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                       Abstract 

 

Benchmarking deals with problem of combining a series of high-frequency data with a series of low-
frequency data to form a single consistent time series. Various benchmarking methods in literature lack 
some observations (necessary for development of the eventual new series), at the beginning and end of 

the original series, which pose missing values challenge to the methods. Hence, there is need for an 
improved approach that will better capture these missing values. Therefore, the study was designed to 

develop an Autocorrelated Indicator Benchmarking Model (AIBM) that fills the value gaps without 
affecting the movement and pattern of the original series. 
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from the generalised least squares 

regression models were used to develop the new model, where ts is the high-frequency series, r the 

regressors, h minimum value of the regressors, H the maximum value of the regressors, and B the bias 

values. The time effect is  

H
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. The benchmarked values t , satisfied the annual constraints. The 

autocorrelated error, low-frequency series, the coverage fractions, and the non-autocorrelated error, are 

te , ma , mtj , and m , respectively. The ith and jth values in the high frequency series are mt1 and mt2 , 

respectively. The model was validated with simulated data and real life data on the Nigeria’s Gross 
Domestic Product (1975 to 2013) obtained from the Nigeria Bureau of Statistics annual report. The 
performance of the proposed model was evaluated based on autocorrelation coefficients (𝜌) values  

compared with the existing models such as, Proportional Balanced Difference (PBD), Proportional Order 

One Difference (POOD), Additive Order Two Difference (AOTD), Proportional Order Two Difference 
(POTD), and Bias Adjusted (BADJ), using the Coefficient of Variation (CV) of the obtained growth 
rates. Minimum CV value will give a preferred model. 

 
The developed AIBM was given as
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   , where ̂  is the matrix of 

the benchmarked estimates. The covariance matrices of the survey, low frequency, and high frequency 

errors are eV , dV , and V , respectively. Also the estimates of bias parameters and regressors are ̂  and

R , respectively. For simulated data, the CV values of  growth rates from PLD, PFD, ASD, PSD, BADJ, 

and AIBM at 𝜌 = 0.729 were -29.620, -14.033, -24.353, -13.160, -19.591, -29.486; at 𝜌 = 0.900 were    

-29.620, -14.033, -24.353, -13.160, -19.632, -29.606; at 𝜌 = 0.990 were -4.402, -4.987, -4.371, -4.954,    

-7.137, -4.402; and at 𝜌 = 0.999 were  -4.402, -4.987, -4.371, -4.994, -7.309, -4.402, respectively. For 
real life data, the CV values at 𝜌 = 0.729 were 3.195, 3.196, 3.198, 3.200, 1.582, 1.318; at 𝜌 = 0.900 

were 3.195, 3.196, 3.198, 3.200, 1.582, 1.318; at 𝜌 = 0.990 were 3.195, 3.196, 3.198, 3.200, 1.582, 1.121; 

and at 𝜌 = 0.999 were 3.195, 3.196, 3.198, 3.200, 1.582, 1.105, respectively. The AIBM has the minimum 

CV in the growth rates, indicating its strength over the existing models. 
 

The autocorrelated indicator benchmarking model captured missing values at the beginning and end of 
the original series, while preserving the properties of the series. The model is therefore recommended for 
handling irregular data. 

 
Keywords:     Benchmarked estimates, Autocorrelated indicators, regressors, Coefficient of variation   
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                  Glossary of main terms 

 
1. Benchmark: the series of less frequent data, which is considered more 

reliable. 

2. Benchmarked series: the resultant series from benchmarking. 

 
 

3. Benchmarking: the procedure for combining a series of high-frequency data 

(the indicator series) with a series of less frequent data (the benchmarks) for   

a certain variable into a consistent time series. 

4. BI ratio: benchmark to indicator ratio. 
 
 

5. Binding benchmark: A benchmark with dispersion value equal to zero; that  

is, the benchmarked series will fully match the benchmark. 

6. Coefficient of variation: the standard deviation of the observation divided 

by the value of the observation. 

7. Flow variable: variable measured by summing over a reference period, e.g. 

sales per month. 

8. Index variable: variable measured as an average over a reference period, 

e.g. the index of industrial production. 

9. Indicator series: the series to be benchmarked, used interchangeably with 

“original series”. 

10. Interpolation similar to benchmarking, but the indicator series is not 

directly related to the series of benchmarks. 

11. Non-binding benchmark: A benchmark with a positive dispersion value;  
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that is, the benchmarked series will not exactly match the benchmark. 

12. Original series: the series to be benchmarked. 

 

13. Proportional Denton  Method: benchmarking method which preserves the 

growth rate of the original series in an optimal manner. 

14. Reference period: set of consecutive months covered by a data point, e.g. 

April 1, 2000 to June 30, 2000. 

15. Stock variable: variable measured as of a particular date, e.g. inventories. 
 

16. PRM: Prorating Method 
 

17. PBD: Proportional Balanced Difference 
 

18. ABD: Additive Balanced Difference 

 

19. POOD: Proportional Order One Difference 

 

20. AOTD: Additive Order Two Difference 
 

21. POTD: Proportional Order Two Difference 
 
 

22. BADJ: Bias Adjusted 

 
 

23. AIBM: Autocorrelated Indicator Benchmarking Model 
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                               CHAPTER ONE 

                        INTRODUCTION 

1.1 Background to study 

The term Benchmarking can be explained as the situation where there are two locations of 

information for a similar focused variable, with various frequencies, and is making sure that 

adjustment of irregularities between the various evaluations is done, for example quarterly 

and yearly data from various roots. It is expected that three-month accounts from various 

countries are predictable with the yearly accounts, therefore a reasonable perspective on 

financial advancements is introduced contrasts in developmental rates among sub-annual and 

yearly GDP would befuddle and bother clients. Benchmarking is commonly done reflectively 

as yearly benchmark information are accessible at some point after sub-annual information. 

It is a way of forcing a high frequency data such as weekly, monthly, or quarterly referred to 

as the indicator series to obey the series of the lower frequency. The purpose of this is to 

come up with an hybrid series that will be better and reliable. The low frequency series 

(annual) are the benchmarks while the high frequency are the indicator series which may be 

monthly or quarterly. The problem of benchmarking arises when the benchmark to indicator 

ratio is greater than 1. It is generally assumed that the ratio be equal to 1, because the total 

sum of the indicator series   is expected to be equal to the benchmarks. 

Obtaining high frequency data is not a challenge for users of economic data, but it’s reliability 

in usage. The low frequency data obtained by organisations are sponsored by the state or 

federal government of many nations, so in most cases they are reliable. However, problem 

occurs when the user or researcher discovers that the high frequency data is not consistent 

with the annual from these organisations. Effort therefore is needed to be put in place in 

making sure that evaluation of such data sets is performed in order to reconcile the series 

gotten from two sources. This can be week to week, month to month, quarter to quarter, 

benchmarked to new series. In Nigeria, the data collected by the Central Bank of Nigeria and 

the National Bureau of Statistics is highly reliable because it has the financial strength to 

make use of professionals in all walks of life to obtain their data. Therefore the same data 

collected from organisation may have benchmarking problem because the total from the first 

source may not be consistent with the later. 

In our effort to benchmark data sets from two sources, the dimension of such data sets have 

to change. The number of observations in the low frequency and high frequency series have 
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to reconcile to produce the dimension of the indicator series which will be used as the 

representative of the data from two sources, this is the benchmarked series and can be used 

for future research because of its reliability. Benchmarking is therefore an improvement on 

both the low frequency and high frequency data. 

Temporal disaggregation and calendarisation are connected systems which depend on 

comparative methodological standards and rules as those of benchmarking. Temporal 

distribution is breaking benchmark series into more high frequency series. Calendarisation on 

the other hand is aggregating the data into days of week, months and quarters in the year 

Benchmarking provides solution to the challenge of bringing together a series high frequency 

(for example, month to month) and a series of low frequency (for example, quarter to quarter) 

in order to have a time series data that will be suitable for other uses. When a conspicuous 

irregularity between two arrangements is seen, the low recurrence information is generally 

expected to give a dependable information. There are two central approaches to manage 

benchmarking of time arrangement: an essentially mathematical system and a verifiable 

showing approach. The mathematical procedure encompasses the gathering of least-square 

minimisation strategies (Denton, 1971). This benchmarking strategy relies upon an 

improvement preservation decide that is for the most part used by government real 

associations and public banks all over. Factual demonstrating approaches incorporate 

autoregressive integrated moving average (ARIMA) techniques suggested by Hillmer and 

Trabelsi (1987), regression models (Cholette and Chhab, 1991), and models of state space 

(Durbin and Quenneville, 1997).  

Benchmarking is a significant issue looked by the measurable offices. For an objective 

financial variable, two wellsprings of information, for instance, an annual authoritative 

information and a quarterly rehashed overview information, might be accessible. At the point 

when errors between the series of high recurrence (for example quarterly) information and a 

series of low recurrence information emerge, the last is normally accepted to give 

progressively reliable data. The issue of modifying the month to month or quarterly time 

series to make them predictable with the sub-annual or annual aggregates is known as 

benchmarking.  

Changing the estimations of a series of values of a  variable  at successive times  that is seen 

over shifting time into qualities that spread schedule time is also known as calendarisation, 

for example, day, week, month, quarter and year. For instance, a specific number of travelers 
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take open transportation consistently, and these numbers are summed to give an aggregate for 

a given revealing period. Calendarisation includes temporal conveyance of the detailed 

qualities into, state, every day occurrences and accumulation of the subsequent day by day 

insertions into the ideal recurrence, month to month, quarterly or yearly.  

The temporal circulation or disaggregation process, more often than not, includes an 

everyday indicator which is utilised as an intermediary to speak to the day by day dimension 

of movement that can differ attributable to regularity, exchanging day or other date-book 

impacts, for example, open occasions. Without such data, the everyday dimension of 

movement is thought to be consistent. Given the day by day indicator, the subsequent stage 

is to benchmark it to the revealed qualities. The detailed qualities give solid data on the 

general dimension and long haul development. Benchmarking smoothens the everyday 

development of the indicator series while at the same time accomplishing the dimension of 

the announced qualities. Benchmarking gives smooth day by day esteems that signify the 

revealed qualities; thus, the announced qualities are the aggregates of every day estimates 

and this compares to their temporal circulation. Benchmarking is an obliged streamlining 

issue that can be made to fathom in numbers or utilising proper models of state space. 

1.1.1 Defining Benchmarking using the idea of Interpolation 
 

Interpolation is the process of introducing new set of observations into a series following a 

specified pattern and distribution. It is a method or operation of finding from a given terms 

of a series, as of numbers of observations, other intermediate terms   in conformity with the 

laws of the series. Here the intervals into which the observations introduced are called the 

benchmarks, and the series obtained for interpolation are the benchmarked series. 

 

 

1.1.2 The Benchmarking Problem 
 

The benchmarked series to be evaluated is denoted as dr,u where r = 1, ..., y signifies the 

annual period, and u indicates the quarters. It can be obtained from the set of data that 

follows, the high frequency series: cr,u; and the yearly benchmarks, are: 

 

                                                     𝐷𝑟 = ∑ 𝑑𝑟 ,𝑢
4
𝑢=1  for continuous values 

or 

                                                     𝐷𝑟 =
1

4
∑ 𝑑𝑟 ,𝑢

4
𝑢=1  for gauged data 
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Benchmarking is aimed at reconciling data sets generated by two different sources. Assessing 

dr,u over the range for which cr,u is accessible is important. Evaluating dr,u past the period 

for which cr,u accessible is increasingly stable. For this situation anticipating and 

benchmarking strategies should be joined. Determining cr,u then benchmarking the all-

inclusive series onto the benchmarks Dr is a reasonable arrangement. Truth be told in view 

of the overall practicality of 12-month and 3-month information, amid the present year y, the 

qualities cy,1, cy,2, cy,3 will commonly be accessible before the yearly benchmark Dy , or Cy 

is known. So, the last couple of information focuses in the fractional year toward the finish 

of the series dy,1, dy,2, dy,3 are evaluated without an yearly sum - a significant part of any 

technique for benchmarking is the manner by which it manages this issue. 

 

 

1.2 Aim and Objectives 
 
In this research, the aim is to take further the work of Denton (1971), and Dagum and Cholette 

(2006) by developing an improved approach to modelling and evaluation of economic data 

with irregular benchamrks, that is, the Autocorrelated Indicator Benchmarking Model 

(AIBM) to solve benchmarking problem. The definite objectives are to: 

 

i. Improve on the order one and order two proportional and additive benchmarking 

models using restrained minimised quadratic polynomial 

ii. Introduce various autocorrelation coefficients into the new models in order achieve 

a robust hybrid series 

 
iii. Regulate the sub-yearly data dimension to obtain a consistent one 

 
iv. Write a MATLAB algorithm to provide solution to challenge of benchmarking 

 
 

1.3 Statement of the problem 

Across the globe, one of the problems faced by government agencies that collect and publish 

economic data is that of adjusting low frequency data such as annual series to a high frequency 

data such as quarterly or monthly series. This general problem in economic data is known as 

benchmarking. The purpose is to revise a sub-annual series so that it is forced to sum for a 

certain time period to a given figure (a benchmark) or forced at a certain time to be equal to a 
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given figure (a benchmark).   

Many occasions, researchers get high frequency data from a particular source (for example, 

using questionnaire); and the relating yearly totals from quite a different source, (for example, 

a registration). The yearly totals of the high frequency data are commonly not having same 

pattern with the yearly sums. Such high frequency series expect to sum to yearly totals, 

when this fails we talk about benchmarking. 

Numerous  issues  regularly  experienced  in  the  readiness  of  economic data  is that  of  altering  

month  to  month  or  quarterly  series  got  from  one  source  to  make them agree with annual 

sums obtained from other data source.  It is assumed that our interest is on the high frequency 

series which has q values every year, it should be noted that q  is  a  whole  number.  It  is  also  

assumed  that  the  low  frequency  data  has  u  years and contains y = uq observations.  The 

first series are in matrix form is denoted by c = [c1 c2 . . . cy ]
J 
.  It is expected that another 

series m yearly values which come from  another  source  is  denoted  by  d  =  [d1  d2  . . . du ]
J 

The  challenge  available for research is to adjust the set of values c in order to obtain another 

set of values δ = [δ1 δ2 . . . δy ]
J   

by minimisation with order-two benchmarking models. 

 
1.4 Justification for the study 

 
Various methods of benchmarking have been considered and utilised by users of economic data 

and other researchers, yet objective function using 1st and 2nd order differences models, and 

introduction of various levels of autocorrelation coefficients   as ways of reducing inconsistencies 

in the series have not been done. 

 

1.5 Source of Data 

 
The economic datasets used for this research were obtained from the National Bureau of 

Statistics (NBS) bulletin, covering a period of 1975 to 2013 

 

1.6 Scope of the Study 

 
This study is aimed at providing solution for benchmarking challenge by making use of 

restrained order-two minimisation with numerical approach and autoregressive models of 

many orders by making use of the economic data sets obtained from the National Bureau of 

Statistics (NBS). 
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                                CHAPTER TWO  

               REVIEW OF LITERATURE 

2.1 Introduction 
 

In this chapter, efforts are made to review some previous works of various authors.  It exposes 

different methods used by various researchers on adjusting high frequency data to annual 

benchmarks. A summary on various literature in regards to the ways benchmarking problem 

is resolved is contained in this chapter. This part also contains literature review of both 

theoretical and empirical. 

 

2.2 Theoretical Literature Review 
 

It is stressed by Aadland (2000) that the circulation and act of introducing observations in 

time series have been liable to different information changes. Tests using Monte Carlo 

method are performed, which propose that inability to represent these information changes 

may prompt a lot of blunders in estimation. 

 

The vast majority of the information acquired by factual offices must be balanced, redressed 

or some way or another handled by analysts so as to land at helpful, steady and publishable 

qualities. For instance, the administration organizations that gather and distribute high 

frequency countries’ accounts time series must deliver sub-yearly information that 

simultaneously consent to the significant annual figures and fulfill bookkeeping requirements 

(Eurostat, 1999). This sort of issue emerges additionally when an arrangement of equally 

time-spaced data is regularly balanced utilising an approach with the aim of keeping the 

pattern of the real data intact after some adjustment has been made (Di Fonzo and Marini, 

2003). 

 
To stay away from ventures between back to back years, benchmarking systems de- pendent 

on some development protection standards are suggested. Cholette (1984) suggested a 

generally utilised benchmarking technique, with the change for the beginning condition. This 

method selects a target function (or first-order Proportional Differences) of the benchmarked 

series, and position it as conceivable to the high frequency data. From now on, this technique 

will be alluded to as the fundamental Denton first-order difference technique. Under the 

given requirements, the Denton first-order difference system is gone for safeguarding at the 

best the developments in the indicator series. 
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This challenge is laid out in the manual of the International Monetary Fund (IMF)’s high 

frequency countries’ Accounts: Conceptions, Sources of data, and Data gathering (Bloem et 

al., 2001). To maintain a strategic distance from a conceivable predisposition and brighten 

the nature of the appraisals in calculation of functions outside the range of values, the 

Countries Account guideline suggests an upgraded variant of the Denton’s First-order 

Proportional Difference arrangement. 

 
For the month to month studies, the inspiration for calendarisation comes to a limited extent 

from the way that the information that are accounted for may not speak to a similar time span 

as the reference time frame. The time range of a unit revealing under a run of the mill four 

weeks– four weeks– five weeks example will shift from six per cent to sixteen per cent when 

differentiated and the time length of a veritable month to month design (thirty or thirty-one 

days excepting February). 

 

In order to make the data good and presentable for usage, it is desirable to turn the calendar 

intervals to minimums such as days, weeks, months, and years. Considering the 12-months 

survey, the time interval is likely to be closer to the comparison time chosen. 

 
Using the particular instance from four weeks–four weeks–five weeks, Cholette and Chhab 

(1991) have proposed a technique to change over information alluding to a fluctuating number 

of days into calendar values.  Their technique expect that a day by day indicator series is 

accessible. In their paper, every day high frequency data is built from seven day by day loads 

speaking to the overall significance of the seven days of the week. Next, the everyday 

indicator series is benchmarked to the announced stream review with a suitable variation of 

the Denton (1971) benchmarking method modified by Cholette (1984).  

 
Cholette and Chhab (1991) talked about why their technique gives an improvement over 

different strategies, for example, professional rating the detailed qualities as indicated by 

either the quantity of days or the total of the everyday loads in the announced periods. For 

instance, with customizing as indicated by the quantity of days, the everyday esteems are 

assessed by the normal of the benchmarks. Such every day interpolations are consistent inside 

each announcing period and in this way unexpectedly change higher than ever between two 

benchmarks. 
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The assumption of steady day by day esteems is clearly abused when the dimension of the 

benchmarks differs starting with one benchmark then onto the next; along these lines, 

theoretically, consistent day by day interpolations are at most impolite daily values that can 

be adjusted positively. Researchers in benchmarking can refer to the comments in Cholette 

and Chhab (1991) for further studies. To acquire every day evaluates through standard 

benchmarking techniques, for example, the changed, Denton relative first-contrast strategy, 

it is important to tackle a direct arrangement of conditions Quenneville and Fortier (2012). 

