)))∗cos(2∗Pi∗t)∗b+epsilon3∗conjugate(epsilon∗(1+b∗cos(2∗Pi∗

t)))∗cos(2∗Pi∗t)∗b)∗2
Z−(−Delta3∗conjugate(Delta3/epsilon)∗Delta2∗epsilon∗

conjugate(epsilon∗(1+b∗cos(2∗Pi∗t)))∗conjugate(Delta2∗(1+delta∗cos(2∗Pi∗

t))/epsilon)∗cos(2∗Pi∗t)∗delta−2∗Delta3∗conjugate(Delta3/epsilon)∗Delta2∗

epsilon∗conjugate(epsilon∗(eta+b∗cos(2∗Pi∗t)))∗conjugate(Delta2∗(1+delta∗

cos(2 ∗ Pi ∗ t))/epsilon) ∗ eta− 2 ∗Delta3 ∗ conjugate(Delta3/epsilon) ∗Delta2 ∗

epsilon∗conjugate(epsilon∗(eta+b∗cos(2∗Pi∗t)))∗conjugate(Delta2/epsilon)∗

eta+2∗Delta3∗conjugate(Delta3/epsilon)∗Delta2∗epsilon∗conjugate(epsilon∗

(1 + b ∗ cos(2 ∗Pi ∗ t))) ∗ conjugate(Delta2 ∗ (1 + delta ∗ cos(2 ∗Pi ∗ t))/epsilon) ∗

eta+Delta3 ∗ conjugate(Delta3/epsilon) ∗Delta2 ∗ epsilon ∗ conjugate(epsilon ∗

(eta+ b∗ cos(2∗Pi∗ t)))∗ conjugate(Delta2∗ (1+delta∗ cos(2∗Pi∗ t))/epsilon)+

Delta3∗conjugate(Delta3/epsilon)∗Delta2∗epsilon∗conjugate(Delta2/epsilon)∗

conjugate(epsilon∗(eta+b∗cos(2∗Pi∗t)))−Delta3∗conjugate(Delta3/epsilon)∗

Delta2 ∗ epsilon ∗ conjugate(epsilon ∗ (1 + b ∗ cos(2 ∗Pi ∗ t))) ∗ conjugate(Delta2 ∗

(1 +delta∗ cos(2∗Pi∗ t))/epsilon), Delta3∗ conjugate(Delta3/epsilon)∗Delta2∗

epsilon∗conjugate(epsilon∗(1+b∗cos(2∗Pi∗t)))∗conjugate(Delta2∗(1+delta∗

cos(2∗Pi∗t))/epsilon)∗cos(2∗Pi∗t)∗delta−2∗Delta3∗conjugate(Delta3/epsilon)∗

Delta2∗epsilon∗conjugate(epsilon∗(eta+b∗cos(2∗Pi∗t)))∗conjugate(Delta2∗(1+

delta∗cos(2∗Pi∗t))/epsilon)∗eta−2∗Delta3∗conjugate(Delta3/epsilon)∗Delta2∗

epsilon∗conjugate(epsilon∗(eta+b∗cos(2∗Pi∗t)))∗conjugate(Delta2/epsilon)∗

eta+2∗Delta3∗conjugate(Delta3/epsilon)∗Delta2∗epsilon∗conjugate(epsilon∗
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(1 + b ∗ cos(2 ∗Pi ∗ t))) ∗ conjugate(Delta2 ∗ (1 + delta ∗ cos(2 ∗Pi ∗ t))/epsilon) ∗

eta+Delta3 ∗ conjugate(Delta3/epsilon) ∗Delta2 ∗ epsilon ∗ conjugate(epsilon ∗

(eta+ b∗ cos(2∗Pi∗ t)))∗ conjugate(Delta2∗ (1+delta∗ cos(2∗Pi∗ t))/epsilon)+

Delta3∗conjugate(Delta3/epsilon)∗Delta2∗epsilon∗conjugate(Delta2/epsilon)∗

conjugate(epsilon∗(eta+b∗cos(2∗Pi∗t)))−Delta3∗conjugate(Delta3/epsilon)∗

Delta2 ∗ epsilon ∗ conjugate(epsilon ∗ (1 + b ∗ cos(2 ∗Pi ∗ t))) ∗ conjugate(Delta2 ∗

(1 + delta ∗ cos(2 ∗ Pi ∗ t))/epsilon), index = 3)))

Appendix II

Some Maple code used to plot control strategies of the system (3.1.3)-(3.1.17).

CONTROL VARIABLE

MYODE := [diff(A(t), t) = a−beta(t)∗A(t)∗Z(t)+v∗R(t)−d∗A(t), diff(B(t), t) =

beta(t) ∗ A(t) ∗ Z(t) − (e + d) ∗ B(t), diff(C(t), t) = e ∗ B(t) − (f + g + d) ∗

C(t), diff(R(t), t) = f∗C(t)−(v+d)∗R(t), diff(X(t), t) = rho(t)−alpha(t)∗X(t)∗

C(t)−q∗X(t), diff(Y (t), t) = alpha(t)∗X(t)∗C(t)−(r+q)∗Y (t), diff(Z(t), t) =

r ∗ Y (t) − (u + q) ∗ Z(t), A(0) = 100, B(0) = 10, C(0) = 5, R(0) = 0, X(0) =

1000, Y (0) = 30, Z(0) = 10], numeric; solution := dsolve(MYODE, numeric);with(plots);
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Figure 6.1: Mosquito: The malaria-transmitting agent(vector)
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