The techniques requires reversal of substantial networks which may raise challenges of 

productivity. 

 

Asogu (1997) examined some non-parametric distribution free and robust algorithms 

for interpolating annual series into quarterly series and applied the procedure to disaggregate 

money supply, imports and exports data directly. 

 
Bozik and Otto (1988) gave two reports from the results of their research. The first talks 

about comparison of three alternatives for benchmarking of monthly series to yearly series. 

The three objective function are minimisation of changes in sum of squares with respect to 

adjusted data and relative monthly changes. It was found out that there is no practical 

difference between seasonally adjusted and unadjusted methods.  It was also observed that 

unadjusted method obtained lowers the median absolute change in the levels. In comparing 

the methods, the relative method is identical to unadjusted method in the second decimal 

places. 

 

One of the many researchers that worked on interpolation of economic data methods was Ajayi 

(1978). Using parametric linear regression approach in which he attempted to estimate quarterly 

GDP. Since no primary quarterly data are available for current GDP, interpolated quarterly series 

are obtained by regressing annual export income on time. 

 
The bookkeeping requirements associating the series are not satisfied if an arrangement of 

time series is occasionally changed.   In order to deal with the problem,    an accounting 

constraint of classical univariate benchmarking using Denton (1971) method was employed. 

This method is based on principle of movement preservation. Since autocorrelation is present 

between the variables, it is therefore necessary to deal with the whole set of temporal 
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aggregation relationship. In addition, calculations involving matrices will be needed when 

implementing this method in real life applications. 

 
Many economic data are only available on sum totals of high frequency series. Whenever the 

researcher needs disaggregated data, he now faces the challenge of benchmarking. A data 

based method by Guerrero (1990) was formulated in order to handle the problem, this gives 

estimator of broken series. The method needs a first approximate value of the data in order 

to effectuate the rule set by the sum totals. Some data were employed in implementing the 

developed method to test its adequacy, and comparison with other existing methods were 

done. 

 

Ajani (1978) attempted to estimate quarterly GDP series, was aborted ostensibly 

because of the non-availability of related series needed as inputs to construct the 

series. 

 
A template developed by Moauro and Savio (2004) was on multivariable data for fragmented 

series, the series was given in a particular number of observations, but later into higher 

frequency series. The developed method uses the independent time series model calculated 

by the Kalman filter. The method is flexible and allows all kinds fragmented series of raw 

and seasonally adjusted time series. 

 
The use of methods of state space to give solution to the problem of disaggregated data is 

encouraged. One of such is by dynamic regression models which is one of the most popular 

methods for economic data. Some of them are Chow-Lin, Fernandez and Litterman. The 

work contributes to existing literature in these ways: (i) it focuses on the concise beginning 

of the various models, revealing that the outcome is important to the features of the maximum 

likelihood estimates and formulating all around models of autoregressive distributed lag. (ii) 

it exhibits the function of diagnostics histories in summarizing the quality of the fragmented 

estimates. (iii) it gives an adequate overview of the Litterman model, stressing the challenges 

mostly encountered in practice when the model is being estimated. 

 
Proietti and Moauro (2006) makes use of the United States economy by using time series 

with various frequencies such as monthly and quarterly data. The dynamic factor model was 

considered by the authors. A problem of temporal sum totals with non-linear constraint 

emerged as a result of quarterly time series that were included. The contribution of the paper 
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was the provision of monthly estimates of quarterly indicators. 

 
Proietti and Moauro (2008) carried out an approximate calculation of some countries’ 

accounts which generates quite a lot of challenges that are of vital consequences for current 

economic assessment. In many nations in Europe, national accounts are obtained using the 

method of disaggregation of the original yearly totals by making use of the indicator series. 

The most important advantage of this method is to allow temporal fragmentation and 

adjustment be done at the same time. The only issue is that identifying and separating effects 

of seasons and calendar from aggregate data often lead to controversy. 

Numerical algorithm developed by Causy (1981) which was later reviewed by Trager (1982) 

became widely known as the Causy-Trager method. Monthly changes that have been 

subjected to certain benchmarks constraints are minimised iteractively using steepest 

descent. The work was not published but their notes are written as appendixes in the reports 

by Bozik and Otto (1988). 

 
Rodŕıguez,  Rodŕıguez,  and  Dávila  (2003)  proposed  a  method  that  gives  quarterly series 

from annual series. However, this method and some others have not been carefully tested to 

confirm which is recommended for use with Monte Carlo simulation, the authors compared 

the methods which use only data from annual series. Results from the methods, when 

analysed as functions of attributes, for example, number of years of the real annual series 

suggest which of the methods to employ. 

 
Santos and Cardosol (2001) made an application of the Chow and Lin (1971) method for data 

fragmentation making use of dynamic models. Flexibility is added consider- ably to the basic 

approach especially when the series are stationary or not stationary. Somermeyer, Jansen and 

Louter (1976) method assume that the data used should be weighted moving average of 

yearly observations. The weights have to be obtained through quadratic programming. 

Quarterly series functions for the U.S. and the Netherlands were estimated using this 

multivariate method on the basis of annual income. Considering the parameter approximate 

values and sizes and randomness of the values from the calculated and the observed 

differences, the method of Feibes, Boot and Lisman is not as reliable as the multivariate 

method. 

 
Wei and Stram (1990) worked on model that disaggregate aggregate series. The model is also 

used to detect autocovariance structure. Assuming the aggregates of time series be non-
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overlapping totals is fragmented consecutive values, if an aggregate ARIMA (p, d, r) model, 

and if there is no periodicity of a particular order that is not opened. For a disaggregate model 

whose autocovariances of a given aggregate model to exist, the order must be odd and the 

real roots of the autoregressive model must also be positive. 

 
Abad and Quilis (2005) presented a set of computer programs purposely prepared to execute 

disaggregation of economic time series with various techniques: singles de- pendent variable 

without indicator series, many dependent variables with indicator series and constraints. The 

algorithm has two important parts: a MATLAB code and an interface in microsoft Excel. This 

is used in compiling the national accounts in Spain and to execute special and full analysis 

which certifies the data and model reliability. 

 
The European Union (EU) method of benchmarking aggregates of national accounts is 

basically is temporal fragmentation of series. What Eurostat normally does to compile 

quarterly accounts using the Chow and Lin benchmarking method supported by Denton 

multivariate technique.  The paper reveals the summary of the technique used in bringing 

together the aggregates of the European national accounts with the intention of benchmarking 

issues such as quality and contents of the indicator series, influence various of seasonal 

adjustment. In addition, the method using benchmarking technique measures the possible 

effects of knots brought about by the changes in method (Barchellan, 2005) 

 

Bruno et al (2005) developed a technique to combine two approaches, that is, temporal 

disaggregation and Bridge models. The model is used to analyse the GDP movements in 

quarters, but related series was used to confirm the reliability of the method. The output of 

the data (GDP) from the countries reveals that the information gathered from the two 

indicator series in the bridge models could be helpful in selecting the necessary related 

needed in the procedure of temporal disaggregation. 

 
Ciammola et al (2005) compares various techniques of disaggregation of annual series in the 

presence of an indicator series, using an experiment of Monte Carlo. Estimating the 

autoregressive model brought about by the Chow and Lin solution is the first objective of the 

model. The following are the three methods of estimation that were considered in their paper: 

The Chow and Lin method (1971) making use of the autocorrelation and autoregressive 

parameter, the log-likelihood maximization of the residual sum of squares, developed by 
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Barbone, Bodo and Visco, (1981). 

 
Di Fonzo and Marini (2005) did some adjustments and correlations on certain economic data. 

This is necessary for the series to be made ready for research purposes. This government 

agencies across the nations gather sub annual national accounts time series that must agrees 

with the annual totals and validate the accounting constraints (Eurostat, 1999). 

 
Guerrero and Neto (1990) provided a procedure for eliminating discrepancies using various 

methods reconciliation of data sets. Discrepancies normally comes in whenever temporally 

and contemporaneously sum totals series are available for research purposes. One dependent 

variable benchmarking method by Denton (1971) using movement preservation technique 

and a data-oriented benchmarking method are explored in the paper. It’s procedure exploits 

the autoregressive attributes of the initial series for adjustment. Researchers normally make 

use of both simulated and real life data to evaluate their performance. 

 

Generally, the procedure for handling benchmarking is basically principle of movement 

preservation, and it has become known by various government statistical bodies globally. 

Similar models of state space by Durbin and Quenneville (1997) were also developed. It is a 

well known fact that binding benchmarking is the most widely used agencies to provide way 

out to hurdles of differences found in real life data. The method of unbinding is widely used 

for data obtained through survey, however although it’s source must be known and reliable. 

It is established that since the series are adjusted every month or quarter, filtering process 

may bring some problems. Therefore, as a result of adjustment, the accounting constraints 

may be violated. 

 
When variables that occur in regular intervals have discrete observations, they are referred to 

as unobserved integrals of flow functions. There exists more than two expressions involving 

one or two variables from flows. The initial step is to reduce or completely delete the 

continous movement in the measures of central tendency and dispersion. The second step is 

to ascertain the stationarity of the variable even after series of activities of adjustments have 

been carried out on it. The data points need transformation in order to become a flow variable. 

One important fact is that individually separate and distinct data contains more dependable 

information about low frequency data. On the other hand, related series and combined 

analysis introduces differences through high frequency data. A vital advantage of this system 

is that integration removes the differences embedded in the high frequency data.   As a result 
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of this, obtaining measures of association in such series having similar intervals of frequency 

will be impossible. (Gudmundason, 2005) 

 
One major problem experienced in the handling economic time series data is that many of 

the data sets is only available in the form of annual sum totals. For instance, it is easier seeing 

monthly or quarterly figures than having daily or weekly data. A lot of research had been 

done had been done on univariate time series, but little in the case of multivariate (Rossie, 

(1982), Di Fonzo, (1990)). This paper works on problem of temporal disaggregation 

considering the case of the multivariate. This implies the challenge of m¿1 high frequency 

series by making use of the relevant low frequency data. In both cases, the aggregation 

constraints must be fulfilled. A univariate polynomial technique was developed by Ahmon 

(1988) using an econometric software.  It is to convert low to frequency series to high 

frequency by interpolation. 

 
Using a non-linear method also referred to as Causey-Trager technique, benchmarking of 

monthly and quarterly series are done every 5 years at the U.S. Census Bureau. The X-12 

ARIMA program for seasonal adjustment together with the reviewed Den- ton procedure are 

employed to seasonally adjust the series to annual totals, though  it results to some distortions 

in the benchmarked series obtained from the technique. 

 
Apart from using the reviewed Denton method, the Census Bureau in Canada pro- posed 

various methods of benchmarking as better alternatives for benchmarking while using the X-

12 ARIMA the procedure is carried out using a sample time series to test the features of the 

benchmarks from X-12 ARIMA method, the procedure from Census Bureau in Canada, and 

the Causy-Trager method. 

 
The goals of the study are to investigate some of the features of different procedures of 

benchmarking at the Census Bureau and to verify settings for procedure of regression 

analysis in the agency. Results show that some discrepancies were noticed in monthly series, 

and small consistent outcome in smooth benchmark factors using both the method of 

regression when λ = 1 and Causy-Trager (Hood, 2005). 

 
Keogh and Jennings (2005) look into how cells in arrays can be rearranged and calibrated to 

give marginal sums using an accepted input-output table having avail- able information on 

the marginal totals. Other researchers developed a method for detecting associations between 
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sub annual and annual data using the method of a dynamic regression. The model may be 

nonlinear but can be used to carry out interpolation between one observation and the other 

on a variable which occur only on annual series. Discussions on its implementation are made 

and monthly GDP was were used as an example for European area. 

 

In their paper, Moauro and Proietti (2005) explains the challenges encountered when 

obtaining estimates of national accounts for quarters, adjustment of seasons, and effects of 

calendar components gotten by breaking annual totals to sub-annuals, using related monthly 

indicators. The paper suggests and applies a method that depends on obtaining bivariate basic 

time series at a low frequency. It is discovered that monthly values give better estimation of 

components of the normal calendar. One important feature of this approach is that data 

adjustment and temporal frag- mentation can be done at the same time. This proposed method 

joins with the suggestions from the Eurostat on national accounts seasonal adjustment. 

 
Kalman filters provide a reliable way out to many challenges of time series. In Belgium, the 

Research and Development section of its national bank created a platform that gives a 

comprehensive framework for a single dependent variable Kalman filters. This procedure is 

used in solving fragmentation of normal series involving single dependent variable time 

series using various methods, without necessarily depending on related series. The computer 

programs written by Palate (2005) goes the same way with the work of Proietti (2004) 

 
According to Koopman (2001), the computer programs written should be on the foundation 

of Kalman filter. In the paper, comprehensive formulae for filtering, calculation of 

probability and smoothening are provided. Effects of predicting variables are also given vital 

attention which can be introduced to the state vector or obtained through the Kalman filter 

augmentation. 

 

Quilis (2005) carried out an overview of many benchmarking methods which were used to 

gather the national accounts of Spain, the work contains some stages which are: one-response 

variable and multi-response variable disaggregation are employed to generate data. Another 

one is using ARIMA model as used in TRAMO-SEATS computer programs.  The last stage 

is adjusting seasonal data and transforming it   in order to have consistent sub-annual and 

annual national accounts.  This stage is implemented using multi-response procedure for 

temporal disaggregation. The implementation of the method is achieved through the use of 

quarterly supply use tables, generally referred to as the QSU model. 
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Bayes method was proposed by Rojo and Sanz (2005), it is to obtain sub annual series which 

will be consistent with annual series with the helps of indicators. The new structure requires 

setting of continuous variables. The result is usually higher probability of prior which 

smoothens the series better. Provision was made for a prior error covariance matrix, this is 

necessary in order to account for other data, which are said to be independent apriori. The 

posterior covariance matrix was also made available by the method. Obviously, the 

distribution of the prior and the distribution of the likelihood function are from the family of 

normal -gamma. The paper was concluded with evaluation of the proposed method. For the 

technique to compare well with the classic method, many errors schemes are simulated, and 

as a result, many indicators are obtained. The outcome series are therefore compared with 

the classic counterpart. 

 

Smith and Hidiroglou (2005) paper proposes macro level technique in carrying out 

benchmarking of high frequency to low frequency series. In efforts to reduce distortions 

between high frequency data totals and low frequency data, another procedure is the macro 

level technique. The low frequency series is used as auxiliary data in estimating the survey 

values, hence the adjustment of the high frequency is done in order to have consistency in 

the estimates of the annual and the sub annual. 

 
Trasbelsi and Hedhili (2005) made presentation of various procedures that deal with the 

challenge of disaggregation of economic data with the availability of economic data with the 

availability of related series and without the presence of related series. It can be inferred from 

the two methods that the first method share the discrepancies between the annual sums and 

the sub annual data in such a way as to maintain consistency. However, the second method 

which uses only aggregate values provides nothing to add to the economic interpretation. 

 

2.3 Empirical Literature Review 
 

In this section, the review of empirical literature is made. This is necessary in order to drive home 

the importance of the various benchmarking models available in the literature and their 

applications.  

2.3.1 Techniques for solving benchmarking problems 
 

Basically there are two major ways: 
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i. Numerical computations technique, 

 
ii. Modeling technique. 

 
There is difference between the numerical computation technique and the modelling 

technique. The difference is that the numerical does not assign any model for data that occur 

at regular interval of time. The numerical technique uses the well-known minimisation of the 

least squares suggested by Helfand, Monsour, and Trager (1977), and the technique 

formulated by Ginsburgh (1973). The modelling technique uses Autoregressive Integrated 

Moving Average given by Hillmer and Trabelsi (1987), State Space models suggested by 

Durbin and Quenneville (1997), and many models of regression given by Laniel and Fyfe 

(1990), and Cholette and Dagum (1994)). Chow and Lin (1971) also came up with an 

approach of the least-squares for inserting values of a function between the values already 

known, appropriation, and extrapolation of data that occur in regular time interval or binding 

time series. 

 

2.4 Plan of the Problem and a methodology dependent on 

Quadratic minimisation to its solution 

Assume  that  we  want  to  get  rid  of  the  challenge  about  the  within-year  time  data of which 

there are q  every year,  q  being a whole number.  Let the time data have u  years  also,  have  

y  =  uq  values.    The  first  qualities  are  spoken  to  in  section vector  structure  by  c  =  [c1  

c2  .  .  .  cy]
J 
Additionally  we  have,  from  an alternate source, a lot of u annual aggregates 

spoken to by d = [d1 d2 . . . du]
J 
.  The issue is to modify the first vector h to acquire another 

vector δ  =  [δ1  δ2  .  .  .  δy]
J   

using  a  technique  which  (i)reduces  inconsistencies  in the  

observation,  and  (ii)  validates  the  rule  that  stipulates  it  that  the  addition  of q observations 

of the new series must be equal to the total sum of the 12-month series under consideration, 

p(δ, c), the goal is to select δ in order to  

minimize p(δ, c) 

 subject to: 

 

                                                    ∑ 𝛿 = 𝑑𝑉
𝑉𝑞
(𝑉−1)𝑞+1        where V = 1, 2, . . .,u                         (2.1) 
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Making use of the penalty function denoted by  (δ − c)
J 
B(δ − c), a quadratic structure in the contrasts 

between the first and balanced values of time series, it should be noted that B is a symmetric y 

X y non-singular matrix. A Lagrangian expression then results: 

 

                                       𝑤 = (𝛿 − 𝑐)′𝐵(𝛿 − 𝑐) − 2𝜑′(𝛼 − 𝐺′𝛿 )                                           (2.2) 

Where 

                                                𝜑 = [𝜑1  𝜑2 . . . 𝜑𝑛 ]                                                              (2.3) 

and  G is a y X u matrix, y is the number of observations in the sub-annual series while u is the 

number of observations in the annual (benchmarks) series.   
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g is a q dimensional - column vector in which every component is 1 and 0 being a q column vector 

and G is y X u. The objective function is achieved by taking an incomplete or subordinates of w 

as for the components of e and 𝜑, equating them to zero, and tackling. For ease of calculation, we 

compose 𝑡 = (𝛼 − 𝐺′𝛿) for the vector of disparities between the two arrangements of yearly sums 

and express the arrangement in the structure: 
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Where I is the uXu character lattice and 0 is the uXu invalid framework.  (It is accepted, 

obviously, that the second-request conditions important for the answer for be a base are 

fulfilled.)  Using an outstanding outcome for determining the backwards of a divided 

framework, the answer for δ is then observed to be δ = c + Ft, 

where F  = B−1G (GJB−1G )−1.  Consequently the balanced qualities  are  equivalent to the 

first qualities in addition to straight blends of the inconsistencies between the two 

arrangements of annual sums. 

 

2.4.1 Using Lagranges Multipliers for the principle of Constrained 
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− 

Optimisation 

 

In a design that is optimal in nature, values for a particular set of y design variables such as, 

(δ1, δ2, . . . , δy), should be made available in such a way that it will minimise a penalty 

function of the desired designed variables, by making sure that a collection of similar u 

unequal requirements are fulfilled. Constrained optimisation issues are commonly 

communicated as: 

                                          minδ1,δ2, . . . ,δy   K = f  (δ1, δ2, . . . , δn)                         (2.4) 
 

Such that 

p1(δ1, δ2, . . . , δy) ≤ 0 

p2(δ1, δ2, . . . , δy) ≤ 0 

. . . . . . . . . . . . . 

pu(δ1, δ2, . . . , δy) ≤ 0 
 

 

In a case where the penalty function is quadratic naturally with respect to the design variables, 

issue of optimisation will have a solution that is unique to itself. It is not every problem of 

optimisation that is not cumbersome to handle, many method of optimisation need advanced 

approaches. One of them is Lagranges multipliers, it is applied to solve to benchmarking 

introduced by Denton (1971) 

 

The methods of Lagrange multipliers entail the adjustment of the penalty function by 

summing up the observations.  The penalty function K = f  (δ) is enlarged by the equations 

of the constraints using a collection of multiplicative Lagrange multipliers that is non-

negative in nature, φg ≥ 0. The enlarged objective function, KB(δ), depends on the values 

of y design variables and u Lagranges multipliers 

 

𝐾𝐵 (𝛿1 ,𝛿2, … , 𝛿𝑦,𝜑1 , 𝜑2 … , 𝜑𝑢 ) = 𝑓(𝛿1 ,𝛿2, … , 𝛿𝑦, ) +  ∑ 𝜑𝑗 𝑝𝑔 (𝛿1 ,𝛿2, … , 𝛿𝑦,)  
 

 

 

For the problem above, y = 1 and u = 1, so 

 

       𝐾𝐵 (𝛿, 𝜑) =
1

2
𝑞𝛿2 +  𝜑(1 − 𝛿)                                                        (2.5) 

The Lagrange multiplier, φ, effectively modifies (enlarging) the objective function from a level 
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of quadratic 
2

2
1 q  to a different level of quadratic 2

1
qδ2 − φδ + φl  with the goal that the base 

of the adjusted quadratic fulfills the requirement  (δ ≥ l). 

 
2.4.2 Solutions by Denton 
 

Let B be an identity matrix, which implies that we are limiting the square sums of the 

contrasts that exists between the original and the amended observations. For this case, F 

= 1/qG , an objective function is suggested that is limited by disseminating the disparity for 

every year that will give yearly totals among the q time frames inside the year. As noted 

previously, this outcomes, by and large, in a deceptive advance or irregularity between 

the last time of one year and the main time of the following. Unmistakably, B = I is 

probably going to be an awful detail. 

 
A better alternative is utilising an objective function that depends on the differences that 

exist between the first and the adjusted series: 
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2.5 Method proposed by Denton with it’s variants 

Denton (1971) came up with a benchmarking technique that depends on the guide- lines of 

preservation of the movement in the series obtained from a more reliable source. As indicated 

by this standard, the new benchmarked series δv is expected to follow the pattern in the real 

series from the reliable source, for instance, data from a government agency. One of the 

reasons why this holds is that the within-year transition of the existing series cv remains the 

sole accessible series. Denton suggested various meanings for preservation of movement each 

comparing to a technique. 

 
The first Denton technique has two noteworthy deficiencies: 

 
i. The technique presents a transient development toward the start of the series, which 

crushes the expressed guideline of movement protection and 

ii. Involves a certain figure of the following disparity toward the finish of the series, 

based on the last two disparities as it were. 

The first restriction was comprehended by Helfand et al. (1977) in their multiplicative order 
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one difference variation. Cholette (1979) gave a solution to the challenge in the variants. This 

results brought an altered variation for every variation of Denton’s strategy. Consistent 

autoregressive errors and parameter with regression- solved benchmarking model explain the 

second constraints, this of course play out a leftover change in accordance with the fulfilled 

imperatives. The study catches the normal yearly error and in this way gives a figure of the 

following disparity that depends on recorded conduct. 

 

 

2.6    Denton Method: The original First Difference 

The fundamental method of benchmarking proposed by Denton is as follows: 

                                           vvv ec    
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where cv and δv are the original within-year series and the computed benchmarked series.  

The penalty function determines the pattern of the error: 
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Inasmuch the Denton method obliges the constraints (δ0 − c0). so the benchmarked series is 

being forced by the first condition through Denton’s method to equal the indicator series 

when the time starts at zero and brings out a result which minimizes the first amendment 

(δ1−c1). Assuming there is no first condition, (2.8) then makes it known that the result of 

subtracting the benchmarked from the first series (δv −cv) must be the same throughout the 

period of time. The first term is omitted by the adjusted variant of the first difference in order 

to provide solution to the deficiencies described in the preceding section: 

 

 

2.6.1 Operators of Temporal Additions 
 

U by V is the dimension of the matrix Kn which stands for the operators of temporal addition. It 
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contains the following proportions of coverage: 
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where guv = 0 for v < v1u or v > vLu, and guv The proportions of coverage is domiciled in u 

and v  in K . Taking for instance, for a 3-month sub-yearly continuous series commencing from 

March 1, 2015 - November 30, 2018, together with the benchmarks, beginning from March 1, 

2015 and ends in March 31, 2017, then the matrix K is: 
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K
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Let r = 0, a, b, c = 1 Row one contains the first benchmark, row two has the second benchmark 

and so on. Column one of matrix K refers to quarter one of   2015, column two to quarter two of 

2015...; Column five refers to quarter one of 2016 and so on. Peradventure there is stock series 

rather than flow series where the values are expected to be measured on the last day of quarter 

four, the resulting matrix K2 is: 
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In case we have sub-yearly series commencing from March 1, 2015 and lasts November 30, 2018 

and benchmarks following the calendar year beginning in March 1, 2015 and stopping in March 

31, 2017, therefore the matrix K3 is: 
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It should be noted that a represents 1 by 12 row vectors that contains only ones, r denotes 1 by 

12 row vectors that contain only zeros, assuming that Kn is a quantity having magnitude without 

direction. Using the accompanying discrete series, the first eleven values of the first set of values 

will equal zeros, while the twelveth value be equal to one. 

 

Matrix Kn having the dimension U × V contain benchmarking that are not regularly spaced and 

inconsistent periods. For instance, quarterly benchmarks may cover some duration of time v 

yearly benchmarks may cover some duration v, quarterly may cover some, and it may happen that 

some time duration v may not be taken of. 

 
 

If the spaces among the benchmarks are regular (for example all annual) then v will come up as 

multiple of u it will make the same duration when one benchmark covers all sub-yearly periods, 

V. The Kronecker products then explains the matrix K: 

 

                                   Kn = IU ⊗ 1                                                        (2.9) 
 

For instance, if we are interested in a series that is sub-yearly like quarterly in nature having three 

annual benchmarks (U = 3), then the product of the Kronecker produces this: 
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It should be noted that a is a vector of row having dimension of 1 by 4 which contains only ones, 

and r a vector of row having a dimension of 1 by 4 which contains only zeros. Notwithstanding, 

the occurrence of this case is not common practically, the current year. At the same time, it is 

easier for analyses that are theory based. 

 
Considering the original and the adjusted Denton’s method, we minimize a penalty function (2.7) 

which depends on the requirements of the benchmarking matrix algebra can be used to present 
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the penalty function: 

 

                       f (δ, η) = (δ − c)
J 

D
J 

D(δ − c) − 2η
J 

(d − Kδ)                                 (2.10) 

 
                                     = δ

J 

E
J 

Eδ − 2δ
J 

E
J 

c + c
J 

E
J 

Ec − 2η
J 

d + 2η
J 

Kδ (2.11) 

Note that c represents the benchmarks, the original and benchmarking series are represented by 

c and δ respectively. While the Lagranges multipliers which is related to the linear requirements 

c − Kδ = 0 are contained in η. The operators of temporal sum is matrix K. For the case of flow 

series, the k = IU ⊗ 1 and matrix K are equivalent. 1 represents a row vector of order four for 

quarterly or order twelve for monthly series. For the case of stock series, 1 represents a vector 

containing zeros within the first three columns for a 4-month series or first eleven columns for 

monthly series. A common difference operator which is not seasonal is the matrix E. 
 
 
All the versions of Denton’s techniques, both the adjusted and the first version rely on the 

difference operator that have been taken in penalty function (2.11). The two first difference 

operators are now considered. 
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0 

The  difference  observed  in  the  original  version  of  the  Denton’s  first  constraints (δ0  =  c0)  

can  be  obtained  if  E  =  E
J 

;  and  the  difference  in  the  adjusted  version without the first 

requirement.  Eq.  2.6 

 

The major requirements needed in order to achieve maximum efficiency demand that the results 

of mathematical differentiation of the penalty function (2.11) on the condition that the quantities 

be equal zero: 
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Having positive definite for the second order derivatives 
2
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 f
  h a p p e n s  t o  b e  

o n e  of  the requirements  for a minimum.  Matrix  B = E
J 
E is  actually positive definite since 

it is of this structure B = M 
J 
M :   

 

 

 

                                       E
J 

Eδ + K
J 

η = E
J 

Ec                                                 (2.14) 

 
 

                                           Jθ = d ≡ Kc + (d − Kc)                                         (2.15) 
 

where Kc + (d − Kc) replaces d that supplies an easier outcome. Eq. (2.15) may be shown as: 
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Re-arranged we have: 
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Taking the example of the first version of Denton’s technique, the inversion of the matrix is 

obtained through integration by parts. Clearly E = E01 of Eq. (2.13), does not have inverse. 

As good as the method used is, it does not follow natural order in the matrix above but gives 

this solution: 

 

 

                                                              δ̂  = c(E
J 

E)−1K
J 

(K(E
J 

E)−1K
J 

)−1(d − Kc)                        (2.16) 

 
2.6.1 Various versions of techniques by Denton 

 

The utilization of the Denton’s technique with the accompanying penalty function as a 

fraction of the variance that exist in the low frequency when compared with benchmarked 

series: 

min (δ, c, B) = (δ − c)JB(δ − c)                                                            (2.17) 

The type of the matrix B characterizes the accompanying variations of the first Denton 

technique: 

i. Additive Balanced Difference (ABD) if B = I,                                                          (2.18)                             

ii. Additive Order One Difference (AOOD) if B = EJE;                                              (2.19) 

iii. Additive Order Two Difference (AOTD) if B = (E2)JE2 ;                                            (2.20) 

iv. Proportional  Balanced Difference (PBD) if B = ĉ−1ĉ−1                                                           (2.21) 

v. Proportional Order One Difference (POOD) if B = ĉ−1EJÊc−1                                         (2.22) 

vi. Proportional Order Two Difference (POTD) if B = ĉ−1(E2)JE2 ĉ−1                                  (2.23) 

                 

AOOD and POOD penalty functions remain the only variants used by most researchers when 

it comes to practical applications. The AOOD and POOD possess the accompanying 

structures: 
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It can be seen that having Denton’s technique with AOOD, the problem of benchmarking 

goes down to make it traceable to reducing the sum of the squares of time to time level 

changes of the benchmarked and the indicator series on the condition that the benchmarking 

requirement is hold. 

 
                                                              

                                                             Xc = d                                                    (2.26) 
 

 
The problem of benchmarking comes when Xc = d, that is, the sub-annual series c not 

having consistence pattern with the annual series d. As a result we need to adjust the c in 

order to have a new high frequency series δ in such a way that (2.26) will be valid. On the 

other hand, the first difference Denton’s approach in (2.25), is gotten by taking the 

differentials of the series sum squares with respect to time change in the proportions which 

is dependent on constraints of benchmarking in (2.26). 

 

The first conditions δ0 = c0 was imposed by Denton for the method of additive first difference 

δ0 = c0 together with δ−1 = c−1 for the approach of the proportional first difference. The 

meaning of these conditions is that there cannot be any adjustment to the first series especially 

when such an adjustment is not within the range. The argument is that a movement that does 

not last is introduced into the series  at the beginning through the first conditions, which is at 

variance with the law of preservation of movement (Helfand et al. 1977, Dagum and Cholette 

2006). The adjusted procedure of the Denton’s techniques solve this challenge by omitting 

the first terms in (2.24) and (2.25) 

 
 

The versions of the adjusted Denton’s techniques look alike with the various versions listed 

above having little disparities. In the case of AOOD and POOD versions, we use E in matrix 

 VVE  x )1(1   instead of matrix E in  VVE  x 
1

0  but in the case of AOTD and POTD versions 

we use matrix Ec instead of E2 which can be represented as: 
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Whenever the popular AOOD and POTD techniques are used in real life situation, it is 

essential to check what the benchmarked series δv equal or close to. For example, considering 

a situation when requirements (2.26) for benchmarking are not used. The condition for 

maximum efficiency for Denton’s AFD technique is: 
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that is, the discrepancies between the obtained high frequency and the original high frequency 

values δv
∗ −cv , is the same as the mean of the two adjacent level discrepancies. (2.26) When 

the requirement of benchmarking according to (2.27) are not met, it means that the issue 

should include them, (in a setting of Lagrangian). On the other hand, the POOD, in the same 

vein , the situation also rely on the strength of non-observance of the benchmarking 

requirement in term of keeping consistency, and this will be close to the solution in (2.27). 

Similarly, the POOD technique, the order one condition 
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(2.26), gives:   
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Which means ,
*

t

t

s


the ratio of the adjusted high frequency values (benchmarked) and the 

original sub-annual values equals the arithmetic mean of the duo adjacent ratios. So 

whenever the requirements of benchmarking (2.26) are considered, the answer of the POOD 

technique will be very close to the one revealed in (2.28). These values depicts the following 
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results: 

i. The versions of Denton’s AOOD and POTD can be summarily referred to as smoothening 

techniques. For instance, using (2.27) it can be said that when non-negative, as a result the 

calculated δv will be non-negative (it cannot be zero).  According to the literature, researchers 

claimed that the initial and the earlier versions of Boot et al. (1967) technique are smoothening 

methods. These are applied in obtaining sub-annual series when benchmark series are not available 

(Eurostat 1999). 

ii. It can be observed that the first value depicts the fractional difference which is a version 

of the Denton’s technique, this version preserves values from c to δ better than the versions 

of his methods (2.28). This fact in a way exposes why many benchmarking researchers 

preferred the POOD Denton technique over others versions. 

iii If the original sub-annual series disappears easily and accept both the non-negative and 

negative observations, and we are taking benchmarking requirements into consideration, 

then (2.27) and (2.28) means that there is going to be an unwelcome inconsistent outcome.  

In order words, we will have δv
∗  < 0 with cv > 0. Therefore, the Denton’s techniques AOOD 

and POOD do not validate both the preservation sign principle and preservation 

movement principle. 

 

2.7 Background of the Denton methods 
 
What Denton (1971) provided as solution to the issue of benchmarking which was 

generalised by Fernardez (1981) comprises of looking for an indicator series that will show 

the movement and such series is expected to produce yearly sums that will give reliable and 

effective annual benchmarks. The yearly values will result to yearly benchmarks, its pattern 

in term of movement will be determined solely by the indicator series. Moreover, the 

modified or benchmarked data will run in parallel with the original indicator series, this will 

still hold when the benchmarking constraints are met. 

 

The following expression reveals the modification (δv − cv) effected on the original series 

ct using the Denton’s additive first difference. Bringing back the AOOD method of solving 

benchmarking problem the expected series cv minimizes the following penalty function: 
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where cv represents the original high frequency series at time t. The resulting function can 

now be minimised if subjected to the benchmarking requirements that exist between the year 

totals of the values obtained and the benchmarks di that are available: 
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Note that q represents each three months per quarter in a year. The hypothesis ∆δ0 = ∆c0 is 

validated by Denton, establishing the fact it is right to assume that  the last fitted and observed 

values are equal. The penalty function (2.29) is now giving same slope for adjusted series 

otherwise known as the benchmarked δ and the original series cv also known as the indicator 

series. As a result, the slope obtained from the differences from the two series is now 

minimised, taking into consideration the benchmarking constraints. On substitution ∆δ0 = 

∆c0, the penalty function is now: 
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The change explains that the condition ∆δ0 =  ∆c0 implies the initial correction   has to be 

minimised. Minimisation of the initial correction reduces the adjustment line to zero direction 

at the beginning of the series.  The aftermath is that a wave will be produced in the initial 

year that will be transferred to parallelism between the original and the benchmarked series. 

The outcome here differs a little bit from 

∆δ0 = ∆c0 and as a result the following penalty function: 
 

                                                  (∆(δv − cv))2                                              (2.32) 

 
obeying the rule in (2.30) 

As we have it in linear algebra, the penalty has constraints is given by: 

 

                                              )'    ('2',  XdcBcu                                       (2.33) 

 
The following vectors and matrices are part of it: 
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Vector η has the multipliers of the Lagrange. y(= uq), where y represents the number of 

observations, and u stands for the number of years, while q is the quarters number in a year. 

The corresponding equations using the penalty function are: 
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which results into: 
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replacing identity ,' tGd   where t contains the yearly differences: 
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                                  (2.37) 

 

The redevelopment of the solution makes the computing period reduced when applying the 

computed weights Zw if compared to the solution (2.36). It can be observed that the weights 

which could be used for different kind of series using similar observation number. The 

inversion in (2.36) solved by parts is carried out by Denton. 

 
The developed technique makes use of the provision by Boot, Feibes, and Lisman (1967) is 

to carry out interpolation between yearly data when high frequency data is not available. The 

provision in (2.37) strictly has interpolation between the yearly discrepancies with the 

techniques produced by the authors and in summing up the obtained estimates with the 

original high frequency series. 

 

2.7.1 Proportional Variant 
 

The proportional techniques discussed here is a version of the Denton’s proportional 

technique, the δ0 = c0 was no longer included. Just like as we have it during the previous sub-

topic, the penalty function differentiates the totals of the dissimilarities after squaring within 

the interval of the estimates of parameter of the yearly sums and the high frequency series 

(that is, cv and δv). Each of the terms in the sum measured by the estimate of the 

corresponding high frequency value: 
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This version is appropriate for series having strong seasonal effects, if it is assumed that 

quarters having seasonal effect cannot account for the discrepancies that occur in the annual 

data. The level of each observation is proportional to the size of the corrections made. It is 

also established that considering proportional version, all values and all the modified values 

will be positive. 

 
According to (Cholette, 1978, 1979) the proportional version approximates the non-linear 

preservation method growth rate, this is corroborated by (Smith and Hidiroglou, 2005), and 
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the resulting penalty function is: 
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Whenever the yearly differences of the proportion on the interval of estimation      is constant, 

the approximation is exact. The penalty function which is constrained in linear algebra that 

has to do with proportional technique is: 
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Where  C−1 represents a diagonal matrix having ,....,
21

11
cc the solution from this technique has 

the same pattern as the additive version (C−1B C−1substituting B in (2.37) and: 
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The quantities Zx in the proportional solution will be calculated for each data series, also for 

every interval of application in a particular series, that is not so in the quantity considering 

the additive versions 

 
2.8 The Cholette and Dagum Technique 

 
A Benchmarking technique suggested by Cholette and Dagum (1994) was based on 

generalised least squares, regression model. The model considers (i) bias in the high 

frequency series and (ii) heteroscedacity in the first series. The technique proposed by Denton  

can also be referred to as a special case of the Cholette regression model. The technique of 

benchmarking by Cholette and Dagum (1994) has its root on just two expressions. it is 

assumed that there are no missing observations in the two series, and that each yearly total is 

supplied by the yearly quarterly values: 

vvv edc     for v = 1, 2, . . . , q                                                                                  (2.42) 
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   for y = 1, 2, . . . , b                                                                          (2.43) 
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y 

where 

                    

δv represents the values in the quarters; 

dv stands for the total effect 

cv represents the sub-annual series 

ev the sub-annual serial-correlated residuals 
 

zy the yearly heteroscedastic residuals from the yearly data dy, not related with ey, 

having 

0)(   ,0)(  bvvv eeEeE  expected value of the error is zero and the autocorrelation of the 

residuals is not equal to zero 
22 )(   ,0)( yyy zEzE   the variance of the residuals is constant   

0)( yv zeE   the autocovariance of the error is zero 

The Cholette and Dagum technique using Autoregressive error is carried out in order to 

improve on the quarterly national extrapolations. This joining reveals the assumptions 

underlying the definition of the general regression based model as stated in (2.42) - (2.43), the 

implementation of this model is better carried out using the matrix notation 

 
The quarterly series cv happens to be the determinant of δv and mingled with the    effect dv and 

with high frequency residual ev. The equation in (2.42) associates the yearly benchmarks dy to 

the sum total of  the  sub-annual  observations  ev  having some estimates of residuals zy.  The 

regression-based technique changes with respect  to the hypothesis for the effect dv, sub-annual 

residual ev, and the yearly residuals zv. 

 
One of the roles of the yearly residual or error zv is to give explanation to cases when the 

benchmark is also dependent on the residual. This kind of benchmarks are referred to as 

non-binding. This kind of benchmarks are dependent on the changes in the processes of 

benchmarking. Considering the quarterly national accounts, the yearly totals are binding 

constraints in most occasions for the quarterly observations, that is (i.e., 0)( 2 yzE ). 

 

What brings about the combined effects dv is the combined regressors tv,b when multiplied by 

their coefficients of regressions βb, that is 
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g is the combined effects that was investigated. An unchanging entity was employed to 

capture the difference in the bias level which may exist between the yearly and high 

frequency series. A constant bias is also adjusted by reducing the indicator series using the 

benchmarking-indicator (B-I) ratio. This kind of change is easy since it is not a strict 

requirement in this case to produce any estimation of parameter  in the level bias. A diverging 

way between the sub-annual and the penalty function can be caught using a combined trend. 

On the other hand, extrapolations can be caused at the two ends of the series through the 

combined trend, therefore adequate caution should be taken. 

The residual ev is the sub-annual difference between the expected variable δv and the sub-

annual indicator cv. For the reason that an important aim of benchmarking  is to preserve the 

movement pattern in Since a key objective of benchmarking is to keep the developments in 

δv as close as conceivable to the pattern in cv, the residual ev has two main features: 

 
i. be similar in ratio to the value of the high frequency series cv. This acquired quality is 

needed in distributing the deviations around the level of the high frequency series, 

likewise to the solution provided through the proportion method by Denton. 

ii. introduce freedom from obstruction movements from one quarter to another one. A 

distribution which is smooth in nature of ev will sure make movements of δv and cv 

very close to one another. 

In order to have an adjustment that is similar in ratio, the values of the high frequency series cv are 

used to standardize the error or deviation ev 
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e '                                                                                                     (2.45) 

The result of this is that the indicator series will be assumed to be equal to the standard 

deviation of ev. (This condition shows that the coefficient of variation will be same 

throughout, which can be expressed as  
v

v

c


 is equal to one for any chosen t quarter.)  In 

order to have a non-distorted distribution the standardized error e
J    

is expected to be an 

autoregressive stationary model at first difference: 

                                                      vvv uee  

'

1'                                                                                 (2.46) 
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v 

 

It should be noted that | φ |< 1, and uv’s are expected to be normally distributed, i.e: 

 
E(uv) = 0, E(u2) = 1, E(uv, uv−b) = 0 true for all v & b. 
 

This method having an autoregressive error involves the differentiation of a penalty function 

having a relationship with the proportional condition which has been minimised by Denton. 

It is evident that the adjusted high frequency series, otherwise known as the benchmarked 

series of Cholette similar in ratio model with autoregressive model (2.46) minimizes the 

penalty function: 
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The function stated in (2.47) explains that apart from extrapolation, the autoregressive 

parameter φ performs important function in preserving the short term dynamics of the high 

frequency series. It is assumed that the closer the parameter to 1, the faster the function (2.47) 

converges to this function: 
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This function is minimised by the Denton’s proportional technique. It is noticed that the 

movement preservation becomes weaker as φ deviates from 1. And this affect the 

benchmarking to indicator ratio. 

 

2.8.1 Cholette and Dagum Technique using Matrix 
 
The autoregressive error benchmarking solution proposed by Cholette and Dagum is: 

 

                      δ = c + XeK
J 

(KXeK
J 

)−1 [d − Kc]                                                                                    (2.49)

  
where 

c∗ the V x 1 dimension having the bias adjusted high-frequency series 

d the M x 1 dimension of the yearly benchmarks, 
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δ the V x 1 dimension for the modified high frequency series of benchmarked data, 

K a U x V dimension, 

V the frequency of high frequency periods (months or quarters), 

U the frequency of years where yearly totals is obtainable 

Xe = diag(c∗)(Ψ −1)diag(c∗) is the V x V matrix of variance and covariance of 

the error of high frequency series ev 

Ψ is the matrix of autocorrelation of the Autoregressive model of order one using 

parameter φ: 
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2.9 Method of Pro-rata 

 
A careful examination on an instance when the high frequency and benchmarking series have 

only elements that are positive in nature. This part deals with bench- marking constraints as 

addition of flow variables. The distribution of pro-rata forces the high frequency series to be 

consistent with the benchmark series by auditing the annual sums proportionally to the 

portions of the sub-period observations in the corresponding aggregates of the indicators. 

 
One of the objectives of this section is to show how pro rata distribution creates step problem 

in the series and how it performs extrapolation commencing it from last benchmark. The 

instance given is given is that if ratio of quarterly national accounts estimates of benchmarked 

to the indicator, this is also known as quarterly BI ratio. This outcome brought about by 

method of pro rata distribution reveals that this technique brings unwelcomed discontinuities 

into the series. 

 
Revealing how  the quarterly benchmarking to indicator ratio which is produced by the 

technique of distribution and the quarterly benchmarking to indicator ratio produced by 

extrapolation from an indicator method help us to know how distribution and extrapolation 
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using high frequency series can fit into a unique framework of benchmarking to indicator 

ratio. Now having established this, the method of pro rata distribution is unacceptable in 

solving benchmarking problem. 
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where 

δv is the dimension of the quarterly countries estimate for quarter v, cv is the dimension of 

the quarterly indicator for quarter t, 

zy is the dimension of the yearly countries estimate for year y, 

 

c¯y is the yearly aggregate (total or average) of the quarterly estimates of the indicator for 

year y, 

y the years, 

q the last accessible year y, q the last available year, 

v the temporal index for the quarters. 
 
According to literature, distribution in this regard is the allocation of a yearly total continous 

series to its every 3-month in the particular period. In summary, a prorata technique 

distributes the yearly sum based on the corresponding proportions   by the four quarterly 

observations. 

 
The step problem occurs due to lack of continuities in the yearly benchmarking to indicator 

ratio between the years. Immediately, a difference is noticed in yearly growth rates in higher 

or lower than the yearly benchmark, then benchmarking to indicator ratio has to move from 

one year to the next year. Each time the bench- marking to indicator ratio is used in increasing 

the indicator’s value for all the quarters in the year, the whole difference in the sub annual 

growth rates will not change. However, the variations size in the yearly benchmark to 

indicator ratio determines the devastating effect of the step problem in any series. 

Extrapolation using an indicator in this context is using the transition in the original series to 

update the estimates of quarterly national accounts time series.  For the sub-annual series, 

for which no yearly data are available. 

 
Employing mathematical notations, extrapolation using an indicator can be made formal by 
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making use of the same benchmarks to indicator ratio presentation for the distribution 

instance. 
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where q stands for the year having the last accessible yearly benchmark and extrapolations 

can be provided for the quarterly observations of the year q + 1. It is also assumed that the 

indicator is made available for every quarter of year q + 1. 

 

With the application of equation (2.20) the rates of growth observed in quarters found in the 

original series in the year q + 1 is exactly reproduced by rates of growth in the forward series. 

Considering the equation (2.20), the BI ratio common for year q located in the right-hand 

after computation produces: 
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Likewise, it is easily seen that the countries’ quarterly accounts series has equal year-on-year 

indicator rates of growth in fixing quarters outside the range. Notwithstanding, generally 

these attributes appear like the expected qualities, the series of   a function outside the range 

of the known values need to be at variance with the pattern in the indicator to match unequal 

annual patterns in the yearly countries’ accounts for the following years. 

 
Summarily, the back series using the corresponding benchmark to indicator ratios for each 

year is calculated. The annual national accounts should be made available to serve as 

adjustment factors to increase or reduce the indicator and the forward series by bringing the 

last yearly BI ratio forward. This technique is not acceptable for quarterly national accounts 

reasons because step problem can be introduced in the year’s first quarter, and as a result, the 

objective of preservation of the original patterns in the indicator is violated. It is well believed 

by many researchers that socio economic variable does not grow within the year, not knowing 

that growth is not impossible within and between the years. 
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2.10 Benchmarking Method using the Entropy 

 
Obtaining the parameter back in a faulty system, we use a generalised cross-entropy 

approach. It is used whenever the pattern preservation is done through the additive order one 

difference and proportional order one difference techniques by considering the high frequency 

series (Temurshoev, 2012). 

 
 
 

 

2.10.1 Generalisation of Cross-entropy method 
 
The linear inverse problem having noise equation can be considered using the following 

(Golan, Judge, and Miller (1996)): 

 
                                                       w = Γδ + e                                              (2.51)
  
 

Where w is a vector of I-dimension containing observations, δ is a vector of N-dimension 

having unknown parameters, is also known as the benchmarked series Γ is a linear operator 

matrix with non-square attribute, and e is the vector of the disturbance. It is in cases that N 

> I which implies that it is an undermined system. This means in the normal regression, the 

number of parameters is larger than the number of observations. As a result, the conventional 

method of regression such as the ordinary least square may not be suitable for estimating δ. 

 
The ill-posed problem can be handled by the entropy-based methods. These technique 

brought about by Golan et al. (1996) are the core of a generalised cross entropy (GCE). 

Formalism of entropy is done through theory of information provided by Shannon (1948) and 

the investigations of Kullback and Leibler (1951), Janes (1957a) and Janes (1957b). 

 
The first step in GCE is to use information having no sample about the unknown parameter 

parameter δ otherwise known as signal component and disturbance component e. Among 

the content of the information are background beliefs about the signs, dimensions, and ranges 

of commendable, value of these components which are unknown. The next step is to obtain 

discrete random variables having prior information on δ and e. 

 
The GCE beginning stage is that one needs to utilise his/her constrained earlier or non-test 

data about the obscure parameters δ (additionally called the flag segment) and noise part e. 
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This data incorporates earlier convictions about the signs, extents, or potentially scopes of 

conceivable estimations of these obscure parts. Then one develops discrete arbitrary variables 

with earlier loads (probabilities) and limited backings that is steady with the given non-test 

data about δ and e. As needs  be, the straight reverse issue is re-parametrised as far as discrete 

irregular variables on limited backings, and the estimation issue winds up recouping ”back” 

likelihood circulations for δ and e predictable with the accessible earlier data and observed 

sample information. 

 

According to Golan et al. (1996) δ can be represented by the expected value of the random 

variables having compact supports. The discrete random variable having a compact of K 

feasible outcomes tg = (tg1, . . . , tgJ ), note that 2 ≤ J < ∞, and tg1 and tgJ  which are 

the lower and upper bounds of δg.  Thus, δg is communicated as: 
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Note that gx~  is a K-vector of positive probabilities having totals equal one (this is not to be taken 

as xr). If the matrix arrangement of the combination which is convex is done, then δ may be 

denoted by: 
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where T is a MXMJ matrix, q̃ is a MJ -vector of probabilities, 0 is a matrix of ones having 

the correct structure. 

 

In the same vein, the outcome of error calculation can be shown by taking each eh like a 

countable random variable having 2 ≤ Y < ∞ results. Assuming we have lower and upper 

limits sh1 and shY for each eh in such a way that 1−(sh1 < eh < shY ) is made small without 
following a particular rule. Each of the disturbances can be expressed as: 
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where uh = (uh1 ,  . . . ,  uhY)J is finite support for eh and zh = (zh1 ,  . . . ,  zhY)J is a Y - 

dimensional vector of positive weight whose totals is equal to one.  Therefore, the I-

dimensional vector of unknown errors can be expressed as: 
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It should be noted that X has a size of H × HY matrix and z is an HY - vector of non-

negative probabilities. Making use of the unknown restructured parameters in models 

(2.10.13) and (2.10.15), and model (2.10.11) can be expressed as: 

 

 

                                          w̃  = Γδ + e = ΓTq̃ + Xz                                                                                     (2.56)

  
 

The information having no sample on δ and e can be indicated as a collection of biased 

probability distributions on their agreeing supports T and X. Let r has MJ dimensional vector 

having prior probabilities for the parameter δ, yet not known, therefore Tr is the prior mean 

for δ. In the same way, if v has HY dimensional of probabilities on residuals e having average 

of prior of Xv. Hence, 

 

                     minq̃,zH(q̃, r, x, v) = q̃Jlog(q̃/r) + zJlog(z/v))                                  (2.57) 
  
 

subject to 
                                                                        

                                                                                           w̃  = ΓTq̃ + Xz,                                            (2.58) 

 

hM = (HM ⊗ hJ
J)q̃,                               (2.59)

  

 
hH = (HH ⊗ hJ

Y)z,                               (2.60) 
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where the / in equation (2.57) indicates an element-wise divisions while agreeing dimensions are 

represented by the subscripts of the identity matrices and vectors of summations. 

 
Kullback (1959) proposed the rule of minimum discrimination information (MDI). This 

principle serves as background for the GCE penalty function (2.56). It explains that q̃  and 

z, which are the new distributions provided with the restrictions of the model in (2.56), are 

estimated in such a way that they are treated unequally with the original distributions which 

are r and v, separately. The MDI can also be referred to as the minimum cross entropy 

principle. In case, r and v, which are the prior information becomes consistent with data, 

therefore the solution of the MDI also  becomes  q̃  =  r  and  z  =  v  with  H(q̃, r, z, v)  =  0.   

This also  means  that  the series does not have any information in common to the prior. 

 

Analysts choose prior as a uniform distribution as a result of unavailability of non-sample 

information information. In such an instance, the cross entropy is now the same as a 

maximum entropy technique. Therefore, the MDI becomes an extension of maximum 

entropy rule as deduced by Janes (1957,a,b) which states that be-   fore an inference is made 

on partial information basis, the probability distribution having maximum entropy must be 

known (Janes 1957a), Cover and Thomas, (2006). 

 
It should be noted that the model (2.58) is the constraint of consistency, while (2.59)  and  

(2.60)  are  the  expected  constraint  for  additivity  with  respect  to  q̃ and z, respectively. The 

set of additivity constraints strictly determines the GCE objectives H(z̃, r, z, v) A unique 

solution will exist if there is interaction between the constraints of the consistency and 

additivity. With the application of Lagrangean, the solution of the GCE problem can be 

expressed as: 
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where Γm is the mth column of  Γ,  φ  is  an  H  × 1  vector  of  Lagrange  multipliers, and the 

normalization factors are: 
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and     
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The additivity constraints and non-negativity condition are satisfied, by the GCE solutions 

q̂ and ẑ.  But there cannot be a closed-form solution because the solutions largely rely on φ 

which are not determined by the problem order one conditions. Therefore, it must be 

computed numerically using a reliable algorithm on the basis of dual GCE technique 

which does not have constraints (Golan et al. 1996). The point estimates of the unknown 

parameters and error vectors, i.e., δ̂  = Tq̂ and e = Xẑ are computed by the vectors optimal 

probability. 
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 CHAPTER THREE                                   

METH ODOLOGY 

3.1 Proposed Method 

 
The proposed technique for benchmarking examined here depends on Denton (1971) and 

Dagum and Cholette (2006). The extension to their work is in formulating new models 

through the introduction of various levels of coefficient of autocorrelation. Various derived 

models are used to extrapolate new series from the existing ones. 

 
The principal contribution of this research is utilising a regression based model for seat 

stamping and to write a program for unraveling Denton’s techniques. The major aim 

therefore is to provide an alternative solution to the problem of benchmarking in economic 

data through improving on the order one and order two proportional benchmarking models 

using restrained minimised quadratic polynomials. 

 

3.2 Alternative solution to the benchmarking  problem in 
Economic data 

 
This proposed benchmarking strategy depends on the summed up least squares regression 

model. It is grounded on a factual model that takes into consideration (i) the nearness of bias 

and autocorrelated errors in the pointer, and (ii) the nearness of non-restricting benchmarks. 

The benchmarked series is determined as the summed up least squares arrangement of a 

relapse model with deterministic impacts, autocorrelated and heteroschedastic disturbance. 

 
Issue of different pattern and various accuracy level when two same variables are collected 

from different sources is what leads to problem of benchmarking. Normally, data from one 

source is expected to have higher frequency than the other series. A good example is a 

monthly series from other sources. Literature has it proven that series having low frequency 

are more accurate and reliable than the high frequency series. Therefore, as a result, the series 

with low frequency is universally regarded as benchmark.  Disagreement is always noticed 

between the benchmarks and the 12 months sums of the high frequency series. What 

benchmarking does is bringing together the effective power embedded in both the pattern of 

the high frequency and the benchmarks consistency. 
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For ease of identification of terms and definitions in the study, the within-year or sub-yearly 

data are also known as high frequency series, and the yearly or twelve months data are the 

same as benchmarks.  The within-year and the yearly series can be represented by: 

 

 
                          , . . . 3, ,2 ,1 Tt                                                                                                     (3.1) 

 
                           , . . . 3, ,2 ,1 Mm                                                                                                  (3.2) 

 

 
note that 1, 2, . . . , T are the neighbouring months, quarter, days, and so on; also note that 

1, 2, . . . , M are the subsequent existing benchmarks in the economic series under 

consideration. 

 
The model contains the following two attributes: 
 

                                   tth

H

1h

tht eθBrs 


 

 

                                       
*

t

λ

tth

H

1h

th eθBr 


                                                                  (3.3) 

where  

                            

                                  lttt weeEeE λ

1-t

λ

t1    ,0    

 
St   = the sub-yearly or indicator series 

h

H

1h

thBr


 = deterministic time impact 

et   =  
*

t

λ

t e  the autocorrelated error 

rth =  deterministic regressors (h = 1, . . . , H) 
 

*

te  =  the standardized error of mean zero and unit variance 

wl  =  ,
1

   1 = 0, . . . , T-1 are the autocorrelations 

 

tθ  = genuine qualities that fulfills the yearly constraints, they are the benchmarked values 

 λ =  change model parameter (0, 0.5, or 1) 

 

M1,...,m     εθja m,

t

tt

tmtm

Lm

1m

 


                                                                                          (3.4) 

 

where 
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ma = yearly series 

 




Lm

1m

t

tt

mtj = aggregating coverage fraction with the true values 

 

mtj  =  coverage fractions 

 

mε = error having no autocorrelation but with heteroscedastic differences 

 

t1m  = the first sub-yearly period by benchmark 
ma  

 

t2m  = the first sub-yearly period by benchmark 
ma  

                    

Equations (3.3) and (3.4) can be written thus: 

 

S = Rβ + θ, E(e) = 0, E(eeJ) = Ve (3.5) 

a = Jθ + ε, E(ε) = 0, E(εεJ) = Vε, E(eεJ) = 0 (3.6) 

Where 

S = [S1 , . . . , ST ]J, θ = [θ1 , . . . , θT ]J, a = [a1 , . . . , aM]J 

β = the quantities of the bias, it measures the inconsistencies that exist 
between a and the relating entities s 

 

Matrix R of dimension T by H contains the H regressors (the X’s or the sums of the related 

series) of eqn. (3.23) and β = [β1, . . . , βH ] the regression parameters. The covariance 

matrix has this: 

                                                               
eV                                                               (3.7) 

Where Ve is the covariance matrix of the survey error, Ξ is a diagonal matrix of standard 

deviations, σ1, . . . , σT and Ω contains the autocorrelations usually following an ARMA 

error model. For an AR(1) error model with parameter | φ |< 1, the elements of Ω are given 

by ωij = φ|i−j | 
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The standard deviations are assumed to be 1. This is essential in light of the unreasonable 

impact bigger qualities may have on exceptions in the series, and accordingly present issue for 

benchmarking or compromise. It is therefore important to accept a consistent standard 

deviation (Hillmer and Trabelsi, 1987) 

 

3.2.1 Temporal summation 

Matrix J of dimension M x T is used as the matrix used to carry out temporal summation, it 

contains the proportions of coverage, 
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Where  

0jmt   for   
1mtt     or

Lmtt  , and  jmt  is as defined for 
Lm1m1m ttt   

Each proportion of coverage mtj  is used in m and t of  J 

 
Equations (3.5) and (3.6) can be pre-written as 

                                                                UXαy                                                                  (3.8) 

                ),V block(VV)E(UU'   0,E(U) εe,u   

Where  
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where 
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y, X, α,  u,  IT,  Vu  are indicators, regressors, parameters, errors, identity matrix of 

dimension T x T, and covariance matrix for sub-annual and annual series respectively. 

 

3.2.2 Theoretical Framework 
 

The models (3.5) and (3.6) can be written as 
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Model (3.8) follows a standard regression model, having the solution of generalized least 

square: 

 

                            











θ̂

β̂
yVXXVXα̂

1

U

'
11

U

'                                                                         (3.10) 

 

UV is the known or true matrix of the covariance of the disturbances u, the estimates ̂ gives 

 

  











)ˆvar()ˆ ˆcov(

)ˆ ˆcov()ˆvar(
)ˆvar(

11'




 XVX U                                                                       (3.11) 

 
 

3.2.3 Matrix representation of the model 

α̂ = [β̂ θ̂] produces the estimates of β̂1, . . . , β̂H θ̂1, . . . , θ̂T ; 

var[α̂] produces the covariance matrix of the vector β̂; 

var[α̂], gives the covariance matrix of the vector θ̂. 

 

The solution (3.10) is obtained only if Vu is not a singular matrix, this means both Ve and Vε 

matrices having feasible determinants. The results of last condition is that the values on the 

located on the diagonal Vε are expected to higher than zero, that is the values of the 

benchmarks should not be binding. 

 

Given eqn. (3.9), model (3.10) can be written as: 
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Having the following dimensions: 
 
 

R = Tx1, Ve and Vε= TxT , J =MxT 

Vε is the covariance matrix of the benchmarks error 

 

3.2.4 Derivations of the method 
 

From (3.11)  
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Combining (3.12) and (3.13)  

 

               aVJsVsVR ee

111' 'ˆ ,ˆcovˆvarˆ 
                                                             (3.15) 

               aVJsVsVR ee

111' 'ˆvarˆ ,ˆcovˆ 
                                                             (3.16) 

From eqn. (3.10) Vε should be positive, this means that having binding benchmarks is not 

feasible. The quantity in (3.10) is now expressed as: 

                       JsaVJRJRVJR dd 
 1'

11' ''̂                                                                 (3.17) 

                                               11' 'ˆvar


 JRVJR d                                                                (3.18) 
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Where s= indicator series and Vd =JJVeJ + Vε 

derivation assumes that both Ve and Vε are invertible. When Vε is not non-singular, the expression 

has to change to Vδ giving Vε + δIM and δ which is not far from zero. The quantity δ should 

equal zero upon derivation. 

The bottom-right segment of (3.14) which is the same as E22 in (3.15) using the matrix 

identities be transformed and expansion of the algebra: 

 

                                1111111
''' 
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                                         eeeeee JVVJVJJVJVJV
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1
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Given 
1

22

E  from (3.19), the matrix inversion in (3.14) yields this after transformation: 

 

Proof from R.H.S. 

                              
111111 )'('   CBDBDBBDD  

 

                             























11

11

'

1
' 1

CBDB
BBDD  

 

                              


































11

111
1

11

1
1

'

' '

'

' 
1

CBDB

BBDCBDB
D

CBDB

BBD
D  

 

                                 
 

11

1

11

11

'' 













CBDB

DC

CBDB

CD
                                                                      

 

                                






















 1111 '

11

'

1

CBDBDCCBDB

DC
                                                       (3.20) 

 
 

IDDICC   11   and    since  

Therefore 

 
 

                       
  '   

1

  '  

1
11 DIBCBICCDBDBCD 






 

                      



51  

                        
  DBCBDBCBI  '  

1

 '  

1





  

                         
      

                             '     or     '  
11 

 BCBDDBCB                                                                       (3.21) 

 
 

                      
1212

'

2211

1112
'

1222
1

2212
'

1211

EEEE

EE

EE

EE

EE


























                                                                       (3.22) 

 
 

                  
1212

'

2211

2211

EEEE

E
E


  

                         

                         
 1

2212121122

22

'





EEEEE

E
 

                         

                          11

221212111

22121211

'
'

1 





 EEEE

EEEE
                                                  (3.23) 
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Substituting (3.24) in the upper left partition of (3.11) yields: 

                          1111'1'11 'ˆvar


 RVJVVJVVVRRVRE eedeeee  
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                                       11' '


 JRVJR d
                                                                                   (3.28) 

this proves (3.18)  

Substituting (3.25) in the upper right partition of (3.11) yields: 

 

     edeee JVVJVVVRE
1112 ''ˆvarˆ ,ˆcov


   

 

                                 ed JVVJIR
1

''ˆvar


                                                                        (3.29) 

                    ˆvar'ˆ ,ˆcov
1'12 RJVJVIE de


                                                                (3.30) 

Substituting (3.27) into the lower right partition of (3.11) yields: 

                          edeeeedee JVVJVVVRJVVJVVE
11122 ''ˆ ,ˆcov'ˆvar


   

                                    eddeedee JVVJIRRJVJVIJVVJVV
111

''ˆvar''


                   (3.31) 

Substituting (3.28), (3.29), (3.30) into (3.11) and expanding leads to cancellations and simplifications  

                             aVsVJVVJIRsVR eede

1111' ''ˆvarˆvarˆ 
   

                                 aVVsJJVVJRJsVR dedd

111' '''ˆvarˆvar


                                   (3.32) 

Substituting the content in dV  using the expression in the last  VJJVe  '  gives: 

      aVVJJVJJVVJRJsVJR eede

111'  ' '''ˆvar'ˆvarˆ 
                                               (3.33) 

   JsaVJRJRVJR dd 
 111

''''̂                                                                                       (3.34) 

Substituting (3.28), (3.29), (3.30) into (3.11) and expanding yields: 

             aVJsVBJIRRBJIBJVVsVRRBJI eeee  ''''ˆvar'ˆvarˆ 11



 

                                                                                                                                                 (3.35) 

Where 
1

'


 de VJVB  

The following model was obtained after a long mathematical computations have been performed. 
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Some terms in aV  and s were transformed and replaced: 

    JsVJRRJsVJRJRVJVJsVJVs dddede

1111
''ˆvar''ˆvar''ˆ 

   

         aVIJJVVJRRaVIJJVVJV edede

1111
    ' ''ˆvar        ''


    

       aVIJJVVJRJRVJV edde

111
    ' ''ˆvar'


                                                                          (3.36)         

This model derived is called Autocorrelated Benchmarking model (AIBM) 

 

The above models can be implemented using three mathematical softwares for modeling; 

MATLAB and MAPLE 18. Computer programs are also developed for Denton’s and 

Cholette-Dagum methods of benchmarking, the former is numerical while the latter is 

model-based. 

 

3.2.5 Major contributions to the existing solutions to benchmarking 

problems 

 

i. Deriving an alternative matrix solution to benchmarking problem 

 
ii. Obtain a new benchmarked series that reproduces the movement in the original series 

iii. Developing a computer program for solving benchmarking problem using Den- ton and 

Cholette-Dagum methods 

iv. Modification of the Denton’s method to remove it’s short-coming of: (a) Implicit forecast 

of the next of the next discrepancy at the end of the series, on the basis of the last two 

discrepancies only (b) Introduction of a transient movement at the beginning of the series, 

which defeats the stated principle of movement preservation. 

 

3.3 Growth Rates 

 
These are employed in order to measure how close the benchmarked series obtained from various 

techniques θ to the high frequency series s: Growth rates can be presented in a bar chart or in an 

analytical table. They are useful to evaluate the movement preservation. Growth rates of the 

indicator series to the growth of benchmarked series from various models can be compared.   

If the growth rates are similar,    it shows that the benchmarking method ensures good movement  
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preservation  from the indicator series to the benchmarked series. It is given as: 

            

                                     100  x   rateGrowth 
past

pastpresent

V

VV 
  

Where 

 

presentV  = present value 

pastV   = past value 

It is noteworthy that values obtained for growth rates in this study were not converted to 

percentages. This is necessary in order to be able to compute other necessary statistics from 

them. 

 

3.3.1 Importance of the growth rates to benchmarking 
 
1. Growth rates are used in measuring the rate of discrepancies between the indicator 

series and benchmarked series 

2. They are preferred in percentages for ease of interpretation (Latendresse et al, 2007) 

3. They are useful in evaluating the movement preservation 

 
4. Better benchmarking method can be determined through it 
 

 

3.4 Coefficient of Variation 

 
The coefficient of variation, also known as relative standard deviation, is the ratio of the 

standard deviation σ to the mean µ. It is given by 

 

                                                               



CV  

It reveals the degree of variability in relation to the mean of the sample or population. The CV 

is especially useful when the researcher wants to compare outcomes from two different 

surveys or tests having different measures or values. Distributions with CV < 1 are 

considered low-variance, while those with CV > 1 are considered high-variance (Broverman, 

2001) 
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                              CHAPTER FOUR 

         DATA ANALYSIS AND RESULTS 

 
4.1 Introduction 

 
In this chapter, we report the results of benchmarking various datasets using the alternative 

method of benchmarking. Also comparison of other methods of benchmarking with newly 

developed one is made, performance tests using various statistics were all carried out. 

 

4.2 Application of the alternative method of benchmarking to 
various datasets 

There are various benchmarking methods as described in chapter two of this thesis, 

the gaps left in many of them is what our alternative method filled, that is the 

Autocorrelated Integrated Benchmarking Model (AIBM). The model is applied to 

many data sets in this chapter: 

 

    JsVJRRJsVJRJRVJVJsVJVs dddede

1111
''ˆvar''ˆvar''ˆ 

   

         aVIJJVVJRRaVIJJVVJV edede

1111
    ' ''ˆvar        ''


    

       aVIJJVVJRJRVJV edde

111
    ' ''ˆvar'


                                                                              (4.1) 

  

Where  

̂      T by 1 matrix for the generated benchmarked series estimates 

a       M by 1 matrix for annual series 

s      T by 1 matrix for the sub-annual series 

Ve    T by T covariance matrix for the sub-annual series 

J       M by T matrix for the temporal sum operator 

Vd    M by M covariance matrix for the annual discrepancies 

R     T by 1 matrix for the regressors  

̂     Estima te of the bias constant 
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eV     M by M covariance matrix for the sub-annual discrepancies 

I      T by T identity matrix of ones 

 

The MATLAB code for the full implementation of this model is in appendix II of this write up.  
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4.3 Implementation of the model using the Cholette data, 
Cholette and Dagum (2006) 

 
In order to apply the derived model, the simulated quarterly series by Cholette and Dagum 

(2006) are used. 
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Where Vd  = J x Ve x J’ is the Covariance matrix for annual discrepancies of 7 by 7 dimension 
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Matrix Vd  reveals the covariance matrix for annual discrepancies. It shows the covariances 

for the aggregated seven years data. The numerator and denominator of each fraction 

represents total benchmarks and the sum of the annual series respectively. In a binding series 

the outcome of each of these fractions should be approximately equals 1 and less or greater 

than 1 in the case of unbinding series. Irregular benchmarks come up when the economic 

data is unbinding in many cases. 
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Where  

          *dV  is the computed covariance matrix for the annual discrepancies of 7 by 7 dimension 
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The covariance matrix for annual discrepancies presented Vd* depicts the computed values 

earlier presented in Vd. The first value 11.2746 shows that the discrepancies between the first 

year benchmark (annual) and the sub-annual series for the same year is 11.2746. The 

discrepancy for the second year is 5.1111, the discrepancy for the third is 1.4435, while the 

discrepancy for the seventh year is 0.0092. None of the years is binding in terms of 

discrepancies, the benchmarks are irregular and be evaluated and reconciled for suitability in 

usage for future research and application.  

In a binding benchmarked series the discrepancies are not more than one, although this is not 

common in most economic data, the annual total and the sub-annual total are always contrary 

to each other, the commonest series are non-binding (irregular). 

The matrix is a confirmation that the series is irregular in nature, therefore there is need for 

evaluation and reconciliation in order to obtain an hybrid and improved series. 
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Where  

B is the matrix of the bias 
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The matrix of the Bias is represented as B, the bias is very important in reconciling low 

frequency economic series with high frequency series. The bias is a regressor or predictor 

that is deterministic in nature.  It is a constant that covers the difference in average level that 

exist between the low frequency series and the high frequency series. It normally occurs when 

the high series is not fair with the low series. This happens mostly when there is problem of 

under coverage or non-coverage in a survey. Bias is an expected phenomenon is 

benchmarking. 

The column matrices of ones indicate the quarters in the years, we have four of such in a 

year, the one represented on page 62 contains 28 quarters in seven years. This is inserted in 

the equation 4.1 before a new benchmarked series could be obtained.     
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Where  

              eV  is the covariance matrix for sub-annual discrepancies of 28 by 28 dimension 
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The matrix on page 64 shows the covariance matrix for sub-annual discrepancies.  Each of the 

values in the cell represents the discrepancies in the sub-annual (high frequency series). For 

instance, 0.7200 is the discrepancy between the annual and sub-annual series for the first year 

in the series. In this case, we have seven annual series, the sub-annual is twenty-eight, and 

therefore we are expected to have a 28 by 28 matrix. It can be seen from the matrix that only 

few values are close to 1, which means they are not binding.  This shows that there exists 

irregular benchmarks in the series, as a result, there is need for evaluation. 

The evaluation was carried out and the results are presented in tables 4.1a and 4.1b on page 

64. The outcome of the evaluation is expected to be an improved series, better than the 

irregular series. For any economic data to be reliable for usage and forecast, the B-I ratio 

obtained from it’s annual and sub-annual totals must be close to 1. 
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   Table 4. 1a: Indicator series, bias-adj, benchmarked, annual, and growth rates

 Quarters  Ind.    bias-adj    S* Annual  Ind.(% ) AIBM(%) 

1998-1 85.00 136.75 134.81 
   

1998-2 95.00 146.75 144.10 
 

0.11 0.06 

1998-3 125.00 176.75 173.12 
 

0.24 0.17 

1998-4 95.00 146.75 141.77 494.00 -0.32 -0.22 

1999-1 85.00 136.75 129.93 
 

-0.12 -0.09 

1999-2 95.00 146.75 137.36 
 

0.11 0.05 

1999-3 125.00 176.75 163.80 
 

0.24 0.16 

1999-4 95.00 146.75 128.90 560.00 -0.32 -0.27 

2000-1 85.00 136.75 112.16 
 

-0.12 -0.15 

2000-2 95.00 146.75 120.63 
 

0.11 0.07 

2000-3 125.00 176.75 154.14 
 

0.24 0.22 

2000-4 95.00 146.75 133.07 520.00 -0.32 -0.16 

2001-1 85.00 136.75 138.30 
 

-0.12 0.04 

2001-2 95.00 146.75 156.70 
 

0.11 0.12 

2001-3 125.00 176.75 189.11 
 

0.24 0.17 

2001-4 95.00 146.75 155.78 640.00 -0.32 -0.21 

2002-1 85.00 136.75 136.38 
 

-0.12 -0.14 

2002-2 95.00 146.75 142.21 
 

0.11 0.04 

2002-3 125.00 176.75 172.88 
 

0.24 0.18 

2002-4 95.00 146.75 148.43 600.00 -0.32 -0.16 

2003-1 85.00 136.75 149.44 
 

-0.12 0.01 
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    Table 4.1b: Indicator series, bias-adj, benchmarked, annual, and growth rates (contd). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quarters Ind. bias-adj     S* Annual Ind. 
(%) 

        
AIBM(%) 

2003-2 95.00 146.75 165.79 
 

0.11 0.10 

2003-3 125.00 176.75 198.12 
 

0.24 0.16 

2003-4 95.00 146.75 166.66 680.00 -0.32 -0.19 

2004-1 85.00 136.75 151.28 
 

-0.12 -0.10 

2004-2 95.00 146.75 157.35 
 

0.11 0.04 

2004-3 125.00 176.75 184.48 
 

0.24 0.15 

2004-4 95.00 146.75 152.39 661.00 -0.32 -0.21 
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Table 4.1a and 4.1b present the Cholette simulated series. Column 1 shows the quarters (1981 

quarter 1 to 2004 quarter 4). Column 2 the indicator series, column 3 the annual series, 

column 4 the bias-adjusted series, column 5 the benchmarked series, column 6 and 7 show 

the growth rates from the indicator series growth rate from benchmarked series using the 

improved benchmarking method called the autocorrelated indicator benchmarking model 

(AIBM). Growth rates are used in measuring the rate of discrepancies between the indicator 

series and the benchmarked series.  It can be observed from the table that rate of growth in 

the column 7 is lower than the ones observed in column 6. Since the percentage of growth 

rate is reduced in AIBM it shows that the movement in the original series is better preserved 

in all the twenty-eight quarters, no higher value of growth rate is observed in the new method. 
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                                                                  Figure 4. 1:  The benchmarked series using Cholette simulated data
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According to the chart in fig. 4.1, none of the methods reconciled well with the indicator 

series. They are far away from the indicator series considering the generated data, 

movement and pattern. The bias-adjusted series, average benchmarks, and the 

benchmarked series are at variance with the indicator series. This may be due to the 

nature of the data, therefore the methods may not be appropriate for Cholette simulated 

data. 
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                                                                                       Figure 4. 2: Growth rates graph using Cholette simulated data 
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As shown in fig. 4.2, the discrepancies between the growth rates from indicator and 

benchmarked series is wide. The growth are close to one another in few pairs of sample 

points such as quarters 14, 17, 22, and 25. Other 24 pairs of points are not showing 

favourable growth rates when compared with the indicator.  

The implication of this is that the series is irregular and that the AIBM is not 

appropriate for evaluation of simulated data. For a regular series, there should be 

similarities in the growth rates of most of the sample points. The obvious difference in 

the bars show that the discrepancies between the indicator series and the benchmarked 

series is too high.  
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4.4 Using the Denton data 

 
Table 4. 2: Indicator series, bias-adj, benchmarked, annual, and growth rates 

Quarters      Ind.       Bias-adj.       S* 

 

Annual Ind.(%) AIBM(%) 

1998-1 50 59.48 76.13    

1998-2 100 109.48 127.45  0.5000 0.4027 

1998-3 150 159.48 175.70  0.3333 0.2746 

1998-4 100 109.48 120.72 500 -0.5000 -0.4555 

1999-1 50 59.48 61.99  -1.0000 -0.9473 

1999-2 100 109.48 104.10  0.5000 0.4045 

1999-3 150 159.48 146.25  0.3333 0.2882 

1999-4 100 109.48 87.65 400 -0.5000 -0.6686 

2000-1 50 59.48 27.43  -1.0000 -2.1952 

2000-2 100 109.48 72.57  0.5000 0.6220 

2000-3 150 159.48 122.57  0.3333 0.4079 

2000-4 100 109.48 77.43 300 -0.5000 -0.5829 

2001-1 50 59.48 37.65  -1.0000 -1.0566 

2001-2 100 109.48 96.25  0.5000 0.6088 

2001-3 150 159.48 154.10  0.3333 0.3754 

2001-4 100 109.48 111.99 400 -0.5000 -0.3760 

2002-1 50 59.48 70.72  -1.0000 -0.5837 

2002-2 100 109.48 125.70  0.5000 0.4374 

2002-3 150 159.48 177.45  0.3333 0.2916 

2002-4 100 109.48 126.13 500 -0.5000 -0.4069 
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Table 4.2 presents the Denton data. The seven columns represent the quarters, indicator 

series, annual series, bias adjusted series, benchmarked and the growth rates 

respectively. Checking the growth rates critically, most of the quarters between 1998-

1 and 2002-4 have favourable values, except in quarters 2001-1 and 2002-1 which 

account for just 2 out of 28 pairs of points. This shows that the method maintains the 

pattern in the original data, therefore the method is recommended for use considering 

Denton data. 

For the observations in 1998, the growth rates look similar. This indicates that AIBM 

model can predict well for the data though it is also a simulated series. Since almost 

all the observations in the series have similar growth rates with the indicators, it means 

that model is good. 
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                                                                                          Figure 4. 3: The benchmarked series using Denton simulated data 
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The chart in fig. 4.3 diagrammatically shows the information in table 4.2, it can be 

seen that the benchmarked series using the new method (AIBM) compares favourably 

well when placed side by side with the original series. It is also observed that the 

patterns and movements in the series generated by the new method and the indicator 

series are almost the same.  

It can be observed that the biased-adjusted and the benchmarked series are similar in 

growth rates, they compare with the original series (indicator). The only non-

conforming series is the average benchmarks series. This an indication that the model 

is good for reconciliation of the data. 
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                                                                                                       Figure 4. 4: Growth Rates graph using Denton simulated data 
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Fig.  4.4 represents the growth rates in the indicator and the generated series using the 

AIBM method. The equality in the lengths of pairs of bars shown in the chart depicts 

equal or almost equal growth rates percentages The Denton simulated data appear to 

be good for the method since there is no obvious difference in the growth rate. This 

means that the pattern and movements in the original series are maintained using the 

improved model. 
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4.5 Using the IMF data 

 
Table 4. 3: Indicator series, bias-adj, benchmarked, annual, and growth rates 

Quarters Ind.     Bias.adj.  S* Annual  Ind. (%)     AIBM (%) 

1998-1 613216 613155.06 613408    

1998-2 636852 636791.06 637052  0.0371 0.0371 

1998-3 637890 637829.06 638037  0.0016 0.0015 

1998-4 679437 679376.06 679467 2567964 0.0611 0.0610 

1999-1 656030 655969.06 655866  -0.0357 -0.0360 

1999-2 679720 679659.06 679309  0.0349 0.0345 

1999-3 678584 678523.06 677848  -0.0017 -0.0022 

1999-4 715545 715484.06 714374 2727397 0.0517 0.0511 

2000-1 699993 699932.06 698232  -0.0222 -0.0231 

2000-2 715684 715623.06 713742  0.0219 0.0217 

2000-3 711180 711119.06 709448  -0.0063 -0.0061 

2000-4 742734 742673.06 741623 2863045 0.0425 0.0434 

2001-1 710551 710490.06 710534  -0.0453 -0.0438 

2001-2 739767 739706.06 740451  0.0395 0.0404 

2001-3 739391 739330.06 740453  -0.0005 0.0000 

2001-4 767218 767157.06 768372 2959810 0.0363 0.0363 

2002-1 730367 730306.06 731337  -0.0505 -0.0506 

2002-2 751285 751224.06 752172  0.0278 0.0277 

2002-3 755601 755540.06 756497  0.0057 0.0057 

2002-4 789540 789479.06 790538 3030545 0.0430 0.0431 

2003-1 758885 758824.06 760088  -0.0404 -0.0401 

2003-2 787249 787188.06 788449  0.0360 0.0360 

2003-3 780660 780599.06 781648  -0.0084 -0.0087 

2003-4 815231 815170.06 815776 3145961 0.0424 0.0418 

2004-1 776189 776128.06 776017  -0.0503 -0.0512 

2004-2 816059 815998.06 815445  0.0489 0.0484 

2004-3 805903 805842.06 805403  -0.0126 -0.0125 

2004-4 837922 837861.06 837095 3233960 0.0382 0.0379 
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Table 4.3 represents the IMF data. The seven columns represent the quarters, indicator 

series, annual series, bias adjusted series, benchmarked and the growth rates 

respectively. It can be seen here that the growth rates in the indicator and the 

benchmarked series obtained from the improved method are approximately the same. 

This shows that there is no loss of information in the generated series when compared 

with the original series. The movement and patterns in the indicator series are 

preserved 



 

 

 

                                                     Figure 4. 5: The benchmarked series using the IMF data 
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The chart in figure 4.5 is a representation of the information in table 4.9.  It can be seen 

that the indicator series, bias adjusted series, the benchmarked series, and the average 

benchmark (obtained by dividing the benchmarks by 4) follow almost the pattern.  It is 

noteworthy that the indicator and the generated benchmarked series are exactly on the 

same line, points, and direction, there is no distinction, and one is embedded in the other.  

This indicates a strong graphic similarity that exists between the series. This shows that 

the method of benchmarking can be recommended for real life data. 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

                                                                        
               

 
                                                                               
                                                                               

                          



83 
 

 
                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                        

 

 

                                                                                                                    Figure 4. 6: Growth rates graph using the IMF data 
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The growth rate graph in fig. 4.6 shows the performance of the new method of 

benchmarking in terms of growth rate percentage. The two bars for each quarter represents 

the pairs of points from the indicator and the benchmarked series. It can be seen from the 

chart that lengths of each of the pairs are the same for most of the quarters except in 

quarters 8 and 9, others are quarters 24 to 28 where the bars are almost the same in length. 

This also shows that the new method of benchmarking is good enough to handle data 

reconciliation, especially economic data. It also shows that the new method maintains the 

original pattern and direction in the original series which is very important in determining 

a good model in benchmarking. 
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                                                                                                Figure 4. 7: Growth rates graph using the Nigeria GDP 
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According to fig. 4.7, it can be seen from the chart that differences in the new method and 

the indicator series is obvious. This may be due to fluctuations in the observations in the 

data. 
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Table 4. 4: Benchmarked series from various methods using Cholette data 

IND. ABD PBD AOOD POOD AOTD POTD AIBM 

85.00 133.50 119.27 134.50 127.10 132.44 125.58 134.90 

95.00 143.50 137.81 144.10 141.70 143.39 140.98 144.15 

125.00 173.50 199.11 173.30 185.48 174.09 186.10 173.15 

95.00 143.50 137.81 142.10 139.71 144.08 141.33 141.80 

85.00 125.00 113.26 130.50 123.54 132.64 125.31 129.94 

95.00 135.00 130.31 137.66 135.54 138.82 136.74 137.36 

125.00 165.00 186.12 163.58 173.72 162.77 172.93 163.80 

95.00 135.00 130.31 128.25 127.20 125.76 125.02 128.90 

85.00 115.00 106.20 111.68 108.61 110.17 107.11 112.16 

95.00 125.00 121.48 120.38 119.59 119.46 118.56 120.63 

125.00 155.00 170.84 154.35 160.90 154.90 161.83 154.14 

95.00 125.00 121.48 133.59 130.90 135.47 132.50 133.06 

85.00 145.00 127.40 138.10 128.85 137.95 128.91 138.28 

95.00 155.00 147.96 156.66 152.61 156.87 152.85 156.70 

125.00 185.00 216.69 189.28 205.47 189.46 205.25 189.14 

95.00 155.00 147.96 155.95 153.07 155.72 152.98 155.88 

85.00 135.00 120.33 136.68 129.69 138.34 130.96 136.56 

95.00 145.00 139.13 142.29 140.51 142.76 140.98 142.38 

125.00 175.00 201.41 172.81 184.48 172.04 184.02 172.89 

95.00 145.00 139.13 148.22 145.32 146.85 144.04 148.17 

85.00 155.00 134.46 148.53 138.30 145.51 135.92 148.73 

95.00 165.00 156.78 165.24 161.10 163.96 159.83 165.17 

125.00 195.00 231.97 198.36 216.55 199.53 217.44 198.15 

95.00 165.00 156.78 167.88 164.05 170.99 166.81 167.95 

85.00 150.25 131.11 153.81 143.59 158.51 147.39 154.56 

95.00 160.25 152.59 160.76 157.67 163.66 160.42 161.76 

125.00 190.25 224.71 188.72 204.88 187.63 203.95 187.90 

95.00 160.25 152.59 157.71 154.86 151.20 149.24 156.79 
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Table 4.4 shows the benchmarked series obtained from various benchmarking models using 

the Cholette simulated data. the first column is the indicator series while the other columns 

are the ABD (Additive Balanced Difference), PBD (Proportional Balanced Difference), 

AOOD (Additive Order One Difference), POOD (Proportional Order One Difference), AOTD 

(Additive Order Two Difference), POTD (Proportional Order Two Difference), and the AIBM 

(Autocorrelated Indicator Benchmarking Model). Mere checking the series generated from 

both the existing models (ABD to POTD) and the new model (AIBM), none of the series 

reconciled well with the indicator series. The disparities are high when the original series is 

compared with each of the benchmarking methods 
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Table 4. 5: Benchmarked series from various methods using Denton data 

IND. ABD PBD AOOD POOD AOTD POTD AIBM 

50.00 75.00 55.56 79.30 64.33 81.26 66.49 76.13 

100.00 125.00 122.22 127.58 127.81 127.26 128.49 127.45 

150.00 175.00 200.00 174.14 187.82 173.09 185.91 175.70 

100.00 125.00 122.22 118.98 120.04 118.39 119.10 120.72 

50.00 50.00 50.00 62.11 56.56 62.64 56.77 61.99 

100.00 100.00 100.00 104.51 105.98 105.14 106.70 104.10 

150.00 150.00 150.00 146.20 147.50 146.01 147.53 146.25 

100.00 100.00 100.00 87.18 89.96 86.21 88.99 87.65 

50.00 25.00 44.44 27.44 40.55 27.50 40.09 27.43 

100.00 75.00 77.78 72.56 74.45 72.50 74.22 72.57 

150.00 125.00 100.00 122.56 108.34 122.50 109.20 122.57 

100.00 75.00 77.78 77.44 76.66 77.50 76.49 77.43 

50.00 50.00 50.00 37.18 42.76 36.21 42.08 37.65 

100.00 100.00 100.00 96.20 94.15 96.01 93.53 96.25 

150.00 150.00 150.00 154.51 153.42 155.14 154.01 154.10 

100.00 100.00 100.00 112.11 109.67 112.64 110.38 111.99 

50.00 75.00 55.56 68.98 58.29 68.39 58.25 70.72 

100.00 125.00 122.22 124.14 122.63 123.09 121.63 125.70 

150.00 175.00 200.00 177.58 190.41 177.26 189.38 177.45 

100.00 125.00 122.22 129.30 128.67 131.26 130.73 126.13 
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Similar to what is obtained in table 4.1 on Cholette simulated data,  Denton data in table 4.2 

also show that the benchmarking methods failed to maintain the same pattern and direction in 

the original series.  This is common to simulated data generated by these authors. Further 

research in this work show that real life data work best for the new model. 
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Table 4. 6: Benchmarked series from various methods using IMF data 

IND. ABD PBD AOOD POOD AOTD POTD AIBM 

613216.00 613358.25 613345.66 613450.56 613442.60 613328.59 613355.36 613407.77 

636852.00 636994.25 636991.85 637049.64 637051.41 637001.98 637009.08 637051.56 

637890.00 638032.25 638030.31 638013.79 638016.38 638059.76 638045.40 638037.46 

679437.00 679579.25 679596.18 679450.01 679453.61 679573.67 679554.16 679467.21 

656030.00 655409.50 655457.20 655895.32 655891.09 656027.88 656006.43 655866.00 

679720.00 679099.50 679105.09 679331.91 679327.97 679402.91 679396.88 679308.94 

678584.00 677963.50 677971.14 677836.80 677854.36 677784.18 677812.39 677848.15 

715545.00 714924.50 714863.56 714332.98 714323.58 714182.03 714181.30 714373.91 

699993.00 698356.50 698435.69 698210.45 698257.56 698152.69 698200.93 698232.37 

715684.00 714047.50 714056.09 713731.66 713739.76 713697.29 713704.07 713742.39 

711180.00 709543.50 709572.51 709458.60 709468.09 709480.34 709486.51 709447.74 

742734.00 741097.50 740980.71 741644.29 741579.60 741714.69 741653.49 741622.51 

710551.00 711271.75 711216.42 710493.71 710455.89 710422.56 710387.33 710534.24 

739767.00 740487.75 740488.26 740433.89 740416.36 740414.54 740393.85 740451.09 

739391.00 740111.75 740111.53 740473.84 740473.36 740512.13 740510.69 740452.67 

767218.00 767938.75 767993.79 768408.56 768464.39 768460.76 768518.13 768372.01 

730367.00 731305.00 731240.17 731357.03 731348.54 731467.77 731462.69 731337.42 

751285.00 752223.00 752208.90 752174.01 752177.98 752206.43 752215.20 752172.28 

755601.00 756539.00 756535.55 756488.49 756479.21 756439.18 756429.02 756497.20 

789540.00 790478.00 790560.38 790525.47 790539.26 790431.62 790438.09 790538.10 

758885.00 759869.00 759802.83 760067.95 760026.75 759914.51 759874.19 760088.24 

787249.00 788233.00 788236.72 788431.36 788434.07 788355.80 788354.92 788448.87 

780660.00 781644.00 781631.26 781643.71 781642.99 781692.09 781689.99 781647.66 

815231.00 816215.00 816290.19 815817.98 815857.20 815998.60 816041.90 815776.23 

776189.00 775660.75 775703.12 776181.19 776205.55 776518.24 776535.95 776017.02 

816059.00 815530.75 815521.92 815605.10 815613.15 815845.56 815866.85 815445.07 

805903.00 805374.75 805379.21 805151.70 805156.98 805094.72 805108.72 805402.77 

837922.00 837393.75 837355.76 837022.01 836984.31 836501.48 836448.48 837095.14 
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Table 4.6 shows the benchmarked series obtained from various benchmarking models using 

the IMF real life data. It is observed that all the benchmarking methods performed well as 

revealed in the table, the indicator series and the generated series from the benchmarking 

models in the same direction. However, further statistical tests such as the mean, standard 

variation, variation, and coefficient of variation have to be carried out in order to ascertain 

the best model. 
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Table 4. 7: Growth rates analysis on benchmarking methods using the Cholette data 

0.729, 0.900 

Data/rho Stat. PRM AOOD POOD AOTD POTD B.ADJ AIBM 

Cholette mean -0.008 -0.005 -0.016 -0.01 -0.017 -0.008 -0.007 

rho=0.729 std 0.222 0.152 0.222 0.155 0.224 0.146 0.153 

 var 0.049 0.023 0.049 0.024 0.05 0.021 0.023 

 cv -27.376 -29.62 -14.033 -16.296 -13.16 -19.316 -23.236 

         

Cholette mean -0.008 -0.005 -0.016 -0.006 -0.017 -0.008 -0.005 

rho=0.900 std 0.222 0.152 0.222 0.154 0.224 0.146 0.153 

 var 0.049 0.023 0.049 0.024 0.05 0.021 0.023 

  cv -27.376 -29.62 -14.033 -24.353 -13.16 -19.406 -28.478 
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As seen from tables 4.7, with Cholette simulated data, using rho = 0.729, the AFD method 

appears to be the best benchmarking method having the lowest growth rate CV of -29.620. 

the PRM having -27.376 and the new method AIBM having -23.236. Similarly, when rho = 

0.900, the AIBM is better with growth rate CV of -28.478, while AFD has -29.620 and PRM 

maintains -27.378 
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Table 4. 8: Comparison using various benchmarking methods rho=0.990 & 0.999 

Data/rho Stat. PRM AOOD POOD AOTD POTD B.ADJ AIBM 

Cholette mean -0.008 -0.005 -0.016 -0.006 -0.017 -0.007 -0.005 

rho=0.990 std 0.222 0.152 0.222 0.154 0.224 0.145 0.152 

 var 0.049 0.023 0.049 0.024 0.05 0.021 0.023 

 cv -27.376 -29.62 -14.033 -24.353 -13.16 -19.591 -29.486 

         

Cholette mean -0.008 -0.005 -0.016 -0.006 -0.017 -0.007 -0.005 

rho=0.999 std 0.222 0.152 0.222 0.154 0.224 0.145 0.152 

 var 0.049 0.023 0.049 0.024 0.05 0.021 0.023 

  cv -27.376 -29.62 -14.033 -24.353 -13.16 -19.632 -29.606 
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When rho = 0.990, from table 4.12, growth rate CV for AOOD and AIBM methods are -

29.620 and -29.486 respectively. When rho = 0.999, the growth rate CV for AOOD and AIBM 

are almost equal, being -29.620 and -29.606 respectively. All these show that AIBM is a good 

alternative to the AOOD method. In all the methods of benchmarking considered for Cholette 

simulated data, the POTD is the worst because it has the highest growth rate CV. 



97  

Table 4. 9: Growth rates analysis on benchmarking methods using the Denton data 

0.729, 0.900, 0.990, & 0.999 

Data/rho Stat. PRM AOOD POOD AOTD POTD B.ADJ AIBM 

Denton mean -0.137 -0.167 -0.125 -0.168 -0.125 -0.123 -0.166 

rho=0.729 std 0.681 0.735 0.621 0.732 0.621 0.613 0.737 

 var 0.463 0.541 0.386 0.536 0.386 0.376 0.543 

 cv -4.974 -4.402 -4.987 -4.371 -4.954 -4.993 -4.432 

         

Denton mean -0.137 -0.167 -0.125 -0.168 -0.125 -0.08 -0.167 

rho=0.900 std 0.681 0.735 0.621 0.732 0.621 0.499 0.736 

 var 0.463 0.541 0.386 0.536 0.386 0.249 0.541 

 cv -4.974 -4.402 -4.987 -4.371 -4.954 -6.228 -4.407 

         

Denton mean -0.137 -0.167 -0.125 -0.168 -0.125 -0.062 -0.167 

rho=0.990 std 0.681 0.735 0.621 0.732 0.621 0.445 0.735 

 var 0.463 0.541 0.386 0.536 0.386 0.198 0.541 

 cv -4.974 -4.402 -4.987 -4.371 -4.954 -7.137 -4.402 

         

Denton mean -0.137 -0.167 -0.125 -0.168 -0.125 -0.06 -0.167 

rho=0.999 std 0.681 0.735 0.621 0.732 0.621 0.436 0.735 

 var 0.463 0.541 0.386 0.536 0.386 0.19 0.541 

  cv -4.974 -4.402 -4.987 -4.371 -4.954 -7.309 -4.402 
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From tables 4.9, using the Denton simulated data, with rho = 0.729, the AOOD and the AIBM 

are on the leading side, their respective growth rate CV are -4.402 and -4.432. For rho = 0.900, 

the growth rate CV for AOOD is -4.402 while it is -4.432 for AIBM. 

 

In the two levels of autocorrelation, that is 0.729 and 0.900, it is observed that the POTD has 

the highest growth rate CV being -4.402 which means it is the worst method as far as the 

Denton simulated data is concerned.  

 

For rho = 0.990, the B.ADJ is the best benchmarking method having the lowest growth rate 

CV of -7.137, next to it is PRM having -4.974, the AOOD and AIBM have the same values of 

-4.402. 

 

For rho = 0.999, the B.ADJ is the best method having the least growth rate CV of -7.309, 

while the worst method of benchmarking is the AOTD having the highest CV of -4.371 for 

the two autocorrelation coefficient levels. 
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Table 4. 10: Growth rates analysis on benchmarking methods using the IMF 

 0.729, 0.900, 0.990, & 0.999 

 Data/rho Stat. PRM AOOD POOD AOTD POTD B.ADJ AIBM 

IMF mean 0.011 0.011 0.011 0.011 0.011 0.011 0.011 

rho=0.729 std 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

 var 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 cv 3.194 3.195 3.196 3.198 3.200 3.181 3.192 

         

IMF mean 0.011 0.011 0.011 0.011 0.011 0.011 0.011 

rho=0.900 std 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

 var 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 cv 3.194 3.195 3.196 3.198 3.200 3.181 3.194 

         

IMF mean 0.011 0.011 0.011 0.011 0.011 0.011 0.011 

rho=0.990 std 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

 var 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 cv 3.194 3.195 3.196 3.198 3.200 3.181 3.195 

         

IMF mean 0.011 0.011 0.011 0.011 0.011 0.011 0.011 

rho=0.999 std 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

 var 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

  cv 3.194 3.195 3.196 3.198 3.200 3.186 3.195 
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Tables 4.10 present results on IMF data. When rho = 0.729, the B.ADJ is the best 

having the least growth rate CV of 3.181. Next to it is the AIBM having growth 

rate CV = 3.192. The worst method is the POTD having growth rate CV of 3.200. 

When rho = 0.900, the B.ADJ remains the best having growth rate CV = 3.181, 

while the AIBM is next having equals 3.194. The POTD remains the worst 

method. 

 

For rho = 0.990, the B.ABJ is the best benchmarking method with growth CV 

= 3.181 follows by the AIBM with growth rate CV = 3.195. When rho = 0.999, 

the growth rate CV for B.ADJ and AIBM are 3.186 and 3.195 respectively. It 

can also be seen that the worst method is the POTD having growth rate CV = 

3.200. 
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Table 4. 11: Growth rates analysis on benchmarking methods using the Nigeria GDP 

 0.729, 0.900, 0.990, & 0.999 

Data/rho Stat. PRM AOOD POOD AOTD POTD B.ADJ AIBM 

GDP mean 0.028 0.011 0.011 0.011 0.011 0.000 0.027 

rho=0.729 std 0.073 0.035 0.035 0.035 0.035 0.001 0.035 

 var 0.005 0.001 0.001 0.001 0.001 0.000 0.001 

 cv 2.665 3.195 3.196 3.198 3.200 1.582 1.318 

         

GDP mean 0.028 0.011 0.011 0.011 0.011 0.000 0.027 

rho=0.900 std 0.073 0.035 0.035 0.035 0.035 0.001 0.035 

 var 0.005 0.001 0.001 0.001 0.001 0.000 0.001 

 cv 2.665 3.195 3.196 3.198 3.200 1.582 1.318 

         

GDP mean 0.028 0.011 0.011 0.011 0.011 0.000 0.029 

rho=0.990 std 0.073 0.035 0.035 0.035 0.035 0.001 0.032 

 var 0.005 0.001 0.001 0.001 0.001 0.000 0.001 

 cv 2.665 3.195 3.196 3.198 3.200 1.582 1.121 

         

GDP mean 0.028 0.011 0.011 0.011 0.011 0.000 0.029 

rho=0.999 std 0.073 0.035 0.035 0.035 0.035 0.001 0.032 

 var 0.005 0.001 0.001 0.001 0.001 0.000 0.001 

  cv 2.665 3.195 3.196 3.198 3.200 1.582 1.105 
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According to table 4.11, using the Nigeria GDP, for rho = 0.729, the benchmarking methods 

with the lowest growth rate CV are the B.ADJ and the AIBM, being 1.582 and 1.318 

respectively. The best is the AIBM while the POTD has the least performing ability growth 

rate CV of 3.200. The results obtained for growth rate CVs when rho = 0.729 are the same for 

when rho = 0.900. This means that the impact of the various levels of autocorrelation 

coefficients is not obvious. 

 

When rho = 0.990, the growth rate CV for AIBM is the least having 1.121. Next to it is the 

B.ADJ having 1.582. For rho = 0.999, the AIBM has the lowest growth rate CV of 1.105, 

which is an improvement on the previous result from rho = 0.990. The growth rate CV for 

B.ADJ method is 1.582, while the worst benchmarking method using the Nigeria GDP is the 

POTD having growth rate CV of 3.200 

 

4.6 Discussion of Results 

 
The covariance matrix on page 58 shows the covariances for the aggregated seven years data. 

The numerator and denominator of each fraction represents total benchmarks and the sum of 

the annual series respectively. In a binding series the outcome of each of these fractions should 

be approximately equals 1 and less or greater than 1 in the case of unbinding series. Irregular 

benchmarks come up when the economic data is unbinding in many cases. 

 
The covariance matrix on page 60 is for annual discrepancies presented as Vd* depicts the 

computed values earlier presented in Vd. The first value 11.2746 shows that the discrepancies 

between the first year benchmark (annual) and the sub-annual series for the same year is 

11.2746. The discrepancy for the second year is 5.1111, the discrepancy for the third is 1.4435, 

while the discrepancy for the seventh year is 0.0092. None of the years is binding in terms of 

discrepancies, the benchmarks are irregular and be evaluated and reconciled for suitability in 

usage for future research and application. 

 
Page 62 presents the matrix of the bias. This is very important in reconciling low frequency (annual 

data) economic series with high frequency series (sub-annual data). The bias is a regressor or 

predictor that is deterministic in nature. It is a constant that covers the difference in average 

level that exist between the low frequency series and the high frequency series. It normally 

occurs when the high series is not fair with the low series.  This happens mostly when there is 

problem of under coverage or non-coverage in a survey. Bias is an expected phenomenon in 
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benchmarking. 

 
It can be seen in the covariance matrix for sub-annual discrepancies that each of the values in 

the cell represents the discrepancies in the sub-annual (high frequency series). For instance, 

0.7200 is the discrepancy between the annual and sub-annual series for the first year in the 

series. In this case, we have seven annual series, the sub-annual is twenty-eight, and therefore 

we are expected to have a 28 by 28 matrix. It can be seen from the matrix that only few values 

are close to 1, which means they are not binding.  This shows that there exists irregular 

benchmarks in the series, as a result, there is need for evaluation. 

 
From the Cholette simulated series (table 4.1), Column 1 shows the quarters (1981 quarter 1 

to 2004 quarter 4). Column 2 the indicator series, column 3 the annual series, column 4 the 

bias-adjusted series, column 5 the benchmarked series, column 6 and 7 show the growth rates 

from the indicator series growth rate from benchmarked series using the improved 

benchmarking method called the Autocorrelated Indicator Benchmarking Model (AIBM). 

Growth rates are used in measuring the rate of discrepancies between the indicator series and 

the benchmarked series. It can be observed from the table that rate of growth in the column 7 

is lower than the ones observed in column 6. Since the percentage of growth rate is reduced 

in AIBM it shows that the movement in the original series is better preserved in all the twenty- 

eight quarters, no higher value of growth rate is observed in the new method. 

 
According to the charts in figure 4.1 used to represent Cholette data, none of the methods 

reconciled well with the indicator series. They are far away from the indicator series 

considering the generated data, movement and pattern.  This may be due to the nature of the 

data, therefore the methods may not be appropriate for Cholette simulated data. The 

discrepancies between the growth rates from indicator and benchmarked series is wide. The 

growth are close to one another in few pairs of sample points such as quarters 14, 17, 22, 

and 25. Other 24 pairs of points are not showing favourable growth rates when compared with 

the indicator. 

 
Using the Denton data in table 4.2, the seven columns represent the quarters, indicator series, 

annual series, bias adjusted series, benchmarked and the growth rates respectively. Checking 

the growth rates critically, most of the quarters between 1998-1 and 2002-4 have favourable 

values, except in quarters 2001-1 and 2002-1 which account for just 2 out of 28 pairs of points. 

This shows that the method maintains the pattern in the original data, therefore the method is 
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recommended for use considering Denton data. 

 
It can be seen that the benchmarked series using the new method (AIBM) compares 

favourably well when placed side by side with the original series. It is also observed that the 

patterns and movements in the series generated by the new method and the indicator series are 

almost the same. This shows how good the method. This shows that the various methods of 

benchmarking are also good. But the new method is better when handling some specific data 

set. 

 
As represented by the charts in figures 4.3 and 4.4, the growth rates in the indicator and the 

generated series using the AIBM method. The equality in the lengths of pairs of bars shown 

in the chart depicts equal or almost equal growth rates percentages The Denton simulated data 

appear to be good for the method since there is no obvious difference in the growth rate. This 

means that the pattern and movements in the original series are maintained using the improved 

model. 

 
Using the IMF real life data in table 4.3, the seven columns represent the quarters, indicator 

series, annual series, bias adjusted series, benchmarked and the growth rates respectively. It 

can be seen here that the growth rates in the indicator and the bench- marked series obtained 

from the improved method are approximately the same. This shows that there is no loss of 

information in the generated series when compared with the original series.  The movement 

and patterns in the indicator series are preserved. 

 
It can be seen from figure 4.5 that the indicator series, bias adjusted series, the benchmarked 

series, and the average benchmark (obtained by dividing the benchmarks by 4) follow almost 

the pattern.  It is noteworthy that the indicator and the generated benchmarked series are 

exactly on the same line, points, and direction, there is no distinction, and one is embedded in 

the other. This indicates a strong graphic similarity that exists between the series. This shows 

that the method of benchmarking can be recommended for real life data. 

 

The growth rate graph in figure 4.6 show the performance of the new method of benchmarking 

in terms of growth rate percentage. The two bars for each quarter represents the pairs of points 

from the indicator and the benchmarked series. It can be seen from the chart that lengths of 

each of the pairs are the same for most of the quarters except in quarters 8 and 9, others are 
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quarters 24 to 28 where the bars are almost the same in length. This also shows that the new 

method of benchmarking is good enough to handle data reconciliation, especially economic 

data. It also shows that the new method maintains the original pattern and direction in the 

original series which is very important in determining a good model in benchmarking. 

 
The benchmarked series obtained from various benchmarking models using the Cholette 

simulated data are shown in table 4.4. The first column is the indicator series while the other 

columns are the ABD (Additive Balanced Difference), PBD (Proportional Balanced 

Difference), AOOD (Additive Order One Difference), POOD (Proportional Order One 

Difference), AOTD (Additive Order Two Difference), POTD (Proportional Order Two 

Difference), and the AIBM (Autocorrelated Indicator Benchmarking Model). Mere checking 

the series generated from both the existing models (ABD to POTD) and the new model 

(AIBM), none of the series reconciled well with the indicator series. The disparities are high 

when the original series is compared with each of the bench- marking methods 

 
Similar to what is obtained on Cholette simulated data, it is also shown that the benchmarking 

methods failed to maintain the same pattern and direction in the original series when the 

Denton data is applied. This is common to simulated data generated by these authors. Further 

research in this work show that real life data work best for the new model. 

 
The benchmarked series obtained from various benchmarking models using the IMF real life 

data as presented the tables in the preceding chapter. It is observed that all the 

benchmarking methods performed well as revealed in the table, the indicator series and the 

generated series from the benchmarking models in the same direction. However, further 

statistical tests such as the mean, standard variation, variation, and coefficient of variation 

have to be carried out in order to ascertain the best model. As seen from tables 4.7 and 4.8, 

with Cholette simulated data, using rho = 0.729, the AOOD method appears to be the best 

benchmarking method having the lowest growth rate CV of -29.620, the PRM having -27.376 

and the new method AIBM having -23.236. Similarly, when rho = 0.900, the AIBM is better 

with growth rate CV of -28.478, while AOOD has -29.620 and PRM maintains -27.378 

 
When rho = 0.990, growth rate CV for AOOD and AIBM methods are -29.620 and -29.486 

respectively. When rho = 0.999, the growth rate CV for AOOD and AIBM are almost equal, 

being -29.620 and -29.606 respectively. All these show that AIBM is a good alternative to the 

AOOD method. In all the methods of benchmarking considered for Cholette simulated data, 
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the POTD is the worst because it has the highest growth rate CV. From tables 4.9, using the 

Denton simulated data, with rho = 0.729, the AOOD and the AIBM are on the leading side, 

their respective growth rate CV are -29.620 and -29.486. For rho = 0.900, the growth rate CV 

for AOOD is -29.620 while it is -29.606 for AIBM. 

 
In the two levels of autocorrelation, that is 0.729 and 0.900,  it is observed that  the POTD has 

the highest growth rate CV being -13.160 which means it is the worst method as far as the 

Denton simulated data is concerned. When rho = 0.990, the B.ADJ is the best benchmarking 

method having the lowest growth rate CV of - 7.137, next to it is PRM having -4.974, the 

AOOD and AIBM have  the same values  of -4.402. For rho = 0.999, the B.ADJ is the best 

method having the least growth rate CV of -7.309, while the worst method of benchmarking 

is the AOTD having the highest CV of -4.371 for the two autocorrelation coefficient levels. 

 
Considering the IMF data in table 4.10 , when rho = 0.729, the B.ADJ is the best having 

the least growth rate CV of 3.181. Next to it is the AIBM having growth rate CV = 3.192. 

The worst method is the POTD having growth rate CV of 3.200. When rho = 0.900, the B.ADJ 

remains the best having growth rate CV = 3.181, while the AIBM is next having equals 3.194. 

The POTD remains the worst method. 

 

For rho = 0.990, the B.ABJ is the best benchmarking method with growth CV = 3.181 follows 

by the AIBM with growth rate CV = 3.195. When rho = 0.999, the growth rate CV for 

B.ADJ and AIBM are 3.186 and 3.195 respectively. It can also be seen that the worst 

method is the POTD having growth rate CV = 3.200. 

 
Using the Nigeria GDP as seen the table 4.11, for rho = 0.729, the benchmarking methods 

with the lowest growth rate CV are the B.ADJ and the AIBM, being 1.582 and 1.318 

respectively. The best is the AIBM while the POTD has the least performing ability 

growth rate CV of 3.200. The results obtained for growth rate CVs when rho = 0.729 are 

the same for when rho = 0.900. This means that the impact of the various levels of 

autocorrelation coefficients is not obvious. 

 
When rho = 0.990, the growth rate CV for AIBM is the least having 1.121. Next to it is the 

B.ADJ having 1.582. For rho = 0.999, the AIBM has the lowest growth rate CV of 1.105, 

which is an improvement on the previous result from rho = 0.990. The growth rate CV for 
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B.ADJ method is 1.582, while the worst benchmarking method using the Nigeria GDP is the 

POTD having growth rate CV of 3.200 

 
However, the autocorrelated indicator benchmarking model (AIBM) performs excellently 

well with real life data like the GDP, export, import and so on, as proved  in the tables of 

results. 
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                          CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1  Summary of results 
 
This study is an effort to develop an improved approach to modelling and evaluation 

of economic data with irregu lar benchmarking. Existing benchmarking models were 

used and compared with the improved model using various data sets, both simulated 

and real life econom ic data.    

 
It is observed that the effect of varying the autocorrelation coefficient is not significant on the 

growth rates of many of the benchmarking methods for all the data sets used in this study, 

except on B.ADJ and AIBM methods. The AOTD appears to be good when it comes to using 

simulated data as recorded in the growth rate CV from Cholette and Denton data. 

 

The introduction of autocorrelation coefficients has much effect when real life economic data 

sets are used. The benchmarks to indicator improves, which reconciles the benchmarks and the 

annual data better.  

 

5.2 Conclusion 

 

It can be seen from the tables of results presented in table 4.1 page 65 that the bias-adjusted 

series and the benchmarked series (θ in the derived model) reconciled with the indicator and 

the annual series better, as also shown in the charts. The growth rates observed in indicator 

and benchmarked series as revealed in the charts show the variation in the movement of the 

growth rate. The large variation may be due to the difference in sub-annual total and the 

annual obtained from two different sources. On the other hand the close growth rates observed 

in tables of both the indicator and benchmarked may be due to the B-I ratio recorded in the 

dataset. 

 

The similar growth rates noticed here shows that the new benchmarking method ensures good 

movement preservation from the indicator series to the benchmarked series. Tables 4.7 to 4.14 

show the mean, standard deviation, variance, and co- efficient of variation for the growth rates 

from various data sets at different autocorrelation coefficient values: 0.729, 0.900, 0.990, 

0.999, which are used in the variance-covariance matrix used in the new autocorrelated 
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indicator benchmarking model (AIBM). It is generally observed from tables 4.7 to 4.14 that 

the variance and the coefficient of variation for both simulated and real life data are at the 

mini- mum for our new method of benchmarking, which invariably shows that it is better than 

the existing ones. 

 
It can be seen from the tables of data both simulated and real that the benchmarked values 

obtained through our method that it competes favourably with the existing methods of 

benchmarking.  The growth rates charts reveal the variation exhibited in the indicator (sub-

annual) series and the benchmarked series. It is also observed that the Bias adjusted series 

performs better as the increment in the autocorrelated coefficient. The higher the variation the 

worse the method. Although, it appears that real life data such as the GDP reveal the 

robustness of the method than the simulated data. 

 

5.3 Contributions to knowledge 

 
The work has contributed to knowledge in the following areas: 

 
i. Derived an alternative matrix solution to benchmarking problem from annual to 

sub-annuals 

 
ii. Obtained a new benchmarked series that reproduces the movement in the original 

series to better series 

iii. Developed an algorithm for solving benchmarking problem using the new method 

iv. Improvement in the B-I ratio 

 
v. No loss of information at the beginning of the benchmarked series when compared 

with Denton’s method 

vi. Indicator series are more consistent with the benchmarks produced by the various 

methods of benchmarking  

 
vii. Movements in the annual B-I ratio help identify the quality of the indicator series in 

tracking the movements of the annual variables over the period than other 

benchmarking methods 

viii. Better benchmarking method is determined through evaluation of the growth rates 
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5.4 Recommendation 
 
The autocorrelated indicator benchmarking model captured missing first and last values of the 

original datasets, while keeping the properties of the data. Since having disparities in economic 

data collected from two different sources is inevitable, the need to evaluate and reconcile the 

datasets also arises. The model is therefore recommended for handling irregular data. 
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                APPENDICES 

APPENDIX I: MATLAB code for various benchmarking methods 

using Cholette data    

    
s =[85;95;125;95;85;95;125;95;85;95;125;95;85;95;125;95;85;95;125;95;85;95;125;95;85;95; 

125;95];   %sub-annual series 

R = [-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1];        

%regressors 

a = [560;560;520;640;600;680;680];   %annual series or benchmarks for bias-adjusted series 

an = [594;560;520;640;600;680;661];   %annual series or benchmarks for new benchmarked series 

av= [140;140;140;140;140;140;140;140;130;130;130;130;160;160;160;160;150;150;150;150; 

170;170;170;170;170;170;170;170]; %average benchmarks 

T = length(s);      %number of sub-annuals 

M = length(a);      %number of years 

k = T/M;            %length of each sub-annual data 

J = kron(eye(M),ones(k,1));     %quarterly sum operator 

J = J'; 

Id = eye([T T]);     %identity matrix of ones in the diagonal and zero elsewhere 

d = a - J*s;         %discrepancies between benchmarks and sum of sub-annual series 

 

Ve = [1 0.729 0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284

 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392

 0.002465035 0.00179701 0.001310021 0.000955005 0.000696199 0.000507529

 0.000369989 0.000269722 0.000196627 

0.729         1         0.729         0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154

 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398

 0.003381392 0.002465035 0.00179701 0.001310021 0.000955005 0.000696199

 0.000507529 0.000369989 0.000269722 

0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158
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 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685

 0.004638398 0.003381392 0.002465035 0.00179701 0.001310021 0.000955005

 0.000696199 0.000507529 0.000369989 

0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964

 0.006362685 0.004638398 0.003381392 0.002465035 0.00179701 0.001310021

 0.000955005 0.000696199 0.000507529 

0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515

 0.008727964 0.006362685 0.004638398 0.003381392 0.002465035 0.00179701

 0.001310021 0.000955005 0.000696199 

0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392 0.002465035

 0.00179701 0.001310021 0.000955005 

0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392 0.002465035

 0.00179701 0.001310021 

0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         

1         0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284

 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392

 0.002465035 0.00179701 

0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685

 0.004638398 0.003381392 0.002465035 
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0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964

 0.006362685 0.004638398 0.003381392 

0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515

 0.008727964 0.006362685 0.004638398 

0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 0.006362685 

0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 

0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729         1         0.729         0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154

 0.0225284 0.016423203 0.011972515 

0.011972515 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737

 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 

0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489
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 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 0.030903154 0.0225284 

0.006362685 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154

 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 

0.004638398 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284

 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 

0.003381392 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203

 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 

0.002465035 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515

 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729         1         0.729         0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.079766443 

0.00179701 0.002465035 0.003381392 0.004638398 0.006362685 0.008727964

 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737

 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 

0.001310021 0.00179701 0.002465035 0.003381392 0.004638398 0.006362685

 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 

0.000955005 0.001310021 0.00179701 0.002465035 0.003381392 0.004638398
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 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154

 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 

0.000696199 0.000955005 0.001310021 0.00179701 0.002465035 0.003381392

 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284

 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 

0.000507529 0.000696199 0.000955005 0.001310021 0.00179701 0.002465035

 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203

 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 

0.000369989 0.000507529 0.000696199 0.000955005 0.001310021 0.00179701

 0.002465035 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515

 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729         1         0.729         0.531441 

0.000269722 0.000369989 0.000507529 0.000696199 0.000955005 0.001310021

 0.00179701 0.002465035 0.003381392 0.004638398 0.006362685 0.008727964

 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737

 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0 

0.000196627 0.000269722 0.000369989 0.000507529 0.000696199 0.000955005

 0.001310021 0.00179701 0.002465035 0.003381392 0.004638398 0.006362685

 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1 

];  %covariance matrix for sub-annual series  

 

Vd = J*Ve*J';       %covariance matrix for annual discrepancies   

B = -inv(R'*J'*inv(Vd)*J*R)*R'*J'*inv(Vd)*d;    %Bias 
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sb = s-R*B;          %Bias-adjusted series 

varB = inv(R'*J'*inv(Vd)*J*R); 

 

theta = sb + Ve*J'*inv(Vd)*(an-J*sb);    %Benchmarked series 

W = R - Ve*J'*inv(Vd)*J*R; 

vartheta = Ve - Ve*J'*inv(Vd)*J*Ve + W*varB*W'; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% DISPLAY OF RESULTS USING TABLES AND GRAPHS 

Year= 

[1998;1998;1998;1998;1999;1999;1999;1999;2000;2000;2000;2000;2001;2001;2001;2001; 

        2002;2002;2002;2002;2003;2003;2003;2003;2004;2004;2004;2004]; 

 

Results = [s, sb, theta] % indicator series, bias-adjusted series and benchmarked series 

 

qtrs = [1:28]'; 

 

plot(qtrs,s,'r-o',qtrs,sb,'g-',qtrs,theta,'b-*',qtrs,av,'r-*'); 

 

xlabel('Quarters'); 

 

ylabel('Original Scale'); 

 

title('{\bf Indicator series to benchmarked series}'); 

 

legend('Indicator series','Bias-adjusted series','Benchmarked series','Average 

benchmark','Location','NorthWest');%legend at NW  

 

grid on 
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APPENDIX II: MATLAB code for various benchmarking methods 

using Denton data   

  
s =[50;100;150;100;50;100;150;100;50;100;150;100;50;100;150;100;50;100;150;100];   %sub-

annual series 

R = [-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1];        %regressors 

a = [500;400;300;400;500];   %annual series or benchmarks for bias-adjusted series 

an = [502;404;320;430;504];   %annual series or benchmarks for new benchmarked series 

av = [125;125;125;125;100;100;100;100;75;75;75;75;100;100;100;100;125;125;125;125]; 

%average benchmarks 

T = length(s);      %number of sub-annuals 

M = length(a);      %number of years 

k = T/M;            %length of each sub-annual data 

J = kron(eye(M),ones(k,1));     %quarterly sum operator 

J = J'; 

Id = eye([T T]);     %identity matrix of ones in the diagonal and zero elsewhere 

d = a - J*s;         %discrepancies between benchmarks and sum of sub-annual series 

 

Ve = [1  0.729 0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284

 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392

 0.002465035 0.729 1 0.729 0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685

 0.004638398 0.003381392 0.531441 0.729 1 0.729 0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515

 0.008727964 0.006362685 0.004638398 0.387420489 0.531441 0.729 1

 0.729 0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284

 0.016423203 0.011972515 0.008727964 0.006362685 0.282429537 0.387420489
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 0.531441 0.729 1 0.729 0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964 0.205891132

 0.282429537 0.387420489 0.531441 0.729 1 0.729 0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.0164232 0.0119725 

0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729 1 0.729 0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729 1

 0.729 0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 

0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729 1 0.729 0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 

0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729 1 0.729 0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 

0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729 1 0.729 0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 

0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729 1 0.729

 0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729 1 0.729 0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729 1 0.729 0.531441 0.387420489
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 0.282429537 0.205891132 0.150094635 0.011972515 0.016423203 0.0225284

 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729 1 0.729

 0.531441 0.387420489 0.282429537 0.205891132 0.008727964 0.011972515

 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729 1 0.729 0.531441 0.387420489 0.282429537 0.006362685

 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729 1 0.729 0.531441 0.387420489 0.004638398

 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154

 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729 1 0.729 0.531441 0.003381392

 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284

 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729 1 0.729 0.002465035

 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203

 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729 1 

];  %covariance matrix for sub-annual series  

 

Vd = J*Ve*J';       %covariance matrix for annual discrepancies   

B = -inv(R'*J'*inv(Vd)*J*R)*R'*J'*inv(Vd)*d;    %Bias 

sb = s-R*B;          %Bias-adjusted series 

varB = inv(R'*J'*inv(Vd)*J*R); 

 

theta = sb + Ve*J'*inv(Vd)*(an-J*sb);    %Benchmarked series 

W = R - Ve*J'*inv(Vd)*J*R; 

vartheta = Ve - Ve*J'*inv(Vd)*J*Ve + W*varB*W'; 

 

%% DISPLAY OF RESULTS USING TABLES AND GRAPHS 

 

Year = 



126 
 

[1998;1998;1998;1998;1999;1999;1999;1999;2000;2000;2000;2000;2001;2001;2001;2001; 

        2002;2002;2002;2002;2003;2003;2003;2003;2004;2004;2004;2004]; 

 

Results = [s, sb, theta] % indicator series, bias-adjusted series and benchmarked series 

 

qtrs = [1:20]'; 

 

plot(qtrs,s,'r-o',qtrs,sb,'g-',qtrs,theta,'b-*',qtrs,av,'r-*'); 

 

xlabel('Quarters'); 

 

ylabel('Original Scale'); 

 

title('{\bf Indicator series to benchmarked series}'); 

 

legend('Indicator series','Bias-adjusted series','Benchmarked series','Average 

benchmark','Location','NorthWest');%legend at NW  

 

grid on 
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APPENDIX III: MATLAB code for various benchmarking methods 

using IMF data 

    
s = [613216;636852;637890;679437;656030;679720;678584;715545;699993;715684;711180; 

742734;710551;739767;739391;767218;730367;751285;755601;789540;758885;787249;78066

0;815231;776189;816059;805903;837922];   %sub-annual series 

R = [-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1];        

%regressors 

a = [2567964;2727397;2863045;2959810;3030545;3145961;3233960];   %annual series or 

benchmarks for bias-adjusted series 

an = [2567984;2727397;2863045;2959820;3030545;3145961;3233966];   %annual series or 

benchmarks for new benchmarked series 

av = 

[641990.98;641990.98;641990.98;641990.98;681849.36;681849.36;681849.36;681849.36;7157

61.35;715761.35;715761.35;715761.35;739952.40;739952.40;739952.40;739952.40;757636.15;

757636.15;757636.15;757636.15;786490.22;786490.22;786490.22;786490.22;808490.11;80849

0.11;808490.11;808490.11]; %average benchmarks 

T = length(s);      %number of sub-annuals 

M = length(a);      %number of years 

k = T/M;            %length of each sub-annual data 

J = kron(eye(M),ones(k,1));     %quarterly sum operator 

J = J'; 

Id = eye([T T]);     %identity matrix of ones in the diagonal and zero elsewhere 

d = a - J*s;         %discrepancies between benchmarks and sum of sub-annual series 

 

Ve = [1 0.729 0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284

 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392

 0.002465035 0.00179701 0.001310021 0.000955005 0.000696199 0.000507529

 0.000369989 0.000269722 0.000196627 

0.729         1         0.729         0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154
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 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398

 0.003381392 0.002465035 0.00179701 0.001310021 0.000955005 0.000696199

 0.000507529 0.000369989 0.000269722 

0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685

 0.004638398 0.003381392 0.002465035 0.00179701 0.001310021 0.000955005

 0.000696199 0.000507529 0.000369989 

0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964

 0.006362685 0.004638398 0.003381392 0.002465035 0.00179701 0.001310021

 0.000955005 0.000696199 0.000507529 

0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515

 0.008727964 0.006362685 0.004638398 0.003381392 0.002465035 0.00179701

 0.001310021 0.000955005 0.000696199 

0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392 0.002465035

 0.00179701 0.001310021 0.000955005 

0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392 0.002465035

 0.00179701 0.001310021 

0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         

1         0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635

 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284

 0.016423203 0.011972515 0.008727964 0.006362685 0.004638398 0.003381392

 0.002465035 0.00179701 
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0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964 0.006362685

 0.004638398 0.003381392 0.002465035 

0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515 0.008727964

 0.006362685 0.004638398 0.003381392 

0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203 0.011972515

 0.008727964 0.006362685 0.004638398 

0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 0.006362685 

0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 0.030903154 0.0225284 0.016423203

 0.011972515 0.008727964 

0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729         1         0.729         0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158 0.030903154

 0.0225284 0.016423203 0.011972515 

0.011972515 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737

 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537



130 
 

 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737 0.042391158

 0.030903154 0.0225284 0.016423203 

0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443 0.058149737

 0.042391158 0.030903154 0.0225284 

0.006362685 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154

 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989 0.079766443

 0.058149737 0.042391158 0.030903154 

0.004638398 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284

 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 0.042391158 

0.003381392 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203

 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 0.282429537 0.205891132 0.150094635 0.109418989

 0.079766443 0.058149737 

0.002465035 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515

 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729         1         0.729         0.531441 0.387420489 0.282429537 0.205891132

 0.150094635 0.109418989 0.079766443 

0.00179701 0.002465035 0.003381392 0.004638398 0.006362685 0.008727964

 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737

 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0.729         0.531441 0.387420489 0.282429537

 0.205891132 0.150094635 0.109418989 

0.001310021 0.00179701 0.002465035 0.003381392 0.004638398 0.006362685
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 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537

 0.387420489 0.531441 0.729         1         0.729         0.531441 0.387420489

 0.282429537 0.205891132 0.150094635 

0.000955005 0.001310021 0.00179701 0.002465035 0.003381392 0.004638398

 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154

 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132

 0.282429537 0.387420489 0.531441 0.729         1         0.729         0.531441

 0.387420489 0.282429537 0.205891132 

0.000696199 0.000955005 0.001310021 0.00179701 0.002465035 0.003381392

 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203 0.0225284

 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989 0.150094635

 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         0.729         

0.531441 0.387420489 0.282429537 

0.000507529 0.000696199 0.000955005 0.001310021 0.00179701 0.002465035

 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515 0.016423203

 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443 0.109418989

 0.150094635 0.205891132 0.282429537 0.387420489 0.531441 0.729         1         

0.729         0.531441 0.387420489 

0.000369989 0.000507529 0.000696199 0.000955005 0.001310021 0.00179701

 0.002465035 0.003381392 0.004638398 0.006362685 0.008727964 0.011972515

 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737 0.079766443

 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489 0.531441

 0.729         1         0.729         0.531441 

0.000269722 0.000369989 0.000507529 0.000696199 0.000955005 0.001310021

 0.00179701 0.002465035 0.003381392 0.004638398 0.006362685 0.008727964

 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158 0.058149737

 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537 0.387420489

 0.531441 0.729         1         0 

0.000196627 0.000269722 0.000369989 0.000507529 0.000696199 0.000955005

 0.001310021 0.00179701 0.002465035 0.003381392 0.004638398 0.006362685

 0.008727964 0.011972515 0.016423203 0.0225284 0.030903154 0.042391158

 0.058149737 0.079766443 0.109418989 0.150094635 0.205891132 0.282429537
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 0.387420489 0.531441 0.729         1 

];  %covariance matrix for sub-annual series  

 

Vd = J*Ve*J';       %covariance matrix for annual discrepancies   

B = -inv(R'*J'*inv(Vd)*J*R)*R'*J'*inv(Vd)*d;    %Bias 

sb = s-R*B;          %Bias-adjusted series 

varB = inv(R'*J'*inv(Vd)*J*R); 

 

theta = sb + Ve*J'*inv(Vd)*(an-J*sb);    %Benchmarked series 

W = R - Ve*J'*inv(Vd)*J*R; 

vartheta = Ve - Ve*J'*inv(Vd)*J*Ve + W*varB*W'; 

 

%% DISPLAY OF RESULTS USING TABLES AND GRAPHS 

 

Year = 

[1998;1998;1998;1998;1999;1999;1999;1999;2000;2000;2000;2000;2001;2001;2001;2001; 

        2002;2002;2002;2002;2003;2003;2003;2003;2004;2004;2004;2004]; 

 

Results = [s, sb, theta] % indicator series, bias-adjusted series and benchmarked series 

 

qtrs = [1:28]'; 

 

plot(qtrs,s,'r-o',qtrs,sb,'black-',qtrs,theta,'b-*',qtrs,av,'r-*'); 

 

xlabel('Quarters'); 

 

ylabel('Original Scale'); 

 

title('{\bf Indicator series to benchmarked series}'); 

 

legend('Indicator series','Bias-adjusted series','Benchmarked series','Average 

benchmark','Location','SouthEast');%legend at NW  
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grid on 
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Where  

          J’ is the matrix for the temporal sum operator of 7 by 28 dimension 
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Where  
sb = s - R*B is the bias-adjusted series of 28 by 1 dimension  

 

 

 


